1 //===- Loads.cpp - Local load analysis ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines simple local analyses for load instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/Loads.h" 14 #include "llvm/Analysis/AliasAnalysis.h" 15 #include "llvm/Analysis/AssumeBundleQueries.h" 16 #include "llvm/Analysis/CaptureTracking.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/MemoryBuiltins.h" 19 #include "llvm/Analysis/MemoryLocation.h" 20 #include "llvm/Analysis/ScalarEvolution.h" 21 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/GlobalAlias.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Operator.h" 31 32 using namespace llvm; 33 34 static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment, 35 const DataLayout &DL) { 36 Align BA = Base->getPointerAlignment(DL); 37 const APInt APAlign(Offset.getBitWidth(), Alignment.value()); 38 assert(APAlign.isPowerOf2() && "must be a power of 2!"); 39 return BA >= Alignment && !(Offset & (APAlign - 1)); 40 } 41 42 /// Test if V is always a pointer to allocated and suitably aligned memory for 43 /// a simple load or store. 44 static bool isDereferenceableAndAlignedPointer( 45 const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, 46 const Instruction *CtxI, const DominatorTree *DT, 47 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited, 48 unsigned MaxDepth) { 49 assert(V->getType()->isPointerTy() && "Base must be pointer"); 50 51 // Recursion limit. 52 if (MaxDepth-- == 0) 53 return false; 54 55 // Already visited? Bail out, we've likely hit unreachable code. 56 if (!Visited.insert(V).second) 57 return false; 58 59 // Note that it is not safe to speculate into a malloc'd region because 60 // malloc may return null. 61 62 // Recurse into both hands of select. 63 if (const SelectInst *Sel = dyn_cast<SelectInst>(V)) { 64 return isDereferenceableAndAlignedPointer(Sel->getTrueValue(), Alignment, 65 Size, DL, CtxI, DT, TLI, Visited, 66 MaxDepth) && 67 isDereferenceableAndAlignedPointer(Sel->getFalseValue(), Alignment, 68 Size, DL, CtxI, DT, TLI, Visited, 69 MaxDepth); 70 } 71 72 // bitcast instructions are no-ops as far as dereferenceability is concerned. 73 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) { 74 if (BC->getSrcTy()->isPointerTy()) 75 return isDereferenceableAndAlignedPointer( 76 BC->getOperand(0), Alignment, Size, DL, CtxI, DT, TLI, 77 Visited, MaxDepth); 78 } 79 80 bool CheckForNonNull, CheckForFreed; 81 APInt KnownDerefBytes(Size.getBitWidth(), 82 V->getPointerDereferenceableBytes(DL, CheckForNonNull, 83 CheckForFreed)); 84 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) && 85 !CheckForFreed) 86 if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) { 87 // As we recursed through GEPs to get here, we've incrementally checked 88 // that each step advanced by a multiple of the alignment. If our base is 89 // properly aligned, then the original offset accessed must also be. 90 Type *Ty = V->getType(); 91 assert(Ty->isSized() && "must be sized"); 92 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0); 93 return isAligned(V, Offset, Alignment, DL); 94 } 95 96 if (CtxI) { 97 /// Look through assumes to see if both dereferencability and alignment can 98 /// be provent by an assume 99 RetainedKnowledge AlignRK; 100 RetainedKnowledge DerefRK; 101 if (getKnowledgeForValue( 102 V, {Attribute::Dereferenceable, Attribute::Alignment}, nullptr, 103 [&](RetainedKnowledge RK, Instruction *Assume, auto) { 104 if (!isValidAssumeForContext(Assume, CtxI)) 105 return false; 106 if (RK.AttrKind == Attribute::Alignment) 107 AlignRK = std::max(AlignRK, RK); 108 if (RK.AttrKind == Attribute::Dereferenceable) 109 DerefRK = std::max(DerefRK, RK); 110 if (AlignRK && DerefRK && AlignRK.ArgValue >= Alignment.value() && 111 DerefRK.ArgValue >= Size.getZExtValue()) 112 return true; // We have found what we needed so we stop looking 113 return false; // Other assumes may have better information. so 114 // keep looking 115 })) 116 return true; 117 } 118 /// TODO refactor this function to be able to search independently for 119 /// Dereferencability and Alignment requirements. 120 121 // For GEPs, determine if the indexing lands within the allocated object. 122 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 123 const Value *Base = GEP->getPointerOperand(); 124 125 APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0); 126 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() || 127 !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value())) 128 .isMinValue()) 129 return false; 130 131 // If the base pointer is dereferenceable for Offset+Size bytes, then the 132 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base 133 // pointer is aligned to Align bytes, and the Offset is divisible by Align 134 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also 135 // aligned to Align bytes. 136 137 // Offset and Size may have different bit widths if we have visited an 138 // addrspacecast, so we can't do arithmetic directly on the APInt values. 139 return isDereferenceableAndAlignedPointer( 140 Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL, 141 CtxI, DT, TLI, Visited, MaxDepth); 142 } 143 144 // For gc.relocate, look through relocations 145 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V)) 146 return isDereferenceableAndAlignedPointer(RelocateInst->getDerivedPtr(), 147 Alignment, Size, DL, CtxI, DT, 148 TLI, Visited, MaxDepth); 149 150 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V)) 151 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment, 152 Size, DL, CtxI, DT, TLI, 153 Visited, MaxDepth); 154 155 if (const auto *Call = dyn_cast<CallBase>(V)) { 156 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 157 return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI, 158 DT, TLI, Visited, MaxDepth); 159 160 // If we have a call we can't recurse through, check to see if this is an 161 // allocation function for which we can establish an minimum object size. 162 // Such a minimum object size is analogous to a deref_or_null attribute in 163 // that we still need to prove the result non-null at point of use. 164 // NOTE: We can only use the object size as a base fact as we a) need to 165 // prove alignment too, and b) don't want the compile time impact of a 166 // separate recursive walk. 167 ObjectSizeOpts Opts; 168 // TODO: It may be okay to round to align, but that would imply that 169 // accessing slightly out of bounds was legal, and we're currently 170 // inconsistent about that. For the moment, be conservative. 171 Opts.RoundToAlign = false; 172 Opts.NullIsUnknownSize = true; 173 uint64_t ObjSize; 174 if (getObjectSize(V, ObjSize, DL, TLI, Opts)) { 175 APInt KnownDerefBytes(Size.getBitWidth(), ObjSize); 176 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) && 177 isKnownNonZero(V, DL, 0, nullptr, CtxI, DT) && !V->canBeFreed()) { 178 // As we recursed through GEPs to get here, we've incrementally 179 // checked that each step advanced by a multiple of the alignment. If 180 // our base is properly aligned, then the original offset accessed 181 // must also be. 182 Type *Ty = V->getType(); 183 assert(Ty->isSized() && "must be sized"); 184 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0); 185 return isAligned(V, Offset, Alignment, DL); 186 } 187 } 188 } 189 190 // If we don't know, assume the worst. 191 return false; 192 } 193 194 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Align Alignment, 195 const APInt &Size, 196 const DataLayout &DL, 197 const Instruction *CtxI, 198 const DominatorTree *DT, 199 const TargetLibraryInfo *TLI) { 200 // Note: At the moment, Size can be zero. This ends up being interpreted as 201 // a query of whether [Base, V] is dereferenceable and V is aligned (since 202 // that's what the implementation happened to do). It's unclear if this is 203 // the desired semantic, but at least SelectionDAG does exercise this case. 204 205 SmallPtrSet<const Value *, 32> Visited; 206 return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT, 207 TLI, Visited, 16); 208 } 209 210 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, 211 MaybeAlign MA, 212 const DataLayout &DL, 213 const Instruction *CtxI, 214 const DominatorTree *DT, 215 const TargetLibraryInfo *TLI) { 216 // For unsized types or scalable vectors we don't know exactly how many bytes 217 // are dereferenced, so bail out. 218 if (!Ty->isSized() || isa<ScalableVectorType>(Ty)) 219 return false; 220 221 // When dereferenceability information is provided by a dereferenceable 222 // attribute, we know exactly how many bytes are dereferenceable. If we can 223 // determine the exact offset to the attributed variable, we can use that 224 // information here. 225 226 // Require ABI alignment for loads without alignment specification 227 const Align Alignment = DL.getValueOrABITypeAlignment(MA, Ty); 228 APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()), 229 DL.getTypeStoreSize(Ty)); 230 return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI, 231 DT, TLI); 232 } 233 234 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty, 235 const DataLayout &DL, 236 const Instruction *CtxI, 237 const DominatorTree *DT, 238 const TargetLibraryInfo *TLI) { 239 return isDereferenceableAndAlignedPointer(V, Ty, Align(1), DL, CtxI, DT, TLI); 240 } 241 242 /// Test if A and B will obviously have the same value. 243 /// 244 /// This includes recognizing that %t0 and %t1 will have the same 245 /// value in code like this: 246 /// \code 247 /// %t0 = getelementptr \@a, 0, 3 248 /// store i32 0, i32* %t0 249 /// %t1 = getelementptr \@a, 0, 3 250 /// %t2 = load i32* %t1 251 /// \endcode 252 /// 253 static bool AreEquivalentAddressValues(const Value *A, const Value *B) { 254 // Test if the values are trivially equivalent. 255 if (A == B) 256 return true; 257 258 // Test if the values come from identical arithmetic instructions. 259 // Use isIdenticalToWhenDefined instead of isIdenticalTo because 260 // this function is only used when one address use dominates the 261 // other, which means that they'll always either have the same 262 // value or one of them will have an undefined value. 263 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) || 264 isa<GetElementPtrInst>(A)) 265 if (const Instruction *BI = dyn_cast<Instruction>(B)) 266 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 267 return true; 268 269 // Otherwise they may not be equivalent. 270 return false; 271 } 272 273 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L, 274 ScalarEvolution &SE, 275 DominatorTree &DT) { 276 auto &DL = LI->getModule()->getDataLayout(); 277 Value *Ptr = LI->getPointerOperand(); 278 279 APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()), 280 DL.getTypeStoreSize(LI->getType()).getFixedSize()); 281 const Align Alignment = LI->getAlign(); 282 283 Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI(); 284 285 // If given a uniform (i.e. non-varying) address, see if we can prove the 286 // access is safe within the loop w/o needing predication. 287 if (L->isLoopInvariant(Ptr)) 288 return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL, 289 HeaderFirstNonPHI, &DT); 290 291 // Otherwise, check to see if we have a repeating access pattern where we can 292 // prove that all accesses are well aligned and dereferenceable. 293 auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr)); 294 if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine()) 295 return false; 296 auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE)); 297 if (!Step) 298 return false; 299 // TODO: generalize to access patterns which have gaps 300 if (Step->getAPInt() != EltSize) 301 return false; 302 303 auto TC = SE.getSmallConstantMaxTripCount(L); 304 if (!TC) 305 return false; 306 307 const APInt AccessSize = TC * EltSize; 308 309 auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart()); 310 if (!StartS) 311 return false; 312 assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition"); 313 Value *Base = StartS->getValue(); 314 315 // For the moment, restrict ourselves to the case where the access size is a 316 // multiple of the requested alignment and the base is aligned. 317 // TODO: generalize if a case found which warrants 318 if (EltSize.urem(Alignment.value()) != 0) 319 return false; 320 return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL, 321 HeaderFirstNonPHI, &DT); 322 } 323 324 /// Check if executing a load of this pointer value cannot trap. 325 /// 326 /// If DT and ScanFrom are specified this method performs context-sensitive 327 /// analysis and returns true if it is safe to load immediately before ScanFrom. 328 /// 329 /// If it is not obviously safe to load from the specified pointer, we do 330 /// a quick local scan of the basic block containing \c ScanFrom, to determine 331 /// if the address is already accessed. 332 /// 333 /// This uses the pointee type to determine how many bytes need to be safe to 334 /// load from the pointer. 335 bool llvm::isSafeToLoadUnconditionally(Value *V, Align Alignment, APInt &Size, 336 const DataLayout &DL, 337 Instruction *ScanFrom, 338 const DominatorTree *DT, 339 const TargetLibraryInfo *TLI) { 340 // If DT is not specified we can't make context-sensitive query 341 const Instruction* CtxI = DT ? ScanFrom : nullptr; 342 if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT, TLI)) 343 return true; 344 345 if (!ScanFrom) 346 return false; 347 348 if (Size.getBitWidth() > 64) 349 return false; 350 const uint64_t LoadSize = Size.getZExtValue(); 351 352 // Otherwise, be a little bit aggressive by scanning the local block where we 353 // want to check to see if the pointer is already being loaded or stored 354 // from/to. If so, the previous load or store would have already trapped, 355 // so there is no harm doing an extra load (also, CSE will later eliminate 356 // the load entirely). 357 BasicBlock::iterator BBI = ScanFrom->getIterator(), 358 E = ScanFrom->getParent()->begin(); 359 360 // We can at least always strip pointer casts even though we can't use the 361 // base here. 362 V = V->stripPointerCasts(); 363 364 while (BBI != E) { 365 --BBI; 366 367 // If we see a free or a call which may write to memory (i.e. which might do 368 // a free) the pointer could be marked invalid. 369 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() && 370 !isa<DbgInfoIntrinsic>(BBI)) 371 return false; 372 373 Value *AccessedPtr; 374 Type *AccessedTy; 375 Align AccessedAlign; 376 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 377 // Ignore volatile loads. The execution of a volatile load cannot 378 // be used to prove an address is backed by regular memory; it can, 379 // for example, point to an MMIO register. 380 if (LI->isVolatile()) 381 continue; 382 AccessedPtr = LI->getPointerOperand(); 383 AccessedTy = LI->getType(); 384 AccessedAlign = LI->getAlign(); 385 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 386 // Ignore volatile stores (see comment for loads). 387 if (SI->isVolatile()) 388 continue; 389 AccessedPtr = SI->getPointerOperand(); 390 AccessedTy = SI->getValueOperand()->getType(); 391 AccessedAlign = SI->getAlign(); 392 } else 393 continue; 394 395 if (AccessedAlign < Alignment) 396 continue; 397 398 // Handle trivial cases. 399 if (AccessedPtr == V && 400 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 401 return true; 402 403 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) && 404 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 405 return true; 406 } 407 return false; 408 } 409 410 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment, 411 const DataLayout &DL, 412 Instruction *ScanFrom, 413 const DominatorTree *DT, 414 const TargetLibraryInfo *TLI) { 415 APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty)); 416 return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, DT, TLI); 417 } 418 419 /// DefMaxInstsToScan - the default number of maximum instructions 420 /// to scan in the block, used by FindAvailableLoadedValue(). 421 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump 422 /// threading in part by eliminating partially redundant loads. 423 /// At that point, the value of MaxInstsToScan was already set to '6' 424 /// without documented explanation. 425 cl::opt<unsigned> 426 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden, 427 cl::desc("Use this to specify the default maximum number of instructions " 428 "to scan backward from a given instruction, when searching for " 429 "available loaded value")); 430 431 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, 432 BasicBlock *ScanBB, 433 BasicBlock::iterator &ScanFrom, 434 unsigned MaxInstsToScan, 435 AAResults *AA, bool *IsLoad, 436 unsigned *NumScanedInst) { 437 // Don't CSE load that is volatile or anything stronger than unordered. 438 if (!Load->isUnordered()) 439 return nullptr; 440 441 MemoryLocation Loc = MemoryLocation::get(Load); 442 return findAvailablePtrLoadStore(Loc, Load->getType(), Load->isAtomic(), 443 ScanBB, ScanFrom, MaxInstsToScan, AA, IsLoad, 444 NumScanedInst); 445 } 446 447 // Check if the load and the store have the same base, constant offsets and 448 // non-overlapping access ranges. 449 static bool areNonOverlapSameBaseLoadAndStore(const Value *LoadPtr, 450 Type *LoadTy, 451 const Value *StorePtr, 452 Type *StoreTy, 453 const DataLayout &DL) { 454 APInt LoadOffset(DL.getTypeSizeInBits(LoadPtr->getType()), 0); 455 APInt StoreOffset(DL.getTypeSizeInBits(StorePtr->getType()), 0); 456 const Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets( 457 DL, LoadOffset, /* AllowNonInbounds */ false); 458 const Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets( 459 DL, StoreOffset, /* AllowNonInbounds */ false); 460 if (LoadBase != StoreBase) 461 return false; 462 auto LoadAccessSize = LocationSize::precise(DL.getTypeStoreSize(LoadTy)); 463 auto StoreAccessSize = LocationSize::precise(DL.getTypeStoreSize(StoreTy)); 464 ConstantRange LoadRange(LoadOffset, 465 LoadOffset + LoadAccessSize.toRaw()); 466 ConstantRange StoreRange(StoreOffset, 467 StoreOffset + StoreAccessSize.toRaw()); 468 return LoadRange.intersectWith(StoreRange).isEmptySet(); 469 } 470 471 static Value *getAvailableLoadStore(Instruction *Inst, const Value *Ptr, 472 Type *AccessTy, bool AtLeastAtomic, 473 const DataLayout &DL, bool *IsLoadCSE) { 474 // If this is a load of Ptr, the loaded value is available. 475 // (This is true even if the load is volatile or atomic, although 476 // those cases are unlikely.) 477 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 478 // We can value forward from an atomic to a non-atomic, but not the 479 // other way around. 480 if (LI->isAtomic() < AtLeastAtomic) 481 return nullptr; 482 483 Value *LoadPtr = LI->getPointerOperand()->stripPointerCasts(); 484 if (!AreEquivalentAddressValues(LoadPtr, Ptr)) 485 return nullptr; 486 487 if (CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) { 488 if (IsLoadCSE) 489 *IsLoadCSE = true; 490 return LI; 491 } 492 } 493 494 // If this is a store through Ptr, the value is available! 495 // (This is true even if the store is volatile or atomic, although 496 // those cases are unlikely.) 497 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 498 // We can value forward from an atomic to a non-atomic, but not the 499 // other way around. 500 if (SI->isAtomic() < AtLeastAtomic) 501 return nullptr; 502 503 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); 504 if (!AreEquivalentAddressValues(StorePtr, Ptr)) 505 return nullptr; 506 507 if (IsLoadCSE) 508 *IsLoadCSE = false; 509 510 Value *Val = SI->getValueOperand(); 511 if (CastInst::isBitOrNoopPointerCastable(Val->getType(), AccessTy, DL)) 512 return Val; 513 514 if (auto *C = dyn_cast<Constant>(Val)) 515 return ConstantFoldLoadThroughBitcast(C, AccessTy, DL); 516 } 517 518 return nullptr; 519 } 520 521 Value *llvm::findAvailablePtrLoadStore( 522 const MemoryLocation &Loc, Type *AccessTy, bool AtLeastAtomic, 523 BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan, 524 AAResults *AA, bool *IsLoadCSE, unsigned *NumScanedInst) { 525 if (MaxInstsToScan == 0) 526 MaxInstsToScan = ~0U; 527 528 const DataLayout &DL = ScanBB->getModule()->getDataLayout(); 529 const Value *StrippedPtr = Loc.Ptr->stripPointerCasts(); 530 531 while (ScanFrom != ScanBB->begin()) { 532 // We must ignore debug info directives when counting (otherwise they 533 // would affect codegen). 534 Instruction *Inst = &*--ScanFrom; 535 if (Inst->isDebugOrPseudoInst()) 536 continue; 537 538 // Restore ScanFrom to expected value in case next test succeeds 539 ScanFrom++; 540 541 if (NumScanedInst) 542 ++(*NumScanedInst); 543 544 // Don't scan huge blocks. 545 if (MaxInstsToScan-- == 0) 546 return nullptr; 547 548 --ScanFrom; 549 550 if (Value *Available = getAvailableLoadStore(Inst, StrippedPtr, AccessTy, 551 AtLeastAtomic, DL, IsLoadCSE)) 552 return Available; 553 554 // Try to get the store size for the type. 555 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 556 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); 557 558 // If both StrippedPtr and StorePtr reach all the way to an alloca or 559 // global and they are different, ignore the store. This is a trivial form 560 // of alias analysis that is important for reg2mem'd code. 561 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) && 562 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) && 563 StrippedPtr != StorePtr) 564 continue; 565 566 if (!AA) { 567 // When AA isn't available, but if the load and the store have the same 568 // base, constant offsets and non-overlapping access ranges, ignore the 569 // store. This is a simple form of alias analysis that is used by the 570 // inliner. FIXME: use BasicAA if possible. 571 if (areNonOverlapSameBaseLoadAndStore( 572 Loc.Ptr, AccessTy, SI->getPointerOperand(), 573 SI->getValueOperand()->getType(), DL)) 574 continue; 575 } else { 576 // If we have alias analysis and it says the store won't modify the 577 // loaded value, ignore the store. 578 if (!isModSet(AA->getModRefInfo(SI, Loc))) 579 continue; 580 } 581 582 // Otherwise the store that may or may not alias the pointer, bail out. 583 ++ScanFrom; 584 return nullptr; 585 } 586 587 // If this is some other instruction that may clobber Ptr, bail out. 588 if (Inst->mayWriteToMemory()) { 589 // If alias analysis claims that it really won't modify the load, 590 // ignore it. 591 if (AA && !isModSet(AA->getModRefInfo(Inst, Loc))) 592 continue; 593 594 // May modify the pointer, bail out. 595 ++ScanFrom; 596 return nullptr; 597 } 598 } 599 600 // Got to the start of the block, we didn't find it, but are done for this 601 // block. 602 return nullptr; 603 } 604 605 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, AAResults &AA, 606 bool *IsLoadCSE, 607 unsigned MaxInstsToScan) { 608 const DataLayout &DL = Load->getModule()->getDataLayout(); 609 Value *StrippedPtr = Load->getPointerOperand()->stripPointerCasts(); 610 BasicBlock *ScanBB = Load->getParent(); 611 Type *AccessTy = Load->getType(); 612 bool AtLeastAtomic = Load->isAtomic(); 613 614 if (!Load->isUnordered()) 615 return nullptr; 616 617 // Try to find an available value first, and delay expensive alias analysis 618 // queries until later. 619 Value *Available = nullptr;; 620 SmallVector<Instruction *> MustNotAliasInsts; 621 for (Instruction &Inst : make_range(++Load->getReverseIterator(), 622 ScanBB->rend())) { 623 if (Inst.isDebugOrPseudoInst()) 624 continue; 625 626 if (MaxInstsToScan-- == 0) 627 return nullptr; 628 629 Available = getAvailableLoadStore(&Inst, StrippedPtr, AccessTy, 630 AtLeastAtomic, DL, IsLoadCSE); 631 if (Available) 632 break; 633 634 if (Inst.mayWriteToMemory()) 635 MustNotAliasInsts.push_back(&Inst); 636 } 637 638 // If we found an available value, ensure that the instructions in between 639 // did not modify the memory location. 640 if (Available) { 641 MemoryLocation Loc = MemoryLocation::get(Load); 642 for (Instruction *Inst : MustNotAliasInsts) 643 if (isModSet(AA.getModRefInfo(Inst, Loc))) 644 return nullptr; 645 } 646 647 return Available; 648 } 649 650 bool llvm::canReplacePointersIfEqual(Value *A, Value *B, const DataLayout &DL, 651 Instruction *CtxI) { 652 Type *Ty = A->getType(); 653 assert(Ty == B->getType() && Ty->isPointerTy() && 654 "values must have matching pointer types"); 655 656 // NOTE: The checks in the function are incomplete and currently miss illegal 657 // cases! The current implementation is a starting point and the 658 // implementation should be made stricter over time. 659 if (auto *C = dyn_cast<Constant>(B)) { 660 // Do not allow replacing a pointer with a constant pointer, unless it is 661 // either null or at least one byte is dereferenceable. 662 APInt OneByte(DL.getPointerTypeSizeInBits(Ty), 1); 663 return C->isNullValue() || 664 isDereferenceableAndAlignedPointer(B, Align(1), OneByte, DL, CtxI); 665 } 666 667 return true; 668 } 669