xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/LoopAccessAnalysis.cpp (revision 43e29d03f416d7dda52112a29600a7c82ee1a91e)
1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The implementation for the loop memory dependence that was originally
10 // developed for the loop vectorizer.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/LoopAccessAnalysis.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/EquivalenceClasses.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AliasSetTracker.h"
28 #include "llvm/Analysis/LoopAnalysisManager.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/Analysis/LoopIterator.h"
31 #include "llvm/Analysis/MemoryLocation.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ScalarEvolution.h"
34 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/DiagnosticInfo.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/PassManager.h"
51 #include "llvm/IR/PatternMatch.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/InitializePasses.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <iterator>
66 #include <utility>
67 #include <vector>
68 
69 using namespace llvm;
70 using namespace llvm::PatternMatch;
71 
72 #define DEBUG_TYPE "loop-accesses"
73 
74 static cl::opt<unsigned, true>
75 VectorizationFactor("force-vector-width", cl::Hidden,
76                     cl::desc("Sets the SIMD width. Zero is autoselect."),
77                     cl::location(VectorizerParams::VectorizationFactor));
78 unsigned VectorizerParams::VectorizationFactor;
79 
80 static cl::opt<unsigned, true>
81 VectorizationInterleave("force-vector-interleave", cl::Hidden,
82                         cl::desc("Sets the vectorization interleave count. "
83                                  "Zero is autoselect."),
84                         cl::location(
85                             VectorizerParams::VectorizationInterleave));
86 unsigned VectorizerParams::VectorizationInterleave;
87 
88 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
89     "runtime-memory-check-threshold", cl::Hidden,
90     cl::desc("When performing memory disambiguation checks at runtime do not "
91              "generate more than this number of comparisons (default = 8)."),
92     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
93 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
94 
95 /// The maximum iterations used to merge memory checks
96 static cl::opt<unsigned> MemoryCheckMergeThreshold(
97     "memory-check-merge-threshold", cl::Hidden,
98     cl::desc("Maximum number of comparisons done when trying to merge "
99              "runtime memory checks. (default = 100)"),
100     cl::init(100));
101 
102 /// Maximum SIMD width.
103 const unsigned VectorizerParams::MaxVectorWidth = 64;
104 
105 /// We collect dependences up to this threshold.
106 static cl::opt<unsigned>
107     MaxDependences("max-dependences", cl::Hidden,
108                    cl::desc("Maximum number of dependences collected by "
109                             "loop-access analysis (default = 100)"),
110                    cl::init(100));
111 
112 /// This enables versioning on the strides of symbolically striding memory
113 /// accesses in code like the following.
114 ///   for (i = 0; i < N; ++i)
115 ///     A[i * Stride1] += B[i * Stride2] ...
116 ///
117 /// Will be roughly translated to
118 ///    if (Stride1 == 1 && Stride2 == 1) {
119 ///      for (i = 0; i < N; i+=4)
120 ///       A[i:i+3] += ...
121 ///    } else
122 ///      ...
123 static cl::opt<bool> EnableMemAccessVersioning(
124     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
125     cl::desc("Enable symbolic stride memory access versioning"));
126 
127 /// Enable store-to-load forwarding conflict detection. This option can
128 /// be disabled for correctness testing.
129 static cl::opt<bool> EnableForwardingConflictDetection(
130     "store-to-load-forwarding-conflict-detection", cl::Hidden,
131     cl::desc("Enable conflict detection in loop-access analysis"),
132     cl::init(true));
133 
134 static cl::opt<unsigned> MaxForkedSCEVDepth(
135     "max-forked-scev-depth", cl::Hidden,
136     cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"),
137     cl::init(5));
138 
139 bool VectorizerParams::isInterleaveForced() {
140   return ::VectorizationInterleave.getNumOccurrences() > 0;
141 }
142 
143 Value *llvm::stripIntegerCast(Value *V) {
144   if (auto *CI = dyn_cast<CastInst>(V))
145     if (CI->getOperand(0)->getType()->isIntegerTy())
146       return CI->getOperand(0);
147   return V;
148 }
149 
150 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
151                                             const ValueToValueMap &PtrToStride,
152                                             Value *Ptr) {
153   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
154 
155   // If there is an entry in the map return the SCEV of the pointer with the
156   // symbolic stride replaced by one.
157   ValueToValueMap::const_iterator SI = PtrToStride.find(Ptr);
158   if (SI == PtrToStride.end())
159     // For a non-symbolic stride, just return the original expression.
160     return OrigSCEV;
161 
162   Value *StrideVal = stripIntegerCast(SI->second);
163 
164   ScalarEvolution *SE = PSE.getSE();
165   const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
166   const auto *CT =
167     static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
168 
169   PSE.addPredicate(*SE->getEqualPredicate(U, CT));
170   auto *Expr = PSE.getSCEV(Ptr);
171 
172   LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
173 	     << " by: " << *Expr << "\n");
174   return Expr;
175 }
176 
177 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup(
178     unsigned Index, RuntimePointerChecking &RtCheck)
179     : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start),
180       AddressSpace(RtCheck.Pointers[Index]
181                        .PointerValue->getType()
182                        ->getPointerAddressSpace()),
183       NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) {
184   Members.push_back(Index);
185 }
186 
187 /// Calculate Start and End points of memory access.
188 /// Let's assume A is the first access and B is a memory access on N-th loop
189 /// iteration. Then B is calculated as:
190 ///   B = A + Step*N .
191 /// Step value may be positive or negative.
192 /// N is a calculated back-edge taken count:
193 ///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
194 /// Start and End points are calculated in the following way:
195 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
196 /// where SizeOfElt is the size of single memory access in bytes.
197 ///
198 /// There is no conflict when the intervals are disjoint:
199 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
200 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr,
201                                     Type *AccessTy, bool WritePtr,
202                                     unsigned DepSetId, unsigned ASId,
203                                     PredicatedScalarEvolution &PSE,
204                                     bool NeedsFreeze) {
205   ScalarEvolution *SE = PSE.getSE();
206 
207   const SCEV *ScStart;
208   const SCEV *ScEnd;
209 
210   if (SE->isLoopInvariant(PtrExpr, Lp)) {
211     ScStart = ScEnd = PtrExpr;
212   } else {
213     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr);
214     assert(AR && "Invalid addrec expression");
215     const SCEV *Ex = PSE.getBackedgeTakenCount();
216 
217     ScStart = AR->getStart();
218     ScEnd = AR->evaluateAtIteration(Ex, *SE);
219     const SCEV *Step = AR->getStepRecurrence(*SE);
220 
221     // For expressions with negative step, the upper bound is ScStart and the
222     // lower bound is ScEnd.
223     if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
224       if (CStep->getValue()->isNegative())
225         std::swap(ScStart, ScEnd);
226     } else {
227       // Fallback case: the step is not constant, but we can still
228       // get the upper and lower bounds of the interval by using min/max
229       // expressions.
230       ScStart = SE->getUMinExpr(ScStart, ScEnd);
231       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
232     }
233   }
234   // Add the size of the pointed element to ScEnd.
235   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
236   Type *IdxTy = DL.getIndexType(Ptr->getType());
237   const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy);
238   ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
239 
240   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr,
241                         NeedsFreeze);
242 }
243 
244 void RuntimePointerChecking::tryToCreateDiffCheck(
245     const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) {
246   if (!CanUseDiffCheck)
247     return;
248 
249   // If either group contains multiple different pointers, bail out.
250   // TODO: Support multiple pointers by using the minimum or maximum pointer,
251   // depending on src & sink.
252   if (CGI.Members.size() != 1 || CGJ.Members.size() != 1) {
253     CanUseDiffCheck = false;
254     return;
255   }
256 
257   PointerInfo *Src = &Pointers[CGI.Members[0]];
258   PointerInfo *Sink = &Pointers[CGJ.Members[0]];
259 
260   // If either pointer is read and written, multiple checks may be needed. Bail
261   // out.
262   if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() ||
263       !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty()) {
264     CanUseDiffCheck = false;
265     return;
266   }
267 
268   ArrayRef<unsigned> AccSrc =
269       DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr);
270   ArrayRef<unsigned> AccSink =
271       DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr);
272   // If either pointer is accessed multiple times, there may not be a clear
273   // src/sink relation. Bail out for now.
274   if (AccSrc.size() != 1 || AccSink.size() != 1) {
275     CanUseDiffCheck = false;
276     return;
277   }
278   // If the sink is accessed before src, swap src/sink.
279   if (AccSink[0] < AccSrc[0])
280     std::swap(Src, Sink);
281 
282   auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr);
283   auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr);
284   if (!SrcAR || !SinkAR || SrcAR->getLoop() != DC.getInnermostLoop() ||
285       SinkAR->getLoop() != DC.getInnermostLoop()) {
286     CanUseDiffCheck = false;
287     return;
288   }
289 
290   SmallVector<Instruction *, 4> SrcInsts =
291       DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr);
292   SmallVector<Instruction *, 4> SinkInsts =
293       DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr);
294   Type *SrcTy = getLoadStoreType(SrcInsts[0]);
295   Type *DstTy = getLoadStoreType(SinkInsts[0]);
296   if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy)) {
297     CanUseDiffCheck = false;
298     return;
299   }
300   const DataLayout &DL =
301       SinkAR->getLoop()->getHeader()->getModule()->getDataLayout();
302   unsigned AllocSize =
303       std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy));
304 
305   // Only matching constant steps matching the AllocSize are supported at the
306   // moment. This simplifies the difference computation. Can be extended in the
307   // future.
308   auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE));
309   if (!Step || Step != SrcAR->getStepRecurrence(*SE) ||
310       Step->getAPInt().abs() != AllocSize) {
311     CanUseDiffCheck = false;
312     return;
313   }
314 
315   IntegerType *IntTy =
316       IntegerType::get(Src->PointerValue->getContext(),
317                        DL.getPointerSizeInBits(CGI.AddressSpace));
318 
319   // When counting down, the dependence distance needs to be swapped.
320   if (Step->getValue()->isNegative())
321     std::swap(SinkAR, SrcAR);
322 
323   const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy);
324   const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy);
325   if (isa<SCEVCouldNotCompute>(SinkStartInt) ||
326       isa<SCEVCouldNotCompute>(SrcStartInt)) {
327     CanUseDiffCheck = false;
328     return;
329   }
330   DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize,
331                           Src->NeedsFreeze || Sink->NeedsFreeze);
332 }
333 
334 SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() {
335   SmallVector<RuntimePointerCheck, 4> Checks;
336 
337   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
338     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
339       const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I];
340       const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J];
341 
342       if (needsChecking(CGI, CGJ)) {
343         tryToCreateDiffCheck(CGI, CGJ);
344         Checks.push_back(std::make_pair(&CGI, &CGJ));
345       }
346     }
347   }
348   return Checks;
349 }
350 
351 void RuntimePointerChecking::generateChecks(
352     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
353   assert(Checks.empty() && "Checks is not empty");
354   groupChecks(DepCands, UseDependencies);
355   Checks = generateChecks();
356 }
357 
358 bool RuntimePointerChecking::needsChecking(
359     const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const {
360   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
361     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
362       if (needsChecking(M.Members[I], N.Members[J]))
363         return true;
364   return false;
365 }
366 
367 /// Compare \p I and \p J and return the minimum.
368 /// Return nullptr in case we couldn't find an answer.
369 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
370                                    ScalarEvolution *SE) {
371   const SCEV *Diff = SE->getMinusSCEV(J, I);
372   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
373 
374   if (!C)
375     return nullptr;
376   if (C->getValue()->isNegative())
377     return J;
378   return I;
379 }
380 
381 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index,
382                                          RuntimePointerChecking &RtCheck) {
383   return addPointer(
384       Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End,
385       RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(),
386       RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE);
387 }
388 
389 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start,
390                                          const SCEV *End, unsigned AS,
391                                          bool NeedsFreeze,
392                                          ScalarEvolution &SE) {
393   assert(AddressSpace == AS &&
394          "all pointers in a checking group must be in the same address space");
395 
396   // Compare the starts and ends with the known minimum and maximum
397   // of this set. We need to know how we compare against the min/max
398   // of the set in order to be able to emit memchecks.
399   const SCEV *Min0 = getMinFromExprs(Start, Low, &SE);
400   if (!Min0)
401     return false;
402 
403   const SCEV *Min1 = getMinFromExprs(End, High, &SE);
404   if (!Min1)
405     return false;
406 
407   // Update the low bound  expression if we've found a new min value.
408   if (Min0 == Start)
409     Low = Start;
410 
411   // Update the high bound expression if we've found a new max value.
412   if (Min1 != End)
413     High = End;
414 
415   Members.push_back(Index);
416   this->NeedsFreeze |= NeedsFreeze;
417   return true;
418 }
419 
420 void RuntimePointerChecking::groupChecks(
421     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
422   // We build the groups from dependency candidates equivalence classes
423   // because:
424   //    - We know that pointers in the same equivalence class share
425   //      the same underlying object and therefore there is a chance
426   //      that we can compare pointers
427   //    - We wouldn't be able to merge two pointers for which we need
428   //      to emit a memcheck. The classes in DepCands are already
429   //      conveniently built such that no two pointers in the same
430   //      class need checking against each other.
431 
432   // We use the following (greedy) algorithm to construct the groups
433   // For every pointer in the equivalence class:
434   //   For each existing group:
435   //   - if the difference between this pointer and the min/max bounds
436   //     of the group is a constant, then make the pointer part of the
437   //     group and update the min/max bounds of that group as required.
438 
439   CheckingGroups.clear();
440 
441   // If we need to check two pointers to the same underlying object
442   // with a non-constant difference, we shouldn't perform any pointer
443   // grouping with those pointers. This is because we can easily get
444   // into cases where the resulting check would return false, even when
445   // the accesses are safe.
446   //
447   // The following example shows this:
448   // for (i = 0; i < 1000; ++i)
449   //   a[5000 + i * m] = a[i] + a[i + 9000]
450   //
451   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
452   // (0, 10000) which is always false. However, if m is 1, there is no
453   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
454   // us to perform an accurate check in this case.
455   //
456   // The above case requires that we have an UnknownDependence between
457   // accesses to the same underlying object. This cannot happen unless
458   // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
459   // is also false. In this case we will use the fallback path and create
460   // separate checking groups for all pointers.
461 
462   // If we don't have the dependency partitions, construct a new
463   // checking pointer group for each pointer. This is also required
464   // for correctness, because in this case we can have checking between
465   // pointers to the same underlying object.
466   if (!UseDependencies) {
467     for (unsigned I = 0; I < Pointers.size(); ++I)
468       CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this));
469     return;
470   }
471 
472   unsigned TotalComparisons = 0;
473 
474   DenseMap<Value *, SmallVector<unsigned>> PositionMap;
475   for (unsigned Index = 0; Index < Pointers.size(); ++Index) {
476     auto Iter = PositionMap.insert({Pointers[Index].PointerValue, {}});
477     Iter.first->second.push_back(Index);
478   }
479 
480   // We need to keep track of what pointers we've already seen so we
481   // don't process them twice.
482   SmallSet<unsigned, 2> Seen;
483 
484   // Go through all equivalence classes, get the "pointer check groups"
485   // and add them to the overall solution. We use the order in which accesses
486   // appear in 'Pointers' to enforce determinism.
487   for (unsigned I = 0; I < Pointers.size(); ++I) {
488     // We've seen this pointer before, and therefore already processed
489     // its equivalence class.
490     if (Seen.count(I))
491       continue;
492 
493     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
494                                            Pointers[I].IsWritePtr);
495 
496     SmallVector<RuntimeCheckingPtrGroup, 2> Groups;
497     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
498 
499     // Because DepCands is constructed by visiting accesses in the order in
500     // which they appear in alias sets (which is deterministic) and the
501     // iteration order within an equivalence class member is only dependent on
502     // the order in which unions and insertions are performed on the
503     // equivalence class, the iteration order is deterministic.
504     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
505          MI != ME; ++MI) {
506       auto PointerI = PositionMap.find(MI->getPointer());
507       assert(PointerI != PositionMap.end() &&
508              "pointer in equivalence class not found in PositionMap");
509       for (unsigned Pointer : PointerI->second) {
510         bool Merged = false;
511         // Mark this pointer as seen.
512         Seen.insert(Pointer);
513 
514         // Go through all the existing sets and see if we can find one
515         // which can include this pointer.
516         for (RuntimeCheckingPtrGroup &Group : Groups) {
517           // Don't perform more than a certain amount of comparisons.
518           // This should limit the cost of grouping the pointers to something
519           // reasonable.  If we do end up hitting this threshold, the algorithm
520           // will create separate groups for all remaining pointers.
521           if (TotalComparisons > MemoryCheckMergeThreshold)
522             break;
523 
524           TotalComparisons++;
525 
526           if (Group.addPointer(Pointer, *this)) {
527             Merged = true;
528             break;
529           }
530         }
531 
532         if (!Merged)
533           // We couldn't add this pointer to any existing set or the threshold
534           // for the number of comparisons has been reached. Create a new group
535           // to hold the current pointer.
536           Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this));
537       }
538     }
539 
540     // We've computed the grouped checks for this partition.
541     // Save the results and continue with the next one.
542     llvm::copy(Groups, std::back_inserter(CheckingGroups));
543   }
544 }
545 
546 bool RuntimePointerChecking::arePointersInSamePartition(
547     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
548     unsigned PtrIdx2) {
549   return (PtrToPartition[PtrIdx1] != -1 &&
550           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
551 }
552 
553 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
554   const PointerInfo &PointerI = Pointers[I];
555   const PointerInfo &PointerJ = Pointers[J];
556 
557   // No need to check if two readonly pointers intersect.
558   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
559     return false;
560 
561   // Only need to check pointers between two different dependency sets.
562   if (PointerI.DependencySetId == PointerJ.DependencySetId)
563     return false;
564 
565   // Only need to check pointers in the same alias set.
566   if (PointerI.AliasSetId != PointerJ.AliasSetId)
567     return false;
568 
569   return true;
570 }
571 
572 void RuntimePointerChecking::printChecks(
573     raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks,
574     unsigned Depth) const {
575   unsigned N = 0;
576   for (const auto &Check : Checks) {
577     const auto &First = Check.first->Members, &Second = Check.second->Members;
578 
579     OS.indent(Depth) << "Check " << N++ << ":\n";
580 
581     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
582     for (unsigned K = 0; K < First.size(); ++K)
583       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
584 
585     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
586     for (unsigned K = 0; K < Second.size(); ++K)
587       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
588   }
589 }
590 
591 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
592 
593   OS.indent(Depth) << "Run-time memory checks:\n";
594   printChecks(OS, Checks, Depth);
595 
596   OS.indent(Depth) << "Grouped accesses:\n";
597   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
598     const auto &CG = CheckingGroups[I];
599 
600     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
601     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
602                          << ")\n";
603     for (unsigned J = 0; J < CG.Members.size(); ++J) {
604       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
605                            << "\n";
606     }
607   }
608 }
609 
610 namespace {
611 
612 /// Analyses memory accesses in a loop.
613 ///
614 /// Checks whether run time pointer checks are needed and builds sets for data
615 /// dependence checking.
616 class AccessAnalysis {
617 public:
618   /// Read or write access location.
619   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
620   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
621 
622   AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI,
623                  MemoryDepChecker::DepCandidates &DA,
624                  PredicatedScalarEvolution &PSE)
625       : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE) {
626     // We're analyzing dependences across loop iterations.
627     BAA.enableCrossIterationMode();
628   }
629 
630   /// Register a load  and whether it is only read from.
631   void addLoad(MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) {
632     Value *Ptr = const_cast<Value*>(Loc.Ptr);
633     AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags);
634     Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy);
635     if (IsReadOnly)
636       ReadOnlyPtr.insert(Ptr);
637   }
638 
639   /// Register a store.
640   void addStore(MemoryLocation &Loc, Type *AccessTy) {
641     Value *Ptr = const_cast<Value*>(Loc.Ptr);
642     AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags);
643     Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy);
644   }
645 
646   /// Check if we can emit a run-time no-alias check for \p Access.
647   ///
648   /// Returns true if we can emit a run-time no alias check for \p Access.
649   /// If we can check this access, this also adds it to a dependence set and
650   /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
651   /// we will attempt to use additional run-time checks in order to get
652   /// the bounds of the pointer.
653   bool createCheckForAccess(RuntimePointerChecking &RtCheck,
654                             MemAccessInfo Access, Type *AccessTy,
655                             const ValueToValueMap &Strides,
656                             DenseMap<Value *, unsigned> &DepSetId,
657                             Loop *TheLoop, unsigned &RunningDepId,
658                             unsigned ASId, bool ShouldCheckStride, bool Assume);
659 
660   /// Check whether we can check the pointers at runtime for
661   /// non-intersection.
662   ///
663   /// Returns true if we need no check or if we do and we can generate them
664   /// (i.e. the pointers have computable bounds).
665   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
666                        Loop *TheLoop, const ValueToValueMap &Strides,
667                        Value *&UncomputablePtr, bool ShouldCheckWrap = false);
668 
669   /// Goes over all memory accesses, checks whether a RT check is needed
670   /// and builds sets of dependent accesses.
671   void buildDependenceSets() {
672     processMemAccesses();
673   }
674 
675   /// Initial processing of memory accesses determined that we need to
676   /// perform dependency checking.
677   ///
678   /// Note that this can later be cleared if we retry memcheck analysis without
679   /// dependency checking (i.e. FoundNonConstantDistanceDependence).
680   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
681 
682   /// We decided that no dependence analysis would be used.  Reset the state.
683   void resetDepChecks(MemoryDepChecker &DepChecker) {
684     CheckDeps.clear();
685     DepChecker.clearDependences();
686   }
687 
688   MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }
689 
690 private:
691   typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap;
692 
693   /// Go over all memory access and check whether runtime pointer checks
694   /// are needed and build sets of dependency check candidates.
695   void processMemAccesses();
696 
697   /// Map of all accesses. Values are the types used to access memory pointed to
698   /// by the pointer.
699   PtrAccessMap Accesses;
700 
701   /// The loop being checked.
702   const Loop *TheLoop;
703 
704   /// List of accesses that need a further dependence check.
705   MemAccessInfoList CheckDeps;
706 
707   /// Set of pointers that are read only.
708   SmallPtrSet<Value*, 16> ReadOnlyPtr;
709 
710   /// Batched alias analysis results.
711   BatchAAResults BAA;
712 
713   /// An alias set tracker to partition the access set by underlying object and
714   //intrinsic property (such as TBAA metadata).
715   AliasSetTracker AST;
716 
717   LoopInfo *LI;
718 
719   /// Sets of potentially dependent accesses - members of one set share an
720   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
721   /// dependence check.
722   MemoryDepChecker::DepCandidates &DepCands;
723 
724   /// Initial processing of memory accesses determined that we may need
725   /// to add memchecks.  Perform the analysis to determine the necessary checks.
726   ///
727   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
728   /// memcheck analysis without dependency checking
729   /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
730   /// cleared while this remains set if we have potentially dependent accesses.
731   bool IsRTCheckAnalysisNeeded = false;
732 
733   /// The SCEV predicate containing all the SCEV-related assumptions.
734   PredicatedScalarEvolution &PSE;
735 };
736 
737 } // end anonymous namespace
738 
739 /// Check whether a pointer can participate in a runtime bounds check.
740 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
741 /// by adding run-time checks (overflow checks) if necessary.
742 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr,
743                                 const SCEV *PtrScev, Loop *L, bool Assume) {
744   // The bounds for loop-invariant pointer is trivial.
745   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
746     return true;
747 
748   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
749 
750   if (!AR && Assume)
751     AR = PSE.getAsAddRec(Ptr);
752 
753   if (!AR)
754     return false;
755 
756   return AR->isAffine();
757 }
758 
759 /// Check whether a pointer address cannot wrap.
760 static bool isNoWrap(PredicatedScalarEvolution &PSE,
761                      const ValueToValueMap &Strides, Value *Ptr, Type *AccessTy,
762                      Loop *L) {
763   const SCEV *PtrScev = PSE.getSCEV(Ptr);
764   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
765     return true;
766 
767   int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides).value_or(0);
768   if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
769     return true;
770 
771   return false;
772 }
773 
774 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop,
775                           function_ref<void(Value *)> AddPointer) {
776   SmallPtrSet<Value *, 8> Visited;
777   SmallVector<Value *> WorkList;
778   WorkList.push_back(StartPtr);
779 
780   while (!WorkList.empty()) {
781     Value *Ptr = WorkList.pop_back_val();
782     if (!Visited.insert(Ptr).second)
783       continue;
784     auto *PN = dyn_cast<PHINode>(Ptr);
785     // SCEV does not look through non-header PHIs inside the loop. Such phis
786     // can be analyzed by adding separate accesses for each incoming pointer
787     // value.
788     if (PN && InnermostLoop.contains(PN->getParent()) &&
789         PN->getParent() != InnermostLoop.getHeader()) {
790       for (const Use &Inc : PN->incoming_values())
791         WorkList.push_back(Inc);
792     } else
793       AddPointer(Ptr);
794   }
795 }
796 
797 // Walk back through the IR for a pointer, looking for a select like the
798 // following:
799 //
800 //  %offset = select i1 %cmp, i64 %a, i64 %b
801 //  %addr = getelementptr double, double* %base, i64 %offset
802 //  %ld = load double, double* %addr, align 8
803 //
804 // We won't be able to form a single SCEVAddRecExpr from this since the
805 // address for each loop iteration depends on %cmp. We could potentially
806 // produce multiple valid SCEVAddRecExprs, though, and check all of them for
807 // memory safety/aliasing if needed.
808 //
809 // If we encounter some IR we don't yet handle, or something obviously fine
810 // like a constant, then we just add the SCEV for that term to the list passed
811 // in by the caller. If we have a node that may potentially yield a valid
812 // SCEVAddRecExpr then we decompose it into parts and build the SCEV terms
813 // ourselves before adding to the list.
814 static void findForkedSCEVs(
815     ScalarEvolution *SE, const Loop *L, Value *Ptr,
816     SmallVectorImpl<PointerIntPair<const SCEV *, 1, bool>> &ScevList,
817     unsigned Depth) {
818   // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or
819   // we've exceeded our limit on recursion, just return whatever we have
820   // regardless of whether it can be used for a forked pointer or not, along
821   // with an indication of whether it might be a poison or undef value.
822   const SCEV *Scev = SE->getSCEV(Ptr);
823   if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) ||
824       !isa<Instruction>(Ptr) || Depth == 0) {
825     ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
826     return;
827   }
828 
829   Depth--;
830 
831   auto UndefPoisonCheck = [](PointerIntPair<const SCEV *, 1, bool> S) {
832     return get<1>(S);
833   };
834 
835   auto GetBinOpExpr = [&SE](unsigned Opcode, const SCEV *L, const SCEV *R) {
836     switch (Opcode) {
837     case Instruction::Add:
838       return SE->getAddExpr(L, R);
839     case Instruction::Sub:
840       return SE->getMinusSCEV(L, R);
841     default:
842       llvm_unreachable("Unexpected binary operator when walking ForkedPtrs");
843     }
844   };
845 
846   Instruction *I = cast<Instruction>(Ptr);
847   unsigned Opcode = I->getOpcode();
848   switch (Opcode) {
849   case Instruction::GetElementPtr: {
850     GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
851     Type *SourceTy = GEP->getSourceElementType();
852     // We only handle base + single offset GEPs here for now.
853     // Not dealing with preexisting gathers yet, so no vectors.
854     if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) {
855       ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP));
856       break;
857     }
858     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> BaseScevs;
859     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> OffsetScevs;
860     findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth);
861     findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth);
862 
863     // See if we need to freeze our fork...
864     bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) ||
865                        any_of(OffsetScevs, UndefPoisonCheck);
866 
867     // Check that we only have a single fork, on either the base or the offset.
868     // Copy the SCEV across for the one without a fork in order to generate
869     // the full SCEV for both sides of the GEP.
870     if (OffsetScevs.size() == 2 && BaseScevs.size() == 1)
871       BaseScevs.push_back(BaseScevs[0]);
872     else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1)
873       OffsetScevs.push_back(OffsetScevs[0]);
874     else {
875       ScevList.emplace_back(Scev, NeedsFreeze);
876       break;
877     }
878 
879     // Find the pointer type we need to extend to.
880     Type *IntPtrTy = SE->getEffectiveSCEVType(
881         SE->getSCEV(GEP->getPointerOperand())->getType());
882 
883     // Find the size of the type being pointed to. We only have a single
884     // index term (guarded above) so we don't need to index into arrays or
885     // structures, just get the size of the scalar value.
886     const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy);
887 
888     // Scale up the offsets by the size of the type, then add to the bases.
889     const SCEV *Scaled1 = SE->getMulExpr(
890         Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[0]), IntPtrTy));
891     const SCEV *Scaled2 = SE->getMulExpr(
892         Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[1]), IntPtrTy));
893     ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[0]), Scaled1),
894                           NeedsFreeze);
895     ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[1]), Scaled2),
896                           NeedsFreeze);
897     break;
898   }
899   case Instruction::Select: {
900     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs;
901     // A select means we've found a forked pointer, but we currently only
902     // support a single select per pointer so if there's another behind this
903     // then we just bail out and return the generic SCEV.
904     findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
905     findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth);
906     if (ChildScevs.size() == 2) {
907       ScevList.push_back(ChildScevs[0]);
908       ScevList.push_back(ChildScevs[1]);
909     } else
910       ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
911     break;
912   }
913   case Instruction::Add:
914   case Instruction::Sub: {
915     SmallVector<PointerIntPair<const SCEV *, 1, bool>> LScevs;
916     SmallVector<PointerIntPair<const SCEV *, 1, bool>> RScevs;
917     findForkedSCEVs(SE, L, I->getOperand(0), LScevs, Depth);
918     findForkedSCEVs(SE, L, I->getOperand(1), RScevs, Depth);
919 
920     // See if we need to freeze our fork...
921     bool NeedsFreeze =
922         any_of(LScevs, UndefPoisonCheck) || any_of(RScevs, UndefPoisonCheck);
923 
924     // Check that we only have a single fork, on either the left or right side.
925     // Copy the SCEV across for the one without a fork in order to generate
926     // the full SCEV for both sides of the BinOp.
927     if (LScevs.size() == 2 && RScevs.size() == 1)
928       RScevs.push_back(RScevs[0]);
929     else if (RScevs.size() == 2 && LScevs.size() == 1)
930       LScevs.push_back(LScevs[0]);
931     else {
932       ScevList.emplace_back(Scev, NeedsFreeze);
933       break;
934     }
935 
936     ScevList.emplace_back(
937         GetBinOpExpr(Opcode, get<0>(LScevs[0]), get<0>(RScevs[0])),
938         NeedsFreeze);
939     ScevList.emplace_back(
940         GetBinOpExpr(Opcode, get<0>(LScevs[1]), get<0>(RScevs[1])),
941         NeedsFreeze);
942     break;
943   }
944   default:
945     // Just return the current SCEV if we haven't handled the instruction yet.
946     LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n");
947     ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
948     break;
949   }
950 }
951 
952 static SmallVector<PointerIntPair<const SCEV *, 1, bool>>
953 findForkedPointer(PredicatedScalarEvolution &PSE,
954                   const ValueToValueMap &StridesMap, Value *Ptr,
955                   const Loop *L) {
956   ScalarEvolution *SE = PSE.getSE();
957   assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!");
958   SmallVector<PointerIntPair<const SCEV *, 1, bool>> Scevs;
959   findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth);
960 
961   // For now, we will only accept a forked pointer with two possible SCEVs
962   // that are either SCEVAddRecExprs or loop invariant.
963   if (Scevs.size() == 2 &&
964       (isa<SCEVAddRecExpr>(get<0>(Scevs[0])) ||
965        SE->isLoopInvariant(get<0>(Scevs[0]), L)) &&
966       (isa<SCEVAddRecExpr>(get<0>(Scevs[1])) ||
967        SE->isLoopInvariant(get<0>(Scevs[1]), L))) {
968     LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr << "\n");
969     LLVM_DEBUG(dbgs() << "\t(1) " << *get<0>(Scevs[0]) << "\n");
970     LLVM_DEBUG(dbgs() << "\t(2) " << *get<0>(Scevs[1]) << "\n");
971     return Scevs;
972   }
973 
974   return {{replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false}};
975 }
976 
977 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
978                                           MemAccessInfo Access, Type *AccessTy,
979                                           const ValueToValueMap &StridesMap,
980                                           DenseMap<Value *, unsigned> &DepSetId,
981                                           Loop *TheLoop, unsigned &RunningDepId,
982                                           unsigned ASId, bool ShouldCheckWrap,
983                                           bool Assume) {
984   Value *Ptr = Access.getPointer();
985 
986   SmallVector<PointerIntPair<const SCEV *, 1, bool>> TranslatedPtrs =
987       findForkedPointer(PSE, StridesMap, Ptr, TheLoop);
988 
989   for (auto &P : TranslatedPtrs) {
990     const SCEV *PtrExpr = get<0>(P);
991     if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume))
992       return false;
993 
994     // When we run after a failing dependency check we have to make sure
995     // we don't have wrapping pointers.
996     if (ShouldCheckWrap) {
997       // Skip wrap checking when translating pointers.
998       if (TranslatedPtrs.size() > 1)
999         return false;
1000 
1001       if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) {
1002         auto *Expr = PSE.getSCEV(Ptr);
1003         if (!Assume || !isa<SCEVAddRecExpr>(Expr))
1004           return false;
1005         PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1006       }
1007     }
1008     // If there's only one option for Ptr, look it up after bounds and wrap
1009     // checking, because assumptions might have been added to PSE.
1010     if (TranslatedPtrs.size() == 1)
1011       TranslatedPtrs[0] = {replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr),
1012                            false};
1013   }
1014 
1015   for (auto [PtrExpr, NeedsFreeze] : TranslatedPtrs) {
1016     // The id of the dependence set.
1017     unsigned DepId;
1018 
1019     if (isDependencyCheckNeeded()) {
1020       Value *Leader = DepCands.getLeaderValue(Access).getPointer();
1021       unsigned &LeaderId = DepSetId[Leader];
1022       if (!LeaderId)
1023         LeaderId = RunningDepId++;
1024       DepId = LeaderId;
1025     } else
1026       // Each access has its own dependence set.
1027       DepId = RunningDepId++;
1028 
1029     bool IsWrite = Access.getInt();
1030     RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE,
1031                    NeedsFreeze);
1032     LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
1033   }
1034 
1035   return true;
1036 }
1037 
1038 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
1039                                      ScalarEvolution *SE, Loop *TheLoop,
1040                                      const ValueToValueMap &StridesMap,
1041                                      Value *&UncomputablePtr, bool ShouldCheckWrap) {
1042   // Find pointers with computable bounds. We are going to use this information
1043   // to place a runtime bound check.
1044   bool CanDoRT = true;
1045 
1046   bool MayNeedRTCheck = false;
1047   if (!IsRTCheckAnalysisNeeded) return true;
1048 
1049   bool IsDepCheckNeeded = isDependencyCheckNeeded();
1050 
1051   // We assign a consecutive id to access from different alias sets.
1052   // Accesses between different groups doesn't need to be checked.
1053   unsigned ASId = 0;
1054   for (auto &AS : AST) {
1055     int NumReadPtrChecks = 0;
1056     int NumWritePtrChecks = 0;
1057     bool CanDoAliasSetRT = true;
1058     ++ASId;
1059 
1060     // We assign consecutive id to access from different dependence sets.
1061     // Accesses within the same set don't need a runtime check.
1062     unsigned RunningDepId = 1;
1063     DenseMap<Value *, unsigned> DepSetId;
1064 
1065     SmallVector<std::pair<MemAccessInfo, Type *>, 4> Retries;
1066 
1067     // First, count how many write and read accesses are in the alias set. Also
1068     // collect MemAccessInfos for later.
1069     SmallVector<MemAccessInfo, 4> AccessInfos;
1070     for (const auto &A : AS) {
1071       Value *Ptr = A.getValue();
1072       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
1073 
1074       if (IsWrite)
1075         ++NumWritePtrChecks;
1076       else
1077         ++NumReadPtrChecks;
1078       AccessInfos.emplace_back(Ptr, IsWrite);
1079     }
1080 
1081     // We do not need runtime checks for this alias set, if there are no writes
1082     // or a single write and no reads.
1083     if (NumWritePtrChecks == 0 ||
1084         (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
1085       assert((AS.size() <= 1 ||
1086               all_of(AS,
1087                      [this](auto AC) {
1088                        MemAccessInfo AccessWrite(AC.getValue(), true);
1089                        return DepCands.findValue(AccessWrite) == DepCands.end();
1090                      })) &&
1091              "Can only skip updating CanDoRT below, if all entries in AS "
1092              "are reads or there is at most 1 entry");
1093       continue;
1094     }
1095 
1096     for (auto &Access : AccessInfos) {
1097       for (const auto &AccessTy : Accesses[Access]) {
1098         if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1099                                   DepSetId, TheLoop, RunningDepId, ASId,
1100                                   ShouldCheckWrap, false)) {
1101           LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"
1102                             << *Access.getPointer() << '\n');
1103           Retries.push_back({Access, AccessTy});
1104           CanDoAliasSetRT = false;
1105         }
1106       }
1107     }
1108 
1109     // Note that this function computes CanDoRT and MayNeedRTCheck
1110     // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
1111     // we have a pointer for which we couldn't find the bounds but we don't
1112     // actually need to emit any checks so it does not matter.
1113     //
1114     // We need runtime checks for this alias set, if there are at least 2
1115     // dependence sets (in which case RunningDepId > 2) or if we need to re-try
1116     // any bound checks (because in that case the number of dependence sets is
1117     // incomplete).
1118     bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty();
1119 
1120     // We need to perform run-time alias checks, but some pointers had bounds
1121     // that couldn't be checked.
1122     if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
1123       // Reset the CanDoSetRt flag and retry all accesses that have failed.
1124       // We know that we need these checks, so we can now be more aggressive
1125       // and add further checks if required (overflow checks).
1126       CanDoAliasSetRT = true;
1127       for (auto Retry : Retries) {
1128         MemAccessInfo Access = Retry.first;
1129         Type *AccessTy = Retry.second;
1130         if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1131                                   DepSetId, TheLoop, RunningDepId, ASId,
1132                                   ShouldCheckWrap, /*Assume=*/true)) {
1133           CanDoAliasSetRT = false;
1134           UncomputablePtr = Access.getPointer();
1135           break;
1136         }
1137       }
1138     }
1139 
1140     CanDoRT &= CanDoAliasSetRT;
1141     MayNeedRTCheck |= NeedsAliasSetRTCheck;
1142     ++ASId;
1143   }
1144 
1145   // If the pointers that we would use for the bounds comparison have different
1146   // address spaces, assume the values aren't directly comparable, so we can't
1147   // use them for the runtime check. We also have to assume they could
1148   // overlap. In the future there should be metadata for whether address spaces
1149   // are disjoint.
1150   unsigned NumPointers = RtCheck.Pointers.size();
1151   for (unsigned i = 0; i < NumPointers; ++i) {
1152     for (unsigned j = i + 1; j < NumPointers; ++j) {
1153       // Only need to check pointers between two different dependency sets.
1154       if (RtCheck.Pointers[i].DependencySetId ==
1155           RtCheck.Pointers[j].DependencySetId)
1156        continue;
1157       // Only need to check pointers in the same alias set.
1158       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
1159         continue;
1160 
1161       Value *PtrI = RtCheck.Pointers[i].PointerValue;
1162       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
1163 
1164       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
1165       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
1166       if (ASi != ASj) {
1167         LLVM_DEBUG(
1168             dbgs() << "LAA: Runtime check would require comparison between"
1169                       " different address spaces\n");
1170         return false;
1171       }
1172     }
1173   }
1174 
1175   if (MayNeedRTCheck && CanDoRT)
1176     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
1177 
1178   LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
1179                     << " pointer comparisons.\n");
1180 
1181   // If we can do run-time checks, but there are no checks, no runtime checks
1182   // are needed. This can happen when all pointers point to the same underlying
1183   // object for example.
1184   RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck;
1185 
1186   bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT;
1187   if (!CanDoRTIfNeeded)
1188     RtCheck.reset();
1189   return CanDoRTIfNeeded;
1190 }
1191 
1192 void AccessAnalysis::processMemAccesses() {
1193   // We process the set twice: first we process read-write pointers, last we
1194   // process read-only pointers. This allows us to skip dependence tests for
1195   // read-only pointers.
1196 
1197   LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
1198   LLVM_DEBUG(dbgs() << "  AST: "; AST.dump());
1199   LLVM_DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
1200   LLVM_DEBUG({
1201     for (auto A : Accesses)
1202       dbgs() << "\t" << *A.first.getPointer() << " ("
1203              << (A.first.getInt()
1204                      ? "write"
1205                      : (ReadOnlyPtr.count(A.first.getPointer()) ? "read-only"
1206                                                                 : "read"))
1207              << ")\n";
1208   });
1209 
1210   // The AliasSetTracker has nicely partitioned our pointers by metadata
1211   // compatibility and potential for underlying-object overlap. As a result, we
1212   // only need to check for potential pointer dependencies within each alias
1213   // set.
1214   for (const auto &AS : AST) {
1215     // Note that both the alias-set tracker and the alias sets themselves used
1216     // linked lists internally and so the iteration order here is deterministic
1217     // (matching the original instruction order within each set).
1218 
1219     bool SetHasWrite = false;
1220 
1221     // Map of pointers to last access encountered.
1222     typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
1223     UnderlyingObjToAccessMap ObjToLastAccess;
1224 
1225     // Set of access to check after all writes have been processed.
1226     PtrAccessMap DeferredAccesses;
1227 
1228     // Iterate over each alias set twice, once to process read/write pointers,
1229     // and then to process read-only pointers.
1230     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
1231       bool UseDeferred = SetIteration > 0;
1232       PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses;
1233 
1234       for (const auto &AV : AS) {
1235         Value *Ptr = AV.getValue();
1236 
1237         // For a single memory access in AliasSetTracker, Accesses may contain
1238         // both read and write, and they both need to be handled for CheckDeps.
1239         for (const auto &AC : S) {
1240           if (AC.first.getPointer() != Ptr)
1241             continue;
1242 
1243           bool IsWrite = AC.first.getInt();
1244 
1245           // If we're using the deferred access set, then it contains only
1246           // reads.
1247           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
1248           if (UseDeferred && !IsReadOnlyPtr)
1249             continue;
1250           // Otherwise, the pointer must be in the PtrAccessSet, either as a
1251           // read or a write.
1252           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
1253                   S.count(MemAccessInfo(Ptr, false))) &&
1254                  "Alias-set pointer not in the access set?");
1255 
1256           MemAccessInfo Access(Ptr, IsWrite);
1257           DepCands.insert(Access);
1258 
1259           // Memorize read-only pointers for later processing and skip them in
1260           // the first round (they need to be checked after we have seen all
1261           // write pointers). Note: we also mark pointer that are not
1262           // consecutive as "read-only" pointers (so that we check
1263           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
1264           if (!UseDeferred && IsReadOnlyPtr) {
1265             // We only use the pointer keys, the types vector values don't
1266             // matter.
1267             DeferredAccesses.insert({Access, {}});
1268             continue;
1269           }
1270 
1271           // If this is a write - check other reads and writes for conflicts. If
1272           // this is a read only check other writes for conflicts (but only if
1273           // there is no other write to the ptr - this is an optimization to
1274           // catch "a[i] = a[i] + " without having to do a dependence check).
1275           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
1276             CheckDeps.push_back(Access);
1277             IsRTCheckAnalysisNeeded = true;
1278           }
1279 
1280           if (IsWrite)
1281             SetHasWrite = true;
1282 
1283           // Create sets of pointers connected by a shared alias set and
1284           // underlying object.
1285           typedef SmallVector<const Value *, 16> ValueVector;
1286           ValueVector TempObjects;
1287 
1288           getUnderlyingObjects(Ptr, TempObjects, LI);
1289           LLVM_DEBUG(dbgs()
1290                      << "Underlying objects for pointer " << *Ptr << "\n");
1291           for (const Value *UnderlyingObj : TempObjects) {
1292             // nullptr never alias, don't join sets for pointer that have "null"
1293             // in their UnderlyingObjects list.
1294             if (isa<ConstantPointerNull>(UnderlyingObj) &&
1295                 !NullPointerIsDefined(
1296                     TheLoop->getHeader()->getParent(),
1297                     UnderlyingObj->getType()->getPointerAddressSpace()))
1298               continue;
1299 
1300             UnderlyingObjToAccessMap::iterator Prev =
1301                 ObjToLastAccess.find(UnderlyingObj);
1302             if (Prev != ObjToLastAccess.end())
1303               DepCands.unionSets(Access, Prev->second);
1304 
1305             ObjToLastAccess[UnderlyingObj] = Access;
1306             LLVM_DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
1307           }
1308         }
1309       }
1310     }
1311   }
1312 }
1313 
1314 static bool isInBoundsGep(Value *Ptr) {
1315   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
1316     return GEP->isInBounds();
1317   return false;
1318 }
1319 
1320 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
1321 /// i.e. monotonically increasing/decreasing.
1322 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
1323                            PredicatedScalarEvolution &PSE, const Loop *L) {
1324   // FIXME: This should probably only return true for NUW.
1325   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
1326     return true;
1327 
1328   // Scalar evolution does not propagate the non-wrapping flags to values that
1329   // are derived from a non-wrapping induction variable because non-wrapping
1330   // could be flow-sensitive.
1331   //
1332   // Look through the potentially overflowing instruction to try to prove
1333   // non-wrapping for the *specific* value of Ptr.
1334 
1335   // The arithmetic implied by an inbounds GEP can't overflow.
1336   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1337   if (!GEP || !GEP->isInBounds())
1338     return false;
1339 
1340   // Make sure there is only one non-const index and analyze that.
1341   Value *NonConstIndex = nullptr;
1342   for (Value *Index : GEP->indices())
1343     if (!isa<ConstantInt>(Index)) {
1344       if (NonConstIndex)
1345         return false;
1346       NonConstIndex = Index;
1347     }
1348   if (!NonConstIndex)
1349     // The recurrence is on the pointer, ignore for now.
1350     return false;
1351 
1352   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
1353   // AddRec using a NSW operation.
1354   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
1355     if (OBO->hasNoSignedWrap() &&
1356         // Assume constant for other the operand so that the AddRec can be
1357         // easily found.
1358         isa<ConstantInt>(OBO->getOperand(1))) {
1359       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
1360 
1361       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
1362         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
1363     }
1364 
1365   return false;
1366 }
1367 
1368 /// Check whether the access through \p Ptr has a constant stride.
1369 std::optional<int64_t> llvm::getPtrStride(PredicatedScalarEvolution &PSE,
1370                                           Type *AccessTy, Value *Ptr,
1371                                           const Loop *Lp,
1372                                           const ValueToValueMap &StridesMap,
1373                                           bool Assume, bool ShouldCheckWrap) {
1374   Type *Ty = Ptr->getType();
1375   assert(Ty->isPointerTy() && "Unexpected non-ptr");
1376 
1377   if (isa<ScalableVectorType>(AccessTy)) {
1378     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy
1379                       << "\n");
1380     return std::nullopt;
1381   }
1382 
1383   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
1384 
1385   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1386   if (Assume && !AR)
1387     AR = PSE.getAsAddRec(Ptr);
1388 
1389   if (!AR) {
1390     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1391                       << " SCEV: " << *PtrScev << "\n");
1392     return std::nullopt;
1393   }
1394 
1395   // The access function must stride over the innermost loop.
1396   if (Lp != AR->getLoop()) {
1397     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1398                       << *Ptr << " SCEV: " << *AR << "\n");
1399     return std::nullopt;
1400   }
1401 
1402   // The address calculation must not wrap. Otherwise, a dependence could be
1403   // inverted.
1404   // An inbounds getelementptr that is a AddRec with a unit stride
1405   // cannot wrap per definition. The unit stride requirement is checked later.
1406   // An getelementptr without an inbounds attribute and unit stride would have
1407   // to access the pointer value "0" which is undefined behavior in address
1408   // space 0, therefore we can also vectorize this case.
1409   unsigned AddrSpace = Ty->getPointerAddressSpace();
1410   bool IsInBoundsGEP = isInBoundsGep(Ptr);
1411   bool IsNoWrapAddRec = !ShouldCheckWrap ||
1412     PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
1413     isNoWrapAddRec(Ptr, AR, PSE, Lp);
1414   if (!IsNoWrapAddRec && !IsInBoundsGEP &&
1415       NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace)) {
1416     if (Assume) {
1417       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1418       IsNoWrapAddRec = true;
1419       LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
1420                         << "LAA:   Pointer: " << *Ptr << "\n"
1421                         << "LAA:   SCEV: " << *AR << "\n"
1422                         << "LAA:   Added an overflow assumption\n");
1423     } else {
1424       LLVM_DEBUG(
1425           dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1426                  << *Ptr << " SCEV: " << *AR << "\n");
1427       return std::nullopt;
1428     }
1429   }
1430 
1431   // Check the step is constant.
1432   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
1433 
1434   // Calculate the pointer stride and check if it is constant.
1435   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
1436   if (!C) {
1437     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1438                       << " SCEV: " << *AR << "\n");
1439     return std::nullopt;
1440   }
1441 
1442   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
1443   TypeSize AllocSize = DL.getTypeAllocSize(AccessTy);
1444   int64_t Size = AllocSize.getFixedValue();
1445   const APInt &APStepVal = C->getAPInt();
1446 
1447   // Huge step value - give up.
1448   if (APStepVal.getBitWidth() > 64)
1449     return std::nullopt;
1450 
1451   int64_t StepVal = APStepVal.getSExtValue();
1452 
1453   // Strided access.
1454   int64_t Stride = StepVal / Size;
1455   int64_t Rem = StepVal % Size;
1456   if (Rem)
1457     return std::nullopt;
1458 
1459   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
1460   // know we can't "wrap around the address space". In case of address space
1461   // zero we know that this won't happen without triggering undefined behavior.
1462   if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 &&
1463       (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(),
1464                                               AddrSpace))) {
1465     if (Assume) {
1466       // We can avoid this case by adding a run-time check.
1467       LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
1468                         << "inbounds or in address space 0 may wrap:\n"
1469                         << "LAA:   Pointer: " << *Ptr << "\n"
1470                         << "LAA:   SCEV: " << *AR << "\n"
1471                         << "LAA:   Added an overflow assumption\n");
1472       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1473     } else
1474       return std::nullopt;
1475   }
1476 
1477   return Stride;
1478 }
1479 
1480 std::optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA,
1481                                          Type *ElemTyB, Value *PtrB,
1482                                          const DataLayout &DL,
1483                                          ScalarEvolution &SE, bool StrictCheck,
1484                                          bool CheckType) {
1485   assert(PtrA && PtrB && "Expected non-nullptr pointers.");
1486   assert(cast<PointerType>(PtrA->getType())
1487              ->isOpaqueOrPointeeTypeMatches(ElemTyA) && "Wrong PtrA type");
1488   assert(cast<PointerType>(PtrB->getType())
1489              ->isOpaqueOrPointeeTypeMatches(ElemTyB) && "Wrong PtrB type");
1490 
1491   // Make sure that A and B are different pointers.
1492   if (PtrA == PtrB)
1493     return 0;
1494 
1495   // Make sure that the element types are the same if required.
1496   if (CheckType && ElemTyA != ElemTyB)
1497     return std::nullopt;
1498 
1499   unsigned ASA = PtrA->getType()->getPointerAddressSpace();
1500   unsigned ASB = PtrB->getType()->getPointerAddressSpace();
1501 
1502   // Check that the address spaces match.
1503   if (ASA != ASB)
1504     return std::nullopt;
1505   unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1506 
1507   APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1508   Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1509   Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1510 
1511   int Val;
1512   if (PtrA1 == PtrB1) {
1513     // Retrieve the address space again as pointer stripping now tracks through
1514     // `addrspacecast`.
1515     ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace();
1516     ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace();
1517     // Check that the address spaces match and that the pointers are valid.
1518     if (ASA != ASB)
1519       return std::nullopt;
1520 
1521     IdxWidth = DL.getIndexSizeInBits(ASA);
1522     OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1523     OffsetB = OffsetB.sextOrTrunc(IdxWidth);
1524 
1525     OffsetB -= OffsetA;
1526     Val = OffsetB.getSExtValue();
1527   } else {
1528     // Otherwise compute the distance with SCEV between the base pointers.
1529     const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1530     const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1531     const auto *Diff =
1532         dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA));
1533     if (!Diff)
1534       return std::nullopt;
1535     Val = Diff->getAPInt().getSExtValue();
1536   }
1537   int Size = DL.getTypeStoreSize(ElemTyA);
1538   int Dist = Val / Size;
1539 
1540   // Ensure that the calculated distance matches the type-based one after all
1541   // the bitcasts removal in the provided pointers.
1542   if (!StrictCheck || Dist * Size == Val)
1543     return Dist;
1544   return std::nullopt;
1545 }
1546 
1547 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
1548                            const DataLayout &DL, ScalarEvolution &SE,
1549                            SmallVectorImpl<unsigned> &SortedIndices) {
1550   assert(llvm::all_of(
1551              VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1552          "Expected list of pointer operands.");
1553   // Walk over the pointers, and map each of them to an offset relative to
1554   // first pointer in the array.
1555   Value *Ptr0 = VL[0];
1556 
1557   using DistOrdPair = std::pair<int64_t, int>;
1558   auto Compare = llvm::less_first();
1559   std::set<DistOrdPair, decltype(Compare)> Offsets(Compare);
1560   Offsets.emplace(0, 0);
1561   int Cnt = 1;
1562   bool IsConsecutive = true;
1563   for (auto *Ptr : VL.drop_front()) {
1564     std::optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE,
1565                                               /*StrictCheck=*/true);
1566     if (!Diff)
1567       return false;
1568 
1569     // Check if the pointer with the same offset is found.
1570     int64_t Offset = *Diff;
1571     auto Res = Offsets.emplace(Offset, Cnt);
1572     if (!Res.second)
1573       return false;
1574     // Consecutive order if the inserted element is the last one.
1575     IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end();
1576     ++Cnt;
1577   }
1578   SortedIndices.clear();
1579   if (!IsConsecutive) {
1580     // Fill SortedIndices array only if it is non-consecutive.
1581     SortedIndices.resize(VL.size());
1582     Cnt = 0;
1583     for (const std::pair<int64_t, int> &Pair : Offsets) {
1584       SortedIndices[Cnt] = Pair.second;
1585       ++Cnt;
1586     }
1587   }
1588   return true;
1589 }
1590 
1591 /// Returns true if the memory operations \p A and \p B are consecutive.
1592 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1593                                ScalarEvolution &SE, bool CheckType) {
1594   Value *PtrA = getLoadStorePointerOperand(A);
1595   Value *PtrB = getLoadStorePointerOperand(B);
1596   if (!PtrA || !PtrB)
1597     return false;
1598   Type *ElemTyA = getLoadStoreType(A);
1599   Type *ElemTyB = getLoadStoreType(B);
1600   std::optional<int> Diff =
1601       getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE,
1602                       /*StrictCheck=*/true, CheckType);
1603   return Diff && *Diff == 1;
1604 }
1605 
1606 void MemoryDepChecker::addAccess(StoreInst *SI) {
1607   visitPointers(SI->getPointerOperand(), *InnermostLoop,
1608                 [this, SI](Value *Ptr) {
1609                   Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
1610                   InstMap.push_back(SI);
1611                   ++AccessIdx;
1612                 });
1613 }
1614 
1615 void MemoryDepChecker::addAccess(LoadInst *LI) {
1616   visitPointers(LI->getPointerOperand(), *InnermostLoop,
1617                 [this, LI](Value *Ptr) {
1618                   Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
1619                   InstMap.push_back(LI);
1620                   ++AccessIdx;
1621                 });
1622 }
1623 
1624 MemoryDepChecker::VectorizationSafetyStatus
1625 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1626   switch (Type) {
1627   case NoDep:
1628   case Forward:
1629   case BackwardVectorizable:
1630     return VectorizationSafetyStatus::Safe;
1631 
1632   case Unknown:
1633     return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
1634   case ForwardButPreventsForwarding:
1635   case Backward:
1636   case BackwardVectorizableButPreventsForwarding:
1637     return VectorizationSafetyStatus::Unsafe;
1638   }
1639   llvm_unreachable("unexpected DepType!");
1640 }
1641 
1642 bool MemoryDepChecker::Dependence::isBackward() const {
1643   switch (Type) {
1644   case NoDep:
1645   case Forward:
1646   case ForwardButPreventsForwarding:
1647   case Unknown:
1648     return false;
1649 
1650   case BackwardVectorizable:
1651   case Backward:
1652   case BackwardVectorizableButPreventsForwarding:
1653     return true;
1654   }
1655   llvm_unreachable("unexpected DepType!");
1656 }
1657 
1658 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1659   return isBackward() || Type == Unknown;
1660 }
1661 
1662 bool MemoryDepChecker::Dependence::isForward() const {
1663   switch (Type) {
1664   case Forward:
1665   case ForwardButPreventsForwarding:
1666     return true;
1667 
1668   case NoDep:
1669   case Unknown:
1670   case BackwardVectorizable:
1671   case Backward:
1672   case BackwardVectorizableButPreventsForwarding:
1673     return false;
1674   }
1675   llvm_unreachable("unexpected DepType!");
1676 }
1677 
1678 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1679                                                     uint64_t TypeByteSize) {
1680   // If loads occur at a distance that is not a multiple of a feasible vector
1681   // factor store-load forwarding does not take place.
1682   // Positive dependences might cause troubles because vectorizing them might
1683   // prevent store-load forwarding making vectorized code run a lot slower.
1684   //   a[i] = a[i-3] ^ a[i-8];
1685   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1686   //   hence on your typical architecture store-load forwarding does not take
1687   //   place. Vectorizing in such cases does not make sense.
1688   // Store-load forwarding distance.
1689 
1690   // After this many iterations store-to-load forwarding conflicts should not
1691   // cause any slowdowns.
1692   const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1693   // Maximum vector factor.
1694   uint64_t MaxVFWithoutSLForwardIssues = std::min(
1695       VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
1696 
1697   // Compute the smallest VF at which the store and load would be misaligned.
1698   for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1699        VF *= 2) {
1700     // If the number of vector iteration between the store and the load are
1701     // small we could incur conflicts.
1702     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1703       MaxVFWithoutSLForwardIssues = (VF >> 1);
1704       break;
1705     }
1706   }
1707 
1708   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1709     LLVM_DEBUG(
1710         dbgs() << "LAA: Distance " << Distance
1711                << " that could cause a store-load forwarding conflict\n");
1712     return true;
1713   }
1714 
1715   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1716       MaxVFWithoutSLForwardIssues !=
1717           VectorizerParams::MaxVectorWidth * TypeByteSize)
1718     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1719   return false;
1720 }
1721 
1722 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
1723   if (Status < S)
1724     Status = S;
1725 }
1726 
1727 /// Given a dependence-distance \p Dist between two
1728 /// memory accesses, that have the same stride whose absolute value is given
1729 /// in \p Stride, and that have the same type size \p TypeByteSize,
1730 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
1731 /// possible to prove statically that the dependence distance is larger
1732 /// than the range that the accesses will travel through the execution of
1733 /// the loop. If so, return true; false otherwise. This is useful for
1734 /// example in loops such as the following (PR31098):
1735 ///     for (i = 0; i < D; ++i) {
1736 ///                = out[i];
1737 ///       out[i+D] =
1738 ///     }
1739 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1740                                      const SCEV &BackedgeTakenCount,
1741                                      const SCEV &Dist, uint64_t Stride,
1742                                      uint64_t TypeByteSize) {
1743 
1744   // If we can prove that
1745   //      (**) |Dist| > BackedgeTakenCount * Step
1746   // where Step is the absolute stride of the memory accesses in bytes,
1747   // then there is no dependence.
1748   //
1749   // Rationale:
1750   // We basically want to check if the absolute distance (|Dist/Step|)
1751   // is >= the loop iteration count (or > BackedgeTakenCount).
1752   // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1753   // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1754   // that the dependence distance is >= VF; This is checked elsewhere.
1755   // But in some cases we can prune dependence distances early, and
1756   // even before selecting the VF, and without a runtime test, by comparing
1757   // the distance against the loop iteration count. Since the vectorized code
1758   // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1759   // also guarantees that distance >= VF.
1760   //
1761   const uint64_t ByteStride = Stride * TypeByteSize;
1762   const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
1763   const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);
1764 
1765   const SCEV *CastedDist = &Dist;
1766   const SCEV *CastedProduct = Product;
1767   uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType());
1768   uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType());
1769 
1770   // The dependence distance can be positive/negative, so we sign extend Dist;
1771   // The multiplication of the absolute stride in bytes and the
1772   // backedgeTakenCount is non-negative, so we zero extend Product.
1773   if (DistTypeSizeBits > ProductTypeSizeBits)
1774     CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1775   else
1776     CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1777 
1778   // Is  Dist - (BackedgeTakenCount * Step) > 0 ?
1779   // (If so, then we have proven (**) because |Dist| >= Dist)
1780   const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1781   if (SE.isKnownPositive(Minus))
1782     return true;
1783 
1784   // Second try: Is  -Dist - (BackedgeTakenCount * Step) > 0 ?
1785   // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1786   const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1787   Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1788   if (SE.isKnownPositive(Minus))
1789     return true;
1790 
1791   return false;
1792 }
1793 
1794 /// Check the dependence for two accesses with the same stride \p Stride.
1795 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1796 /// bytes.
1797 ///
1798 /// \returns true if they are independent.
1799 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1800                                           uint64_t TypeByteSize) {
1801   assert(Stride > 1 && "The stride must be greater than 1");
1802   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1803   assert(Distance > 0 && "The distance must be non-zero");
1804 
1805   // Skip if the distance is not multiple of type byte size.
1806   if (Distance % TypeByteSize)
1807     return false;
1808 
1809   uint64_t ScaledDist = Distance / TypeByteSize;
1810 
1811   // No dependence if the scaled distance is not multiple of the stride.
1812   // E.g.
1813   //      for (i = 0; i < 1024 ; i += 4)
1814   //        A[i+2] = A[i] + 1;
1815   //
1816   // Two accesses in memory (scaled distance is 2, stride is 4):
1817   //     | A[0] |      |      |      | A[4] |      |      |      |
1818   //     |      |      | A[2] |      |      |      | A[6] |      |
1819   //
1820   // E.g.
1821   //      for (i = 0; i < 1024 ; i += 3)
1822   //        A[i+4] = A[i] + 1;
1823   //
1824   // Two accesses in memory (scaled distance is 4, stride is 3):
1825   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1826   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1827   return ScaledDist % Stride;
1828 }
1829 
1830 MemoryDepChecker::Dependence::DepType
1831 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1832                               const MemAccessInfo &B, unsigned BIdx,
1833                               const ValueToValueMap &Strides) {
1834   assert (AIdx < BIdx && "Must pass arguments in program order");
1835 
1836   auto [APtr, AIsWrite] = A;
1837   auto [BPtr, BIsWrite] = B;
1838   Type *ATy = getLoadStoreType(InstMap[AIdx]);
1839   Type *BTy = getLoadStoreType(InstMap[BIdx]);
1840 
1841   // Two reads are independent.
1842   if (!AIsWrite && !BIsWrite)
1843     return Dependence::NoDep;
1844 
1845   // We cannot check pointers in different address spaces.
1846   if (APtr->getType()->getPointerAddressSpace() !=
1847       BPtr->getType()->getPointerAddressSpace())
1848     return Dependence::Unknown;
1849 
1850   int64_t StrideAPtr =
1851     getPtrStride(PSE, ATy, APtr, InnermostLoop, Strides, true).value_or(0);
1852   int64_t StrideBPtr =
1853     getPtrStride(PSE, BTy, BPtr, InnermostLoop, Strides, true).value_or(0);
1854 
1855   const SCEV *Src = PSE.getSCEV(APtr);
1856   const SCEV *Sink = PSE.getSCEV(BPtr);
1857 
1858   // If the induction step is negative we have to invert source and sink of the
1859   // dependence.
1860   if (StrideAPtr < 0) {
1861     std::swap(APtr, BPtr);
1862     std::swap(ATy, BTy);
1863     std::swap(Src, Sink);
1864     std::swap(AIsWrite, BIsWrite);
1865     std::swap(AIdx, BIdx);
1866     std::swap(StrideAPtr, StrideBPtr);
1867   }
1868 
1869   ScalarEvolution &SE = *PSE.getSE();
1870   const SCEV *Dist = SE.getMinusSCEV(Sink, Src);
1871 
1872   LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1873                     << "(Induction step: " << StrideAPtr << ")\n");
1874   LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1875                     << *InstMap[BIdx] << ": " << *Dist << "\n");
1876 
1877   // Need accesses with constant stride. We don't want to vectorize
1878   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1879   // the address space.
1880   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1881     LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1882     return Dependence::Unknown;
1883   }
1884 
1885   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1886   uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1887   bool HasSameSize =
1888       DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy);
1889   uint64_t Stride = std::abs(StrideAPtr);
1890 
1891   if (!isa<SCEVCouldNotCompute>(Dist) && HasSameSize &&
1892       isSafeDependenceDistance(DL, SE, *(PSE.getBackedgeTakenCount()), *Dist,
1893                                Stride, TypeByteSize))
1894     return Dependence::NoDep;
1895 
1896   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1897   if (!C) {
1898     LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1899     FoundNonConstantDistanceDependence = true;
1900     return Dependence::Unknown;
1901   }
1902 
1903   const APInt &Val = C->getAPInt();
1904   int64_t Distance = Val.getSExtValue();
1905 
1906   // Attempt to prove strided accesses independent.
1907   if (std::abs(Distance) > 0 && Stride > 1 && HasSameSize &&
1908       areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1909     LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1910     return Dependence::NoDep;
1911   }
1912 
1913   // Negative distances are not plausible dependencies.
1914   if (Val.isNegative()) {
1915     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1916     if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1917         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1918          !HasSameSize)) {
1919       LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
1920       return Dependence::ForwardButPreventsForwarding;
1921     }
1922 
1923     LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
1924     return Dependence::Forward;
1925   }
1926 
1927   // Write to the same location with the same size.
1928   if (Val == 0) {
1929     if (HasSameSize)
1930       return Dependence::Forward;
1931     LLVM_DEBUG(
1932         dbgs() << "LAA: Zero dependence difference but different type sizes\n");
1933     return Dependence::Unknown;
1934   }
1935 
1936   assert(Val.isStrictlyPositive() && "Expect a positive value");
1937 
1938   if (!HasSameSize) {
1939     LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with "
1940                          "different type sizes\n");
1941     return Dependence::Unknown;
1942   }
1943 
1944   // Bail out early if passed-in parameters make vectorization not feasible.
1945   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1946                            VectorizerParams::VectorizationFactor : 1);
1947   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1948                            VectorizerParams::VectorizationInterleave : 1);
1949   // The minimum number of iterations for a vectorized/unrolled version.
1950   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1951 
1952   // It's not vectorizable if the distance is smaller than the minimum distance
1953   // needed for a vectroized/unrolled version. Vectorizing one iteration in
1954   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1955   // TypeByteSize (No need to plus the last gap distance).
1956   //
1957   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1958   //      foo(int *A) {
1959   //        int *B = (int *)((char *)A + 14);
1960   //        for (i = 0 ; i < 1024 ; i += 2)
1961   //          B[i] = A[i] + 1;
1962   //      }
1963   //
1964   // Two accesses in memory (stride is 2):
1965   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1966   //                              | B[0] |      | B[2] |      | B[4] |
1967   //
1968   // Distance needs for vectorizing iterations except the last iteration:
1969   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1970   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1971   //
1972   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1973   // 12, which is less than distance.
1974   //
1975   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1976   // the minimum distance needed is 28, which is greater than distance. It is
1977   // not safe to do vectorization.
1978   uint64_t MinDistanceNeeded =
1979       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1980   if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
1981     LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance "
1982                       << Distance << '\n');
1983     return Dependence::Backward;
1984   }
1985 
1986   // Unsafe if the minimum distance needed is greater than max safe distance.
1987   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1988     LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
1989                       << MinDistanceNeeded << " size in bytes\n");
1990     return Dependence::Backward;
1991   }
1992 
1993   // Positive distance bigger than max vectorization factor.
1994   // FIXME: Should use max factor instead of max distance in bytes, which could
1995   // not handle different types.
1996   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1997   //      void foo (int *A, char *B) {
1998   //        for (unsigned i = 0; i < 1024; i++) {
1999   //          A[i+2] = A[i] + 1;
2000   //          B[i+2] = B[i] + 1;
2001   //        }
2002   //      }
2003   //
2004   // This case is currently unsafe according to the max safe distance. If we
2005   // analyze the two accesses on array B, the max safe dependence distance
2006   // is 2. Then we analyze the accesses on array A, the minimum distance needed
2007   // is 8, which is less than 2 and forbidden vectorization, But actually
2008   // both A and B could be vectorized by 2 iterations.
2009   MaxSafeDepDistBytes =
2010       std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
2011 
2012   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
2013   if (IsTrueDataDependence && EnableForwardingConflictDetection &&
2014       couldPreventStoreLoadForward(Distance, TypeByteSize))
2015     return Dependence::BackwardVectorizableButPreventsForwarding;
2016 
2017   uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride);
2018   LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
2019                     << " with max VF = " << MaxVF << '\n');
2020   uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
2021   MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
2022   return Dependence::BackwardVectorizable;
2023 }
2024 
2025 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
2026                                    MemAccessInfoList &CheckDeps,
2027                                    const ValueToValueMap &Strides) {
2028 
2029   MaxSafeDepDistBytes = -1;
2030   SmallPtrSet<MemAccessInfo, 8> Visited;
2031   for (MemAccessInfo CurAccess : CheckDeps) {
2032     if (Visited.count(CurAccess))
2033       continue;
2034 
2035     // Get the relevant memory access set.
2036     EquivalenceClasses<MemAccessInfo>::iterator I =
2037       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
2038 
2039     // Check accesses within this set.
2040     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
2041         AccessSets.member_begin(I);
2042     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
2043         AccessSets.member_end();
2044 
2045     // Check every access pair.
2046     while (AI != AE) {
2047       Visited.insert(*AI);
2048       bool AIIsWrite = AI->getInt();
2049       // Check loads only against next equivalent class, but stores also against
2050       // other stores in the same equivalence class - to the same address.
2051       EquivalenceClasses<MemAccessInfo>::member_iterator OI =
2052           (AIIsWrite ? AI : std::next(AI));
2053       while (OI != AE) {
2054         // Check every accessing instruction pair in program order.
2055         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
2056              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
2057           // Scan all accesses of another equivalence class, but only the next
2058           // accesses of the same equivalent class.
2059           for (std::vector<unsigned>::iterator
2060                    I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
2061                    I2E = (OI == AI ? I1E : Accesses[*OI].end());
2062                I2 != I2E; ++I2) {
2063             auto A = std::make_pair(&*AI, *I1);
2064             auto B = std::make_pair(&*OI, *I2);
2065 
2066             assert(*I1 != *I2);
2067             if (*I1 > *I2)
2068               std::swap(A, B);
2069 
2070             Dependence::DepType Type =
2071                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
2072             mergeInStatus(Dependence::isSafeForVectorization(Type));
2073 
2074             // Gather dependences unless we accumulated MaxDependences
2075             // dependences.  In that case return as soon as we find the first
2076             // unsafe dependence.  This puts a limit on this quadratic
2077             // algorithm.
2078             if (RecordDependences) {
2079               if (Type != Dependence::NoDep)
2080                 Dependences.push_back(Dependence(A.second, B.second, Type));
2081 
2082               if (Dependences.size() >= MaxDependences) {
2083                 RecordDependences = false;
2084                 Dependences.clear();
2085                 LLVM_DEBUG(dbgs()
2086                            << "Too many dependences, stopped recording\n");
2087               }
2088             }
2089             if (!RecordDependences && !isSafeForVectorization())
2090               return false;
2091           }
2092         ++OI;
2093       }
2094       AI++;
2095     }
2096   }
2097 
2098   LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
2099   return isSafeForVectorization();
2100 }
2101 
2102 SmallVector<Instruction *, 4>
2103 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
2104   MemAccessInfo Access(Ptr, isWrite);
2105   auto &IndexVector = Accesses.find(Access)->second;
2106 
2107   SmallVector<Instruction *, 4> Insts;
2108   transform(IndexVector,
2109                  std::back_inserter(Insts),
2110                  [&](unsigned Idx) { return this->InstMap[Idx]; });
2111   return Insts;
2112 }
2113 
2114 const char *MemoryDepChecker::Dependence::DepName[] = {
2115     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
2116     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
2117 
2118 void MemoryDepChecker::Dependence::print(
2119     raw_ostream &OS, unsigned Depth,
2120     const SmallVectorImpl<Instruction *> &Instrs) const {
2121   OS.indent(Depth) << DepName[Type] << ":\n";
2122   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
2123   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
2124 }
2125 
2126 bool LoopAccessInfo::canAnalyzeLoop() {
2127   // We need to have a loop header.
2128   LLVM_DEBUG(dbgs() << "LAA: Found a loop in "
2129                     << TheLoop->getHeader()->getParent()->getName() << ": "
2130                     << TheLoop->getHeader()->getName() << '\n');
2131 
2132   // We can only analyze innermost loops.
2133   if (!TheLoop->isInnermost()) {
2134     LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
2135     recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
2136     return false;
2137   }
2138 
2139   // We must have a single backedge.
2140   if (TheLoop->getNumBackEdges() != 1) {
2141     LLVM_DEBUG(
2142         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
2143     recordAnalysis("CFGNotUnderstood")
2144         << "loop control flow is not understood by analyzer";
2145     return false;
2146   }
2147 
2148   // ScalarEvolution needs to be able to find the exit count.
2149   const SCEV *ExitCount = PSE->getBackedgeTakenCount();
2150   if (isa<SCEVCouldNotCompute>(ExitCount)) {
2151     recordAnalysis("CantComputeNumberOfIterations")
2152         << "could not determine number of loop iterations";
2153     LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
2154     return false;
2155   }
2156 
2157   return true;
2158 }
2159 
2160 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI,
2161                                  const TargetLibraryInfo *TLI,
2162                                  DominatorTree *DT) {
2163   // Holds the Load and Store instructions.
2164   SmallVector<LoadInst *, 16> Loads;
2165   SmallVector<StoreInst *, 16> Stores;
2166 
2167   // Holds all the different accesses in the loop.
2168   unsigned NumReads = 0;
2169   unsigned NumReadWrites = 0;
2170 
2171   bool HasComplexMemInst = false;
2172 
2173   // A runtime check is only legal to insert if there are no convergent calls.
2174   HasConvergentOp = false;
2175 
2176   PtrRtChecking->Pointers.clear();
2177   PtrRtChecking->Need = false;
2178 
2179   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
2180 
2181   const bool EnableMemAccessVersioningOfLoop =
2182       EnableMemAccessVersioning &&
2183       !TheLoop->getHeader()->getParent()->hasOptSize();
2184 
2185   // Traverse blocks in fixed RPOT order, regardless of their storage in the
2186   // loop info, as it may be arbitrary.
2187   LoopBlocksRPO RPOT(TheLoop);
2188   RPOT.perform(LI);
2189   for (BasicBlock *BB : RPOT) {
2190     // Scan the BB and collect legal loads and stores. Also detect any
2191     // convergent instructions.
2192     for (Instruction &I : *BB) {
2193       if (auto *Call = dyn_cast<CallBase>(&I)) {
2194         if (Call->isConvergent())
2195           HasConvergentOp = true;
2196       }
2197 
2198       // With both a non-vectorizable memory instruction and a convergent
2199       // operation, found in this loop, no reason to continue the search.
2200       if (HasComplexMemInst && HasConvergentOp) {
2201         CanVecMem = false;
2202         return;
2203       }
2204 
2205       // Avoid hitting recordAnalysis multiple times.
2206       if (HasComplexMemInst)
2207         continue;
2208 
2209       // If this is a load, save it. If this instruction can read from memory
2210       // but is not a load, then we quit. Notice that we don't handle function
2211       // calls that read or write.
2212       if (I.mayReadFromMemory()) {
2213         // Many math library functions read the rounding mode. We will only
2214         // vectorize a loop if it contains known function calls that don't set
2215         // the flag. Therefore, it is safe to ignore this read from memory.
2216         auto *Call = dyn_cast<CallInst>(&I);
2217         if (Call && getVectorIntrinsicIDForCall(Call, TLI))
2218           continue;
2219 
2220         // If the function has an explicit vectorized counterpart, we can safely
2221         // assume that it can be vectorized.
2222         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
2223             !VFDatabase::getMappings(*Call).empty())
2224           continue;
2225 
2226         auto *Ld = dyn_cast<LoadInst>(&I);
2227         if (!Ld) {
2228           recordAnalysis("CantVectorizeInstruction", Ld)
2229             << "instruction cannot be vectorized";
2230           HasComplexMemInst = true;
2231           continue;
2232         }
2233         if (!Ld->isSimple() && !IsAnnotatedParallel) {
2234           recordAnalysis("NonSimpleLoad", Ld)
2235               << "read with atomic ordering or volatile read";
2236           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
2237           HasComplexMemInst = true;
2238           continue;
2239         }
2240         NumLoads++;
2241         Loads.push_back(Ld);
2242         DepChecker->addAccess(Ld);
2243         if (EnableMemAccessVersioningOfLoop)
2244           collectStridedAccess(Ld);
2245         continue;
2246       }
2247 
2248       // Save 'store' instructions. Abort if other instructions write to memory.
2249       if (I.mayWriteToMemory()) {
2250         auto *St = dyn_cast<StoreInst>(&I);
2251         if (!St) {
2252           recordAnalysis("CantVectorizeInstruction", St)
2253               << "instruction cannot be vectorized";
2254           HasComplexMemInst = true;
2255           continue;
2256         }
2257         if (!St->isSimple() && !IsAnnotatedParallel) {
2258           recordAnalysis("NonSimpleStore", St)
2259               << "write with atomic ordering or volatile write";
2260           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
2261           HasComplexMemInst = true;
2262           continue;
2263         }
2264         NumStores++;
2265         Stores.push_back(St);
2266         DepChecker->addAccess(St);
2267         if (EnableMemAccessVersioningOfLoop)
2268           collectStridedAccess(St);
2269       }
2270     } // Next instr.
2271   } // Next block.
2272 
2273   if (HasComplexMemInst) {
2274     CanVecMem = false;
2275     return;
2276   }
2277 
2278   // Now we have two lists that hold the loads and the stores.
2279   // Next, we find the pointers that they use.
2280 
2281   // Check if we see any stores. If there are no stores, then we don't
2282   // care if the pointers are *restrict*.
2283   if (!Stores.size()) {
2284     LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
2285     CanVecMem = true;
2286     return;
2287   }
2288 
2289   MemoryDepChecker::DepCandidates DependentAccesses;
2290   AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE);
2291 
2292   // Holds the analyzed pointers. We don't want to call getUnderlyingObjects
2293   // multiple times on the same object. If the ptr is accessed twice, once
2294   // for read and once for write, it will only appear once (on the write
2295   // list). This is okay, since we are going to check for conflicts between
2296   // writes and between reads and writes, but not between reads and reads.
2297   SmallSet<std::pair<Value *, Type *>, 16> Seen;
2298 
2299   // Record uniform store addresses to identify if we have multiple stores
2300   // to the same address.
2301   SmallPtrSet<Value *, 16> UniformStores;
2302 
2303   for (StoreInst *ST : Stores) {
2304     Value *Ptr = ST->getPointerOperand();
2305 
2306     if (isUniform(Ptr)) {
2307       // Record store instructions to loop invariant addresses
2308       StoresToInvariantAddresses.push_back(ST);
2309       HasDependenceInvolvingLoopInvariantAddress |=
2310           !UniformStores.insert(Ptr).second;
2311     }
2312 
2313     // If we did *not* see this pointer before, insert it to  the read-write
2314     // list. At this phase it is only a 'write' list.
2315     Type *AccessTy = getLoadStoreType(ST);
2316     if (Seen.insert({Ptr, AccessTy}).second) {
2317       ++NumReadWrites;
2318 
2319       MemoryLocation Loc = MemoryLocation::get(ST);
2320       // The TBAA metadata could have a control dependency on the predication
2321       // condition, so we cannot rely on it when determining whether or not we
2322       // need runtime pointer checks.
2323       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
2324         Loc.AATags.TBAA = nullptr;
2325 
2326       visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2327                     [&Accesses, AccessTy, Loc](Value *Ptr) {
2328                       MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2329                       Accesses.addStore(NewLoc, AccessTy);
2330                     });
2331     }
2332   }
2333 
2334   if (IsAnnotatedParallel) {
2335     LLVM_DEBUG(
2336         dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
2337                << "checks.\n");
2338     CanVecMem = true;
2339     return;
2340   }
2341 
2342   for (LoadInst *LD : Loads) {
2343     Value *Ptr = LD->getPointerOperand();
2344     // If we did *not* see this pointer before, insert it to the
2345     // read list. If we *did* see it before, then it is already in
2346     // the read-write list. This allows us to vectorize expressions
2347     // such as A[i] += x;  Because the address of A[i] is a read-write
2348     // pointer. This only works if the index of A[i] is consecutive.
2349     // If the address of i is unknown (for example A[B[i]]) then we may
2350     // read a few words, modify, and write a few words, and some of the
2351     // words may be written to the same address.
2352     bool IsReadOnlyPtr = false;
2353     Type *AccessTy = getLoadStoreType(LD);
2354     if (Seen.insert({Ptr, AccessTy}).second ||
2355         !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides).value_or(0)) {
2356       ++NumReads;
2357       IsReadOnlyPtr = true;
2358     }
2359 
2360     // See if there is an unsafe dependency between a load to a uniform address and
2361     // store to the same uniform address.
2362     if (UniformStores.count(Ptr)) {
2363       LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
2364                            "load and uniform store to the same address!\n");
2365       HasDependenceInvolvingLoopInvariantAddress = true;
2366     }
2367 
2368     MemoryLocation Loc = MemoryLocation::get(LD);
2369     // The TBAA metadata could have a control dependency on the predication
2370     // condition, so we cannot rely on it when determining whether or not we
2371     // need runtime pointer checks.
2372     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
2373       Loc.AATags.TBAA = nullptr;
2374 
2375     visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2376                   [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) {
2377                     MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2378                     Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr);
2379                   });
2380   }
2381 
2382   // If we write (or read-write) to a single destination and there are no
2383   // other reads in this loop then is it safe to vectorize.
2384   if (NumReadWrites == 1 && NumReads == 0) {
2385     LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
2386     CanVecMem = true;
2387     return;
2388   }
2389 
2390   // Build dependence sets and check whether we need a runtime pointer bounds
2391   // check.
2392   Accesses.buildDependenceSets();
2393 
2394   // Find pointers with computable bounds. We are going to use this information
2395   // to place a runtime bound check.
2396   Value *UncomputablePtr = nullptr;
2397   bool CanDoRTIfNeeded =
2398       Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop,
2399                                SymbolicStrides, UncomputablePtr, false);
2400   if (!CanDoRTIfNeeded) {
2401     auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2402     recordAnalysis("CantIdentifyArrayBounds", I)
2403         << "cannot identify array bounds";
2404     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
2405                       << "the array bounds.\n");
2406     CanVecMem = false;
2407     return;
2408   }
2409 
2410   LLVM_DEBUG(
2411     dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
2412 
2413   CanVecMem = true;
2414   if (Accesses.isDependencyCheckNeeded()) {
2415     LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2416     CanVecMem = DepChecker->areDepsSafe(
2417         DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
2418     MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
2419 
2420     if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
2421       LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
2422 
2423       // Clear the dependency checks. We assume they are not needed.
2424       Accesses.resetDepChecks(*DepChecker);
2425 
2426       PtrRtChecking->reset();
2427       PtrRtChecking->Need = true;
2428 
2429       auto *SE = PSE->getSE();
2430       UncomputablePtr = nullptr;
2431       CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(
2432           *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true);
2433 
2434       // Check that we found the bounds for the pointer.
2435       if (!CanDoRTIfNeeded) {
2436         auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2437         recordAnalysis("CantCheckMemDepsAtRunTime", I)
2438             << "cannot check memory dependencies at runtime";
2439         LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2440         CanVecMem = false;
2441         return;
2442       }
2443 
2444       CanVecMem = true;
2445     }
2446   }
2447 
2448   if (HasConvergentOp) {
2449     recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2450       << "cannot add control dependency to convergent operation";
2451     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
2452                          "would be needed with a convergent operation\n");
2453     CanVecMem = false;
2454     return;
2455   }
2456 
2457   if (CanVecMem)
2458     LLVM_DEBUG(
2459         dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
2460                << (PtrRtChecking->Need ? "" : " don't")
2461                << " need runtime memory checks.\n");
2462   else
2463     emitUnsafeDependenceRemark();
2464 }
2465 
2466 void LoopAccessInfo::emitUnsafeDependenceRemark() {
2467   auto Deps = getDepChecker().getDependences();
2468   if (!Deps)
2469     return;
2470   auto Found = llvm::find_if(*Deps, [](const MemoryDepChecker::Dependence &D) {
2471     return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) !=
2472            MemoryDepChecker::VectorizationSafetyStatus::Safe;
2473   });
2474   if (Found == Deps->end())
2475     return;
2476   MemoryDepChecker::Dependence Dep = *Found;
2477 
2478   LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2479 
2480   // Emit remark for first unsafe dependence
2481   OptimizationRemarkAnalysis &R =
2482       recordAnalysis("UnsafeDep", Dep.getDestination(*this))
2483       << "unsafe dependent memory operations in loop. Use "
2484          "#pragma loop distribute(enable) to allow loop distribution "
2485          "to attempt to isolate the offending operations into a separate "
2486          "loop";
2487 
2488   switch (Dep.Type) {
2489   case MemoryDepChecker::Dependence::NoDep:
2490   case MemoryDepChecker::Dependence::Forward:
2491   case MemoryDepChecker::Dependence::BackwardVectorizable:
2492     llvm_unreachable("Unexpected dependence");
2493   case MemoryDepChecker::Dependence::Backward:
2494     R << "\nBackward loop carried data dependence.";
2495     break;
2496   case MemoryDepChecker::Dependence::ForwardButPreventsForwarding:
2497     R << "\nForward loop carried data dependence that prevents "
2498          "store-to-load forwarding.";
2499     break;
2500   case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding:
2501     R << "\nBackward loop carried data dependence that prevents "
2502          "store-to-load forwarding.";
2503     break;
2504   case MemoryDepChecker::Dependence::Unknown:
2505     R << "\nUnknown data dependence.";
2506     break;
2507   }
2508 
2509   if (Instruction *I = Dep.getSource(*this)) {
2510     DebugLoc SourceLoc = I->getDebugLoc();
2511     if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I)))
2512       SourceLoc = DD->getDebugLoc();
2513     if (SourceLoc)
2514       R << " Memory location is the same as accessed at "
2515         << ore::NV("Location", SourceLoc);
2516   }
2517 }
2518 
2519 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
2520                                            DominatorTree *DT)  {
2521   assert(TheLoop->contains(BB) && "Unknown block used");
2522 
2523   // Blocks that do not dominate the latch need predication.
2524   BasicBlock* Latch = TheLoop->getLoopLatch();
2525   return !DT->dominates(BB, Latch);
2526 }
2527 
2528 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
2529                                                            Instruction *I) {
2530   assert(!Report && "Multiple reports generated");
2531 
2532   Value *CodeRegion = TheLoop->getHeader();
2533   DebugLoc DL = TheLoop->getStartLoc();
2534 
2535   if (I) {
2536     CodeRegion = I->getParent();
2537     // If there is no debug location attached to the instruction, revert back to
2538     // using the loop's.
2539     if (I->getDebugLoc())
2540       DL = I->getDebugLoc();
2541   }
2542 
2543   Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
2544                                                    CodeRegion);
2545   return *Report;
2546 }
2547 
2548 bool LoopAccessInfo::isUniform(Value *V) const {
2549   auto *SE = PSE->getSE();
2550   // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
2551   // never considered uniform.
2552   // TODO: Is this really what we want? Even without FP SCEV, we may want some
2553   // trivially loop-invariant FP values to be considered uniform.
2554   if (!SE->isSCEVable(V->getType()))
2555     return false;
2556   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
2557 }
2558 
2559 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2560   Value *Ptr = getLoadStorePointerOperand(MemAccess);
2561   if (!Ptr)
2562     return;
2563 
2564   Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2565   if (!Stride)
2566     return;
2567 
2568   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2569                        "versioning:");
2570   LLVM_DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
2571 
2572   // Avoid adding the "Stride == 1" predicate when we know that
2573   // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2574   // or zero iteration loop, as Trip-Count <= Stride == 1.
2575   //
2576   // TODO: We are currently not making a very informed decision on when it is
2577   // beneficial to apply stride versioning. It might make more sense that the
2578   // users of this analysis (such as the vectorizer) will trigger it, based on
2579   // their specific cost considerations; For example, in cases where stride
2580   // versioning does  not help resolving memory accesses/dependences, the
2581   // vectorizer should evaluate the cost of the runtime test, and the benefit
2582   // of various possible stride specializations, considering the alternatives
2583   // of using gather/scatters (if available).
2584 
2585   const SCEV *StrideExpr = PSE->getSCEV(Stride);
2586   const SCEV *BETakenCount = PSE->getBackedgeTakenCount();
2587 
2588   // Match the types so we can compare the stride and the BETakenCount.
2589   // The Stride can be positive/negative, so we sign extend Stride;
2590   // The backedgeTakenCount is non-negative, so we zero extend BETakenCount.
2591   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
2592   uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType());
2593   uint64_t BETypeSizeBits = DL.getTypeSizeInBits(BETakenCount->getType());
2594   const SCEV *CastedStride = StrideExpr;
2595   const SCEV *CastedBECount = BETakenCount;
2596   ScalarEvolution *SE = PSE->getSE();
2597   if (BETypeSizeBits >= StrideTypeSizeBits)
2598     CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType());
2599   else
2600     CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType());
2601   const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
2602   // Since TripCount == BackEdgeTakenCount + 1, checking:
2603   // "Stride >= TripCount" is equivalent to checking:
2604   // Stride - BETakenCount > 0
2605   if (SE->isKnownPositive(StrideMinusBETaken)) {
2606     LLVM_DEBUG(
2607         dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2608                   "Stride==1 predicate will imply that the loop executes "
2609                   "at most once.\n");
2610     return;
2611   }
2612   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n");
2613 
2614   SymbolicStrides[Ptr] = Stride;
2615   StrideSet.insert(Stride);
2616 }
2617 
2618 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
2619                                const TargetLibraryInfo *TLI, AAResults *AA,
2620                                DominatorTree *DT, LoopInfo *LI)
2621     : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
2622       PtrRtChecking(nullptr),
2623       DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L) {
2624   PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE);
2625   if (canAnalyzeLoop()) {
2626     analyzeLoop(AA, LI, TLI, DT);
2627   }
2628 }
2629 
2630 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2631   if (CanVecMem) {
2632     OS.indent(Depth) << "Memory dependences are safe";
2633     if (MaxSafeDepDistBytes != -1ULL)
2634       OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
2635          << " bytes";
2636     if (PtrRtChecking->Need)
2637       OS << " with run-time checks";
2638     OS << "\n";
2639   }
2640 
2641   if (HasConvergentOp)
2642     OS.indent(Depth) << "Has convergent operation in loop\n";
2643 
2644   if (Report)
2645     OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
2646 
2647   if (auto *Dependences = DepChecker->getDependences()) {
2648     OS.indent(Depth) << "Dependences:\n";
2649     for (const auto &Dep : *Dependences) {
2650       Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
2651       OS << "\n";
2652     }
2653   } else
2654     OS.indent(Depth) << "Too many dependences, not recorded\n";
2655 
2656   // List the pair of accesses need run-time checks to prove independence.
2657   PtrRtChecking->print(OS, Depth);
2658   OS << "\n";
2659 
2660   OS.indent(Depth) << "Non vectorizable stores to invariant address were "
2661                    << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ")
2662                    << "found in loop.\n";
2663 
2664   OS.indent(Depth) << "SCEV assumptions:\n";
2665   PSE->getPredicate().print(OS, Depth);
2666 
2667   OS << "\n";
2668 
2669   OS.indent(Depth) << "Expressions re-written:\n";
2670   PSE->print(OS, Depth);
2671 }
2672 
2673 const LoopAccessInfo &LoopAccessInfoManager::getInfo(Loop &L) {
2674   auto I = LoopAccessInfoMap.insert({&L, nullptr});
2675 
2676   if (I.second)
2677     I.first->second =
2678         std::make_unique<LoopAccessInfo>(&L, &SE, TLI, &AA, &DT, &LI);
2679 
2680   return *I.first->second;
2681 }
2682 
2683 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) {
2684   initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry());
2685 }
2686 
2687 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
2688   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2689   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2690   auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2691   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2692   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2693   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2694   LAIs = std::make_unique<LoopAccessInfoManager>(SE, AA, DT, LI, TLI);
2695   return false;
2696 }
2697 
2698 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
2699   AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
2700   AU.addRequiredTransitive<AAResultsWrapperPass>();
2701   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2702   AU.addRequiredTransitive<LoopInfoWrapperPass>();
2703 
2704   AU.setPreservesAll();
2705 }
2706 
2707 LoopAccessInfoManager LoopAccessAnalysis::run(Function &F,
2708                                               FunctionAnalysisManager &AM) {
2709   return LoopAccessInfoManager(
2710       AM.getResult<ScalarEvolutionAnalysis>(F), AM.getResult<AAManager>(F),
2711       AM.getResult<DominatorTreeAnalysis>(F), AM.getResult<LoopAnalysis>(F),
2712       &AM.getResult<TargetLibraryAnalysis>(F));
2713 }
2714 
2715 char LoopAccessLegacyAnalysis::ID = 0;
2716 static const char laa_name[] = "Loop Access Analysis";
2717 #define LAA_NAME "loop-accesses"
2718 
2719 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2720 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2721 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
2722 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2723 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2724 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2725 
2726 AnalysisKey LoopAccessAnalysis::Key;
2727 
2728 namespace llvm {
2729 
2730   Pass *createLAAPass() {
2731     return new LoopAccessLegacyAnalysis();
2732   }
2733 
2734 } // end namespace llvm
2735