1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/EquivalenceClasses.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AliasSetTracker.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ScalarEvolutionExpander.h" 34 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/IRBuilder.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/Operator.h" 51 #include "llvm/IR/PassManager.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/ValueHandle.h" 55 #include "llvm/InitializePasses.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CommandLine.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <cstdlib> 66 #include <iterator> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "loop-accesses" 73 74 static cl::opt<unsigned, true> 75 VectorizationFactor("force-vector-width", cl::Hidden, 76 cl::desc("Sets the SIMD width. Zero is autoselect."), 77 cl::location(VectorizerParams::VectorizationFactor)); 78 unsigned VectorizerParams::VectorizationFactor; 79 80 static cl::opt<unsigned, true> 81 VectorizationInterleave("force-vector-interleave", cl::Hidden, 82 cl::desc("Sets the vectorization interleave count. " 83 "Zero is autoselect."), 84 cl::location( 85 VectorizerParams::VectorizationInterleave)); 86 unsigned VectorizerParams::VectorizationInterleave; 87 88 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 89 "runtime-memory-check-threshold", cl::Hidden, 90 cl::desc("When performing memory disambiguation checks at runtime do not " 91 "generate more than this number of comparisons (default = 8)."), 92 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 93 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 94 95 /// The maximum iterations used to merge memory checks 96 static cl::opt<unsigned> MemoryCheckMergeThreshold( 97 "memory-check-merge-threshold", cl::Hidden, 98 cl::desc("Maximum number of comparisons done when trying to merge " 99 "runtime memory checks. (default = 100)"), 100 cl::init(100)); 101 102 /// Maximum SIMD width. 103 const unsigned VectorizerParams::MaxVectorWidth = 64; 104 105 /// We collect dependences up to this threshold. 106 static cl::opt<unsigned> 107 MaxDependences("max-dependences", cl::Hidden, 108 cl::desc("Maximum number of dependences collected by " 109 "loop-access analysis (default = 100)"), 110 cl::init(100)); 111 112 /// This enables versioning on the strides of symbolically striding memory 113 /// accesses in code like the following. 114 /// for (i = 0; i < N; ++i) 115 /// A[i * Stride1] += B[i * Stride2] ... 116 /// 117 /// Will be roughly translated to 118 /// if (Stride1 == 1 && Stride2 == 1) { 119 /// for (i = 0; i < N; i+=4) 120 /// A[i:i+3] += ... 121 /// } else 122 /// ... 123 static cl::opt<bool> EnableMemAccessVersioning( 124 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 125 cl::desc("Enable symbolic stride memory access versioning")); 126 127 /// Enable store-to-load forwarding conflict detection. This option can 128 /// be disabled for correctness testing. 129 static cl::opt<bool> EnableForwardingConflictDetection( 130 "store-to-load-forwarding-conflict-detection", cl::Hidden, 131 cl::desc("Enable conflict detection in loop-access analysis"), 132 cl::init(true)); 133 134 bool VectorizerParams::isInterleaveForced() { 135 return ::VectorizationInterleave.getNumOccurrences() > 0; 136 } 137 138 Value *llvm::stripIntegerCast(Value *V) { 139 if (auto *CI = dyn_cast<CastInst>(V)) 140 if (CI->getOperand(0)->getType()->isIntegerTy()) 141 return CI->getOperand(0); 142 return V; 143 } 144 145 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 146 const ValueToValueMap &PtrToStride, 147 Value *Ptr, Value *OrigPtr) { 148 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 149 150 // If there is an entry in the map return the SCEV of the pointer with the 151 // symbolic stride replaced by one. 152 ValueToValueMap::const_iterator SI = 153 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 154 if (SI != PtrToStride.end()) { 155 Value *StrideVal = SI->second; 156 157 // Strip casts. 158 StrideVal = stripIntegerCast(StrideVal); 159 160 ScalarEvolution *SE = PSE.getSE(); 161 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 162 const auto *CT = 163 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 164 165 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 166 auto *Expr = PSE.getSCEV(Ptr); 167 168 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 169 << " by: " << *Expr << "\n"); 170 return Expr; 171 } 172 173 // Otherwise, just return the SCEV of the original pointer. 174 return OrigSCEV; 175 } 176 177 /// Calculate Start and End points of memory access. 178 /// Let's assume A is the first access and B is a memory access on N-th loop 179 /// iteration. Then B is calculated as: 180 /// B = A + Step*N . 181 /// Step value may be positive or negative. 182 /// N is a calculated back-edge taken count: 183 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 184 /// Start and End points are calculated in the following way: 185 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 186 /// where SizeOfElt is the size of single memory access in bytes. 187 /// 188 /// There is no conflict when the intervals are disjoint: 189 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 190 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 191 unsigned DepSetId, unsigned ASId, 192 const ValueToValueMap &Strides, 193 PredicatedScalarEvolution &PSE) { 194 // Get the stride replaced scev. 195 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 196 ScalarEvolution *SE = PSE.getSE(); 197 198 const SCEV *ScStart; 199 const SCEV *ScEnd; 200 201 if (SE->isLoopInvariant(Sc, Lp)) 202 ScStart = ScEnd = Sc; 203 else { 204 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 205 assert(AR && "Invalid addrec expression"); 206 const SCEV *Ex = PSE.getBackedgeTakenCount(); 207 208 ScStart = AR->getStart(); 209 ScEnd = AR->evaluateAtIteration(Ex, *SE); 210 const SCEV *Step = AR->getStepRecurrence(*SE); 211 212 // For expressions with negative step, the upper bound is ScStart and the 213 // lower bound is ScEnd. 214 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 215 if (CStep->getValue()->isNegative()) 216 std::swap(ScStart, ScEnd); 217 } else { 218 // Fallback case: the step is not constant, but we can still 219 // get the upper and lower bounds of the interval by using min/max 220 // expressions. 221 ScStart = SE->getUMinExpr(ScStart, ScEnd); 222 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 223 } 224 // Add the size of the pointed element to ScEnd. 225 unsigned EltSize = 226 Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8; 227 const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize); 228 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 229 } 230 231 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 232 } 233 234 SmallVector<RuntimePointerChecking::PointerCheck, 4> 235 RuntimePointerChecking::generateChecks() const { 236 SmallVector<PointerCheck, 4> Checks; 237 238 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 239 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 240 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; 241 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; 242 243 if (needsChecking(CGI, CGJ)) 244 Checks.push_back(std::make_pair(&CGI, &CGJ)); 245 } 246 } 247 return Checks; 248 } 249 250 void RuntimePointerChecking::generateChecks( 251 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 252 assert(Checks.empty() && "Checks is not empty"); 253 groupChecks(DepCands, UseDependencies); 254 Checks = generateChecks(); 255 } 256 257 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, 258 const CheckingPtrGroup &N) const { 259 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 260 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 261 if (needsChecking(M.Members[I], N.Members[J])) 262 return true; 263 return false; 264 } 265 266 /// Compare \p I and \p J and return the minimum. 267 /// Return nullptr in case we couldn't find an answer. 268 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 269 ScalarEvolution *SE) { 270 const SCEV *Diff = SE->getMinusSCEV(J, I); 271 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 272 273 if (!C) 274 return nullptr; 275 if (C->getValue()->isNegative()) 276 return J; 277 return I; 278 } 279 280 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { 281 const SCEV *Start = RtCheck.Pointers[Index].Start; 282 const SCEV *End = RtCheck.Pointers[Index].End; 283 284 // Compare the starts and ends with the known minimum and maximum 285 // of this set. We need to know how we compare against the min/max 286 // of the set in order to be able to emit memchecks. 287 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 288 if (!Min0) 289 return false; 290 291 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 292 if (!Min1) 293 return false; 294 295 // Update the low bound expression if we've found a new min value. 296 if (Min0 == Start) 297 Low = Start; 298 299 // Update the high bound expression if we've found a new max value. 300 if (Min1 != End) 301 High = End; 302 303 Members.push_back(Index); 304 return true; 305 } 306 307 void RuntimePointerChecking::groupChecks( 308 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 309 // We build the groups from dependency candidates equivalence classes 310 // because: 311 // - We know that pointers in the same equivalence class share 312 // the same underlying object and therefore there is a chance 313 // that we can compare pointers 314 // - We wouldn't be able to merge two pointers for which we need 315 // to emit a memcheck. The classes in DepCands are already 316 // conveniently built such that no two pointers in the same 317 // class need checking against each other. 318 319 // We use the following (greedy) algorithm to construct the groups 320 // For every pointer in the equivalence class: 321 // For each existing group: 322 // - if the difference between this pointer and the min/max bounds 323 // of the group is a constant, then make the pointer part of the 324 // group and update the min/max bounds of that group as required. 325 326 CheckingGroups.clear(); 327 328 // If we need to check two pointers to the same underlying object 329 // with a non-constant difference, we shouldn't perform any pointer 330 // grouping with those pointers. This is because we can easily get 331 // into cases where the resulting check would return false, even when 332 // the accesses are safe. 333 // 334 // The following example shows this: 335 // for (i = 0; i < 1000; ++i) 336 // a[5000 + i * m] = a[i] + a[i + 9000] 337 // 338 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 339 // (0, 10000) which is always false. However, if m is 1, there is no 340 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 341 // us to perform an accurate check in this case. 342 // 343 // The above case requires that we have an UnknownDependence between 344 // accesses to the same underlying object. This cannot happen unless 345 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 346 // is also false. In this case we will use the fallback path and create 347 // separate checking groups for all pointers. 348 349 // If we don't have the dependency partitions, construct a new 350 // checking pointer group for each pointer. This is also required 351 // for correctness, because in this case we can have checking between 352 // pointers to the same underlying object. 353 if (!UseDependencies) { 354 for (unsigned I = 0; I < Pointers.size(); ++I) 355 CheckingGroups.push_back(CheckingPtrGroup(I, *this)); 356 return; 357 } 358 359 unsigned TotalComparisons = 0; 360 361 DenseMap<Value *, unsigned> PositionMap; 362 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 363 PositionMap[Pointers[Index].PointerValue] = Index; 364 365 // We need to keep track of what pointers we've already seen so we 366 // don't process them twice. 367 SmallSet<unsigned, 2> Seen; 368 369 // Go through all equivalence classes, get the "pointer check groups" 370 // and add them to the overall solution. We use the order in which accesses 371 // appear in 'Pointers' to enforce determinism. 372 for (unsigned I = 0; I < Pointers.size(); ++I) { 373 // We've seen this pointer before, and therefore already processed 374 // its equivalence class. 375 if (Seen.count(I)) 376 continue; 377 378 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 379 Pointers[I].IsWritePtr); 380 381 SmallVector<CheckingPtrGroup, 2> Groups; 382 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 383 384 // Because DepCands is constructed by visiting accesses in the order in 385 // which they appear in alias sets (which is deterministic) and the 386 // iteration order within an equivalence class member is only dependent on 387 // the order in which unions and insertions are performed on the 388 // equivalence class, the iteration order is deterministic. 389 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 390 MI != ME; ++MI) { 391 unsigned Pointer = PositionMap[MI->getPointer()]; 392 bool Merged = false; 393 // Mark this pointer as seen. 394 Seen.insert(Pointer); 395 396 // Go through all the existing sets and see if we can find one 397 // which can include this pointer. 398 for (CheckingPtrGroup &Group : Groups) { 399 // Don't perform more than a certain amount of comparisons. 400 // This should limit the cost of grouping the pointers to something 401 // reasonable. If we do end up hitting this threshold, the algorithm 402 // will create separate groups for all remaining pointers. 403 if (TotalComparisons > MemoryCheckMergeThreshold) 404 break; 405 406 TotalComparisons++; 407 408 if (Group.addPointer(Pointer)) { 409 Merged = true; 410 break; 411 } 412 } 413 414 if (!Merged) 415 // We couldn't add this pointer to any existing set or the threshold 416 // for the number of comparisons has been reached. Create a new group 417 // to hold the current pointer. 418 Groups.push_back(CheckingPtrGroup(Pointer, *this)); 419 } 420 421 // We've computed the grouped checks for this partition. 422 // Save the results and continue with the next one. 423 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 424 } 425 } 426 427 bool RuntimePointerChecking::arePointersInSamePartition( 428 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 429 unsigned PtrIdx2) { 430 return (PtrToPartition[PtrIdx1] != -1 && 431 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 432 } 433 434 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 435 const PointerInfo &PointerI = Pointers[I]; 436 const PointerInfo &PointerJ = Pointers[J]; 437 438 // No need to check if two readonly pointers intersect. 439 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 440 return false; 441 442 // Only need to check pointers between two different dependency sets. 443 if (PointerI.DependencySetId == PointerJ.DependencySetId) 444 return false; 445 446 // Only need to check pointers in the same alias set. 447 if (PointerI.AliasSetId != PointerJ.AliasSetId) 448 return false; 449 450 return true; 451 } 452 453 void RuntimePointerChecking::printChecks( 454 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, 455 unsigned Depth) const { 456 unsigned N = 0; 457 for (const auto &Check : Checks) { 458 const auto &First = Check.first->Members, &Second = Check.second->Members; 459 460 OS.indent(Depth) << "Check " << N++ << ":\n"; 461 462 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 463 for (unsigned K = 0; K < First.size(); ++K) 464 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 465 466 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 467 for (unsigned K = 0; K < Second.size(); ++K) 468 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 469 } 470 } 471 472 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 473 474 OS.indent(Depth) << "Run-time memory checks:\n"; 475 printChecks(OS, Checks, Depth); 476 477 OS.indent(Depth) << "Grouped accesses:\n"; 478 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 479 const auto &CG = CheckingGroups[I]; 480 481 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 482 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 483 << ")\n"; 484 for (unsigned J = 0; J < CG.Members.size(); ++J) { 485 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 486 << "\n"; 487 } 488 } 489 } 490 491 namespace { 492 493 /// Analyses memory accesses in a loop. 494 /// 495 /// Checks whether run time pointer checks are needed and builds sets for data 496 /// dependence checking. 497 class AccessAnalysis { 498 public: 499 /// Read or write access location. 500 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 501 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 502 503 AccessAnalysis(const DataLayout &Dl, Loop *TheLoop, AliasAnalysis *AA, 504 LoopInfo *LI, MemoryDepChecker::DepCandidates &DA, 505 PredicatedScalarEvolution &PSE) 506 : DL(Dl), TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), 507 IsRTCheckAnalysisNeeded(false), PSE(PSE) {} 508 509 /// Register a load and whether it is only read from. 510 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 511 Value *Ptr = const_cast<Value*>(Loc.Ptr); 512 AST.add(Ptr, LocationSize::unknown(), Loc.AATags); 513 Accesses.insert(MemAccessInfo(Ptr, false)); 514 if (IsReadOnly) 515 ReadOnlyPtr.insert(Ptr); 516 } 517 518 /// Register a store. 519 void addStore(MemoryLocation &Loc) { 520 Value *Ptr = const_cast<Value*>(Loc.Ptr); 521 AST.add(Ptr, LocationSize::unknown(), Loc.AATags); 522 Accesses.insert(MemAccessInfo(Ptr, true)); 523 } 524 525 /// Check if we can emit a run-time no-alias check for \p Access. 526 /// 527 /// Returns true if we can emit a run-time no alias check for \p Access. 528 /// If we can check this access, this also adds it to a dependence set and 529 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 530 /// we will attempt to use additional run-time checks in order to get 531 /// the bounds of the pointer. 532 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 533 MemAccessInfo Access, 534 const ValueToValueMap &Strides, 535 DenseMap<Value *, unsigned> &DepSetId, 536 Loop *TheLoop, unsigned &RunningDepId, 537 unsigned ASId, bool ShouldCheckStride, 538 bool Assume); 539 540 /// Check whether we can check the pointers at runtime for 541 /// non-intersection. 542 /// 543 /// Returns true if we need no check or if we do and we can generate them 544 /// (i.e. the pointers have computable bounds). 545 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 546 Loop *TheLoop, const ValueToValueMap &Strides, 547 bool ShouldCheckWrap = false); 548 549 /// Goes over all memory accesses, checks whether a RT check is needed 550 /// and builds sets of dependent accesses. 551 void buildDependenceSets() { 552 processMemAccesses(); 553 } 554 555 /// Initial processing of memory accesses determined that we need to 556 /// perform dependency checking. 557 /// 558 /// Note that this can later be cleared if we retry memcheck analysis without 559 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 560 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 561 562 /// We decided that no dependence analysis would be used. Reset the state. 563 void resetDepChecks(MemoryDepChecker &DepChecker) { 564 CheckDeps.clear(); 565 DepChecker.clearDependences(); 566 } 567 568 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 569 570 private: 571 typedef SetVector<MemAccessInfo> PtrAccessSet; 572 573 /// Go over all memory access and check whether runtime pointer checks 574 /// are needed and build sets of dependency check candidates. 575 void processMemAccesses(); 576 577 /// Set of all accesses. 578 PtrAccessSet Accesses; 579 580 const DataLayout &DL; 581 582 /// The loop being checked. 583 const Loop *TheLoop; 584 585 /// List of accesses that need a further dependence check. 586 MemAccessInfoList CheckDeps; 587 588 /// Set of pointers that are read only. 589 SmallPtrSet<Value*, 16> ReadOnlyPtr; 590 591 /// An alias set tracker to partition the access set by underlying object and 592 //intrinsic property (such as TBAA metadata). 593 AliasSetTracker AST; 594 595 LoopInfo *LI; 596 597 /// Sets of potentially dependent accesses - members of one set share an 598 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 599 /// dependence check. 600 MemoryDepChecker::DepCandidates &DepCands; 601 602 /// Initial processing of memory accesses determined that we may need 603 /// to add memchecks. Perform the analysis to determine the necessary checks. 604 /// 605 /// Note that, this is different from isDependencyCheckNeeded. When we retry 606 /// memcheck analysis without dependency checking 607 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 608 /// cleared while this remains set if we have potentially dependent accesses. 609 bool IsRTCheckAnalysisNeeded; 610 611 /// The SCEV predicate containing all the SCEV-related assumptions. 612 PredicatedScalarEvolution &PSE; 613 }; 614 615 } // end anonymous namespace 616 617 /// Check whether a pointer can participate in a runtime bounds check. 618 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 619 /// by adding run-time checks (overflow checks) if necessary. 620 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 621 const ValueToValueMap &Strides, Value *Ptr, 622 Loop *L, bool Assume) { 623 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 624 625 // The bounds for loop-invariant pointer is trivial. 626 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 627 return true; 628 629 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 630 631 if (!AR && Assume) 632 AR = PSE.getAsAddRec(Ptr); 633 634 if (!AR) 635 return false; 636 637 return AR->isAffine(); 638 } 639 640 /// Check whether a pointer address cannot wrap. 641 static bool isNoWrap(PredicatedScalarEvolution &PSE, 642 const ValueToValueMap &Strides, Value *Ptr, Loop *L) { 643 const SCEV *PtrScev = PSE.getSCEV(Ptr); 644 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 645 return true; 646 647 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); 648 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 649 return true; 650 651 return false; 652 } 653 654 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 655 MemAccessInfo Access, 656 const ValueToValueMap &StridesMap, 657 DenseMap<Value *, unsigned> &DepSetId, 658 Loop *TheLoop, unsigned &RunningDepId, 659 unsigned ASId, bool ShouldCheckWrap, 660 bool Assume) { 661 Value *Ptr = Access.getPointer(); 662 663 if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume)) 664 return false; 665 666 // When we run after a failing dependency check we have to make sure 667 // we don't have wrapping pointers. 668 if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) { 669 auto *Expr = PSE.getSCEV(Ptr); 670 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 671 return false; 672 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 673 } 674 675 // The id of the dependence set. 676 unsigned DepId; 677 678 if (isDependencyCheckNeeded()) { 679 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 680 unsigned &LeaderId = DepSetId[Leader]; 681 if (!LeaderId) 682 LeaderId = RunningDepId++; 683 DepId = LeaderId; 684 } else 685 // Each access has its own dependence set. 686 DepId = RunningDepId++; 687 688 bool IsWrite = Access.getInt(); 689 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 690 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 691 692 return true; 693 } 694 695 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 696 ScalarEvolution *SE, Loop *TheLoop, 697 const ValueToValueMap &StridesMap, 698 bool ShouldCheckWrap) { 699 // Find pointers with computable bounds. We are going to use this information 700 // to place a runtime bound check. 701 bool CanDoRT = true; 702 703 bool NeedRTCheck = false; 704 if (!IsRTCheckAnalysisNeeded) return true; 705 706 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 707 708 // We assign a consecutive id to access from different alias sets. 709 // Accesses between different groups doesn't need to be checked. 710 unsigned ASId = 1; 711 for (auto &AS : AST) { 712 int NumReadPtrChecks = 0; 713 int NumWritePtrChecks = 0; 714 bool CanDoAliasSetRT = true; 715 716 // We assign consecutive id to access from different dependence sets. 717 // Accesses within the same set don't need a runtime check. 718 unsigned RunningDepId = 1; 719 DenseMap<Value *, unsigned> DepSetId; 720 721 SmallVector<MemAccessInfo, 4> Retries; 722 723 for (auto A : AS) { 724 Value *Ptr = A.getValue(); 725 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 726 MemAccessInfo Access(Ptr, IsWrite); 727 728 if (IsWrite) 729 ++NumWritePtrChecks; 730 else 731 ++NumReadPtrChecks; 732 733 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop, 734 RunningDepId, ASId, ShouldCheckWrap, false)) { 735 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 736 Retries.push_back(Access); 737 CanDoAliasSetRT = false; 738 } 739 } 740 741 // If we have at least two writes or one write and a read then we need to 742 // check them. But there is no need to checks if there is only one 743 // dependence set for this alias set. 744 // 745 // Note that this function computes CanDoRT and NeedRTCheck independently. 746 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer 747 // for which we couldn't find the bounds but we don't actually need to emit 748 // any checks so it does not matter. 749 bool NeedsAliasSetRTCheck = false; 750 if (!(IsDepCheckNeeded && CanDoAliasSetRT && RunningDepId == 2)) 751 NeedsAliasSetRTCheck = (NumWritePtrChecks >= 2 || 752 (NumReadPtrChecks >= 1 && NumWritePtrChecks >= 1)); 753 754 // We need to perform run-time alias checks, but some pointers had bounds 755 // that couldn't be checked. 756 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 757 // Reset the CanDoSetRt flag and retry all accesses that have failed. 758 // We know that we need these checks, so we can now be more aggressive 759 // and add further checks if required (overflow checks). 760 CanDoAliasSetRT = true; 761 for (auto Access : Retries) 762 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, 763 TheLoop, RunningDepId, ASId, 764 ShouldCheckWrap, /*Assume=*/true)) { 765 CanDoAliasSetRT = false; 766 break; 767 } 768 } 769 770 CanDoRT &= CanDoAliasSetRT; 771 NeedRTCheck |= NeedsAliasSetRTCheck; 772 ++ASId; 773 } 774 775 // If the pointers that we would use for the bounds comparison have different 776 // address spaces, assume the values aren't directly comparable, so we can't 777 // use them for the runtime check. We also have to assume they could 778 // overlap. In the future there should be metadata for whether address spaces 779 // are disjoint. 780 unsigned NumPointers = RtCheck.Pointers.size(); 781 for (unsigned i = 0; i < NumPointers; ++i) { 782 for (unsigned j = i + 1; j < NumPointers; ++j) { 783 // Only need to check pointers between two different dependency sets. 784 if (RtCheck.Pointers[i].DependencySetId == 785 RtCheck.Pointers[j].DependencySetId) 786 continue; 787 // Only need to check pointers in the same alias set. 788 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 789 continue; 790 791 Value *PtrI = RtCheck.Pointers[i].PointerValue; 792 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 793 794 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 795 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 796 if (ASi != ASj) { 797 LLVM_DEBUG( 798 dbgs() << "LAA: Runtime check would require comparison between" 799 " different address spaces\n"); 800 return false; 801 } 802 } 803 } 804 805 if (NeedRTCheck && CanDoRT) 806 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 807 808 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 809 << " pointer comparisons.\n"); 810 811 RtCheck.Need = NeedRTCheck; 812 813 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; 814 if (!CanDoRTIfNeeded) 815 RtCheck.reset(); 816 return CanDoRTIfNeeded; 817 } 818 819 void AccessAnalysis::processMemAccesses() { 820 // We process the set twice: first we process read-write pointers, last we 821 // process read-only pointers. This allows us to skip dependence tests for 822 // read-only pointers. 823 824 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 825 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 826 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 827 LLVM_DEBUG({ 828 for (auto A : Accesses) 829 dbgs() << "\t" << *A.getPointer() << " (" << 830 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 831 "read-only" : "read")) << ")\n"; 832 }); 833 834 // The AliasSetTracker has nicely partitioned our pointers by metadata 835 // compatibility and potential for underlying-object overlap. As a result, we 836 // only need to check for potential pointer dependencies within each alias 837 // set. 838 for (auto &AS : AST) { 839 // Note that both the alias-set tracker and the alias sets themselves used 840 // linked lists internally and so the iteration order here is deterministic 841 // (matching the original instruction order within each set). 842 843 bool SetHasWrite = false; 844 845 // Map of pointers to last access encountered. 846 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 847 UnderlyingObjToAccessMap ObjToLastAccess; 848 849 // Set of access to check after all writes have been processed. 850 PtrAccessSet DeferredAccesses; 851 852 // Iterate over each alias set twice, once to process read/write pointers, 853 // and then to process read-only pointers. 854 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 855 bool UseDeferred = SetIteration > 0; 856 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 857 858 for (auto AV : AS) { 859 Value *Ptr = AV.getValue(); 860 861 // For a single memory access in AliasSetTracker, Accesses may contain 862 // both read and write, and they both need to be handled for CheckDeps. 863 for (auto AC : S) { 864 if (AC.getPointer() != Ptr) 865 continue; 866 867 bool IsWrite = AC.getInt(); 868 869 // If we're using the deferred access set, then it contains only 870 // reads. 871 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 872 if (UseDeferred && !IsReadOnlyPtr) 873 continue; 874 // Otherwise, the pointer must be in the PtrAccessSet, either as a 875 // read or a write. 876 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 877 S.count(MemAccessInfo(Ptr, false))) && 878 "Alias-set pointer not in the access set?"); 879 880 MemAccessInfo Access(Ptr, IsWrite); 881 DepCands.insert(Access); 882 883 // Memorize read-only pointers for later processing and skip them in 884 // the first round (they need to be checked after we have seen all 885 // write pointers). Note: we also mark pointer that are not 886 // consecutive as "read-only" pointers (so that we check 887 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 888 if (!UseDeferred && IsReadOnlyPtr) { 889 DeferredAccesses.insert(Access); 890 continue; 891 } 892 893 // If this is a write - check other reads and writes for conflicts. If 894 // this is a read only check other writes for conflicts (but only if 895 // there is no other write to the ptr - this is an optimization to 896 // catch "a[i] = a[i] + " without having to do a dependence check). 897 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 898 CheckDeps.push_back(Access); 899 IsRTCheckAnalysisNeeded = true; 900 } 901 902 if (IsWrite) 903 SetHasWrite = true; 904 905 // Create sets of pointers connected by a shared alias set and 906 // underlying object. 907 typedef SmallVector<const Value *, 16> ValueVector; 908 ValueVector TempObjects; 909 910 GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 911 LLVM_DEBUG(dbgs() 912 << "Underlying objects for pointer " << *Ptr << "\n"); 913 for (const Value *UnderlyingObj : TempObjects) { 914 // nullptr never alias, don't join sets for pointer that have "null" 915 // in their UnderlyingObjects list. 916 if (isa<ConstantPointerNull>(UnderlyingObj) && 917 !NullPointerIsDefined( 918 TheLoop->getHeader()->getParent(), 919 UnderlyingObj->getType()->getPointerAddressSpace())) 920 continue; 921 922 UnderlyingObjToAccessMap::iterator Prev = 923 ObjToLastAccess.find(UnderlyingObj); 924 if (Prev != ObjToLastAccess.end()) 925 DepCands.unionSets(Access, Prev->second); 926 927 ObjToLastAccess[UnderlyingObj] = Access; 928 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 929 } 930 } 931 } 932 } 933 } 934 } 935 936 static bool isInBoundsGep(Value *Ptr) { 937 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 938 return GEP->isInBounds(); 939 return false; 940 } 941 942 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 943 /// i.e. monotonically increasing/decreasing. 944 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 945 PredicatedScalarEvolution &PSE, const Loop *L) { 946 // FIXME: This should probably only return true for NUW. 947 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 948 return true; 949 950 // Scalar evolution does not propagate the non-wrapping flags to values that 951 // are derived from a non-wrapping induction variable because non-wrapping 952 // could be flow-sensitive. 953 // 954 // Look through the potentially overflowing instruction to try to prove 955 // non-wrapping for the *specific* value of Ptr. 956 957 // The arithmetic implied by an inbounds GEP can't overflow. 958 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 959 if (!GEP || !GEP->isInBounds()) 960 return false; 961 962 // Make sure there is only one non-const index and analyze that. 963 Value *NonConstIndex = nullptr; 964 for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end())) 965 if (!isa<ConstantInt>(Index)) { 966 if (NonConstIndex) 967 return false; 968 NonConstIndex = Index; 969 } 970 if (!NonConstIndex) 971 // The recurrence is on the pointer, ignore for now. 972 return false; 973 974 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 975 // AddRec using a NSW operation. 976 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 977 if (OBO->hasNoSignedWrap() && 978 // Assume constant for other the operand so that the AddRec can be 979 // easily found. 980 isa<ConstantInt>(OBO->getOperand(1))) { 981 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 982 983 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 984 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 985 } 986 987 return false; 988 } 989 990 /// Check whether the access through \p Ptr has a constant stride. 991 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, 992 const Loop *Lp, const ValueToValueMap &StridesMap, 993 bool Assume, bool ShouldCheckWrap) { 994 Type *Ty = Ptr->getType(); 995 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 996 997 // Make sure that the pointer does not point to aggregate types. 998 auto *PtrTy = cast<PointerType>(Ty); 999 if (PtrTy->getElementType()->isAggregateType()) { 1000 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" 1001 << *Ptr << "\n"); 1002 return 0; 1003 } 1004 1005 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1006 1007 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1008 if (Assume && !AR) 1009 AR = PSE.getAsAddRec(Ptr); 1010 1011 if (!AR) { 1012 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1013 << " SCEV: " << *PtrScev << "\n"); 1014 return 0; 1015 } 1016 1017 // The access function must stride over the innermost loop. 1018 if (Lp != AR->getLoop()) { 1019 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1020 << *Ptr << " SCEV: " << *AR << "\n"); 1021 return 0; 1022 } 1023 1024 // The address calculation must not wrap. Otherwise, a dependence could be 1025 // inverted. 1026 // An inbounds getelementptr that is a AddRec with a unit stride 1027 // cannot wrap per definition. The unit stride requirement is checked later. 1028 // An getelementptr without an inbounds attribute and unit stride would have 1029 // to access the pointer value "0" which is undefined behavior in address 1030 // space 0, therefore we can also vectorize this case. 1031 bool IsInBoundsGEP = isInBoundsGep(Ptr); 1032 bool IsNoWrapAddRec = !ShouldCheckWrap || 1033 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 1034 isNoWrapAddRec(Ptr, AR, PSE, Lp); 1035 if (!IsNoWrapAddRec && !IsInBoundsGEP && 1036 NullPointerIsDefined(Lp->getHeader()->getParent(), 1037 PtrTy->getAddressSpace())) { 1038 if (Assume) { 1039 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1040 IsNoWrapAddRec = true; 1041 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 1042 << "LAA: Pointer: " << *Ptr << "\n" 1043 << "LAA: SCEV: " << *AR << "\n" 1044 << "LAA: Added an overflow assumption\n"); 1045 } else { 1046 LLVM_DEBUG( 1047 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1048 << *Ptr << " SCEV: " << *AR << "\n"); 1049 return 0; 1050 } 1051 } 1052 1053 // Check the step is constant. 1054 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1055 1056 // Calculate the pointer stride and check if it is constant. 1057 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1058 if (!C) { 1059 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1060 << " SCEV: " << *AR << "\n"); 1061 return 0; 1062 } 1063 1064 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1065 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 1066 const APInt &APStepVal = C->getAPInt(); 1067 1068 // Huge step value - give up. 1069 if (APStepVal.getBitWidth() > 64) 1070 return 0; 1071 1072 int64_t StepVal = APStepVal.getSExtValue(); 1073 1074 // Strided access. 1075 int64_t Stride = StepVal / Size; 1076 int64_t Rem = StepVal % Size; 1077 if (Rem) 1078 return 0; 1079 1080 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 1081 // know we can't "wrap around the address space". In case of address space 1082 // zero we know that this won't happen without triggering undefined behavior. 1083 if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 && 1084 (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(), 1085 PtrTy->getAddressSpace()))) { 1086 if (Assume) { 1087 // We can avoid this case by adding a run-time check. 1088 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1089 << "inbounds or in address space 0 may wrap:\n" 1090 << "LAA: Pointer: " << *Ptr << "\n" 1091 << "LAA: SCEV: " << *AR << "\n" 1092 << "LAA: Added an overflow assumption\n"); 1093 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1094 } else 1095 return 0; 1096 } 1097 1098 return Stride; 1099 } 1100 1101 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL, 1102 ScalarEvolution &SE, 1103 SmallVectorImpl<unsigned> &SortedIndices) { 1104 assert(llvm::all_of( 1105 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1106 "Expected list of pointer operands."); 1107 SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs; 1108 OffValPairs.reserve(VL.size()); 1109 1110 // Walk over the pointers, and map each of them to an offset relative to 1111 // first pointer in the array. 1112 Value *Ptr0 = VL[0]; 1113 const SCEV *Scev0 = SE.getSCEV(Ptr0); 1114 Value *Obj0 = GetUnderlyingObject(Ptr0, DL); 1115 1116 llvm::SmallSet<int64_t, 4> Offsets; 1117 for (auto *Ptr : VL) { 1118 // TODO: Outline this code as a special, more time consuming, version of 1119 // computeConstantDifference() function. 1120 if (Ptr->getType()->getPointerAddressSpace() != 1121 Ptr0->getType()->getPointerAddressSpace()) 1122 return false; 1123 // If a pointer refers to a different underlying object, bail - the 1124 // pointers are by definition incomparable. 1125 Value *CurrObj = GetUnderlyingObject(Ptr, DL); 1126 if (CurrObj != Obj0) 1127 return false; 1128 1129 const SCEV *Scev = SE.getSCEV(Ptr); 1130 const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0)); 1131 // The pointers may not have a constant offset from each other, or SCEV 1132 // may just not be smart enough to figure out they do. Regardless, 1133 // there's nothing we can do. 1134 if (!Diff) 1135 return false; 1136 1137 // Check if the pointer with the same offset is found. 1138 int64_t Offset = Diff->getAPInt().getSExtValue(); 1139 if (!Offsets.insert(Offset).second) 1140 return false; 1141 OffValPairs.emplace_back(Offset, Ptr); 1142 } 1143 SortedIndices.clear(); 1144 SortedIndices.resize(VL.size()); 1145 std::iota(SortedIndices.begin(), SortedIndices.end(), 0); 1146 1147 // Sort the memory accesses and keep the order of their uses in UseOrder. 1148 llvm::stable_sort(SortedIndices, [&](unsigned Left, unsigned Right) { 1149 return OffValPairs[Left].first < OffValPairs[Right].first; 1150 }); 1151 1152 // Check if the order is consecutive already. 1153 if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) { 1154 return I == SortedIndices[I]; 1155 })) 1156 SortedIndices.clear(); 1157 1158 return true; 1159 } 1160 1161 /// Take the address space operand from the Load/Store instruction. 1162 /// Returns -1 if this is not a valid Load/Store instruction. 1163 static unsigned getAddressSpaceOperand(Value *I) { 1164 if (LoadInst *L = dyn_cast<LoadInst>(I)) 1165 return L->getPointerAddressSpace(); 1166 if (StoreInst *S = dyn_cast<StoreInst>(I)) 1167 return S->getPointerAddressSpace(); 1168 return -1; 1169 } 1170 1171 /// Returns true if the memory operations \p A and \p B are consecutive. 1172 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1173 ScalarEvolution &SE, bool CheckType) { 1174 Value *PtrA = getLoadStorePointerOperand(A); 1175 Value *PtrB = getLoadStorePointerOperand(B); 1176 unsigned ASA = getAddressSpaceOperand(A); 1177 unsigned ASB = getAddressSpaceOperand(B); 1178 1179 // Check that the address spaces match and that the pointers are valid. 1180 if (!PtrA || !PtrB || (ASA != ASB)) 1181 return false; 1182 1183 // Make sure that A and B are different pointers. 1184 if (PtrA == PtrB) 1185 return false; 1186 1187 // Make sure that A and B have the same type if required. 1188 if (CheckType && PtrA->getType() != PtrB->getType()) 1189 return false; 1190 1191 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1192 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1193 1194 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1195 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1196 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1197 1198 // Retrieve the address space again as pointer stripping now tracks through 1199 // `addrspacecast`. 1200 ASA = cast<PointerType>(PtrA->getType())->getAddressSpace(); 1201 ASB = cast<PointerType>(PtrB->getType())->getAddressSpace(); 1202 // Check that the address spaces match and that the pointers are valid. 1203 if (ASA != ASB) 1204 return false; 1205 1206 IdxWidth = DL.getIndexSizeInBits(ASA); 1207 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1208 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1209 1210 APInt Size(IdxWidth, DL.getTypeStoreSize(Ty)); 1211 1212 // OffsetDelta = OffsetB - OffsetA; 1213 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); 1214 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); 1215 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); 1216 const APInt &OffsetDelta = cast<SCEVConstant>(OffsetDeltaSCEV)->getAPInt(); 1217 1218 // Check if they are based on the same pointer. That makes the offsets 1219 // sufficient. 1220 if (PtrA == PtrB) 1221 return OffsetDelta == Size; 1222 1223 // Compute the necessary base pointer delta to have the necessary final delta 1224 // equal to the size. 1225 // BaseDelta = Size - OffsetDelta; 1226 const SCEV *SizeSCEV = SE.getConstant(Size); 1227 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); 1228 1229 // Otherwise compute the distance with SCEV between the base pointers. 1230 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1231 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1232 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); 1233 return X == PtrSCEVB; 1234 } 1235 1236 MemoryDepChecker::VectorizationSafetyStatus 1237 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1238 switch (Type) { 1239 case NoDep: 1240 case Forward: 1241 case BackwardVectorizable: 1242 return VectorizationSafetyStatus::Safe; 1243 1244 case Unknown: 1245 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1246 case ForwardButPreventsForwarding: 1247 case Backward: 1248 case BackwardVectorizableButPreventsForwarding: 1249 return VectorizationSafetyStatus::Unsafe; 1250 } 1251 llvm_unreachable("unexpected DepType!"); 1252 } 1253 1254 bool MemoryDepChecker::Dependence::isBackward() const { 1255 switch (Type) { 1256 case NoDep: 1257 case Forward: 1258 case ForwardButPreventsForwarding: 1259 case Unknown: 1260 return false; 1261 1262 case BackwardVectorizable: 1263 case Backward: 1264 case BackwardVectorizableButPreventsForwarding: 1265 return true; 1266 } 1267 llvm_unreachable("unexpected DepType!"); 1268 } 1269 1270 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1271 return isBackward() || Type == Unknown; 1272 } 1273 1274 bool MemoryDepChecker::Dependence::isForward() const { 1275 switch (Type) { 1276 case Forward: 1277 case ForwardButPreventsForwarding: 1278 return true; 1279 1280 case NoDep: 1281 case Unknown: 1282 case BackwardVectorizable: 1283 case Backward: 1284 case BackwardVectorizableButPreventsForwarding: 1285 return false; 1286 } 1287 llvm_unreachable("unexpected DepType!"); 1288 } 1289 1290 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1291 uint64_t TypeByteSize) { 1292 // If loads occur at a distance that is not a multiple of a feasible vector 1293 // factor store-load forwarding does not take place. 1294 // Positive dependences might cause troubles because vectorizing them might 1295 // prevent store-load forwarding making vectorized code run a lot slower. 1296 // a[i] = a[i-3] ^ a[i-8]; 1297 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1298 // hence on your typical architecture store-load forwarding does not take 1299 // place. Vectorizing in such cases does not make sense. 1300 // Store-load forwarding distance. 1301 1302 // After this many iterations store-to-load forwarding conflicts should not 1303 // cause any slowdowns. 1304 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1305 // Maximum vector factor. 1306 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1307 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1308 1309 // Compute the smallest VF at which the store and load would be misaligned. 1310 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1311 VF *= 2) { 1312 // If the number of vector iteration between the store and the load are 1313 // small we could incur conflicts. 1314 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1315 MaxVFWithoutSLForwardIssues = (VF >>= 1); 1316 break; 1317 } 1318 } 1319 1320 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1321 LLVM_DEBUG( 1322 dbgs() << "LAA: Distance " << Distance 1323 << " that could cause a store-load forwarding conflict\n"); 1324 return true; 1325 } 1326 1327 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1328 MaxVFWithoutSLForwardIssues != 1329 VectorizerParams::MaxVectorWidth * TypeByteSize) 1330 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1331 return false; 1332 } 1333 1334 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1335 if (Status < S) 1336 Status = S; 1337 } 1338 1339 /// Given a non-constant (unknown) dependence-distance \p Dist between two 1340 /// memory accesses, that have the same stride whose absolute value is given 1341 /// in \p Stride, and that have the same type size \p TypeByteSize, 1342 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1343 /// possible to prove statically that the dependence distance is larger 1344 /// than the range that the accesses will travel through the execution of 1345 /// the loop. If so, return true; false otherwise. This is useful for 1346 /// example in loops such as the following (PR31098): 1347 /// for (i = 0; i < D; ++i) { 1348 /// = out[i]; 1349 /// out[i+D] = 1350 /// } 1351 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1352 const SCEV &BackedgeTakenCount, 1353 const SCEV &Dist, uint64_t Stride, 1354 uint64_t TypeByteSize) { 1355 1356 // If we can prove that 1357 // (**) |Dist| > BackedgeTakenCount * Step 1358 // where Step is the absolute stride of the memory accesses in bytes, 1359 // then there is no dependence. 1360 // 1361 // Rationale: 1362 // We basically want to check if the absolute distance (|Dist/Step|) 1363 // is >= the loop iteration count (or > BackedgeTakenCount). 1364 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1365 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1366 // that the dependence distance is >= VF; This is checked elsewhere. 1367 // But in some cases we can prune unknown dependence distances early, and 1368 // even before selecting the VF, and without a runtime test, by comparing 1369 // the distance against the loop iteration count. Since the vectorized code 1370 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1371 // also guarantees that distance >= VF. 1372 // 1373 const uint64_t ByteStride = Stride * TypeByteSize; 1374 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1375 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1376 1377 const SCEV *CastedDist = &Dist; 1378 const SCEV *CastedProduct = Product; 1379 uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType()); 1380 uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType()); 1381 1382 // The dependence distance can be positive/negative, so we sign extend Dist; 1383 // The multiplication of the absolute stride in bytes and the 1384 // backedgeTakenCount is non-negative, so we zero extend Product. 1385 if (DistTypeSize > ProductTypeSize) 1386 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1387 else 1388 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1389 1390 // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1391 // (If so, then we have proven (**) because |Dist| >= Dist) 1392 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1393 if (SE.isKnownPositive(Minus)) 1394 return true; 1395 1396 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1397 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1398 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1399 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1400 if (SE.isKnownPositive(Minus)) 1401 return true; 1402 1403 return false; 1404 } 1405 1406 /// Check the dependence for two accesses with the same stride \p Stride. 1407 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1408 /// bytes. 1409 /// 1410 /// \returns true if they are independent. 1411 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1412 uint64_t TypeByteSize) { 1413 assert(Stride > 1 && "The stride must be greater than 1"); 1414 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1415 assert(Distance > 0 && "The distance must be non-zero"); 1416 1417 // Skip if the distance is not multiple of type byte size. 1418 if (Distance % TypeByteSize) 1419 return false; 1420 1421 uint64_t ScaledDist = Distance / TypeByteSize; 1422 1423 // No dependence if the scaled distance is not multiple of the stride. 1424 // E.g. 1425 // for (i = 0; i < 1024 ; i += 4) 1426 // A[i+2] = A[i] + 1; 1427 // 1428 // Two accesses in memory (scaled distance is 2, stride is 4): 1429 // | A[0] | | | | A[4] | | | | 1430 // | | | A[2] | | | | A[6] | | 1431 // 1432 // E.g. 1433 // for (i = 0; i < 1024 ; i += 3) 1434 // A[i+4] = A[i] + 1; 1435 // 1436 // Two accesses in memory (scaled distance is 4, stride is 3): 1437 // | A[0] | | | A[3] | | | A[6] | | | 1438 // | | | | | A[4] | | | A[7] | | 1439 return ScaledDist % Stride; 1440 } 1441 1442 MemoryDepChecker::Dependence::DepType 1443 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1444 const MemAccessInfo &B, unsigned BIdx, 1445 const ValueToValueMap &Strides) { 1446 assert (AIdx < BIdx && "Must pass arguments in program order"); 1447 1448 Value *APtr = A.getPointer(); 1449 Value *BPtr = B.getPointer(); 1450 bool AIsWrite = A.getInt(); 1451 bool BIsWrite = B.getInt(); 1452 1453 // Two reads are independent. 1454 if (!AIsWrite && !BIsWrite) 1455 return Dependence::NoDep; 1456 1457 // We cannot check pointers in different address spaces. 1458 if (APtr->getType()->getPointerAddressSpace() != 1459 BPtr->getType()->getPointerAddressSpace()) 1460 return Dependence::Unknown; 1461 1462 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); 1463 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); 1464 1465 const SCEV *Src = PSE.getSCEV(APtr); 1466 const SCEV *Sink = PSE.getSCEV(BPtr); 1467 1468 // If the induction step is negative we have to invert source and sink of the 1469 // dependence. 1470 if (StrideAPtr < 0) { 1471 std::swap(APtr, BPtr); 1472 std::swap(Src, Sink); 1473 std::swap(AIsWrite, BIsWrite); 1474 std::swap(AIdx, BIdx); 1475 std::swap(StrideAPtr, StrideBPtr); 1476 } 1477 1478 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1479 1480 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1481 << "(Induction step: " << StrideAPtr << ")\n"); 1482 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1483 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1484 1485 // Need accesses with constant stride. We don't want to vectorize 1486 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1487 // the address space. 1488 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1489 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1490 return Dependence::Unknown; 1491 } 1492 1493 Type *ATy = APtr->getType()->getPointerElementType(); 1494 Type *BTy = BPtr->getType()->getPointerElementType(); 1495 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1496 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1497 uint64_t Stride = std::abs(StrideAPtr); 1498 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1499 if (!C) { 1500 if (TypeByteSize == DL.getTypeAllocSize(BTy) && 1501 isSafeDependenceDistance(DL, *(PSE.getSE()), 1502 *(PSE.getBackedgeTakenCount()), *Dist, Stride, 1503 TypeByteSize)) 1504 return Dependence::NoDep; 1505 1506 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1507 FoundNonConstantDistanceDependence = true; 1508 return Dependence::Unknown; 1509 } 1510 1511 const APInt &Val = C->getAPInt(); 1512 int64_t Distance = Val.getSExtValue(); 1513 1514 // Attempt to prove strided accesses independent. 1515 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && 1516 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1517 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1518 return Dependence::NoDep; 1519 } 1520 1521 // Negative distances are not plausible dependencies. 1522 if (Val.isNegative()) { 1523 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1524 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1525 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1526 ATy != BTy)) { 1527 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1528 return Dependence::ForwardButPreventsForwarding; 1529 } 1530 1531 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1532 return Dependence::Forward; 1533 } 1534 1535 // Write to the same location with the same size. 1536 // Could be improved to assert type sizes are the same (i32 == float, etc). 1537 if (Val == 0) { 1538 if (ATy == BTy) 1539 return Dependence::Forward; 1540 LLVM_DEBUG( 1541 dbgs() << "LAA: Zero dependence difference but different types\n"); 1542 return Dependence::Unknown; 1543 } 1544 1545 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1546 1547 if (ATy != BTy) { 1548 LLVM_DEBUG( 1549 dbgs() 1550 << "LAA: ReadWrite-Write positive dependency with different types\n"); 1551 return Dependence::Unknown; 1552 } 1553 1554 // Bail out early if passed-in parameters make vectorization not feasible. 1555 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1556 VectorizerParams::VectorizationFactor : 1); 1557 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1558 VectorizerParams::VectorizationInterleave : 1); 1559 // The minimum number of iterations for a vectorized/unrolled version. 1560 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1561 1562 // It's not vectorizable if the distance is smaller than the minimum distance 1563 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1564 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1565 // TypeByteSize (No need to plus the last gap distance). 1566 // 1567 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1568 // foo(int *A) { 1569 // int *B = (int *)((char *)A + 14); 1570 // for (i = 0 ; i < 1024 ; i += 2) 1571 // B[i] = A[i] + 1; 1572 // } 1573 // 1574 // Two accesses in memory (stride is 2): 1575 // | A[0] | | A[2] | | A[4] | | A[6] | | 1576 // | B[0] | | B[2] | | B[4] | 1577 // 1578 // Distance needs for vectorizing iterations except the last iteration: 1579 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1580 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1581 // 1582 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1583 // 12, which is less than distance. 1584 // 1585 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1586 // the minimum distance needed is 28, which is greater than distance. It is 1587 // not safe to do vectorization. 1588 uint64_t MinDistanceNeeded = 1589 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1590 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1591 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " 1592 << Distance << '\n'); 1593 return Dependence::Backward; 1594 } 1595 1596 // Unsafe if the minimum distance needed is greater than max safe distance. 1597 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1598 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 1599 << MinDistanceNeeded << " size in bytes"); 1600 return Dependence::Backward; 1601 } 1602 1603 // Positive distance bigger than max vectorization factor. 1604 // FIXME: Should use max factor instead of max distance in bytes, which could 1605 // not handle different types. 1606 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1607 // void foo (int *A, char *B) { 1608 // for (unsigned i = 0; i < 1024; i++) { 1609 // A[i+2] = A[i] + 1; 1610 // B[i+2] = B[i] + 1; 1611 // } 1612 // } 1613 // 1614 // This case is currently unsafe according to the max safe distance. If we 1615 // analyze the two accesses on array B, the max safe dependence distance 1616 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1617 // is 8, which is less than 2 and forbidden vectorization, But actually 1618 // both A and B could be vectorized by 2 iterations. 1619 MaxSafeDepDistBytes = 1620 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1621 1622 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1623 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1624 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1625 return Dependence::BackwardVectorizableButPreventsForwarding; 1626 1627 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); 1628 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1629 << " with max VF = " << MaxVF << '\n'); 1630 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 1631 MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits); 1632 return Dependence::BackwardVectorizable; 1633 } 1634 1635 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1636 MemAccessInfoList &CheckDeps, 1637 const ValueToValueMap &Strides) { 1638 1639 MaxSafeDepDistBytes = -1; 1640 SmallPtrSet<MemAccessInfo, 8> Visited; 1641 for (MemAccessInfo CurAccess : CheckDeps) { 1642 if (Visited.count(CurAccess)) 1643 continue; 1644 1645 // Get the relevant memory access set. 1646 EquivalenceClasses<MemAccessInfo>::iterator I = 1647 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1648 1649 // Check accesses within this set. 1650 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1651 AccessSets.member_begin(I); 1652 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1653 AccessSets.member_end(); 1654 1655 // Check every access pair. 1656 while (AI != AE) { 1657 Visited.insert(*AI); 1658 bool AIIsWrite = AI->getInt(); 1659 // Check loads only against next equivalent class, but stores also against 1660 // other stores in the same equivalence class - to the same address. 1661 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 1662 (AIIsWrite ? AI : std::next(AI)); 1663 while (OI != AE) { 1664 // Check every accessing instruction pair in program order. 1665 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1666 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1667 // Scan all accesses of another equivalence class, but only the next 1668 // accesses of the same equivalent class. 1669 for (std::vector<unsigned>::iterator 1670 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 1671 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 1672 I2 != I2E; ++I2) { 1673 auto A = std::make_pair(&*AI, *I1); 1674 auto B = std::make_pair(&*OI, *I2); 1675 1676 assert(*I1 != *I2); 1677 if (*I1 > *I2) 1678 std::swap(A, B); 1679 1680 Dependence::DepType Type = 1681 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1682 mergeInStatus(Dependence::isSafeForVectorization(Type)); 1683 1684 // Gather dependences unless we accumulated MaxDependences 1685 // dependences. In that case return as soon as we find the first 1686 // unsafe dependence. This puts a limit on this quadratic 1687 // algorithm. 1688 if (RecordDependences) { 1689 if (Type != Dependence::NoDep) 1690 Dependences.push_back(Dependence(A.second, B.second, Type)); 1691 1692 if (Dependences.size() >= MaxDependences) { 1693 RecordDependences = false; 1694 Dependences.clear(); 1695 LLVM_DEBUG(dbgs() 1696 << "Too many dependences, stopped recording\n"); 1697 } 1698 } 1699 if (!RecordDependences && !isSafeForVectorization()) 1700 return false; 1701 } 1702 ++OI; 1703 } 1704 AI++; 1705 } 1706 } 1707 1708 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1709 return isSafeForVectorization(); 1710 } 1711 1712 SmallVector<Instruction *, 4> 1713 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1714 MemAccessInfo Access(Ptr, isWrite); 1715 auto &IndexVector = Accesses.find(Access)->second; 1716 1717 SmallVector<Instruction *, 4> Insts; 1718 transform(IndexVector, 1719 std::back_inserter(Insts), 1720 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1721 return Insts; 1722 } 1723 1724 const char *MemoryDepChecker::Dependence::DepName[] = { 1725 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1726 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1727 1728 void MemoryDepChecker::Dependence::print( 1729 raw_ostream &OS, unsigned Depth, 1730 const SmallVectorImpl<Instruction *> &Instrs) const { 1731 OS.indent(Depth) << DepName[Type] << ":\n"; 1732 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1733 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1734 } 1735 1736 bool LoopAccessInfo::canAnalyzeLoop() { 1737 // We need to have a loop header. 1738 LLVM_DEBUG(dbgs() << "LAA: Found a loop in " 1739 << TheLoop->getHeader()->getParent()->getName() << ": " 1740 << TheLoop->getHeader()->getName() << '\n'); 1741 1742 // We can only analyze innermost loops. 1743 if (!TheLoop->empty()) { 1744 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1745 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 1746 return false; 1747 } 1748 1749 // We must have a single backedge. 1750 if (TheLoop->getNumBackEdges() != 1) { 1751 LLVM_DEBUG( 1752 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1753 recordAnalysis("CFGNotUnderstood") 1754 << "loop control flow is not understood by analyzer"; 1755 return false; 1756 } 1757 1758 // We must have a single exiting block. 1759 if (!TheLoop->getExitingBlock()) { 1760 LLVM_DEBUG( 1761 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1762 recordAnalysis("CFGNotUnderstood") 1763 << "loop control flow is not understood by analyzer"; 1764 return false; 1765 } 1766 1767 // We only handle bottom-tested loops, i.e. loop in which the condition is 1768 // checked at the end of each iteration. With that we can assume that all 1769 // instructions in the loop are executed the same number of times. 1770 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 1771 LLVM_DEBUG( 1772 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1773 recordAnalysis("CFGNotUnderstood") 1774 << "loop control flow is not understood by analyzer"; 1775 return false; 1776 } 1777 1778 // ScalarEvolution needs to be able to find the exit count. 1779 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 1780 if (ExitCount == PSE->getSE()->getCouldNotCompute()) { 1781 recordAnalysis("CantComputeNumberOfIterations") 1782 << "could not determine number of loop iterations"; 1783 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1784 return false; 1785 } 1786 1787 return true; 1788 } 1789 1790 void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI, 1791 const TargetLibraryInfo *TLI, 1792 DominatorTree *DT) { 1793 typedef SmallPtrSet<Value*, 16> ValueSet; 1794 1795 // Holds the Load and Store instructions. 1796 SmallVector<LoadInst *, 16> Loads; 1797 SmallVector<StoreInst *, 16> Stores; 1798 1799 // Holds all the different accesses in the loop. 1800 unsigned NumReads = 0; 1801 unsigned NumReadWrites = 0; 1802 1803 bool HasComplexMemInst = false; 1804 1805 // A runtime check is only legal to insert if there are no convergent calls. 1806 HasConvergentOp = false; 1807 1808 PtrRtChecking->Pointers.clear(); 1809 PtrRtChecking->Need = false; 1810 1811 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1812 1813 // For each block. 1814 for (BasicBlock *BB : TheLoop->blocks()) { 1815 // Scan the BB and collect legal loads and stores. Also detect any 1816 // convergent instructions. 1817 for (Instruction &I : *BB) { 1818 if (auto *Call = dyn_cast<CallBase>(&I)) { 1819 if (Call->isConvergent()) 1820 HasConvergentOp = true; 1821 } 1822 1823 // With both a non-vectorizable memory instruction and a convergent 1824 // operation, found in this loop, no reason to continue the search. 1825 if (HasComplexMemInst && HasConvergentOp) { 1826 CanVecMem = false; 1827 return; 1828 } 1829 1830 // Avoid hitting recordAnalysis multiple times. 1831 if (HasComplexMemInst) 1832 continue; 1833 1834 // If this is a load, save it. If this instruction can read from memory 1835 // but is not a load, then we quit. Notice that we don't handle function 1836 // calls that read or write. 1837 if (I.mayReadFromMemory()) { 1838 // Many math library functions read the rounding mode. We will only 1839 // vectorize a loop if it contains known function calls that don't set 1840 // the flag. Therefore, it is safe to ignore this read from memory. 1841 auto *Call = dyn_cast<CallInst>(&I); 1842 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 1843 continue; 1844 1845 // If the function has an explicit vectorized counterpart, we can safely 1846 // assume that it can be vectorized. 1847 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1848 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 1849 continue; 1850 1851 auto *Ld = dyn_cast<LoadInst>(&I); 1852 if (!Ld) { 1853 recordAnalysis("CantVectorizeInstruction", Ld) 1854 << "instruction cannot be vectorized"; 1855 HasComplexMemInst = true; 1856 continue; 1857 } 1858 if (!Ld->isSimple() && !IsAnnotatedParallel) { 1859 recordAnalysis("NonSimpleLoad", Ld) 1860 << "read with atomic ordering or volatile read"; 1861 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1862 HasComplexMemInst = true; 1863 continue; 1864 } 1865 NumLoads++; 1866 Loads.push_back(Ld); 1867 DepChecker->addAccess(Ld); 1868 if (EnableMemAccessVersioning) 1869 collectStridedAccess(Ld); 1870 continue; 1871 } 1872 1873 // Save 'store' instructions. Abort if other instructions write to memory. 1874 if (I.mayWriteToMemory()) { 1875 auto *St = dyn_cast<StoreInst>(&I); 1876 if (!St) { 1877 recordAnalysis("CantVectorizeInstruction", St) 1878 << "instruction cannot be vectorized"; 1879 HasComplexMemInst = true; 1880 continue; 1881 } 1882 if (!St->isSimple() && !IsAnnotatedParallel) { 1883 recordAnalysis("NonSimpleStore", St) 1884 << "write with atomic ordering or volatile write"; 1885 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1886 HasComplexMemInst = true; 1887 continue; 1888 } 1889 NumStores++; 1890 Stores.push_back(St); 1891 DepChecker->addAccess(St); 1892 if (EnableMemAccessVersioning) 1893 collectStridedAccess(St); 1894 } 1895 } // Next instr. 1896 } // Next block. 1897 1898 if (HasComplexMemInst) { 1899 CanVecMem = false; 1900 return; 1901 } 1902 1903 // Now we have two lists that hold the loads and the stores. 1904 // Next, we find the pointers that they use. 1905 1906 // Check if we see any stores. If there are no stores, then we don't 1907 // care if the pointers are *restrict*. 1908 if (!Stores.size()) { 1909 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1910 CanVecMem = true; 1911 return; 1912 } 1913 1914 MemoryDepChecker::DepCandidates DependentAccesses; 1915 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 1916 TheLoop, AA, LI, DependentAccesses, *PSE); 1917 1918 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 1919 // multiple times on the same object. If the ptr is accessed twice, once 1920 // for read and once for write, it will only appear once (on the write 1921 // list). This is okay, since we are going to check for conflicts between 1922 // writes and between reads and writes, but not between reads and reads. 1923 ValueSet Seen; 1924 1925 // Record uniform store addresses to identify if we have multiple stores 1926 // to the same address. 1927 ValueSet UniformStores; 1928 1929 for (StoreInst *ST : Stores) { 1930 Value *Ptr = ST->getPointerOperand(); 1931 1932 if (isUniform(Ptr)) 1933 HasDependenceInvolvingLoopInvariantAddress |= 1934 !UniformStores.insert(Ptr).second; 1935 1936 // If we did *not* see this pointer before, insert it to the read-write 1937 // list. At this phase it is only a 'write' list. 1938 if (Seen.insert(Ptr).second) { 1939 ++NumReadWrites; 1940 1941 MemoryLocation Loc = MemoryLocation::get(ST); 1942 // The TBAA metadata could have a control dependency on the predication 1943 // condition, so we cannot rely on it when determining whether or not we 1944 // need runtime pointer checks. 1945 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1946 Loc.AATags.TBAA = nullptr; 1947 1948 Accesses.addStore(Loc); 1949 } 1950 } 1951 1952 if (IsAnnotatedParallel) { 1953 LLVM_DEBUG( 1954 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 1955 << "checks.\n"); 1956 CanVecMem = true; 1957 return; 1958 } 1959 1960 for (LoadInst *LD : Loads) { 1961 Value *Ptr = LD->getPointerOperand(); 1962 // If we did *not* see this pointer before, insert it to the 1963 // read list. If we *did* see it before, then it is already in 1964 // the read-write list. This allows us to vectorize expressions 1965 // such as A[i] += x; Because the address of A[i] is a read-write 1966 // pointer. This only works if the index of A[i] is consecutive. 1967 // If the address of i is unknown (for example A[B[i]]) then we may 1968 // read a few words, modify, and write a few words, and some of the 1969 // words may be written to the same address. 1970 bool IsReadOnlyPtr = false; 1971 if (Seen.insert(Ptr).second || 1972 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { 1973 ++NumReads; 1974 IsReadOnlyPtr = true; 1975 } 1976 1977 // See if there is an unsafe dependency between a load to a uniform address and 1978 // store to the same uniform address. 1979 if (UniformStores.count(Ptr)) { 1980 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 1981 "load and uniform store to the same address!\n"); 1982 HasDependenceInvolvingLoopInvariantAddress = true; 1983 } 1984 1985 MemoryLocation Loc = MemoryLocation::get(LD); 1986 // The TBAA metadata could have a control dependency on the predication 1987 // condition, so we cannot rely on it when determining whether or not we 1988 // need runtime pointer checks. 1989 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 1990 Loc.AATags.TBAA = nullptr; 1991 1992 Accesses.addLoad(Loc, IsReadOnlyPtr); 1993 } 1994 1995 // If we write (or read-write) to a single destination and there are no 1996 // other reads in this loop then is it safe to vectorize. 1997 if (NumReadWrites == 1 && NumReads == 0) { 1998 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1999 CanVecMem = true; 2000 return; 2001 } 2002 2003 // Build dependence sets and check whether we need a runtime pointer bounds 2004 // check. 2005 Accesses.buildDependenceSets(); 2006 2007 // Find pointers with computable bounds. We are going to use this information 2008 // to place a runtime bound check. 2009 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), 2010 TheLoop, SymbolicStrides); 2011 if (!CanDoRTIfNeeded) { 2012 recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; 2013 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2014 << "the array bounds.\n"); 2015 CanVecMem = false; 2016 return; 2017 } 2018 2019 LLVM_DEBUG( 2020 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2021 2022 CanVecMem = true; 2023 if (Accesses.isDependencyCheckNeeded()) { 2024 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2025 CanVecMem = DepChecker->areDepsSafe( 2026 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 2027 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 2028 2029 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 2030 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2031 2032 // Clear the dependency checks. We assume they are not needed. 2033 Accesses.resetDepChecks(*DepChecker); 2034 2035 PtrRtChecking->reset(); 2036 PtrRtChecking->Need = true; 2037 2038 auto *SE = PSE->getSE(); 2039 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, 2040 SymbolicStrides, true); 2041 2042 // Check that we found the bounds for the pointer. 2043 if (!CanDoRTIfNeeded) { 2044 recordAnalysis("CantCheckMemDepsAtRunTime") 2045 << "cannot check memory dependencies at runtime"; 2046 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2047 CanVecMem = false; 2048 return; 2049 } 2050 2051 CanVecMem = true; 2052 } 2053 } 2054 2055 if (HasConvergentOp) { 2056 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2057 << "cannot add control dependency to convergent operation"; 2058 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2059 "would be needed with a convergent operation\n"); 2060 CanVecMem = false; 2061 return; 2062 } 2063 2064 if (CanVecMem) 2065 LLVM_DEBUG( 2066 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2067 << (PtrRtChecking->Need ? "" : " don't") 2068 << " need runtime memory checks.\n"); 2069 else { 2070 recordAnalysis("UnsafeMemDep") 2071 << "unsafe dependent memory operations in loop. Use " 2072 "#pragma loop distribute(enable) to allow loop distribution " 2073 "to attempt to isolate the offending operations into a separate " 2074 "loop"; 2075 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2076 } 2077 } 2078 2079 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2080 DominatorTree *DT) { 2081 assert(TheLoop->contains(BB) && "Unknown block used"); 2082 2083 // Blocks that do not dominate the latch need predication. 2084 BasicBlock* Latch = TheLoop->getLoopLatch(); 2085 return !DT->dominates(BB, Latch); 2086 } 2087 2088 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2089 Instruction *I) { 2090 assert(!Report && "Multiple reports generated"); 2091 2092 Value *CodeRegion = TheLoop->getHeader(); 2093 DebugLoc DL = TheLoop->getStartLoc(); 2094 2095 if (I) { 2096 CodeRegion = I->getParent(); 2097 // If there is no debug location attached to the instruction, revert back to 2098 // using the loop's. 2099 if (I->getDebugLoc()) 2100 DL = I->getDebugLoc(); 2101 } 2102 2103 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2104 CodeRegion); 2105 return *Report; 2106 } 2107 2108 bool LoopAccessInfo::isUniform(Value *V) const { 2109 auto *SE = PSE->getSE(); 2110 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 2111 // never considered uniform. 2112 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2113 // trivially loop-invariant FP values to be considered uniform. 2114 if (!SE->isSCEVable(V->getType())) 2115 return false; 2116 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 2117 } 2118 2119 // FIXME: this function is currently a duplicate of the one in 2120 // LoopVectorize.cpp. 2121 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 2122 Instruction *Loc) { 2123 if (FirstInst) 2124 return FirstInst; 2125 if (Instruction *I = dyn_cast<Instruction>(V)) 2126 return I->getParent() == Loc->getParent() ? I : nullptr; 2127 return nullptr; 2128 } 2129 2130 namespace { 2131 2132 /// IR Values for the lower and upper bounds of a pointer evolution. We 2133 /// need to use value-handles because SCEV expansion can invalidate previously 2134 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 2135 /// a previous one. 2136 struct PointerBounds { 2137 TrackingVH<Value> Start; 2138 TrackingVH<Value> End; 2139 }; 2140 2141 } // end anonymous namespace 2142 2143 /// Expand code for the lower and upper bound of the pointer group \p CG 2144 /// in \p TheLoop. \return the values for the bounds. 2145 static PointerBounds 2146 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, 2147 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, 2148 const RuntimePointerChecking &PtrRtChecking) { 2149 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; 2150 const SCEV *Sc = SE->getSCEV(Ptr); 2151 2152 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 2153 LLVMContext &Ctx = Loc->getContext(); 2154 2155 // Use this type for pointer arithmetic. 2156 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 2157 2158 if (SE->isLoopInvariant(Sc, TheLoop)) { 2159 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" 2160 << *Ptr << "\n"); 2161 // Ptr could be in the loop body. If so, expand a new one at the correct 2162 // location. 2163 Instruction *Inst = dyn_cast<Instruction>(Ptr); 2164 Value *NewPtr = (Inst && TheLoop->contains(Inst)) 2165 ? Exp.expandCodeFor(Sc, PtrArithTy, Loc) 2166 : Ptr; 2167 // We must return a half-open range, which means incrementing Sc. 2168 const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy)); 2169 Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc); 2170 return {NewPtr, NewPtrPlusOne}; 2171 } else { 2172 Value *Start = nullptr, *End = nullptr; 2173 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 2174 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 2175 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 2176 LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High 2177 << "\n"); 2178 return {Start, End}; 2179 } 2180 } 2181 2182 /// Turns a collection of checks into a collection of expanded upper and 2183 /// lower bounds for both pointers in the check. 2184 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( 2185 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, 2186 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, 2187 const RuntimePointerChecking &PtrRtChecking) { 2188 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 2189 2190 // Here we're relying on the SCEV Expander's cache to only emit code for the 2191 // same bounds once. 2192 transform( 2193 PointerChecks, std::back_inserter(ChecksWithBounds), 2194 [&](const RuntimePointerChecking::PointerCheck &Check) { 2195 PointerBounds 2196 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), 2197 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); 2198 return std::make_pair(First, Second); 2199 }); 2200 2201 return ChecksWithBounds; 2202 } 2203 2204 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( 2205 Instruction *Loc, 2206 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) 2207 const { 2208 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2209 auto *SE = PSE->getSE(); 2210 SCEVExpander Exp(*SE, DL, "induction"); 2211 auto ExpandedChecks = 2212 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking); 2213 2214 LLVMContext &Ctx = Loc->getContext(); 2215 Instruction *FirstInst = nullptr; 2216 IRBuilder<> ChkBuilder(Loc); 2217 // Our instructions might fold to a constant. 2218 Value *MemoryRuntimeCheck = nullptr; 2219 2220 for (const auto &Check : ExpandedChecks) { 2221 const PointerBounds &A = Check.first, &B = Check.second; 2222 // Check if two pointers (A and B) conflict where conflict is computed as: 2223 // start(A) <= end(B) && start(B) <= end(A) 2224 unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 2225 unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 2226 2227 assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 2228 (AS1 == A.End->getType()->getPointerAddressSpace()) && 2229 "Trying to bounds check pointers with different address spaces"); 2230 2231 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 2232 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 2233 2234 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 2235 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 2236 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 2237 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 2238 2239 // [A|B].Start points to the first accessed byte under base [A|B]. 2240 // [A|B].End points to the last accessed byte, plus one. 2241 // There is no conflict when the intervals are disjoint: 2242 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 2243 // 2244 // bound0 = (B.Start < A.End) 2245 // bound1 = (A.Start < B.End) 2246 // IsConflict = bound0 & bound1 2247 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); 2248 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 2249 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); 2250 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 2251 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 2252 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2253 if (MemoryRuntimeCheck) { 2254 IsConflict = 2255 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 2256 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2257 } 2258 MemoryRuntimeCheck = IsConflict; 2259 } 2260 2261 if (!MemoryRuntimeCheck) 2262 return std::make_pair(nullptr, nullptr); 2263 2264 // We have to do this trickery because the IRBuilder might fold the check to a 2265 // constant expression in which case there is no Instruction anchored in a 2266 // the block. 2267 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 2268 ConstantInt::getTrue(Ctx)); 2269 ChkBuilder.Insert(Check, "memcheck.conflict"); 2270 FirstInst = getFirstInst(FirstInst, Check, Loc); 2271 return std::make_pair(FirstInst, Check); 2272 } 2273 2274 std::pair<Instruction *, Instruction *> 2275 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { 2276 if (!PtrRtChecking->Need) 2277 return std::make_pair(nullptr, nullptr); 2278 2279 return addRuntimeChecks(Loc, PtrRtChecking->getChecks()); 2280 } 2281 2282 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2283 Value *Ptr = nullptr; 2284 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 2285 Ptr = LI->getPointerOperand(); 2286 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 2287 Ptr = SI->getPointerOperand(); 2288 else 2289 return; 2290 2291 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2292 if (!Stride) 2293 return; 2294 2295 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2296 "versioning:"); 2297 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2298 2299 // Avoid adding the "Stride == 1" predicate when we know that 2300 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2301 // or zero iteration loop, as Trip-Count <= Stride == 1. 2302 // 2303 // TODO: We are currently not making a very informed decision on when it is 2304 // beneficial to apply stride versioning. It might make more sense that the 2305 // users of this analysis (such as the vectorizer) will trigger it, based on 2306 // their specific cost considerations; For example, in cases where stride 2307 // versioning does not help resolving memory accesses/dependences, the 2308 // vectorizer should evaluate the cost of the runtime test, and the benefit 2309 // of various possible stride specializations, considering the alternatives 2310 // of using gather/scatters (if available). 2311 2312 const SCEV *StrideExpr = PSE->getSCEV(Stride); 2313 const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); 2314 2315 // Match the types so we can compare the stride and the BETakenCount. 2316 // The Stride can be positive/negative, so we sign extend Stride; 2317 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount. 2318 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2319 uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType()); 2320 uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType()); 2321 const SCEV *CastedStride = StrideExpr; 2322 const SCEV *CastedBECount = BETakenCount; 2323 ScalarEvolution *SE = PSE->getSE(); 2324 if (BETypeSize >= StrideTypeSize) 2325 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); 2326 else 2327 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); 2328 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2329 // Since TripCount == BackEdgeTakenCount + 1, checking: 2330 // "Stride >= TripCount" is equivalent to checking: 2331 // Stride - BETakenCount > 0 2332 if (SE->isKnownPositive(StrideMinusBETaken)) { 2333 LLVM_DEBUG( 2334 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2335 "Stride==1 predicate will imply that the loop executes " 2336 "at most once.\n"); 2337 return; 2338 } 2339 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version."); 2340 2341 SymbolicStrides[Ptr] = Stride; 2342 StrideSet.insert(Stride); 2343 } 2344 2345 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2346 const TargetLibraryInfo *TLI, AliasAnalysis *AA, 2347 DominatorTree *DT, LoopInfo *LI) 2348 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2349 PtrRtChecking(std::make_unique<RuntimePointerChecking>(SE)), 2350 DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), 2351 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), 2352 HasConvergentOp(false), 2353 HasDependenceInvolvingLoopInvariantAddress(false) { 2354 if (canAnalyzeLoop()) 2355 analyzeLoop(AA, LI, TLI, DT); 2356 } 2357 2358 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2359 if (CanVecMem) { 2360 OS.indent(Depth) << "Memory dependences are safe"; 2361 if (MaxSafeDepDistBytes != -1ULL) 2362 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2363 << " bytes"; 2364 if (PtrRtChecking->Need) 2365 OS << " with run-time checks"; 2366 OS << "\n"; 2367 } 2368 2369 if (HasConvergentOp) 2370 OS.indent(Depth) << "Has convergent operation in loop\n"; 2371 2372 if (Report) 2373 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2374 2375 if (auto *Dependences = DepChecker->getDependences()) { 2376 OS.indent(Depth) << "Dependences:\n"; 2377 for (auto &Dep : *Dependences) { 2378 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 2379 OS << "\n"; 2380 } 2381 } else 2382 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2383 2384 // List the pair of accesses need run-time checks to prove independence. 2385 PtrRtChecking->print(OS, Depth); 2386 OS << "\n"; 2387 2388 OS.indent(Depth) << "Non vectorizable stores to invariant address were " 2389 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") 2390 << "found in loop.\n"; 2391 2392 OS.indent(Depth) << "SCEV assumptions:\n"; 2393 PSE->getUnionPredicate().print(OS, Depth); 2394 2395 OS << "\n"; 2396 2397 OS.indent(Depth) << "Expressions re-written:\n"; 2398 PSE->print(OS, Depth); 2399 } 2400 2401 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) { 2402 initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry()); 2403 } 2404 2405 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 2406 auto &LAI = LoopAccessInfoMap[L]; 2407 2408 if (!LAI) 2409 LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 2410 2411 return *LAI.get(); 2412 } 2413 2414 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 2415 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2416 2417 for (Loop *TopLevelLoop : *LI) 2418 for (Loop *L : depth_first(TopLevelLoop)) { 2419 OS.indent(2) << L->getHeader()->getName() << ":\n"; 2420 auto &LAI = LAA.getInfo(L); 2421 LAI.print(OS, 4); 2422 } 2423 } 2424 2425 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2426 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2427 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2428 TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2429 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2430 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2431 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2432 2433 return false; 2434 } 2435 2436 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2437 AU.addRequired<ScalarEvolutionWrapperPass>(); 2438 AU.addRequired<AAResultsWrapperPass>(); 2439 AU.addRequired<DominatorTreeWrapperPass>(); 2440 AU.addRequired<LoopInfoWrapperPass>(); 2441 2442 AU.setPreservesAll(); 2443 } 2444 2445 char LoopAccessLegacyAnalysis::ID = 0; 2446 static const char laa_name[] = "Loop Access Analysis"; 2447 #define LAA_NAME "loop-accesses" 2448 2449 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2450 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2451 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2452 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2453 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2454 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2455 2456 AnalysisKey LoopAccessAnalysis::Key; 2457 2458 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, 2459 LoopStandardAnalysisResults &AR) { 2460 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); 2461 } 2462 2463 namespace llvm { 2464 2465 Pass *createLAAPass() { 2466 return new LoopAccessLegacyAnalysis(); 2467 } 2468 2469 } // end namespace llvm 2470