1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/EquivalenceClasses.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AliasSetTracker.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/LoopIterator.h" 31 #include "llvm/Analysis/MemoryLocation.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/ScalarEvolution.h" 34 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/Operator.h" 51 #include "llvm/IR/PassManager.h" 52 #include "llvm/IR/PatternMatch.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/IR/ValueHandle.h" 56 #include "llvm/InitializePasses.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include <algorithm> 64 #include <cassert> 65 #include <cstdint> 66 #include <iterator> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 using namespace llvm::PatternMatch; 72 73 #define DEBUG_TYPE "loop-accesses" 74 75 static cl::opt<unsigned, true> 76 VectorizationFactor("force-vector-width", cl::Hidden, 77 cl::desc("Sets the SIMD width. Zero is autoselect."), 78 cl::location(VectorizerParams::VectorizationFactor)); 79 unsigned VectorizerParams::VectorizationFactor; 80 81 static cl::opt<unsigned, true> 82 VectorizationInterleave("force-vector-interleave", cl::Hidden, 83 cl::desc("Sets the vectorization interleave count. " 84 "Zero is autoselect."), 85 cl::location( 86 VectorizerParams::VectorizationInterleave)); 87 unsigned VectorizerParams::VectorizationInterleave; 88 89 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 90 "runtime-memory-check-threshold", cl::Hidden, 91 cl::desc("When performing memory disambiguation checks at runtime do not " 92 "generate more than this number of comparisons (default = 8)."), 93 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 94 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 95 96 /// The maximum iterations used to merge memory checks 97 static cl::opt<unsigned> MemoryCheckMergeThreshold( 98 "memory-check-merge-threshold", cl::Hidden, 99 cl::desc("Maximum number of comparisons done when trying to merge " 100 "runtime memory checks. (default = 100)"), 101 cl::init(100)); 102 103 /// Maximum SIMD width. 104 const unsigned VectorizerParams::MaxVectorWidth = 64; 105 106 /// We collect dependences up to this threshold. 107 static cl::opt<unsigned> 108 MaxDependences("max-dependences", cl::Hidden, 109 cl::desc("Maximum number of dependences collected by " 110 "loop-access analysis (default = 100)"), 111 cl::init(100)); 112 113 /// This enables versioning on the strides of symbolically striding memory 114 /// accesses in code like the following. 115 /// for (i = 0; i < N; ++i) 116 /// A[i * Stride1] += B[i * Stride2] ... 117 /// 118 /// Will be roughly translated to 119 /// if (Stride1 == 1 && Stride2 == 1) { 120 /// for (i = 0; i < N; i+=4) 121 /// A[i:i+3] += ... 122 /// } else 123 /// ... 124 static cl::opt<bool> EnableMemAccessVersioning( 125 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 126 cl::desc("Enable symbolic stride memory access versioning")); 127 128 /// Enable store-to-load forwarding conflict detection. This option can 129 /// be disabled for correctness testing. 130 static cl::opt<bool> EnableForwardingConflictDetection( 131 "store-to-load-forwarding-conflict-detection", cl::Hidden, 132 cl::desc("Enable conflict detection in loop-access analysis"), 133 cl::init(true)); 134 135 static cl::opt<unsigned> MaxForkedSCEVDepth( 136 "max-forked-scev-depth", cl::Hidden, 137 cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"), 138 cl::init(5)); 139 140 static cl::opt<bool> SpeculateUnitStride( 141 "laa-speculate-unit-stride", cl::Hidden, 142 cl::desc("Speculate that non-constant strides are unit in LAA"), 143 cl::init(true)); 144 145 bool VectorizerParams::isInterleaveForced() { 146 return ::VectorizationInterleave.getNumOccurrences() > 0; 147 } 148 149 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 150 const DenseMap<Value *, const SCEV *> &PtrToStride, 151 Value *Ptr) { 152 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 153 154 // If there is an entry in the map return the SCEV of the pointer with the 155 // symbolic stride replaced by one. 156 DenseMap<Value *, const SCEV *>::const_iterator SI = PtrToStride.find(Ptr); 157 if (SI == PtrToStride.end()) 158 // For a non-symbolic stride, just return the original expression. 159 return OrigSCEV; 160 161 const SCEV *StrideSCEV = SI->second; 162 // Note: This assert is both overly strong and overly weak. The actual 163 // invariant here is that StrideSCEV should be loop invariant. The only 164 // such invariant strides we happen to speculate right now are unknowns 165 // and thus this is a reasonable proxy of the actual invariant. 166 assert(isa<SCEVUnknown>(StrideSCEV) && "shouldn't be in map"); 167 168 ScalarEvolution *SE = PSE.getSE(); 169 const auto *CT = SE->getOne(StrideSCEV->getType()); 170 PSE.addPredicate(*SE->getEqualPredicate(StrideSCEV, CT)); 171 auto *Expr = PSE.getSCEV(Ptr); 172 173 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 174 << " by: " << *Expr << "\n"); 175 return Expr; 176 } 177 178 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup( 179 unsigned Index, RuntimePointerChecking &RtCheck) 180 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start), 181 AddressSpace(RtCheck.Pointers[Index] 182 .PointerValue->getType() 183 ->getPointerAddressSpace()), 184 NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) { 185 Members.push_back(Index); 186 } 187 188 /// Calculate Start and End points of memory access. 189 /// Let's assume A is the first access and B is a memory access on N-th loop 190 /// iteration. Then B is calculated as: 191 /// B = A + Step*N . 192 /// Step value may be positive or negative. 193 /// N is a calculated back-edge taken count: 194 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 195 /// Start and End points are calculated in the following way: 196 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 197 /// where SizeOfElt is the size of single memory access in bytes. 198 /// 199 /// There is no conflict when the intervals are disjoint: 200 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 201 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, 202 Type *AccessTy, bool WritePtr, 203 unsigned DepSetId, unsigned ASId, 204 PredicatedScalarEvolution &PSE, 205 bool NeedsFreeze) { 206 ScalarEvolution *SE = PSE.getSE(); 207 208 const SCEV *ScStart; 209 const SCEV *ScEnd; 210 211 if (SE->isLoopInvariant(PtrExpr, Lp)) { 212 ScStart = ScEnd = PtrExpr; 213 } else { 214 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr); 215 assert(AR && "Invalid addrec expression"); 216 const SCEV *Ex = PSE.getBackedgeTakenCount(); 217 218 ScStart = AR->getStart(); 219 ScEnd = AR->evaluateAtIteration(Ex, *SE); 220 const SCEV *Step = AR->getStepRecurrence(*SE); 221 222 // For expressions with negative step, the upper bound is ScStart and the 223 // lower bound is ScEnd. 224 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 225 if (CStep->getValue()->isNegative()) 226 std::swap(ScStart, ScEnd); 227 } else { 228 // Fallback case: the step is not constant, but we can still 229 // get the upper and lower bounds of the interval by using min/max 230 // expressions. 231 ScStart = SE->getUMinExpr(ScStart, ScEnd); 232 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 233 } 234 } 235 assert(SE->isLoopInvariant(ScStart, Lp) && "ScStart needs to be invariant"); 236 assert(SE->isLoopInvariant(ScEnd, Lp)&& "ScEnd needs to be invariant"); 237 238 // Add the size of the pointed element to ScEnd. 239 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 240 Type *IdxTy = DL.getIndexType(Ptr->getType()); 241 const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy); 242 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 243 244 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr, 245 NeedsFreeze); 246 } 247 248 void RuntimePointerChecking::tryToCreateDiffCheck( 249 const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) { 250 if (!CanUseDiffCheck) 251 return; 252 253 // If either group contains multiple different pointers, bail out. 254 // TODO: Support multiple pointers by using the minimum or maximum pointer, 255 // depending on src & sink. 256 if (CGI.Members.size() != 1 || CGJ.Members.size() != 1) { 257 CanUseDiffCheck = false; 258 return; 259 } 260 261 PointerInfo *Src = &Pointers[CGI.Members[0]]; 262 PointerInfo *Sink = &Pointers[CGJ.Members[0]]; 263 264 // If either pointer is read and written, multiple checks may be needed. Bail 265 // out. 266 if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() || 267 !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty()) { 268 CanUseDiffCheck = false; 269 return; 270 } 271 272 ArrayRef<unsigned> AccSrc = 273 DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr); 274 ArrayRef<unsigned> AccSink = 275 DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr); 276 // If either pointer is accessed multiple times, there may not be a clear 277 // src/sink relation. Bail out for now. 278 if (AccSrc.size() != 1 || AccSink.size() != 1) { 279 CanUseDiffCheck = false; 280 return; 281 } 282 // If the sink is accessed before src, swap src/sink. 283 if (AccSink[0] < AccSrc[0]) 284 std::swap(Src, Sink); 285 286 auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr); 287 auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr); 288 if (!SrcAR || !SinkAR || SrcAR->getLoop() != DC.getInnermostLoop() || 289 SinkAR->getLoop() != DC.getInnermostLoop()) { 290 CanUseDiffCheck = false; 291 return; 292 } 293 294 SmallVector<Instruction *, 4> SrcInsts = 295 DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr); 296 SmallVector<Instruction *, 4> SinkInsts = 297 DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr); 298 Type *SrcTy = getLoadStoreType(SrcInsts[0]); 299 Type *DstTy = getLoadStoreType(SinkInsts[0]); 300 if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy)) { 301 CanUseDiffCheck = false; 302 return; 303 } 304 const DataLayout &DL = 305 SinkAR->getLoop()->getHeader()->getModule()->getDataLayout(); 306 unsigned AllocSize = 307 std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy)); 308 309 // Only matching constant steps matching the AllocSize are supported at the 310 // moment. This simplifies the difference computation. Can be extended in the 311 // future. 312 auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE)); 313 if (!Step || Step != SrcAR->getStepRecurrence(*SE) || 314 Step->getAPInt().abs() != AllocSize) { 315 CanUseDiffCheck = false; 316 return; 317 } 318 319 IntegerType *IntTy = 320 IntegerType::get(Src->PointerValue->getContext(), 321 DL.getPointerSizeInBits(CGI.AddressSpace)); 322 323 // When counting down, the dependence distance needs to be swapped. 324 if (Step->getValue()->isNegative()) 325 std::swap(SinkAR, SrcAR); 326 327 const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy); 328 const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy); 329 if (isa<SCEVCouldNotCompute>(SinkStartInt) || 330 isa<SCEVCouldNotCompute>(SrcStartInt)) { 331 CanUseDiffCheck = false; 332 return; 333 } 334 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize, 335 Src->NeedsFreeze || Sink->NeedsFreeze); 336 } 337 338 SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() { 339 SmallVector<RuntimePointerCheck, 4> Checks; 340 341 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 342 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 343 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I]; 344 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J]; 345 346 if (needsChecking(CGI, CGJ)) { 347 tryToCreateDiffCheck(CGI, CGJ); 348 Checks.push_back(std::make_pair(&CGI, &CGJ)); 349 } 350 } 351 } 352 return Checks; 353 } 354 355 void RuntimePointerChecking::generateChecks( 356 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 357 assert(Checks.empty() && "Checks is not empty"); 358 groupChecks(DepCands, UseDependencies); 359 Checks = generateChecks(); 360 } 361 362 bool RuntimePointerChecking::needsChecking( 363 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const { 364 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 365 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 366 if (needsChecking(M.Members[I], N.Members[J])) 367 return true; 368 return false; 369 } 370 371 /// Compare \p I and \p J and return the minimum. 372 /// Return nullptr in case we couldn't find an answer. 373 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 374 ScalarEvolution *SE) { 375 const SCEV *Diff = SE->getMinusSCEV(J, I); 376 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 377 378 if (!C) 379 return nullptr; 380 if (C->getValue()->isNegative()) 381 return J; 382 return I; 383 } 384 385 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, 386 RuntimePointerChecking &RtCheck) { 387 return addPointer( 388 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End, 389 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(), 390 RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE); 391 } 392 393 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start, 394 const SCEV *End, unsigned AS, 395 bool NeedsFreeze, 396 ScalarEvolution &SE) { 397 assert(AddressSpace == AS && 398 "all pointers in a checking group must be in the same address space"); 399 400 // Compare the starts and ends with the known minimum and maximum 401 // of this set. We need to know how we compare against the min/max 402 // of the set in order to be able to emit memchecks. 403 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE); 404 if (!Min0) 405 return false; 406 407 const SCEV *Min1 = getMinFromExprs(End, High, &SE); 408 if (!Min1) 409 return false; 410 411 // Update the low bound expression if we've found a new min value. 412 if (Min0 == Start) 413 Low = Start; 414 415 // Update the high bound expression if we've found a new max value. 416 if (Min1 != End) 417 High = End; 418 419 Members.push_back(Index); 420 this->NeedsFreeze |= NeedsFreeze; 421 return true; 422 } 423 424 void RuntimePointerChecking::groupChecks( 425 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 426 // We build the groups from dependency candidates equivalence classes 427 // because: 428 // - We know that pointers in the same equivalence class share 429 // the same underlying object and therefore there is a chance 430 // that we can compare pointers 431 // - We wouldn't be able to merge two pointers for which we need 432 // to emit a memcheck. The classes in DepCands are already 433 // conveniently built such that no two pointers in the same 434 // class need checking against each other. 435 436 // We use the following (greedy) algorithm to construct the groups 437 // For every pointer in the equivalence class: 438 // For each existing group: 439 // - if the difference between this pointer and the min/max bounds 440 // of the group is a constant, then make the pointer part of the 441 // group and update the min/max bounds of that group as required. 442 443 CheckingGroups.clear(); 444 445 // If we need to check two pointers to the same underlying object 446 // with a non-constant difference, we shouldn't perform any pointer 447 // grouping with those pointers. This is because we can easily get 448 // into cases where the resulting check would return false, even when 449 // the accesses are safe. 450 // 451 // The following example shows this: 452 // for (i = 0; i < 1000; ++i) 453 // a[5000 + i * m] = a[i] + a[i + 9000] 454 // 455 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 456 // (0, 10000) which is always false. However, if m is 1, there is no 457 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 458 // us to perform an accurate check in this case. 459 // 460 // The above case requires that we have an UnknownDependence between 461 // accesses to the same underlying object. This cannot happen unless 462 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 463 // is also false. In this case we will use the fallback path and create 464 // separate checking groups for all pointers. 465 466 // If we don't have the dependency partitions, construct a new 467 // checking pointer group for each pointer. This is also required 468 // for correctness, because in this case we can have checking between 469 // pointers to the same underlying object. 470 if (!UseDependencies) { 471 for (unsigned I = 0; I < Pointers.size(); ++I) 472 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this)); 473 return; 474 } 475 476 unsigned TotalComparisons = 0; 477 478 DenseMap<Value *, SmallVector<unsigned>> PositionMap; 479 for (unsigned Index = 0; Index < Pointers.size(); ++Index) { 480 auto Iter = PositionMap.insert({Pointers[Index].PointerValue, {}}); 481 Iter.first->second.push_back(Index); 482 } 483 484 // We need to keep track of what pointers we've already seen so we 485 // don't process them twice. 486 SmallSet<unsigned, 2> Seen; 487 488 // Go through all equivalence classes, get the "pointer check groups" 489 // and add them to the overall solution. We use the order in which accesses 490 // appear in 'Pointers' to enforce determinism. 491 for (unsigned I = 0; I < Pointers.size(); ++I) { 492 // We've seen this pointer before, and therefore already processed 493 // its equivalence class. 494 if (Seen.count(I)) 495 continue; 496 497 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 498 Pointers[I].IsWritePtr); 499 500 SmallVector<RuntimeCheckingPtrGroup, 2> Groups; 501 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 502 503 // Because DepCands is constructed by visiting accesses in the order in 504 // which they appear in alias sets (which is deterministic) and the 505 // iteration order within an equivalence class member is only dependent on 506 // the order in which unions and insertions are performed on the 507 // equivalence class, the iteration order is deterministic. 508 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 509 MI != ME; ++MI) { 510 auto PointerI = PositionMap.find(MI->getPointer()); 511 assert(PointerI != PositionMap.end() && 512 "pointer in equivalence class not found in PositionMap"); 513 for (unsigned Pointer : PointerI->second) { 514 bool Merged = false; 515 // Mark this pointer as seen. 516 Seen.insert(Pointer); 517 518 // Go through all the existing sets and see if we can find one 519 // which can include this pointer. 520 for (RuntimeCheckingPtrGroup &Group : Groups) { 521 // Don't perform more than a certain amount of comparisons. 522 // This should limit the cost of grouping the pointers to something 523 // reasonable. If we do end up hitting this threshold, the algorithm 524 // will create separate groups for all remaining pointers. 525 if (TotalComparisons > MemoryCheckMergeThreshold) 526 break; 527 528 TotalComparisons++; 529 530 if (Group.addPointer(Pointer, *this)) { 531 Merged = true; 532 break; 533 } 534 } 535 536 if (!Merged) 537 // We couldn't add this pointer to any existing set or the threshold 538 // for the number of comparisons has been reached. Create a new group 539 // to hold the current pointer. 540 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this)); 541 } 542 } 543 544 // We've computed the grouped checks for this partition. 545 // Save the results and continue with the next one. 546 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 547 } 548 } 549 550 bool RuntimePointerChecking::arePointersInSamePartition( 551 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 552 unsigned PtrIdx2) { 553 return (PtrToPartition[PtrIdx1] != -1 && 554 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 555 } 556 557 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 558 const PointerInfo &PointerI = Pointers[I]; 559 const PointerInfo &PointerJ = Pointers[J]; 560 561 // No need to check if two readonly pointers intersect. 562 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 563 return false; 564 565 // Only need to check pointers between two different dependency sets. 566 if (PointerI.DependencySetId == PointerJ.DependencySetId) 567 return false; 568 569 // Only need to check pointers in the same alias set. 570 if (PointerI.AliasSetId != PointerJ.AliasSetId) 571 return false; 572 573 return true; 574 } 575 576 void RuntimePointerChecking::printChecks( 577 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks, 578 unsigned Depth) const { 579 unsigned N = 0; 580 for (const auto &Check : Checks) { 581 const auto &First = Check.first->Members, &Second = Check.second->Members; 582 583 OS.indent(Depth) << "Check " << N++ << ":\n"; 584 585 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 586 for (unsigned K = 0; K < First.size(); ++K) 587 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 588 589 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 590 for (unsigned K = 0; K < Second.size(); ++K) 591 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 592 } 593 } 594 595 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 596 597 OS.indent(Depth) << "Run-time memory checks:\n"; 598 printChecks(OS, Checks, Depth); 599 600 OS.indent(Depth) << "Grouped accesses:\n"; 601 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 602 const auto &CG = CheckingGroups[I]; 603 604 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 605 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 606 << ")\n"; 607 for (unsigned J = 0; J < CG.Members.size(); ++J) { 608 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 609 << "\n"; 610 } 611 } 612 } 613 614 namespace { 615 616 /// Analyses memory accesses in a loop. 617 /// 618 /// Checks whether run time pointer checks are needed and builds sets for data 619 /// dependence checking. 620 class AccessAnalysis { 621 public: 622 /// Read or write access location. 623 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 624 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 625 626 AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI, 627 MemoryDepChecker::DepCandidates &DA, 628 PredicatedScalarEvolution &PSE) 629 : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE) { 630 // We're analyzing dependences across loop iterations. 631 BAA.enableCrossIterationMode(); 632 } 633 634 /// Register a load and whether it is only read from. 635 void addLoad(MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) { 636 Value *Ptr = const_cast<Value*>(Loc.Ptr); 637 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 638 Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy); 639 if (IsReadOnly) 640 ReadOnlyPtr.insert(Ptr); 641 } 642 643 /// Register a store. 644 void addStore(MemoryLocation &Loc, Type *AccessTy) { 645 Value *Ptr = const_cast<Value*>(Loc.Ptr); 646 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 647 Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy); 648 } 649 650 /// Check if we can emit a run-time no-alias check for \p Access. 651 /// 652 /// Returns true if we can emit a run-time no alias check for \p Access. 653 /// If we can check this access, this also adds it to a dependence set and 654 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 655 /// we will attempt to use additional run-time checks in order to get 656 /// the bounds of the pointer. 657 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 658 MemAccessInfo Access, Type *AccessTy, 659 const DenseMap<Value *, const SCEV *> &Strides, 660 DenseMap<Value *, unsigned> &DepSetId, 661 Loop *TheLoop, unsigned &RunningDepId, 662 unsigned ASId, bool ShouldCheckStride, bool Assume); 663 664 /// Check whether we can check the pointers at runtime for 665 /// non-intersection. 666 /// 667 /// Returns true if we need no check or if we do and we can generate them 668 /// (i.e. the pointers have computable bounds). 669 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 670 Loop *TheLoop, const DenseMap<Value *, const SCEV *> &Strides, 671 Value *&UncomputablePtr, bool ShouldCheckWrap = false); 672 673 /// Goes over all memory accesses, checks whether a RT check is needed 674 /// and builds sets of dependent accesses. 675 void buildDependenceSets() { 676 processMemAccesses(); 677 } 678 679 /// Initial processing of memory accesses determined that we need to 680 /// perform dependency checking. 681 /// 682 /// Note that this can later be cleared if we retry memcheck analysis without 683 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 684 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 685 686 /// We decided that no dependence analysis would be used. Reset the state. 687 void resetDepChecks(MemoryDepChecker &DepChecker) { 688 CheckDeps.clear(); 689 DepChecker.clearDependences(); 690 } 691 692 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 693 694 private: 695 typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap; 696 697 /// Go over all memory access and check whether runtime pointer checks 698 /// are needed and build sets of dependency check candidates. 699 void processMemAccesses(); 700 701 /// Map of all accesses. Values are the types used to access memory pointed to 702 /// by the pointer. 703 PtrAccessMap Accesses; 704 705 /// The loop being checked. 706 const Loop *TheLoop; 707 708 /// List of accesses that need a further dependence check. 709 MemAccessInfoList CheckDeps; 710 711 /// Set of pointers that are read only. 712 SmallPtrSet<Value*, 16> ReadOnlyPtr; 713 714 /// Batched alias analysis results. 715 BatchAAResults BAA; 716 717 /// An alias set tracker to partition the access set by underlying object and 718 //intrinsic property (such as TBAA metadata). 719 AliasSetTracker AST; 720 721 LoopInfo *LI; 722 723 /// Sets of potentially dependent accesses - members of one set share an 724 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 725 /// dependence check. 726 MemoryDepChecker::DepCandidates &DepCands; 727 728 /// Initial processing of memory accesses determined that we may need 729 /// to add memchecks. Perform the analysis to determine the necessary checks. 730 /// 731 /// Note that, this is different from isDependencyCheckNeeded. When we retry 732 /// memcheck analysis without dependency checking 733 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 734 /// cleared while this remains set if we have potentially dependent accesses. 735 bool IsRTCheckAnalysisNeeded = false; 736 737 /// The SCEV predicate containing all the SCEV-related assumptions. 738 PredicatedScalarEvolution &PSE; 739 }; 740 741 } // end anonymous namespace 742 743 /// Check whether a pointer can participate in a runtime bounds check. 744 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 745 /// by adding run-time checks (overflow checks) if necessary. 746 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr, 747 const SCEV *PtrScev, Loop *L, bool Assume) { 748 // The bounds for loop-invariant pointer is trivial. 749 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 750 return true; 751 752 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 753 754 if (!AR && Assume) 755 AR = PSE.getAsAddRec(Ptr); 756 757 if (!AR) 758 return false; 759 760 return AR->isAffine(); 761 } 762 763 /// Check whether a pointer address cannot wrap. 764 static bool isNoWrap(PredicatedScalarEvolution &PSE, 765 const DenseMap<Value *, const SCEV *> &Strides, Value *Ptr, Type *AccessTy, 766 Loop *L) { 767 const SCEV *PtrScev = PSE.getSCEV(Ptr); 768 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 769 return true; 770 771 int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides).value_or(0); 772 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 773 return true; 774 775 return false; 776 } 777 778 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop, 779 function_ref<void(Value *)> AddPointer) { 780 SmallPtrSet<Value *, 8> Visited; 781 SmallVector<Value *> WorkList; 782 WorkList.push_back(StartPtr); 783 784 while (!WorkList.empty()) { 785 Value *Ptr = WorkList.pop_back_val(); 786 if (!Visited.insert(Ptr).second) 787 continue; 788 auto *PN = dyn_cast<PHINode>(Ptr); 789 // SCEV does not look through non-header PHIs inside the loop. Such phis 790 // can be analyzed by adding separate accesses for each incoming pointer 791 // value. 792 if (PN && InnermostLoop.contains(PN->getParent()) && 793 PN->getParent() != InnermostLoop.getHeader()) { 794 for (const Use &Inc : PN->incoming_values()) 795 WorkList.push_back(Inc); 796 } else 797 AddPointer(Ptr); 798 } 799 } 800 801 // Walk back through the IR for a pointer, looking for a select like the 802 // following: 803 // 804 // %offset = select i1 %cmp, i64 %a, i64 %b 805 // %addr = getelementptr double, double* %base, i64 %offset 806 // %ld = load double, double* %addr, align 8 807 // 808 // We won't be able to form a single SCEVAddRecExpr from this since the 809 // address for each loop iteration depends on %cmp. We could potentially 810 // produce multiple valid SCEVAddRecExprs, though, and check all of them for 811 // memory safety/aliasing if needed. 812 // 813 // If we encounter some IR we don't yet handle, or something obviously fine 814 // like a constant, then we just add the SCEV for that term to the list passed 815 // in by the caller. If we have a node that may potentially yield a valid 816 // SCEVAddRecExpr then we decompose it into parts and build the SCEV terms 817 // ourselves before adding to the list. 818 static void findForkedSCEVs( 819 ScalarEvolution *SE, const Loop *L, Value *Ptr, 820 SmallVectorImpl<PointerIntPair<const SCEV *, 1, bool>> &ScevList, 821 unsigned Depth) { 822 // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or 823 // we've exceeded our limit on recursion, just return whatever we have 824 // regardless of whether it can be used for a forked pointer or not, along 825 // with an indication of whether it might be a poison or undef value. 826 const SCEV *Scev = SE->getSCEV(Ptr); 827 if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) || 828 !isa<Instruction>(Ptr) || Depth == 0) { 829 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 830 return; 831 } 832 833 Depth--; 834 835 auto UndefPoisonCheck = [](PointerIntPair<const SCEV *, 1, bool> S) { 836 return get<1>(S); 837 }; 838 839 auto GetBinOpExpr = [&SE](unsigned Opcode, const SCEV *L, const SCEV *R) { 840 switch (Opcode) { 841 case Instruction::Add: 842 return SE->getAddExpr(L, R); 843 case Instruction::Sub: 844 return SE->getMinusSCEV(L, R); 845 default: 846 llvm_unreachable("Unexpected binary operator when walking ForkedPtrs"); 847 } 848 }; 849 850 Instruction *I = cast<Instruction>(Ptr); 851 unsigned Opcode = I->getOpcode(); 852 switch (Opcode) { 853 case Instruction::GetElementPtr: { 854 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 855 Type *SourceTy = GEP->getSourceElementType(); 856 // We only handle base + single offset GEPs here for now. 857 // Not dealing with preexisting gathers yet, so no vectors. 858 if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) { 859 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP)); 860 break; 861 } 862 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> BaseScevs; 863 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> OffsetScevs; 864 findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth); 865 findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth); 866 867 // See if we need to freeze our fork... 868 bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) || 869 any_of(OffsetScevs, UndefPoisonCheck); 870 871 // Check that we only have a single fork, on either the base or the offset. 872 // Copy the SCEV across for the one without a fork in order to generate 873 // the full SCEV for both sides of the GEP. 874 if (OffsetScevs.size() == 2 && BaseScevs.size() == 1) 875 BaseScevs.push_back(BaseScevs[0]); 876 else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1) 877 OffsetScevs.push_back(OffsetScevs[0]); 878 else { 879 ScevList.emplace_back(Scev, NeedsFreeze); 880 break; 881 } 882 883 // Find the pointer type we need to extend to. 884 Type *IntPtrTy = SE->getEffectiveSCEVType( 885 SE->getSCEV(GEP->getPointerOperand())->getType()); 886 887 // Find the size of the type being pointed to. We only have a single 888 // index term (guarded above) so we don't need to index into arrays or 889 // structures, just get the size of the scalar value. 890 const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy); 891 892 // Scale up the offsets by the size of the type, then add to the bases. 893 const SCEV *Scaled1 = SE->getMulExpr( 894 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[0]), IntPtrTy)); 895 const SCEV *Scaled2 = SE->getMulExpr( 896 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[1]), IntPtrTy)); 897 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[0]), Scaled1), 898 NeedsFreeze); 899 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[1]), Scaled2), 900 NeedsFreeze); 901 break; 902 } 903 case Instruction::Select: { 904 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs; 905 // A select means we've found a forked pointer, but we currently only 906 // support a single select per pointer so if there's another behind this 907 // then we just bail out and return the generic SCEV. 908 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth); 909 findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth); 910 if (ChildScevs.size() == 2) { 911 ScevList.push_back(ChildScevs[0]); 912 ScevList.push_back(ChildScevs[1]); 913 } else 914 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 915 break; 916 } 917 case Instruction::Add: 918 case Instruction::Sub: { 919 SmallVector<PointerIntPair<const SCEV *, 1, bool>> LScevs; 920 SmallVector<PointerIntPair<const SCEV *, 1, bool>> RScevs; 921 findForkedSCEVs(SE, L, I->getOperand(0), LScevs, Depth); 922 findForkedSCEVs(SE, L, I->getOperand(1), RScevs, Depth); 923 924 // See if we need to freeze our fork... 925 bool NeedsFreeze = 926 any_of(LScevs, UndefPoisonCheck) || any_of(RScevs, UndefPoisonCheck); 927 928 // Check that we only have a single fork, on either the left or right side. 929 // Copy the SCEV across for the one without a fork in order to generate 930 // the full SCEV for both sides of the BinOp. 931 if (LScevs.size() == 2 && RScevs.size() == 1) 932 RScevs.push_back(RScevs[0]); 933 else if (RScevs.size() == 2 && LScevs.size() == 1) 934 LScevs.push_back(LScevs[0]); 935 else { 936 ScevList.emplace_back(Scev, NeedsFreeze); 937 break; 938 } 939 940 ScevList.emplace_back( 941 GetBinOpExpr(Opcode, get<0>(LScevs[0]), get<0>(RScevs[0])), 942 NeedsFreeze); 943 ScevList.emplace_back( 944 GetBinOpExpr(Opcode, get<0>(LScevs[1]), get<0>(RScevs[1])), 945 NeedsFreeze); 946 break; 947 } 948 default: 949 // Just return the current SCEV if we haven't handled the instruction yet. 950 LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n"); 951 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 952 break; 953 } 954 } 955 956 static SmallVector<PointerIntPair<const SCEV *, 1, bool>> 957 findForkedPointer(PredicatedScalarEvolution &PSE, 958 const DenseMap<Value *, const SCEV *> &StridesMap, Value *Ptr, 959 const Loop *L) { 960 ScalarEvolution *SE = PSE.getSE(); 961 assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!"); 962 SmallVector<PointerIntPair<const SCEV *, 1, bool>> Scevs; 963 findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth); 964 965 // For now, we will only accept a forked pointer with two possible SCEVs 966 // that are either SCEVAddRecExprs or loop invariant. 967 if (Scevs.size() == 2 && 968 (isa<SCEVAddRecExpr>(get<0>(Scevs[0])) || 969 SE->isLoopInvariant(get<0>(Scevs[0]), L)) && 970 (isa<SCEVAddRecExpr>(get<0>(Scevs[1])) || 971 SE->isLoopInvariant(get<0>(Scevs[1]), L))) { 972 LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr << "\n"); 973 LLVM_DEBUG(dbgs() << "\t(1) " << *get<0>(Scevs[0]) << "\n"); 974 LLVM_DEBUG(dbgs() << "\t(2) " << *get<0>(Scevs[1]) << "\n"); 975 return Scevs; 976 } 977 978 return {{replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false}}; 979 } 980 981 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 982 MemAccessInfo Access, Type *AccessTy, 983 const DenseMap<Value *, const SCEV *> &StridesMap, 984 DenseMap<Value *, unsigned> &DepSetId, 985 Loop *TheLoop, unsigned &RunningDepId, 986 unsigned ASId, bool ShouldCheckWrap, 987 bool Assume) { 988 Value *Ptr = Access.getPointer(); 989 990 SmallVector<PointerIntPair<const SCEV *, 1, bool>> TranslatedPtrs = 991 findForkedPointer(PSE, StridesMap, Ptr, TheLoop); 992 993 for (auto &P : TranslatedPtrs) { 994 const SCEV *PtrExpr = get<0>(P); 995 if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume)) 996 return false; 997 998 // When we run after a failing dependency check we have to make sure 999 // we don't have wrapping pointers. 1000 if (ShouldCheckWrap) { 1001 // Skip wrap checking when translating pointers. 1002 if (TranslatedPtrs.size() > 1) 1003 return false; 1004 1005 if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) { 1006 auto *Expr = PSE.getSCEV(Ptr); 1007 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 1008 return false; 1009 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1010 } 1011 } 1012 // If there's only one option for Ptr, look it up after bounds and wrap 1013 // checking, because assumptions might have been added to PSE. 1014 if (TranslatedPtrs.size() == 1) 1015 TranslatedPtrs[0] = {replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), 1016 false}; 1017 } 1018 1019 for (auto [PtrExpr, NeedsFreeze] : TranslatedPtrs) { 1020 // The id of the dependence set. 1021 unsigned DepId; 1022 1023 if (isDependencyCheckNeeded()) { 1024 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 1025 unsigned &LeaderId = DepSetId[Leader]; 1026 if (!LeaderId) 1027 LeaderId = RunningDepId++; 1028 DepId = LeaderId; 1029 } else 1030 // Each access has its own dependence set. 1031 DepId = RunningDepId++; 1032 1033 bool IsWrite = Access.getInt(); 1034 RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE, 1035 NeedsFreeze); 1036 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 1037 } 1038 1039 return true; 1040 } 1041 1042 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 1043 ScalarEvolution *SE, Loop *TheLoop, 1044 const DenseMap<Value *, const SCEV *> &StridesMap, 1045 Value *&UncomputablePtr, bool ShouldCheckWrap) { 1046 // Find pointers with computable bounds. We are going to use this information 1047 // to place a runtime bound check. 1048 bool CanDoRT = true; 1049 1050 bool MayNeedRTCheck = false; 1051 if (!IsRTCheckAnalysisNeeded) return true; 1052 1053 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 1054 1055 // We assign a consecutive id to access from different alias sets. 1056 // Accesses between different groups doesn't need to be checked. 1057 unsigned ASId = 0; 1058 for (auto &AS : AST) { 1059 int NumReadPtrChecks = 0; 1060 int NumWritePtrChecks = 0; 1061 bool CanDoAliasSetRT = true; 1062 ++ASId; 1063 1064 // We assign consecutive id to access from different dependence sets. 1065 // Accesses within the same set don't need a runtime check. 1066 unsigned RunningDepId = 1; 1067 DenseMap<Value *, unsigned> DepSetId; 1068 1069 SmallVector<std::pair<MemAccessInfo, Type *>, 4> Retries; 1070 1071 // First, count how many write and read accesses are in the alias set. Also 1072 // collect MemAccessInfos for later. 1073 SmallVector<MemAccessInfo, 4> AccessInfos; 1074 for (const auto &A : AS) { 1075 Value *Ptr = A.getValue(); 1076 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 1077 1078 if (IsWrite) 1079 ++NumWritePtrChecks; 1080 else 1081 ++NumReadPtrChecks; 1082 AccessInfos.emplace_back(Ptr, IsWrite); 1083 } 1084 1085 // We do not need runtime checks for this alias set, if there are no writes 1086 // or a single write and no reads. 1087 if (NumWritePtrChecks == 0 || 1088 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) { 1089 assert((AS.size() <= 1 || 1090 all_of(AS, 1091 [this](auto AC) { 1092 MemAccessInfo AccessWrite(AC.getValue(), true); 1093 return DepCands.findValue(AccessWrite) == DepCands.end(); 1094 })) && 1095 "Can only skip updating CanDoRT below, if all entries in AS " 1096 "are reads or there is at most 1 entry"); 1097 continue; 1098 } 1099 1100 for (auto &Access : AccessInfos) { 1101 for (const auto &AccessTy : Accesses[Access]) { 1102 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 1103 DepSetId, TheLoop, RunningDepId, ASId, 1104 ShouldCheckWrap, false)) { 1105 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" 1106 << *Access.getPointer() << '\n'); 1107 Retries.push_back({Access, AccessTy}); 1108 CanDoAliasSetRT = false; 1109 } 1110 } 1111 } 1112 1113 // Note that this function computes CanDoRT and MayNeedRTCheck 1114 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that 1115 // we have a pointer for which we couldn't find the bounds but we don't 1116 // actually need to emit any checks so it does not matter. 1117 // 1118 // We need runtime checks for this alias set, if there are at least 2 1119 // dependence sets (in which case RunningDepId > 2) or if we need to re-try 1120 // any bound checks (because in that case the number of dependence sets is 1121 // incomplete). 1122 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty(); 1123 1124 // We need to perform run-time alias checks, but some pointers had bounds 1125 // that couldn't be checked. 1126 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 1127 // Reset the CanDoSetRt flag and retry all accesses that have failed. 1128 // We know that we need these checks, so we can now be more aggressive 1129 // and add further checks if required (overflow checks). 1130 CanDoAliasSetRT = true; 1131 for (auto Retry : Retries) { 1132 MemAccessInfo Access = Retry.first; 1133 Type *AccessTy = Retry.second; 1134 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 1135 DepSetId, TheLoop, RunningDepId, ASId, 1136 ShouldCheckWrap, /*Assume=*/true)) { 1137 CanDoAliasSetRT = false; 1138 UncomputablePtr = Access.getPointer(); 1139 break; 1140 } 1141 } 1142 } 1143 1144 CanDoRT &= CanDoAliasSetRT; 1145 MayNeedRTCheck |= NeedsAliasSetRTCheck; 1146 ++ASId; 1147 } 1148 1149 // If the pointers that we would use for the bounds comparison have different 1150 // address spaces, assume the values aren't directly comparable, so we can't 1151 // use them for the runtime check. We also have to assume they could 1152 // overlap. In the future there should be metadata for whether address spaces 1153 // are disjoint. 1154 unsigned NumPointers = RtCheck.Pointers.size(); 1155 for (unsigned i = 0; i < NumPointers; ++i) { 1156 for (unsigned j = i + 1; j < NumPointers; ++j) { 1157 // Only need to check pointers between two different dependency sets. 1158 if (RtCheck.Pointers[i].DependencySetId == 1159 RtCheck.Pointers[j].DependencySetId) 1160 continue; 1161 // Only need to check pointers in the same alias set. 1162 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 1163 continue; 1164 1165 Value *PtrI = RtCheck.Pointers[i].PointerValue; 1166 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 1167 1168 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 1169 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 1170 if (ASi != ASj) { 1171 LLVM_DEBUG( 1172 dbgs() << "LAA: Runtime check would require comparison between" 1173 " different address spaces\n"); 1174 return false; 1175 } 1176 } 1177 } 1178 1179 if (MayNeedRTCheck && CanDoRT) 1180 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 1181 1182 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 1183 << " pointer comparisons.\n"); 1184 1185 // If we can do run-time checks, but there are no checks, no runtime checks 1186 // are needed. This can happen when all pointers point to the same underlying 1187 // object for example. 1188 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck; 1189 1190 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT; 1191 if (!CanDoRTIfNeeded) 1192 RtCheck.reset(); 1193 return CanDoRTIfNeeded; 1194 } 1195 1196 void AccessAnalysis::processMemAccesses() { 1197 // We process the set twice: first we process read-write pointers, last we 1198 // process read-only pointers. This allows us to skip dependence tests for 1199 // read-only pointers. 1200 1201 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 1202 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 1203 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 1204 LLVM_DEBUG({ 1205 for (auto A : Accesses) 1206 dbgs() << "\t" << *A.first.getPointer() << " (" 1207 << (A.first.getInt() 1208 ? "write" 1209 : (ReadOnlyPtr.count(A.first.getPointer()) ? "read-only" 1210 : "read")) 1211 << ")\n"; 1212 }); 1213 1214 // The AliasSetTracker has nicely partitioned our pointers by metadata 1215 // compatibility and potential for underlying-object overlap. As a result, we 1216 // only need to check for potential pointer dependencies within each alias 1217 // set. 1218 for (const auto &AS : AST) { 1219 // Note that both the alias-set tracker and the alias sets themselves used 1220 // linked lists internally and so the iteration order here is deterministic 1221 // (matching the original instruction order within each set). 1222 1223 bool SetHasWrite = false; 1224 1225 // Map of pointers to last access encountered. 1226 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 1227 UnderlyingObjToAccessMap ObjToLastAccess; 1228 1229 // Set of access to check after all writes have been processed. 1230 PtrAccessMap DeferredAccesses; 1231 1232 // Iterate over each alias set twice, once to process read/write pointers, 1233 // and then to process read-only pointers. 1234 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 1235 bool UseDeferred = SetIteration > 0; 1236 PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses; 1237 1238 for (const auto &AV : AS) { 1239 Value *Ptr = AV.getValue(); 1240 1241 // For a single memory access in AliasSetTracker, Accesses may contain 1242 // both read and write, and they both need to be handled for CheckDeps. 1243 for (const auto &AC : S) { 1244 if (AC.first.getPointer() != Ptr) 1245 continue; 1246 1247 bool IsWrite = AC.first.getInt(); 1248 1249 // If we're using the deferred access set, then it contains only 1250 // reads. 1251 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 1252 if (UseDeferred && !IsReadOnlyPtr) 1253 continue; 1254 // Otherwise, the pointer must be in the PtrAccessSet, either as a 1255 // read or a write. 1256 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 1257 S.count(MemAccessInfo(Ptr, false))) && 1258 "Alias-set pointer not in the access set?"); 1259 1260 MemAccessInfo Access(Ptr, IsWrite); 1261 DepCands.insert(Access); 1262 1263 // Memorize read-only pointers for later processing and skip them in 1264 // the first round (they need to be checked after we have seen all 1265 // write pointers). Note: we also mark pointer that are not 1266 // consecutive as "read-only" pointers (so that we check 1267 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 1268 if (!UseDeferred && IsReadOnlyPtr) { 1269 // We only use the pointer keys, the types vector values don't 1270 // matter. 1271 DeferredAccesses.insert({Access, {}}); 1272 continue; 1273 } 1274 1275 // If this is a write - check other reads and writes for conflicts. If 1276 // this is a read only check other writes for conflicts (but only if 1277 // there is no other write to the ptr - this is an optimization to 1278 // catch "a[i] = a[i] + " without having to do a dependence check). 1279 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 1280 CheckDeps.push_back(Access); 1281 IsRTCheckAnalysisNeeded = true; 1282 } 1283 1284 if (IsWrite) 1285 SetHasWrite = true; 1286 1287 // Create sets of pointers connected by a shared alias set and 1288 // underlying object. 1289 typedef SmallVector<const Value *, 16> ValueVector; 1290 ValueVector TempObjects; 1291 1292 getUnderlyingObjects(Ptr, TempObjects, LI); 1293 LLVM_DEBUG(dbgs() 1294 << "Underlying objects for pointer " << *Ptr << "\n"); 1295 for (const Value *UnderlyingObj : TempObjects) { 1296 // nullptr never alias, don't join sets for pointer that have "null" 1297 // in their UnderlyingObjects list. 1298 if (isa<ConstantPointerNull>(UnderlyingObj) && 1299 !NullPointerIsDefined( 1300 TheLoop->getHeader()->getParent(), 1301 UnderlyingObj->getType()->getPointerAddressSpace())) 1302 continue; 1303 1304 UnderlyingObjToAccessMap::iterator Prev = 1305 ObjToLastAccess.find(UnderlyingObj); 1306 if (Prev != ObjToLastAccess.end()) 1307 DepCands.unionSets(Access, Prev->second); 1308 1309 ObjToLastAccess[UnderlyingObj] = Access; 1310 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 1311 } 1312 } 1313 } 1314 } 1315 } 1316 } 1317 1318 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 1319 /// i.e. monotonically increasing/decreasing. 1320 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 1321 PredicatedScalarEvolution &PSE, const Loop *L) { 1322 1323 // FIXME: This should probably only return true for NUW. 1324 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 1325 return true; 1326 1327 if (PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 1328 return true; 1329 1330 // Scalar evolution does not propagate the non-wrapping flags to values that 1331 // are derived from a non-wrapping induction variable because non-wrapping 1332 // could be flow-sensitive. 1333 // 1334 // Look through the potentially overflowing instruction to try to prove 1335 // non-wrapping for the *specific* value of Ptr. 1336 1337 // The arithmetic implied by an inbounds GEP can't overflow. 1338 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 1339 if (!GEP || !GEP->isInBounds()) 1340 return false; 1341 1342 // Make sure there is only one non-const index and analyze that. 1343 Value *NonConstIndex = nullptr; 1344 for (Value *Index : GEP->indices()) 1345 if (!isa<ConstantInt>(Index)) { 1346 if (NonConstIndex) 1347 return false; 1348 NonConstIndex = Index; 1349 } 1350 if (!NonConstIndex) 1351 // The recurrence is on the pointer, ignore for now. 1352 return false; 1353 1354 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 1355 // AddRec using a NSW operation. 1356 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 1357 if (OBO->hasNoSignedWrap() && 1358 // Assume constant for other the operand so that the AddRec can be 1359 // easily found. 1360 isa<ConstantInt>(OBO->getOperand(1))) { 1361 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 1362 1363 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 1364 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 1365 } 1366 1367 return false; 1368 } 1369 1370 /// Check whether the access through \p Ptr has a constant stride. 1371 std::optional<int64_t> llvm::getPtrStride(PredicatedScalarEvolution &PSE, 1372 Type *AccessTy, Value *Ptr, 1373 const Loop *Lp, 1374 const DenseMap<Value *, const SCEV *> &StridesMap, 1375 bool Assume, bool ShouldCheckWrap) { 1376 Type *Ty = Ptr->getType(); 1377 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 1378 1379 if (isa<ScalableVectorType>(AccessTy)) { 1380 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy 1381 << "\n"); 1382 return std::nullopt; 1383 } 1384 1385 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1386 1387 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1388 if (Assume && !AR) 1389 AR = PSE.getAsAddRec(Ptr); 1390 1391 if (!AR) { 1392 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1393 << " SCEV: " << *PtrScev << "\n"); 1394 return std::nullopt; 1395 } 1396 1397 // The access function must stride over the innermost loop. 1398 if (Lp != AR->getLoop()) { 1399 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1400 << *Ptr << " SCEV: " << *AR << "\n"); 1401 return std::nullopt; 1402 } 1403 1404 // Check the step is constant. 1405 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1406 1407 // Calculate the pointer stride and check if it is constant. 1408 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1409 if (!C) { 1410 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1411 << " SCEV: " << *AR << "\n"); 1412 return std::nullopt; 1413 } 1414 1415 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1416 TypeSize AllocSize = DL.getTypeAllocSize(AccessTy); 1417 int64_t Size = AllocSize.getFixedValue(); 1418 const APInt &APStepVal = C->getAPInt(); 1419 1420 // Huge step value - give up. 1421 if (APStepVal.getBitWidth() > 64) 1422 return std::nullopt; 1423 1424 int64_t StepVal = APStepVal.getSExtValue(); 1425 1426 // Strided access. 1427 int64_t Stride = StepVal / Size; 1428 int64_t Rem = StepVal % Size; 1429 if (Rem) 1430 return std::nullopt; 1431 1432 if (!ShouldCheckWrap) 1433 return Stride; 1434 1435 // The address calculation must not wrap. Otherwise, a dependence could be 1436 // inverted. 1437 if (isNoWrapAddRec(Ptr, AR, PSE, Lp)) 1438 return Stride; 1439 1440 // An inbounds getelementptr that is a AddRec with a unit stride 1441 // cannot wrap per definition. If it did, the result would be poison 1442 // and any memory access dependent on it would be immediate UB 1443 // when executed. 1444 if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 1445 GEP && GEP->isInBounds() && (Stride == 1 || Stride == -1)) 1446 return Stride; 1447 1448 // If the null pointer is undefined, then a access sequence which would 1449 // otherwise access it can be assumed not to unsigned wrap. Note that this 1450 // assumes the object in memory is aligned to the natural alignment. 1451 unsigned AddrSpace = Ty->getPointerAddressSpace(); 1452 if (!NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace) && 1453 (Stride == 1 || Stride == -1)) 1454 return Stride; 1455 1456 if (Assume) { 1457 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1458 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap:\n" 1459 << "LAA: Pointer: " << *Ptr << "\n" 1460 << "LAA: SCEV: " << *AR << "\n" 1461 << "LAA: Added an overflow assumption\n"); 1462 return Stride; 1463 } 1464 LLVM_DEBUG( 1465 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1466 << *Ptr << " SCEV: " << *AR << "\n"); 1467 return std::nullopt; 1468 } 1469 1470 std::optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA, 1471 Type *ElemTyB, Value *PtrB, 1472 const DataLayout &DL, 1473 ScalarEvolution &SE, bool StrictCheck, 1474 bool CheckType) { 1475 assert(PtrA && PtrB && "Expected non-nullptr pointers."); 1476 1477 // Make sure that A and B are different pointers. 1478 if (PtrA == PtrB) 1479 return 0; 1480 1481 // Make sure that the element types are the same if required. 1482 if (CheckType && ElemTyA != ElemTyB) 1483 return std::nullopt; 1484 1485 unsigned ASA = PtrA->getType()->getPointerAddressSpace(); 1486 unsigned ASB = PtrB->getType()->getPointerAddressSpace(); 1487 1488 // Check that the address spaces match. 1489 if (ASA != ASB) 1490 return std::nullopt; 1491 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1492 1493 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1494 Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1495 Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1496 1497 int Val; 1498 if (PtrA1 == PtrB1) { 1499 // Retrieve the address space again as pointer stripping now tracks through 1500 // `addrspacecast`. 1501 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace(); 1502 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace(); 1503 // Check that the address spaces match and that the pointers are valid. 1504 if (ASA != ASB) 1505 return std::nullopt; 1506 1507 IdxWidth = DL.getIndexSizeInBits(ASA); 1508 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1509 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1510 1511 OffsetB -= OffsetA; 1512 Val = OffsetB.getSExtValue(); 1513 } else { 1514 // Otherwise compute the distance with SCEV between the base pointers. 1515 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1516 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1517 const auto *Diff = 1518 dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA)); 1519 if (!Diff) 1520 return std::nullopt; 1521 Val = Diff->getAPInt().getSExtValue(); 1522 } 1523 int Size = DL.getTypeStoreSize(ElemTyA); 1524 int Dist = Val / Size; 1525 1526 // Ensure that the calculated distance matches the type-based one after all 1527 // the bitcasts removal in the provided pointers. 1528 if (!StrictCheck || Dist * Size == Val) 1529 return Dist; 1530 return std::nullopt; 1531 } 1532 1533 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 1534 const DataLayout &DL, ScalarEvolution &SE, 1535 SmallVectorImpl<unsigned> &SortedIndices) { 1536 assert(llvm::all_of( 1537 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1538 "Expected list of pointer operands."); 1539 // Walk over the pointers, and map each of them to an offset relative to 1540 // first pointer in the array. 1541 Value *Ptr0 = VL[0]; 1542 1543 using DistOrdPair = std::pair<int64_t, int>; 1544 auto Compare = llvm::less_first(); 1545 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare); 1546 Offsets.emplace(0, 0); 1547 int Cnt = 1; 1548 bool IsConsecutive = true; 1549 for (auto *Ptr : VL.drop_front()) { 1550 std::optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE, 1551 /*StrictCheck=*/true); 1552 if (!Diff) 1553 return false; 1554 1555 // Check if the pointer with the same offset is found. 1556 int64_t Offset = *Diff; 1557 auto Res = Offsets.emplace(Offset, Cnt); 1558 if (!Res.second) 1559 return false; 1560 // Consecutive order if the inserted element is the last one. 1561 IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end(); 1562 ++Cnt; 1563 } 1564 SortedIndices.clear(); 1565 if (!IsConsecutive) { 1566 // Fill SortedIndices array only if it is non-consecutive. 1567 SortedIndices.resize(VL.size()); 1568 Cnt = 0; 1569 for (const std::pair<int64_t, int> &Pair : Offsets) { 1570 SortedIndices[Cnt] = Pair.second; 1571 ++Cnt; 1572 } 1573 } 1574 return true; 1575 } 1576 1577 /// Returns true if the memory operations \p A and \p B are consecutive. 1578 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1579 ScalarEvolution &SE, bool CheckType) { 1580 Value *PtrA = getLoadStorePointerOperand(A); 1581 Value *PtrB = getLoadStorePointerOperand(B); 1582 if (!PtrA || !PtrB) 1583 return false; 1584 Type *ElemTyA = getLoadStoreType(A); 1585 Type *ElemTyB = getLoadStoreType(B); 1586 std::optional<int> Diff = 1587 getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE, 1588 /*StrictCheck=*/true, CheckType); 1589 return Diff && *Diff == 1; 1590 } 1591 1592 void MemoryDepChecker::addAccess(StoreInst *SI) { 1593 visitPointers(SI->getPointerOperand(), *InnermostLoop, 1594 [this, SI](Value *Ptr) { 1595 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 1596 InstMap.push_back(SI); 1597 ++AccessIdx; 1598 }); 1599 } 1600 1601 void MemoryDepChecker::addAccess(LoadInst *LI) { 1602 visitPointers(LI->getPointerOperand(), *InnermostLoop, 1603 [this, LI](Value *Ptr) { 1604 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 1605 InstMap.push_back(LI); 1606 ++AccessIdx; 1607 }); 1608 } 1609 1610 MemoryDepChecker::VectorizationSafetyStatus 1611 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1612 switch (Type) { 1613 case NoDep: 1614 case Forward: 1615 case BackwardVectorizable: 1616 return VectorizationSafetyStatus::Safe; 1617 1618 case Unknown: 1619 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1620 case ForwardButPreventsForwarding: 1621 case Backward: 1622 case BackwardVectorizableButPreventsForwarding: 1623 return VectorizationSafetyStatus::Unsafe; 1624 } 1625 llvm_unreachable("unexpected DepType!"); 1626 } 1627 1628 bool MemoryDepChecker::Dependence::isBackward() const { 1629 switch (Type) { 1630 case NoDep: 1631 case Forward: 1632 case ForwardButPreventsForwarding: 1633 case Unknown: 1634 return false; 1635 1636 case BackwardVectorizable: 1637 case Backward: 1638 case BackwardVectorizableButPreventsForwarding: 1639 return true; 1640 } 1641 llvm_unreachable("unexpected DepType!"); 1642 } 1643 1644 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1645 return isBackward() || Type == Unknown; 1646 } 1647 1648 bool MemoryDepChecker::Dependence::isForward() const { 1649 switch (Type) { 1650 case Forward: 1651 case ForwardButPreventsForwarding: 1652 return true; 1653 1654 case NoDep: 1655 case Unknown: 1656 case BackwardVectorizable: 1657 case Backward: 1658 case BackwardVectorizableButPreventsForwarding: 1659 return false; 1660 } 1661 llvm_unreachable("unexpected DepType!"); 1662 } 1663 1664 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1665 uint64_t TypeByteSize) { 1666 // If loads occur at a distance that is not a multiple of a feasible vector 1667 // factor store-load forwarding does not take place. 1668 // Positive dependences might cause troubles because vectorizing them might 1669 // prevent store-load forwarding making vectorized code run a lot slower. 1670 // a[i] = a[i-3] ^ a[i-8]; 1671 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1672 // hence on your typical architecture store-load forwarding does not take 1673 // place. Vectorizing in such cases does not make sense. 1674 // Store-load forwarding distance. 1675 1676 // After this many iterations store-to-load forwarding conflicts should not 1677 // cause any slowdowns. 1678 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1679 // Maximum vector factor. 1680 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1681 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1682 1683 // Compute the smallest VF at which the store and load would be misaligned. 1684 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1685 VF *= 2) { 1686 // If the number of vector iteration between the store and the load are 1687 // small we could incur conflicts. 1688 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1689 MaxVFWithoutSLForwardIssues = (VF >> 1); 1690 break; 1691 } 1692 } 1693 1694 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1695 LLVM_DEBUG( 1696 dbgs() << "LAA: Distance " << Distance 1697 << " that could cause a store-load forwarding conflict\n"); 1698 return true; 1699 } 1700 1701 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1702 MaxVFWithoutSLForwardIssues != 1703 VectorizerParams::MaxVectorWidth * TypeByteSize) 1704 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1705 return false; 1706 } 1707 1708 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1709 if (Status < S) 1710 Status = S; 1711 } 1712 1713 /// Given a dependence-distance \p Dist between two 1714 /// memory accesses, that have the same stride whose absolute value is given 1715 /// in \p Stride, and that have the same type size \p TypeByteSize, 1716 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1717 /// possible to prove statically that the dependence distance is larger 1718 /// than the range that the accesses will travel through the execution of 1719 /// the loop. If so, return true; false otherwise. This is useful for 1720 /// example in loops such as the following (PR31098): 1721 /// for (i = 0; i < D; ++i) { 1722 /// = out[i]; 1723 /// out[i+D] = 1724 /// } 1725 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1726 const SCEV &BackedgeTakenCount, 1727 const SCEV &Dist, uint64_t Stride, 1728 uint64_t TypeByteSize) { 1729 1730 // If we can prove that 1731 // (**) |Dist| > BackedgeTakenCount * Step 1732 // where Step is the absolute stride of the memory accesses in bytes, 1733 // then there is no dependence. 1734 // 1735 // Rationale: 1736 // We basically want to check if the absolute distance (|Dist/Step|) 1737 // is >= the loop iteration count (or > BackedgeTakenCount). 1738 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1739 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1740 // that the dependence distance is >= VF; This is checked elsewhere. 1741 // But in some cases we can prune dependence distances early, and 1742 // even before selecting the VF, and without a runtime test, by comparing 1743 // the distance against the loop iteration count. Since the vectorized code 1744 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1745 // also guarantees that distance >= VF. 1746 // 1747 const uint64_t ByteStride = Stride * TypeByteSize; 1748 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1749 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1750 1751 const SCEV *CastedDist = &Dist; 1752 const SCEV *CastedProduct = Product; 1753 uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType()); 1754 uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType()); 1755 1756 // The dependence distance can be positive/negative, so we sign extend Dist; 1757 // The multiplication of the absolute stride in bytes and the 1758 // backedgeTakenCount is non-negative, so we zero extend Product. 1759 if (DistTypeSizeBits > ProductTypeSizeBits) 1760 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1761 else 1762 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1763 1764 // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1765 // (If so, then we have proven (**) because |Dist| >= Dist) 1766 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1767 if (SE.isKnownPositive(Minus)) 1768 return true; 1769 1770 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1771 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1772 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1773 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1774 if (SE.isKnownPositive(Minus)) 1775 return true; 1776 1777 return false; 1778 } 1779 1780 /// Check the dependence for two accesses with the same stride \p Stride. 1781 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1782 /// bytes. 1783 /// 1784 /// \returns true if they are independent. 1785 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1786 uint64_t TypeByteSize) { 1787 assert(Stride > 1 && "The stride must be greater than 1"); 1788 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1789 assert(Distance > 0 && "The distance must be non-zero"); 1790 1791 // Skip if the distance is not multiple of type byte size. 1792 if (Distance % TypeByteSize) 1793 return false; 1794 1795 uint64_t ScaledDist = Distance / TypeByteSize; 1796 1797 // No dependence if the scaled distance is not multiple of the stride. 1798 // E.g. 1799 // for (i = 0; i < 1024 ; i += 4) 1800 // A[i+2] = A[i] + 1; 1801 // 1802 // Two accesses in memory (scaled distance is 2, stride is 4): 1803 // | A[0] | | | | A[4] | | | | 1804 // | | | A[2] | | | | A[6] | | 1805 // 1806 // E.g. 1807 // for (i = 0; i < 1024 ; i += 3) 1808 // A[i+4] = A[i] + 1; 1809 // 1810 // Two accesses in memory (scaled distance is 4, stride is 3): 1811 // | A[0] | | | A[3] | | | A[6] | | | 1812 // | | | | | A[4] | | | A[7] | | 1813 return ScaledDist % Stride; 1814 } 1815 1816 MemoryDepChecker::Dependence::DepType 1817 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1818 const MemAccessInfo &B, unsigned BIdx, 1819 const DenseMap<Value *, const SCEV *> &Strides) { 1820 assert (AIdx < BIdx && "Must pass arguments in program order"); 1821 1822 auto [APtr, AIsWrite] = A; 1823 auto [BPtr, BIsWrite] = B; 1824 Type *ATy = getLoadStoreType(InstMap[AIdx]); 1825 Type *BTy = getLoadStoreType(InstMap[BIdx]); 1826 1827 // Two reads are independent. 1828 if (!AIsWrite && !BIsWrite) 1829 return Dependence::NoDep; 1830 1831 // We cannot check pointers in different address spaces. 1832 if (APtr->getType()->getPointerAddressSpace() != 1833 BPtr->getType()->getPointerAddressSpace()) 1834 return Dependence::Unknown; 1835 1836 int64_t StrideAPtr = 1837 getPtrStride(PSE, ATy, APtr, InnermostLoop, Strides, true).value_or(0); 1838 int64_t StrideBPtr = 1839 getPtrStride(PSE, BTy, BPtr, InnermostLoop, Strides, true).value_or(0); 1840 1841 const SCEV *Src = PSE.getSCEV(APtr); 1842 const SCEV *Sink = PSE.getSCEV(BPtr); 1843 1844 // If the induction step is negative we have to invert source and sink of the 1845 // dependence. 1846 if (StrideAPtr < 0) { 1847 std::swap(APtr, BPtr); 1848 std::swap(ATy, BTy); 1849 std::swap(Src, Sink); 1850 std::swap(AIsWrite, BIsWrite); 1851 std::swap(AIdx, BIdx); 1852 std::swap(StrideAPtr, StrideBPtr); 1853 } 1854 1855 ScalarEvolution &SE = *PSE.getSE(); 1856 const SCEV *Dist = SE.getMinusSCEV(Sink, Src); 1857 1858 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1859 << "(Induction step: " << StrideAPtr << ")\n"); 1860 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1861 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1862 1863 // Need accesses with constant stride. We don't want to vectorize 1864 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1865 // the address space. 1866 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1867 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1868 return Dependence::Unknown; 1869 } 1870 1871 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1872 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1873 bool HasSameSize = 1874 DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy); 1875 uint64_t Stride = std::abs(StrideAPtr); 1876 1877 if (!isa<SCEVCouldNotCompute>(Dist) && HasSameSize && 1878 isSafeDependenceDistance(DL, SE, *(PSE.getBackedgeTakenCount()), *Dist, 1879 Stride, TypeByteSize)) 1880 return Dependence::NoDep; 1881 1882 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1883 if (!C) { 1884 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1885 FoundNonConstantDistanceDependence = true; 1886 return Dependence::Unknown; 1887 } 1888 1889 const APInt &Val = C->getAPInt(); 1890 int64_t Distance = Val.getSExtValue(); 1891 1892 // Attempt to prove strided accesses independent. 1893 if (std::abs(Distance) > 0 && Stride > 1 && HasSameSize && 1894 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1895 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1896 return Dependence::NoDep; 1897 } 1898 1899 // Negative distances are not plausible dependencies. 1900 if (Val.isNegative()) { 1901 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1902 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1903 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1904 !HasSameSize)) { 1905 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1906 return Dependence::ForwardButPreventsForwarding; 1907 } 1908 1909 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1910 return Dependence::Forward; 1911 } 1912 1913 // Write to the same location with the same size. 1914 if (Val == 0) { 1915 if (HasSameSize) 1916 return Dependence::Forward; 1917 LLVM_DEBUG( 1918 dbgs() << "LAA: Zero dependence difference but different type sizes\n"); 1919 return Dependence::Unknown; 1920 } 1921 1922 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1923 1924 if (!HasSameSize) { 1925 LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with " 1926 "different type sizes\n"); 1927 return Dependence::Unknown; 1928 } 1929 1930 // Bail out early if passed-in parameters make vectorization not feasible. 1931 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1932 VectorizerParams::VectorizationFactor : 1); 1933 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1934 VectorizerParams::VectorizationInterleave : 1); 1935 // The minimum number of iterations for a vectorized/unrolled version. 1936 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1937 1938 // It's not vectorizable if the distance is smaller than the minimum distance 1939 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1940 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1941 // TypeByteSize (No need to plus the last gap distance). 1942 // 1943 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1944 // foo(int *A) { 1945 // int *B = (int *)((char *)A + 14); 1946 // for (i = 0 ; i < 1024 ; i += 2) 1947 // B[i] = A[i] + 1; 1948 // } 1949 // 1950 // Two accesses in memory (stride is 2): 1951 // | A[0] | | A[2] | | A[4] | | A[6] | | 1952 // | B[0] | | B[2] | | B[4] | 1953 // 1954 // Distance needs for vectorizing iterations except the last iteration: 1955 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1956 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1957 // 1958 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1959 // 12, which is less than distance. 1960 // 1961 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1962 // the minimum distance needed is 28, which is greater than distance. It is 1963 // not safe to do vectorization. 1964 uint64_t MinDistanceNeeded = 1965 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1966 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1967 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " 1968 << Distance << '\n'); 1969 return Dependence::Backward; 1970 } 1971 1972 // Unsafe if the minimum distance needed is greater than max safe distance. 1973 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1974 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 1975 << MinDistanceNeeded << " size in bytes\n"); 1976 return Dependence::Backward; 1977 } 1978 1979 // Positive distance bigger than max vectorization factor. 1980 // FIXME: Should use max factor instead of max distance in bytes, which could 1981 // not handle different types. 1982 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1983 // void foo (int *A, char *B) { 1984 // for (unsigned i = 0; i < 1024; i++) { 1985 // A[i+2] = A[i] + 1; 1986 // B[i+2] = B[i] + 1; 1987 // } 1988 // } 1989 // 1990 // This case is currently unsafe according to the max safe distance. If we 1991 // analyze the two accesses on array B, the max safe dependence distance 1992 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1993 // is 8, which is less than 2 and forbidden vectorization, But actually 1994 // both A and B could be vectorized by 2 iterations. 1995 MaxSafeDepDistBytes = 1996 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1997 1998 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1999 if (IsTrueDataDependence && EnableForwardingConflictDetection && 2000 couldPreventStoreLoadForward(Distance, TypeByteSize)) 2001 return Dependence::BackwardVectorizableButPreventsForwarding; 2002 2003 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); 2004 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 2005 << " with max VF = " << MaxVF << '\n'); 2006 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 2007 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits); 2008 return Dependence::BackwardVectorizable; 2009 } 2010 2011 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 2012 MemAccessInfoList &CheckDeps, 2013 const DenseMap<Value *, const SCEV *> &Strides) { 2014 2015 MaxSafeDepDistBytes = -1; 2016 SmallPtrSet<MemAccessInfo, 8> Visited; 2017 for (MemAccessInfo CurAccess : CheckDeps) { 2018 if (Visited.count(CurAccess)) 2019 continue; 2020 2021 // Get the relevant memory access set. 2022 EquivalenceClasses<MemAccessInfo>::iterator I = 2023 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 2024 2025 // Check accesses within this set. 2026 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 2027 AccessSets.member_begin(I); 2028 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 2029 AccessSets.member_end(); 2030 2031 // Check every access pair. 2032 while (AI != AE) { 2033 Visited.insert(*AI); 2034 bool AIIsWrite = AI->getInt(); 2035 // Check loads only against next equivalent class, but stores also against 2036 // other stores in the same equivalence class - to the same address. 2037 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 2038 (AIIsWrite ? AI : std::next(AI)); 2039 while (OI != AE) { 2040 // Check every accessing instruction pair in program order. 2041 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 2042 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 2043 // Scan all accesses of another equivalence class, but only the next 2044 // accesses of the same equivalent class. 2045 for (std::vector<unsigned>::iterator 2046 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 2047 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 2048 I2 != I2E; ++I2) { 2049 auto A = std::make_pair(&*AI, *I1); 2050 auto B = std::make_pair(&*OI, *I2); 2051 2052 assert(*I1 != *I2); 2053 if (*I1 > *I2) 2054 std::swap(A, B); 2055 2056 Dependence::DepType Type = 2057 isDependent(*A.first, A.second, *B.first, B.second, Strides); 2058 mergeInStatus(Dependence::isSafeForVectorization(Type)); 2059 2060 // Gather dependences unless we accumulated MaxDependences 2061 // dependences. In that case return as soon as we find the first 2062 // unsafe dependence. This puts a limit on this quadratic 2063 // algorithm. 2064 if (RecordDependences) { 2065 if (Type != Dependence::NoDep) 2066 Dependences.push_back(Dependence(A.second, B.second, Type)); 2067 2068 if (Dependences.size() >= MaxDependences) { 2069 RecordDependences = false; 2070 Dependences.clear(); 2071 LLVM_DEBUG(dbgs() 2072 << "Too many dependences, stopped recording\n"); 2073 } 2074 } 2075 if (!RecordDependences && !isSafeForVectorization()) 2076 return false; 2077 } 2078 ++OI; 2079 } 2080 AI++; 2081 } 2082 } 2083 2084 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 2085 return isSafeForVectorization(); 2086 } 2087 2088 SmallVector<Instruction *, 4> 2089 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 2090 MemAccessInfo Access(Ptr, isWrite); 2091 auto &IndexVector = Accesses.find(Access)->second; 2092 2093 SmallVector<Instruction *, 4> Insts; 2094 transform(IndexVector, 2095 std::back_inserter(Insts), 2096 [&](unsigned Idx) { return this->InstMap[Idx]; }); 2097 return Insts; 2098 } 2099 2100 const char *MemoryDepChecker::Dependence::DepName[] = { 2101 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 2102 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 2103 2104 void MemoryDepChecker::Dependence::print( 2105 raw_ostream &OS, unsigned Depth, 2106 const SmallVectorImpl<Instruction *> &Instrs) const { 2107 OS.indent(Depth) << DepName[Type] << ":\n"; 2108 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 2109 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 2110 } 2111 2112 bool LoopAccessInfo::canAnalyzeLoop() { 2113 // We need to have a loop header. 2114 LLVM_DEBUG(dbgs() << "LAA: Found a loop in " 2115 << TheLoop->getHeader()->getParent()->getName() << ": " 2116 << TheLoop->getHeader()->getName() << '\n'); 2117 2118 // We can only analyze innermost loops. 2119 if (!TheLoop->isInnermost()) { 2120 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 2121 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 2122 return false; 2123 } 2124 2125 // We must have a single backedge. 2126 if (TheLoop->getNumBackEdges() != 1) { 2127 LLVM_DEBUG( 2128 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 2129 recordAnalysis("CFGNotUnderstood") 2130 << "loop control flow is not understood by analyzer"; 2131 return false; 2132 } 2133 2134 // ScalarEvolution needs to be able to find the exit count. 2135 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 2136 if (isa<SCEVCouldNotCompute>(ExitCount)) { 2137 recordAnalysis("CantComputeNumberOfIterations") 2138 << "could not determine number of loop iterations"; 2139 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 2140 return false; 2141 } 2142 2143 return true; 2144 } 2145 2146 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI, 2147 const TargetLibraryInfo *TLI, 2148 DominatorTree *DT) { 2149 // Holds the Load and Store instructions. 2150 SmallVector<LoadInst *, 16> Loads; 2151 SmallVector<StoreInst *, 16> Stores; 2152 2153 // Holds all the different accesses in the loop. 2154 unsigned NumReads = 0; 2155 unsigned NumReadWrites = 0; 2156 2157 bool HasComplexMemInst = false; 2158 2159 // A runtime check is only legal to insert if there are no convergent calls. 2160 HasConvergentOp = false; 2161 2162 PtrRtChecking->Pointers.clear(); 2163 PtrRtChecking->Need = false; 2164 2165 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 2166 2167 const bool EnableMemAccessVersioningOfLoop = 2168 EnableMemAccessVersioning && 2169 !TheLoop->getHeader()->getParent()->hasOptSize(); 2170 2171 // Traverse blocks in fixed RPOT order, regardless of their storage in the 2172 // loop info, as it may be arbitrary. 2173 LoopBlocksRPO RPOT(TheLoop); 2174 RPOT.perform(LI); 2175 for (BasicBlock *BB : RPOT) { 2176 // Scan the BB and collect legal loads and stores. Also detect any 2177 // convergent instructions. 2178 for (Instruction &I : *BB) { 2179 if (auto *Call = dyn_cast<CallBase>(&I)) { 2180 if (Call->isConvergent()) 2181 HasConvergentOp = true; 2182 } 2183 2184 // With both a non-vectorizable memory instruction and a convergent 2185 // operation, found in this loop, no reason to continue the search. 2186 if (HasComplexMemInst && HasConvergentOp) { 2187 CanVecMem = false; 2188 return; 2189 } 2190 2191 // Avoid hitting recordAnalysis multiple times. 2192 if (HasComplexMemInst) 2193 continue; 2194 2195 // If this is a load, save it. If this instruction can read from memory 2196 // but is not a load, then we quit. Notice that we don't handle function 2197 // calls that read or write. 2198 if (I.mayReadFromMemory()) { 2199 // Many math library functions read the rounding mode. We will only 2200 // vectorize a loop if it contains known function calls that don't set 2201 // the flag. Therefore, it is safe to ignore this read from memory. 2202 auto *Call = dyn_cast<CallInst>(&I); 2203 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 2204 continue; 2205 2206 // If the function has an explicit vectorized counterpart, we can safely 2207 // assume that it can be vectorized. 2208 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 2209 !VFDatabase::getMappings(*Call).empty()) 2210 continue; 2211 2212 auto *Ld = dyn_cast<LoadInst>(&I); 2213 if (!Ld) { 2214 recordAnalysis("CantVectorizeInstruction", Ld) 2215 << "instruction cannot be vectorized"; 2216 HasComplexMemInst = true; 2217 continue; 2218 } 2219 if (!Ld->isSimple() && !IsAnnotatedParallel) { 2220 recordAnalysis("NonSimpleLoad", Ld) 2221 << "read with atomic ordering or volatile read"; 2222 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 2223 HasComplexMemInst = true; 2224 continue; 2225 } 2226 NumLoads++; 2227 Loads.push_back(Ld); 2228 DepChecker->addAccess(Ld); 2229 if (EnableMemAccessVersioningOfLoop) 2230 collectStridedAccess(Ld); 2231 continue; 2232 } 2233 2234 // Save 'store' instructions. Abort if other instructions write to memory. 2235 if (I.mayWriteToMemory()) { 2236 auto *St = dyn_cast<StoreInst>(&I); 2237 if (!St) { 2238 recordAnalysis("CantVectorizeInstruction", St) 2239 << "instruction cannot be vectorized"; 2240 HasComplexMemInst = true; 2241 continue; 2242 } 2243 if (!St->isSimple() && !IsAnnotatedParallel) { 2244 recordAnalysis("NonSimpleStore", St) 2245 << "write with atomic ordering or volatile write"; 2246 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 2247 HasComplexMemInst = true; 2248 continue; 2249 } 2250 NumStores++; 2251 Stores.push_back(St); 2252 DepChecker->addAccess(St); 2253 if (EnableMemAccessVersioningOfLoop) 2254 collectStridedAccess(St); 2255 } 2256 } // Next instr. 2257 } // Next block. 2258 2259 if (HasComplexMemInst) { 2260 CanVecMem = false; 2261 return; 2262 } 2263 2264 // Now we have two lists that hold the loads and the stores. 2265 // Next, we find the pointers that they use. 2266 2267 // Check if we see any stores. If there are no stores, then we don't 2268 // care if the pointers are *restrict*. 2269 if (!Stores.size()) { 2270 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 2271 CanVecMem = true; 2272 return; 2273 } 2274 2275 MemoryDepChecker::DepCandidates DependentAccesses; 2276 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE); 2277 2278 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects 2279 // multiple times on the same object. If the ptr is accessed twice, once 2280 // for read and once for write, it will only appear once (on the write 2281 // list). This is okay, since we are going to check for conflicts between 2282 // writes and between reads and writes, but not between reads and reads. 2283 SmallSet<std::pair<Value *, Type *>, 16> Seen; 2284 2285 // Record uniform store addresses to identify if we have multiple stores 2286 // to the same address. 2287 SmallPtrSet<Value *, 16> UniformStores; 2288 2289 for (StoreInst *ST : Stores) { 2290 Value *Ptr = ST->getPointerOperand(); 2291 2292 if (isInvariant(Ptr)) { 2293 // Record store instructions to loop invariant addresses 2294 StoresToInvariantAddresses.push_back(ST); 2295 HasDependenceInvolvingLoopInvariantAddress |= 2296 !UniformStores.insert(Ptr).second; 2297 } 2298 2299 // If we did *not* see this pointer before, insert it to the read-write 2300 // list. At this phase it is only a 'write' list. 2301 Type *AccessTy = getLoadStoreType(ST); 2302 if (Seen.insert({Ptr, AccessTy}).second) { 2303 ++NumReadWrites; 2304 2305 MemoryLocation Loc = MemoryLocation::get(ST); 2306 // The TBAA metadata could have a control dependency on the predication 2307 // condition, so we cannot rely on it when determining whether or not we 2308 // need runtime pointer checks. 2309 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 2310 Loc.AATags.TBAA = nullptr; 2311 2312 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2313 [&Accesses, AccessTy, Loc](Value *Ptr) { 2314 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2315 Accesses.addStore(NewLoc, AccessTy); 2316 }); 2317 } 2318 } 2319 2320 if (IsAnnotatedParallel) { 2321 LLVM_DEBUG( 2322 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 2323 << "checks.\n"); 2324 CanVecMem = true; 2325 return; 2326 } 2327 2328 for (LoadInst *LD : Loads) { 2329 Value *Ptr = LD->getPointerOperand(); 2330 // If we did *not* see this pointer before, insert it to the 2331 // read list. If we *did* see it before, then it is already in 2332 // the read-write list. This allows us to vectorize expressions 2333 // such as A[i] += x; Because the address of A[i] is a read-write 2334 // pointer. This only works if the index of A[i] is consecutive. 2335 // If the address of i is unknown (for example A[B[i]]) then we may 2336 // read a few words, modify, and write a few words, and some of the 2337 // words may be written to the same address. 2338 bool IsReadOnlyPtr = false; 2339 Type *AccessTy = getLoadStoreType(LD); 2340 if (Seen.insert({Ptr, AccessTy}).second || 2341 !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides).value_or(0)) { 2342 ++NumReads; 2343 IsReadOnlyPtr = true; 2344 } 2345 2346 // See if there is an unsafe dependency between a load to a uniform address and 2347 // store to the same uniform address. 2348 if (UniformStores.count(Ptr)) { 2349 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 2350 "load and uniform store to the same address!\n"); 2351 HasDependenceInvolvingLoopInvariantAddress = true; 2352 } 2353 2354 MemoryLocation Loc = MemoryLocation::get(LD); 2355 // The TBAA metadata could have a control dependency on the predication 2356 // condition, so we cannot rely on it when determining whether or not we 2357 // need runtime pointer checks. 2358 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 2359 Loc.AATags.TBAA = nullptr; 2360 2361 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2362 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) { 2363 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2364 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr); 2365 }); 2366 } 2367 2368 // If we write (or read-write) to a single destination and there are no 2369 // other reads in this loop then is it safe to vectorize. 2370 if (NumReadWrites == 1 && NumReads == 0) { 2371 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 2372 CanVecMem = true; 2373 return; 2374 } 2375 2376 // Build dependence sets and check whether we need a runtime pointer bounds 2377 // check. 2378 Accesses.buildDependenceSets(); 2379 2380 // Find pointers with computable bounds. We are going to use this information 2381 // to place a runtime bound check. 2382 Value *UncomputablePtr = nullptr; 2383 bool CanDoRTIfNeeded = 2384 Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop, 2385 SymbolicStrides, UncomputablePtr, false); 2386 if (!CanDoRTIfNeeded) { 2387 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2388 recordAnalysis("CantIdentifyArrayBounds", I) 2389 << "cannot identify array bounds"; 2390 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2391 << "the array bounds.\n"); 2392 CanVecMem = false; 2393 return; 2394 } 2395 2396 LLVM_DEBUG( 2397 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2398 2399 CanVecMem = true; 2400 if (Accesses.isDependencyCheckNeeded()) { 2401 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2402 CanVecMem = DepChecker->areDepsSafe( 2403 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 2404 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 2405 2406 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 2407 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2408 2409 // Clear the dependency checks. We assume they are not needed. 2410 Accesses.resetDepChecks(*DepChecker); 2411 2412 PtrRtChecking->reset(); 2413 PtrRtChecking->Need = true; 2414 2415 auto *SE = PSE->getSE(); 2416 UncomputablePtr = nullptr; 2417 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT( 2418 *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true); 2419 2420 // Check that we found the bounds for the pointer. 2421 if (!CanDoRTIfNeeded) { 2422 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2423 recordAnalysis("CantCheckMemDepsAtRunTime", I) 2424 << "cannot check memory dependencies at runtime"; 2425 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2426 CanVecMem = false; 2427 return; 2428 } 2429 2430 CanVecMem = true; 2431 } 2432 } 2433 2434 if (HasConvergentOp) { 2435 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2436 << "cannot add control dependency to convergent operation"; 2437 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2438 "would be needed with a convergent operation\n"); 2439 CanVecMem = false; 2440 return; 2441 } 2442 2443 if (CanVecMem) 2444 LLVM_DEBUG( 2445 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2446 << (PtrRtChecking->Need ? "" : " don't") 2447 << " need runtime memory checks.\n"); 2448 else 2449 emitUnsafeDependenceRemark(); 2450 } 2451 2452 void LoopAccessInfo::emitUnsafeDependenceRemark() { 2453 auto Deps = getDepChecker().getDependences(); 2454 if (!Deps) 2455 return; 2456 auto Found = llvm::find_if(*Deps, [](const MemoryDepChecker::Dependence &D) { 2457 return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) != 2458 MemoryDepChecker::VectorizationSafetyStatus::Safe; 2459 }); 2460 if (Found == Deps->end()) 2461 return; 2462 MemoryDepChecker::Dependence Dep = *Found; 2463 2464 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2465 2466 // Emit remark for first unsafe dependence 2467 OptimizationRemarkAnalysis &R = 2468 recordAnalysis("UnsafeDep", Dep.getDestination(*this)) 2469 << "unsafe dependent memory operations in loop. Use " 2470 "#pragma loop distribute(enable) to allow loop distribution " 2471 "to attempt to isolate the offending operations into a separate " 2472 "loop"; 2473 2474 switch (Dep.Type) { 2475 case MemoryDepChecker::Dependence::NoDep: 2476 case MemoryDepChecker::Dependence::Forward: 2477 case MemoryDepChecker::Dependence::BackwardVectorizable: 2478 llvm_unreachable("Unexpected dependence"); 2479 case MemoryDepChecker::Dependence::Backward: 2480 R << "\nBackward loop carried data dependence."; 2481 break; 2482 case MemoryDepChecker::Dependence::ForwardButPreventsForwarding: 2483 R << "\nForward loop carried data dependence that prevents " 2484 "store-to-load forwarding."; 2485 break; 2486 case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding: 2487 R << "\nBackward loop carried data dependence that prevents " 2488 "store-to-load forwarding."; 2489 break; 2490 case MemoryDepChecker::Dependence::Unknown: 2491 R << "\nUnknown data dependence."; 2492 break; 2493 } 2494 2495 if (Instruction *I = Dep.getSource(*this)) { 2496 DebugLoc SourceLoc = I->getDebugLoc(); 2497 if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I))) 2498 SourceLoc = DD->getDebugLoc(); 2499 if (SourceLoc) 2500 R << " Memory location is the same as accessed at " 2501 << ore::NV("Location", SourceLoc); 2502 } 2503 } 2504 2505 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2506 DominatorTree *DT) { 2507 assert(TheLoop->contains(BB) && "Unknown block used"); 2508 2509 // Blocks that do not dominate the latch need predication. 2510 BasicBlock* Latch = TheLoop->getLoopLatch(); 2511 return !DT->dominates(BB, Latch); 2512 } 2513 2514 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2515 Instruction *I) { 2516 assert(!Report && "Multiple reports generated"); 2517 2518 Value *CodeRegion = TheLoop->getHeader(); 2519 DebugLoc DL = TheLoop->getStartLoc(); 2520 2521 if (I) { 2522 CodeRegion = I->getParent(); 2523 // If there is no debug location attached to the instruction, revert back to 2524 // using the loop's. 2525 if (I->getDebugLoc()) 2526 DL = I->getDebugLoc(); 2527 } 2528 2529 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2530 CodeRegion); 2531 return *Report; 2532 } 2533 2534 bool LoopAccessInfo::isInvariant(Value *V) const { 2535 auto *SE = PSE->getSE(); 2536 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2537 // trivially loop-invariant FP values to be considered invariant. 2538 if (!SE->isSCEVable(V->getType())) 2539 return false; 2540 const SCEV *S = SE->getSCEV(V); 2541 return SE->isLoopInvariant(S, TheLoop); 2542 } 2543 2544 /// Find the operand of the GEP that should be checked for consecutive 2545 /// stores. This ignores trailing indices that have no effect on the final 2546 /// pointer. 2547 static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) { 2548 const DataLayout &DL = Gep->getModule()->getDataLayout(); 2549 unsigned LastOperand = Gep->getNumOperands() - 1; 2550 TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); 2551 2552 // Walk backwards and try to peel off zeros. 2553 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 2554 // Find the type we're currently indexing into. 2555 gep_type_iterator GEPTI = gep_type_begin(Gep); 2556 std::advance(GEPTI, LastOperand - 2); 2557 2558 // If it's a type with the same allocation size as the result of the GEP we 2559 // can peel off the zero index. 2560 if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize) 2561 break; 2562 --LastOperand; 2563 } 2564 2565 return LastOperand; 2566 } 2567 2568 /// If the argument is a GEP, then returns the operand identified by 2569 /// getGEPInductionOperand. However, if there is some other non-loop-invariant 2570 /// operand, it returns that instead. 2571 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 2572 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 2573 if (!GEP) 2574 return Ptr; 2575 2576 unsigned InductionOperand = getGEPInductionOperand(GEP); 2577 2578 // Check that all of the gep indices are uniform except for our induction 2579 // operand. 2580 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 2581 if (i != InductionOperand && 2582 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 2583 return Ptr; 2584 return GEP->getOperand(InductionOperand); 2585 } 2586 2587 /// If a value has only one user that is a CastInst, return it. 2588 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 2589 Value *UniqueCast = nullptr; 2590 for (User *U : Ptr->users()) { 2591 CastInst *CI = dyn_cast<CastInst>(U); 2592 if (CI && CI->getType() == Ty) { 2593 if (!UniqueCast) 2594 UniqueCast = CI; 2595 else 2596 return nullptr; 2597 } 2598 } 2599 return UniqueCast; 2600 } 2601 2602 /// Get the stride of a pointer access in a loop. Looks for symbolic 2603 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. 2604 static const SCEV *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 2605 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 2606 if (!PtrTy || PtrTy->isAggregateType()) 2607 return nullptr; 2608 2609 // Try to remove a gep instruction to make the pointer (actually index at this 2610 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the 2611 // pointer, otherwise, we are analyzing the index. 2612 Value *OrigPtr = Ptr; 2613 2614 // The size of the pointer access. 2615 int64_t PtrAccessSize = 1; 2616 2617 Ptr = stripGetElementPtr(Ptr, SE, Lp); 2618 const SCEV *V = SE->getSCEV(Ptr); 2619 2620 if (Ptr != OrigPtr) 2621 // Strip off casts. 2622 while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V)) 2623 V = C->getOperand(); 2624 2625 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 2626 if (!S) 2627 return nullptr; 2628 2629 // If the pointer is invariant then there is no stride and it makes no 2630 // sense to add it here. 2631 if (Lp != S->getLoop()) 2632 return nullptr; 2633 2634 V = S->getStepRecurrence(*SE); 2635 if (!V) 2636 return nullptr; 2637 2638 // Strip off the size of access multiplication if we are still analyzing the 2639 // pointer. 2640 if (OrigPtr == Ptr) { 2641 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 2642 if (M->getOperand(0)->getSCEVType() != scConstant) 2643 return nullptr; 2644 2645 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); 2646 2647 // Huge step value - give up. 2648 if (APStepVal.getBitWidth() > 64) 2649 return nullptr; 2650 2651 int64_t StepVal = APStepVal.getSExtValue(); 2652 if (PtrAccessSize != StepVal) 2653 return nullptr; 2654 V = M->getOperand(1); 2655 } 2656 } 2657 2658 // Note that the restriction after this loop invariant check are only 2659 // profitability restrictions. 2660 if (!SE->isLoopInvariant(V, Lp)) 2661 return nullptr; 2662 2663 // Look for the loop invariant symbolic value. 2664 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 2665 if (!U) { 2666 const auto *C = dyn_cast<SCEVIntegralCastExpr>(V); 2667 if (!C) 2668 return nullptr; 2669 U = dyn_cast<SCEVUnknown>(C->getOperand()); 2670 if (!U) 2671 return nullptr; 2672 2673 // Match legacy behavior - this is not needed for correctness 2674 if (!getUniqueCastUse(U->getValue(), Lp, V->getType())) 2675 return nullptr; 2676 } 2677 2678 return V; 2679 } 2680 2681 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2682 Value *Ptr = getLoadStorePointerOperand(MemAccess); 2683 if (!Ptr) 2684 return; 2685 2686 // Note: getStrideFromPointer is a *profitability* heuristic. We 2687 // could broaden the scope of values returned here - to anything 2688 // which happens to be loop invariant and contributes to the 2689 // computation of an interesting IV - but we chose not to as we 2690 // don't have a cost model here, and broadening the scope exposes 2691 // far too many unprofitable cases. 2692 const SCEV *StrideExpr = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2693 if (!StrideExpr) 2694 return; 2695 2696 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2697 "versioning:"); 2698 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *StrideExpr << "\n"); 2699 2700 if (!SpeculateUnitStride) { 2701 LLVM_DEBUG(dbgs() << " Chose not to due to -laa-speculate-unit-stride\n"); 2702 return; 2703 } 2704 2705 // Avoid adding the "Stride == 1" predicate when we know that 2706 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2707 // or zero iteration loop, as Trip-Count <= Stride == 1. 2708 // 2709 // TODO: We are currently not making a very informed decision on when it is 2710 // beneficial to apply stride versioning. It might make more sense that the 2711 // users of this analysis (such as the vectorizer) will trigger it, based on 2712 // their specific cost considerations; For example, in cases where stride 2713 // versioning does not help resolving memory accesses/dependences, the 2714 // vectorizer should evaluate the cost of the runtime test, and the benefit 2715 // of various possible stride specializations, considering the alternatives 2716 // of using gather/scatters (if available). 2717 2718 const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); 2719 2720 // Match the types so we can compare the stride and the BETakenCount. 2721 // The Stride can be positive/negative, so we sign extend Stride; 2722 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount. 2723 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2724 uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType()); 2725 uint64_t BETypeSizeBits = DL.getTypeSizeInBits(BETakenCount->getType()); 2726 const SCEV *CastedStride = StrideExpr; 2727 const SCEV *CastedBECount = BETakenCount; 2728 ScalarEvolution *SE = PSE->getSE(); 2729 if (BETypeSizeBits >= StrideTypeSizeBits) 2730 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); 2731 else 2732 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); 2733 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2734 // Since TripCount == BackEdgeTakenCount + 1, checking: 2735 // "Stride >= TripCount" is equivalent to checking: 2736 // Stride - BETakenCount > 0 2737 if (SE->isKnownPositive(StrideMinusBETaken)) { 2738 LLVM_DEBUG( 2739 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2740 "Stride==1 predicate will imply that the loop executes " 2741 "at most once.\n"); 2742 return; 2743 } 2744 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n"); 2745 2746 // Strip back off the integer cast, and check that our result is a 2747 // SCEVUnknown as we expect. 2748 const SCEV *StrideBase = StrideExpr; 2749 if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(StrideBase)) 2750 StrideBase = C->getOperand(); 2751 SymbolicStrides[Ptr] = cast<SCEVUnknown>(StrideBase); 2752 } 2753 2754 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2755 const TargetLibraryInfo *TLI, AAResults *AA, 2756 DominatorTree *DT, LoopInfo *LI) 2757 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2758 PtrRtChecking(nullptr), 2759 DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L) { 2760 PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE); 2761 if (canAnalyzeLoop()) { 2762 analyzeLoop(AA, LI, TLI, DT); 2763 } 2764 } 2765 2766 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2767 if (CanVecMem) { 2768 OS.indent(Depth) << "Memory dependences are safe"; 2769 if (MaxSafeDepDistBytes != -1ULL) 2770 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2771 << " bytes"; 2772 if (PtrRtChecking->Need) 2773 OS << " with run-time checks"; 2774 OS << "\n"; 2775 } 2776 2777 if (HasConvergentOp) 2778 OS.indent(Depth) << "Has convergent operation in loop\n"; 2779 2780 if (Report) 2781 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2782 2783 if (auto *Dependences = DepChecker->getDependences()) { 2784 OS.indent(Depth) << "Dependences:\n"; 2785 for (const auto &Dep : *Dependences) { 2786 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 2787 OS << "\n"; 2788 } 2789 } else 2790 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2791 2792 // List the pair of accesses need run-time checks to prove independence. 2793 PtrRtChecking->print(OS, Depth); 2794 OS << "\n"; 2795 2796 OS.indent(Depth) << "Non vectorizable stores to invariant address were " 2797 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") 2798 << "found in loop.\n"; 2799 2800 OS.indent(Depth) << "SCEV assumptions:\n"; 2801 PSE->getPredicate().print(OS, Depth); 2802 2803 OS << "\n"; 2804 2805 OS.indent(Depth) << "Expressions re-written:\n"; 2806 PSE->print(OS, Depth); 2807 } 2808 2809 const LoopAccessInfo &LoopAccessInfoManager::getInfo(Loop &L) { 2810 auto I = LoopAccessInfoMap.insert({&L, nullptr}); 2811 2812 if (I.second) 2813 I.first->second = 2814 std::make_unique<LoopAccessInfo>(&L, &SE, TLI, &AA, &DT, &LI); 2815 2816 return *I.first->second; 2817 } 2818 2819 bool LoopAccessInfoManager::invalidate( 2820 Function &F, const PreservedAnalyses &PA, 2821 FunctionAnalysisManager::Invalidator &Inv) { 2822 // Check whether our analysis is preserved. 2823 auto PAC = PA.getChecker<LoopAccessAnalysis>(); 2824 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) 2825 // If not, give up now. 2826 return true; 2827 2828 // Check whether the analyses we depend on became invalid for any reason. 2829 // Skip checking TargetLibraryAnalysis as it is immutable and can't become 2830 // invalid. 2831 return Inv.invalidate<AAManager>(F, PA) || 2832 Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) || 2833 Inv.invalidate<LoopAnalysis>(F, PA) || 2834 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 2835 } 2836 2837 LoopAccessInfoManager LoopAccessAnalysis::run(Function &F, 2838 FunctionAnalysisManager &FAM) { 2839 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F); 2840 auto &AA = FAM.getResult<AAManager>(F); 2841 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 2842 auto &LI = FAM.getResult<LoopAnalysis>(F); 2843 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 2844 return LoopAccessInfoManager(SE, AA, DT, LI, &TLI); 2845 } 2846 2847 AnalysisKey LoopAccessAnalysis::Key; 2848