1 //===- Loads.cpp - Local load analysis ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines simple local analyses for load instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/Loads.h" 14 #include "llvm/Analysis/AliasAnalysis.h" 15 #include "llvm/Analysis/AssumeBundleQueries.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/MemoryBuiltins.h" 18 #include "llvm/Analysis/MemoryLocation.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 27 using namespace llvm; 28 29 static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment, 30 const DataLayout &DL) { 31 Align BA = Base->getPointerAlignment(DL); 32 const APInt APAlign(Offset.getBitWidth(), Alignment.value()); 33 assert(APAlign.isPowerOf2() && "must be a power of 2!"); 34 return BA >= Alignment && !(Offset & (APAlign - 1)); 35 } 36 37 /// Test if V is always a pointer to allocated and suitably aligned memory for 38 /// a simple load or store. 39 static bool isDereferenceableAndAlignedPointer( 40 const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, 41 const Instruction *CtxI, const DominatorTree *DT, 42 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited, 43 unsigned MaxDepth) { 44 assert(V->getType()->isPointerTy() && "Base must be pointer"); 45 46 // Recursion limit. 47 if (MaxDepth-- == 0) 48 return false; 49 50 // Already visited? Bail out, we've likely hit unreachable code. 51 if (!Visited.insert(V).second) 52 return false; 53 54 // Note that it is not safe to speculate into a malloc'd region because 55 // malloc may return null. 56 57 // Recurse into both hands of select. 58 if (const SelectInst *Sel = dyn_cast<SelectInst>(V)) { 59 return isDereferenceableAndAlignedPointer(Sel->getTrueValue(), Alignment, 60 Size, DL, CtxI, DT, TLI, Visited, 61 MaxDepth) && 62 isDereferenceableAndAlignedPointer(Sel->getFalseValue(), Alignment, 63 Size, DL, CtxI, DT, TLI, Visited, 64 MaxDepth); 65 } 66 67 // bitcast instructions are no-ops as far as dereferenceability is concerned. 68 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) { 69 if (BC->getSrcTy()->isPointerTy()) 70 return isDereferenceableAndAlignedPointer( 71 BC->getOperand(0), Alignment, Size, DL, CtxI, DT, TLI, 72 Visited, MaxDepth); 73 } 74 75 bool CheckForNonNull, CheckForFreed; 76 APInt KnownDerefBytes(Size.getBitWidth(), 77 V->getPointerDereferenceableBytes(DL, CheckForNonNull, 78 CheckForFreed)); 79 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) && 80 !CheckForFreed) 81 if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) { 82 // As we recursed through GEPs to get here, we've incrementally checked 83 // that each step advanced by a multiple of the alignment. If our base is 84 // properly aligned, then the original offset accessed must also be. 85 Type *Ty = V->getType(); 86 assert(Ty->isSized() && "must be sized"); 87 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0); 88 return isAligned(V, Offset, Alignment, DL); 89 } 90 91 if (CtxI) { 92 /// Look through assumes to see if both dereferencability and alignment can 93 /// be provent by an assume 94 RetainedKnowledge AlignRK; 95 RetainedKnowledge DerefRK; 96 if (getKnowledgeForValue( 97 V, {Attribute::Dereferenceable, Attribute::Alignment}, nullptr, 98 [&](RetainedKnowledge RK, Instruction *Assume, auto) { 99 if (!isValidAssumeForContext(Assume, CtxI)) 100 return false; 101 if (RK.AttrKind == Attribute::Alignment) 102 AlignRK = std::max(AlignRK, RK); 103 if (RK.AttrKind == Attribute::Dereferenceable) 104 DerefRK = std::max(DerefRK, RK); 105 if (AlignRK && DerefRK && AlignRK.ArgValue >= Alignment.value() && 106 DerefRK.ArgValue >= Size.getZExtValue()) 107 return true; // We have found what we needed so we stop looking 108 return false; // Other assumes may have better information. so 109 // keep looking 110 })) 111 return true; 112 } 113 /// TODO refactor this function to be able to search independently for 114 /// Dereferencability and Alignment requirements. 115 116 // For GEPs, determine if the indexing lands within the allocated object. 117 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 118 const Value *Base = GEP->getPointerOperand(); 119 120 APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0); 121 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() || 122 !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value())) 123 .isMinValue()) 124 return false; 125 126 // If the base pointer is dereferenceable for Offset+Size bytes, then the 127 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base 128 // pointer is aligned to Align bytes, and the Offset is divisible by Align 129 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also 130 // aligned to Align bytes. 131 132 // Offset and Size may have different bit widths if we have visited an 133 // addrspacecast, so we can't do arithmetic directly on the APInt values. 134 return isDereferenceableAndAlignedPointer( 135 Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL, 136 CtxI, DT, TLI, Visited, MaxDepth); 137 } 138 139 // For gc.relocate, look through relocations 140 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V)) 141 return isDereferenceableAndAlignedPointer(RelocateInst->getDerivedPtr(), 142 Alignment, Size, DL, CtxI, DT, 143 TLI, Visited, MaxDepth); 144 145 if (const AddrSpaceCastOperator *ASC = dyn_cast<AddrSpaceCastOperator>(V)) 146 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment, 147 Size, DL, CtxI, DT, TLI, 148 Visited, MaxDepth); 149 150 if (const auto *Call = dyn_cast<CallBase>(V)) { 151 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 152 return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI, 153 DT, TLI, Visited, MaxDepth); 154 155 // If we have a call we can't recurse through, check to see if this is an 156 // allocation function for which we can establish an minimum object size. 157 // Such a minimum object size is analogous to a deref_or_null attribute in 158 // that we still need to prove the result non-null at point of use. 159 // NOTE: We can only use the object size as a base fact as we a) need to 160 // prove alignment too, and b) don't want the compile time impact of a 161 // separate recursive walk. 162 ObjectSizeOpts Opts; 163 // TODO: It may be okay to round to align, but that would imply that 164 // accessing slightly out of bounds was legal, and we're currently 165 // inconsistent about that. For the moment, be conservative. 166 Opts.RoundToAlign = false; 167 Opts.NullIsUnknownSize = true; 168 uint64_t ObjSize; 169 if (getObjectSize(V, ObjSize, DL, TLI, Opts)) { 170 APInt KnownDerefBytes(Size.getBitWidth(), ObjSize); 171 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) && 172 isKnownNonZero(V, DL, 0, nullptr, CtxI, DT) && !V->canBeFreed()) { 173 // As we recursed through GEPs to get here, we've incrementally 174 // checked that each step advanced by a multiple of the alignment. If 175 // our base is properly aligned, then the original offset accessed 176 // must also be. 177 Type *Ty = V->getType(); 178 assert(Ty->isSized() && "must be sized"); 179 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0); 180 return isAligned(V, Offset, Alignment, DL); 181 } 182 } 183 } 184 185 // If we don't know, assume the worst. 186 return false; 187 } 188 189 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Align Alignment, 190 const APInt &Size, 191 const DataLayout &DL, 192 const Instruction *CtxI, 193 const DominatorTree *DT, 194 const TargetLibraryInfo *TLI) { 195 // Note: At the moment, Size can be zero. This ends up being interpreted as 196 // a query of whether [Base, V] is dereferenceable and V is aligned (since 197 // that's what the implementation happened to do). It's unclear if this is 198 // the desired semantic, but at least SelectionDAG does exercise this case. 199 200 SmallPtrSet<const Value *, 32> Visited; 201 return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT, 202 TLI, Visited, 16); 203 } 204 205 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, 206 Align Alignment, 207 const DataLayout &DL, 208 const Instruction *CtxI, 209 const DominatorTree *DT, 210 const TargetLibraryInfo *TLI) { 211 // For unsized types or scalable vectors we don't know exactly how many bytes 212 // are dereferenced, so bail out. 213 if (!Ty->isSized() || isa<ScalableVectorType>(Ty)) 214 return false; 215 216 // When dereferenceability information is provided by a dereferenceable 217 // attribute, we know exactly how many bytes are dereferenceable. If we can 218 // determine the exact offset to the attributed variable, we can use that 219 // information here. 220 221 APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()), 222 DL.getTypeStoreSize(Ty)); 223 return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI, 224 DT, TLI); 225 } 226 227 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty, 228 const DataLayout &DL, 229 const Instruction *CtxI, 230 const DominatorTree *DT, 231 const TargetLibraryInfo *TLI) { 232 return isDereferenceableAndAlignedPointer(V, Ty, Align(1), DL, CtxI, DT, TLI); 233 } 234 235 /// Test if A and B will obviously have the same value. 236 /// 237 /// This includes recognizing that %t0 and %t1 will have the same 238 /// value in code like this: 239 /// \code 240 /// %t0 = getelementptr \@a, 0, 3 241 /// store i32 0, i32* %t0 242 /// %t1 = getelementptr \@a, 0, 3 243 /// %t2 = load i32* %t1 244 /// \endcode 245 /// 246 static bool AreEquivalentAddressValues(const Value *A, const Value *B) { 247 // Test if the values are trivially equivalent. 248 if (A == B) 249 return true; 250 251 // Test if the values come from identical arithmetic instructions. 252 // Use isIdenticalToWhenDefined instead of isIdenticalTo because 253 // this function is only used when one address use dominates the 254 // other, which means that they'll always either have the same 255 // value or one of them will have an undefined value. 256 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) || 257 isa<GetElementPtrInst>(A)) 258 if (const Instruction *BI = dyn_cast<Instruction>(B)) 259 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 260 return true; 261 262 // Otherwise they may not be equivalent. 263 return false; 264 } 265 266 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L, 267 ScalarEvolution &SE, 268 DominatorTree &DT) { 269 auto &DL = LI->getModule()->getDataLayout(); 270 Value *Ptr = LI->getPointerOperand(); 271 272 APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()), 273 DL.getTypeStoreSize(LI->getType()).getFixedSize()); 274 const Align Alignment = LI->getAlign(); 275 276 Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI(); 277 278 // If given a uniform (i.e. non-varying) address, see if we can prove the 279 // access is safe within the loop w/o needing predication. 280 if (L->isLoopInvariant(Ptr)) 281 return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL, 282 HeaderFirstNonPHI, &DT); 283 284 // Otherwise, check to see if we have a repeating access pattern where we can 285 // prove that all accesses are well aligned and dereferenceable. 286 auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr)); 287 if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine()) 288 return false; 289 auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE)); 290 if (!Step) 291 return false; 292 // TODO: generalize to access patterns which have gaps 293 if (Step->getAPInt() != EltSize) 294 return false; 295 296 auto TC = SE.getSmallConstantMaxTripCount(L); 297 if (!TC) 298 return false; 299 300 const APInt AccessSize = TC * EltSize; 301 302 auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart()); 303 if (!StartS) 304 return false; 305 assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition"); 306 Value *Base = StartS->getValue(); 307 308 // For the moment, restrict ourselves to the case where the access size is a 309 // multiple of the requested alignment and the base is aligned. 310 // TODO: generalize if a case found which warrants 311 if (EltSize.urem(Alignment.value()) != 0) 312 return false; 313 return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL, 314 HeaderFirstNonPHI, &DT); 315 } 316 317 /// Check if executing a load of this pointer value cannot trap. 318 /// 319 /// If DT and ScanFrom are specified this method performs context-sensitive 320 /// analysis and returns true if it is safe to load immediately before ScanFrom. 321 /// 322 /// If it is not obviously safe to load from the specified pointer, we do 323 /// a quick local scan of the basic block containing \c ScanFrom, to determine 324 /// if the address is already accessed. 325 /// 326 /// This uses the pointee type to determine how many bytes need to be safe to 327 /// load from the pointer. 328 bool llvm::isSafeToLoadUnconditionally(Value *V, Align Alignment, APInt &Size, 329 const DataLayout &DL, 330 Instruction *ScanFrom, 331 const DominatorTree *DT, 332 const TargetLibraryInfo *TLI) { 333 // If DT is not specified we can't make context-sensitive query 334 const Instruction* CtxI = DT ? ScanFrom : nullptr; 335 if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT, TLI)) 336 return true; 337 338 if (!ScanFrom) 339 return false; 340 341 if (Size.getBitWidth() > 64) 342 return false; 343 const uint64_t LoadSize = Size.getZExtValue(); 344 345 // Otherwise, be a little bit aggressive by scanning the local block where we 346 // want to check to see if the pointer is already being loaded or stored 347 // from/to. If so, the previous load or store would have already trapped, 348 // so there is no harm doing an extra load (also, CSE will later eliminate 349 // the load entirely). 350 BasicBlock::iterator BBI = ScanFrom->getIterator(), 351 E = ScanFrom->getParent()->begin(); 352 353 // We can at least always strip pointer casts even though we can't use the 354 // base here. 355 V = V->stripPointerCasts(); 356 357 while (BBI != E) { 358 --BBI; 359 360 // If we see a free or a call which may write to memory (i.e. which might do 361 // a free) the pointer could be marked invalid. 362 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() && 363 !isa<DbgInfoIntrinsic>(BBI)) 364 return false; 365 366 Value *AccessedPtr; 367 Type *AccessedTy; 368 Align AccessedAlign; 369 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 370 // Ignore volatile loads. The execution of a volatile load cannot 371 // be used to prove an address is backed by regular memory; it can, 372 // for example, point to an MMIO register. 373 if (LI->isVolatile()) 374 continue; 375 AccessedPtr = LI->getPointerOperand(); 376 AccessedTy = LI->getType(); 377 AccessedAlign = LI->getAlign(); 378 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 379 // Ignore volatile stores (see comment for loads). 380 if (SI->isVolatile()) 381 continue; 382 AccessedPtr = SI->getPointerOperand(); 383 AccessedTy = SI->getValueOperand()->getType(); 384 AccessedAlign = SI->getAlign(); 385 } else 386 continue; 387 388 if (AccessedAlign < Alignment) 389 continue; 390 391 // Handle trivial cases. 392 if (AccessedPtr == V && 393 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 394 return true; 395 396 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) && 397 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 398 return true; 399 } 400 return false; 401 } 402 403 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment, 404 const DataLayout &DL, 405 Instruction *ScanFrom, 406 const DominatorTree *DT, 407 const TargetLibraryInfo *TLI) { 408 TypeSize TySize = DL.getTypeStoreSize(Ty); 409 if (TySize.isScalable()) 410 return false; 411 APInt Size(DL.getIndexTypeSizeInBits(V->getType()), TySize.getFixedValue()); 412 return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, DT, TLI); 413 } 414 415 /// DefMaxInstsToScan - the default number of maximum instructions 416 /// to scan in the block, used by FindAvailableLoadedValue(). 417 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump 418 /// threading in part by eliminating partially redundant loads. 419 /// At that point, the value of MaxInstsToScan was already set to '6' 420 /// without documented explanation. 421 cl::opt<unsigned> 422 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden, 423 cl::desc("Use this to specify the default maximum number of instructions " 424 "to scan backward from a given instruction, when searching for " 425 "available loaded value")); 426 427 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, 428 BasicBlock *ScanBB, 429 BasicBlock::iterator &ScanFrom, 430 unsigned MaxInstsToScan, 431 AAResults *AA, bool *IsLoad, 432 unsigned *NumScanedInst) { 433 // Don't CSE load that is volatile or anything stronger than unordered. 434 if (!Load->isUnordered()) 435 return nullptr; 436 437 MemoryLocation Loc = MemoryLocation::get(Load); 438 return findAvailablePtrLoadStore(Loc, Load->getType(), Load->isAtomic(), 439 ScanBB, ScanFrom, MaxInstsToScan, AA, IsLoad, 440 NumScanedInst); 441 } 442 443 // Check if the load and the store have the same base, constant offsets and 444 // non-overlapping access ranges. 445 static bool areNonOverlapSameBaseLoadAndStore(const Value *LoadPtr, 446 Type *LoadTy, 447 const Value *StorePtr, 448 Type *StoreTy, 449 const DataLayout &DL) { 450 APInt LoadOffset(DL.getIndexTypeSizeInBits(LoadPtr->getType()), 0); 451 APInt StoreOffset(DL.getIndexTypeSizeInBits(StorePtr->getType()), 0); 452 const Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets( 453 DL, LoadOffset, /* AllowNonInbounds */ false); 454 const Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets( 455 DL, StoreOffset, /* AllowNonInbounds */ false); 456 if (LoadBase != StoreBase) 457 return false; 458 auto LoadAccessSize = LocationSize::precise(DL.getTypeStoreSize(LoadTy)); 459 auto StoreAccessSize = LocationSize::precise(DL.getTypeStoreSize(StoreTy)); 460 ConstantRange LoadRange(LoadOffset, 461 LoadOffset + LoadAccessSize.toRaw()); 462 ConstantRange StoreRange(StoreOffset, 463 StoreOffset + StoreAccessSize.toRaw()); 464 return LoadRange.intersectWith(StoreRange).isEmptySet(); 465 } 466 467 static Value *getAvailableLoadStore(Instruction *Inst, const Value *Ptr, 468 Type *AccessTy, bool AtLeastAtomic, 469 const DataLayout &DL, bool *IsLoadCSE) { 470 // If this is a load of Ptr, the loaded value is available. 471 // (This is true even if the load is volatile or atomic, although 472 // those cases are unlikely.) 473 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 474 // We can value forward from an atomic to a non-atomic, but not the 475 // other way around. 476 if (LI->isAtomic() < AtLeastAtomic) 477 return nullptr; 478 479 Value *LoadPtr = LI->getPointerOperand()->stripPointerCasts(); 480 if (!AreEquivalentAddressValues(LoadPtr, Ptr)) 481 return nullptr; 482 483 if (CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) { 484 if (IsLoadCSE) 485 *IsLoadCSE = true; 486 return LI; 487 } 488 } 489 490 // If this is a store through Ptr, the value is available! 491 // (This is true even if the store is volatile or atomic, although 492 // those cases are unlikely.) 493 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 494 // We can value forward from an atomic to a non-atomic, but not the 495 // other way around. 496 if (SI->isAtomic() < AtLeastAtomic) 497 return nullptr; 498 499 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); 500 if (!AreEquivalentAddressValues(StorePtr, Ptr)) 501 return nullptr; 502 503 if (IsLoadCSE) 504 *IsLoadCSE = false; 505 506 Value *Val = SI->getValueOperand(); 507 if (CastInst::isBitOrNoopPointerCastable(Val->getType(), AccessTy, DL)) 508 return Val; 509 510 TypeSize StoreSize = DL.getTypeSizeInBits(Val->getType()); 511 TypeSize LoadSize = DL.getTypeSizeInBits(AccessTy); 512 if (TypeSize::isKnownLE(LoadSize, StoreSize)) 513 if (auto *C = dyn_cast<Constant>(Val)) 514 return ConstantFoldLoadFromConst(C, AccessTy, DL); 515 } 516 517 return nullptr; 518 } 519 520 Value *llvm::findAvailablePtrLoadStore( 521 const MemoryLocation &Loc, Type *AccessTy, bool AtLeastAtomic, 522 BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan, 523 AAResults *AA, bool *IsLoadCSE, unsigned *NumScanedInst) { 524 if (MaxInstsToScan == 0) 525 MaxInstsToScan = ~0U; 526 527 const DataLayout &DL = ScanBB->getModule()->getDataLayout(); 528 const Value *StrippedPtr = Loc.Ptr->stripPointerCasts(); 529 530 while (ScanFrom != ScanBB->begin()) { 531 // We must ignore debug info directives when counting (otherwise they 532 // would affect codegen). 533 Instruction *Inst = &*--ScanFrom; 534 if (Inst->isDebugOrPseudoInst()) 535 continue; 536 537 // Restore ScanFrom to expected value in case next test succeeds 538 ScanFrom++; 539 540 if (NumScanedInst) 541 ++(*NumScanedInst); 542 543 // Don't scan huge blocks. 544 if (MaxInstsToScan-- == 0) 545 return nullptr; 546 547 --ScanFrom; 548 549 if (Value *Available = getAvailableLoadStore(Inst, StrippedPtr, AccessTy, 550 AtLeastAtomic, DL, IsLoadCSE)) 551 return Available; 552 553 // Try to get the store size for the type. 554 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 555 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); 556 557 // If both StrippedPtr and StorePtr reach all the way to an alloca or 558 // global and they are different, ignore the store. This is a trivial form 559 // of alias analysis that is important for reg2mem'd code. 560 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) && 561 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) && 562 StrippedPtr != StorePtr) 563 continue; 564 565 if (!AA) { 566 // When AA isn't available, but if the load and the store have the same 567 // base, constant offsets and non-overlapping access ranges, ignore the 568 // store. This is a simple form of alias analysis that is used by the 569 // inliner. FIXME: use BasicAA if possible. 570 if (areNonOverlapSameBaseLoadAndStore( 571 Loc.Ptr, AccessTy, SI->getPointerOperand(), 572 SI->getValueOperand()->getType(), DL)) 573 continue; 574 } else { 575 // If we have alias analysis and it says the store won't modify the 576 // loaded value, ignore the store. 577 if (!isModSet(AA->getModRefInfo(SI, Loc))) 578 continue; 579 } 580 581 // Otherwise the store that may or may not alias the pointer, bail out. 582 ++ScanFrom; 583 return nullptr; 584 } 585 586 // If this is some other instruction that may clobber Ptr, bail out. 587 if (Inst->mayWriteToMemory()) { 588 // If alias analysis claims that it really won't modify the load, 589 // ignore it. 590 if (AA && !isModSet(AA->getModRefInfo(Inst, Loc))) 591 continue; 592 593 // May modify the pointer, bail out. 594 ++ScanFrom; 595 return nullptr; 596 } 597 } 598 599 // Got to the start of the block, we didn't find it, but are done for this 600 // block. 601 return nullptr; 602 } 603 604 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, AAResults &AA, 605 bool *IsLoadCSE, 606 unsigned MaxInstsToScan) { 607 const DataLayout &DL = Load->getModule()->getDataLayout(); 608 Value *StrippedPtr = Load->getPointerOperand()->stripPointerCasts(); 609 BasicBlock *ScanBB = Load->getParent(); 610 Type *AccessTy = Load->getType(); 611 bool AtLeastAtomic = Load->isAtomic(); 612 613 if (!Load->isUnordered()) 614 return nullptr; 615 616 // Try to find an available value first, and delay expensive alias analysis 617 // queries until later. 618 Value *Available = nullptr;; 619 SmallVector<Instruction *> MustNotAliasInsts; 620 for (Instruction &Inst : make_range(++Load->getReverseIterator(), 621 ScanBB->rend())) { 622 if (Inst.isDebugOrPseudoInst()) 623 continue; 624 625 if (MaxInstsToScan-- == 0) 626 return nullptr; 627 628 Available = getAvailableLoadStore(&Inst, StrippedPtr, AccessTy, 629 AtLeastAtomic, DL, IsLoadCSE); 630 if (Available) 631 break; 632 633 if (Inst.mayWriteToMemory()) 634 MustNotAliasInsts.push_back(&Inst); 635 } 636 637 // If we found an available value, ensure that the instructions in between 638 // did not modify the memory location. 639 if (Available) { 640 MemoryLocation Loc = MemoryLocation::get(Load); 641 for (Instruction *Inst : MustNotAliasInsts) 642 if (isModSet(AA.getModRefInfo(Inst, Loc))) 643 return nullptr; 644 } 645 646 return Available; 647 } 648 649 bool llvm::canReplacePointersIfEqual(Value *A, Value *B, const DataLayout &DL, 650 Instruction *CtxI) { 651 Type *Ty = A->getType(); 652 assert(Ty == B->getType() && Ty->isPointerTy() && 653 "values must have matching pointer types"); 654 655 // NOTE: The checks in the function are incomplete and currently miss illegal 656 // cases! The current implementation is a starting point and the 657 // implementation should be made stricter over time. 658 if (auto *C = dyn_cast<Constant>(B)) { 659 // Do not allow replacing a pointer with a constant pointer, unless it is 660 // either null or at least one byte is dereferenceable. 661 APInt OneByte(DL.getPointerTypeSizeInBits(Ty), 1); 662 return C->isNullValue() || 663 isDereferenceableAndAlignedPointer(B, Align(1), OneByte, DL, CtxI); 664 } 665 666 return true; 667 } 668