xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/LoopAccessAnalysis.cpp (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The implementation for the loop memory dependence that was originally
10 // developed for the loop vectorizer.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/LoopAccessAnalysis.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/EquivalenceClasses.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AliasSetTracker.h"
28 #include "llvm/Analysis/LoopAnalysisManager.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/Analysis/MemoryLocation.h"
31 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/ScalarEvolutionExpander.h"
34 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/DiagnosticInfo.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/IRBuilder.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/Operator.h"
51 #include "llvm/IR/PassManager.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/InitializePasses.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <cstdlib>
66 #include <iterator>
67 #include <utility>
68 #include <vector>
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "loop-accesses"
73 
74 static cl::opt<unsigned, true>
75 VectorizationFactor("force-vector-width", cl::Hidden,
76                     cl::desc("Sets the SIMD width. Zero is autoselect."),
77                     cl::location(VectorizerParams::VectorizationFactor));
78 unsigned VectorizerParams::VectorizationFactor;
79 
80 static cl::opt<unsigned, true>
81 VectorizationInterleave("force-vector-interleave", cl::Hidden,
82                         cl::desc("Sets the vectorization interleave count. "
83                                  "Zero is autoselect."),
84                         cl::location(
85                             VectorizerParams::VectorizationInterleave));
86 unsigned VectorizerParams::VectorizationInterleave;
87 
88 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
89     "runtime-memory-check-threshold", cl::Hidden,
90     cl::desc("When performing memory disambiguation checks at runtime do not "
91              "generate more than this number of comparisons (default = 8)."),
92     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
93 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
94 
95 /// The maximum iterations used to merge memory checks
96 static cl::opt<unsigned> MemoryCheckMergeThreshold(
97     "memory-check-merge-threshold", cl::Hidden,
98     cl::desc("Maximum number of comparisons done when trying to merge "
99              "runtime memory checks. (default = 100)"),
100     cl::init(100));
101 
102 /// Maximum SIMD width.
103 const unsigned VectorizerParams::MaxVectorWidth = 64;
104 
105 /// We collect dependences up to this threshold.
106 static cl::opt<unsigned>
107     MaxDependences("max-dependences", cl::Hidden,
108                    cl::desc("Maximum number of dependences collected by "
109                             "loop-access analysis (default = 100)"),
110                    cl::init(100));
111 
112 /// This enables versioning on the strides of symbolically striding memory
113 /// accesses in code like the following.
114 ///   for (i = 0; i < N; ++i)
115 ///     A[i * Stride1] += B[i * Stride2] ...
116 ///
117 /// Will be roughly translated to
118 ///    if (Stride1 == 1 && Stride2 == 1) {
119 ///      for (i = 0; i < N; i+=4)
120 ///       A[i:i+3] += ...
121 ///    } else
122 ///      ...
123 static cl::opt<bool> EnableMemAccessVersioning(
124     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
125     cl::desc("Enable symbolic stride memory access versioning"));
126 
127 /// Enable store-to-load forwarding conflict detection. This option can
128 /// be disabled for correctness testing.
129 static cl::opt<bool> EnableForwardingConflictDetection(
130     "store-to-load-forwarding-conflict-detection", cl::Hidden,
131     cl::desc("Enable conflict detection in loop-access analysis"),
132     cl::init(true));
133 
134 bool VectorizerParams::isInterleaveForced() {
135   return ::VectorizationInterleave.getNumOccurrences() > 0;
136 }
137 
138 Value *llvm::stripIntegerCast(Value *V) {
139   if (auto *CI = dyn_cast<CastInst>(V))
140     if (CI->getOperand(0)->getType()->isIntegerTy())
141       return CI->getOperand(0);
142   return V;
143 }
144 
145 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
146                                             const ValueToValueMap &PtrToStride,
147                                             Value *Ptr, Value *OrigPtr) {
148   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
149 
150   // If there is an entry in the map return the SCEV of the pointer with the
151   // symbolic stride replaced by one.
152   ValueToValueMap::const_iterator SI =
153       PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
154   if (SI != PtrToStride.end()) {
155     Value *StrideVal = SI->second;
156 
157     // Strip casts.
158     StrideVal = stripIntegerCast(StrideVal);
159 
160     ScalarEvolution *SE = PSE.getSE();
161     const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
162     const auto *CT =
163         static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
164 
165     PSE.addPredicate(*SE->getEqualPredicate(U, CT));
166     auto *Expr = PSE.getSCEV(Ptr);
167 
168     LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
169                       << " by: " << *Expr << "\n");
170     return Expr;
171   }
172 
173   // Otherwise, just return the SCEV of the original pointer.
174   return OrigSCEV;
175 }
176 
177 /// Calculate Start and End points of memory access.
178 /// Let's assume A is the first access and B is a memory access on N-th loop
179 /// iteration. Then B is calculated as:
180 ///   B = A + Step*N .
181 /// Step value may be positive or negative.
182 /// N is a calculated back-edge taken count:
183 ///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
184 /// Start and End points are calculated in the following way:
185 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
186 /// where SizeOfElt is the size of single memory access in bytes.
187 ///
188 /// There is no conflict when the intervals are disjoint:
189 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
190 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
191                                     unsigned DepSetId, unsigned ASId,
192                                     const ValueToValueMap &Strides,
193                                     PredicatedScalarEvolution &PSE) {
194   // Get the stride replaced scev.
195   const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
196   ScalarEvolution *SE = PSE.getSE();
197 
198   const SCEV *ScStart;
199   const SCEV *ScEnd;
200 
201   if (SE->isLoopInvariant(Sc, Lp))
202     ScStart = ScEnd = Sc;
203   else {
204     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
205     assert(AR && "Invalid addrec expression");
206     const SCEV *Ex = PSE.getBackedgeTakenCount();
207 
208     ScStart = AR->getStart();
209     ScEnd = AR->evaluateAtIteration(Ex, *SE);
210     const SCEV *Step = AR->getStepRecurrence(*SE);
211 
212     // For expressions with negative step, the upper bound is ScStart and the
213     // lower bound is ScEnd.
214     if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
215       if (CStep->getValue()->isNegative())
216         std::swap(ScStart, ScEnd);
217     } else {
218       // Fallback case: the step is not constant, but we can still
219       // get the upper and lower bounds of the interval by using min/max
220       // expressions.
221       ScStart = SE->getUMinExpr(ScStart, ScEnd);
222       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
223     }
224     // Add the size of the pointed element to ScEnd.
225     unsigned EltSize =
226       Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8;
227     const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize);
228     ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
229   }
230 
231   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
232 }
233 
234 SmallVector<RuntimePointerChecking::PointerCheck, 4>
235 RuntimePointerChecking::generateChecks() const {
236   SmallVector<PointerCheck, 4> Checks;
237 
238   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
239     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
240       const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
241       const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
242 
243       if (needsChecking(CGI, CGJ))
244         Checks.push_back(std::make_pair(&CGI, &CGJ));
245     }
246   }
247   return Checks;
248 }
249 
250 void RuntimePointerChecking::generateChecks(
251     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
252   assert(Checks.empty() && "Checks is not empty");
253   groupChecks(DepCands, UseDependencies);
254   Checks = generateChecks();
255 }
256 
257 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
258                                            const CheckingPtrGroup &N) const {
259   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
260     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
261       if (needsChecking(M.Members[I], N.Members[J]))
262         return true;
263   return false;
264 }
265 
266 /// Compare \p I and \p J and return the minimum.
267 /// Return nullptr in case we couldn't find an answer.
268 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
269                                    ScalarEvolution *SE) {
270   const SCEV *Diff = SE->getMinusSCEV(J, I);
271   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
272 
273   if (!C)
274     return nullptr;
275   if (C->getValue()->isNegative())
276     return J;
277   return I;
278 }
279 
280 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
281   const SCEV *Start = RtCheck.Pointers[Index].Start;
282   const SCEV *End = RtCheck.Pointers[Index].End;
283 
284   // Compare the starts and ends with the known minimum and maximum
285   // of this set. We need to know how we compare against the min/max
286   // of the set in order to be able to emit memchecks.
287   const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
288   if (!Min0)
289     return false;
290 
291   const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
292   if (!Min1)
293     return false;
294 
295   // Update the low bound  expression if we've found a new min value.
296   if (Min0 == Start)
297     Low = Start;
298 
299   // Update the high bound expression if we've found a new max value.
300   if (Min1 != End)
301     High = End;
302 
303   Members.push_back(Index);
304   return true;
305 }
306 
307 void RuntimePointerChecking::groupChecks(
308     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
309   // We build the groups from dependency candidates equivalence classes
310   // because:
311   //    - We know that pointers in the same equivalence class share
312   //      the same underlying object and therefore there is a chance
313   //      that we can compare pointers
314   //    - We wouldn't be able to merge two pointers for which we need
315   //      to emit a memcheck. The classes in DepCands are already
316   //      conveniently built such that no two pointers in the same
317   //      class need checking against each other.
318 
319   // We use the following (greedy) algorithm to construct the groups
320   // For every pointer in the equivalence class:
321   //   For each existing group:
322   //   - if the difference between this pointer and the min/max bounds
323   //     of the group is a constant, then make the pointer part of the
324   //     group and update the min/max bounds of that group as required.
325 
326   CheckingGroups.clear();
327 
328   // If we need to check two pointers to the same underlying object
329   // with a non-constant difference, we shouldn't perform any pointer
330   // grouping with those pointers. This is because we can easily get
331   // into cases where the resulting check would return false, even when
332   // the accesses are safe.
333   //
334   // The following example shows this:
335   // for (i = 0; i < 1000; ++i)
336   //   a[5000 + i * m] = a[i] + a[i + 9000]
337   //
338   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
339   // (0, 10000) which is always false. However, if m is 1, there is no
340   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
341   // us to perform an accurate check in this case.
342   //
343   // The above case requires that we have an UnknownDependence between
344   // accesses to the same underlying object. This cannot happen unless
345   // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
346   // is also false. In this case we will use the fallback path and create
347   // separate checking groups for all pointers.
348 
349   // If we don't have the dependency partitions, construct a new
350   // checking pointer group for each pointer. This is also required
351   // for correctness, because in this case we can have checking between
352   // pointers to the same underlying object.
353   if (!UseDependencies) {
354     for (unsigned I = 0; I < Pointers.size(); ++I)
355       CheckingGroups.push_back(CheckingPtrGroup(I, *this));
356     return;
357   }
358 
359   unsigned TotalComparisons = 0;
360 
361   DenseMap<Value *, unsigned> PositionMap;
362   for (unsigned Index = 0; Index < Pointers.size(); ++Index)
363     PositionMap[Pointers[Index].PointerValue] = Index;
364 
365   // We need to keep track of what pointers we've already seen so we
366   // don't process them twice.
367   SmallSet<unsigned, 2> Seen;
368 
369   // Go through all equivalence classes, get the "pointer check groups"
370   // and add them to the overall solution. We use the order in which accesses
371   // appear in 'Pointers' to enforce determinism.
372   for (unsigned I = 0; I < Pointers.size(); ++I) {
373     // We've seen this pointer before, and therefore already processed
374     // its equivalence class.
375     if (Seen.count(I))
376       continue;
377 
378     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
379                                            Pointers[I].IsWritePtr);
380 
381     SmallVector<CheckingPtrGroup, 2> Groups;
382     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
383 
384     // Because DepCands is constructed by visiting accesses in the order in
385     // which they appear in alias sets (which is deterministic) and the
386     // iteration order within an equivalence class member is only dependent on
387     // the order in which unions and insertions are performed on the
388     // equivalence class, the iteration order is deterministic.
389     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
390          MI != ME; ++MI) {
391       unsigned Pointer = PositionMap[MI->getPointer()];
392       bool Merged = false;
393       // Mark this pointer as seen.
394       Seen.insert(Pointer);
395 
396       // Go through all the existing sets and see if we can find one
397       // which can include this pointer.
398       for (CheckingPtrGroup &Group : Groups) {
399         // Don't perform more than a certain amount of comparisons.
400         // This should limit the cost of grouping the pointers to something
401         // reasonable.  If we do end up hitting this threshold, the algorithm
402         // will create separate groups for all remaining pointers.
403         if (TotalComparisons > MemoryCheckMergeThreshold)
404           break;
405 
406         TotalComparisons++;
407 
408         if (Group.addPointer(Pointer)) {
409           Merged = true;
410           break;
411         }
412       }
413 
414       if (!Merged)
415         // We couldn't add this pointer to any existing set or the threshold
416         // for the number of comparisons has been reached. Create a new group
417         // to hold the current pointer.
418         Groups.push_back(CheckingPtrGroup(Pointer, *this));
419     }
420 
421     // We've computed the grouped checks for this partition.
422     // Save the results and continue with the next one.
423     llvm::copy(Groups, std::back_inserter(CheckingGroups));
424   }
425 }
426 
427 bool RuntimePointerChecking::arePointersInSamePartition(
428     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
429     unsigned PtrIdx2) {
430   return (PtrToPartition[PtrIdx1] != -1 &&
431           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
432 }
433 
434 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
435   const PointerInfo &PointerI = Pointers[I];
436   const PointerInfo &PointerJ = Pointers[J];
437 
438   // No need to check if two readonly pointers intersect.
439   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
440     return false;
441 
442   // Only need to check pointers between two different dependency sets.
443   if (PointerI.DependencySetId == PointerJ.DependencySetId)
444     return false;
445 
446   // Only need to check pointers in the same alias set.
447   if (PointerI.AliasSetId != PointerJ.AliasSetId)
448     return false;
449 
450   return true;
451 }
452 
453 void RuntimePointerChecking::printChecks(
454     raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
455     unsigned Depth) const {
456   unsigned N = 0;
457   for (const auto &Check : Checks) {
458     const auto &First = Check.first->Members, &Second = Check.second->Members;
459 
460     OS.indent(Depth) << "Check " << N++ << ":\n";
461 
462     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
463     for (unsigned K = 0; K < First.size(); ++K)
464       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
465 
466     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
467     for (unsigned K = 0; K < Second.size(); ++K)
468       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
469   }
470 }
471 
472 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
473 
474   OS.indent(Depth) << "Run-time memory checks:\n";
475   printChecks(OS, Checks, Depth);
476 
477   OS.indent(Depth) << "Grouped accesses:\n";
478   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
479     const auto &CG = CheckingGroups[I];
480 
481     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
482     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
483                          << ")\n";
484     for (unsigned J = 0; J < CG.Members.size(); ++J) {
485       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
486                            << "\n";
487     }
488   }
489 }
490 
491 namespace {
492 
493 /// Analyses memory accesses in a loop.
494 ///
495 /// Checks whether run time pointer checks are needed and builds sets for data
496 /// dependence checking.
497 class AccessAnalysis {
498 public:
499   /// Read or write access location.
500   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
501   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
502 
503   AccessAnalysis(const DataLayout &Dl, Loop *TheLoop, AliasAnalysis *AA,
504                  LoopInfo *LI, MemoryDepChecker::DepCandidates &DA,
505                  PredicatedScalarEvolution &PSE)
506       : DL(Dl), TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA),
507         IsRTCheckAnalysisNeeded(false), PSE(PSE) {}
508 
509   /// Register a load  and whether it is only read from.
510   void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
511     Value *Ptr = const_cast<Value*>(Loc.Ptr);
512     AST.add(Ptr, LocationSize::unknown(), Loc.AATags);
513     Accesses.insert(MemAccessInfo(Ptr, false));
514     if (IsReadOnly)
515       ReadOnlyPtr.insert(Ptr);
516   }
517 
518   /// Register a store.
519   void addStore(MemoryLocation &Loc) {
520     Value *Ptr = const_cast<Value*>(Loc.Ptr);
521     AST.add(Ptr, LocationSize::unknown(), Loc.AATags);
522     Accesses.insert(MemAccessInfo(Ptr, true));
523   }
524 
525   /// Check if we can emit a run-time no-alias check for \p Access.
526   ///
527   /// Returns true if we can emit a run-time no alias check for \p Access.
528   /// If we can check this access, this also adds it to a dependence set and
529   /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
530   /// we will attempt to use additional run-time checks in order to get
531   /// the bounds of the pointer.
532   bool createCheckForAccess(RuntimePointerChecking &RtCheck,
533                             MemAccessInfo Access,
534                             const ValueToValueMap &Strides,
535                             DenseMap<Value *, unsigned> &DepSetId,
536                             Loop *TheLoop, unsigned &RunningDepId,
537                             unsigned ASId, bool ShouldCheckStride,
538                             bool Assume);
539 
540   /// Check whether we can check the pointers at runtime for
541   /// non-intersection.
542   ///
543   /// Returns true if we need no check or if we do and we can generate them
544   /// (i.e. the pointers have computable bounds).
545   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
546                        Loop *TheLoop, const ValueToValueMap &Strides,
547                        bool ShouldCheckWrap = false);
548 
549   /// Goes over all memory accesses, checks whether a RT check is needed
550   /// and builds sets of dependent accesses.
551   void buildDependenceSets() {
552     processMemAccesses();
553   }
554 
555   /// Initial processing of memory accesses determined that we need to
556   /// perform dependency checking.
557   ///
558   /// Note that this can later be cleared if we retry memcheck analysis without
559   /// dependency checking (i.e. FoundNonConstantDistanceDependence).
560   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
561 
562   /// We decided that no dependence analysis would be used.  Reset the state.
563   void resetDepChecks(MemoryDepChecker &DepChecker) {
564     CheckDeps.clear();
565     DepChecker.clearDependences();
566   }
567 
568   MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }
569 
570 private:
571   typedef SetVector<MemAccessInfo> PtrAccessSet;
572 
573   /// Go over all memory access and check whether runtime pointer checks
574   /// are needed and build sets of dependency check candidates.
575   void processMemAccesses();
576 
577   /// Set of all accesses.
578   PtrAccessSet Accesses;
579 
580   const DataLayout &DL;
581 
582   /// The loop being checked.
583   const Loop *TheLoop;
584 
585   /// List of accesses that need a further dependence check.
586   MemAccessInfoList CheckDeps;
587 
588   /// Set of pointers that are read only.
589   SmallPtrSet<Value*, 16> ReadOnlyPtr;
590 
591   /// An alias set tracker to partition the access set by underlying object and
592   //intrinsic property (such as TBAA metadata).
593   AliasSetTracker AST;
594 
595   LoopInfo *LI;
596 
597   /// Sets of potentially dependent accesses - members of one set share an
598   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
599   /// dependence check.
600   MemoryDepChecker::DepCandidates &DepCands;
601 
602   /// Initial processing of memory accesses determined that we may need
603   /// to add memchecks.  Perform the analysis to determine the necessary checks.
604   ///
605   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
606   /// memcheck analysis without dependency checking
607   /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
608   /// cleared while this remains set if we have potentially dependent accesses.
609   bool IsRTCheckAnalysisNeeded;
610 
611   /// The SCEV predicate containing all the SCEV-related assumptions.
612   PredicatedScalarEvolution &PSE;
613 };
614 
615 } // end anonymous namespace
616 
617 /// Check whether a pointer can participate in a runtime bounds check.
618 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
619 /// by adding run-time checks (overflow checks) if necessary.
620 static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
621                                 const ValueToValueMap &Strides, Value *Ptr,
622                                 Loop *L, bool Assume) {
623   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
624 
625   // The bounds for loop-invariant pointer is trivial.
626   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
627     return true;
628 
629   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
630 
631   if (!AR && Assume)
632     AR = PSE.getAsAddRec(Ptr);
633 
634   if (!AR)
635     return false;
636 
637   return AR->isAffine();
638 }
639 
640 /// Check whether a pointer address cannot wrap.
641 static bool isNoWrap(PredicatedScalarEvolution &PSE,
642                      const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
643   const SCEV *PtrScev = PSE.getSCEV(Ptr);
644   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
645     return true;
646 
647   int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
648   if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
649     return true;
650 
651   return false;
652 }
653 
654 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
655                                           MemAccessInfo Access,
656                                           const ValueToValueMap &StridesMap,
657                                           DenseMap<Value *, unsigned> &DepSetId,
658                                           Loop *TheLoop, unsigned &RunningDepId,
659                                           unsigned ASId, bool ShouldCheckWrap,
660                                           bool Assume) {
661   Value *Ptr = Access.getPointer();
662 
663   if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume))
664     return false;
665 
666   // When we run after a failing dependency check we have to make sure
667   // we don't have wrapping pointers.
668   if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) {
669     auto *Expr = PSE.getSCEV(Ptr);
670     if (!Assume || !isa<SCEVAddRecExpr>(Expr))
671       return false;
672     PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
673   }
674 
675   // The id of the dependence set.
676   unsigned DepId;
677 
678   if (isDependencyCheckNeeded()) {
679     Value *Leader = DepCands.getLeaderValue(Access).getPointer();
680     unsigned &LeaderId = DepSetId[Leader];
681     if (!LeaderId)
682       LeaderId = RunningDepId++;
683     DepId = LeaderId;
684   } else
685     // Each access has its own dependence set.
686     DepId = RunningDepId++;
687 
688   bool IsWrite = Access.getInt();
689   RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
690   LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
691 
692   return true;
693  }
694 
695 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
696                                      ScalarEvolution *SE, Loop *TheLoop,
697                                      const ValueToValueMap &StridesMap,
698                                      bool ShouldCheckWrap) {
699   // Find pointers with computable bounds. We are going to use this information
700   // to place a runtime bound check.
701   bool CanDoRT = true;
702 
703   bool NeedRTCheck = false;
704   if (!IsRTCheckAnalysisNeeded) return true;
705 
706   bool IsDepCheckNeeded = isDependencyCheckNeeded();
707 
708   // We assign a consecutive id to access from different alias sets.
709   // Accesses between different groups doesn't need to be checked.
710   unsigned ASId = 1;
711   for (auto &AS : AST) {
712     int NumReadPtrChecks = 0;
713     int NumWritePtrChecks = 0;
714     bool CanDoAliasSetRT = true;
715 
716     // We assign consecutive id to access from different dependence sets.
717     // Accesses within the same set don't need a runtime check.
718     unsigned RunningDepId = 1;
719     DenseMap<Value *, unsigned> DepSetId;
720 
721     SmallVector<MemAccessInfo, 4> Retries;
722 
723     for (auto A : AS) {
724       Value *Ptr = A.getValue();
725       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
726       MemAccessInfo Access(Ptr, IsWrite);
727 
728       if (IsWrite)
729         ++NumWritePtrChecks;
730       else
731         ++NumReadPtrChecks;
732 
733       if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop,
734                                 RunningDepId, ASId, ShouldCheckWrap, false)) {
735         LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
736         Retries.push_back(Access);
737         CanDoAliasSetRT = false;
738       }
739     }
740 
741     // If we have at least two writes or one write and a read then we need to
742     // check them.  But there is no need to checks if there is only one
743     // dependence set for this alias set.
744     //
745     // Note that this function computes CanDoRT and NeedRTCheck independently.
746     // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
747     // for which we couldn't find the bounds but we don't actually need to emit
748     // any checks so it does not matter.
749     bool NeedsAliasSetRTCheck = false;
750     if (!(IsDepCheckNeeded && CanDoAliasSetRT && RunningDepId == 2))
751       NeedsAliasSetRTCheck = (NumWritePtrChecks >= 2 ||
752                              (NumReadPtrChecks >= 1 && NumWritePtrChecks >= 1));
753 
754     // We need to perform run-time alias checks, but some pointers had bounds
755     // that couldn't be checked.
756     if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
757       // Reset the CanDoSetRt flag and retry all accesses that have failed.
758       // We know that we need these checks, so we can now be more aggressive
759       // and add further checks if required (overflow checks).
760       CanDoAliasSetRT = true;
761       for (auto Access : Retries)
762         if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId,
763                                   TheLoop, RunningDepId, ASId,
764                                   ShouldCheckWrap, /*Assume=*/true)) {
765           CanDoAliasSetRT = false;
766           break;
767         }
768     }
769 
770     CanDoRT &= CanDoAliasSetRT;
771     NeedRTCheck |= NeedsAliasSetRTCheck;
772     ++ASId;
773   }
774 
775   // If the pointers that we would use for the bounds comparison have different
776   // address spaces, assume the values aren't directly comparable, so we can't
777   // use them for the runtime check. We also have to assume they could
778   // overlap. In the future there should be metadata for whether address spaces
779   // are disjoint.
780   unsigned NumPointers = RtCheck.Pointers.size();
781   for (unsigned i = 0; i < NumPointers; ++i) {
782     for (unsigned j = i + 1; j < NumPointers; ++j) {
783       // Only need to check pointers between two different dependency sets.
784       if (RtCheck.Pointers[i].DependencySetId ==
785           RtCheck.Pointers[j].DependencySetId)
786        continue;
787       // Only need to check pointers in the same alias set.
788       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
789         continue;
790 
791       Value *PtrI = RtCheck.Pointers[i].PointerValue;
792       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
793 
794       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
795       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
796       if (ASi != ASj) {
797         LLVM_DEBUG(
798             dbgs() << "LAA: Runtime check would require comparison between"
799                       " different address spaces\n");
800         return false;
801       }
802     }
803   }
804 
805   if (NeedRTCheck && CanDoRT)
806     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
807 
808   LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
809                     << " pointer comparisons.\n");
810 
811   RtCheck.Need = NeedRTCheck;
812 
813   bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
814   if (!CanDoRTIfNeeded)
815     RtCheck.reset();
816   return CanDoRTIfNeeded;
817 }
818 
819 void AccessAnalysis::processMemAccesses() {
820   // We process the set twice: first we process read-write pointers, last we
821   // process read-only pointers. This allows us to skip dependence tests for
822   // read-only pointers.
823 
824   LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
825   LLVM_DEBUG(dbgs() << "  AST: "; AST.dump());
826   LLVM_DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
827   LLVM_DEBUG({
828     for (auto A : Accesses)
829       dbgs() << "\t" << *A.getPointer() << " (" <<
830                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
831                                          "read-only" : "read")) << ")\n";
832   });
833 
834   // The AliasSetTracker has nicely partitioned our pointers by metadata
835   // compatibility and potential for underlying-object overlap. As a result, we
836   // only need to check for potential pointer dependencies within each alias
837   // set.
838   for (auto &AS : AST) {
839     // Note that both the alias-set tracker and the alias sets themselves used
840     // linked lists internally and so the iteration order here is deterministic
841     // (matching the original instruction order within each set).
842 
843     bool SetHasWrite = false;
844 
845     // Map of pointers to last access encountered.
846     typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
847     UnderlyingObjToAccessMap ObjToLastAccess;
848 
849     // Set of access to check after all writes have been processed.
850     PtrAccessSet DeferredAccesses;
851 
852     // Iterate over each alias set twice, once to process read/write pointers,
853     // and then to process read-only pointers.
854     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
855       bool UseDeferred = SetIteration > 0;
856       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
857 
858       for (auto AV : AS) {
859         Value *Ptr = AV.getValue();
860 
861         // For a single memory access in AliasSetTracker, Accesses may contain
862         // both read and write, and they both need to be handled for CheckDeps.
863         for (auto AC : S) {
864           if (AC.getPointer() != Ptr)
865             continue;
866 
867           bool IsWrite = AC.getInt();
868 
869           // If we're using the deferred access set, then it contains only
870           // reads.
871           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
872           if (UseDeferred && !IsReadOnlyPtr)
873             continue;
874           // Otherwise, the pointer must be in the PtrAccessSet, either as a
875           // read or a write.
876           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
877                   S.count(MemAccessInfo(Ptr, false))) &&
878                  "Alias-set pointer not in the access set?");
879 
880           MemAccessInfo Access(Ptr, IsWrite);
881           DepCands.insert(Access);
882 
883           // Memorize read-only pointers for later processing and skip them in
884           // the first round (they need to be checked after we have seen all
885           // write pointers). Note: we also mark pointer that are not
886           // consecutive as "read-only" pointers (so that we check
887           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
888           if (!UseDeferred && IsReadOnlyPtr) {
889             DeferredAccesses.insert(Access);
890             continue;
891           }
892 
893           // If this is a write - check other reads and writes for conflicts. If
894           // this is a read only check other writes for conflicts (but only if
895           // there is no other write to the ptr - this is an optimization to
896           // catch "a[i] = a[i] + " without having to do a dependence check).
897           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
898             CheckDeps.push_back(Access);
899             IsRTCheckAnalysisNeeded = true;
900           }
901 
902           if (IsWrite)
903             SetHasWrite = true;
904 
905           // Create sets of pointers connected by a shared alias set and
906           // underlying object.
907           typedef SmallVector<const Value *, 16> ValueVector;
908           ValueVector TempObjects;
909 
910           GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
911           LLVM_DEBUG(dbgs()
912                      << "Underlying objects for pointer " << *Ptr << "\n");
913           for (const Value *UnderlyingObj : TempObjects) {
914             // nullptr never alias, don't join sets for pointer that have "null"
915             // in their UnderlyingObjects list.
916             if (isa<ConstantPointerNull>(UnderlyingObj) &&
917                 !NullPointerIsDefined(
918                     TheLoop->getHeader()->getParent(),
919                     UnderlyingObj->getType()->getPointerAddressSpace()))
920               continue;
921 
922             UnderlyingObjToAccessMap::iterator Prev =
923                 ObjToLastAccess.find(UnderlyingObj);
924             if (Prev != ObjToLastAccess.end())
925               DepCands.unionSets(Access, Prev->second);
926 
927             ObjToLastAccess[UnderlyingObj] = Access;
928             LLVM_DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
929           }
930         }
931       }
932     }
933   }
934 }
935 
936 static bool isInBoundsGep(Value *Ptr) {
937   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
938     return GEP->isInBounds();
939   return false;
940 }
941 
942 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
943 /// i.e. monotonically increasing/decreasing.
944 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
945                            PredicatedScalarEvolution &PSE, const Loop *L) {
946   // FIXME: This should probably only return true for NUW.
947   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
948     return true;
949 
950   // Scalar evolution does not propagate the non-wrapping flags to values that
951   // are derived from a non-wrapping induction variable because non-wrapping
952   // could be flow-sensitive.
953   //
954   // Look through the potentially overflowing instruction to try to prove
955   // non-wrapping for the *specific* value of Ptr.
956 
957   // The arithmetic implied by an inbounds GEP can't overflow.
958   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
959   if (!GEP || !GEP->isInBounds())
960     return false;
961 
962   // Make sure there is only one non-const index and analyze that.
963   Value *NonConstIndex = nullptr;
964   for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end()))
965     if (!isa<ConstantInt>(Index)) {
966       if (NonConstIndex)
967         return false;
968       NonConstIndex = Index;
969     }
970   if (!NonConstIndex)
971     // The recurrence is on the pointer, ignore for now.
972     return false;
973 
974   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
975   // AddRec using a NSW operation.
976   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
977     if (OBO->hasNoSignedWrap() &&
978         // Assume constant for other the operand so that the AddRec can be
979         // easily found.
980         isa<ConstantInt>(OBO->getOperand(1))) {
981       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
982 
983       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
984         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
985     }
986 
987   return false;
988 }
989 
990 /// Check whether the access through \p Ptr has a constant stride.
991 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
992                            const Loop *Lp, const ValueToValueMap &StridesMap,
993                            bool Assume, bool ShouldCheckWrap) {
994   Type *Ty = Ptr->getType();
995   assert(Ty->isPointerTy() && "Unexpected non-ptr");
996 
997   // Make sure that the pointer does not point to aggregate types.
998   auto *PtrTy = cast<PointerType>(Ty);
999   if (PtrTy->getElementType()->isAggregateType()) {
1000     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
1001                       << *Ptr << "\n");
1002     return 0;
1003   }
1004 
1005   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
1006 
1007   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1008   if (Assume && !AR)
1009     AR = PSE.getAsAddRec(Ptr);
1010 
1011   if (!AR) {
1012     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1013                       << " SCEV: " << *PtrScev << "\n");
1014     return 0;
1015   }
1016 
1017   // The access function must stride over the innermost loop.
1018   if (Lp != AR->getLoop()) {
1019     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1020                       << *Ptr << " SCEV: " << *AR << "\n");
1021     return 0;
1022   }
1023 
1024   // The address calculation must not wrap. Otherwise, a dependence could be
1025   // inverted.
1026   // An inbounds getelementptr that is a AddRec with a unit stride
1027   // cannot wrap per definition. The unit stride requirement is checked later.
1028   // An getelementptr without an inbounds attribute and unit stride would have
1029   // to access the pointer value "0" which is undefined behavior in address
1030   // space 0, therefore we can also vectorize this case.
1031   bool IsInBoundsGEP = isInBoundsGep(Ptr);
1032   bool IsNoWrapAddRec = !ShouldCheckWrap ||
1033     PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
1034     isNoWrapAddRec(Ptr, AR, PSE, Lp);
1035   if (!IsNoWrapAddRec && !IsInBoundsGEP &&
1036       NullPointerIsDefined(Lp->getHeader()->getParent(),
1037                            PtrTy->getAddressSpace())) {
1038     if (Assume) {
1039       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1040       IsNoWrapAddRec = true;
1041       LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
1042                         << "LAA:   Pointer: " << *Ptr << "\n"
1043                         << "LAA:   SCEV: " << *AR << "\n"
1044                         << "LAA:   Added an overflow assumption\n");
1045     } else {
1046       LLVM_DEBUG(
1047           dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1048                  << *Ptr << " SCEV: " << *AR << "\n");
1049       return 0;
1050     }
1051   }
1052 
1053   // Check the step is constant.
1054   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
1055 
1056   // Calculate the pointer stride and check if it is constant.
1057   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
1058   if (!C) {
1059     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1060                       << " SCEV: " << *AR << "\n");
1061     return 0;
1062   }
1063 
1064   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
1065   int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
1066   const APInt &APStepVal = C->getAPInt();
1067 
1068   // Huge step value - give up.
1069   if (APStepVal.getBitWidth() > 64)
1070     return 0;
1071 
1072   int64_t StepVal = APStepVal.getSExtValue();
1073 
1074   // Strided access.
1075   int64_t Stride = StepVal / Size;
1076   int64_t Rem = StepVal % Size;
1077   if (Rem)
1078     return 0;
1079 
1080   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
1081   // know we can't "wrap around the address space". In case of address space
1082   // zero we know that this won't happen without triggering undefined behavior.
1083   if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 &&
1084       (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(),
1085                                               PtrTy->getAddressSpace()))) {
1086     if (Assume) {
1087       // We can avoid this case by adding a run-time check.
1088       LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
1089                         << "inbounds or in address space 0 may wrap:\n"
1090                         << "LAA:   Pointer: " << *Ptr << "\n"
1091                         << "LAA:   SCEV: " << *AR << "\n"
1092                         << "LAA:   Added an overflow assumption\n");
1093       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1094     } else
1095       return 0;
1096   }
1097 
1098   return Stride;
1099 }
1100 
1101 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL,
1102                            ScalarEvolution &SE,
1103                            SmallVectorImpl<unsigned> &SortedIndices) {
1104   assert(llvm::all_of(
1105              VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1106          "Expected list of pointer operands.");
1107   SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs;
1108   OffValPairs.reserve(VL.size());
1109 
1110   // Walk over the pointers, and map each of them to an offset relative to
1111   // first pointer in the array.
1112   Value *Ptr0 = VL[0];
1113   const SCEV *Scev0 = SE.getSCEV(Ptr0);
1114   Value *Obj0 = GetUnderlyingObject(Ptr0, DL);
1115 
1116   llvm::SmallSet<int64_t, 4> Offsets;
1117   for (auto *Ptr : VL) {
1118     // TODO: Outline this code as a special, more time consuming, version of
1119     // computeConstantDifference() function.
1120     if (Ptr->getType()->getPointerAddressSpace() !=
1121         Ptr0->getType()->getPointerAddressSpace())
1122       return false;
1123     // If a pointer refers to a different underlying object, bail - the
1124     // pointers are by definition incomparable.
1125     Value *CurrObj = GetUnderlyingObject(Ptr, DL);
1126     if (CurrObj != Obj0)
1127       return false;
1128 
1129     const SCEV *Scev = SE.getSCEV(Ptr);
1130     const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0));
1131     // The pointers may not have a constant offset from each other, or SCEV
1132     // may just not be smart enough to figure out they do. Regardless,
1133     // there's nothing we can do.
1134     if (!Diff)
1135       return false;
1136 
1137     // Check if the pointer with the same offset is found.
1138     int64_t Offset = Diff->getAPInt().getSExtValue();
1139     if (!Offsets.insert(Offset).second)
1140       return false;
1141     OffValPairs.emplace_back(Offset, Ptr);
1142   }
1143   SortedIndices.clear();
1144   SortedIndices.resize(VL.size());
1145   std::iota(SortedIndices.begin(), SortedIndices.end(), 0);
1146 
1147   // Sort the memory accesses and keep the order of their uses in UseOrder.
1148   llvm::stable_sort(SortedIndices, [&](unsigned Left, unsigned Right) {
1149     return OffValPairs[Left].first < OffValPairs[Right].first;
1150   });
1151 
1152   // Check if the order is consecutive already.
1153   if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) {
1154         return I == SortedIndices[I];
1155       }))
1156     SortedIndices.clear();
1157 
1158   return true;
1159 }
1160 
1161 /// Take the address space operand from the Load/Store instruction.
1162 /// Returns -1 if this is not a valid Load/Store instruction.
1163 static unsigned getAddressSpaceOperand(Value *I) {
1164   if (LoadInst *L = dyn_cast<LoadInst>(I))
1165     return L->getPointerAddressSpace();
1166   if (StoreInst *S = dyn_cast<StoreInst>(I))
1167     return S->getPointerAddressSpace();
1168   return -1;
1169 }
1170 
1171 /// Returns true if the memory operations \p A and \p B are consecutive.
1172 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1173                                ScalarEvolution &SE, bool CheckType) {
1174   Value *PtrA = getLoadStorePointerOperand(A);
1175   Value *PtrB = getLoadStorePointerOperand(B);
1176   unsigned ASA = getAddressSpaceOperand(A);
1177   unsigned ASB = getAddressSpaceOperand(B);
1178 
1179   // Check that the address spaces match and that the pointers are valid.
1180   if (!PtrA || !PtrB || (ASA != ASB))
1181     return false;
1182 
1183   // Make sure that A and B are different pointers.
1184   if (PtrA == PtrB)
1185     return false;
1186 
1187   // Make sure that A and B have the same type if required.
1188   if (CheckType && PtrA->getType() != PtrB->getType())
1189     return false;
1190 
1191   unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1192   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1193 
1194   APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1195   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1196   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1197 
1198   // Retrieve the address space again as pointer stripping now tracks through
1199   // `addrspacecast`.
1200   ASA = cast<PointerType>(PtrA->getType())->getAddressSpace();
1201   ASB = cast<PointerType>(PtrB->getType())->getAddressSpace();
1202   // Check that the address spaces match and that the pointers are valid.
1203   if (ASA != ASB)
1204     return false;
1205 
1206   IdxWidth = DL.getIndexSizeInBits(ASA);
1207   OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1208   OffsetB = OffsetB.sextOrTrunc(IdxWidth);
1209 
1210   APInt Size(IdxWidth, DL.getTypeStoreSize(Ty));
1211 
1212   //  OffsetDelta = OffsetB - OffsetA;
1213   const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
1214   const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1215   const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1216   const APInt &OffsetDelta = cast<SCEVConstant>(OffsetDeltaSCEV)->getAPInt();
1217 
1218   // Check if they are based on the same pointer. That makes the offsets
1219   // sufficient.
1220   if (PtrA == PtrB)
1221     return OffsetDelta == Size;
1222 
1223   // Compute the necessary base pointer delta to have the necessary final delta
1224   // equal to the size.
1225   // BaseDelta = Size - OffsetDelta;
1226   const SCEV *SizeSCEV = SE.getConstant(Size);
1227   const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1228 
1229   // Otherwise compute the distance with SCEV between the base pointers.
1230   const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1231   const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1232   const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1233   return X == PtrSCEVB;
1234 }
1235 
1236 MemoryDepChecker::VectorizationSafetyStatus
1237 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1238   switch (Type) {
1239   case NoDep:
1240   case Forward:
1241   case BackwardVectorizable:
1242     return VectorizationSafetyStatus::Safe;
1243 
1244   case Unknown:
1245     return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
1246   case ForwardButPreventsForwarding:
1247   case Backward:
1248   case BackwardVectorizableButPreventsForwarding:
1249     return VectorizationSafetyStatus::Unsafe;
1250   }
1251   llvm_unreachable("unexpected DepType!");
1252 }
1253 
1254 bool MemoryDepChecker::Dependence::isBackward() const {
1255   switch (Type) {
1256   case NoDep:
1257   case Forward:
1258   case ForwardButPreventsForwarding:
1259   case Unknown:
1260     return false;
1261 
1262   case BackwardVectorizable:
1263   case Backward:
1264   case BackwardVectorizableButPreventsForwarding:
1265     return true;
1266   }
1267   llvm_unreachable("unexpected DepType!");
1268 }
1269 
1270 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1271   return isBackward() || Type == Unknown;
1272 }
1273 
1274 bool MemoryDepChecker::Dependence::isForward() const {
1275   switch (Type) {
1276   case Forward:
1277   case ForwardButPreventsForwarding:
1278     return true;
1279 
1280   case NoDep:
1281   case Unknown:
1282   case BackwardVectorizable:
1283   case Backward:
1284   case BackwardVectorizableButPreventsForwarding:
1285     return false;
1286   }
1287   llvm_unreachable("unexpected DepType!");
1288 }
1289 
1290 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1291                                                     uint64_t TypeByteSize) {
1292   // If loads occur at a distance that is not a multiple of a feasible vector
1293   // factor store-load forwarding does not take place.
1294   // Positive dependences might cause troubles because vectorizing them might
1295   // prevent store-load forwarding making vectorized code run a lot slower.
1296   //   a[i] = a[i-3] ^ a[i-8];
1297   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1298   //   hence on your typical architecture store-load forwarding does not take
1299   //   place. Vectorizing in such cases does not make sense.
1300   // Store-load forwarding distance.
1301 
1302   // After this many iterations store-to-load forwarding conflicts should not
1303   // cause any slowdowns.
1304   const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1305   // Maximum vector factor.
1306   uint64_t MaxVFWithoutSLForwardIssues = std::min(
1307       VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
1308 
1309   // Compute the smallest VF at which the store and load would be misaligned.
1310   for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1311        VF *= 2) {
1312     // If the number of vector iteration between the store and the load are
1313     // small we could incur conflicts.
1314     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1315       MaxVFWithoutSLForwardIssues = (VF >>= 1);
1316       break;
1317     }
1318   }
1319 
1320   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1321     LLVM_DEBUG(
1322         dbgs() << "LAA: Distance " << Distance
1323                << " that could cause a store-load forwarding conflict\n");
1324     return true;
1325   }
1326 
1327   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1328       MaxVFWithoutSLForwardIssues !=
1329           VectorizerParams::MaxVectorWidth * TypeByteSize)
1330     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1331   return false;
1332 }
1333 
1334 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
1335   if (Status < S)
1336     Status = S;
1337 }
1338 
1339 /// Given a non-constant (unknown) dependence-distance \p Dist between two
1340 /// memory accesses, that have the same stride whose absolute value is given
1341 /// in \p Stride, and that have the same type size \p TypeByteSize,
1342 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
1343 /// possible to prove statically that the dependence distance is larger
1344 /// than the range that the accesses will travel through the execution of
1345 /// the loop. If so, return true; false otherwise. This is useful for
1346 /// example in loops such as the following (PR31098):
1347 ///     for (i = 0; i < D; ++i) {
1348 ///                = out[i];
1349 ///       out[i+D] =
1350 ///     }
1351 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1352                                      const SCEV &BackedgeTakenCount,
1353                                      const SCEV &Dist, uint64_t Stride,
1354                                      uint64_t TypeByteSize) {
1355 
1356   // If we can prove that
1357   //      (**) |Dist| > BackedgeTakenCount * Step
1358   // where Step is the absolute stride of the memory accesses in bytes,
1359   // then there is no dependence.
1360   //
1361   // Rationale:
1362   // We basically want to check if the absolute distance (|Dist/Step|)
1363   // is >= the loop iteration count (or > BackedgeTakenCount).
1364   // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1365   // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1366   // that the dependence distance is >= VF; This is checked elsewhere.
1367   // But in some cases we can prune unknown dependence distances early, and
1368   // even before selecting the VF, and without a runtime test, by comparing
1369   // the distance against the loop iteration count. Since the vectorized code
1370   // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1371   // also guarantees that distance >= VF.
1372   //
1373   const uint64_t ByteStride = Stride * TypeByteSize;
1374   const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
1375   const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);
1376 
1377   const SCEV *CastedDist = &Dist;
1378   const SCEV *CastedProduct = Product;
1379   uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType());
1380   uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType());
1381 
1382   // The dependence distance can be positive/negative, so we sign extend Dist;
1383   // The multiplication of the absolute stride in bytes and the
1384   // backedgeTakenCount is non-negative, so we zero extend Product.
1385   if (DistTypeSize > ProductTypeSize)
1386     CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1387   else
1388     CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1389 
1390   // Is  Dist - (BackedgeTakenCount * Step) > 0 ?
1391   // (If so, then we have proven (**) because |Dist| >= Dist)
1392   const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1393   if (SE.isKnownPositive(Minus))
1394     return true;
1395 
1396   // Second try: Is  -Dist - (BackedgeTakenCount * Step) > 0 ?
1397   // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1398   const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1399   Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1400   if (SE.isKnownPositive(Minus))
1401     return true;
1402 
1403   return false;
1404 }
1405 
1406 /// Check the dependence for two accesses with the same stride \p Stride.
1407 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1408 /// bytes.
1409 ///
1410 /// \returns true if they are independent.
1411 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1412                                           uint64_t TypeByteSize) {
1413   assert(Stride > 1 && "The stride must be greater than 1");
1414   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1415   assert(Distance > 0 && "The distance must be non-zero");
1416 
1417   // Skip if the distance is not multiple of type byte size.
1418   if (Distance % TypeByteSize)
1419     return false;
1420 
1421   uint64_t ScaledDist = Distance / TypeByteSize;
1422 
1423   // No dependence if the scaled distance is not multiple of the stride.
1424   // E.g.
1425   //      for (i = 0; i < 1024 ; i += 4)
1426   //        A[i+2] = A[i] + 1;
1427   //
1428   // Two accesses in memory (scaled distance is 2, stride is 4):
1429   //     | A[0] |      |      |      | A[4] |      |      |      |
1430   //     |      |      | A[2] |      |      |      | A[6] |      |
1431   //
1432   // E.g.
1433   //      for (i = 0; i < 1024 ; i += 3)
1434   //        A[i+4] = A[i] + 1;
1435   //
1436   // Two accesses in memory (scaled distance is 4, stride is 3):
1437   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1438   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1439   return ScaledDist % Stride;
1440 }
1441 
1442 MemoryDepChecker::Dependence::DepType
1443 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1444                               const MemAccessInfo &B, unsigned BIdx,
1445                               const ValueToValueMap &Strides) {
1446   assert (AIdx < BIdx && "Must pass arguments in program order");
1447 
1448   Value *APtr = A.getPointer();
1449   Value *BPtr = B.getPointer();
1450   bool AIsWrite = A.getInt();
1451   bool BIsWrite = B.getInt();
1452 
1453   // Two reads are independent.
1454   if (!AIsWrite && !BIsWrite)
1455     return Dependence::NoDep;
1456 
1457   // We cannot check pointers in different address spaces.
1458   if (APtr->getType()->getPointerAddressSpace() !=
1459       BPtr->getType()->getPointerAddressSpace())
1460     return Dependence::Unknown;
1461 
1462   int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
1463   int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
1464 
1465   const SCEV *Src = PSE.getSCEV(APtr);
1466   const SCEV *Sink = PSE.getSCEV(BPtr);
1467 
1468   // If the induction step is negative we have to invert source and sink of the
1469   // dependence.
1470   if (StrideAPtr < 0) {
1471     std::swap(APtr, BPtr);
1472     std::swap(Src, Sink);
1473     std::swap(AIsWrite, BIsWrite);
1474     std::swap(AIdx, BIdx);
1475     std::swap(StrideAPtr, StrideBPtr);
1476   }
1477 
1478   const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
1479 
1480   LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1481                     << "(Induction step: " << StrideAPtr << ")\n");
1482   LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1483                     << *InstMap[BIdx] << ": " << *Dist << "\n");
1484 
1485   // Need accesses with constant stride. We don't want to vectorize
1486   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1487   // the address space.
1488   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1489     LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1490     return Dependence::Unknown;
1491   }
1492 
1493   Type *ATy = APtr->getType()->getPointerElementType();
1494   Type *BTy = BPtr->getType()->getPointerElementType();
1495   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1496   uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1497   uint64_t Stride = std::abs(StrideAPtr);
1498   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1499   if (!C) {
1500     if (TypeByteSize == DL.getTypeAllocSize(BTy) &&
1501         isSafeDependenceDistance(DL, *(PSE.getSE()),
1502                                  *(PSE.getBackedgeTakenCount()), *Dist, Stride,
1503                                  TypeByteSize))
1504       return Dependence::NoDep;
1505 
1506     LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1507     FoundNonConstantDistanceDependence = true;
1508     return Dependence::Unknown;
1509   }
1510 
1511   const APInt &Val = C->getAPInt();
1512   int64_t Distance = Val.getSExtValue();
1513 
1514   // Attempt to prove strided accesses independent.
1515   if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
1516       areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1517     LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1518     return Dependence::NoDep;
1519   }
1520 
1521   // Negative distances are not plausible dependencies.
1522   if (Val.isNegative()) {
1523     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1524     if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1525         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1526          ATy != BTy)) {
1527       LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
1528       return Dependence::ForwardButPreventsForwarding;
1529     }
1530 
1531     LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
1532     return Dependence::Forward;
1533   }
1534 
1535   // Write to the same location with the same size.
1536   // Could be improved to assert type sizes are the same (i32 == float, etc).
1537   if (Val == 0) {
1538     if (ATy == BTy)
1539       return Dependence::Forward;
1540     LLVM_DEBUG(
1541         dbgs() << "LAA: Zero dependence difference but different types\n");
1542     return Dependence::Unknown;
1543   }
1544 
1545   assert(Val.isStrictlyPositive() && "Expect a positive value");
1546 
1547   if (ATy != BTy) {
1548     LLVM_DEBUG(
1549         dbgs()
1550         << "LAA: ReadWrite-Write positive dependency with different types\n");
1551     return Dependence::Unknown;
1552   }
1553 
1554   // Bail out early if passed-in parameters make vectorization not feasible.
1555   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1556                            VectorizerParams::VectorizationFactor : 1);
1557   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1558                            VectorizerParams::VectorizationInterleave : 1);
1559   // The minimum number of iterations for a vectorized/unrolled version.
1560   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1561 
1562   // It's not vectorizable if the distance is smaller than the minimum distance
1563   // needed for a vectroized/unrolled version. Vectorizing one iteration in
1564   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1565   // TypeByteSize (No need to plus the last gap distance).
1566   //
1567   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1568   //      foo(int *A) {
1569   //        int *B = (int *)((char *)A + 14);
1570   //        for (i = 0 ; i < 1024 ; i += 2)
1571   //          B[i] = A[i] + 1;
1572   //      }
1573   //
1574   // Two accesses in memory (stride is 2):
1575   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1576   //                              | B[0] |      | B[2] |      | B[4] |
1577   //
1578   // Distance needs for vectorizing iterations except the last iteration:
1579   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1580   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1581   //
1582   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1583   // 12, which is less than distance.
1584   //
1585   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1586   // the minimum distance needed is 28, which is greater than distance. It is
1587   // not safe to do vectorization.
1588   uint64_t MinDistanceNeeded =
1589       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1590   if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
1591     LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance "
1592                       << Distance << '\n');
1593     return Dependence::Backward;
1594   }
1595 
1596   // Unsafe if the minimum distance needed is greater than max safe distance.
1597   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1598     LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
1599                       << MinDistanceNeeded << " size in bytes");
1600     return Dependence::Backward;
1601   }
1602 
1603   // Positive distance bigger than max vectorization factor.
1604   // FIXME: Should use max factor instead of max distance in bytes, which could
1605   // not handle different types.
1606   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1607   //      void foo (int *A, char *B) {
1608   //        for (unsigned i = 0; i < 1024; i++) {
1609   //          A[i+2] = A[i] + 1;
1610   //          B[i+2] = B[i] + 1;
1611   //        }
1612   //      }
1613   //
1614   // This case is currently unsafe according to the max safe distance. If we
1615   // analyze the two accesses on array B, the max safe dependence distance
1616   // is 2. Then we analyze the accesses on array A, the minimum distance needed
1617   // is 8, which is less than 2 and forbidden vectorization, But actually
1618   // both A and B could be vectorized by 2 iterations.
1619   MaxSafeDepDistBytes =
1620       std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
1621 
1622   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1623   if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1624       couldPreventStoreLoadForward(Distance, TypeByteSize))
1625     return Dependence::BackwardVectorizableButPreventsForwarding;
1626 
1627   uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride);
1628   LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1629                     << " with max VF = " << MaxVF << '\n');
1630   uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
1631   MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits);
1632   return Dependence::BackwardVectorizable;
1633 }
1634 
1635 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
1636                                    MemAccessInfoList &CheckDeps,
1637                                    const ValueToValueMap &Strides) {
1638 
1639   MaxSafeDepDistBytes = -1;
1640   SmallPtrSet<MemAccessInfo, 8> Visited;
1641   for (MemAccessInfo CurAccess : CheckDeps) {
1642     if (Visited.count(CurAccess))
1643       continue;
1644 
1645     // Get the relevant memory access set.
1646     EquivalenceClasses<MemAccessInfo>::iterator I =
1647       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1648 
1649     // Check accesses within this set.
1650     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1651         AccessSets.member_begin(I);
1652     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1653         AccessSets.member_end();
1654 
1655     // Check every access pair.
1656     while (AI != AE) {
1657       Visited.insert(*AI);
1658       bool AIIsWrite = AI->getInt();
1659       // Check loads only against next equivalent class, but stores also against
1660       // other stores in the same equivalence class - to the same address.
1661       EquivalenceClasses<MemAccessInfo>::member_iterator OI =
1662           (AIIsWrite ? AI : std::next(AI));
1663       while (OI != AE) {
1664         // Check every accessing instruction pair in program order.
1665         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1666              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1667           // Scan all accesses of another equivalence class, but only the next
1668           // accesses of the same equivalent class.
1669           for (std::vector<unsigned>::iterator
1670                    I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
1671                    I2E = (OI == AI ? I1E : Accesses[*OI].end());
1672                I2 != I2E; ++I2) {
1673             auto A = std::make_pair(&*AI, *I1);
1674             auto B = std::make_pair(&*OI, *I2);
1675 
1676             assert(*I1 != *I2);
1677             if (*I1 > *I2)
1678               std::swap(A, B);
1679 
1680             Dependence::DepType Type =
1681                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1682             mergeInStatus(Dependence::isSafeForVectorization(Type));
1683 
1684             // Gather dependences unless we accumulated MaxDependences
1685             // dependences.  In that case return as soon as we find the first
1686             // unsafe dependence.  This puts a limit on this quadratic
1687             // algorithm.
1688             if (RecordDependences) {
1689               if (Type != Dependence::NoDep)
1690                 Dependences.push_back(Dependence(A.second, B.second, Type));
1691 
1692               if (Dependences.size() >= MaxDependences) {
1693                 RecordDependences = false;
1694                 Dependences.clear();
1695                 LLVM_DEBUG(dbgs()
1696                            << "Too many dependences, stopped recording\n");
1697               }
1698             }
1699             if (!RecordDependences && !isSafeForVectorization())
1700               return false;
1701           }
1702         ++OI;
1703       }
1704       AI++;
1705     }
1706   }
1707 
1708   LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
1709   return isSafeForVectorization();
1710 }
1711 
1712 SmallVector<Instruction *, 4>
1713 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1714   MemAccessInfo Access(Ptr, isWrite);
1715   auto &IndexVector = Accesses.find(Access)->second;
1716 
1717   SmallVector<Instruction *, 4> Insts;
1718   transform(IndexVector,
1719                  std::back_inserter(Insts),
1720                  [&](unsigned Idx) { return this->InstMap[Idx]; });
1721   return Insts;
1722 }
1723 
1724 const char *MemoryDepChecker::Dependence::DepName[] = {
1725     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1726     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1727 
1728 void MemoryDepChecker::Dependence::print(
1729     raw_ostream &OS, unsigned Depth,
1730     const SmallVectorImpl<Instruction *> &Instrs) const {
1731   OS.indent(Depth) << DepName[Type] << ":\n";
1732   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1733   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1734 }
1735 
1736 bool LoopAccessInfo::canAnalyzeLoop() {
1737   // We need to have a loop header.
1738   LLVM_DEBUG(dbgs() << "LAA: Found a loop in "
1739                     << TheLoop->getHeader()->getParent()->getName() << ": "
1740                     << TheLoop->getHeader()->getName() << '\n');
1741 
1742   // We can only analyze innermost loops.
1743   if (!TheLoop->empty()) {
1744     LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1745     recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
1746     return false;
1747   }
1748 
1749   // We must have a single backedge.
1750   if (TheLoop->getNumBackEdges() != 1) {
1751     LLVM_DEBUG(
1752         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1753     recordAnalysis("CFGNotUnderstood")
1754         << "loop control flow is not understood by analyzer";
1755     return false;
1756   }
1757 
1758   // We must have a single exiting block.
1759   if (!TheLoop->getExitingBlock()) {
1760     LLVM_DEBUG(
1761         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1762     recordAnalysis("CFGNotUnderstood")
1763         << "loop control flow is not understood by analyzer";
1764     return false;
1765   }
1766 
1767   // We only handle bottom-tested loops, i.e. loop in which the condition is
1768   // checked at the end of each iteration. With that we can assume that all
1769   // instructions in the loop are executed the same number of times.
1770   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
1771     LLVM_DEBUG(
1772         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1773     recordAnalysis("CFGNotUnderstood")
1774         << "loop control flow is not understood by analyzer";
1775     return false;
1776   }
1777 
1778   // ScalarEvolution needs to be able to find the exit count.
1779   const SCEV *ExitCount = PSE->getBackedgeTakenCount();
1780   if (ExitCount == PSE->getSE()->getCouldNotCompute()) {
1781     recordAnalysis("CantComputeNumberOfIterations")
1782         << "could not determine number of loop iterations";
1783     LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1784     return false;
1785   }
1786 
1787   return true;
1788 }
1789 
1790 void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
1791                                  const TargetLibraryInfo *TLI,
1792                                  DominatorTree *DT) {
1793   typedef SmallPtrSet<Value*, 16> ValueSet;
1794 
1795   // Holds the Load and Store instructions.
1796   SmallVector<LoadInst *, 16> Loads;
1797   SmallVector<StoreInst *, 16> Stores;
1798 
1799   // Holds all the different accesses in the loop.
1800   unsigned NumReads = 0;
1801   unsigned NumReadWrites = 0;
1802 
1803   bool HasComplexMemInst = false;
1804 
1805   // A runtime check is only legal to insert if there are no convergent calls.
1806   HasConvergentOp = false;
1807 
1808   PtrRtChecking->Pointers.clear();
1809   PtrRtChecking->Need = false;
1810 
1811   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
1812 
1813   // For each block.
1814   for (BasicBlock *BB : TheLoop->blocks()) {
1815     // Scan the BB and collect legal loads and stores. Also detect any
1816     // convergent instructions.
1817     for (Instruction &I : *BB) {
1818       if (auto *Call = dyn_cast<CallBase>(&I)) {
1819         if (Call->isConvergent())
1820           HasConvergentOp = true;
1821       }
1822 
1823       // With both a non-vectorizable memory instruction and a convergent
1824       // operation, found in this loop, no reason to continue the search.
1825       if (HasComplexMemInst && HasConvergentOp) {
1826         CanVecMem = false;
1827         return;
1828       }
1829 
1830       // Avoid hitting recordAnalysis multiple times.
1831       if (HasComplexMemInst)
1832         continue;
1833 
1834       // If this is a load, save it. If this instruction can read from memory
1835       // but is not a load, then we quit. Notice that we don't handle function
1836       // calls that read or write.
1837       if (I.mayReadFromMemory()) {
1838         // Many math library functions read the rounding mode. We will only
1839         // vectorize a loop if it contains known function calls that don't set
1840         // the flag. Therefore, it is safe to ignore this read from memory.
1841         auto *Call = dyn_cast<CallInst>(&I);
1842         if (Call && getVectorIntrinsicIDForCall(Call, TLI))
1843           continue;
1844 
1845         // If the function has an explicit vectorized counterpart, we can safely
1846         // assume that it can be vectorized.
1847         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1848             TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1849           continue;
1850 
1851         auto *Ld = dyn_cast<LoadInst>(&I);
1852         if (!Ld) {
1853           recordAnalysis("CantVectorizeInstruction", Ld)
1854             << "instruction cannot be vectorized";
1855           HasComplexMemInst = true;
1856           continue;
1857         }
1858         if (!Ld->isSimple() && !IsAnnotatedParallel) {
1859           recordAnalysis("NonSimpleLoad", Ld)
1860               << "read with atomic ordering or volatile read";
1861           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1862           HasComplexMemInst = true;
1863           continue;
1864         }
1865         NumLoads++;
1866         Loads.push_back(Ld);
1867         DepChecker->addAccess(Ld);
1868         if (EnableMemAccessVersioning)
1869           collectStridedAccess(Ld);
1870         continue;
1871       }
1872 
1873       // Save 'store' instructions. Abort if other instructions write to memory.
1874       if (I.mayWriteToMemory()) {
1875         auto *St = dyn_cast<StoreInst>(&I);
1876         if (!St) {
1877           recordAnalysis("CantVectorizeInstruction", St)
1878               << "instruction cannot be vectorized";
1879           HasComplexMemInst = true;
1880           continue;
1881         }
1882         if (!St->isSimple() && !IsAnnotatedParallel) {
1883           recordAnalysis("NonSimpleStore", St)
1884               << "write with atomic ordering or volatile write";
1885           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1886           HasComplexMemInst = true;
1887           continue;
1888         }
1889         NumStores++;
1890         Stores.push_back(St);
1891         DepChecker->addAccess(St);
1892         if (EnableMemAccessVersioning)
1893           collectStridedAccess(St);
1894       }
1895     } // Next instr.
1896   } // Next block.
1897 
1898   if (HasComplexMemInst) {
1899     CanVecMem = false;
1900     return;
1901   }
1902 
1903   // Now we have two lists that hold the loads and the stores.
1904   // Next, we find the pointers that they use.
1905 
1906   // Check if we see any stores. If there are no stores, then we don't
1907   // care if the pointers are *restrict*.
1908   if (!Stores.size()) {
1909     LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1910     CanVecMem = true;
1911     return;
1912   }
1913 
1914   MemoryDepChecker::DepCandidates DependentAccesses;
1915   AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
1916                           TheLoop, AA, LI, DependentAccesses, *PSE);
1917 
1918   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1919   // multiple times on the same object. If the ptr is accessed twice, once
1920   // for read and once for write, it will only appear once (on the write
1921   // list). This is okay, since we are going to check for conflicts between
1922   // writes and between reads and writes, but not between reads and reads.
1923   ValueSet Seen;
1924 
1925   // Record uniform store addresses to identify if we have multiple stores
1926   // to the same address.
1927   ValueSet UniformStores;
1928 
1929   for (StoreInst *ST : Stores) {
1930     Value *Ptr = ST->getPointerOperand();
1931 
1932     if (isUniform(Ptr))
1933       HasDependenceInvolvingLoopInvariantAddress |=
1934           !UniformStores.insert(Ptr).second;
1935 
1936     // If we did *not* see this pointer before, insert it to  the read-write
1937     // list. At this phase it is only a 'write' list.
1938     if (Seen.insert(Ptr).second) {
1939       ++NumReadWrites;
1940 
1941       MemoryLocation Loc = MemoryLocation::get(ST);
1942       // The TBAA metadata could have a control dependency on the predication
1943       // condition, so we cannot rely on it when determining whether or not we
1944       // need runtime pointer checks.
1945       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
1946         Loc.AATags.TBAA = nullptr;
1947 
1948       Accesses.addStore(Loc);
1949     }
1950   }
1951 
1952   if (IsAnnotatedParallel) {
1953     LLVM_DEBUG(
1954         dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
1955                << "checks.\n");
1956     CanVecMem = true;
1957     return;
1958   }
1959 
1960   for (LoadInst *LD : Loads) {
1961     Value *Ptr = LD->getPointerOperand();
1962     // If we did *not* see this pointer before, insert it to the
1963     // read list. If we *did* see it before, then it is already in
1964     // the read-write list. This allows us to vectorize expressions
1965     // such as A[i] += x;  Because the address of A[i] is a read-write
1966     // pointer. This only works if the index of A[i] is consecutive.
1967     // If the address of i is unknown (for example A[B[i]]) then we may
1968     // read a few words, modify, and write a few words, and some of the
1969     // words may be written to the same address.
1970     bool IsReadOnlyPtr = false;
1971     if (Seen.insert(Ptr).second ||
1972         !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
1973       ++NumReads;
1974       IsReadOnlyPtr = true;
1975     }
1976 
1977     // See if there is an unsafe dependency between a load to a uniform address and
1978     // store to the same uniform address.
1979     if (UniformStores.count(Ptr)) {
1980       LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
1981                            "load and uniform store to the same address!\n");
1982       HasDependenceInvolvingLoopInvariantAddress = true;
1983     }
1984 
1985     MemoryLocation Loc = MemoryLocation::get(LD);
1986     // The TBAA metadata could have a control dependency on the predication
1987     // condition, so we cannot rely on it when determining whether or not we
1988     // need runtime pointer checks.
1989     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
1990       Loc.AATags.TBAA = nullptr;
1991 
1992     Accesses.addLoad(Loc, IsReadOnlyPtr);
1993   }
1994 
1995   // If we write (or read-write) to a single destination and there are no
1996   // other reads in this loop then is it safe to vectorize.
1997   if (NumReadWrites == 1 && NumReads == 0) {
1998     LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
1999     CanVecMem = true;
2000     return;
2001   }
2002 
2003   // Build dependence sets and check whether we need a runtime pointer bounds
2004   // check.
2005   Accesses.buildDependenceSets();
2006 
2007   // Find pointers with computable bounds. We are going to use this information
2008   // to place a runtime bound check.
2009   bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
2010                                                   TheLoop, SymbolicStrides);
2011   if (!CanDoRTIfNeeded) {
2012     recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds";
2013     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
2014                       << "the array bounds.\n");
2015     CanVecMem = false;
2016     return;
2017   }
2018 
2019   LLVM_DEBUG(
2020     dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
2021 
2022   CanVecMem = true;
2023   if (Accesses.isDependencyCheckNeeded()) {
2024     LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2025     CanVecMem = DepChecker->areDepsSafe(
2026         DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
2027     MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
2028 
2029     if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
2030       LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
2031 
2032       // Clear the dependency checks. We assume they are not needed.
2033       Accesses.resetDepChecks(*DepChecker);
2034 
2035       PtrRtChecking->reset();
2036       PtrRtChecking->Need = true;
2037 
2038       auto *SE = PSE->getSE();
2039       CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
2040                                                  SymbolicStrides, true);
2041 
2042       // Check that we found the bounds for the pointer.
2043       if (!CanDoRTIfNeeded) {
2044         recordAnalysis("CantCheckMemDepsAtRunTime")
2045             << "cannot check memory dependencies at runtime";
2046         LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2047         CanVecMem = false;
2048         return;
2049       }
2050 
2051       CanVecMem = true;
2052     }
2053   }
2054 
2055   if (HasConvergentOp) {
2056     recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2057       << "cannot add control dependency to convergent operation";
2058     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
2059                          "would be needed with a convergent operation\n");
2060     CanVecMem = false;
2061     return;
2062   }
2063 
2064   if (CanVecMem)
2065     LLVM_DEBUG(
2066         dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
2067                << (PtrRtChecking->Need ? "" : " don't")
2068                << " need runtime memory checks.\n");
2069   else {
2070     recordAnalysis("UnsafeMemDep")
2071         << "unsafe dependent memory operations in loop. Use "
2072            "#pragma loop distribute(enable) to allow loop distribution "
2073            "to attempt to isolate the offending operations into a separate "
2074            "loop";
2075     LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2076   }
2077 }
2078 
2079 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
2080                                            DominatorTree *DT)  {
2081   assert(TheLoop->contains(BB) && "Unknown block used");
2082 
2083   // Blocks that do not dominate the latch need predication.
2084   BasicBlock* Latch = TheLoop->getLoopLatch();
2085   return !DT->dominates(BB, Latch);
2086 }
2087 
2088 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
2089                                                            Instruction *I) {
2090   assert(!Report && "Multiple reports generated");
2091 
2092   Value *CodeRegion = TheLoop->getHeader();
2093   DebugLoc DL = TheLoop->getStartLoc();
2094 
2095   if (I) {
2096     CodeRegion = I->getParent();
2097     // If there is no debug location attached to the instruction, revert back to
2098     // using the loop's.
2099     if (I->getDebugLoc())
2100       DL = I->getDebugLoc();
2101   }
2102 
2103   Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
2104                                                    CodeRegion);
2105   return *Report;
2106 }
2107 
2108 bool LoopAccessInfo::isUniform(Value *V) const {
2109   auto *SE = PSE->getSE();
2110   // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
2111   // never considered uniform.
2112   // TODO: Is this really what we want? Even without FP SCEV, we may want some
2113   // trivially loop-invariant FP values to be considered uniform.
2114   if (!SE->isSCEVable(V->getType()))
2115     return false;
2116   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
2117 }
2118 
2119 // FIXME: this function is currently a duplicate of the one in
2120 // LoopVectorize.cpp.
2121 static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
2122                                  Instruction *Loc) {
2123   if (FirstInst)
2124     return FirstInst;
2125   if (Instruction *I = dyn_cast<Instruction>(V))
2126     return I->getParent() == Loc->getParent() ? I : nullptr;
2127   return nullptr;
2128 }
2129 
2130 namespace {
2131 
2132 /// IR Values for the lower and upper bounds of a pointer evolution.  We
2133 /// need to use value-handles because SCEV expansion can invalidate previously
2134 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
2135 /// a previous one.
2136 struct PointerBounds {
2137   TrackingVH<Value> Start;
2138   TrackingVH<Value> End;
2139 };
2140 
2141 } // end anonymous namespace
2142 
2143 /// Expand code for the lower and upper bound of the pointer group \p CG
2144 /// in \p TheLoop.  \return the values for the bounds.
2145 static PointerBounds
2146 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
2147              Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
2148              const RuntimePointerChecking &PtrRtChecking) {
2149   Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
2150   const SCEV *Sc = SE->getSCEV(Ptr);
2151 
2152   unsigned AS = Ptr->getType()->getPointerAddressSpace();
2153   LLVMContext &Ctx = Loc->getContext();
2154 
2155   // Use this type for pointer arithmetic.
2156   Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
2157 
2158   if (SE->isLoopInvariant(Sc, TheLoop)) {
2159     LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:"
2160                       << *Ptr << "\n");
2161     // Ptr could be in the loop body. If so, expand a new one at the correct
2162     // location.
2163     Instruction *Inst = dyn_cast<Instruction>(Ptr);
2164     Value *NewPtr = (Inst && TheLoop->contains(Inst))
2165                         ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
2166                         : Ptr;
2167     // We must return a half-open range, which means incrementing Sc.
2168     const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy));
2169     Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc);
2170     return {NewPtr, NewPtrPlusOne};
2171   } else {
2172     Value *Start = nullptr, *End = nullptr;
2173     LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
2174     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
2175     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
2176     LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High
2177                       << "\n");
2178     return {Start, End};
2179   }
2180 }
2181 
2182 /// Turns a collection of checks into a collection of expanded upper and
2183 /// lower bounds for both pointers in the check.
2184 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
2185     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
2186     Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
2187     const RuntimePointerChecking &PtrRtChecking) {
2188   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
2189 
2190   // Here we're relying on the SCEV Expander's cache to only emit code for the
2191   // same bounds once.
2192   transform(
2193       PointerChecks, std::back_inserter(ChecksWithBounds),
2194       [&](const RuntimePointerChecking::PointerCheck &Check) {
2195         PointerBounds
2196           First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
2197           Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
2198         return std::make_pair(First, Second);
2199       });
2200 
2201   return ChecksWithBounds;
2202 }
2203 
2204 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
2205     Instruction *Loc,
2206     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
2207     const {
2208   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
2209   auto *SE = PSE->getSE();
2210   SCEVExpander Exp(*SE, DL, "induction");
2211   auto ExpandedChecks =
2212       expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking);
2213 
2214   LLVMContext &Ctx = Loc->getContext();
2215   Instruction *FirstInst = nullptr;
2216   IRBuilder<> ChkBuilder(Loc);
2217   // Our instructions might fold to a constant.
2218   Value *MemoryRuntimeCheck = nullptr;
2219 
2220   for (const auto &Check : ExpandedChecks) {
2221     const PointerBounds &A = Check.first, &B = Check.second;
2222     // Check if two pointers (A and B) conflict where conflict is computed as:
2223     // start(A) <= end(B) && start(B) <= end(A)
2224     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
2225     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
2226 
2227     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
2228            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
2229            "Trying to bounds check pointers with different address spaces");
2230 
2231     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
2232     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
2233 
2234     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
2235     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
2236     Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc");
2237     Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc");
2238 
2239     // [A|B].Start points to the first accessed byte under base [A|B].
2240     // [A|B].End points to the last accessed byte, plus one.
2241     // There is no conflict when the intervals are disjoint:
2242     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
2243     //
2244     // bound0 = (B.Start < A.End)
2245     // bound1 = (A.Start < B.End)
2246     //  IsConflict = bound0 & bound1
2247     Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
2248     FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
2249     Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
2250     FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
2251     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
2252     FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
2253     if (MemoryRuntimeCheck) {
2254       IsConflict =
2255           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
2256       FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
2257     }
2258     MemoryRuntimeCheck = IsConflict;
2259   }
2260 
2261   if (!MemoryRuntimeCheck)
2262     return std::make_pair(nullptr, nullptr);
2263 
2264   // We have to do this trickery because the IRBuilder might fold the check to a
2265   // constant expression in which case there is no Instruction anchored in a
2266   // the block.
2267   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
2268                                                  ConstantInt::getTrue(Ctx));
2269   ChkBuilder.Insert(Check, "memcheck.conflict");
2270   FirstInst = getFirstInst(FirstInst, Check, Loc);
2271   return std::make_pair(FirstInst, Check);
2272 }
2273 
2274 std::pair<Instruction *, Instruction *>
2275 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
2276   if (!PtrRtChecking->Need)
2277     return std::make_pair(nullptr, nullptr);
2278 
2279   return addRuntimeChecks(Loc, PtrRtChecking->getChecks());
2280 }
2281 
2282 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2283   Value *Ptr = nullptr;
2284   if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
2285     Ptr = LI->getPointerOperand();
2286   else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
2287     Ptr = SI->getPointerOperand();
2288   else
2289     return;
2290 
2291   Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2292   if (!Stride)
2293     return;
2294 
2295   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2296                        "versioning:");
2297   LLVM_DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
2298 
2299   // Avoid adding the "Stride == 1" predicate when we know that
2300   // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2301   // or zero iteration loop, as Trip-Count <= Stride == 1.
2302   //
2303   // TODO: We are currently not making a very informed decision on when it is
2304   // beneficial to apply stride versioning. It might make more sense that the
2305   // users of this analysis (such as the vectorizer) will trigger it, based on
2306   // their specific cost considerations; For example, in cases where stride
2307   // versioning does  not help resolving memory accesses/dependences, the
2308   // vectorizer should evaluate the cost of the runtime test, and the benefit
2309   // of various possible stride specializations, considering the alternatives
2310   // of using gather/scatters (if available).
2311 
2312   const SCEV *StrideExpr = PSE->getSCEV(Stride);
2313   const SCEV *BETakenCount = PSE->getBackedgeTakenCount();
2314 
2315   // Match the types so we can compare the stride and the BETakenCount.
2316   // The Stride can be positive/negative, so we sign extend Stride;
2317   // The backedgeTakenCount is non-negative, so we zero extend BETakenCount.
2318   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
2319   uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType());
2320   uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType());
2321   const SCEV *CastedStride = StrideExpr;
2322   const SCEV *CastedBECount = BETakenCount;
2323   ScalarEvolution *SE = PSE->getSE();
2324   if (BETypeSize >= StrideTypeSize)
2325     CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType());
2326   else
2327     CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType());
2328   const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
2329   // Since TripCount == BackEdgeTakenCount + 1, checking:
2330   // "Stride >= TripCount" is equivalent to checking:
2331   // Stride - BETakenCount > 0
2332   if (SE->isKnownPositive(StrideMinusBETaken)) {
2333     LLVM_DEBUG(
2334         dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2335                   "Stride==1 predicate will imply that the loop executes "
2336                   "at most once.\n");
2337     return;
2338   }
2339   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.");
2340 
2341   SymbolicStrides[Ptr] = Stride;
2342   StrideSet.insert(Stride);
2343 }
2344 
2345 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
2346                                const TargetLibraryInfo *TLI, AliasAnalysis *AA,
2347                                DominatorTree *DT, LoopInfo *LI)
2348     : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
2349       PtrRtChecking(std::make_unique<RuntimePointerChecking>(SE)),
2350       DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
2351       NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
2352       HasConvergentOp(false),
2353       HasDependenceInvolvingLoopInvariantAddress(false) {
2354   if (canAnalyzeLoop())
2355     analyzeLoop(AA, LI, TLI, DT);
2356 }
2357 
2358 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2359   if (CanVecMem) {
2360     OS.indent(Depth) << "Memory dependences are safe";
2361     if (MaxSafeDepDistBytes != -1ULL)
2362       OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
2363          << " bytes";
2364     if (PtrRtChecking->Need)
2365       OS << " with run-time checks";
2366     OS << "\n";
2367   }
2368 
2369   if (HasConvergentOp)
2370     OS.indent(Depth) << "Has convergent operation in loop\n";
2371 
2372   if (Report)
2373     OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
2374 
2375   if (auto *Dependences = DepChecker->getDependences()) {
2376     OS.indent(Depth) << "Dependences:\n";
2377     for (auto &Dep : *Dependences) {
2378       Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
2379       OS << "\n";
2380     }
2381   } else
2382     OS.indent(Depth) << "Too many dependences, not recorded\n";
2383 
2384   // List the pair of accesses need run-time checks to prove independence.
2385   PtrRtChecking->print(OS, Depth);
2386   OS << "\n";
2387 
2388   OS.indent(Depth) << "Non vectorizable stores to invariant address were "
2389                    << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ")
2390                    << "found in loop.\n";
2391 
2392   OS.indent(Depth) << "SCEV assumptions:\n";
2393   PSE->getUnionPredicate().print(OS, Depth);
2394 
2395   OS << "\n";
2396 
2397   OS.indent(Depth) << "Expressions re-written:\n";
2398   PSE->print(OS, Depth);
2399 }
2400 
2401 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) {
2402   initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry());
2403 }
2404 
2405 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
2406   auto &LAI = LoopAccessInfoMap[L];
2407 
2408   if (!LAI)
2409     LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
2410 
2411   return *LAI.get();
2412 }
2413 
2414 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
2415   LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
2416 
2417   for (Loop *TopLevelLoop : *LI)
2418     for (Loop *L : depth_first(TopLevelLoop)) {
2419       OS.indent(2) << L->getHeader()->getName() << ":\n";
2420       auto &LAI = LAA.getInfo(L);
2421       LAI.print(OS, 4);
2422     }
2423 }
2424 
2425 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
2426   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2427   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2428   TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2429   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2430   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2431   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2432 
2433   return false;
2434 }
2435 
2436 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
2437     AU.addRequired<ScalarEvolutionWrapperPass>();
2438     AU.addRequired<AAResultsWrapperPass>();
2439     AU.addRequired<DominatorTreeWrapperPass>();
2440     AU.addRequired<LoopInfoWrapperPass>();
2441 
2442     AU.setPreservesAll();
2443 }
2444 
2445 char LoopAccessLegacyAnalysis::ID = 0;
2446 static const char laa_name[] = "Loop Access Analysis";
2447 #define LAA_NAME "loop-accesses"
2448 
2449 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2450 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2451 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
2452 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2453 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2454 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2455 
2456 AnalysisKey LoopAccessAnalysis::Key;
2457 
2458 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM,
2459                                        LoopStandardAnalysisResults &AR) {
2460   return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI);
2461 }
2462 
2463 namespace llvm {
2464 
2465   Pass *createLAAPass() {
2466     return new LoopAccessLegacyAnalysis();
2467   }
2468 
2469 } // end namespace llvm
2470