1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/EquivalenceClasses.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AliasSetTracker.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/LoopIterator.h" 31 #include "llvm/Analysis/MemoryLocation.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/ScalarEvolution.h" 34 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/PassManager.h" 51 #include "llvm/IR/PatternMatch.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/ValueHandle.h" 55 #include "llvm/InitializePasses.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CommandLine.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <iterator> 66 #include <utility> 67 #include <vector> 68 69 using namespace llvm; 70 using namespace llvm::PatternMatch; 71 72 #define DEBUG_TYPE "loop-accesses" 73 74 static cl::opt<unsigned, true> 75 VectorizationFactor("force-vector-width", cl::Hidden, 76 cl::desc("Sets the SIMD width. Zero is autoselect."), 77 cl::location(VectorizerParams::VectorizationFactor)); 78 unsigned VectorizerParams::VectorizationFactor; 79 80 static cl::opt<unsigned, true> 81 VectorizationInterleave("force-vector-interleave", cl::Hidden, 82 cl::desc("Sets the vectorization interleave count. " 83 "Zero is autoselect."), 84 cl::location( 85 VectorizerParams::VectorizationInterleave)); 86 unsigned VectorizerParams::VectorizationInterleave; 87 88 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 89 "runtime-memory-check-threshold", cl::Hidden, 90 cl::desc("When performing memory disambiguation checks at runtime do not " 91 "generate more than this number of comparisons (default = 8)."), 92 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 93 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 94 95 /// The maximum iterations used to merge memory checks 96 static cl::opt<unsigned> MemoryCheckMergeThreshold( 97 "memory-check-merge-threshold", cl::Hidden, 98 cl::desc("Maximum number of comparisons done when trying to merge " 99 "runtime memory checks. (default = 100)"), 100 cl::init(100)); 101 102 /// Maximum SIMD width. 103 const unsigned VectorizerParams::MaxVectorWidth = 64; 104 105 /// We collect dependences up to this threshold. 106 static cl::opt<unsigned> 107 MaxDependences("max-dependences", cl::Hidden, 108 cl::desc("Maximum number of dependences collected by " 109 "loop-access analysis (default = 100)"), 110 cl::init(100)); 111 112 /// This enables versioning on the strides of symbolically striding memory 113 /// accesses in code like the following. 114 /// for (i = 0; i < N; ++i) 115 /// A[i * Stride1] += B[i * Stride2] ... 116 /// 117 /// Will be roughly translated to 118 /// if (Stride1 == 1 && Stride2 == 1) { 119 /// for (i = 0; i < N; i+=4) 120 /// A[i:i+3] += ... 121 /// } else 122 /// ... 123 static cl::opt<bool> EnableMemAccessVersioning( 124 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 125 cl::desc("Enable symbolic stride memory access versioning")); 126 127 /// Enable store-to-load forwarding conflict detection. This option can 128 /// be disabled for correctness testing. 129 static cl::opt<bool> EnableForwardingConflictDetection( 130 "store-to-load-forwarding-conflict-detection", cl::Hidden, 131 cl::desc("Enable conflict detection in loop-access analysis"), 132 cl::init(true)); 133 134 static cl::opt<unsigned> MaxForkedSCEVDepth( 135 "max-forked-scev-depth", cl::Hidden, 136 cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"), 137 cl::init(5)); 138 139 bool VectorizerParams::isInterleaveForced() { 140 return ::VectorizationInterleave.getNumOccurrences() > 0; 141 } 142 143 Value *llvm::stripIntegerCast(Value *V) { 144 if (auto *CI = dyn_cast<CastInst>(V)) 145 if (CI->getOperand(0)->getType()->isIntegerTy()) 146 return CI->getOperand(0); 147 return V; 148 } 149 150 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 151 const ValueToValueMap &PtrToStride, 152 Value *Ptr) { 153 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 154 155 // If there is an entry in the map return the SCEV of the pointer with the 156 // symbolic stride replaced by one. 157 ValueToValueMap::const_iterator SI = PtrToStride.find(Ptr); 158 if (SI == PtrToStride.end()) 159 // For a non-symbolic stride, just return the original expression. 160 return OrigSCEV; 161 162 Value *StrideVal = stripIntegerCast(SI->second); 163 164 ScalarEvolution *SE = PSE.getSE(); 165 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 166 const auto *CT = 167 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 168 169 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 170 auto *Expr = PSE.getSCEV(Ptr); 171 172 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 173 << " by: " << *Expr << "\n"); 174 return Expr; 175 } 176 177 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup( 178 unsigned Index, RuntimePointerChecking &RtCheck) 179 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start), 180 AddressSpace(RtCheck.Pointers[Index] 181 .PointerValue->getType() 182 ->getPointerAddressSpace()), 183 NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) { 184 Members.push_back(Index); 185 } 186 187 /// Calculate Start and End points of memory access. 188 /// Let's assume A is the first access and B is a memory access on N-th loop 189 /// iteration. Then B is calculated as: 190 /// B = A + Step*N . 191 /// Step value may be positive or negative. 192 /// N is a calculated back-edge taken count: 193 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 194 /// Start and End points are calculated in the following way: 195 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 196 /// where SizeOfElt is the size of single memory access in bytes. 197 /// 198 /// There is no conflict when the intervals are disjoint: 199 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 200 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, 201 Type *AccessTy, bool WritePtr, 202 unsigned DepSetId, unsigned ASId, 203 PredicatedScalarEvolution &PSE, 204 bool NeedsFreeze) { 205 ScalarEvolution *SE = PSE.getSE(); 206 207 const SCEV *ScStart; 208 const SCEV *ScEnd; 209 210 if (SE->isLoopInvariant(PtrExpr, Lp)) { 211 ScStart = ScEnd = PtrExpr; 212 } else { 213 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr); 214 assert(AR && "Invalid addrec expression"); 215 const SCEV *Ex = PSE.getBackedgeTakenCount(); 216 217 ScStart = AR->getStart(); 218 ScEnd = AR->evaluateAtIteration(Ex, *SE); 219 const SCEV *Step = AR->getStepRecurrence(*SE); 220 221 // For expressions with negative step, the upper bound is ScStart and the 222 // lower bound is ScEnd. 223 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 224 if (CStep->getValue()->isNegative()) 225 std::swap(ScStart, ScEnd); 226 } else { 227 // Fallback case: the step is not constant, but we can still 228 // get the upper and lower bounds of the interval by using min/max 229 // expressions. 230 ScStart = SE->getUMinExpr(ScStart, ScEnd); 231 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 232 } 233 } 234 // Add the size of the pointed element to ScEnd. 235 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 236 Type *IdxTy = DL.getIndexType(Ptr->getType()); 237 const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy); 238 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 239 240 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr, 241 NeedsFreeze); 242 } 243 244 void RuntimePointerChecking::tryToCreateDiffCheck( 245 const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) { 246 if (!CanUseDiffCheck) 247 return; 248 249 // If either group contains multiple different pointers, bail out. 250 // TODO: Support multiple pointers by using the minimum or maximum pointer, 251 // depending on src & sink. 252 if (CGI.Members.size() != 1 || CGJ.Members.size() != 1) { 253 CanUseDiffCheck = false; 254 return; 255 } 256 257 PointerInfo *Src = &Pointers[CGI.Members[0]]; 258 PointerInfo *Sink = &Pointers[CGJ.Members[0]]; 259 260 // If either pointer is read and written, multiple checks may be needed. Bail 261 // out. 262 if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() || 263 !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty()) { 264 CanUseDiffCheck = false; 265 return; 266 } 267 268 ArrayRef<unsigned> AccSrc = 269 DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr); 270 ArrayRef<unsigned> AccSink = 271 DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr); 272 // If either pointer is accessed multiple times, there may not be a clear 273 // src/sink relation. Bail out for now. 274 if (AccSrc.size() != 1 || AccSink.size() != 1) { 275 CanUseDiffCheck = false; 276 return; 277 } 278 // If the sink is accessed before src, swap src/sink. 279 if (AccSink[0] < AccSrc[0]) 280 std::swap(Src, Sink); 281 282 auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr); 283 auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr); 284 if (!SrcAR || !SinkAR || SrcAR->getLoop() != DC.getInnermostLoop() || 285 SinkAR->getLoop() != DC.getInnermostLoop()) { 286 CanUseDiffCheck = false; 287 return; 288 } 289 290 SmallVector<Instruction *, 4> SrcInsts = 291 DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr); 292 SmallVector<Instruction *, 4> SinkInsts = 293 DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr); 294 Type *SrcTy = getLoadStoreType(SrcInsts[0]); 295 Type *DstTy = getLoadStoreType(SinkInsts[0]); 296 if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy)) { 297 CanUseDiffCheck = false; 298 return; 299 } 300 const DataLayout &DL = 301 SinkAR->getLoop()->getHeader()->getModule()->getDataLayout(); 302 unsigned AllocSize = 303 std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy)); 304 305 // Only matching constant steps matching the AllocSize are supported at the 306 // moment. This simplifies the difference computation. Can be extended in the 307 // future. 308 auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE)); 309 if (!Step || Step != SrcAR->getStepRecurrence(*SE) || 310 Step->getAPInt().abs() != AllocSize) { 311 CanUseDiffCheck = false; 312 return; 313 } 314 315 IntegerType *IntTy = 316 IntegerType::get(Src->PointerValue->getContext(), 317 DL.getPointerSizeInBits(CGI.AddressSpace)); 318 319 // When counting down, the dependence distance needs to be swapped. 320 if (Step->getValue()->isNegative()) 321 std::swap(SinkAR, SrcAR); 322 323 const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy); 324 const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy); 325 if (isa<SCEVCouldNotCompute>(SinkStartInt) || 326 isa<SCEVCouldNotCompute>(SrcStartInt)) { 327 CanUseDiffCheck = false; 328 return; 329 } 330 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize, 331 Src->NeedsFreeze || Sink->NeedsFreeze); 332 } 333 334 SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() { 335 SmallVector<RuntimePointerCheck, 4> Checks; 336 337 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 338 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 339 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I]; 340 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J]; 341 342 if (needsChecking(CGI, CGJ)) { 343 tryToCreateDiffCheck(CGI, CGJ); 344 Checks.push_back(std::make_pair(&CGI, &CGJ)); 345 } 346 } 347 } 348 return Checks; 349 } 350 351 void RuntimePointerChecking::generateChecks( 352 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 353 assert(Checks.empty() && "Checks is not empty"); 354 groupChecks(DepCands, UseDependencies); 355 Checks = generateChecks(); 356 } 357 358 bool RuntimePointerChecking::needsChecking( 359 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const { 360 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 361 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 362 if (needsChecking(M.Members[I], N.Members[J])) 363 return true; 364 return false; 365 } 366 367 /// Compare \p I and \p J and return the minimum. 368 /// Return nullptr in case we couldn't find an answer. 369 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 370 ScalarEvolution *SE) { 371 const SCEV *Diff = SE->getMinusSCEV(J, I); 372 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 373 374 if (!C) 375 return nullptr; 376 if (C->getValue()->isNegative()) 377 return J; 378 return I; 379 } 380 381 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, 382 RuntimePointerChecking &RtCheck) { 383 return addPointer( 384 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End, 385 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(), 386 RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE); 387 } 388 389 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start, 390 const SCEV *End, unsigned AS, 391 bool NeedsFreeze, 392 ScalarEvolution &SE) { 393 assert(AddressSpace == AS && 394 "all pointers in a checking group must be in the same address space"); 395 396 // Compare the starts and ends with the known minimum and maximum 397 // of this set. We need to know how we compare against the min/max 398 // of the set in order to be able to emit memchecks. 399 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE); 400 if (!Min0) 401 return false; 402 403 const SCEV *Min1 = getMinFromExprs(End, High, &SE); 404 if (!Min1) 405 return false; 406 407 // Update the low bound expression if we've found a new min value. 408 if (Min0 == Start) 409 Low = Start; 410 411 // Update the high bound expression if we've found a new max value. 412 if (Min1 != End) 413 High = End; 414 415 Members.push_back(Index); 416 this->NeedsFreeze |= NeedsFreeze; 417 return true; 418 } 419 420 void RuntimePointerChecking::groupChecks( 421 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 422 // We build the groups from dependency candidates equivalence classes 423 // because: 424 // - We know that pointers in the same equivalence class share 425 // the same underlying object and therefore there is a chance 426 // that we can compare pointers 427 // - We wouldn't be able to merge two pointers for which we need 428 // to emit a memcheck. The classes in DepCands are already 429 // conveniently built such that no two pointers in the same 430 // class need checking against each other. 431 432 // We use the following (greedy) algorithm to construct the groups 433 // For every pointer in the equivalence class: 434 // For each existing group: 435 // - if the difference between this pointer and the min/max bounds 436 // of the group is a constant, then make the pointer part of the 437 // group and update the min/max bounds of that group as required. 438 439 CheckingGroups.clear(); 440 441 // If we need to check two pointers to the same underlying object 442 // with a non-constant difference, we shouldn't perform any pointer 443 // grouping with those pointers. This is because we can easily get 444 // into cases where the resulting check would return false, even when 445 // the accesses are safe. 446 // 447 // The following example shows this: 448 // for (i = 0; i < 1000; ++i) 449 // a[5000 + i * m] = a[i] + a[i + 9000] 450 // 451 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 452 // (0, 10000) which is always false. However, if m is 1, there is no 453 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 454 // us to perform an accurate check in this case. 455 // 456 // The above case requires that we have an UnknownDependence between 457 // accesses to the same underlying object. This cannot happen unless 458 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 459 // is also false. In this case we will use the fallback path and create 460 // separate checking groups for all pointers. 461 462 // If we don't have the dependency partitions, construct a new 463 // checking pointer group for each pointer. This is also required 464 // for correctness, because in this case we can have checking between 465 // pointers to the same underlying object. 466 if (!UseDependencies) { 467 for (unsigned I = 0; I < Pointers.size(); ++I) 468 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this)); 469 return; 470 } 471 472 unsigned TotalComparisons = 0; 473 474 DenseMap<Value *, SmallVector<unsigned>> PositionMap; 475 for (unsigned Index = 0; Index < Pointers.size(); ++Index) { 476 auto Iter = PositionMap.insert({Pointers[Index].PointerValue, {}}); 477 Iter.first->second.push_back(Index); 478 } 479 480 // We need to keep track of what pointers we've already seen so we 481 // don't process them twice. 482 SmallSet<unsigned, 2> Seen; 483 484 // Go through all equivalence classes, get the "pointer check groups" 485 // and add them to the overall solution. We use the order in which accesses 486 // appear in 'Pointers' to enforce determinism. 487 for (unsigned I = 0; I < Pointers.size(); ++I) { 488 // We've seen this pointer before, and therefore already processed 489 // its equivalence class. 490 if (Seen.count(I)) 491 continue; 492 493 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 494 Pointers[I].IsWritePtr); 495 496 SmallVector<RuntimeCheckingPtrGroup, 2> Groups; 497 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 498 499 // Because DepCands is constructed by visiting accesses in the order in 500 // which they appear in alias sets (which is deterministic) and the 501 // iteration order within an equivalence class member is only dependent on 502 // the order in which unions and insertions are performed on the 503 // equivalence class, the iteration order is deterministic. 504 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 505 MI != ME; ++MI) { 506 auto PointerI = PositionMap.find(MI->getPointer()); 507 assert(PointerI != PositionMap.end() && 508 "pointer in equivalence class not found in PositionMap"); 509 for (unsigned Pointer : PointerI->second) { 510 bool Merged = false; 511 // Mark this pointer as seen. 512 Seen.insert(Pointer); 513 514 // Go through all the existing sets and see if we can find one 515 // which can include this pointer. 516 for (RuntimeCheckingPtrGroup &Group : Groups) { 517 // Don't perform more than a certain amount of comparisons. 518 // This should limit the cost of grouping the pointers to something 519 // reasonable. If we do end up hitting this threshold, the algorithm 520 // will create separate groups for all remaining pointers. 521 if (TotalComparisons > MemoryCheckMergeThreshold) 522 break; 523 524 TotalComparisons++; 525 526 if (Group.addPointer(Pointer, *this)) { 527 Merged = true; 528 break; 529 } 530 } 531 532 if (!Merged) 533 // We couldn't add this pointer to any existing set or the threshold 534 // for the number of comparisons has been reached. Create a new group 535 // to hold the current pointer. 536 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this)); 537 } 538 } 539 540 // We've computed the grouped checks for this partition. 541 // Save the results and continue with the next one. 542 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 543 } 544 } 545 546 bool RuntimePointerChecking::arePointersInSamePartition( 547 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 548 unsigned PtrIdx2) { 549 return (PtrToPartition[PtrIdx1] != -1 && 550 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 551 } 552 553 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 554 const PointerInfo &PointerI = Pointers[I]; 555 const PointerInfo &PointerJ = Pointers[J]; 556 557 // No need to check if two readonly pointers intersect. 558 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 559 return false; 560 561 // Only need to check pointers between two different dependency sets. 562 if (PointerI.DependencySetId == PointerJ.DependencySetId) 563 return false; 564 565 // Only need to check pointers in the same alias set. 566 if (PointerI.AliasSetId != PointerJ.AliasSetId) 567 return false; 568 569 return true; 570 } 571 572 void RuntimePointerChecking::printChecks( 573 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks, 574 unsigned Depth) const { 575 unsigned N = 0; 576 for (const auto &Check : Checks) { 577 const auto &First = Check.first->Members, &Second = Check.second->Members; 578 579 OS.indent(Depth) << "Check " << N++ << ":\n"; 580 581 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 582 for (unsigned K = 0; K < First.size(); ++K) 583 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 584 585 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 586 for (unsigned K = 0; K < Second.size(); ++K) 587 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 588 } 589 } 590 591 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 592 593 OS.indent(Depth) << "Run-time memory checks:\n"; 594 printChecks(OS, Checks, Depth); 595 596 OS.indent(Depth) << "Grouped accesses:\n"; 597 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 598 const auto &CG = CheckingGroups[I]; 599 600 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 601 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 602 << ")\n"; 603 for (unsigned J = 0; J < CG.Members.size(); ++J) { 604 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 605 << "\n"; 606 } 607 } 608 } 609 610 namespace { 611 612 /// Analyses memory accesses in a loop. 613 /// 614 /// Checks whether run time pointer checks are needed and builds sets for data 615 /// dependence checking. 616 class AccessAnalysis { 617 public: 618 /// Read or write access location. 619 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 620 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 621 622 AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI, 623 MemoryDepChecker::DepCandidates &DA, 624 PredicatedScalarEvolution &PSE) 625 : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE) { 626 // We're analyzing dependences across loop iterations. 627 BAA.enableCrossIterationMode(); 628 } 629 630 /// Register a load and whether it is only read from. 631 void addLoad(MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) { 632 Value *Ptr = const_cast<Value*>(Loc.Ptr); 633 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 634 Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy); 635 if (IsReadOnly) 636 ReadOnlyPtr.insert(Ptr); 637 } 638 639 /// Register a store. 640 void addStore(MemoryLocation &Loc, Type *AccessTy) { 641 Value *Ptr = const_cast<Value*>(Loc.Ptr); 642 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 643 Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy); 644 } 645 646 /// Check if we can emit a run-time no-alias check for \p Access. 647 /// 648 /// Returns true if we can emit a run-time no alias check for \p Access. 649 /// If we can check this access, this also adds it to a dependence set and 650 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 651 /// we will attempt to use additional run-time checks in order to get 652 /// the bounds of the pointer. 653 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 654 MemAccessInfo Access, Type *AccessTy, 655 const ValueToValueMap &Strides, 656 DenseMap<Value *, unsigned> &DepSetId, 657 Loop *TheLoop, unsigned &RunningDepId, 658 unsigned ASId, bool ShouldCheckStride, bool Assume); 659 660 /// Check whether we can check the pointers at runtime for 661 /// non-intersection. 662 /// 663 /// Returns true if we need no check or if we do and we can generate them 664 /// (i.e. the pointers have computable bounds). 665 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 666 Loop *TheLoop, const ValueToValueMap &Strides, 667 Value *&UncomputablePtr, bool ShouldCheckWrap = false); 668 669 /// Goes over all memory accesses, checks whether a RT check is needed 670 /// and builds sets of dependent accesses. 671 void buildDependenceSets() { 672 processMemAccesses(); 673 } 674 675 /// Initial processing of memory accesses determined that we need to 676 /// perform dependency checking. 677 /// 678 /// Note that this can later be cleared if we retry memcheck analysis without 679 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 680 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 681 682 /// We decided that no dependence analysis would be used. Reset the state. 683 void resetDepChecks(MemoryDepChecker &DepChecker) { 684 CheckDeps.clear(); 685 DepChecker.clearDependences(); 686 } 687 688 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 689 690 private: 691 typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap; 692 693 /// Go over all memory access and check whether runtime pointer checks 694 /// are needed and build sets of dependency check candidates. 695 void processMemAccesses(); 696 697 /// Map of all accesses. Values are the types used to access memory pointed to 698 /// by the pointer. 699 PtrAccessMap Accesses; 700 701 /// The loop being checked. 702 const Loop *TheLoop; 703 704 /// List of accesses that need a further dependence check. 705 MemAccessInfoList CheckDeps; 706 707 /// Set of pointers that are read only. 708 SmallPtrSet<Value*, 16> ReadOnlyPtr; 709 710 /// Batched alias analysis results. 711 BatchAAResults BAA; 712 713 /// An alias set tracker to partition the access set by underlying object and 714 //intrinsic property (such as TBAA metadata). 715 AliasSetTracker AST; 716 717 LoopInfo *LI; 718 719 /// Sets of potentially dependent accesses - members of one set share an 720 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 721 /// dependence check. 722 MemoryDepChecker::DepCandidates &DepCands; 723 724 /// Initial processing of memory accesses determined that we may need 725 /// to add memchecks. Perform the analysis to determine the necessary checks. 726 /// 727 /// Note that, this is different from isDependencyCheckNeeded. When we retry 728 /// memcheck analysis without dependency checking 729 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 730 /// cleared while this remains set if we have potentially dependent accesses. 731 bool IsRTCheckAnalysisNeeded = false; 732 733 /// The SCEV predicate containing all the SCEV-related assumptions. 734 PredicatedScalarEvolution &PSE; 735 }; 736 737 } // end anonymous namespace 738 739 /// Check whether a pointer can participate in a runtime bounds check. 740 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 741 /// by adding run-time checks (overflow checks) if necessary. 742 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr, 743 const SCEV *PtrScev, Loop *L, bool Assume) { 744 // The bounds for loop-invariant pointer is trivial. 745 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 746 return true; 747 748 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 749 750 if (!AR && Assume) 751 AR = PSE.getAsAddRec(Ptr); 752 753 if (!AR) 754 return false; 755 756 return AR->isAffine(); 757 } 758 759 /// Check whether a pointer address cannot wrap. 760 static bool isNoWrap(PredicatedScalarEvolution &PSE, 761 const ValueToValueMap &Strides, Value *Ptr, Type *AccessTy, 762 Loop *L) { 763 const SCEV *PtrScev = PSE.getSCEV(Ptr); 764 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 765 return true; 766 767 int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides).value_or(0); 768 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 769 return true; 770 771 return false; 772 } 773 774 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop, 775 function_ref<void(Value *)> AddPointer) { 776 SmallPtrSet<Value *, 8> Visited; 777 SmallVector<Value *> WorkList; 778 WorkList.push_back(StartPtr); 779 780 while (!WorkList.empty()) { 781 Value *Ptr = WorkList.pop_back_val(); 782 if (!Visited.insert(Ptr).second) 783 continue; 784 auto *PN = dyn_cast<PHINode>(Ptr); 785 // SCEV does not look through non-header PHIs inside the loop. Such phis 786 // can be analyzed by adding separate accesses for each incoming pointer 787 // value. 788 if (PN && InnermostLoop.contains(PN->getParent()) && 789 PN->getParent() != InnermostLoop.getHeader()) { 790 for (const Use &Inc : PN->incoming_values()) 791 WorkList.push_back(Inc); 792 } else 793 AddPointer(Ptr); 794 } 795 } 796 797 // Walk back through the IR for a pointer, looking for a select like the 798 // following: 799 // 800 // %offset = select i1 %cmp, i64 %a, i64 %b 801 // %addr = getelementptr double, double* %base, i64 %offset 802 // %ld = load double, double* %addr, align 8 803 // 804 // We won't be able to form a single SCEVAddRecExpr from this since the 805 // address for each loop iteration depends on %cmp. We could potentially 806 // produce multiple valid SCEVAddRecExprs, though, and check all of them for 807 // memory safety/aliasing if needed. 808 // 809 // If we encounter some IR we don't yet handle, or something obviously fine 810 // like a constant, then we just add the SCEV for that term to the list passed 811 // in by the caller. If we have a node that may potentially yield a valid 812 // SCEVAddRecExpr then we decompose it into parts and build the SCEV terms 813 // ourselves before adding to the list. 814 static void findForkedSCEVs( 815 ScalarEvolution *SE, const Loop *L, Value *Ptr, 816 SmallVectorImpl<PointerIntPair<const SCEV *, 1, bool>> &ScevList, 817 unsigned Depth) { 818 // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or 819 // we've exceeded our limit on recursion, just return whatever we have 820 // regardless of whether it can be used for a forked pointer or not, along 821 // with an indication of whether it might be a poison or undef value. 822 const SCEV *Scev = SE->getSCEV(Ptr); 823 if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) || 824 !isa<Instruction>(Ptr) || Depth == 0) { 825 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 826 return; 827 } 828 829 Depth--; 830 831 auto UndefPoisonCheck = [](PointerIntPair<const SCEV *, 1, bool> S) { 832 return get<1>(S); 833 }; 834 835 auto GetBinOpExpr = [&SE](unsigned Opcode, const SCEV *L, const SCEV *R) { 836 switch (Opcode) { 837 case Instruction::Add: 838 return SE->getAddExpr(L, R); 839 case Instruction::Sub: 840 return SE->getMinusSCEV(L, R); 841 default: 842 llvm_unreachable("Unexpected binary operator when walking ForkedPtrs"); 843 } 844 }; 845 846 Instruction *I = cast<Instruction>(Ptr); 847 unsigned Opcode = I->getOpcode(); 848 switch (Opcode) { 849 case Instruction::GetElementPtr: { 850 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 851 Type *SourceTy = GEP->getSourceElementType(); 852 // We only handle base + single offset GEPs here for now. 853 // Not dealing with preexisting gathers yet, so no vectors. 854 if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) { 855 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP)); 856 break; 857 } 858 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> BaseScevs; 859 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> OffsetScevs; 860 findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth); 861 findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth); 862 863 // See if we need to freeze our fork... 864 bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) || 865 any_of(OffsetScevs, UndefPoisonCheck); 866 867 // Check that we only have a single fork, on either the base or the offset. 868 // Copy the SCEV across for the one without a fork in order to generate 869 // the full SCEV for both sides of the GEP. 870 if (OffsetScevs.size() == 2 && BaseScevs.size() == 1) 871 BaseScevs.push_back(BaseScevs[0]); 872 else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1) 873 OffsetScevs.push_back(OffsetScevs[0]); 874 else { 875 ScevList.emplace_back(Scev, NeedsFreeze); 876 break; 877 } 878 879 // Find the pointer type we need to extend to. 880 Type *IntPtrTy = SE->getEffectiveSCEVType( 881 SE->getSCEV(GEP->getPointerOperand())->getType()); 882 883 // Find the size of the type being pointed to. We only have a single 884 // index term (guarded above) so we don't need to index into arrays or 885 // structures, just get the size of the scalar value. 886 const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy); 887 888 // Scale up the offsets by the size of the type, then add to the bases. 889 const SCEV *Scaled1 = SE->getMulExpr( 890 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[0]), IntPtrTy)); 891 const SCEV *Scaled2 = SE->getMulExpr( 892 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[1]), IntPtrTy)); 893 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[0]), Scaled1), 894 NeedsFreeze); 895 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[1]), Scaled2), 896 NeedsFreeze); 897 break; 898 } 899 case Instruction::Select: { 900 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs; 901 // A select means we've found a forked pointer, but we currently only 902 // support a single select per pointer so if there's another behind this 903 // then we just bail out and return the generic SCEV. 904 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth); 905 findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth); 906 if (ChildScevs.size() == 2) { 907 ScevList.push_back(ChildScevs[0]); 908 ScevList.push_back(ChildScevs[1]); 909 } else 910 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 911 break; 912 } 913 case Instruction::Add: 914 case Instruction::Sub: { 915 SmallVector<PointerIntPair<const SCEV *, 1, bool>> LScevs; 916 SmallVector<PointerIntPair<const SCEV *, 1, bool>> RScevs; 917 findForkedSCEVs(SE, L, I->getOperand(0), LScevs, Depth); 918 findForkedSCEVs(SE, L, I->getOperand(1), RScevs, Depth); 919 920 // See if we need to freeze our fork... 921 bool NeedsFreeze = 922 any_of(LScevs, UndefPoisonCheck) || any_of(RScevs, UndefPoisonCheck); 923 924 // Check that we only have a single fork, on either the left or right side. 925 // Copy the SCEV across for the one without a fork in order to generate 926 // the full SCEV for both sides of the BinOp. 927 if (LScevs.size() == 2 && RScevs.size() == 1) 928 RScevs.push_back(RScevs[0]); 929 else if (RScevs.size() == 2 && LScevs.size() == 1) 930 LScevs.push_back(LScevs[0]); 931 else { 932 ScevList.emplace_back(Scev, NeedsFreeze); 933 break; 934 } 935 936 ScevList.emplace_back( 937 GetBinOpExpr(Opcode, get<0>(LScevs[0]), get<0>(RScevs[0])), 938 NeedsFreeze); 939 ScevList.emplace_back( 940 GetBinOpExpr(Opcode, get<0>(LScevs[1]), get<0>(RScevs[1])), 941 NeedsFreeze); 942 break; 943 } 944 default: 945 // Just return the current SCEV if we haven't handled the instruction yet. 946 LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n"); 947 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 948 break; 949 } 950 } 951 952 static SmallVector<PointerIntPair<const SCEV *, 1, bool>> 953 findForkedPointer(PredicatedScalarEvolution &PSE, 954 const ValueToValueMap &StridesMap, Value *Ptr, 955 const Loop *L) { 956 ScalarEvolution *SE = PSE.getSE(); 957 assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!"); 958 SmallVector<PointerIntPair<const SCEV *, 1, bool>> Scevs; 959 findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth); 960 961 // For now, we will only accept a forked pointer with two possible SCEVs 962 // that are either SCEVAddRecExprs or loop invariant. 963 if (Scevs.size() == 2 && 964 (isa<SCEVAddRecExpr>(get<0>(Scevs[0])) || 965 SE->isLoopInvariant(get<0>(Scevs[0]), L)) && 966 (isa<SCEVAddRecExpr>(get<0>(Scevs[1])) || 967 SE->isLoopInvariant(get<0>(Scevs[1]), L))) { 968 LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr << "\n"); 969 LLVM_DEBUG(dbgs() << "\t(1) " << *get<0>(Scevs[0]) << "\n"); 970 LLVM_DEBUG(dbgs() << "\t(2) " << *get<0>(Scevs[1]) << "\n"); 971 return Scevs; 972 } 973 974 return {{replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false}}; 975 } 976 977 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 978 MemAccessInfo Access, Type *AccessTy, 979 const ValueToValueMap &StridesMap, 980 DenseMap<Value *, unsigned> &DepSetId, 981 Loop *TheLoop, unsigned &RunningDepId, 982 unsigned ASId, bool ShouldCheckWrap, 983 bool Assume) { 984 Value *Ptr = Access.getPointer(); 985 986 SmallVector<PointerIntPair<const SCEV *, 1, bool>> TranslatedPtrs = 987 findForkedPointer(PSE, StridesMap, Ptr, TheLoop); 988 989 for (auto &P : TranslatedPtrs) { 990 const SCEV *PtrExpr = get<0>(P); 991 if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume)) 992 return false; 993 994 // When we run after a failing dependency check we have to make sure 995 // we don't have wrapping pointers. 996 if (ShouldCheckWrap) { 997 // Skip wrap checking when translating pointers. 998 if (TranslatedPtrs.size() > 1) 999 return false; 1000 1001 if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) { 1002 auto *Expr = PSE.getSCEV(Ptr); 1003 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 1004 return false; 1005 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1006 } 1007 } 1008 // If there's only one option for Ptr, look it up after bounds and wrap 1009 // checking, because assumptions might have been added to PSE. 1010 if (TranslatedPtrs.size() == 1) 1011 TranslatedPtrs[0] = {replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), 1012 false}; 1013 } 1014 1015 for (auto [PtrExpr, NeedsFreeze] : TranslatedPtrs) { 1016 // The id of the dependence set. 1017 unsigned DepId; 1018 1019 if (isDependencyCheckNeeded()) { 1020 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 1021 unsigned &LeaderId = DepSetId[Leader]; 1022 if (!LeaderId) 1023 LeaderId = RunningDepId++; 1024 DepId = LeaderId; 1025 } else 1026 // Each access has its own dependence set. 1027 DepId = RunningDepId++; 1028 1029 bool IsWrite = Access.getInt(); 1030 RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE, 1031 NeedsFreeze); 1032 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 1033 } 1034 1035 return true; 1036 } 1037 1038 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 1039 ScalarEvolution *SE, Loop *TheLoop, 1040 const ValueToValueMap &StridesMap, 1041 Value *&UncomputablePtr, bool ShouldCheckWrap) { 1042 // Find pointers with computable bounds. We are going to use this information 1043 // to place a runtime bound check. 1044 bool CanDoRT = true; 1045 1046 bool MayNeedRTCheck = false; 1047 if (!IsRTCheckAnalysisNeeded) return true; 1048 1049 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 1050 1051 // We assign a consecutive id to access from different alias sets. 1052 // Accesses between different groups doesn't need to be checked. 1053 unsigned ASId = 0; 1054 for (auto &AS : AST) { 1055 int NumReadPtrChecks = 0; 1056 int NumWritePtrChecks = 0; 1057 bool CanDoAliasSetRT = true; 1058 ++ASId; 1059 1060 // We assign consecutive id to access from different dependence sets. 1061 // Accesses within the same set don't need a runtime check. 1062 unsigned RunningDepId = 1; 1063 DenseMap<Value *, unsigned> DepSetId; 1064 1065 SmallVector<std::pair<MemAccessInfo, Type *>, 4> Retries; 1066 1067 // First, count how many write and read accesses are in the alias set. Also 1068 // collect MemAccessInfos for later. 1069 SmallVector<MemAccessInfo, 4> AccessInfos; 1070 for (const auto &A : AS) { 1071 Value *Ptr = A.getValue(); 1072 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 1073 1074 if (IsWrite) 1075 ++NumWritePtrChecks; 1076 else 1077 ++NumReadPtrChecks; 1078 AccessInfos.emplace_back(Ptr, IsWrite); 1079 } 1080 1081 // We do not need runtime checks for this alias set, if there are no writes 1082 // or a single write and no reads. 1083 if (NumWritePtrChecks == 0 || 1084 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) { 1085 assert((AS.size() <= 1 || 1086 all_of(AS, 1087 [this](auto AC) { 1088 MemAccessInfo AccessWrite(AC.getValue(), true); 1089 return DepCands.findValue(AccessWrite) == DepCands.end(); 1090 })) && 1091 "Can only skip updating CanDoRT below, if all entries in AS " 1092 "are reads or there is at most 1 entry"); 1093 continue; 1094 } 1095 1096 for (auto &Access : AccessInfos) { 1097 for (const auto &AccessTy : Accesses[Access]) { 1098 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 1099 DepSetId, TheLoop, RunningDepId, ASId, 1100 ShouldCheckWrap, false)) { 1101 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" 1102 << *Access.getPointer() << '\n'); 1103 Retries.push_back({Access, AccessTy}); 1104 CanDoAliasSetRT = false; 1105 } 1106 } 1107 } 1108 1109 // Note that this function computes CanDoRT and MayNeedRTCheck 1110 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that 1111 // we have a pointer for which we couldn't find the bounds but we don't 1112 // actually need to emit any checks so it does not matter. 1113 // 1114 // We need runtime checks for this alias set, if there are at least 2 1115 // dependence sets (in which case RunningDepId > 2) or if we need to re-try 1116 // any bound checks (because in that case the number of dependence sets is 1117 // incomplete). 1118 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty(); 1119 1120 // We need to perform run-time alias checks, but some pointers had bounds 1121 // that couldn't be checked. 1122 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 1123 // Reset the CanDoSetRt flag and retry all accesses that have failed. 1124 // We know that we need these checks, so we can now be more aggressive 1125 // and add further checks if required (overflow checks). 1126 CanDoAliasSetRT = true; 1127 for (auto Retry : Retries) { 1128 MemAccessInfo Access = Retry.first; 1129 Type *AccessTy = Retry.second; 1130 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 1131 DepSetId, TheLoop, RunningDepId, ASId, 1132 ShouldCheckWrap, /*Assume=*/true)) { 1133 CanDoAliasSetRT = false; 1134 UncomputablePtr = Access.getPointer(); 1135 break; 1136 } 1137 } 1138 } 1139 1140 CanDoRT &= CanDoAliasSetRT; 1141 MayNeedRTCheck |= NeedsAliasSetRTCheck; 1142 ++ASId; 1143 } 1144 1145 // If the pointers that we would use for the bounds comparison have different 1146 // address spaces, assume the values aren't directly comparable, so we can't 1147 // use them for the runtime check. We also have to assume they could 1148 // overlap. In the future there should be metadata for whether address spaces 1149 // are disjoint. 1150 unsigned NumPointers = RtCheck.Pointers.size(); 1151 for (unsigned i = 0; i < NumPointers; ++i) { 1152 for (unsigned j = i + 1; j < NumPointers; ++j) { 1153 // Only need to check pointers between two different dependency sets. 1154 if (RtCheck.Pointers[i].DependencySetId == 1155 RtCheck.Pointers[j].DependencySetId) 1156 continue; 1157 // Only need to check pointers in the same alias set. 1158 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 1159 continue; 1160 1161 Value *PtrI = RtCheck.Pointers[i].PointerValue; 1162 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 1163 1164 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 1165 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 1166 if (ASi != ASj) { 1167 LLVM_DEBUG( 1168 dbgs() << "LAA: Runtime check would require comparison between" 1169 " different address spaces\n"); 1170 return false; 1171 } 1172 } 1173 } 1174 1175 if (MayNeedRTCheck && CanDoRT) 1176 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 1177 1178 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 1179 << " pointer comparisons.\n"); 1180 1181 // If we can do run-time checks, but there are no checks, no runtime checks 1182 // are needed. This can happen when all pointers point to the same underlying 1183 // object for example. 1184 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck; 1185 1186 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT; 1187 if (!CanDoRTIfNeeded) 1188 RtCheck.reset(); 1189 return CanDoRTIfNeeded; 1190 } 1191 1192 void AccessAnalysis::processMemAccesses() { 1193 // We process the set twice: first we process read-write pointers, last we 1194 // process read-only pointers. This allows us to skip dependence tests for 1195 // read-only pointers. 1196 1197 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 1198 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 1199 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 1200 LLVM_DEBUG({ 1201 for (auto A : Accesses) 1202 dbgs() << "\t" << *A.first.getPointer() << " (" 1203 << (A.first.getInt() 1204 ? "write" 1205 : (ReadOnlyPtr.count(A.first.getPointer()) ? "read-only" 1206 : "read")) 1207 << ")\n"; 1208 }); 1209 1210 // The AliasSetTracker has nicely partitioned our pointers by metadata 1211 // compatibility and potential for underlying-object overlap. As a result, we 1212 // only need to check for potential pointer dependencies within each alias 1213 // set. 1214 for (const auto &AS : AST) { 1215 // Note that both the alias-set tracker and the alias sets themselves used 1216 // linked lists internally and so the iteration order here is deterministic 1217 // (matching the original instruction order within each set). 1218 1219 bool SetHasWrite = false; 1220 1221 // Map of pointers to last access encountered. 1222 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 1223 UnderlyingObjToAccessMap ObjToLastAccess; 1224 1225 // Set of access to check after all writes have been processed. 1226 PtrAccessMap DeferredAccesses; 1227 1228 // Iterate over each alias set twice, once to process read/write pointers, 1229 // and then to process read-only pointers. 1230 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 1231 bool UseDeferred = SetIteration > 0; 1232 PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses; 1233 1234 for (const auto &AV : AS) { 1235 Value *Ptr = AV.getValue(); 1236 1237 // For a single memory access in AliasSetTracker, Accesses may contain 1238 // both read and write, and they both need to be handled for CheckDeps. 1239 for (const auto &AC : S) { 1240 if (AC.first.getPointer() != Ptr) 1241 continue; 1242 1243 bool IsWrite = AC.first.getInt(); 1244 1245 // If we're using the deferred access set, then it contains only 1246 // reads. 1247 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 1248 if (UseDeferred && !IsReadOnlyPtr) 1249 continue; 1250 // Otherwise, the pointer must be in the PtrAccessSet, either as a 1251 // read or a write. 1252 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 1253 S.count(MemAccessInfo(Ptr, false))) && 1254 "Alias-set pointer not in the access set?"); 1255 1256 MemAccessInfo Access(Ptr, IsWrite); 1257 DepCands.insert(Access); 1258 1259 // Memorize read-only pointers for later processing and skip them in 1260 // the first round (they need to be checked after we have seen all 1261 // write pointers). Note: we also mark pointer that are not 1262 // consecutive as "read-only" pointers (so that we check 1263 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 1264 if (!UseDeferred && IsReadOnlyPtr) { 1265 // We only use the pointer keys, the types vector values don't 1266 // matter. 1267 DeferredAccesses.insert({Access, {}}); 1268 continue; 1269 } 1270 1271 // If this is a write - check other reads and writes for conflicts. If 1272 // this is a read only check other writes for conflicts (but only if 1273 // there is no other write to the ptr - this is an optimization to 1274 // catch "a[i] = a[i] + " without having to do a dependence check). 1275 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 1276 CheckDeps.push_back(Access); 1277 IsRTCheckAnalysisNeeded = true; 1278 } 1279 1280 if (IsWrite) 1281 SetHasWrite = true; 1282 1283 // Create sets of pointers connected by a shared alias set and 1284 // underlying object. 1285 typedef SmallVector<const Value *, 16> ValueVector; 1286 ValueVector TempObjects; 1287 1288 getUnderlyingObjects(Ptr, TempObjects, LI); 1289 LLVM_DEBUG(dbgs() 1290 << "Underlying objects for pointer " << *Ptr << "\n"); 1291 for (const Value *UnderlyingObj : TempObjects) { 1292 // nullptr never alias, don't join sets for pointer that have "null" 1293 // in their UnderlyingObjects list. 1294 if (isa<ConstantPointerNull>(UnderlyingObj) && 1295 !NullPointerIsDefined( 1296 TheLoop->getHeader()->getParent(), 1297 UnderlyingObj->getType()->getPointerAddressSpace())) 1298 continue; 1299 1300 UnderlyingObjToAccessMap::iterator Prev = 1301 ObjToLastAccess.find(UnderlyingObj); 1302 if (Prev != ObjToLastAccess.end()) 1303 DepCands.unionSets(Access, Prev->second); 1304 1305 ObjToLastAccess[UnderlyingObj] = Access; 1306 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 1307 } 1308 } 1309 } 1310 } 1311 } 1312 } 1313 1314 static bool isInBoundsGep(Value *Ptr) { 1315 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 1316 return GEP->isInBounds(); 1317 return false; 1318 } 1319 1320 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 1321 /// i.e. monotonically increasing/decreasing. 1322 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 1323 PredicatedScalarEvolution &PSE, const Loop *L) { 1324 // FIXME: This should probably only return true for NUW. 1325 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 1326 return true; 1327 1328 // Scalar evolution does not propagate the non-wrapping flags to values that 1329 // are derived from a non-wrapping induction variable because non-wrapping 1330 // could be flow-sensitive. 1331 // 1332 // Look through the potentially overflowing instruction to try to prove 1333 // non-wrapping for the *specific* value of Ptr. 1334 1335 // The arithmetic implied by an inbounds GEP can't overflow. 1336 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 1337 if (!GEP || !GEP->isInBounds()) 1338 return false; 1339 1340 // Make sure there is only one non-const index and analyze that. 1341 Value *NonConstIndex = nullptr; 1342 for (Value *Index : GEP->indices()) 1343 if (!isa<ConstantInt>(Index)) { 1344 if (NonConstIndex) 1345 return false; 1346 NonConstIndex = Index; 1347 } 1348 if (!NonConstIndex) 1349 // The recurrence is on the pointer, ignore for now. 1350 return false; 1351 1352 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 1353 // AddRec using a NSW operation. 1354 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 1355 if (OBO->hasNoSignedWrap() && 1356 // Assume constant for other the operand so that the AddRec can be 1357 // easily found. 1358 isa<ConstantInt>(OBO->getOperand(1))) { 1359 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 1360 1361 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 1362 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 1363 } 1364 1365 return false; 1366 } 1367 1368 /// Check whether the access through \p Ptr has a constant stride. 1369 std::optional<int64_t> llvm::getPtrStride(PredicatedScalarEvolution &PSE, 1370 Type *AccessTy, Value *Ptr, 1371 const Loop *Lp, 1372 const ValueToValueMap &StridesMap, 1373 bool Assume, bool ShouldCheckWrap) { 1374 Type *Ty = Ptr->getType(); 1375 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 1376 1377 if (isa<ScalableVectorType>(AccessTy)) { 1378 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy 1379 << "\n"); 1380 return std::nullopt; 1381 } 1382 1383 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1384 1385 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1386 if (Assume && !AR) 1387 AR = PSE.getAsAddRec(Ptr); 1388 1389 if (!AR) { 1390 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1391 << " SCEV: " << *PtrScev << "\n"); 1392 return std::nullopt; 1393 } 1394 1395 // The access function must stride over the innermost loop. 1396 if (Lp != AR->getLoop()) { 1397 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1398 << *Ptr << " SCEV: " << *AR << "\n"); 1399 return std::nullopt; 1400 } 1401 1402 // The address calculation must not wrap. Otherwise, a dependence could be 1403 // inverted. 1404 // An inbounds getelementptr that is a AddRec with a unit stride 1405 // cannot wrap per definition. The unit stride requirement is checked later. 1406 // An getelementptr without an inbounds attribute and unit stride would have 1407 // to access the pointer value "0" which is undefined behavior in address 1408 // space 0, therefore we can also vectorize this case. 1409 unsigned AddrSpace = Ty->getPointerAddressSpace(); 1410 bool IsInBoundsGEP = isInBoundsGep(Ptr); 1411 bool IsNoWrapAddRec = !ShouldCheckWrap || 1412 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 1413 isNoWrapAddRec(Ptr, AR, PSE, Lp); 1414 if (!IsNoWrapAddRec && !IsInBoundsGEP && 1415 NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace)) { 1416 if (Assume) { 1417 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1418 IsNoWrapAddRec = true; 1419 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 1420 << "LAA: Pointer: " << *Ptr << "\n" 1421 << "LAA: SCEV: " << *AR << "\n" 1422 << "LAA: Added an overflow assumption\n"); 1423 } else { 1424 LLVM_DEBUG( 1425 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1426 << *Ptr << " SCEV: " << *AR << "\n"); 1427 return std::nullopt; 1428 } 1429 } 1430 1431 // Check the step is constant. 1432 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1433 1434 // Calculate the pointer stride and check if it is constant. 1435 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1436 if (!C) { 1437 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1438 << " SCEV: " << *AR << "\n"); 1439 return std::nullopt; 1440 } 1441 1442 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1443 TypeSize AllocSize = DL.getTypeAllocSize(AccessTy); 1444 int64_t Size = AllocSize.getFixedValue(); 1445 const APInt &APStepVal = C->getAPInt(); 1446 1447 // Huge step value - give up. 1448 if (APStepVal.getBitWidth() > 64) 1449 return std::nullopt; 1450 1451 int64_t StepVal = APStepVal.getSExtValue(); 1452 1453 // Strided access. 1454 int64_t Stride = StepVal / Size; 1455 int64_t Rem = StepVal % Size; 1456 if (Rem) 1457 return std::nullopt; 1458 1459 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 1460 // know we can't "wrap around the address space". In case of address space 1461 // zero we know that this won't happen without triggering undefined behavior. 1462 if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 && 1463 (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(), 1464 AddrSpace))) { 1465 if (Assume) { 1466 // We can avoid this case by adding a run-time check. 1467 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1468 << "inbounds or in address space 0 may wrap:\n" 1469 << "LAA: Pointer: " << *Ptr << "\n" 1470 << "LAA: SCEV: " << *AR << "\n" 1471 << "LAA: Added an overflow assumption\n"); 1472 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1473 } else 1474 return std::nullopt; 1475 } 1476 1477 return Stride; 1478 } 1479 1480 std::optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA, 1481 Type *ElemTyB, Value *PtrB, 1482 const DataLayout &DL, 1483 ScalarEvolution &SE, bool StrictCheck, 1484 bool CheckType) { 1485 assert(PtrA && PtrB && "Expected non-nullptr pointers."); 1486 assert(cast<PointerType>(PtrA->getType()) 1487 ->isOpaqueOrPointeeTypeMatches(ElemTyA) && "Wrong PtrA type"); 1488 assert(cast<PointerType>(PtrB->getType()) 1489 ->isOpaqueOrPointeeTypeMatches(ElemTyB) && "Wrong PtrB type"); 1490 1491 // Make sure that A and B are different pointers. 1492 if (PtrA == PtrB) 1493 return 0; 1494 1495 // Make sure that the element types are the same if required. 1496 if (CheckType && ElemTyA != ElemTyB) 1497 return std::nullopt; 1498 1499 unsigned ASA = PtrA->getType()->getPointerAddressSpace(); 1500 unsigned ASB = PtrB->getType()->getPointerAddressSpace(); 1501 1502 // Check that the address spaces match. 1503 if (ASA != ASB) 1504 return std::nullopt; 1505 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1506 1507 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1508 Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1509 Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1510 1511 int Val; 1512 if (PtrA1 == PtrB1) { 1513 // Retrieve the address space again as pointer stripping now tracks through 1514 // `addrspacecast`. 1515 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace(); 1516 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace(); 1517 // Check that the address spaces match and that the pointers are valid. 1518 if (ASA != ASB) 1519 return std::nullopt; 1520 1521 IdxWidth = DL.getIndexSizeInBits(ASA); 1522 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1523 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1524 1525 OffsetB -= OffsetA; 1526 Val = OffsetB.getSExtValue(); 1527 } else { 1528 // Otherwise compute the distance with SCEV between the base pointers. 1529 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1530 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1531 const auto *Diff = 1532 dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA)); 1533 if (!Diff) 1534 return std::nullopt; 1535 Val = Diff->getAPInt().getSExtValue(); 1536 } 1537 int Size = DL.getTypeStoreSize(ElemTyA); 1538 int Dist = Val / Size; 1539 1540 // Ensure that the calculated distance matches the type-based one after all 1541 // the bitcasts removal in the provided pointers. 1542 if (!StrictCheck || Dist * Size == Val) 1543 return Dist; 1544 return std::nullopt; 1545 } 1546 1547 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 1548 const DataLayout &DL, ScalarEvolution &SE, 1549 SmallVectorImpl<unsigned> &SortedIndices) { 1550 assert(llvm::all_of( 1551 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1552 "Expected list of pointer operands."); 1553 // Walk over the pointers, and map each of them to an offset relative to 1554 // first pointer in the array. 1555 Value *Ptr0 = VL[0]; 1556 1557 using DistOrdPair = std::pair<int64_t, int>; 1558 auto Compare = llvm::less_first(); 1559 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare); 1560 Offsets.emplace(0, 0); 1561 int Cnt = 1; 1562 bool IsConsecutive = true; 1563 for (auto *Ptr : VL.drop_front()) { 1564 std::optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE, 1565 /*StrictCheck=*/true); 1566 if (!Diff) 1567 return false; 1568 1569 // Check if the pointer with the same offset is found. 1570 int64_t Offset = *Diff; 1571 auto Res = Offsets.emplace(Offset, Cnt); 1572 if (!Res.second) 1573 return false; 1574 // Consecutive order if the inserted element is the last one. 1575 IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end(); 1576 ++Cnt; 1577 } 1578 SortedIndices.clear(); 1579 if (!IsConsecutive) { 1580 // Fill SortedIndices array only if it is non-consecutive. 1581 SortedIndices.resize(VL.size()); 1582 Cnt = 0; 1583 for (const std::pair<int64_t, int> &Pair : Offsets) { 1584 SortedIndices[Cnt] = Pair.second; 1585 ++Cnt; 1586 } 1587 } 1588 return true; 1589 } 1590 1591 /// Returns true if the memory operations \p A and \p B are consecutive. 1592 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1593 ScalarEvolution &SE, bool CheckType) { 1594 Value *PtrA = getLoadStorePointerOperand(A); 1595 Value *PtrB = getLoadStorePointerOperand(B); 1596 if (!PtrA || !PtrB) 1597 return false; 1598 Type *ElemTyA = getLoadStoreType(A); 1599 Type *ElemTyB = getLoadStoreType(B); 1600 std::optional<int> Diff = 1601 getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE, 1602 /*StrictCheck=*/true, CheckType); 1603 return Diff && *Diff == 1; 1604 } 1605 1606 void MemoryDepChecker::addAccess(StoreInst *SI) { 1607 visitPointers(SI->getPointerOperand(), *InnermostLoop, 1608 [this, SI](Value *Ptr) { 1609 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 1610 InstMap.push_back(SI); 1611 ++AccessIdx; 1612 }); 1613 } 1614 1615 void MemoryDepChecker::addAccess(LoadInst *LI) { 1616 visitPointers(LI->getPointerOperand(), *InnermostLoop, 1617 [this, LI](Value *Ptr) { 1618 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 1619 InstMap.push_back(LI); 1620 ++AccessIdx; 1621 }); 1622 } 1623 1624 MemoryDepChecker::VectorizationSafetyStatus 1625 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1626 switch (Type) { 1627 case NoDep: 1628 case Forward: 1629 case BackwardVectorizable: 1630 return VectorizationSafetyStatus::Safe; 1631 1632 case Unknown: 1633 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1634 case ForwardButPreventsForwarding: 1635 case Backward: 1636 case BackwardVectorizableButPreventsForwarding: 1637 return VectorizationSafetyStatus::Unsafe; 1638 } 1639 llvm_unreachable("unexpected DepType!"); 1640 } 1641 1642 bool MemoryDepChecker::Dependence::isBackward() const { 1643 switch (Type) { 1644 case NoDep: 1645 case Forward: 1646 case ForwardButPreventsForwarding: 1647 case Unknown: 1648 return false; 1649 1650 case BackwardVectorizable: 1651 case Backward: 1652 case BackwardVectorizableButPreventsForwarding: 1653 return true; 1654 } 1655 llvm_unreachable("unexpected DepType!"); 1656 } 1657 1658 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1659 return isBackward() || Type == Unknown; 1660 } 1661 1662 bool MemoryDepChecker::Dependence::isForward() const { 1663 switch (Type) { 1664 case Forward: 1665 case ForwardButPreventsForwarding: 1666 return true; 1667 1668 case NoDep: 1669 case Unknown: 1670 case BackwardVectorizable: 1671 case Backward: 1672 case BackwardVectorizableButPreventsForwarding: 1673 return false; 1674 } 1675 llvm_unreachable("unexpected DepType!"); 1676 } 1677 1678 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1679 uint64_t TypeByteSize) { 1680 // If loads occur at a distance that is not a multiple of a feasible vector 1681 // factor store-load forwarding does not take place. 1682 // Positive dependences might cause troubles because vectorizing them might 1683 // prevent store-load forwarding making vectorized code run a lot slower. 1684 // a[i] = a[i-3] ^ a[i-8]; 1685 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1686 // hence on your typical architecture store-load forwarding does not take 1687 // place. Vectorizing in such cases does not make sense. 1688 // Store-load forwarding distance. 1689 1690 // After this many iterations store-to-load forwarding conflicts should not 1691 // cause any slowdowns. 1692 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1693 // Maximum vector factor. 1694 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1695 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1696 1697 // Compute the smallest VF at which the store and load would be misaligned. 1698 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1699 VF *= 2) { 1700 // If the number of vector iteration between the store and the load are 1701 // small we could incur conflicts. 1702 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1703 MaxVFWithoutSLForwardIssues = (VF >> 1); 1704 break; 1705 } 1706 } 1707 1708 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1709 LLVM_DEBUG( 1710 dbgs() << "LAA: Distance " << Distance 1711 << " that could cause a store-load forwarding conflict\n"); 1712 return true; 1713 } 1714 1715 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1716 MaxVFWithoutSLForwardIssues != 1717 VectorizerParams::MaxVectorWidth * TypeByteSize) 1718 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1719 return false; 1720 } 1721 1722 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1723 if (Status < S) 1724 Status = S; 1725 } 1726 1727 /// Given a dependence-distance \p Dist between two 1728 /// memory accesses, that have the same stride whose absolute value is given 1729 /// in \p Stride, and that have the same type size \p TypeByteSize, 1730 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1731 /// possible to prove statically that the dependence distance is larger 1732 /// than the range that the accesses will travel through the execution of 1733 /// the loop. If so, return true; false otherwise. This is useful for 1734 /// example in loops such as the following (PR31098): 1735 /// for (i = 0; i < D; ++i) { 1736 /// = out[i]; 1737 /// out[i+D] = 1738 /// } 1739 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1740 const SCEV &BackedgeTakenCount, 1741 const SCEV &Dist, uint64_t Stride, 1742 uint64_t TypeByteSize) { 1743 1744 // If we can prove that 1745 // (**) |Dist| > BackedgeTakenCount * Step 1746 // where Step is the absolute stride of the memory accesses in bytes, 1747 // then there is no dependence. 1748 // 1749 // Rationale: 1750 // We basically want to check if the absolute distance (|Dist/Step|) 1751 // is >= the loop iteration count (or > BackedgeTakenCount). 1752 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1753 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1754 // that the dependence distance is >= VF; This is checked elsewhere. 1755 // But in some cases we can prune dependence distances early, and 1756 // even before selecting the VF, and without a runtime test, by comparing 1757 // the distance against the loop iteration count. Since the vectorized code 1758 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1759 // also guarantees that distance >= VF. 1760 // 1761 const uint64_t ByteStride = Stride * TypeByteSize; 1762 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1763 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1764 1765 const SCEV *CastedDist = &Dist; 1766 const SCEV *CastedProduct = Product; 1767 uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType()); 1768 uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType()); 1769 1770 // The dependence distance can be positive/negative, so we sign extend Dist; 1771 // The multiplication of the absolute stride in bytes and the 1772 // backedgeTakenCount is non-negative, so we zero extend Product. 1773 if (DistTypeSizeBits > ProductTypeSizeBits) 1774 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1775 else 1776 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1777 1778 // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1779 // (If so, then we have proven (**) because |Dist| >= Dist) 1780 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1781 if (SE.isKnownPositive(Minus)) 1782 return true; 1783 1784 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1785 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1786 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1787 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1788 if (SE.isKnownPositive(Minus)) 1789 return true; 1790 1791 return false; 1792 } 1793 1794 /// Check the dependence for two accesses with the same stride \p Stride. 1795 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1796 /// bytes. 1797 /// 1798 /// \returns true if they are independent. 1799 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1800 uint64_t TypeByteSize) { 1801 assert(Stride > 1 && "The stride must be greater than 1"); 1802 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1803 assert(Distance > 0 && "The distance must be non-zero"); 1804 1805 // Skip if the distance is not multiple of type byte size. 1806 if (Distance % TypeByteSize) 1807 return false; 1808 1809 uint64_t ScaledDist = Distance / TypeByteSize; 1810 1811 // No dependence if the scaled distance is not multiple of the stride. 1812 // E.g. 1813 // for (i = 0; i < 1024 ; i += 4) 1814 // A[i+2] = A[i] + 1; 1815 // 1816 // Two accesses in memory (scaled distance is 2, stride is 4): 1817 // | A[0] | | | | A[4] | | | | 1818 // | | | A[2] | | | | A[6] | | 1819 // 1820 // E.g. 1821 // for (i = 0; i < 1024 ; i += 3) 1822 // A[i+4] = A[i] + 1; 1823 // 1824 // Two accesses in memory (scaled distance is 4, stride is 3): 1825 // | A[0] | | | A[3] | | | A[6] | | | 1826 // | | | | | A[4] | | | A[7] | | 1827 return ScaledDist % Stride; 1828 } 1829 1830 MemoryDepChecker::Dependence::DepType 1831 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1832 const MemAccessInfo &B, unsigned BIdx, 1833 const ValueToValueMap &Strides) { 1834 assert (AIdx < BIdx && "Must pass arguments in program order"); 1835 1836 auto [APtr, AIsWrite] = A; 1837 auto [BPtr, BIsWrite] = B; 1838 Type *ATy = getLoadStoreType(InstMap[AIdx]); 1839 Type *BTy = getLoadStoreType(InstMap[BIdx]); 1840 1841 // Two reads are independent. 1842 if (!AIsWrite && !BIsWrite) 1843 return Dependence::NoDep; 1844 1845 // We cannot check pointers in different address spaces. 1846 if (APtr->getType()->getPointerAddressSpace() != 1847 BPtr->getType()->getPointerAddressSpace()) 1848 return Dependence::Unknown; 1849 1850 int64_t StrideAPtr = 1851 getPtrStride(PSE, ATy, APtr, InnermostLoop, Strides, true).value_or(0); 1852 int64_t StrideBPtr = 1853 getPtrStride(PSE, BTy, BPtr, InnermostLoop, Strides, true).value_or(0); 1854 1855 const SCEV *Src = PSE.getSCEV(APtr); 1856 const SCEV *Sink = PSE.getSCEV(BPtr); 1857 1858 // If the induction step is negative we have to invert source and sink of the 1859 // dependence. 1860 if (StrideAPtr < 0) { 1861 std::swap(APtr, BPtr); 1862 std::swap(ATy, BTy); 1863 std::swap(Src, Sink); 1864 std::swap(AIsWrite, BIsWrite); 1865 std::swap(AIdx, BIdx); 1866 std::swap(StrideAPtr, StrideBPtr); 1867 } 1868 1869 ScalarEvolution &SE = *PSE.getSE(); 1870 const SCEV *Dist = SE.getMinusSCEV(Sink, Src); 1871 1872 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1873 << "(Induction step: " << StrideAPtr << ")\n"); 1874 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1875 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1876 1877 // Need accesses with constant stride. We don't want to vectorize 1878 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1879 // the address space. 1880 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1881 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1882 return Dependence::Unknown; 1883 } 1884 1885 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1886 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1887 bool HasSameSize = 1888 DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy); 1889 uint64_t Stride = std::abs(StrideAPtr); 1890 1891 if (!isa<SCEVCouldNotCompute>(Dist) && HasSameSize && 1892 isSafeDependenceDistance(DL, SE, *(PSE.getBackedgeTakenCount()), *Dist, 1893 Stride, TypeByteSize)) 1894 return Dependence::NoDep; 1895 1896 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1897 if (!C) { 1898 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1899 FoundNonConstantDistanceDependence = true; 1900 return Dependence::Unknown; 1901 } 1902 1903 const APInt &Val = C->getAPInt(); 1904 int64_t Distance = Val.getSExtValue(); 1905 1906 // Attempt to prove strided accesses independent. 1907 if (std::abs(Distance) > 0 && Stride > 1 && HasSameSize && 1908 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1909 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1910 return Dependence::NoDep; 1911 } 1912 1913 // Negative distances are not plausible dependencies. 1914 if (Val.isNegative()) { 1915 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1916 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1917 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1918 !HasSameSize)) { 1919 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1920 return Dependence::ForwardButPreventsForwarding; 1921 } 1922 1923 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1924 return Dependence::Forward; 1925 } 1926 1927 // Write to the same location with the same size. 1928 if (Val == 0) { 1929 if (HasSameSize) 1930 return Dependence::Forward; 1931 LLVM_DEBUG( 1932 dbgs() << "LAA: Zero dependence difference but different type sizes\n"); 1933 return Dependence::Unknown; 1934 } 1935 1936 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1937 1938 if (!HasSameSize) { 1939 LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with " 1940 "different type sizes\n"); 1941 return Dependence::Unknown; 1942 } 1943 1944 // Bail out early if passed-in parameters make vectorization not feasible. 1945 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1946 VectorizerParams::VectorizationFactor : 1); 1947 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1948 VectorizerParams::VectorizationInterleave : 1); 1949 // The minimum number of iterations for a vectorized/unrolled version. 1950 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1951 1952 // It's not vectorizable if the distance is smaller than the minimum distance 1953 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1954 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1955 // TypeByteSize (No need to plus the last gap distance). 1956 // 1957 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1958 // foo(int *A) { 1959 // int *B = (int *)((char *)A + 14); 1960 // for (i = 0 ; i < 1024 ; i += 2) 1961 // B[i] = A[i] + 1; 1962 // } 1963 // 1964 // Two accesses in memory (stride is 2): 1965 // | A[0] | | A[2] | | A[4] | | A[6] | | 1966 // | B[0] | | B[2] | | B[4] | 1967 // 1968 // Distance needs for vectorizing iterations except the last iteration: 1969 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1970 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1971 // 1972 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1973 // 12, which is less than distance. 1974 // 1975 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1976 // the minimum distance needed is 28, which is greater than distance. It is 1977 // not safe to do vectorization. 1978 uint64_t MinDistanceNeeded = 1979 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1980 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1981 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " 1982 << Distance << '\n'); 1983 return Dependence::Backward; 1984 } 1985 1986 // Unsafe if the minimum distance needed is greater than max safe distance. 1987 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1988 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 1989 << MinDistanceNeeded << " size in bytes\n"); 1990 return Dependence::Backward; 1991 } 1992 1993 // Positive distance bigger than max vectorization factor. 1994 // FIXME: Should use max factor instead of max distance in bytes, which could 1995 // not handle different types. 1996 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1997 // void foo (int *A, char *B) { 1998 // for (unsigned i = 0; i < 1024; i++) { 1999 // A[i+2] = A[i] + 1; 2000 // B[i+2] = B[i] + 1; 2001 // } 2002 // } 2003 // 2004 // This case is currently unsafe according to the max safe distance. If we 2005 // analyze the two accesses on array B, the max safe dependence distance 2006 // is 2. Then we analyze the accesses on array A, the minimum distance needed 2007 // is 8, which is less than 2 and forbidden vectorization, But actually 2008 // both A and B could be vectorized by 2 iterations. 2009 MaxSafeDepDistBytes = 2010 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 2011 2012 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 2013 if (IsTrueDataDependence && EnableForwardingConflictDetection && 2014 couldPreventStoreLoadForward(Distance, TypeByteSize)) 2015 return Dependence::BackwardVectorizableButPreventsForwarding; 2016 2017 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); 2018 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 2019 << " with max VF = " << MaxVF << '\n'); 2020 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 2021 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits); 2022 return Dependence::BackwardVectorizable; 2023 } 2024 2025 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 2026 MemAccessInfoList &CheckDeps, 2027 const ValueToValueMap &Strides) { 2028 2029 MaxSafeDepDistBytes = -1; 2030 SmallPtrSet<MemAccessInfo, 8> Visited; 2031 for (MemAccessInfo CurAccess : CheckDeps) { 2032 if (Visited.count(CurAccess)) 2033 continue; 2034 2035 // Get the relevant memory access set. 2036 EquivalenceClasses<MemAccessInfo>::iterator I = 2037 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 2038 2039 // Check accesses within this set. 2040 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 2041 AccessSets.member_begin(I); 2042 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 2043 AccessSets.member_end(); 2044 2045 // Check every access pair. 2046 while (AI != AE) { 2047 Visited.insert(*AI); 2048 bool AIIsWrite = AI->getInt(); 2049 // Check loads only against next equivalent class, but stores also against 2050 // other stores in the same equivalence class - to the same address. 2051 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 2052 (AIIsWrite ? AI : std::next(AI)); 2053 while (OI != AE) { 2054 // Check every accessing instruction pair in program order. 2055 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 2056 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 2057 // Scan all accesses of another equivalence class, but only the next 2058 // accesses of the same equivalent class. 2059 for (std::vector<unsigned>::iterator 2060 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 2061 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 2062 I2 != I2E; ++I2) { 2063 auto A = std::make_pair(&*AI, *I1); 2064 auto B = std::make_pair(&*OI, *I2); 2065 2066 assert(*I1 != *I2); 2067 if (*I1 > *I2) 2068 std::swap(A, B); 2069 2070 Dependence::DepType Type = 2071 isDependent(*A.first, A.second, *B.first, B.second, Strides); 2072 mergeInStatus(Dependence::isSafeForVectorization(Type)); 2073 2074 // Gather dependences unless we accumulated MaxDependences 2075 // dependences. In that case return as soon as we find the first 2076 // unsafe dependence. This puts a limit on this quadratic 2077 // algorithm. 2078 if (RecordDependences) { 2079 if (Type != Dependence::NoDep) 2080 Dependences.push_back(Dependence(A.second, B.second, Type)); 2081 2082 if (Dependences.size() >= MaxDependences) { 2083 RecordDependences = false; 2084 Dependences.clear(); 2085 LLVM_DEBUG(dbgs() 2086 << "Too many dependences, stopped recording\n"); 2087 } 2088 } 2089 if (!RecordDependences && !isSafeForVectorization()) 2090 return false; 2091 } 2092 ++OI; 2093 } 2094 AI++; 2095 } 2096 } 2097 2098 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 2099 return isSafeForVectorization(); 2100 } 2101 2102 SmallVector<Instruction *, 4> 2103 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 2104 MemAccessInfo Access(Ptr, isWrite); 2105 auto &IndexVector = Accesses.find(Access)->second; 2106 2107 SmallVector<Instruction *, 4> Insts; 2108 transform(IndexVector, 2109 std::back_inserter(Insts), 2110 [&](unsigned Idx) { return this->InstMap[Idx]; }); 2111 return Insts; 2112 } 2113 2114 const char *MemoryDepChecker::Dependence::DepName[] = { 2115 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 2116 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 2117 2118 void MemoryDepChecker::Dependence::print( 2119 raw_ostream &OS, unsigned Depth, 2120 const SmallVectorImpl<Instruction *> &Instrs) const { 2121 OS.indent(Depth) << DepName[Type] << ":\n"; 2122 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 2123 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 2124 } 2125 2126 bool LoopAccessInfo::canAnalyzeLoop() { 2127 // We need to have a loop header. 2128 LLVM_DEBUG(dbgs() << "LAA: Found a loop in " 2129 << TheLoop->getHeader()->getParent()->getName() << ": " 2130 << TheLoop->getHeader()->getName() << '\n'); 2131 2132 // We can only analyze innermost loops. 2133 if (!TheLoop->isInnermost()) { 2134 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 2135 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 2136 return false; 2137 } 2138 2139 // We must have a single backedge. 2140 if (TheLoop->getNumBackEdges() != 1) { 2141 LLVM_DEBUG( 2142 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 2143 recordAnalysis("CFGNotUnderstood") 2144 << "loop control flow is not understood by analyzer"; 2145 return false; 2146 } 2147 2148 // ScalarEvolution needs to be able to find the exit count. 2149 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 2150 if (isa<SCEVCouldNotCompute>(ExitCount)) { 2151 recordAnalysis("CantComputeNumberOfIterations") 2152 << "could not determine number of loop iterations"; 2153 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 2154 return false; 2155 } 2156 2157 return true; 2158 } 2159 2160 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI, 2161 const TargetLibraryInfo *TLI, 2162 DominatorTree *DT) { 2163 // Holds the Load and Store instructions. 2164 SmallVector<LoadInst *, 16> Loads; 2165 SmallVector<StoreInst *, 16> Stores; 2166 2167 // Holds all the different accesses in the loop. 2168 unsigned NumReads = 0; 2169 unsigned NumReadWrites = 0; 2170 2171 bool HasComplexMemInst = false; 2172 2173 // A runtime check is only legal to insert if there are no convergent calls. 2174 HasConvergentOp = false; 2175 2176 PtrRtChecking->Pointers.clear(); 2177 PtrRtChecking->Need = false; 2178 2179 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 2180 2181 const bool EnableMemAccessVersioningOfLoop = 2182 EnableMemAccessVersioning && 2183 !TheLoop->getHeader()->getParent()->hasOptSize(); 2184 2185 // Traverse blocks in fixed RPOT order, regardless of their storage in the 2186 // loop info, as it may be arbitrary. 2187 LoopBlocksRPO RPOT(TheLoop); 2188 RPOT.perform(LI); 2189 for (BasicBlock *BB : RPOT) { 2190 // Scan the BB and collect legal loads and stores. Also detect any 2191 // convergent instructions. 2192 for (Instruction &I : *BB) { 2193 if (auto *Call = dyn_cast<CallBase>(&I)) { 2194 if (Call->isConvergent()) 2195 HasConvergentOp = true; 2196 } 2197 2198 // With both a non-vectorizable memory instruction and a convergent 2199 // operation, found in this loop, no reason to continue the search. 2200 if (HasComplexMemInst && HasConvergentOp) { 2201 CanVecMem = false; 2202 return; 2203 } 2204 2205 // Avoid hitting recordAnalysis multiple times. 2206 if (HasComplexMemInst) 2207 continue; 2208 2209 // If this is a load, save it. If this instruction can read from memory 2210 // but is not a load, then we quit. Notice that we don't handle function 2211 // calls that read or write. 2212 if (I.mayReadFromMemory()) { 2213 // Many math library functions read the rounding mode. We will only 2214 // vectorize a loop if it contains known function calls that don't set 2215 // the flag. Therefore, it is safe to ignore this read from memory. 2216 auto *Call = dyn_cast<CallInst>(&I); 2217 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 2218 continue; 2219 2220 // If the function has an explicit vectorized counterpart, we can safely 2221 // assume that it can be vectorized. 2222 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 2223 !VFDatabase::getMappings(*Call).empty()) 2224 continue; 2225 2226 auto *Ld = dyn_cast<LoadInst>(&I); 2227 if (!Ld) { 2228 recordAnalysis("CantVectorizeInstruction", Ld) 2229 << "instruction cannot be vectorized"; 2230 HasComplexMemInst = true; 2231 continue; 2232 } 2233 if (!Ld->isSimple() && !IsAnnotatedParallel) { 2234 recordAnalysis("NonSimpleLoad", Ld) 2235 << "read with atomic ordering or volatile read"; 2236 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 2237 HasComplexMemInst = true; 2238 continue; 2239 } 2240 NumLoads++; 2241 Loads.push_back(Ld); 2242 DepChecker->addAccess(Ld); 2243 if (EnableMemAccessVersioningOfLoop) 2244 collectStridedAccess(Ld); 2245 continue; 2246 } 2247 2248 // Save 'store' instructions. Abort if other instructions write to memory. 2249 if (I.mayWriteToMemory()) { 2250 auto *St = dyn_cast<StoreInst>(&I); 2251 if (!St) { 2252 recordAnalysis("CantVectorizeInstruction", St) 2253 << "instruction cannot be vectorized"; 2254 HasComplexMemInst = true; 2255 continue; 2256 } 2257 if (!St->isSimple() && !IsAnnotatedParallel) { 2258 recordAnalysis("NonSimpleStore", St) 2259 << "write with atomic ordering or volatile write"; 2260 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 2261 HasComplexMemInst = true; 2262 continue; 2263 } 2264 NumStores++; 2265 Stores.push_back(St); 2266 DepChecker->addAccess(St); 2267 if (EnableMemAccessVersioningOfLoop) 2268 collectStridedAccess(St); 2269 } 2270 } // Next instr. 2271 } // Next block. 2272 2273 if (HasComplexMemInst) { 2274 CanVecMem = false; 2275 return; 2276 } 2277 2278 // Now we have two lists that hold the loads and the stores. 2279 // Next, we find the pointers that they use. 2280 2281 // Check if we see any stores. If there are no stores, then we don't 2282 // care if the pointers are *restrict*. 2283 if (!Stores.size()) { 2284 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 2285 CanVecMem = true; 2286 return; 2287 } 2288 2289 MemoryDepChecker::DepCandidates DependentAccesses; 2290 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE); 2291 2292 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects 2293 // multiple times on the same object. If the ptr is accessed twice, once 2294 // for read and once for write, it will only appear once (on the write 2295 // list). This is okay, since we are going to check for conflicts between 2296 // writes and between reads and writes, but not between reads and reads. 2297 SmallSet<std::pair<Value *, Type *>, 16> Seen; 2298 2299 // Record uniform store addresses to identify if we have multiple stores 2300 // to the same address. 2301 SmallPtrSet<Value *, 16> UniformStores; 2302 2303 for (StoreInst *ST : Stores) { 2304 Value *Ptr = ST->getPointerOperand(); 2305 2306 if (isUniform(Ptr)) { 2307 // Record store instructions to loop invariant addresses 2308 StoresToInvariantAddresses.push_back(ST); 2309 HasDependenceInvolvingLoopInvariantAddress |= 2310 !UniformStores.insert(Ptr).second; 2311 } 2312 2313 // If we did *not* see this pointer before, insert it to the read-write 2314 // list. At this phase it is only a 'write' list. 2315 Type *AccessTy = getLoadStoreType(ST); 2316 if (Seen.insert({Ptr, AccessTy}).second) { 2317 ++NumReadWrites; 2318 2319 MemoryLocation Loc = MemoryLocation::get(ST); 2320 // The TBAA metadata could have a control dependency on the predication 2321 // condition, so we cannot rely on it when determining whether or not we 2322 // need runtime pointer checks. 2323 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 2324 Loc.AATags.TBAA = nullptr; 2325 2326 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2327 [&Accesses, AccessTy, Loc](Value *Ptr) { 2328 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2329 Accesses.addStore(NewLoc, AccessTy); 2330 }); 2331 } 2332 } 2333 2334 if (IsAnnotatedParallel) { 2335 LLVM_DEBUG( 2336 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 2337 << "checks.\n"); 2338 CanVecMem = true; 2339 return; 2340 } 2341 2342 for (LoadInst *LD : Loads) { 2343 Value *Ptr = LD->getPointerOperand(); 2344 // If we did *not* see this pointer before, insert it to the 2345 // read list. If we *did* see it before, then it is already in 2346 // the read-write list. This allows us to vectorize expressions 2347 // such as A[i] += x; Because the address of A[i] is a read-write 2348 // pointer. This only works if the index of A[i] is consecutive. 2349 // If the address of i is unknown (for example A[B[i]]) then we may 2350 // read a few words, modify, and write a few words, and some of the 2351 // words may be written to the same address. 2352 bool IsReadOnlyPtr = false; 2353 Type *AccessTy = getLoadStoreType(LD); 2354 if (Seen.insert({Ptr, AccessTy}).second || 2355 !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides).value_or(0)) { 2356 ++NumReads; 2357 IsReadOnlyPtr = true; 2358 } 2359 2360 // See if there is an unsafe dependency between a load to a uniform address and 2361 // store to the same uniform address. 2362 if (UniformStores.count(Ptr)) { 2363 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 2364 "load and uniform store to the same address!\n"); 2365 HasDependenceInvolvingLoopInvariantAddress = true; 2366 } 2367 2368 MemoryLocation Loc = MemoryLocation::get(LD); 2369 // The TBAA metadata could have a control dependency on the predication 2370 // condition, so we cannot rely on it when determining whether or not we 2371 // need runtime pointer checks. 2372 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 2373 Loc.AATags.TBAA = nullptr; 2374 2375 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2376 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) { 2377 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2378 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr); 2379 }); 2380 } 2381 2382 // If we write (or read-write) to a single destination and there are no 2383 // other reads in this loop then is it safe to vectorize. 2384 if (NumReadWrites == 1 && NumReads == 0) { 2385 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 2386 CanVecMem = true; 2387 return; 2388 } 2389 2390 // Build dependence sets and check whether we need a runtime pointer bounds 2391 // check. 2392 Accesses.buildDependenceSets(); 2393 2394 // Find pointers with computable bounds. We are going to use this information 2395 // to place a runtime bound check. 2396 Value *UncomputablePtr = nullptr; 2397 bool CanDoRTIfNeeded = 2398 Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop, 2399 SymbolicStrides, UncomputablePtr, false); 2400 if (!CanDoRTIfNeeded) { 2401 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2402 recordAnalysis("CantIdentifyArrayBounds", I) 2403 << "cannot identify array bounds"; 2404 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2405 << "the array bounds.\n"); 2406 CanVecMem = false; 2407 return; 2408 } 2409 2410 LLVM_DEBUG( 2411 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2412 2413 CanVecMem = true; 2414 if (Accesses.isDependencyCheckNeeded()) { 2415 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2416 CanVecMem = DepChecker->areDepsSafe( 2417 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 2418 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 2419 2420 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 2421 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2422 2423 // Clear the dependency checks. We assume they are not needed. 2424 Accesses.resetDepChecks(*DepChecker); 2425 2426 PtrRtChecking->reset(); 2427 PtrRtChecking->Need = true; 2428 2429 auto *SE = PSE->getSE(); 2430 UncomputablePtr = nullptr; 2431 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT( 2432 *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true); 2433 2434 // Check that we found the bounds for the pointer. 2435 if (!CanDoRTIfNeeded) { 2436 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2437 recordAnalysis("CantCheckMemDepsAtRunTime", I) 2438 << "cannot check memory dependencies at runtime"; 2439 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2440 CanVecMem = false; 2441 return; 2442 } 2443 2444 CanVecMem = true; 2445 } 2446 } 2447 2448 if (HasConvergentOp) { 2449 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2450 << "cannot add control dependency to convergent operation"; 2451 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2452 "would be needed with a convergent operation\n"); 2453 CanVecMem = false; 2454 return; 2455 } 2456 2457 if (CanVecMem) 2458 LLVM_DEBUG( 2459 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2460 << (PtrRtChecking->Need ? "" : " don't") 2461 << " need runtime memory checks.\n"); 2462 else 2463 emitUnsafeDependenceRemark(); 2464 } 2465 2466 void LoopAccessInfo::emitUnsafeDependenceRemark() { 2467 auto Deps = getDepChecker().getDependences(); 2468 if (!Deps) 2469 return; 2470 auto Found = llvm::find_if(*Deps, [](const MemoryDepChecker::Dependence &D) { 2471 return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) != 2472 MemoryDepChecker::VectorizationSafetyStatus::Safe; 2473 }); 2474 if (Found == Deps->end()) 2475 return; 2476 MemoryDepChecker::Dependence Dep = *Found; 2477 2478 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2479 2480 // Emit remark for first unsafe dependence 2481 OptimizationRemarkAnalysis &R = 2482 recordAnalysis("UnsafeDep", Dep.getDestination(*this)) 2483 << "unsafe dependent memory operations in loop. Use " 2484 "#pragma loop distribute(enable) to allow loop distribution " 2485 "to attempt to isolate the offending operations into a separate " 2486 "loop"; 2487 2488 switch (Dep.Type) { 2489 case MemoryDepChecker::Dependence::NoDep: 2490 case MemoryDepChecker::Dependence::Forward: 2491 case MemoryDepChecker::Dependence::BackwardVectorizable: 2492 llvm_unreachable("Unexpected dependence"); 2493 case MemoryDepChecker::Dependence::Backward: 2494 R << "\nBackward loop carried data dependence."; 2495 break; 2496 case MemoryDepChecker::Dependence::ForwardButPreventsForwarding: 2497 R << "\nForward loop carried data dependence that prevents " 2498 "store-to-load forwarding."; 2499 break; 2500 case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding: 2501 R << "\nBackward loop carried data dependence that prevents " 2502 "store-to-load forwarding."; 2503 break; 2504 case MemoryDepChecker::Dependence::Unknown: 2505 R << "\nUnknown data dependence."; 2506 break; 2507 } 2508 2509 if (Instruction *I = Dep.getSource(*this)) { 2510 DebugLoc SourceLoc = I->getDebugLoc(); 2511 if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I))) 2512 SourceLoc = DD->getDebugLoc(); 2513 if (SourceLoc) 2514 R << " Memory location is the same as accessed at " 2515 << ore::NV("Location", SourceLoc); 2516 } 2517 } 2518 2519 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2520 DominatorTree *DT) { 2521 assert(TheLoop->contains(BB) && "Unknown block used"); 2522 2523 // Blocks that do not dominate the latch need predication. 2524 BasicBlock* Latch = TheLoop->getLoopLatch(); 2525 return !DT->dominates(BB, Latch); 2526 } 2527 2528 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2529 Instruction *I) { 2530 assert(!Report && "Multiple reports generated"); 2531 2532 Value *CodeRegion = TheLoop->getHeader(); 2533 DebugLoc DL = TheLoop->getStartLoc(); 2534 2535 if (I) { 2536 CodeRegion = I->getParent(); 2537 // If there is no debug location attached to the instruction, revert back to 2538 // using the loop's. 2539 if (I->getDebugLoc()) 2540 DL = I->getDebugLoc(); 2541 } 2542 2543 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2544 CodeRegion); 2545 return *Report; 2546 } 2547 2548 bool LoopAccessInfo::isUniform(Value *V) const { 2549 auto *SE = PSE->getSE(); 2550 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 2551 // never considered uniform. 2552 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2553 // trivially loop-invariant FP values to be considered uniform. 2554 if (!SE->isSCEVable(V->getType())) 2555 return false; 2556 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 2557 } 2558 2559 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2560 Value *Ptr = getLoadStorePointerOperand(MemAccess); 2561 if (!Ptr) 2562 return; 2563 2564 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2565 if (!Stride) 2566 return; 2567 2568 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2569 "versioning:"); 2570 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2571 2572 // Avoid adding the "Stride == 1" predicate when we know that 2573 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2574 // or zero iteration loop, as Trip-Count <= Stride == 1. 2575 // 2576 // TODO: We are currently not making a very informed decision on when it is 2577 // beneficial to apply stride versioning. It might make more sense that the 2578 // users of this analysis (such as the vectorizer) will trigger it, based on 2579 // their specific cost considerations; For example, in cases where stride 2580 // versioning does not help resolving memory accesses/dependences, the 2581 // vectorizer should evaluate the cost of the runtime test, and the benefit 2582 // of various possible stride specializations, considering the alternatives 2583 // of using gather/scatters (if available). 2584 2585 const SCEV *StrideExpr = PSE->getSCEV(Stride); 2586 const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); 2587 2588 // Match the types so we can compare the stride and the BETakenCount. 2589 // The Stride can be positive/negative, so we sign extend Stride; 2590 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount. 2591 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2592 uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType()); 2593 uint64_t BETypeSizeBits = DL.getTypeSizeInBits(BETakenCount->getType()); 2594 const SCEV *CastedStride = StrideExpr; 2595 const SCEV *CastedBECount = BETakenCount; 2596 ScalarEvolution *SE = PSE->getSE(); 2597 if (BETypeSizeBits >= StrideTypeSizeBits) 2598 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); 2599 else 2600 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); 2601 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2602 // Since TripCount == BackEdgeTakenCount + 1, checking: 2603 // "Stride >= TripCount" is equivalent to checking: 2604 // Stride - BETakenCount > 0 2605 if (SE->isKnownPositive(StrideMinusBETaken)) { 2606 LLVM_DEBUG( 2607 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2608 "Stride==1 predicate will imply that the loop executes " 2609 "at most once.\n"); 2610 return; 2611 } 2612 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n"); 2613 2614 SymbolicStrides[Ptr] = Stride; 2615 StrideSet.insert(Stride); 2616 } 2617 2618 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2619 const TargetLibraryInfo *TLI, AAResults *AA, 2620 DominatorTree *DT, LoopInfo *LI) 2621 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2622 PtrRtChecking(nullptr), 2623 DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L) { 2624 PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE); 2625 if (canAnalyzeLoop()) { 2626 analyzeLoop(AA, LI, TLI, DT); 2627 } 2628 } 2629 2630 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2631 if (CanVecMem) { 2632 OS.indent(Depth) << "Memory dependences are safe"; 2633 if (MaxSafeDepDistBytes != -1ULL) 2634 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2635 << " bytes"; 2636 if (PtrRtChecking->Need) 2637 OS << " with run-time checks"; 2638 OS << "\n"; 2639 } 2640 2641 if (HasConvergentOp) 2642 OS.indent(Depth) << "Has convergent operation in loop\n"; 2643 2644 if (Report) 2645 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2646 2647 if (auto *Dependences = DepChecker->getDependences()) { 2648 OS.indent(Depth) << "Dependences:\n"; 2649 for (const auto &Dep : *Dependences) { 2650 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 2651 OS << "\n"; 2652 } 2653 } else 2654 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2655 2656 // List the pair of accesses need run-time checks to prove independence. 2657 PtrRtChecking->print(OS, Depth); 2658 OS << "\n"; 2659 2660 OS.indent(Depth) << "Non vectorizable stores to invariant address were " 2661 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") 2662 << "found in loop.\n"; 2663 2664 OS.indent(Depth) << "SCEV assumptions:\n"; 2665 PSE->getPredicate().print(OS, Depth); 2666 2667 OS << "\n"; 2668 2669 OS.indent(Depth) << "Expressions re-written:\n"; 2670 PSE->print(OS, Depth); 2671 } 2672 2673 const LoopAccessInfo &LoopAccessInfoManager::getInfo(Loop &L) { 2674 auto I = LoopAccessInfoMap.insert({&L, nullptr}); 2675 2676 if (I.second) 2677 I.first->second = 2678 std::make_unique<LoopAccessInfo>(&L, &SE, TLI, &AA, &DT, &LI); 2679 2680 return *I.first->second; 2681 } 2682 2683 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) { 2684 initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry()); 2685 } 2686 2687 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2688 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2689 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2690 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2691 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2692 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2693 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2694 LAIs = std::make_unique<LoopAccessInfoManager>(SE, AA, DT, LI, TLI); 2695 return false; 2696 } 2697 2698 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2699 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); 2700 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2701 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2702 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 2703 2704 AU.setPreservesAll(); 2705 } 2706 2707 LoopAccessInfoManager LoopAccessAnalysis::run(Function &F, 2708 FunctionAnalysisManager &AM) { 2709 return LoopAccessInfoManager( 2710 AM.getResult<ScalarEvolutionAnalysis>(F), AM.getResult<AAManager>(F), 2711 AM.getResult<DominatorTreeAnalysis>(F), AM.getResult<LoopAnalysis>(F), 2712 &AM.getResult<TargetLibraryAnalysis>(F)); 2713 } 2714 2715 char LoopAccessLegacyAnalysis::ID = 0; 2716 static const char laa_name[] = "Loop Access Analysis"; 2717 #define LAA_NAME "loop-accesses" 2718 2719 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2720 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2721 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2722 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2723 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2724 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2725 2726 AnalysisKey LoopAccessAnalysis::Key; 2727 2728 namespace llvm { 2729 2730 Pass *createLAAPass() { 2731 return new LoopAccessLegacyAnalysis(); 2732 } 2733 2734 } // end namespace llvm 2735