1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/EquivalenceClasses.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AliasSetTracker.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/PassManager.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/IR/ValueHandle.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <cstdlib> 64 #include <iterator> 65 #include <utility> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "loop-accesses" 71 72 static cl::opt<unsigned, true> 73 VectorizationFactor("force-vector-width", cl::Hidden, 74 cl::desc("Sets the SIMD width. Zero is autoselect."), 75 cl::location(VectorizerParams::VectorizationFactor)); 76 unsigned VectorizerParams::VectorizationFactor; 77 78 static cl::opt<unsigned, true> 79 VectorizationInterleave("force-vector-interleave", cl::Hidden, 80 cl::desc("Sets the vectorization interleave count. " 81 "Zero is autoselect."), 82 cl::location( 83 VectorizerParams::VectorizationInterleave)); 84 unsigned VectorizerParams::VectorizationInterleave; 85 86 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 87 "runtime-memory-check-threshold", cl::Hidden, 88 cl::desc("When performing memory disambiguation checks at runtime do not " 89 "generate more than this number of comparisons (default = 8)."), 90 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 91 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 92 93 /// The maximum iterations used to merge memory checks 94 static cl::opt<unsigned> MemoryCheckMergeThreshold( 95 "memory-check-merge-threshold", cl::Hidden, 96 cl::desc("Maximum number of comparisons done when trying to merge " 97 "runtime memory checks. (default = 100)"), 98 cl::init(100)); 99 100 /// Maximum SIMD width. 101 const unsigned VectorizerParams::MaxVectorWidth = 64; 102 103 /// We collect dependences up to this threshold. 104 static cl::opt<unsigned> 105 MaxDependences("max-dependences", cl::Hidden, 106 cl::desc("Maximum number of dependences collected by " 107 "loop-access analysis (default = 100)"), 108 cl::init(100)); 109 110 /// This enables versioning on the strides of symbolically striding memory 111 /// accesses in code like the following. 112 /// for (i = 0; i < N; ++i) 113 /// A[i * Stride1] += B[i * Stride2] ... 114 /// 115 /// Will be roughly translated to 116 /// if (Stride1 == 1 && Stride2 == 1) { 117 /// for (i = 0; i < N; i+=4) 118 /// A[i:i+3] += ... 119 /// } else 120 /// ... 121 static cl::opt<bool> EnableMemAccessVersioning( 122 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 123 cl::desc("Enable symbolic stride memory access versioning")); 124 125 /// Enable store-to-load forwarding conflict detection. This option can 126 /// be disabled for correctness testing. 127 static cl::opt<bool> EnableForwardingConflictDetection( 128 "store-to-load-forwarding-conflict-detection", cl::Hidden, 129 cl::desc("Enable conflict detection in loop-access analysis"), 130 cl::init(true)); 131 132 bool VectorizerParams::isInterleaveForced() { 133 return ::VectorizationInterleave.getNumOccurrences() > 0; 134 } 135 136 Value *llvm::stripIntegerCast(Value *V) { 137 if (auto *CI = dyn_cast<CastInst>(V)) 138 if (CI->getOperand(0)->getType()->isIntegerTy()) 139 return CI->getOperand(0); 140 return V; 141 } 142 143 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 144 const ValueToValueMap &PtrToStride, 145 Value *Ptr, Value *OrigPtr) { 146 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 147 148 // If there is an entry in the map return the SCEV of the pointer with the 149 // symbolic stride replaced by one. 150 ValueToValueMap::const_iterator SI = 151 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 152 if (SI == PtrToStride.end()) 153 // For a non-symbolic stride, just return the original expression. 154 return OrigSCEV; 155 156 Value *StrideVal = stripIntegerCast(SI->second); 157 158 ScalarEvolution *SE = PSE.getSE(); 159 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 160 const auto *CT = 161 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 162 163 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 164 auto *Expr = PSE.getSCEV(Ptr); 165 166 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 167 << " by: " << *Expr << "\n"); 168 return Expr; 169 } 170 171 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup( 172 unsigned Index, RuntimePointerChecking &RtCheck) 173 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start), 174 AddressSpace(RtCheck.Pointers[Index] 175 .PointerValue->getType() 176 ->getPointerAddressSpace()) { 177 Members.push_back(Index); 178 } 179 180 /// Calculate Start and End points of memory access. 181 /// Let's assume A is the first access and B is a memory access on N-th loop 182 /// iteration. Then B is calculated as: 183 /// B = A + Step*N . 184 /// Step value may be positive or negative. 185 /// N is a calculated back-edge taken count: 186 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 187 /// Start and End points are calculated in the following way: 188 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 189 /// where SizeOfElt is the size of single memory access in bytes. 190 /// 191 /// There is no conflict when the intervals are disjoint: 192 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 193 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 194 unsigned DepSetId, unsigned ASId, 195 const ValueToValueMap &Strides, 196 PredicatedScalarEvolution &PSE) { 197 // Get the stride replaced scev. 198 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 199 ScalarEvolution *SE = PSE.getSE(); 200 201 const SCEV *ScStart; 202 const SCEV *ScEnd; 203 204 if (SE->isLoopInvariant(Sc, Lp)) { 205 ScStart = ScEnd = Sc; 206 } else { 207 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 208 assert(AR && "Invalid addrec expression"); 209 const SCEV *Ex = PSE.getBackedgeTakenCount(); 210 211 ScStart = AR->getStart(); 212 ScEnd = AR->evaluateAtIteration(Ex, *SE); 213 const SCEV *Step = AR->getStepRecurrence(*SE); 214 215 // For expressions with negative step, the upper bound is ScStart and the 216 // lower bound is ScEnd. 217 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 218 if (CStep->getValue()->isNegative()) 219 std::swap(ScStart, ScEnd); 220 } else { 221 // Fallback case: the step is not constant, but we can still 222 // get the upper and lower bounds of the interval by using min/max 223 // expressions. 224 ScStart = SE->getUMinExpr(ScStart, ScEnd); 225 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 226 } 227 } 228 // Add the size of the pointed element to ScEnd. 229 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 230 Type *IdxTy = DL.getIndexType(Ptr->getType()); 231 const SCEV *EltSizeSCEV = 232 SE->getStoreSizeOfExpr(IdxTy, Ptr->getType()->getPointerElementType()); 233 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 234 235 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 236 } 237 238 SmallVector<RuntimePointerCheck, 4> 239 RuntimePointerChecking::generateChecks() const { 240 SmallVector<RuntimePointerCheck, 4> Checks; 241 242 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 243 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 244 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I]; 245 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J]; 246 247 if (needsChecking(CGI, CGJ)) 248 Checks.push_back(std::make_pair(&CGI, &CGJ)); 249 } 250 } 251 return Checks; 252 } 253 254 void RuntimePointerChecking::generateChecks( 255 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 256 assert(Checks.empty() && "Checks is not empty"); 257 groupChecks(DepCands, UseDependencies); 258 Checks = generateChecks(); 259 } 260 261 bool RuntimePointerChecking::needsChecking( 262 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const { 263 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 264 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 265 if (needsChecking(M.Members[I], N.Members[J])) 266 return true; 267 return false; 268 } 269 270 /// Compare \p I and \p J and return the minimum. 271 /// Return nullptr in case we couldn't find an answer. 272 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 273 ScalarEvolution *SE) { 274 const SCEV *Diff = SE->getMinusSCEV(J, I); 275 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 276 277 if (!C) 278 return nullptr; 279 if (C->getValue()->isNegative()) 280 return J; 281 return I; 282 } 283 284 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, 285 RuntimePointerChecking &RtCheck) { 286 return addPointer( 287 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End, 288 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(), 289 *RtCheck.SE); 290 } 291 292 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start, 293 const SCEV *End, unsigned AS, 294 ScalarEvolution &SE) { 295 assert(AddressSpace == AS && 296 "all pointers in a checking group must be in the same address space"); 297 298 // Compare the starts and ends with the known minimum and maximum 299 // of this set. We need to know how we compare against the min/max 300 // of the set in order to be able to emit memchecks. 301 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE); 302 if (!Min0) 303 return false; 304 305 const SCEV *Min1 = getMinFromExprs(End, High, &SE); 306 if (!Min1) 307 return false; 308 309 // Update the low bound expression if we've found a new min value. 310 if (Min0 == Start) 311 Low = Start; 312 313 // Update the high bound expression if we've found a new max value. 314 if (Min1 != End) 315 High = End; 316 317 Members.push_back(Index); 318 return true; 319 } 320 321 void RuntimePointerChecking::groupChecks( 322 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 323 // We build the groups from dependency candidates equivalence classes 324 // because: 325 // - We know that pointers in the same equivalence class share 326 // the same underlying object and therefore there is a chance 327 // that we can compare pointers 328 // - We wouldn't be able to merge two pointers for which we need 329 // to emit a memcheck. The classes in DepCands are already 330 // conveniently built such that no two pointers in the same 331 // class need checking against each other. 332 333 // We use the following (greedy) algorithm to construct the groups 334 // For every pointer in the equivalence class: 335 // For each existing group: 336 // - if the difference between this pointer and the min/max bounds 337 // of the group is a constant, then make the pointer part of the 338 // group and update the min/max bounds of that group as required. 339 340 CheckingGroups.clear(); 341 342 // If we need to check two pointers to the same underlying object 343 // with a non-constant difference, we shouldn't perform any pointer 344 // grouping with those pointers. This is because we can easily get 345 // into cases where the resulting check would return false, even when 346 // the accesses are safe. 347 // 348 // The following example shows this: 349 // for (i = 0; i < 1000; ++i) 350 // a[5000 + i * m] = a[i] + a[i + 9000] 351 // 352 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 353 // (0, 10000) which is always false. However, if m is 1, there is no 354 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 355 // us to perform an accurate check in this case. 356 // 357 // The above case requires that we have an UnknownDependence between 358 // accesses to the same underlying object. This cannot happen unless 359 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 360 // is also false. In this case we will use the fallback path and create 361 // separate checking groups for all pointers. 362 363 // If we don't have the dependency partitions, construct a new 364 // checking pointer group for each pointer. This is also required 365 // for correctness, because in this case we can have checking between 366 // pointers to the same underlying object. 367 if (!UseDependencies) { 368 for (unsigned I = 0; I < Pointers.size(); ++I) 369 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this)); 370 return; 371 } 372 373 unsigned TotalComparisons = 0; 374 375 DenseMap<Value *, unsigned> PositionMap; 376 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 377 PositionMap[Pointers[Index].PointerValue] = Index; 378 379 // We need to keep track of what pointers we've already seen so we 380 // don't process them twice. 381 SmallSet<unsigned, 2> Seen; 382 383 // Go through all equivalence classes, get the "pointer check groups" 384 // and add them to the overall solution. We use the order in which accesses 385 // appear in 'Pointers' to enforce determinism. 386 for (unsigned I = 0; I < Pointers.size(); ++I) { 387 // We've seen this pointer before, and therefore already processed 388 // its equivalence class. 389 if (Seen.count(I)) 390 continue; 391 392 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 393 Pointers[I].IsWritePtr); 394 395 SmallVector<RuntimeCheckingPtrGroup, 2> Groups; 396 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 397 398 // Because DepCands is constructed by visiting accesses in the order in 399 // which they appear in alias sets (which is deterministic) and the 400 // iteration order within an equivalence class member is only dependent on 401 // the order in which unions and insertions are performed on the 402 // equivalence class, the iteration order is deterministic. 403 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 404 MI != ME; ++MI) { 405 auto PointerI = PositionMap.find(MI->getPointer()); 406 assert(PointerI != PositionMap.end() && 407 "pointer in equivalence class not found in PositionMap"); 408 unsigned Pointer = PointerI->second; 409 bool Merged = false; 410 // Mark this pointer as seen. 411 Seen.insert(Pointer); 412 413 // Go through all the existing sets and see if we can find one 414 // which can include this pointer. 415 for (RuntimeCheckingPtrGroup &Group : Groups) { 416 // Don't perform more than a certain amount of comparisons. 417 // This should limit the cost of grouping the pointers to something 418 // reasonable. If we do end up hitting this threshold, the algorithm 419 // will create separate groups for all remaining pointers. 420 if (TotalComparisons > MemoryCheckMergeThreshold) 421 break; 422 423 TotalComparisons++; 424 425 if (Group.addPointer(Pointer, *this)) { 426 Merged = true; 427 break; 428 } 429 } 430 431 if (!Merged) 432 // We couldn't add this pointer to any existing set or the threshold 433 // for the number of comparisons has been reached. Create a new group 434 // to hold the current pointer. 435 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this)); 436 } 437 438 // We've computed the grouped checks for this partition. 439 // Save the results and continue with the next one. 440 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 441 } 442 } 443 444 bool RuntimePointerChecking::arePointersInSamePartition( 445 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 446 unsigned PtrIdx2) { 447 return (PtrToPartition[PtrIdx1] != -1 && 448 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 449 } 450 451 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 452 const PointerInfo &PointerI = Pointers[I]; 453 const PointerInfo &PointerJ = Pointers[J]; 454 455 // No need to check if two readonly pointers intersect. 456 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 457 return false; 458 459 // Only need to check pointers between two different dependency sets. 460 if (PointerI.DependencySetId == PointerJ.DependencySetId) 461 return false; 462 463 // Only need to check pointers in the same alias set. 464 if (PointerI.AliasSetId != PointerJ.AliasSetId) 465 return false; 466 467 return true; 468 } 469 470 void RuntimePointerChecking::printChecks( 471 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks, 472 unsigned Depth) const { 473 unsigned N = 0; 474 for (const auto &Check : Checks) { 475 const auto &First = Check.first->Members, &Second = Check.second->Members; 476 477 OS.indent(Depth) << "Check " << N++ << ":\n"; 478 479 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 480 for (unsigned K = 0; K < First.size(); ++K) 481 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 482 483 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 484 for (unsigned K = 0; K < Second.size(); ++K) 485 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 486 } 487 } 488 489 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 490 491 OS.indent(Depth) << "Run-time memory checks:\n"; 492 printChecks(OS, Checks, Depth); 493 494 OS.indent(Depth) << "Grouped accesses:\n"; 495 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 496 const auto &CG = CheckingGroups[I]; 497 498 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 499 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 500 << ")\n"; 501 for (unsigned J = 0; J < CG.Members.size(); ++J) { 502 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 503 << "\n"; 504 } 505 } 506 } 507 508 namespace { 509 510 /// Analyses memory accesses in a loop. 511 /// 512 /// Checks whether run time pointer checks are needed and builds sets for data 513 /// dependence checking. 514 class AccessAnalysis { 515 public: 516 /// Read or write access location. 517 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 518 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 519 520 AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI, 521 MemoryDepChecker::DepCandidates &DA, 522 PredicatedScalarEvolution &PSE) 523 : TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), 524 IsRTCheckAnalysisNeeded(false), PSE(PSE) {} 525 526 /// Register a load and whether it is only read from. 527 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 528 Value *Ptr = const_cast<Value*>(Loc.Ptr); 529 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 530 Accesses.insert(MemAccessInfo(Ptr, false)); 531 if (IsReadOnly) 532 ReadOnlyPtr.insert(Ptr); 533 } 534 535 /// Register a store. 536 void addStore(MemoryLocation &Loc) { 537 Value *Ptr = const_cast<Value*>(Loc.Ptr); 538 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 539 Accesses.insert(MemAccessInfo(Ptr, true)); 540 } 541 542 /// Check if we can emit a run-time no-alias check for \p Access. 543 /// 544 /// Returns true if we can emit a run-time no alias check for \p Access. 545 /// If we can check this access, this also adds it to a dependence set and 546 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 547 /// we will attempt to use additional run-time checks in order to get 548 /// the bounds of the pointer. 549 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 550 MemAccessInfo Access, 551 const ValueToValueMap &Strides, 552 DenseMap<Value *, unsigned> &DepSetId, 553 Loop *TheLoop, unsigned &RunningDepId, 554 unsigned ASId, bool ShouldCheckStride, 555 bool Assume); 556 557 /// Check whether we can check the pointers at runtime for 558 /// non-intersection. 559 /// 560 /// Returns true if we need no check or if we do and we can generate them 561 /// (i.e. the pointers have computable bounds). 562 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 563 Loop *TheLoop, const ValueToValueMap &Strides, 564 bool ShouldCheckWrap = false); 565 566 /// Goes over all memory accesses, checks whether a RT check is needed 567 /// and builds sets of dependent accesses. 568 void buildDependenceSets() { 569 processMemAccesses(); 570 } 571 572 /// Initial processing of memory accesses determined that we need to 573 /// perform dependency checking. 574 /// 575 /// Note that this can later be cleared if we retry memcheck analysis without 576 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 577 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 578 579 /// We decided that no dependence analysis would be used. Reset the state. 580 void resetDepChecks(MemoryDepChecker &DepChecker) { 581 CheckDeps.clear(); 582 DepChecker.clearDependences(); 583 } 584 585 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 586 587 private: 588 typedef SetVector<MemAccessInfo> PtrAccessSet; 589 590 /// Go over all memory access and check whether runtime pointer checks 591 /// are needed and build sets of dependency check candidates. 592 void processMemAccesses(); 593 594 /// Set of all accesses. 595 PtrAccessSet Accesses; 596 597 /// The loop being checked. 598 const Loop *TheLoop; 599 600 /// List of accesses that need a further dependence check. 601 MemAccessInfoList CheckDeps; 602 603 /// Set of pointers that are read only. 604 SmallPtrSet<Value*, 16> ReadOnlyPtr; 605 606 /// An alias set tracker to partition the access set by underlying object and 607 //intrinsic property (such as TBAA metadata). 608 AliasSetTracker AST; 609 610 LoopInfo *LI; 611 612 /// Sets of potentially dependent accesses - members of one set share an 613 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 614 /// dependence check. 615 MemoryDepChecker::DepCandidates &DepCands; 616 617 /// Initial processing of memory accesses determined that we may need 618 /// to add memchecks. Perform the analysis to determine the necessary checks. 619 /// 620 /// Note that, this is different from isDependencyCheckNeeded. When we retry 621 /// memcheck analysis without dependency checking 622 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 623 /// cleared while this remains set if we have potentially dependent accesses. 624 bool IsRTCheckAnalysisNeeded; 625 626 /// The SCEV predicate containing all the SCEV-related assumptions. 627 PredicatedScalarEvolution &PSE; 628 }; 629 630 } // end anonymous namespace 631 632 /// Check whether a pointer can participate in a runtime bounds check. 633 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 634 /// by adding run-time checks (overflow checks) if necessary. 635 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 636 const ValueToValueMap &Strides, Value *Ptr, 637 Loop *L, bool Assume) { 638 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 639 640 // The bounds for loop-invariant pointer is trivial. 641 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 642 return true; 643 644 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 645 646 if (!AR && Assume) 647 AR = PSE.getAsAddRec(Ptr); 648 649 if (!AR) 650 return false; 651 652 return AR->isAffine(); 653 } 654 655 /// Check whether a pointer address cannot wrap. 656 static bool isNoWrap(PredicatedScalarEvolution &PSE, 657 const ValueToValueMap &Strides, Value *Ptr, Loop *L) { 658 const SCEV *PtrScev = PSE.getSCEV(Ptr); 659 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 660 return true; 661 662 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); 663 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 664 return true; 665 666 return false; 667 } 668 669 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 670 MemAccessInfo Access, 671 const ValueToValueMap &StridesMap, 672 DenseMap<Value *, unsigned> &DepSetId, 673 Loop *TheLoop, unsigned &RunningDepId, 674 unsigned ASId, bool ShouldCheckWrap, 675 bool Assume) { 676 Value *Ptr = Access.getPointer(); 677 678 if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume)) 679 return false; 680 681 // When we run after a failing dependency check we have to make sure 682 // we don't have wrapping pointers. 683 if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) { 684 auto *Expr = PSE.getSCEV(Ptr); 685 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 686 return false; 687 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 688 } 689 690 // The id of the dependence set. 691 unsigned DepId; 692 693 if (isDependencyCheckNeeded()) { 694 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 695 unsigned &LeaderId = DepSetId[Leader]; 696 if (!LeaderId) 697 LeaderId = RunningDepId++; 698 DepId = LeaderId; 699 } else 700 // Each access has its own dependence set. 701 DepId = RunningDepId++; 702 703 bool IsWrite = Access.getInt(); 704 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 705 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 706 707 return true; 708 } 709 710 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 711 ScalarEvolution *SE, Loop *TheLoop, 712 const ValueToValueMap &StridesMap, 713 bool ShouldCheckWrap) { 714 // Find pointers with computable bounds. We are going to use this information 715 // to place a runtime bound check. 716 bool CanDoRT = true; 717 718 bool MayNeedRTCheck = false; 719 if (!IsRTCheckAnalysisNeeded) return true; 720 721 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 722 723 // We assign a consecutive id to access from different alias sets. 724 // Accesses between different groups doesn't need to be checked. 725 unsigned ASId = 0; 726 for (auto &AS : AST) { 727 int NumReadPtrChecks = 0; 728 int NumWritePtrChecks = 0; 729 bool CanDoAliasSetRT = true; 730 ++ASId; 731 732 // We assign consecutive id to access from different dependence sets. 733 // Accesses within the same set don't need a runtime check. 734 unsigned RunningDepId = 1; 735 DenseMap<Value *, unsigned> DepSetId; 736 737 SmallVector<MemAccessInfo, 4> Retries; 738 739 // First, count how many write and read accesses are in the alias set. Also 740 // collect MemAccessInfos for later. 741 SmallVector<MemAccessInfo, 4> AccessInfos; 742 for (const auto &A : AS) { 743 Value *Ptr = A.getValue(); 744 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 745 746 if (IsWrite) 747 ++NumWritePtrChecks; 748 else 749 ++NumReadPtrChecks; 750 AccessInfos.emplace_back(Ptr, IsWrite); 751 } 752 753 // We do not need runtime checks for this alias set, if there are no writes 754 // or a single write and no reads. 755 if (NumWritePtrChecks == 0 || 756 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) { 757 assert((AS.size() <= 1 || 758 all_of(AS, 759 [this](auto AC) { 760 MemAccessInfo AccessWrite(AC.getValue(), true); 761 return DepCands.findValue(AccessWrite) == DepCands.end(); 762 })) && 763 "Can only skip updating CanDoRT below, if all entries in AS " 764 "are reads or there is at most 1 entry"); 765 continue; 766 } 767 768 for (auto &Access : AccessInfos) { 769 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop, 770 RunningDepId, ASId, ShouldCheckWrap, false)) { 771 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" 772 << *Access.getPointer() << '\n'); 773 Retries.push_back(Access); 774 CanDoAliasSetRT = false; 775 } 776 } 777 778 // Note that this function computes CanDoRT and MayNeedRTCheck 779 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that 780 // we have a pointer for which we couldn't find the bounds but we don't 781 // actually need to emit any checks so it does not matter. 782 // 783 // We need runtime checks for this alias set, if there are at least 2 784 // dependence sets (in which case RunningDepId > 2) or if we need to re-try 785 // any bound checks (because in that case the number of dependence sets is 786 // incomplete). 787 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty(); 788 789 // We need to perform run-time alias checks, but some pointers had bounds 790 // that couldn't be checked. 791 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 792 // Reset the CanDoSetRt flag and retry all accesses that have failed. 793 // We know that we need these checks, so we can now be more aggressive 794 // and add further checks if required (overflow checks). 795 CanDoAliasSetRT = true; 796 for (auto Access : Retries) 797 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, 798 TheLoop, RunningDepId, ASId, 799 ShouldCheckWrap, /*Assume=*/true)) { 800 CanDoAliasSetRT = false; 801 break; 802 } 803 } 804 805 CanDoRT &= CanDoAliasSetRT; 806 MayNeedRTCheck |= NeedsAliasSetRTCheck; 807 ++ASId; 808 } 809 810 // If the pointers that we would use for the bounds comparison have different 811 // address spaces, assume the values aren't directly comparable, so we can't 812 // use them for the runtime check. We also have to assume they could 813 // overlap. In the future there should be metadata for whether address spaces 814 // are disjoint. 815 unsigned NumPointers = RtCheck.Pointers.size(); 816 for (unsigned i = 0; i < NumPointers; ++i) { 817 for (unsigned j = i + 1; j < NumPointers; ++j) { 818 // Only need to check pointers between two different dependency sets. 819 if (RtCheck.Pointers[i].DependencySetId == 820 RtCheck.Pointers[j].DependencySetId) 821 continue; 822 // Only need to check pointers in the same alias set. 823 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 824 continue; 825 826 Value *PtrI = RtCheck.Pointers[i].PointerValue; 827 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 828 829 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 830 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 831 if (ASi != ASj) { 832 LLVM_DEBUG( 833 dbgs() << "LAA: Runtime check would require comparison between" 834 " different address spaces\n"); 835 return false; 836 } 837 } 838 } 839 840 if (MayNeedRTCheck && CanDoRT) 841 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 842 843 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 844 << " pointer comparisons.\n"); 845 846 // If we can do run-time checks, but there are no checks, no runtime checks 847 // are needed. This can happen when all pointers point to the same underlying 848 // object for example. 849 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck; 850 851 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT; 852 if (!CanDoRTIfNeeded) 853 RtCheck.reset(); 854 return CanDoRTIfNeeded; 855 } 856 857 void AccessAnalysis::processMemAccesses() { 858 // We process the set twice: first we process read-write pointers, last we 859 // process read-only pointers. This allows us to skip dependence tests for 860 // read-only pointers. 861 862 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 863 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 864 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 865 LLVM_DEBUG({ 866 for (auto A : Accesses) 867 dbgs() << "\t" << *A.getPointer() << " (" << 868 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 869 "read-only" : "read")) << ")\n"; 870 }); 871 872 // The AliasSetTracker has nicely partitioned our pointers by metadata 873 // compatibility and potential for underlying-object overlap. As a result, we 874 // only need to check for potential pointer dependencies within each alias 875 // set. 876 for (const auto &AS : AST) { 877 // Note that both the alias-set tracker and the alias sets themselves used 878 // linked lists internally and so the iteration order here is deterministic 879 // (matching the original instruction order within each set). 880 881 bool SetHasWrite = false; 882 883 // Map of pointers to last access encountered. 884 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 885 UnderlyingObjToAccessMap ObjToLastAccess; 886 887 // Set of access to check after all writes have been processed. 888 PtrAccessSet DeferredAccesses; 889 890 // Iterate over each alias set twice, once to process read/write pointers, 891 // and then to process read-only pointers. 892 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 893 bool UseDeferred = SetIteration > 0; 894 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 895 896 for (const auto &AV : AS) { 897 Value *Ptr = AV.getValue(); 898 899 // For a single memory access in AliasSetTracker, Accesses may contain 900 // both read and write, and they both need to be handled for CheckDeps. 901 for (const auto &AC : S) { 902 if (AC.getPointer() != Ptr) 903 continue; 904 905 bool IsWrite = AC.getInt(); 906 907 // If we're using the deferred access set, then it contains only 908 // reads. 909 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 910 if (UseDeferred && !IsReadOnlyPtr) 911 continue; 912 // Otherwise, the pointer must be in the PtrAccessSet, either as a 913 // read or a write. 914 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 915 S.count(MemAccessInfo(Ptr, false))) && 916 "Alias-set pointer not in the access set?"); 917 918 MemAccessInfo Access(Ptr, IsWrite); 919 DepCands.insert(Access); 920 921 // Memorize read-only pointers for later processing and skip them in 922 // the first round (they need to be checked after we have seen all 923 // write pointers). Note: we also mark pointer that are not 924 // consecutive as "read-only" pointers (so that we check 925 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 926 if (!UseDeferred && IsReadOnlyPtr) { 927 DeferredAccesses.insert(Access); 928 continue; 929 } 930 931 // If this is a write - check other reads and writes for conflicts. If 932 // this is a read only check other writes for conflicts (but only if 933 // there is no other write to the ptr - this is an optimization to 934 // catch "a[i] = a[i] + " without having to do a dependence check). 935 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 936 CheckDeps.push_back(Access); 937 IsRTCheckAnalysisNeeded = true; 938 } 939 940 if (IsWrite) 941 SetHasWrite = true; 942 943 // Create sets of pointers connected by a shared alias set and 944 // underlying object. 945 typedef SmallVector<const Value *, 16> ValueVector; 946 ValueVector TempObjects; 947 948 getUnderlyingObjects(Ptr, TempObjects, LI); 949 LLVM_DEBUG(dbgs() 950 << "Underlying objects for pointer " << *Ptr << "\n"); 951 for (const Value *UnderlyingObj : TempObjects) { 952 // nullptr never alias, don't join sets for pointer that have "null" 953 // in their UnderlyingObjects list. 954 if (isa<ConstantPointerNull>(UnderlyingObj) && 955 !NullPointerIsDefined( 956 TheLoop->getHeader()->getParent(), 957 UnderlyingObj->getType()->getPointerAddressSpace())) 958 continue; 959 960 UnderlyingObjToAccessMap::iterator Prev = 961 ObjToLastAccess.find(UnderlyingObj); 962 if (Prev != ObjToLastAccess.end()) 963 DepCands.unionSets(Access, Prev->second); 964 965 ObjToLastAccess[UnderlyingObj] = Access; 966 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 967 } 968 } 969 } 970 } 971 } 972 } 973 974 static bool isInBoundsGep(Value *Ptr) { 975 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 976 return GEP->isInBounds(); 977 return false; 978 } 979 980 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 981 /// i.e. monotonically increasing/decreasing. 982 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 983 PredicatedScalarEvolution &PSE, const Loop *L) { 984 // FIXME: This should probably only return true for NUW. 985 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 986 return true; 987 988 // Scalar evolution does not propagate the non-wrapping flags to values that 989 // are derived from a non-wrapping induction variable because non-wrapping 990 // could be flow-sensitive. 991 // 992 // Look through the potentially overflowing instruction to try to prove 993 // non-wrapping for the *specific* value of Ptr. 994 995 // The arithmetic implied by an inbounds GEP can't overflow. 996 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 997 if (!GEP || !GEP->isInBounds()) 998 return false; 999 1000 // Make sure there is only one non-const index and analyze that. 1001 Value *NonConstIndex = nullptr; 1002 for (Value *Index : GEP->indices()) 1003 if (!isa<ConstantInt>(Index)) { 1004 if (NonConstIndex) 1005 return false; 1006 NonConstIndex = Index; 1007 } 1008 if (!NonConstIndex) 1009 // The recurrence is on the pointer, ignore for now. 1010 return false; 1011 1012 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 1013 // AddRec using a NSW operation. 1014 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 1015 if (OBO->hasNoSignedWrap() && 1016 // Assume constant for other the operand so that the AddRec can be 1017 // easily found. 1018 isa<ConstantInt>(OBO->getOperand(1))) { 1019 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 1020 1021 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 1022 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 1023 } 1024 1025 return false; 1026 } 1027 1028 /// Check whether the access through \p Ptr has a constant stride. 1029 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, 1030 const Loop *Lp, const ValueToValueMap &StridesMap, 1031 bool Assume, bool ShouldCheckWrap) { 1032 Type *Ty = Ptr->getType(); 1033 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 1034 1035 // Make sure that the pointer does not point to aggregate types. 1036 auto *PtrTy = cast<PointerType>(Ty); 1037 if (PtrTy->getElementType()->isAggregateType()) { 1038 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" 1039 << *Ptr << "\n"); 1040 return 0; 1041 } 1042 1043 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1044 1045 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1046 if (Assume && !AR) 1047 AR = PSE.getAsAddRec(Ptr); 1048 1049 if (!AR) { 1050 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1051 << " SCEV: " << *PtrScev << "\n"); 1052 return 0; 1053 } 1054 1055 // The access function must stride over the innermost loop. 1056 if (Lp != AR->getLoop()) { 1057 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1058 << *Ptr << " SCEV: " << *AR << "\n"); 1059 return 0; 1060 } 1061 1062 // The address calculation must not wrap. Otherwise, a dependence could be 1063 // inverted. 1064 // An inbounds getelementptr that is a AddRec with a unit stride 1065 // cannot wrap per definition. The unit stride requirement is checked later. 1066 // An getelementptr without an inbounds attribute and unit stride would have 1067 // to access the pointer value "0" which is undefined behavior in address 1068 // space 0, therefore we can also vectorize this case. 1069 bool IsInBoundsGEP = isInBoundsGep(Ptr); 1070 bool IsNoWrapAddRec = !ShouldCheckWrap || 1071 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 1072 isNoWrapAddRec(Ptr, AR, PSE, Lp); 1073 if (!IsNoWrapAddRec && !IsInBoundsGEP && 1074 NullPointerIsDefined(Lp->getHeader()->getParent(), 1075 PtrTy->getAddressSpace())) { 1076 if (Assume) { 1077 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1078 IsNoWrapAddRec = true; 1079 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 1080 << "LAA: Pointer: " << *Ptr << "\n" 1081 << "LAA: SCEV: " << *AR << "\n" 1082 << "LAA: Added an overflow assumption\n"); 1083 } else { 1084 LLVM_DEBUG( 1085 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1086 << *Ptr << " SCEV: " << *AR << "\n"); 1087 return 0; 1088 } 1089 } 1090 1091 // Check the step is constant. 1092 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1093 1094 // Calculate the pointer stride and check if it is constant. 1095 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1096 if (!C) { 1097 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1098 << " SCEV: " << *AR << "\n"); 1099 return 0; 1100 } 1101 1102 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1103 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 1104 const APInt &APStepVal = C->getAPInt(); 1105 1106 // Huge step value - give up. 1107 if (APStepVal.getBitWidth() > 64) 1108 return 0; 1109 1110 int64_t StepVal = APStepVal.getSExtValue(); 1111 1112 // Strided access. 1113 int64_t Stride = StepVal / Size; 1114 int64_t Rem = StepVal % Size; 1115 if (Rem) 1116 return 0; 1117 1118 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 1119 // know we can't "wrap around the address space". In case of address space 1120 // zero we know that this won't happen without triggering undefined behavior. 1121 if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 && 1122 (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(), 1123 PtrTy->getAddressSpace()))) { 1124 if (Assume) { 1125 // We can avoid this case by adding a run-time check. 1126 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1127 << "inbounds or in address space 0 may wrap:\n" 1128 << "LAA: Pointer: " << *Ptr << "\n" 1129 << "LAA: SCEV: " << *AR << "\n" 1130 << "LAA: Added an overflow assumption\n"); 1131 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1132 } else 1133 return 0; 1134 } 1135 1136 return Stride; 1137 } 1138 1139 Optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB, 1140 Value *PtrB, const DataLayout &DL, 1141 ScalarEvolution &SE, bool StrictCheck, 1142 bool CheckType) { 1143 assert(PtrA && PtrB && "Expected non-nullptr pointers."); 1144 assert(cast<PointerType>(PtrA->getType()) 1145 ->isOpaqueOrPointeeTypeMatches(ElemTyA) && "Wrong PtrA type"); 1146 assert(cast<PointerType>(PtrB->getType()) 1147 ->isOpaqueOrPointeeTypeMatches(ElemTyB) && "Wrong PtrB type"); 1148 1149 // Make sure that A and B are different pointers. 1150 if (PtrA == PtrB) 1151 return 0; 1152 1153 // Make sure that the element types are the same if required. 1154 if (CheckType && ElemTyA != ElemTyB) 1155 return None; 1156 1157 unsigned ASA = PtrA->getType()->getPointerAddressSpace(); 1158 unsigned ASB = PtrB->getType()->getPointerAddressSpace(); 1159 1160 // Check that the address spaces match. 1161 if (ASA != ASB) 1162 return None; 1163 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1164 1165 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1166 Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1167 Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1168 1169 int Val; 1170 if (PtrA1 == PtrB1) { 1171 // Retrieve the address space again as pointer stripping now tracks through 1172 // `addrspacecast`. 1173 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace(); 1174 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace(); 1175 // Check that the address spaces match and that the pointers are valid. 1176 if (ASA != ASB) 1177 return None; 1178 1179 IdxWidth = DL.getIndexSizeInBits(ASA); 1180 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1181 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1182 1183 OffsetB -= OffsetA; 1184 Val = OffsetB.getSExtValue(); 1185 } else { 1186 // Otherwise compute the distance with SCEV between the base pointers. 1187 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1188 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1189 const auto *Diff = 1190 dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA)); 1191 if (!Diff) 1192 return None; 1193 Val = Diff->getAPInt().getSExtValue(); 1194 } 1195 int Size = DL.getTypeStoreSize(ElemTyA); 1196 int Dist = Val / Size; 1197 1198 // Ensure that the calculated distance matches the type-based one after all 1199 // the bitcasts removal in the provided pointers. 1200 if (!StrictCheck || Dist * Size == Val) 1201 return Dist; 1202 return None; 1203 } 1204 1205 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 1206 const DataLayout &DL, ScalarEvolution &SE, 1207 SmallVectorImpl<unsigned> &SortedIndices) { 1208 assert(llvm::all_of( 1209 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1210 "Expected list of pointer operands."); 1211 // Walk over the pointers, and map each of them to an offset relative to 1212 // first pointer in the array. 1213 Value *Ptr0 = VL[0]; 1214 1215 using DistOrdPair = std::pair<int64_t, int>; 1216 auto Compare = [](const DistOrdPair &L, const DistOrdPair &R) { 1217 return L.first < R.first; 1218 }; 1219 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare); 1220 Offsets.emplace(0, 0); 1221 int Cnt = 1; 1222 bool IsConsecutive = true; 1223 for (auto *Ptr : VL.drop_front()) { 1224 Optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE, 1225 /*StrictCheck=*/true); 1226 if (!Diff) 1227 return false; 1228 1229 // Check if the pointer with the same offset is found. 1230 int64_t Offset = *Diff; 1231 auto Res = Offsets.emplace(Offset, Cnt); 1232 if (!Res.second) 1233 return false; 1234 // Consecutive order if the inserted element is the last one. 1235 IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end(); 1236 ++Cnt; 1237 } 1238 SortedIndices.clear(); 1239 if (!IsConsecutive) { 1240 // Fill SortedIndices array only if it is non-consecutive. 1241 SortedIndices.resize(VL.size()); 1242 Cnt = 0; 1243 for (const std::pair<int64_t, int> &Pair : Offsets) { 1244 SortedIndices[Cnt] = Pair.second; 1245 ++Cnt; 1246 } 1247 } 1248 return true; 1249 } 1250 1251 /// Returns true if the memory operations \p A and \p B are consecutive. 1252 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1253 ScalarEvolution &SE, bool CheckType) { 1254 Value *PtrA = getLoadStorePointerOperand(A); 1255 Value *PtrB = getLoadStorePointerOperand(B); 1256 if (!PtrA || !PtrB) 1257 return false; 1258 Type *ElemTyA = getLoadStoreType(A); 1259 Type *ElemTyB = getLoadStoreType(B); 1260 Optional<int> Diff = getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE, 1261 /*StrictCheck=*/true, CheckType); 1262 return Diff && *Diff == 1; 1263 } 1264 1265 MemoryDepChecker::VectorizationSafetyStatus 1266 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1267 switch (Type) { 1268 case NoDep: 1269 case Forward: 1270 case BackwardVectorizable: 1271 return VectorizationSafetyStatus::Safe; 1272 1273 case Unknown: 1274 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1275 case ForwardButPreventsForwarding: 1276 case Backward: 1277 case BackwardVectorizableButPreventsForwarding: 1278 return VectorizationSafetyStatus::Unsafe; 1279 } 1280 llvm_unreachable("unexpected DepType!"); 1281 } 1282 1283 bool MemoryDepChecker::Dependence::isBackward() const { 1284 switch (Type) { 1285 case NoDep: 1286 case Forward: 1287 case ForwardButPreventsForwarding: 1288 case Unknown: 1289 return false; 1290 1291 case BackwardVectorizable: 1292 case Backward: 1293 case BackwardVectorizableButPreventsForwarding: 1294 return true; 1295 } 1296 llvm_unreachable("unexpected DepType!"); 1297 } 1298 1299 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1300 return isBackward() || Type == Unknown; 1301 } 1302 1303 bool MemoryDepChecker::Dependence::isForward() const { 1304 switch (Type) { 1305 case Forward: 1306 case ForwardButPreventsForwarding: 1307 return true; 1308 1309 case NoDep: 1310 case Unknown: 1311 case BackwardVectorizable: 1312 case Backward: 1313 case BackwardVectorizableButPreventsForwarding: 1314 return false; 1315 } 1316 llvm_unreachable("unexpected DepType!"); 1317 } 1318 1319 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1320 uint64_t TypeByteSize) { 1321 // If loads occur at a distance that is not a multiple of a feasible vector 1322 // factor store-load forwarding does not take place. 1323 // Positive dependences might cause troubles because vectorizing them might 1324 // prevent store-load forwarding making vectorized code run a lot slower. 1325 // a[i] = a[i-3] ^ a[i-8]; 1326 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1327 // hence on your typical architecture store-load forwarding does not take 1328 // place. Vectorizing in such cases does not make sense. 1329 // Store-load forwarding distance. 1330 1331 // After this many iterations store-to-load forwarding conflicts should not 1332 // cause any slowdowns. 1333 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1334 // Maximum vector factor. 1335 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1336 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1337 1338 // Compute the smallest VF at which the store and load would be misaligned. 1339 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1340 VF *= 2) { 1341 // If the number of vector iteration between the store and the load are 1342 // small we could incur conflicts. 1343 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1344 MaxVFWithoutSLForwardIssues = (VF >> 1); 1345 break; 1346 } 1347 } 1348 1349 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1350 LLVM_DEBUG( 1351 dbgs() << "LAA: Distance " << Distance 1352 << " that could cause a store-load forwarding conflict\n"); 1353 return true; 1354 } 1355 1356 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1357 MaxVFWithoutSLForwardIssues != 1358 VectorizerParams::MaxVectorWidth * TypeByteSize) 1359 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1360 return false; 1361 } 1362 1363 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1364 if (Status < S) 1365 Status = S; 1366 } 1367 1368 /// Given a non-constant (unknown) dependence-distance \p Dist between two 1369 /// memory accesses, that have the same stride whose absolute value is given 1370 /// in \p Stride, and that have the same type size \p TypeByteSize, 1371 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1372 /// possible to prove statically that the dependence distance is larger 1373 /// than the range that the accesses will travel through the execution of 1374 /// the loop. If so, return true; false otherwise. This is useful for 1375 /// example in loops such as the following (PR31098): 1376 /// for (i = 0; i < D; ++i) { 1377 /// = out[i]; 1378 /// out[i+D] = 1379 /// } 1380 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1381 const SCEV &BackedgeTakenCount, 1382 const SCEV &Dist, uint64_t Stride, 1383 uint64_t TypeByteSize) { 1384 1385 // If we can prove that 1386 // (**) |Dist| > BackedgeTakenCount * Step 1387 // where Step is the absolute stride of the memory accesses in bytes, 1388 // then there is no dependence. 1389 // 1390 // Rationale: 1391 // We basically want to check if the absolute distance (|Dist/Step|) 1392 // is >= the loop iteration count (or > BackedgeTakenCount). 1393 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1394 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1395 // that the dependence distance is >= VF; This is checked elsewhere. 1396 // But in some cases we can prune unknown dependence distances early, and 1397 // even before selecting the VF, and without a runtime test, by comparing 1398 // the distance against the loop iteration count. Since the vectorized code 1399 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1400 // also guarantees that distance >= VF. 1401 // 1402 const uint64_t ByteStride = Stride * TypeByteSize; 1403 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1404 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1405 1406 const SCEV *CastedDist = &Dist; 1407 const SCEV *CastedProduct = Product; 1408 uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType()); 1409 uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType()); 1410 1411 // The dependence distance can be positive/negative, so we sign extend Dist; 1412 // The multiplication of the absolute stride in bytes and the 1413 // backedgeTakenCount is non-negative, so we zero extend Product. 1414 if (DistTypeSize > ProductTypeSize) 1415 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1416 else 1417 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1418 1419 // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1420 // (If so, then we have proven (**) because |Dist| >= Dist) 1421 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1422 if (SE.isKnownPositive(Minus)) 1423 return true; 1424 1425 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1426 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1427 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1428 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1429 if (SE.isKnownPositive(Minus)) 1430 return true; 1431 1432 return false; 1433 } 1434 1435 /// Check the dependence for two accesses with the same stride \p Stride. 1436 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1437 /// bytes. 1438 /// 1439 /// \returns true if they are independent. 1440 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1441 uint64_t TypeByteSize) { 1442 assert(Stride > 1 && "The stride must be greater than 1"); 1443 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1444 assert(Distance > 0 && "The distance must be non-zero"); 1445 1446 // Skip if the distance is not multiple of type byte size. 1447 if (Distance % TypeByteSize) 1448 return false; 1449 1450 uint64_t ScaledDist = Distance / TypeByteSize; 1451 1452 // No dependence if the scaled distance is not multiple of the stride. 1453 // E.g. 1454 // for (i = 0; i < 1024 ; i += 4) 1455 // A[i+2] = A[i] + 1; 1456 // 1457 // Two accesses in memory (scaled distance is 2, stride is 4): 1458 // | A[0] | | | | A[4] | | | | 1459 // | | | A[2] | | | | A[6] | | 1460 // 1461 // E.g. 1462 // for (i = 0; i < 1024 ; i += 3) 1463 // A[i+4] = A[i] + 1; 1464 // 1465 // Two accesses in memory (scaled distance is 4, stride is 3): 1466 // | A[0] | | | A[3] | | | A[6] | | | 1467 // | | | | | A[4] | | | A[7] | | 1468 return ScaledDist % Stride; 1469 } 1470 1471 MemoryDepChecker::Dependence::DepType 1472 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1473 const MemAccessInfo &B, unsigned BIdx, 1474 const ValueToValueMap &Strides) { 1475 assert (AIdx < BIdx && "Must pass arguments in program order"); 1476 1477 Value *APtr = A.getPointer(); 1478 Value *BPtr = B.getPointer(); 1479 bool AIsWrite = A.getInt(); 1480 bool BIsWrite = B.getInt(); 1481 1482 // Two reads are independent. 1483 if (!AIsWrite && !BIsWrite) 1484 return Dependence::NoDep; 1485 1486 // We cannot check pointers in different address spaces. 1487 if (APtr->getType()->getPointerAddressSpace() != 1488 BPtr->getType()->getPointerAddressSpace()) 1489 return Dependence::Unknown; 1490 1491 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); 1492 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); 1493 1494 const SCEV *Src = PSE.getSCEV(APtr); 1495 const SCEV *Sink = PSE.getSCEV(BPtr); 1496 1497 // If the induction step is negative we have to invert source and sink of the 1498 // dependence. 1499 if (StrideAPtr < 0) { 1500 std::swap(APtr, BPtr); 1501 std::swap(Src, Sink); 1502 std::swap(AIsWrite, BIsWrite); 1503 std::swap(AIdx, BIdx); 1504 std::swap(StrideAPtr, StrideBPtr); 1505 } 1506 1507 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1508 1509 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1510 << "(Induction step: " << StrideAPtr << ")\n"); 1511 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1512 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1513 1514 // Need accesses with constant stride. We don't want to vectorize 1515 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1516 // the address space. 1517 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1518 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1519 return Dependence::Unknown; 1520 } 1521 1522 Type *ATy = APtr->getType()->getPointerElementType(); 1523 Type *BTy = BPtr->getType()->getPointerElementType(); 1524 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1525 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1526 uint64_t Stride = std::abs(StrideAPtr); 1527 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1528 if (!C) { 1529 if (!isa<SCEVCouldNotCompute>(Dist) && 1530 TypeByteSize == DL.getTypeAllocSize(BTy) && 1531 isSafeDependenceDistance(DL, *(PSE.getSE()), 1532 *(PSE.getBackedgeTakenCount()), *Dist, Stride, 1533 TypeByteSize)) 1534 return Dependence::NoDep; 1535 1536 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1537 FoundNonConstantDistanceDependence = true; 1538 return Dependence::Unknown; 1539 } 1540 1541 const APInt &Val = C->getAPInt(); 1542 int64_t Distance = Val.getSExtValue(); 1543 1544 // Attempt to prove strided accesses independent. 1545 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && 1546 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1547 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1548 return Dependence::NoDep; 1549 } 1550 1551 // Negative distances are not plausible dependencies. 1552 if (Val.isNegative()) { 1553 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1554 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1555 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1556 ATy != BTy)) { 1557 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1558 return Dependence::ForwardButPreventsForwarding; 1559 } 1560 1561 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1562 return Dependence::Forward; 1563 } 1564 1565 // Write to the same location with the same size. 1566 // Could be improved to assert type sizes are the same (i32 == float, etc). 1567 if (Val == 0) { 1568 if (ATy == BTy) 1569 return Dependence::Forward; 1570 LLVM_DEBUG( 1571 dbgs() << "LAA: Zero dependence difference but different types\n"); 1572 return Dependence::Unknown; 1573 } 1574 1575 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1576 1577 if (ATy != BTy) { 1578 LLVM_DEBUG( 1579 dbgs() 1580 << "LAA: ReadWrite-Write positive dependency with different types\n"); 1581 return Dependence::Unknown; 1582 } 1583 1584 // Bail out early if passed-in parameters make vectorization not feasible. 1585 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1586 VectorizerParams::VectorizationFactor : 1); 1587 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1588 VectorizerParams::VectorizationInterleave : 1); 1589 // The minimum number of iterations for a vectorized/unrolled version. 1590 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1591 1592 // It's not vectorizable if the distance is smaller than the minimum distance 1593 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1594 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1595 // TypeByteSize (No need to plus the last gap distance). 1596 // 1597 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1598 // foo(int *A) { 1599 // int *B = (int *)((char *)A + 14); 1600 // for (i = 0 ; i < 1024 ; i += 2) 1601 // B[i] = A[i] + 1; 1602 // } 1603 // 1604 // Two accesses in memory (stride is 2): 1605 // | A[0] | | A[2] | | A[4] | | A[6] | | 1606 // | B[0] | | B[2] | | B[4] | 1607 // 1608 // Distance needs for vectorizing iterations except the last iteration: 1609 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1610 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1611 // 1612 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1613 // 12, which is less than distance. 1614 // 1615 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1616 // the minimum distance needed is 28, which is greater than distance. It is 1617 // not safe to do vectorization. 1618 uint64_t MinDistanceNeeded = 1619 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1620 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1621 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " 1622 << Distance << '\n'); 1623 return Dependence::Backward; 1624 } 1625 1626 // Unsafe if the minimum distance needed is greater than max safe distance. 1627 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1628 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 1629 << MinDistanceNeeded << " size in bytes"); 1630 return Dependence::Backward; 1631 } 1632 1633 // Positive distance bigger than max vectorization factor. 1634 // FIXME: Should use max factor instead of max distance in bytes, which could 1635 // not handle different types. 1636 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1637 // void foo (int *A, char *B) { 1638 // for (unsigned i = 0; i < 1024; i++) { 1639 // A[i+2] = A[i] + 1; 1640 // B[i+2] = B[i] + 1; 1641 // } 1642 // } 1643 // 1644 // This case is currently unsafe according to the max safe distance. If we 1645 // analyze the two accesses on array B, the max safe dependence distance 1646 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1647 // is 8, which is less than 2 and forbidden vectorization, But actually 1648 // both A and B could be vectorized by 2 iterations. 1649 MaxSafeDepDistBytes = 1650 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1651 1652 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1653 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1654 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1655 return Dependence::BackwardVectorizableButPreventsForwarding; 1656 1657 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); 1658 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1659 << " with max VF = " << MaxVF << '\n'); 1660 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 1661 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits); 1662 return Dependence::BackwardVectorizable; 1663 } 1664 1665 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1666 MemAccessInfoList &CheckDeps, 1667 const ValueToValueMap &Strides) { 1668 1669 MaxSafeDepDistBytes = -1; 1670 SmallPtrSet<MemAccessInfo, 8> Visited; 1671 for (MemAccessInfo CurAccess : CheckDeps) { 1672 if (Visited.count(CurAccess)) 1673 continue; 1674 1675 // Get the relevant memory access set. 1676 EquivalenceClasses<MemAccessInfo>::iterator I = 1677 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1678 1679 // Check accesses within this set. 1680 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1681 AccessSets.member_begin(I); 1682 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1683 AccessSets.member_end(); 1684 1685 // Check every access pair. 1686 while (AI != AE) { 1687 Visited.insert(*AI); 1688 bool AIIsWrite = AI->getInt(); 1689 // Check loads only against next equivalent class, but stores also against 1690 // other stores in the same equivalence class - to the same address. 1691 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 1692 (AIIsWrite ? AI : std::next(AI)); 1693 while (OI != AE) { 1694 // Check every accessing instruction pair in program order. 1695 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1696 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1697 // Scan all accesses of another equivalence class, but only the next 1698 // accesses of the same equivalent class. 1699 for (std::vector<unsigned>::iterator 1700 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 1701 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 1702 I2 != I2E; ++I2) { 1703 auto A = std::make_pair(&*AI, *I1); 1704 auto B = std::make_pair(&*OI, *I2); 1705 1706 assert(*I1 != *I2); 1707 if (*I1 > *I2) 1708 std::swap(A, B); 1709 1710 Dependence::DepType Type = 1711 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1712 mergeInStatus(Dependence::isSafeForVectorization(Type)); 1713 1714 // Gather dependences unless we accumulated MaxDependences 1715 // dependences. In that case return as soon as we find the first 1716 // unsafe dependence. This puts a limit on this quadratic 1717 // algorithm. 1718 if (RecordDependences) { 1719 if (Type != Dependence::NoDep) 1720 Dependences.push_back(Dependence(A.second, B.second, Type)); 1721 1722 if (Dependences.size() >= MaxDependences) { 1723 RecordDependences = false; 1724 Dependences.clear(); 1725 LLVM_DEBUG(dbgs() 1726 << "Too many dependences, stopped recording\n"); 1727 } 1728 } 1729 if (!RecordDependences && !isSafeForVectorization()) 1730 return false; 1731 } 1732 ++OI; 1733 } 1734 AI++; 1735 } 1736 } 1737 1738 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1739 return isSafeForVectorization(); 1740 } 1741 1742 SmallVector<Instruction *, 4> 1743 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1744 MemAccessInfo Access(Ptr, isWrite); 1745 auto &IndexVector = Accesses.find(Access)->second; 1746 1747 SmallVector<Instruction *, 4> Insts; 1748 transform(IndexVector, 1749 std::back_inserter(Insts), 1750 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1751 return Insts; 1752 } 1753 1754 const char *MemoryDepChecker::Dependence::DepName[] = { 1755 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1756 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1757 1758 void MemoryDepChecker::Dependence::print( 1759 raw_ostream &OS, unsigned Depth, 1760 const SmallVectorImpl<Instruction *> &Instrs) const { 1761 OS.indent(Depth) << DepName[Type] << ":\n"; 1762 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1763 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1764 } 1765 1766 bool LoopAccessInfo::canAnalyzeLoop() { 1767 // We need to have a loop header. 1768 LLVM_DEBUG(dbgs() << "LAA: Found a loop in " 1769 << TheLoop->getHeader()->getParent()->getName() << ": " 1770 << TheLoop->getHeader()->getName() << '\n'); 1771 1772 // We can only analyze innermost loops. 1773 if (!TheLoop->isInnermost()) { 1774 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1775 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 1776 return false; 1777 } 1778 1779 // We must have a single backedge. 1780 if (TheLoop->getNumBackEdges() != 1) { 1781 LLVM_DEBUG( 1782 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1783 recordAnalysis("CFGNotUnderstood") 1784 << "loop control flow is not understood by analyzer"; 1785 return false; 1786 } 1787 1788 // ScalarEvolution needs to be able to find the exit count. 1789 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 1790 if (isa<SCEVCouldNotCompute>(ExitCount)) { 1791 recordAnalysis("CantComputeNumberOfIterations") 1792 << "could not determine number of loop iterations"; 1793 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1794 return false; 1795 } 1796 1797 return true; 1798 } 1799 1800 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI, 1801 const TargetLibraryInfo *TLI, 1802 DominatorTree *DT) { 1803 typedef SmallPtrSet<Value*, 16> ValueSet; 1804 1805 // Holds the Load and Store instructions. 1806 SmallVector<LoadInst *, 16> Loads; 1807 SmallVector<StoreInst *, 16> Stores; 1808 1809 // Holds all the different accesses in the loop. 1810 unsigned NumReads = 0; 1811 unsigned NumReadWrites = 0; 1812 1813 bool HasComplexMemInst = false; 1814 1815 // A runtime check is only legal to insert if there are no convergent calls. 1816 HasConvergentOp = false; 1817 1818 PtrRtChecking->Pointers.clear(); 1819 PtrRtChecking->Need = false; 1820 1821 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1822 1823 const bool EnableMemAccessVersioningOfLoop = 1824 EnableMemAccessVersioning && 1825 !TheLoop->getHeader()->getParent()->hasOptSize(); 1826 1827 // For each block. 1828 for (BasicBlock *BB : TheLoop->blocks()) { 1829 // Scan the BB and collect legal loads and stores. Also detect any 1830 // convergent instructions. 1831 for (Instruction &I : *BB) { 1832 if (auto *Call = dyn_cast<CallBase>(&I)) { 1833 if (Call->isConvergent()) 1834 HasConvergentOp = true; 1835 } 1836 1837 // With both a non-vectorizable memory instruction and a convergent 1838 // operation, found in this loop, no reason to continue the search. 1839 if (HasComplexMemInst && HasConvergentOp) { 1840 CanVecMem = false; 1841 return; 1842 } 1843 1844 // Avoid hitting recordAnalysis multiple times. 1845 if (HasComplexMemInst) 1846 continue; 1847 1848 // If this is a load, save it. If this instruction can read from memory 1849 // but is not a load, then we quit. Notice that we don't handle function 1850 // calls that read or write. 1851 if (I.mayReadFromMemory()) { 1852 // Many math library functions read the rounding mode. We will only 1853 // vectorize a loop if it contains known function calls that don't set 1854 // the flag. Therefore, it is safe to ignore this read from memory. 1855 auto *Call = dyn_cast<CallInst>(&I); 1856 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 1857 continue; 1858 1859 // If the function has an explicit vectorized counterpart, we can safely 1860 // assume that it can be vectorized. 1861 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1862 !VFDatabase::getMappings(*Call).empty()) 1863 continue; 1864 1865 auto *Ld = dyn_cast<LoadInst>(&I); 1866 if (!Ld) { 1867 recordAnalysis("CantVectorizeInstruction", Ld) 1868 << "instruction cannot be vectorized"; 1869 HasComplexMemInst = true; 1870 continue; 1871 } 1872 if (!Ld->isSimple() && !IsAnnotatedParallel) { 1873 recordAnalysis("NonSimpleLoad", Ld) 1874 << "read with atomic ordering or volatile read"; 1875 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1876 HasComplexMemInst = true; 1877 continue; 1878 } 1879 NumLoads++; 1880 Loads.push_back(Ld); 1881 DepChecker->addAccess(Ld); 1882 if (EnableMemAccessVersioningOfLoop) 1883 collectStridedAccess(Ld); 1884 continue; 1885 } 1886 1887 // Save 'store' instructions. Abort if other instructions write to memory. 1888 if (I.mayWriteToMemory()) { 1889 auto *St = dyn_cast<StoreInst>(&I); 1890 if (!St) { 1891 recordAnalysis("CantVectorizeInstruction", St) 1892 << "instruction cannot be vectorized"; 1893 HasComplexMemInst = true; 1894 continue; 1895 } 1896 if (!St->isSimple() && !IsAnnotatedParallel) { 1897 recordAnalysis("NonSimpleStore", St) 1898 << "write with atomic ordering or volatile write"; 1899 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1900 HasComplexMemInst = true; 1901 continue; 1902 } 1903 NumStores++; 1904 Stores.push_back(St); 1905 DepChecker->addAccess(St); 1906 if (EnableMemAccessVersioningOfLoop) 1907 collectStridedAccess(St); 1908 } 1909 } // Next instr. 1910 } // Next block. 1911 1912 if (HasComplexMemInst) { 1913 CanVecMem = false; 1914 return; 1915 } 1916 1917 // Now we have two lists that hold the loads and the stores. 1918 // Next, we find the pointers that they use. 1919 1920 // Check if we see any stores. If there are no stores, then we don't 1921 // care if the pointers are *restrict*. 1922 if (!Stores.size()) { 1923 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1924 CanVecMem = true; 1925 return; 1926 } 1927 1928 MemoryDepChecker::DepCandidates DependentAccesses; 1929 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE); 1930 1931 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects 1932 // multiple times on the same object. If the ptr is accessed twice, once 1933 // for read and once for write, it will only appear once (on the write 1934 // list). This is okay, since we are going to check for conflicts between 1935 // writes and between reads and writes, but not between reads and reads. 1936 ValueSet Seen; 1937 1938 // Record uniform store addresses to identify if we have multiple stores 1939 // to the same address. 1940 ValueSet UniformStores; 1941 1942 for (StoreInst *ST : Stores) { 1943 Value *Ptr = ST->getPointerOperand(); 1944 1945 if (isUniform(Ptr)) 1946 HasDependenceInvolvingLoopInvariantAddress |= 1947 !UniformStores.insert(Ptr).second; 1948 1949 // If we did *not* see this pointer before, insert it to the read-write 1950 // list. At this phase it is only a 'write' list. 1951 if (Seen.insert(Ptr).second) { 1952 ++NumReadWrites; 1953 1954 MemoryLocation Loc = MemoryLocation::get(ST); 1955 // The TBAA metadata could have a control dependency on the predication 1956 // condition, so we cannot rely on it when determining whether or not we 1957 // need runtime pointer checks. 1958 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1959 Loc.AATags.TBAA = nullptr; 1960 1961 Accesses.addStore(Loc); 1962 } 1963 } 1964 1965 if (IsAnnotatedParallel) { 1966 LLVM_DEBUG( 1967 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 1968 << "checks.\n"); 1969 CanVecMem = true; 1970 return; 1971 } 1972 1973 for (LoadInst *LD : Loads) { 1974 Value *Ptr = LD->getPointerOperand(); 1975 // If we did *not* see this pointer before, insert it to the 1976 // read list. If we *did* see it before, then it is already in 1977 // the read-write list. This allows us to vectorize expressions 1978 // such as A[i] += x; Because the address of A[i] is a read-write 1979 // pointer. This only works if the index of A[i] is consecutive. 1980 // If the address of i is unknown (for example A[B[i]]) then we may 1981 // read a few words, modify, and write a few words, and some of the 1982 // words may be written to the same address. 1983 bool IsReadOnlyPtr = false; 1984 if (Seen.insert(Ptr).second || 1985 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { 1986 ++NumReads; 1987 IsReadOnlyPtr = true; 1988 } 1989 1990 // See if there is an unsafe dependency between a load to a uniform address and 1991 // store to the same uniform address. 1992 if (UniformStores.count(Ptr)) { 1993 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 1994 "load and uniform store to the same address!\n"); 1995 HasDependenceInvolvingLoopInvariantAddress = true; 1996 } 1997 1998 MemoryLocation Loc = MemoryLocation::get(LD); 1999 // The TBAA metadata could have a control dependency on the predication 2000 // condition, so we cannot rely on it when determining whether or not we 2001 // need runtime pointer checks. 2002 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 2003 Loc.AATags.TBAA = nullptr; 2004 2005 Accesses.addLoad(Loc, IsReadOnlyPtr); 2006 } 2007 2008 // If we write (or read-write) to a single destination and there are no 2009 // other reads in this loop then is it safe to vectorize. 2010 if (NumReadWrites == 1 && NumReads == 0) { 2011 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 2012 CanVecMem = true; 2013 return; 2014 } 2015 2016 // Build dependence sets and check whether we need a runtime pointer bounds 2017 // check. 2018 Accesses.buildDependenceSets(); 2019 2020 // Find pointers with computable bounds. We are going to use this information 2021 // to place a runtime bound check. 2022 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), 2023 TheLoop, SymbolicStrides); 2024 if (!CanDoRTIfNeeded) { 2025 recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; 2026 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2027 << "the array bounds.\n"); 2028 CanVecMem = false; 2029 return; 2030 } 2031 2032 LLVM_DEBUG( 2033 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2034 2035 CanVecMem = true; 2036 if (Accesses.isDependencyCheckNeeded()) { 2037 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2038 CanVecMem = DepChecker->areDepsSafe( 2039 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 2040 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 2041 2042 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 2043 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2044 2045 // Clear the dependency checks. We assume they are not needed. 2046 Accesses.resetDepChecks(*DepChecker); 2047 2048 PtrRtChecking->reset(); 2049 PtrRtChecking->Need = true; 2050 2051 auto *SE = PSE->getSE(); 2052 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, 2053 SymbolicStrides, true); 2054 2055 // Check that we found the bounds for the pointer. 2056 if (!CanDoRTIfNeeded) { 2057 recordAnalysis("CantCheckMemDepsAtRunTime") 2058 << "cannot check memory dependencies at runtime"; 2059 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2060 CanVecMem = false; 2061 return; 2062 } 2063 2064 CanVecMem = true; 2065 } 2066 } 2067 2068 if (HasConvergentOp) { 2069 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2070 << "cannot add control dependency to convergent operation"; 2071 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2072 "would be needed with a convergent operation\n"); 2073 CanVecMem = false; 2074 return; 2075 } 2076 2077 if (CanVecMem) 2078 LLVM_DEBUG( 2079 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2080 << (PtrRtChecking->Need ? "" : " don't") 2081 << " need runtime memory checks.\n"); 2082 else { 2083 recordAnalysis("UnsafeMemDep") 2084 << "unsafe dependent memory operations in loop. Use " 2085 "#pragma loop distribute(enable) to allow loop distribution " 2086 "to attempt to isolate the offending operations into a separate " 2087 "loop"; 2088 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2089 } 2090 } 2091 2092 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2093 DominatorTree *DT) { 2094 assert(TheLoop->contains(BB) && "Unknown block used"); 2095 2096 // Blocks that do not dominate the latch need predication. 2097 BasicBlock* Latch = TheLoop->getLoopLatch(); 2098 return !DT->dominates(BB, Latch); 2099 } 2100 2101 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2102 Instruction *I) { 2103 assert(!Report && "Multiple reports generated"); 2104 2105 Value *CodeRegion = TheLoop->getHeader(); 2106 DebugLoc DL = TheLoop->getStartLoc(); 2107 2108 if (I) { 2109 CodeRegion = I->getParent(); 2110 // If there is no debug location attached to the instruction, revert back to 2111 // using the loop's. 2112 if (I->getDebugLoc()) 2113 DL = I->getDebugLoc(); 2114 } 2115 2116 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2117 CodeRegion); 2118 return *Report; 2119 } 2120 2121 bool LoopAccessInfo::isUniform(Value *V) const { 2122 auto *SE = PSE->getSE(); 2123 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 2124 // never considered uniform. 2125 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2126 // trivially loop-invariant FP values to be considered uniform. 2127 if (!SE->isSCEVable(V->getType())) 2128 return false; 2129 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 2130 } 2131 2132 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2133 Value *Ptr = getLoadStorePointerOperand(MemAccess); 2134 if (!Ptr) 2135 return; 2136 2137 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2138 if (!Stride) 2139 return; 2140 2141 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2142 "versioning:"); 2143 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2144 2145 // Avoid adding the "Stride == 1" predicate when we know that 2146 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2147 // or zero iteration loop, as Trip-Count <= Stride == 1. 2148 // 2149 // TODO: We are currently not making a very informed decision on when it is 2150 // beneficial to apply stride versioning. It might make more sense that the 2151 // users of this analysis (such as the vectorizer) will trigger it, based on 2152 // their specific cost considerations; For example, in cases where stride 2153 // versioning does not help resolving memory accesses/dependences, the 2154 // vectorizer should evaluate the cost of the runtime test, and the benefit 2155 // of various possible stride specializations, considering the alternatives 2156 // of using gather/scatters (if available). 2157 2158 const SCEV *StrideExpr = PSE->getSCEV(Stride); 2159 const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); 2160 2161 // Match the types so we can compare the stride and the BETakenCount. 2162 // The Stride can be positive/negative, so we sign extend Stride; 2163 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount. 2164 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2165 uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType()); 2166 uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType()); 2167 const SCEV *CastedStride = StrideExpr; 2168 const SCEV *CastedBECount = BETakenCount; 2169 ScalarEvolution *SE = PSE->getSE(); 2170 if (BETypeSize >= StrideTypeSize) 2171 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); 2172 else 2173 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); 2174 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2175 // Since TripCount == BackEdgeTakenCount + 1, checking: 2176 // "Stride >= TripCount" is equivalent to checking: 2177 // Stride - BETakenCount > 0 2178 if (SE->isKnownPositive(StrideMinusBETaken)) { 2179 LLVM_DEBUG( 2180 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2181 "Stride==1 predicate will imply that the loop executes " 2182 "at most once.\n"); 2183 return; 2184 } 2185 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version."); 2186 2187 SymbolicStrides[Ptr] = Stride; 2188 StrideSet.insert(Stride); 2189 } 2190 2191 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2192 const TargetLibraryInfo *TLI, AAResults *AA, 2193 DominatorTree *DT, LoopInfo *LI) 2194 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2195 PtrRtChecking(std::make_unique<RuntimePointerChecking>(SE)), 2196 DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), 2197 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), 2198 HasConvergentOp(false), 2199 HasDependenceInvolvingLoopInvariantAddress(false) { 2200 if (canAnalyzeLoop()) 2201 analyzeLoop(AA, LI, TLI, DT); 2202 } 2203 2204 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2205 if (CanVecMem) { 2206 OS.indent(Depth) << "Memory dependences are safe"; 2207 if (MaxSafeDepDistBytes != -1ULL) 2208 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2209 << " bytes"; 2210 if (PtrRtChecking->Need) 2211 OS << " with run-time checks"; 2212 OS << "\n"; 2213 } 2214 2215 if (HasConvergentOp) 2216 OS.indent(Depth) << "Has convergent operation in loop\n"; 2217 2218 if (Report) 2219 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2220 2221 if (auto *Dependences = DepChecker->getDependences()) { 2222 OS.indent(Depth) << "Dependences:\n"; 2223 for (auto &Dep : *Dependences) { 2224 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 2225 OS << "\n"; 2226 } 2227 } else 2228 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2229 2230 // List the pair of accesses need run-time checks to prove independence. 2231 PtrRtChecking->print(OS, Depth); 2232 OS << "\n"; 2233 2234 OS.indent(Depth) << "Non vectorizable stores to invariant address were " 2235 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") 2236 << "found in loop.\n"; 2237 2238 OS.indent(Depth) << "SCEV assumptions:\n"; 2239 PSE->getUnionPredicate().print(OS, Depth); 2240 2241 OS << "\n"; 2242 2243 OS.indent(Depth) << "Expressions re-written:\n"; 2244 PSE->print(OS, Depth); 2245 } 2246 2247 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) { 2248 initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry()); 2249 } 2250 2251 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 2252 auto &LAI = LoopAccessInfoMap[L]; 2253 2254 if (!LAI) 2255 LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 2256 2257 return *LAI.get(); 2258 } 2259 2260 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 2261 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2262 2263 for (Loop *TopLevelLoop : *LI) 2264 for (Loop *L : depth_first(TopLevelLoop)) { 2265 OS.indent(2) << L->getHeader()->getName() << ":\n"; 2266 auto &LAI = LAA.getInfo(L); 2267 LAI.print(OS, 4); 2268 } 2269 } 2270 2271 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2272 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2273 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2274 TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2275 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2276 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2277 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2278 2279 return false; 2280 } 2281 2282 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2283 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); 2284 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2285 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2286 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 2287 2288 AU.setPreservesAll(); 2289 } 2290 2291 char LoopAccessLegacyAnalysis::ID = 0; 2292 static const char laa_name[] = "Loop Access Analysis"; 2293 #define LAA_NAME "loop-accesses" 2294 2295 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2296 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2297 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2298 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2299 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2300 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2301 2302 AnalysisKey LoopAccessAnalysis::Key; 2303 2304 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, 2305 LoopStandardAnalysisResults &AR) { 2306 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); 2307 } 2308 2309 namespace llvm { 2310 2311 Pass *createLAAPass() { 2312 return new LoopAccessLegacyAnalysis(); 2313 } 2314 2315 } // end namespace llvm 2316