xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/LoopAccessAnalysis.cpp (revision 38a52bd3b5cac3da6f7f6eef3dd050e6aa08ebb3)
1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The implementation for the loop memory dependence that was originally
10 // developed for the loop vectorizer.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/LoopAccessAnalysis.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/EquivalenceClasses.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AliasSetTracker.h"
28 #include "llvm/Analysis/LoopAnalysisManager.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/Analysis/MemoryLocation.h"
31 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/IR/ValueHandle.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <cstdlib>
64 #include <iterator>
65 #include <utility>
66 #include <vector>
67 
68 using namespace llvm;
69 
70 #define DEBUG_TYPE "loop-accesses"
71 
72 static cl::opt<unsigned, true>
73 VectorizationFactor("force-vector-width", cl::Hidden,
74                     cl::desc("Sets the SIMD width. Zero is autoselect."),
75                     cl::location(VectorizerParams::VectorizationFactor));
76 unsigned VectorizerParams::VectorizationFactor;
77 
78 static cl::opt<unsigned, true>
79 VectorizationInterleave("force-vector-interleave", cl::Hidden,
80                         cl::desc("Sets the vectorization interleave count. "
81                                  "Zero is autoselect."),
82                         cl::location(
83                             VectorizerParams::VectorizationInterleave));
84 unsigned VectorizerParams::VectorizationInterleave;
85 
86 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
87     "runtime-memory-check-threshold", cl::Hidden,
88     cl::desc("When performing memory disambiguation checks at runtime do not "
89              "generate more than this number of comparisons (default = 8)."),
90     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
91 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
92 
93 /// The maximum iterations used to merge memory checks
94 static cl::opt<unsigned> MemoryCheckMergeThreshold(
95     "memory-check-merge-threshold", cl::Hidden,
96     cl::desc("Maximum number of comparisons done when trying to merge "
97              "runtime memory checks. (default = 100)"),
98     cl::init(100));
99 
100 /// Maximum SIMD width.
101 const unsigned VectorizerParams::MaxVectorWidth = 64;
102 
103 /// We collect dependences up to this threshold.
104 static cl::opt<unsigned>
105     MaxDependences("max-dependences", cl::Hidden,
106                    cl::desc("Maximum number of dependences collected by "
107                             "loop-access analysis (default = 100)"),
108                    cl::init(100));
109 
110 /// This enables versioning on the strides of symbolically striding memory
111 /// accesses in code like the following.
112 ///   for (i = 0; i < N; ++i)
113 ///     A[i * Stride1] += B[i * Stride2] ...
114 ///
115 /// Will be roughly translated to
116 ///    if (Stride1 == 1 && Stride2 == 1) {
117 ///      for (i = 0; i < N; i+=4)
118 ///       A[i:i+3] += ...
119 ///    } else
120 ///      ...
121 static cl::opt<bool> EnableMemAccessVersioning(
122     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
123     cl::desc("Enable symbolic stride memory access versioning"));
124 
125 /// Enable store-to-load forwarding conflict detection. This option can
126 /// be disabled for correctness testing.
127 static cl::opt<bool> EnableForwardingConflictDetection(
128     "store-to-load-forwarding-conflict-detection", cl::Hidden,
129     cl::desc("Enable conflict detection in loop-access analysis"),
130     cl::init(true));
131 
132 bool VectorizerParams::isInterleaveForced() {
133   return ::VectorizationInterleave.getNumOccurrences() > 0;
134 }
135 
136 Value *llvm::stripIntegerCast(Value *V) {
137   if (auto *CI = dyn_cast<CastInst>(V))
138     if (CI->getOperand(0)->getType()->isIntegerTy())
139       return CI->getOperand(0);
140   return V;
141 }
142 
143 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
144                                             const ValueToValueMap &PtrToStride,
145                                             Value *Ptr) {
146   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
147 
148   // If there is an entry in the map return the SCEV of the pointer with the
149   // symbolic stride replaced by one.
150   ValueToValueMap::const_iterator SI = PtrToStride.find(Ptr);
151   if (SI == PtrToStride.end())
152     // For a non-symbolic stride, just return the original expression.
153     return OrigSCEV;
154 
155   Value *StrideVal = stripIntegerCast(SI->second);
156 
157   ScalarEvolution *SE = PSE.getSE();
158   const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
159   const auto *CT =
160     static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
161 
162   PSE.addPredicate(*SE->getEqualPredicate(U, CT));
163   auto *Expr = PSE.getSCEV(Ptr);
164 
165   LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
166 	     << " by: " << *Expr << "\n");
167   return Expr;
168 }
169 
170 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup(
171     unsigned Index, RuntimePointerChecking &RtCheck)
172     : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start),
173       AddressSpace(RtCheck.Pointers[Index]
174                        .PointerValue->getType()
175                        ->getPointerAddressSpace()) {
176   Members.push_back(Index);
177 }
178 
179 /// Calculate Start and End points of memory access.
180 /// Let's assume A is the first access and B is a memory access on N-th loop
181 /// iteration. Then B is calculated as:
182 ///   B = A + Step*N .
183 /// Step value may be positive or negative.
184 /// N is a calculated back-edge taken count:
185 ///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
186 /// Start and End points are calculated in the following way:
187 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
188 /// where SizeOfElt is the size of single memory access in bytes.
189 ///
190 /// There is no conflict when the intervals are disjoint:
191 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
192 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
193                                     unsigned DepSetId, unsigned ASId,
194                                     const ValueToValueMap &Strides,
195                                     PredicatedScalarEvolution &PSE) {
196   // Get the stride replaced scev.
197   const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
198   ScalarEvolution *SE = PSE.getSE();
199 
200   const SCEV *ScStart;
201   const SCEV *ScEnd;
202 
203   if (SE->isLoopInvariant(Sc, Lp)) {
204     ScStart = ScEnd = Sc;
205   } else {
206     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
207     assert(AR && "Invalid addrec expression");
208     const SCEV *Ex = PSE.getBackedgeTakenCount();
209 
210     ScStart = AR->getStart();
211     ScEnd = AR->evaluateAtIteration(Ex, *SE);
212     const SCEV *Step = AR->getStepRecurrence(*SE);
213 
214     // For expressions with negative step, the upper bound is ScStart and the
215     // lower bound is ScEnd.
216     if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
217       if (CStep->getValue()->isNegative())
218         std::swap(ScStart, ScEnd);
219     } else {
220       // Fallback case: the step is not constant, but we can still
221       // get the upper and lower bounds of the interval by using min/max
222       // expressions.
223       ScStart = SE->getUMinExpr(ScStart, ScEnd);
224       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
225     }
226   }
227   // Add the size of the pointed element to ScEnd.
228   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
229   Type *IdxTy = DL.getIndexType(Ptr->getType());
230   const SCEV *EltSizeSCEV =
231       SE->getStoreSizeOfExpr(IdxTy, Ptr->getType()->getPointerElementType());
232   ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
233 
234   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
235 }
236 
237 SmallVector<RuntimePointerCheck, 4>
238 RuntimePointerChecking::generateChecks() const {
239   SmallVector<RuntimePointerCheck, 4> Checks;
240 
241   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
242     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
243       const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I];
244       const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J];
245 
246       if (needsChecking(CGI, CGJ))
247         Checks.push_back(std::make_pair(&CGI, &CGJ));
248     }
249   }
250   return Checks;
251 }
252 
253 void RuntimePointerChecking::generateChecks(
254     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
255   assert(Checks.empty() && "Checks is not empty");
256   groupChecks(DepCands, UseDependencies);
257   Checks = generateChecks();
258 }
259 
260 bool RuntimePointerChecking::needsChecking(
261     const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const {
262   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
263     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
264       if (needsChecking(M.Members[I], N.Members[J]))
265         return true;
266   return false;
267 }
268 
269 /// Compare \p I and \p J and return the minimum.
270 /// Return nullptr in case we couldn't find an answer.
271 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
272                                    ScalarEvolution *SE) {
273   const SCEV *Diff = SE->getMinusSCEV(J, I);
274   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
275 
276   if (!C)
277     return nullptr;
278   if (C->getValue()->isNegative())
279     return J;
280   return I;
281 }
282 
283 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index,
284                                          RuntimePointerChecking &RtCheck) {
285   return addPointer(
286       Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End,
287       RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(),
288       *RtCheck.SE);
289 }
290 
291 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start,
292                                          const SCEV *End, unsigned AS,
293                                          ScalarEvolution &SE) {
294   assert(AddressSpace == AS &&
295          "all pointers in a checking group must be in the same address space");
296 
297   // Compare the starts and ends with the known minimum and maximum
298   // of this set. We need to know how we compare against the min/max
299   // of the set in order to be able to emit memchecks.
300   const SCEV *Min0 = getMinFromExprs(Start, Low, &SE);
301   if (!Min0)
302     return false;
303 
304   const SCEV *Min1 = getMinFromExprs(End, High, &SE);
305   if (!Min1)
306     return false;
307 
308   // Update the low bound  expression if we've found a new min value.
309   if (Min0 == Start)
310     Low = Start;
311 
312   // Update the high bound expression if we've found a new max value.
313   if (Min1 != End)
314     High = End;
315 
316   Members.push_back(Index);
317   return true;
318 }
319 
320 void RuntimePointerChecking::groupChecks(
321     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
322   // We build the groups from dependency candidates equivalence classes
323   // because:
324   //    - We know that pointers in the same equivalence class share
325   //      the same underlying object and therefore there is a chance
326   //      that we can compare pointers
327   //    - We wouldn't be able to merge two pointers for which we need
328   //      to emit a memcheck. The classes in DepCands are already
329   //      conveniently built such that no two pointers in the same
330   //      class need checking against each other.
331 
332   // We use the following (greedy) algorithm to construct the groups
333   // For every pointer in the equivalence class:
334   //   For each existing group:
335   //   - if the difference between this pointer and the min/max bounds
336   //     of the group is a constant, then make the pointer part of the
337   //     group and update the min/max bounds of that group as required.
338 
339   CheckingGroups.clear();
340 
341   // If we need to check two pointers to the same underlying object
342   // with a non-constant difference, we shouldn't perform any pointer
343   // grouping with those pointers. This is because we can easily get
344   // into cases where the resulting check would return false, even when
345   // the accesses are safe.
346   //
347   // The following example shows this:
348   // for (i = 0; i < 1000; ++i)
349   //   a[5000 + i * m] = a[i] + a[i + 9000]
350   //
351   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
352   // (0, 10000) which is always false. However, if m is 1, there is no
353   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
354   // us to perform an accurate check in this case.
355   //
356   // The above case requires that we have an UnknownDependence between
357   // accesses to the same underlying object. This cannot happen unless
358   // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
359   // is also false. In this case we will use the fallback path and create
360   // separate checking groups for all pointers.
361 
362   // If we don't have the dependency partitions, construct a new
363   // checking pointer group for each pointer. This is also required
364   // for correctness, because in this case we can have checking between
365   // pointers to the same underlying object.
366   if (!UseDependencies) {
367     for (unsigned I = 0; I < Pointers.size(); ++I)
368       CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this));
369     return;
370   }
371 
372   unsigned TotalComparisons = 0;
373 
374   DenseMap<Value *, unsigned> PositionMap;
375   for (unsigned Index = 0; Index < Pointers.size(); ++Index)
376     PositionMap[Pointers[Index].PointerValue] = Index;
377 
378   // We need to keep track of what pointers we've already seen so we
379   // don't process them twice.
380   SmallSet<unsigned, 2> Seen;
381 
382   // Go through all equivalence classes, get the "pointer check groups"
383   // and add them to the overall solution. We use the order in which accesses
384   // appear in 'Pointers' to enforce determinism.
385   for (unsigned I = 0; I < Pointers.size(); ++I) {
386     // We've seen this pointer before, and therefore already processed
387     // its equivalence class.
388     if (Seen.count(I))
389       continue;
390 
391     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
392                                            Pointers[I].IsWritePtr);
393 
394     SmallVector<RuntimeCheckingPtrGroup, 2> Groups;
395     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
396 
397     // Because DepCands is constructed by visiting accesses in the order in
398     // which they appear in alias sets (which is deterministic) and the
399     // iteration order within an equivalence class member is only dependent on
400     // the order in which unions and insertions are performed on the
401     // equivalence class, the iteration order is deterministic.
402     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
403          MI != ME; ++MI) {
404       auto PointerI = PositionMap.find(MI->getPointer());
405       assert(PointerI != PositionMap.end() &&
406              "pointer in equivalence class not found in PositionMap");
407       unsigned Pointer = PointerI->second;
408       bool Merged = false;
409       // Mark this pointer as seen.
410       Seen.insert(Pointer);
411 
412       // Go through all the existing sets and see if we can find one
413       // which can include this pointer.
414       for (RuntimeCheckingPtrGroup &Group : Groups) {
415         // Don't perform more than a certain amount of comparisons.
416         // This should limit the cost of grouping the pointers to something
417         // reasonable.  If we do end up hitting this threshold, the algorithm
418         // will create separate groups for all remaining pointers.
419         if (TotalComparisons > MemoryCheckMergeThreshold)
420           break;
421 
422         TotalComparisons++;
423 
424         if (Group.addPointer(Pointer, *this)) {
425           Merged = true;
426           break;
427         }
428       }
429 
430       if (!Merged)
431         // We couldn't add this pointer to any existing set or the threshold
432         // for the number of comparisons has been reached. Create a new group
433         // to hold the current pointer.
434         Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this));
435     }
436 
437     // We've computed the grouped checks for this partition.
438     // Save the results and continue with the next one.
439     llvm::copy(Groups, std::back_inserter(CheckingGroups));
440   }
441 }
442 
443 bool RuntimePointerChecking::arePointersInSamePartition(
444     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
445     unsigned PtrIdx2) {
446   return (PtrToPartition[PtrIdx1] != -1 &&
447           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
448 }
449 
450 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
451   const PointerInfo &PointerI = Pointers[I];
452   const PointerInfo &PointerJ = Pointers[J];
453 
454   // No need to check if two readonly pointers intersect.
455   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
456     return false;
457 
458   // Only need to check pointers between two different dependency sets.
459   if (PointerI.DependencySetId == PointerJ.DependencySetId)
460     return false;
461 
462   // Only need to check pointers in the same alias set.
463   if (PointerI.AliasSetId != PointerJ.AliasSetId)
464     return false;
465 
466   return true;
467 }
468 
469 void RuntimePointerChecking::printChecks(
470     raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks,
471     unsigned Depth) const {
472   unsigned N = 0;
473   for (const auto &Check : Checks) {
474     const auto &First = Check.first->Members, &Second = Check.second->Members;
475 
476     OS.indent(Depth) << "Check " << N++ << ":\n";
477 
478     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
479     for (unsigned K = 0; K < First.size(); ++K)
480       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
481 
482     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
483     for (unsigned K = 0; K < Second.size(); ++K)
484       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
485   }
486 }
487 
488 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
489 
490   OS.indent(Depth) << "Run-time memory checks:\n";
491   printChecks(OS, Checks, Depth);
492 
493   OS.indent(Depth) << "Grouped accesses:\n";
494   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
495     const auto &CG = CheckingGroups[I];
496 
497     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
498     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
499                          << ")\n";
500     for (unsigned J = 0; J < CG.Members.size(); ++J) {
501       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
502                            << "\n";
503     }
504   }
505 }
506 
507 namespace {
508 
509 /// Analyses memory accesses in a loop.
510 ///
511 /// Checks whether run time pointer checks are needed and builds sets for data
512 /// dependence checking.
513 class AccessAnalysis {
514 public:
515   /// Read or write access location.
516   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
517   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
518 
519   AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI,
520                  MemoryDepChecker::DepCandidates &DA,
521                  PredicatedScalarEvolution &PSE)
522       : TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), PSE(PSE) {}
523 
524   /// Register a load  and whether it is only read from.
525   void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
526     Value *Ptr = const_cast<Value*>(Loc.Ptr);
527     AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags);
528     Accesses.insert(MemAccessInfo(Ptr, false));
529     if (IsReadOnly)
530       ReadOnlyPtr.insert(Ptr);
531   }
532 
533   /// Register a store.
534   void addStore(MemoryLocation &Loc) {
535     Value *Ptr = const_cast<Value*>(Loc.Ptr);
536     AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags);
537     Accesses.insert(MemAccessInfo(Ptr, true));
538   }
539 
540   /// Check if we can emit a run-time no-alias check for \p Access.
541   ///
542   /// Returns true if we can emit a run-time no alias check for \p Access.
543   /// If we can check this access, this also adds it to a dependence set and
544   /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
545   /// we will attempt to use additional run-time checks in order to get
546   /// the bounds of the pointer.
547   bool createCheckForAccess(RuntimePointerChecking &RtCheck,
548                             MemAccessInfo Access,
549                             const ValueToValueMap &Strides,
550                             DenseMap<Value *, unsigned> &DepSetId,
551                             Loop *TheLoop, unsigned &RunningDepId,
552                             unsigned ASId, bool ShouldCheckStride,
553                             bool Assume);
554 
555   /// Check whether we can check the pointers at runtime for
556   /// non-intersection.
557   ///
558   /// Returns true if we need no check or if we do and we can generate them
559   /// (i.e. the pointers have computable bounds).
560   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
561                        Loop *TheLoop, const ValueToValueMap &Strides,
562                        bool ShouldCheckWrap = false);
563 
564   /// Goes over all memory accesses, checks whether a RT check is needed
565   /// and builds sets of dependent accesses.
566   void buildDependenceSets() {
567     processMemAccesses();
568   }
569 
570   /// Initial processing of memory accesses determined that we need to
571   /// perform dependency checking.
572   ///
573   /// Note that this can later be cleared if we retry memcheck analysis without
574   /// dependency checking (i.e. FoundNonConstantDistanceDependence).
575   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
576 
577   /// We decided that no dependence analysis would be used.  Reset the state.
578   void resetDepChecks(MemoryDepChecker &DepChecker) {
579     CheckDeps.clear();
580     DepChecker.clearDependences();
581   }
582 
583   MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }
584 
585 private:
586   typedef SetVector<MemAccessInfo> PtrAccessSet;
587 
588   /// Go over all memory access and check whether runtime pointer checks
589   /// are needed and build sets of dependency check candidates.
590   void processMemAccesses();
591 
592   /// Set of all accesses.
593   PtrAccessSet Accesses;
594 
595   /// The loop being checked.
596   const Loop *TheLoop;
597 
598   /// List of accesses that need a further dependence check.
599   MemAccessInfoList CheckDeps;
600 
601   /// Set of pointers that are read only.
602   SmallPtrSet<Value*, 16> ReadOnlyPtr;
603 
604   /// An alias set tracker to partition the access set by underlying object and
605   //intrinsic property (such as TBAA metadata).
606   AliasSetTracker AST;
607 
608   LoopInfo *LI;
609 
610   /// Sets of potentially dependent accesses - members of one set share an
611   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
612   /// dependence check.
613   MemoryDepChecker::DepCandidates &DepCands;
614 
615   /// Initial processing of memory accesses determined that we may need
616   /// to add memchecks.  Perform the analysis to determine the necessary checks.
617   ///
618   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
619   /// memcheck analysis without dependency checking
620   /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
621   /// cleared while this remains set if we have potentially dependent accesses.
622   bool IsRTCheckAnalysisNeeded = false;
623 
624   /// The SCEV predicate containing all the SCEV-related assumptions.
625   PredicatedScalarEvolution &PSE;
626 };
627 
628 } // end anonymous namespace
629 
630 /// Check whether a pointer can participate in a runtime bounds check.
631 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
632 /// by adding run-time checks (overflow checks) if necessary.
633 static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
634                                 const ValueToValueMap &Strides, Value *Ptr,
635                                 Loop *L, bool Assume) {
636   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
637 
638   // The bounds for loop-invariant pointer is trivial.
639   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
640     return true;
641 
642   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
643 
644   if (!AR && Assume)
645     AR = PSE.getAsAddRec(Ptr);
646 
647   if (!AR)
648     return false;
649 
650   return AR->isAffine();
651 }
652 
653 /// Check whether a pointer address cannot wrap.
654 static bool isNoWrap(PredicatedScalarEvolution &PSE,
655                      const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
656   const SCEV *PtrScev = PSE.getSCEV(Ptr);
657   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
658     return true;
659 
660   Type *AccessTy = Ptr->getType()->getPointerElementType();
661   int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides);
662   if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
663     return true;
664 
665   return false;
666 }
667 
668 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop,
669                           function_ref<void(Value *)> AddPointer) {
670   SmallPtrSet<Value *, 8> Visited;
671   SmallVector<Value *> WorkList;
672   WorkList.push_back(StartPtr);
673 
674   while (!WorkList.empty()) {
675     Value *Ptr = WorkList.pop_back_val();
676     if (!Visited.insert(Ptr).second)
677       continue;
678     auto *PN = dyn_cast<PHINode>(Ptr);
679     // SCEV does not look through non-header PHIs inside the loop. Such phis
680     // can be analyzed by adding separate accesses for each incoming pointer
681     // value.
682     if (PN && InnermostLoop.contains(PN->getParent()) &&
683         PN->getParent() != InnermostLoop.getHeader()) {
684       for (const Use &Inc : PN->incoming_values())
685         WorkList.push_back(Inc);
686     } else
687       AddPointer(Ptr);
688   }
689 }
690 
691 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
692                                           MemAccessInfo Access,
693                                           const ValueToValueMap &StridesMap,
694                                           DenseMap<Value *, unsigned> &DepSetId,
695                                           Loop *TheLoop, unsigned &RunningDepId,
696                                           unsigned ASId, bool ShouldCheckWrap,
697                                           bool Assume) {
698   Value *Ptr = Access.getPointer();
699 
700   if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume))
701     return false;
702 
703   // When we run after a failing dependency check we have to make sure
704   // we don't have wrapping pointers.
705   if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) {
706     auto *Expr = PSE.getSCEV(Ptr);
707     if (!Assume || !isa<SCEVAddRecExpr>(Expr))
708       return false;
709     PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
710   }
711 
712   // The id of the dependence set.
713   unsigned DepId;
714 
715   if (isDependencyCheckNeeded()) {
716     Value *Leader = DepCands.getLeaderValue(Access).getPointer();
717     unsigned &LeaderId = DepSetId[Leader];
718     if (!LeaderId)
719       LeaderId = RunningDepId++;
720     DepId = LeaderId;
721   } else
722     // Each access has its own dependence set.
723     DepId = RunningDepId++;
724 
725   bool IsWrite = Access.getInt();
726   RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
727   LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
728 
729   return true;
730  }
731 
732 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
733                                      ScalarEvolution *SE, Loop *TheLoop,
734                                      const ValueToValueMap &StridesMap,
735                                      bool ShouldCheckWrap) {
736   // Find pointers with computable bounds. We are going to use this information
737   // to place a runtime bound check.
738   bool CanDoRT = true;
739 
740   bool MayNeedRTCheck = false;
741   if (!IsRTCheckAnalysisNeeded) return true;
742 
743   bool IsDepCheckNeeded = isDependencyCheckNeeded();
744 
745   // We assign a consecutive id to access from different alias sets.
746   // Accesses between different groups doesn't need to be checked.
747   unsigned ASId = 0;
748   for (auto &AS : AST) {
749     int NumReadPtrChecks = 0;
750     int NumWritePtrChecks = 0;
751     bool CanDoAliasSetRT = true;
752     ++ASId;
753 
754     // We assign consecutive id to access from different dependence sets.
755     // Accesses within the same set don't need a runtime check.
756     unsigned RunningDepId = 1;
757     DenseMap<Value *, unsigned> DepSetId;
758 
759     SmallVector<MemAccessInfo, 4> Retries;
760 
761     // First, count how many write and read accesses are in the alias set. Also
762     // collect MemAccessInfos for later.
763     SmallVector<MemAccessInfo, 4> AccessInfos;
764     for (const auto &A : AS) {
765       Value *Ptr = A.getValue();
766       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
767 
768       if (IsWrite)
769         ++NumWritePtrChecks;
770       else
771         ++NumReadPtrChecks;
772       AccessInfos.emplace_back(Ptr, IsWrite);
773     }
774 
775     // We do not need runtime checks for this alias set, if there are no writes
776     // or a single write and no reads.
777     if (NumWritePtrChecks == 0 ||
778         (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
779       assert((AS.size() <= 1 ||
780               all_of(AS,
781                      [this](auto AC) {
782                        MemAccessInfo AccessWrite(AC.getValue(), true);
783                        return DepCands.findValue(AccessWrite) == DepCands.end();
784                      })) &&
785              "Can only skip updating CanDoRT below, if all entries in AS "
786              "are reads or there is at most 1 entry");
787       continue;
788     }
789 
790     for (auto &Access : AccessInfos) {
791       if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop,
792                                 RunningDepId, ASId, ShouldCheckWrap, false)) {
793         LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"
794                           << *Access.getPointer() << '\n');
795         Retries.push_back(Access);
796         CanDoAliasSetRT = false;
797       }
798     }
799 
800     // Note that this function computes CanDoRT and MayNeedRTCheck
801     // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
802     // we have a pointer for which we couldn't find the bounds but we don't
803     // actually need to emit any checks so it does not matter.
804     //
805     // We need runtime checks for this alias set, if there are at least 2
806     // dependence sets (in which case RunningDepId > 2) or if we need to re-try
807     // any bound checks (because in that case the number of dependence sets is
808     // incomplete).
809     bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty();
810 
811     // We need to perform run-time alias checks, but some pointers had bounds
812     // that couldn't be checked.
813     if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
814       // Reset the CanDoSetRt flag and retry all accesses that have failed.
815       // We know that we need these checks, so we can now be more aggressive
816       // and add further checks if required (overflow checks).
817       CanDoAliasSetRT = true;
818       for (auto Access : Retries)
819         if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId,
820                                   TheLoop, RunningDepId, ASId,
821                                   ShouldCheckWrap, /*Assume=*/true)) {
822           CanDoAliasSetRT = false;
823           break;
824         }
825     }
826 
827     CanDoRT &= CanDoAliasSetRT;
828     MayNeedRTCheck |= NeedsAliasSetRTCheck;
829     ++ASId;
830   }
831 
832   // If the pointers that we would use for the bounds comparison have different
833   // address spaces, assume the values aren't directly comparable, so we can't
834   // use them for the runtime check. We also have to assume they could
835   // overlap. In the future there should be metadata for whether address spaces
836   // are disjoint.
837   unsigned NumPointers = RtCheck.Pointers.size();
838   for (unsigned i = 0; i < NumPointers; ++i) {
839     for (unsigned j = i + 1; j < NumPointers; ++j) {
840       // Only need to check pointers between two different dependency sets.
841       if (RtCheck.Pointers[i].DependencySetId ==
842           RtCheck.Pointers[j].DependencySetId)
843        continue;
844       // Only need to check pointers in the same alias set.
845       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
846         continue;
847 
848       Value *PtrI = RtCheck.Pointers[i].PointerValue;
849       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
850 
851       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
852       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
853       if (ASi != ASj) {
854         LLVM_DEBUG(
855             dbgs() << "LAA: Runtime check would require comparison between"
856                       " different address spaces\n");
857         return false;
858       }
859     }
860   }
861 
862   if (MayNeedRTCheck && CanDoRT)
863     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
864 
865   LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
866                     << " pointer comparisons.\n");
867 
868   // If we can do run-time checks, but there are no checks, no runtime checks
869   // are needed. This can happen when all pointers point to the same underlying
870   // object for example.
871   RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck;
872 
873   bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT;
874   if (!CanDoRTIfNeeded)
875     RtCheck.reset();
876   return CanDoRTIfNeeded;
877 }
878 
879 void AccessAnalysis::processMemAccesses() {
880   // We process the set twice: first we process read-write pointers, last we
881   // process read-only pointers. This allows us to skip dependence tests for
882   // read-only pointers.
883 
884   LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
885   LLVM_DEBUG(dbgs() << "  AST: "; AST.dump());
886   LLVM_DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
887   LLVM_DEBUG({
888     for (auto A : Accesses)
889       dbgs() << "\t" << *A.getPointer() << " (" <<
890                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
891                                          "read-only" : "read")) << ")\n";
892   });
893 
894   // The AliasSetTracker has nicely partitioned our pointers by metadata
895   // compatibility and potential for underlying-object overlap. As a result, we
896   // only need to check for potential pointer dependencies within each alias
897   // set.
898   for (const auto &AS : AST) {
899     // Note that both the alias-set tracker and the alias sets themselves used
900     // linked lists internally and so the iteration order here is deterministic
901     // (matching the original instruction order within each set).
902 
903     bool SetHasWrite = false;
904 
905     // Map of pointers to last access encountered.
906     typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
907     UnderlyingObjToAccessMap ObjToLastAccess;
908 
909     // Set of access to check after all writes have been processed.
910     PtrAccessSet DeferredAccesses;
911 
912     // Iterate over each alias set twice, once to process read/write pointers,
913     // and then to process read-only pointers.
914     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
915       bool UseDeferred = SetIteration > 0;
916       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
917 
918       for (const auto &AV : AS) {
919         Value *Ptr = AV.getValue();
920 
921         // For a single memory access in AliasSetTracker, Accesses may contain
922         // both read and write, and they both need to be handled for CheckDeps.
923         for (const auto &AC : S) {
924           if (AC.getPointer() != Ptr)
925             continue;
926 
927           bool IsWrite = AC.getInt();
928 
929           // If we're using the deferred access set, then it contains only
930           // reads.
931           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
932           if (UseDeferred && !IsReadOnlyPtr)
933             continue;
934           // Otherwise, the pointer must be in the PtrAccessSet, either as a
935           // read or a write.
936           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
937                   S.count(MemAccessInfo(Ptr, false))) &&
938                  "Alias-set pointer not in the access set?");
939 
940           MemAccessInfo Access(Ptr, IsWrite);
941           DepCands.insert(Access);
942 
943           // Memorize read-only pointers for later processing and skip them in
944           // the first round (they need to be checked after we have seen all
945           // write pointers). Note: we also mark pointer that are not
946           // consecutive as "read-only" pointers (so that we check
947           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
948           if (!UseDeferred && IsReadOnlyPtr) {
949             DeferredAccesses.insert(Access);
950             continue;
951           }
952 
953           // If this is a write - check other reads and writes for conflicts. If
954           // this is a read only check other writes for conflicts (but only if
955           // there is no other write to the ptr - this is an optimization to
956           // catch "a[i] = a[i] + " without having to do a dependence check).
957           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
958             CheckDeps.push_back(Access);
959             IsRTCheckAnalysisNeeded = true;
960           }
961 
962           if (IsWrite)
963             SetHasWrite = true;
964 
965           // Create sets of pointers connected by a shared alias set and
966           // underlying object.
967           typedef SmallVector<const Value *, 16> ValueVector;
968           ValueVector TempObjects;
969 
970           getUnderlyingObjects(Ptr, TempObjects, LI);
971           LLVM_DEBUG(dbgs()
972                      << "Underlying objects for pointer " << *Ptr << "\n");
973           for (const Value *UnderlyingObj : TempObjects) {
974             // nullptr never alias, don't join sets for pointer that have "null"
975             // in their UnderlyingObjects list.
976             if (isa<ConstantPointerNull>(UnderlyingObj) &&
977                 !NullPointerIsDefined(
978                     TheLoop->getHeader()->getParent(),
979                     UnderlyingObj->getType()->getPointerAddressSpace()))
980               continue;
981 
982             UnderlyingObjToAccessMap::iterator Prev =
983                 ObjToLastAccess.find(UnderlyingObj);
984             if (Prev != ObjToLastAccess.end())
985               DepCands.unionSets(Access, Prev->second);
986 
987             ObjToLastAccess[UnderlyingObj] = Access;
988             LLVM_DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
989           }
990         }
991       }
992     }
993   }
994 }
995 
996 static bool isInBoundsGep(Value *Ptr) {
997   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
998     return GEP->isInBounds();
999   return false;
1000 }
1001 
1002 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
1003 /// i.e. monotonically increasing/decreasing.
1004 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
1005                            PredicatedScalarEvolution &PSE, const Loop *L) {
1006   // FIXME: This should probably only return true for NUW.
1007   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
1008     return true;
1009 
1010   // Scalar evolution does not propagate the non-wrapping flags to values that
1011   // are derived from a non-wrapping induction variable because non-wrapping
1012   // could be flow-sensitive.
1013   //
1014   // Look through the potentially overflowing instruction to try to prove
1015   // non-wrapping for the *specific* value of Ptr.
1016 
1017   // The arithmetic implied by an inbounds GEP can't overflow.
1018   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1019   if (!GEP || !GEP->isInBounds())
1020     return false;
1021 
1022   // Make sure there is only one non-const index and analyze that.
1023   Value *NonConstIndex = nullptr;
1024   for (Value *Index : GEP->indices())
1025     if (!isa<ConstantInt>(Index)) {
1026       if (NonConstIndex)
1027         return false;
1028       NonConstIndex = Index;
1029     }
1030   if (!NonConstIndex)
1031     // The recurrence is on the pointer, ignore for now.
1032     return false;
1033 
1034   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
1035   // AddRec using a NSW operation.
1036   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
1037     if (OBO->hasNoSignedWrap() &&
1038         // Assume constant for other the operand so that the AddRec can be
1039         // easily found.
1040         isa<ConstantInt>(OBO->getOperand(1))) {
1041       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
1042 
1043       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
1044         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
1045     }
1046 
1047   return false;
1048 }
1049 
1050 /// Check whether the access through \p Ptr has a constant stride.
1051 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy,
1052                            Value *Ptr, const Loop *Lp,
1053                            const ValueToValueMap &StridesMap, bool Assume,
1054                            bool ShouldCheckWrap) {
1055   Type *Ty = Ptr->getType();
1056   assert(Ty->isPointerTy() && "Unexpected non-ptr");
1057 
1058   if (isa<ScalableVectorType>(AccessTy)) {
1059     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy
1060                       << "\n");
1061     return 0;
1062   }
1063 
1064   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
1065 
1066   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1067   if (Assume && !AR)
1068     AR = PSE.getAsAddRec(Ptr);
1069 
1070   if (!AR) {
1071     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1072                       << " SCEV: " << *PtrScev << "\n");
1073     return 0;
1074   }
1075 
1076   // The access function must stride over the innermost loop.
1077   if (Lp != AR->getLoop()) {
1078     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1079                       << *Ptr << " SCEV: " << *AR << "\n");
1080     return 0;
1081   }
1082 
1083   // The address calculation must not wrap. Otherwise, a dependence could be
1084   // inverted.
1085   // An inbounds getelementptr that is a AddRec with a unit stride
1086   // cannot wrap per definition. The unit stride requirement is checked later.
1087   // An getelementptr without an inbounds attribute and unit stride would have
1088   // to access the pointer value "0" which is undefined behavior in address
1089   // space 0, therefore we can also vectorize this case.
1090   unsigned AddrSpace = Ty->getPointerAddressSpace();
1091   bool IsInBoundsGEP = isInBoundsGep(Ptr);
1092   bool IsNoWrapAddRec = !ShouldCheckWrap ||
1093     PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
1094     isNoWrapAddRec(Ptr, AR, PSE, Lp);
1095   if (!IsNoWrapAddRec && !IsInBoundsGEP &&
1096       NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace)) {
1097     if (Assume) {
1098       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1099       IsNoWrapAddRec = true;
1100       LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
1101                         << "LAA:   Pointer: " << *Ptr << "\n"
1102                         << "LAA:   SCEV: " << *AR << "\n"
1103                         << "LAA:   Added an overflow assumption\n");
1104     } else {
1105       LLVM_DEBUG(
1106           dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1107                  << *Ptr << " SCEV: " << *AR << "\n");
1108       return 0;
1109     }
1110   }
1111 
1112   // Check the step is constant.
1113   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
1114 
1115   // Calculate the pointer stride and check if it is constant.
1116   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
1117   if (!C) {
1118     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1119                       << " SCEV: " << *AR << "\n");
1120     return 0;
1121   }
1122 
1123   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
1124   TypeSize AllocSize = DL.getTypeAllocSize(AccessTy);
1125   int64_t Size = AllocSize.getFixedSize();
1126   const APInt &APStepVal = C->getAPInt();
1127 
1128   // Huge step value - give up.
1129   if (APStepVal.getBitWidth() > 64)
1130     return 0;
1131 
1132   int64_t StepVal = APStepVal.getSExtValue();
1133 
1134   // Strided access.
1135   int64_t Stride = StepVal / Size;
1136   int64_t Rem = StepVal % Size;
1137   if (Rem)
1138     return 0;
1139 
1140   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
1141   // know we can't "wrap around the address space". In case of address space
1142   // zero we know that this won't happen without triggering undefined behavior.
1143   if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 &&
1144       (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(),
1145                                               AddrSpace))) {
1146     if (Assume) {
1147       // We can avoid this case by adding a run-time check.
1148       LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
1149                         << "inbounds or in address space 0 may wrap:\n"
1150                         << "LAA:   Pointer: " << *Ptr << "\n"
1151                         << "LAA:   SCEV: " << *AR << "\n"
1152                         << "LAA:   Added an overflow assumption\n");
1153       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1154     } else
1155       return 0;
1156   }
1157 
1158   return Stride;
1159 }
1160 
1161 Optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB,
1162                                     Value *PtrB, const DataLayout &DL,
1163                                     ScalarEvolution &SE, bool StrictCheck,
1164                                     bool CheckType) {
1165   assert(PtrA && PtrB && "Expected non-nullptr pointers.");
1166   assert(cast<PointerType>(PtrA->getType())
1167              ->isOpaqueOrPointeeTypeMatches(ElemTyA) && "Wrong PtrA type");
1168   assert(cast<PointerType>(PtrB->getType())
1169              ->isOpaqueOrPointeeTypeMatches(ElemTyB) && "Wrong PtrB type");
1170 
1171   // Make sure that A and B are different pointers.
1172   if (PtrA == PtrB)
1173     return 0;
1174 
1175   // Make sure that the element types are the same if required.
1176   if (CheckType && ElemTyA != ElemTyB)
1177     return None;
1178 
1179   unsigned ASA = PtrA->getType()->getPointerAddressSpace();
1180   unsigned ASB = PtrB->getType()->getPointerAddressSpace();
1181 
1182   // Check that the address spaces match.
1183   if (ASA != ASB)
1184     return None;
1185   unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1186 
1187   APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1188   Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1189   Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1190 
1191   int Val;
1192   if (PtrA1 == PtrB1) {
1193     // Retrieve the address space again as pointer stripping now tracks through
1194     // `addrspacecast`.
1195     ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace();
1196     ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace();
1197     // Check that the address spaces match and that the pointers are valid.
1198     if (ASA != ASB)
1199       return None;
1200 
1201     IdxWidth = DL.getIndexSizeInBits(ASA);
1202     OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1203     OffsetB = OffsetB.sextOrTrunc(IdxWidth);
1204 
1205     OffsetB -= OffsetA;
1206     Val = OffsetB.getSExtValue();
1207   } else {
1208     // Otherwise compute the distance with SCEV between the base pointers.
1209     const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1210     const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1211     const auto *Diff =
1212         dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA));
1213     if (!Diff)
1214       return None;
1215     Val = Diff->getAPInt().getSExtValue();
1216   }
1217   int Size = DL.getTypeStoreSize(ElemTyA);
1218   int Dist = Val / Size;
1219 
1220   // Ensure that the calculated distance matches the type-based one after all
1221   // the bitcasts removal in the provided pointers.
1222   if (!StrictCheck || Dist * Size == Val)
1223     return Dist;
1224   return None;
1225 }
1226 
1227 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
1228                            const DataLayout &DL, ScalarEvolution &SE,
1229                            SmallVectorImpl<unsigned> &SortedIndices) {
1230   assert(llvm::all_of(
1231              VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1232          "Expected list of pointer operands.");
1233   // Walk over the pointers, and map each of them to an offset relative to
1234   // first pointer in the array.
1235   Value *Ptr0 = VL[0];
1236 
1237   using DistOrdPair = std::pair<int64_t, int>;
1238   auto Compare = [](const DistOrdPair &L, const DistOrdPair &R) {
1239     return L.first < R.first;
1240   };
1241   std::set<DistOrdPair, decltype(Compare)> Offsets(Compare);
1242   Offsets.emplace(0, 0);
1243   int Cnt = 1;
1244   bool IsConsecutive = true;
1245   for (auto *Ptr : VL.drop_front()) {
1246     Optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE,
1247                                          /*StrictCheck=*/true);
1248     if (!Diff)
1249       return false;
1250 
1251     // Check if the pointer with the same offset is found.
1252     int64_t Offset = *Diff;
1253     auto Res = Offsets.emplace(Offset, Cnt);
1254     if (!Res.second)
1255       return false;
1256     // Consecutive order if the inserted element is the last one.
1257     IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end();
1258     ++Cnt;
1259   }
1260   SortedIndices.clear();
1261   if (!IsConsecutive) {
1262     // Fill SortedIndices array only if it is non-consecutive.
1263     SortedIndices.resize(VL.size());
1264     Cnt = 0;
1265     for (const std::pair<int64_t, int> &Pair : Offsets) {
1266       SortedIndices[Cnt] = Pair.second;
1267       ++Cnt;
1268     }
1269   }
1270   return true;
1271 }
1272 
1273 /// Returns true if the memory operations \p A and \p B are consecutive.
1274 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1275                                ScalarEvolution &SE, bool CheckType) {
1276   Value *PtrA = getLoadStorePointerOperand(A);
1277   Value *PtrB = getLoadStorePointerOperand(B);
1278   if (!PtrA || !PtrB)
1279     return false;
1280   Type *ElemTyA = getLoadStoreType(A);
1281   Type *ElemTyB = getLoadStoreType(B);
1282   Optional<int> Diff = getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE,
1283                                        /*StrictCheck=*/true, CheckType);
1284   return Diff && *Diff == 1;
1285 }
1286 
1287 void MemoryDepChecker::addAccess(StoreInst *SI) {
1288   visitPointers(SI->getPointerOperand(), *InnermostLoop,
1289                 [this, SI](Value *Ptr) {
1290                   Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
1291                   InstMap.push_back(SI);
1292                   ++AccessIdx;
1293                 });
1294 }
1295 
1296 void MemoryDepChecker::addAccess(LoadInst *LI) {
1297   visitPointers(LI->getPointerOperand(), *InnermostLoop,
1298                 [this, LI](Value *Ptr) {
1299                   Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
1300                   InstMap.push_back(LI);
1301                   ++AccessIdx;
1302                 });
1303 }
1304 
1305 MemoryDepChecker::VectorizationSafetyStatus
1306 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1307   switch (Type) {
1308   case NoDep:
1309   case Forward:
1310   case BackwardVectorizable:
1311     return VectorizationSafetyStatus::Safe;
1312 
1313   case Unknown:
1314     return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
1315   case ForwardButPreventsForwarding:
1316   case Backward:
1317   case BackwardVectorizableButPreventsForwarding:
1318     return VectorizationSafetyStatus::Unsafe;
1319   }
1320   llvm_unreachable("unexpected DepType!");
1321 }
1322 
1323 bool MemoryDepChecker::Dependence::isBackward() const {
1324   switch (Type) {
1325   case NoDep:
1326   case Forward:
1327   case ForwardButPreventsForwarding:
1328   case Unknown:
1329     return false;
1330 
1331   case BackwardVectorizable:
1332   case Backward:
1333   case BackwardVectorizableButPreventsForwarding:
1334     return true;
1335   }
1336   llvm_unreachable("unexpected DepType!");
1337 }
1338 
1339 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1340   return isBackward() || Type == Unknown;
1341 }
1342 
1343 bool MemoryDepChecker::Dependence::isForward() const {
1344   switch (Type) {
1345   case Forward:
1346   case ForwardButPreventsForwarding:
1347     return true;
1348 
1349   case NoDep:
1350   case Unknown:
1351   case BackwardVectorizable:
1352   case Backward:
1353   case BackwardVectorizableButPreventsForwarding:
1354     return false;
1355   }
1356   llvm_unreachable("unexpected DepType!");
1357 }
1358 
1359 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1360                                                     uint64_t TypeByteSize) {
1361   // If loads occur at a distance that is not a multiple of a feasible vector
1362   // factor store-load forwarding does not take place.
1363   // Positive dependences might cause troubles because vectorizing them might
1364   // prevent store-load forwarding making vectorized code run a lot slower.
1365   //   a[i] = a[i-3] ^ a[i-8];
1366   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1367   //   hence on your typical architecture store-load forwarding does not take
1368   //   place. Vectorizing in such cases does not make sense.
1369   // Store-load forwarding distance.
1370 
1371   // After this many iterations store-to-load forwarding conflicts should not
1372   // cause any slowdowns.
1373   const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1374   // Maximum vector factor.
1375   uint64_t MaxVFWithoutSLForwardIssues = std::min(
1376       VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
1377 
1378   // Compute the smallest VF at which the store and load would be misaligned.
1379   for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1380        VF *= 2) {
1381     // If the number of vector iteration between the store and the load are
1382     // small we could incur conflicts.
1383     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1384       MaxVFWithoutSLForwardIssues = (VF >> 1);
1385       break;
1386     }
1387   }
1388 
1389   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1390     LLVM_DEBUG(
1391         dbgs() << "LAA: Distance " << Distance
1392                << " that could cause a store-load forwarding conflict\n");
1393     return true;
1394   }
1395 
1396   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1397       MaxVFWithoutSLForwardIssues !=
1398           VectorizerParams::MaxVectorWidth * TypeByteSize)
1399     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1400   return false;
1401 }
1402 
1403 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
1404   if (Status < S)
1405     Status = S;
1406 }
1407 
1408 /// Given a non-constant (unknown) dependence-distance \p Dist between two
1409 /// memory accesses, that have the same stride whose absolute value is given
1410 /// in \p Stride, and that have the same type size \p TypeByteSize,
1411 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
1412 /// possible to prove statically that the dependence distance is larger
1413 /// than the range that the accesses will travel through the execution of
1414 /// the loop. If so, return true; false otherwise. This is useful for
1415 /// example in loops such as the following (PR31098):
1416 ///     for (i = 0; i < D; ++i) {
1417 ///                = out[i];
1418 ///       out[i+D] =
1419 ///     }
1420 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1421                                      const SCEV &BackedgeTakenCount,
1422                                      const SCEV &Dist, uint64_t Stride,
1423                                      uint64_t TypeByteSize) {
1424 
1425   // If we can prove that
1426   //      (**) |Dist| > BackedgeTakenCount * Step
1427   // where Step is the absolute stride of the memory accesses in bytes,
1428   // then there is no dependence.
1429   //
1430   // Rationale:
1431   // We basically want to check if the absolute distance (|Dist/Step|)
1432   // is >= the loop iteration count (or > BackedgeTakenCount).
1433   // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1434   // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1435   // that the dependence distance is >= VF; This is checked elsewhere.
1436   // But in some cases we can prune unknown dependence distances early, and
1437   // even before selecting the VF, and without a runtime test, by comparing
1438   // the distance against the loop iteration count. Since the vectorized code
1439   // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1440   // also guarantees that distance >= VF.
1441   //
1442   const uint64_t ByteStride = Stride * TypeByteSize;
1443   const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
1444   const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);
1445 
1446   const SCEV *CastedDist = &Dist;
1447   const SCEV *CastedProduct = Product;
1448   uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType());
1449   uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType());
1450 
1451   // The dependence distance can be positive/negative, so we sign extend Dist;
1452   // The multiplication of the absolute stride in bytes and the
1453   // backedgeTakenCount is non-negative, so we zero extend Product.
1454   if (DistTypeSize > ProductTypeSize)
1455     CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1456   else
1457     CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1458 
1459   // Is  Dist - (BackedgeTakenCount * Step) > 0 ?
1460   // (If so, then we have proven (**) because |Dist| >= Dist)
1461   const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1462   if (SE.isKnownPositive(Minus))
1463     return true;
1464 
1465   // Second try: Is  -Dist - (BackedgeTakenCount * Step) > 0 ?
1466   // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1467   const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1468   Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1469   if (SE.isKnownPositive(Minus))
1470     return true;
1471 
1472   return false;
1473 }
1474 
1475 /// Check the dependence for two accesses with the same stride \p Stride.
1476 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1477 /// bytes.
1478 ///
1479 /// \returns true if they are independent.
1480 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1481                                           uint64_t TypeByteSize) {
1482   assert(Stride > 1 && "The stride must be greater than 1");
1483   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1484   assert(Distance > 0 && "The distance must be non-zero");
1485 
1486   // Skip if the distance is not multiple of type byte size.
1487   if (Distance % TypeByteSize)
1488     return false;
1489 
1490   uint64_t ScaledDist = Distance / TypeByteSize;
1491 
1492   // No dependence if the scaled distance is not multiple of the stride.
1493   // E.g.
1494   //      for (i = 0; i < 1024 ; i += 4)
1495   //        A[i+2] = A[i] + 1;
1496   //
1497   // Two accesses in memory (scaled distance is 2, stride is 4):
1498   //     | A[0] |      |      |      | A[4] |      |      |      |
1499   //     |      |      | A[2] |      |      |      | A[6] |      |
1500   //
1501   // E.g.
1502   //      for (i = 0; i < 1024 ; i += 3)
1503   //        A[i+4] = A[i] + 1;
1504   //
1505   // Two accesses in memory (scaled distance is 4, stride is 3):
1506   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1507   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1508   return ScaledDist % Stride;
1509 }
1510 
1511 MemoryDepChecker::Dependence::DepType
1512 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1513                               const MemAccessInfo &B, unsigned BIdx,
1514                               const ValueToValueMap &Strides) {
1515   assert (AIdx < BIdx && "Must pass arguments in program order");
1516 
1517   Value *APtr = A.getPointer();
1518   Value *BPtr = B.getPointer();
1519   bool AIsWrite = A.getInt();
1520   bool BIsWrite = B.getInt();
1521   Type *ATy = APtr->getType()->getPointerElementType();
1522   Type *BTy = BPtr->getType()->getPointerElementType();
1523 
1524   // Two reads are independent.
1525   if (!AIsWrite && !BIsWrite)
1526     return Dependence::NoDep;
1527 
1528   // We cannot check pointers in different address spaces.
1529   if (APtr->getType()->getPointerAddressSpace() !=
1530       BPtr->getType()->getPointerAddressSpace())
1531     return Dependence::Unknown;
1532 
1533   int64_t StrideAPtr =
1534       getPtrStride(PSE, ATy, APtr, InnermostLoop, Strides, true);
1535   int64_t StrideBPtr =
1536       getPtrStride(PSE, BTy, BPtr, InnermostLoop, Strides, true);
1537 
1538   const SCEV *Src = PSE.getSCEV(APtr);
1539   const SCEV *Sink = PSE.getSCEV(BPtr);
1540 
1541   // If the induction step is negative we have to invert source and sink of the
1542   // dependence.
1543   if (StrideAPtr < 0) {
1544     std::swap(APtr, BPtr);
1545     std::swap(ATy, BTy);
1546     std::swap(Src, Sink);
1547     std::swap(AIsWrite, BIsWrite);
1548     std::swap(AIdx, BIdx);
1549     std::swap(StrideAPtr, StrideBPtr);
1550   }
1551 
1552   const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
1553 
1554   LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1555                     << "(Induction step: " << StrideAPtr << ")\n");
1556   LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1557                     << *InstMap[BIdx] << ": " << *Dist << "\n");
1558 
1559   // Need accesses with constant stride. We don't want to vectorize
1560   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1561   // the address space.
1562   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1563     LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1564     return Dependence::Unknown;
1565   }
1566 
1567   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1568   uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1569   bool HasSameSize =
1570       DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy);
1571   uint64_t Stride = std::abs(StrideAPtr);
1572   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1573   if (!C) {
1574     if (!isa<SCEVCouldNotCompute>(Dist) && HasSameSize &&
1575         isSafeDependenceDistance(DL, *(PSE.getSE()),
1576                                  *(PSE.getBackedgeTakenCount()), *Dist, Stride,
1577                                  TypeByteSize))
1578       return Dependence::NoDep;
1579 
1580     LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1581     FoundNonConstantDistanceDependence = true;
1582     return Dependence::Unknown;
1583   }
1584 
1585   const APInt &Val = C->getAPInt();
1586   int64_t Distance = Val.getSExtValue();
1587 
1588   // Attempt to prove strided accesses independent.
1589   if (std::abs(Distance) > 0 && Stride > 1 && HasSameSize &&
1590       areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1591     LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1592     return Dependence::NoDep;
1593   }
1594 
1595   // Negative distances are not plausible dependencies.
1596   if (Val.isNegative()) {
1597     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1598     if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1599         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1600          !HasSameSize)) {
1601       LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
1602       return Dependence::ForwardButPreventsForwarding;
1603     }
1604 
1605     LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
1606     return Dependence::Forward;
1607   }
1608 
1609   // Write to the same location with the same size.
1610   if (Val == 0) {
1611     if (HasSameSize)
1612       return Dependence::Forward;
1613     LLVM_DEBUG(
1614         dbgs() << "LAA: Zero dependence difference but different type sizes\n");
1615     return Dependence::Unknown;
1616   }
1617 
1618   assert(Val.isStrictlyPositive() && "Expect a positive value");
1619 
1620   if (!HasSameSize) {
1621     LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with "
1622                          "different type sizes\n");
1623     return Dependence::Unknown;
1624   }
1625 
1626   // Bail out early if passed-in parameters make vectorization not feasible.
1627   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1628                            VectorizerParams::VectorizationFactor : 1);
1629   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1630                            VectorizerParams::VectorizationInterleave : 1);
1631   // The minimum number of iterations for a vectorized/unrolled version.
1632   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1633 
1634   // It's not vectorizable if the distance is smaller than the minimum distance
1635   // needed for a vectroized/unrolled version. Vectorizing one iteration in
1636   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1637   // TypeByteSize (No need to plus the last gap distance).
1638   //
1639   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1640   //      foo(int *A) {
1641   //        int *B = (int *)((char *)A + 14);
1642   //        for (i = 0 ; i < 1024 ; i += 2)
1643   //          B[i] = A[i] + 1;
1644   //      }
1645   //
1646   // Two accesses in memory (stride is 2):
1647   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1648   //                              | B[0] |      | B[2] |      | B[4] |
1649   //
1650   // Distance needs for vectorizing iterations except the last iteration:
1651   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1652   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1653   //
1654   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1655   // 12, which is less than distance.
1656   //
1657   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1658   // the minimum distance needed is 28, which is greater than distance. It is
1659   // not safe to do vectorization.
1660   uint64_t MinDistanceNeeded =
1661       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1662   if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
1663     LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance "
1664                       << Distance << '\n');
1665     return Dependence::Backward;
1666   }
1667 
1668   // Unsafe if the minimum distance needed is greater than max safe distance.
1669   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1670     LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
1671                       << MinDistanceNeeded << " size in bytes");
1672     return Dependence::Backward;
1673   }
1674 
1675   // Positive distance bigger than max vectorization factor.
1676   // FIXME: Should use max factor instead of max distance in bytes, which could
1677   // not handle different types.
1678   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1679   //      void foo (int *A, char *B) {
1680   //        for (unsigned i = 0; i < 1024; i++) {
1681   //          A[i+2] = A[i] + 1;
1682   //          B[i+2] = B[i] + 1;
1683   //        }
1684   //      }
1685   //
1686   // This case is currently unsafe according to the max safe distance. If we
1687   // analyze the two accesses on array B, the max safe dependence distance
1688   // is 2. Then we analyze the accesses on array A, the minimum distance needed
1689   // is 8, which is less than 2 and forbidden vectorization, But actually
1690   // both A and B could be vectorized by 2 iterations.
1691   MaxSafeDepDistBytes =
1692       std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
1693 
1694   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1695   if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1696       couldPreventStoreLoadForward(Distance, TypeByteSize))
1697     return Dependence::BackwardVectorizableButPreventsForwarding;
1698 
1699   uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride);
1700   LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1701                     << " with max VF = " << MaxVF << '\n');
1702   uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
1703   MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
1704   return Dependence::BackwardVectorizable;
1705 }
1706 
1707 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
1708                                    MemAccessInfoList &CheckDeps,
1709                                    const ValueToValueMap &Strides) {
1710 
1711   MaxSafeDepDistBytes = -1;
1712   SmallPtrSet<MemAccessInfo, 8> Visited;
1713   for (MemAccessInfo CurAccess : CheckDeps) {
1714     if (Visited.count(CurAccess))
1715       continue;
1716 
1717     // Get the relevant memory access set.
1718     EquivalenceClasses<MemAccessInfo>::iterator I =
1719       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1720 
1721     // Check accesses within this set.
1722     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1723         AccessSets.member_begin(I);
1724     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1725         AccessSets.member_end();
1726 
1727     // Check every access pair.
1728     while (AI != AE) {
1729       Visited.insert(*AI);
1730       bool AIIsWrite = AI->getInt();
1731       // Check loads only against next equivalent class, but stores also against
1732       // other stores in the same equivalence class - to the same address.
1733       EquivalenceClasses<MemAccessInfo>::member_iterator OI =
1734           (AIIsWrite ? AI : std::next(AI));
1735       while (OI != AE) {
1736         // Check every accessing instruction pair in program order.
1737         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1738              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1739           // Scan all accesses of another equivalence class, but only the next
1740           // accesses of the same equivalent class.
1741           for (std::vector<unsigned>::iterator
1742                    I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
1743                    I2E = (OI == AI ? I1E : Accesses[*OI].end());
1744                I2 != I2E; ++I2) {
1745             auto A = std::make_pair(&*AI, *I1);
1746             auto B = std::make_pair(&*OI, *I2);
1747 
1748             assert(*I1 != *I2);
1749             if (*I1 > *I2)
1750               std::swap(A, B);
1751 
1752             Dependence::DepType Type =
1753                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1754             mergeInStatus(Dependence::isSafeForVectorization(Type));
1755 
1756             // Gather dependences unless we accumulated MaxDependences
1757             // dependences.  In that case return as soon as we find the first
1758             // unsafe dependence.  This puts a limit on this quadratic
1759             // algorithm.
1760             if (RecordDependences) {
1761               if (Type != Dependence::NoDep)
1762                 Dependences.push_back(Dependence(A.second, B.second, Type));
1763 
1764               if (Dependences.size() >= MaxDependences) {
1765                 RecordDependences = false;
1766                 Dependences.clear();
1767                 LLVM_DEBUG(dbgs()
1768                            << "Too many dependences, stopped recording\n");
1769               }
1770             }
1771             if (!RecordDependences && !isSafeForVectorization())
1772               return false;
1773           }
1774         ++OI;
1775       }
1776       AI++;
1777     }
1778   }
1779 
1780   LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
1781   return isSafeForVectorization();
1782 }
1783 
1784 SmallVector<Instruction *, 4>
1785 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1786   MemAccessInfo Access(Ptr, isWrite);
1787   auto &IndexVector = Accesses.find(Access)->second;
1788 
1789   SmallVector<Instruction *, 4> Insts;
1790   transform(IndexVector,
1791                  std::back_inserter(Insts),
1792                  [&](unsigned Idx) { return this->InstMap[Idx]; });
1793   return Insts;
1794 }
1795 
1796 const char *MemoryDepChecker::Dependence::DepName[] = {
1797     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1798     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1799 
1800 void MemoryDepChecker::Dependence::print(
1801     raw_ostream &OS, unsigned Depth,
1802     const SmallVectorImpl<Instruction *> &Instrs) const {
1803   OS.indent(Depth) << DepName[Type] << ":\n";
1804   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1805   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1806 }
1807 
1808 bool LoopAccessInfo::canAnalyzeLoop() {
1809   // We need to have a loop header.
1810   LLVM_DEBUG(dbgs() << "LAA: Found a loop in "
1811                     << TheLoop->getHeader()->getParent()->getName() << ": "
1812                     << TheLoop->getHeader()->getName() << '\n');
1813 
1814   // We can only analyze innermost loops.
1815   if (!TheLoop->isInnermost()) {
1816     LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1817     recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
1818     return false;
1819   }
1820 
1821   // We must have a single backedge.
1822   if (TheLoop->getNumBackEdges() != 1) {
1823     LLVM_DEBUG(
1824         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1825     recordAnalysis("CFGNotUnderstood")
1826         << "loop control flow is not understood by analyzer";
1827     return false;
1828   }
1829 
1830   // ScalarEvolution needs to be able to find the exit count.
1831   const SCEV *ExitCount = PSE->getBackedgeTakenCount();
1832   if (isa<SCEVCouldNotCompute>(ExitCount)) {
1833     recordAnalysis("CantComputeNumberOfIterations")
1834         << "could not determine number of loop iterations";
1835     LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1836     return false;
1837   }
1838 
1839   return true;
1840 }
1841 
1842 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI,
1843                                  const TargetLibraryInfo *TLI,
1844                                  DominatorTree *DT) {
1845   typedef SmallPtrSet<Value*, 16> ValueSet;
1846 
1847   // Holds the Load and Store instructions.
1848   SmallVector<LoadInst *, 16> Loads;
1849   SmallVector<StoreInst *, 16> Stores;
1850 
1851   // Holds all the different accesses in the loop.
1852   unsigned NumReads = 0;
1853   unsigned NumReadWrites = 0;
1854 
1855   bool HasComplexMemInst = false;
1856 
1857   // A runtime check is only legal to insert if there are no convergent calls.
1858   HasConvergentOp = false;
1859 
1860   PtrRtChecking->Pointers.clear();
1861   PtrRtChecking->Need = false;
1862 
1863   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
1864 
1865   const bool EnableMemAccessVersioningOfLoop =
1866       EnableMemAccessVersioning &&
1867       !TheLoop->getHeader()->getParent()->hasOptSize();
1868 
1869   // For each block.
1870   for (BasicBlock *BB : TheLoop->blocks()) {
1871     // Scan the BB and collect legal loads and stores. Also detect any
1872     // convergent instructions.
1873     for (Instruction &I : *BB) {
1874       if (auto *Call = dyn_cast<CallBase>(&I)) {
1875         if (Call->isConvergent())
1876           HasConvergentOp = true;
1877       }
1878 
1879       // With both a non-vectorizable memory instruction and a convergent
1880       // operation, found in this loop, no reason to continue the search.
1881       if (HasComplexMemInst && HasConvergentOp) {
1882         CanVecMem = false;
1883         return;
1884       }
1885 
1886       // Avoid hitting recordAnalysis multiple times.
1887       if (HasComplexMemInst)
1888         continue;
1889 
1890       // If this is a load, save it. If this instruction can read from memory
1891       // but is not a load, then we quit. Notice that we don't handle function
1892       // calls that read or write.
1893       if (I.mayReadFromMemory()) {
1894         // Many math library functions read the rounding mode. We will only
1895         // vectorize a loop if it contains known function calls that don't set
1896         // the flag. Therefore, it is safe to ignore this read from memory.
1897         auto *Call = dyn_cast<CallInst>(&I);
1898         if (Call && getVectorIntrinsicIDForCall(Call, TLI))
1899           continue;
1900 
1901         // If the function has an explicit vectorized counterpart, we can safely
1902         // assume that it can be vectorized.
1903         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1904             !VFDatabase::getMappings(*Call).empty())
1905           continue;
1906 
1907         auto *Ld = dyn_cast<LoadInst>(&I);
1908         if (!Ld) {
1909           recordAnalysis("CantVectorizeInstruction", Ld)
1910             << "instruction cannot be vectorized";
1911           HasComplexMemInst = true;
1912           continue;
1913         }
1914         if (!Ld->isSimple() && !IsAnnotatedParallel) {
1915           recordAnalysis("NonSimpleLoad", Ld)
1916               << "read with atomic ordering or volatile read";
1917           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1918           HasComplexMemInst = true;
1919           continue;
1920         }
1921         NumLoads++;
1922         Loads.push_back(Ld);
1923         DepChecker->addAccess(Ld);
1924         if (EnableMemAccessVersioningOfLoop)
1925           collectStridedAccess(Ld);
1926         continue;
1927       }
1928 
1929       // Save 'store' instructions. Abort if other instructions write to memory.
1930       if (I.mayWriteToMemory()) {
1931         auto *St = dyn_cast<StoreInst>(&I);
1932         if (!St) {
1933           recordAnalysis("CantVectorizeInstruction", St)
1934               << "instruction cannot be vectorized";
1935           HasComplexMemInst = true;
1936           continue;
1937         }
1938         if (!St->isSimple() && !IsAnnotatedParallel) {
1939           recordAnalysis("NonSimpleStore", St)
1940               << "write with atomic ordering or volatile write";
1941           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1942           HasComplexMemInst = true;
1943           continue;
1944         }
1945         NumStores++;
1946         Stores.push_back(St);
1947         DepChecker->addAccess(St);
1948         if (EnableMemAccessVersioningOfLoop)
1949           collectStridedAccess(St);
1950       }
1951     } // Next instr.
1952   } // Next block.
1953 
1954   if (HasComplexMemInst) {
1955     CanVecMem = false;
1956     return;
1957   }
1958 
1959   // Now we have two lists that hold the loads and the stores.
1960   // Next, we find the pointers that they use.
1961 
1962   // Check if we see any stores. If there are no stores, then we don't
1963   // care if the pointers are *restrict*.
1964   if (!Stores.size()) {
1965     LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1966     CanVecMem = true;
1967     return;
1968   }
1969 
1970   MemoryDepChecker::DepCandidates DependentAccesses;
1971   AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE);
1972 
1973   // Holds the analyzed pointers. We don't want to call getUnderlyingObjects
1974   // multiple times on the same object. If the ptr is accessed twice, once
1975   // for read and once for write, it will only appear once (on the write
1976   // list). This is okay, since we are going to check for conflicts between
1977   // writes and between reads and writes, but not between reads and reads.
1978   ValueSet Seen;
1979 
1980   // Record uniform store addresses to identify if we have multiple stores
1981   // to the same address.
1982   ValueSet UniformStores;
1983 
1984   for (StoreInst *ST : Stores) {
1985     Value *Ptr = ST->getPointerOperand();
1986 
1987     if (isUniform(Ptr))
1988       HasDependenceInvolvingLoopInvariantAddress |=
1989           !UniformStores.insert(Ptr).second;
1990 
1991     // If we did *not* see this pointer before, insert it to  the read-write
1992     // list. At this phase it is only a 'write' list.
1993     if (Seen.insert(Ptr).second) {
1994       ++NumReadWrites;
1995 
1996       MemoryLocation Loc = MemoryLocation::get(ST);
1997       // The TBAA metadata could have a control dependency on the predication
1998       // condition, so we cannot rely on it when determining whether or not we
1999       // need runtime pointer checks.
2000       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
2001         Loc.AATags.TBAA = nullptr;
2002 
2003       visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2004                     [&Accesses, Loc](Value *Ptr) {
2005                       MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2006                       Accesses.addStore(NewLoc);
2007                     });
2008     }
2009   }
2010 
2011   if (IsAnnotatedParallel) {
2012     LLVM_DEBUG(
2013         dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
2014                << "checks.\n");
2015     CanVecMem = true;
2016     return;
2017   }
2018 
2019   for (LoadInst *LD : Loads) {
2020     Value *Ptr = LD->getPointerOperand();
2021     // If we did *not* see this pointer before, insert it to the
2022     // read list. If we *did* see it before, then it is already in
2023     // the read-write list. This allows us to vectorize expressions
2024     // such as A[i] += x;  Because the address of A[i] is a read-write
2025     // pointer. This only works if the index of A[i] is consecutive.
2026     // If the address of i is unknown (for example A[B[i]]) then we may
2027     // read a few words, modify, and write a few words, and some of the
2028     // words may be written to the same address.
2029     bool IsReadOnlyPtr = false;
2030     if (Seen.insert(Ptr).second ||
2031         !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides)) {
2032       ++NumReads;
2033       IsReadOnlyPtr = true;
2034     }
2035 
2036     // See if there is an unsafe dependency between a load to a uniform address and
2037     // store to the same uniform address.
2038     if (UniformStores.count(Ptr)) {
2039       LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
2040                            "load and uniform store to the same address!\n");
2041       HasDependenceInvolvingLoopInvariantAddress = true;
2042     }
2043 
2044     MemoryLocation Loc = MemoryLocation::get(LD);
2045     // The TBAA metadata could have a control dependency on the predication
2046     // condition, so we cannot rely on it when determining whether or not we
2047     // need runtime pointer checks.
2048     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
2049       Loc.AATags.TBAA = nullptr;
2050 
2051     visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2052                   [&Accesses, Loc, IsReadOnlyPtr](Value *Ptr) {
2053                     MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2054                     Accesses.addLoad(NewLoc, IsReadOnlyPtr);
2055                   });
2056   }
2057 
2058   // If we write (or read-write) to a single destination and there are no
2059   // other reads in this loop then is it safe to vectorize.
2060   if (NumReadWrites == 1 && NumReads == 0) {
2061     LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
2062     CanVecMem = true;
2063     return;
2064   }
2065 
2066   // Build dependence sets and check whether we need a runtime pointer bounds
2067   // check.
2068   Accesses.buildDependenceSets();
2069 
2070   // Find pointers with computable bounds. We are going to use this information
2071   // to place a runtime bound check.
2072   bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
2073                                                   TheLoop, SymbolicStrides);
2074   if (!CanDoRTIfNeeded) {
2075     recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds";
2076     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
2077                       << "the array bounds.\n");
2078     CanVecMem = false;
2079     return;
2080   }
2081 
2082   LLVM_DEBUG(
2083     dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
2084 
2085   CanVecMem = true;
2086   if (Accesses.isDependencyCheckNeeded()) {
2087     LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2088     CanVecMem = DepChecker->areDepsSafe(
2089         DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
2090     MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
2091 
2092     if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
2093       LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
2094 
2095       // Clear the dependency checks. We assume they are not needed.
2096       Accesses.resetDepChecks(*DepChecker);
2097 
2098       PtrRtChecking->reset();
2099       PtrRtChecking->Need = true;
2100 
2101       auto *SE = PSE->getSE();
2102       CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
2103                                                  SymbolicStrides, true);
2104 
2105       // Check that we found the bounds for the pointer.
2106       if (!CanDoRTIfNeeded) {
2107         recordAnalysis("CantCheckMemDepsAtRunTime")
2108             << "cannot check memory dependencies at runtime";
2109         LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2110         CanVecMem = false;
2111         return;
2112       }
2113 
2114       CanVecMem = true;
2115     }
2116   }
2117 
2118   if (HasConvergentOp) {
2119     recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2120       << "cannot add control dependency to convergent operation";
2121     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
2122                          "would be needed with a convergent operation\n");
2123     CanVecMem = false;
2124     return;
2125   }
2126 
2127   if (CanVecMem)
2128     LLVM_DEBUG(
2129         dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
2130                << (PtrRtChecking->Need ? "" : " don't")
2131                << " need runtime memory checks.\n");
2132   else {
2133     recordAnalysis("UnsafeMemDep")
2134         << "unsafe dependent memory operations in loop. Use "
2135            "#pragma loop distribute(enable) to allow loop distribution "
2136            "to attempt to isolate the offending operations into a separate "
2137            "loop";
2138     LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2139   }
2140 }
2141 
2142 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
2143                                            DominatorTree *DT)  {
2144   assert(TheLoop->contains(BB) && "Unknown block used");
2145 
2146   // Blocks that do not dominate the latch need predication.
2147   BasicBlock* Latch = TheLoop->getLoopLatch();
2148   return !DT->dominates(BB, Latch);
2149 }
2150 
2151 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
2152                                                            Instruction *I) {
2153   assert(!Report && "Multiple reports generated");
2154 
2155   Value *CodeRegion = TheLoop->getHeader();
2156   DebugLoc DL = TheLoop->getStartLoc();
2157 
2158   if (I) {
2159     CodeRegion = I->getParent();
2160     // If there is no debug location attached to the instruction, revert back to
2161     // using the loop's.
2162     if (I->getDebugLoc())
2163       DL = I->getDebugLoc();
2164   }
2165 
2166   Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
2167                                                    CodeRegion);
2168   return *Report;
2169 }
2170 
2171 bool LoopAccessInfo::isUniform(Value *V) const {
2172   auto *SE = PSE->getSE();
2173   // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
2174   // never considered uniform.
2175   // TODO: Is this really what we want? Even without FP SCEV, we may want some
2176   // trivially loop-invariant FP values to be considered uniform.
2177   if (!SE->isSCEVable(V->getType()))
2178     return false;
2179   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
2180 }
2181 
2182 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2183   Value *Ptr = getLoadStorePointerOperand(MemAccess);
2184   if (!Ptr)
2185     return;
2186 
2187   Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2188   if (!Stride)
2189     return;
2190 
2191   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2192                        "versioning:");
2193   LLVM_DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
2194 
2195   // Avoid adding the "Stride == 1" predicate when we know that
2196   // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2197   // or zero iteration loop, as Trip-Count <= Stride == 1.
2198   //
2199   // TODO: We are currently not making a very informed decision on when it is
2200   // beneficial to apply stride versioning. It might make more sense that the
2201   // users of this analysis (such as the vectorizer) will trigger it, based on
2202   // their specific cost considerations; For example, in cases where stride
2203   // versioning does  not help resolving memory accesses/dependences, the
2204   // vectorizer should evaluate the cost of the runtime test, and the benefit
2205   // of various possible stride specializations, considering the alternatives
2206   // of using gather/scatters (if available).
2207 
2208   const SCEV *StrideExpr = PSE->getSCEV(Stride);
2209   const SCEV *BETakenCount = PSE->getBackedgeTakenCount();
2210 
2211   // Match the types so we can compare the stride and the BETakenCount.
2212   // The Stride can be positive/negative, so we sign extend Stride;
2213   // The backedgeTakenCount is non-negative, so we zero extend BETakenCount.
2214   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
2215   uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType());
2216   uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType());
2217   const SCEV *CastedStride = StrideExpr;
2218   const SCEV *CastedBECount = BETakenCount;
2219   ScalarEvolution *SE = PSE->getSE();
2220   if (BETypeSize >= StrideTypeSize)
2221     CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType());
2222   else
2223     CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType());
2224   const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
2225   // Since TripCount == BackEdgeTakenCount + 1, checking:
2226   // "Stride >= TripCount" is equivalent to checking:
2227   // Stride - BETakenCount > 0
2228   if (SE->isKnownPositive(StrideMinusBETaken)) {
2229     LLVM_DEBUG(
2230         dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2231                   "Stride==1 predicate will imply that the loop executes "
2232                   "at most once.\n");
2233     return;
2234   }
2235   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.");
2236 
2237   SymbolicStrides[Ptr] = Stride;
2238   StrideSet.insert(Stride);
2239 }
2240 
2241 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
2242                                const TargetLibraryInfo *TLI, AAResults *AA,
2243                                DominatorTree *DT, LoopInfo *LI)
2244     : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
2245       PtrRtChecking(std::make_unique<RuntimePointerChecking>(SE)),
2246       DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L) {
2247   if (canAnalyzeLoop())
2248     analyzeLoop(AA, LI, TLI, DT);
2249 }
2250 
2251 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2252   if (CanVecMem) {
2253     OS.indent(Depth) << "Memory dependences are safe";
2254     if (MaxSafeDepDistBytes != -1ULL)
2255       OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
2256          << " bytes";
2257     if (PtrRtChecking->Need)
2258       OS << " with run-time checks";
2259     OS << "\n";
2260   }
2261 
2262   if (HasConvergentOp)
2263     OS.indent(Depth) << "Has convergent operation in loop\n";
2264 
2265   if (Report)
2266     OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
2267 
2268   if (auto *Dependences = DepChecker->getDependences()) {
2269     OS.indent(Depth) << "Dependences:\n";
2270     for (auto &Dep : *Dependences) {
2271       Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
2272       OS << "\n";
2273     }
2274   } else
2275     OS.indent(Depth) << "Too many dependences, not recorded\n";
2276 
2277   // List the pair of accesses need run-time checks to prove independence.
2278   PtrRtChecking->print(OS, Depth);
2279   OS << "\n";
2280 
2281   OS.indent(Depth) << "Non vectorizable stores to invariant address were "
2282                    << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ")
2283                    << "found in loop.\n";
2284 
2285   OS.indent(Depth) << "SCEV assumptions:\n";
2286   PSE->getUnionPredicate().print(OS, Depth);
2287 
2288   OS << "\n";
2289 
2290   OS.indent(Depth) << "Expressions re-written:\n";
2291   PSE->print(OS, Depth);
2292 }
2293 
2294 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) {
2295   initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry());
2296 }
2297 
2298 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
2299   auto &LAI = LoopAccessInfoMap[L];
2300 
2301   if (!LAI)
2302     LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
2303 
2304   return *LAI.get();
2305 }
2306 
2307 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
2308   LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
2309 
2310   for (Loop *TopLevelLoop : *LI)
2311     for (Loop *L : depth_first(TopLevelLoop)) {
2312       OS.indent(2) << L->getHeader()->getName() << ":\n";
2313       auto &LAI = LAA.getInfo(L);
2314       LAI.print(OS, 4);
2315     }
2316 }
2317 
2318 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
2319   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2320   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2321   TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2322   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2323   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2324   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2325 
2326   return false;
2327 }
2328 
2329 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
2330   AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
2331   AU.addRequiredTransitive<AAResultsWrapperPass>();
2332   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2333   AU.addRequiredTransitive<LoopInfoWrapperPass>();
2334 
2335   AU.setPreservesAll();
2336 }
2337 
2338 char LoopAccessLegacyAnalysis::ID = 0;
2339 static const char laa_name[] = "Loop Access Analysis";
2340 #define LAA_NAME "loop-accesses"
2341 
2342 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2343 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2344 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
2345 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2346 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2347 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2348 
2349 AnalysisKey LoopAccessAnalysis::Key;
2350 
2351 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM,
2352                                        LoopStandardAnalysisResults &AR) {
2353   return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI);
2354 }
2355 
2356 namespace llvm {
2357 
2358   Pass *createLAAPass() {
2359     return new LoopAccessLegacyAnalysis();
2360   }
2361 
2362 } // end namespace llvm
2363