1 //===- Loads.cpp - Local load analysis ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines simple local analyses for load instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/Loads.h" 14 #include "llvm/Analysis/AliasAnalysis.h" 15 #include "llvm/Analysis/LoopInfo.h" 16 #include "llvm/Analysis/ScalarEvolution.h" 17 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/GlobalAlias.h" 21 #include "llvm/IR/GlobalVariable.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/Statepoint.h" 27 28 using namespace llvm; 29 30 static MaybeAlign getBaseAlign(const Value *Base, const DataLayout &DL) { 31 if (const MaybeAlign PA = Base->getPointerAlignment(DL)) 32 return *PA; 33 Type *const Ty = Base->getType()->getPointerElementType(); 34 if (!Ty->isSized()) 35 return None; 36 return Align(DL.getABITypeAlignment(Ty)); 37 } 38 39 static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment, 40 const DataLayout &DL) { 41 if (MaybeAlign BA = getBaseAlign(Base, DL)) { 42 const APInt APBaseAlign(Offset.getBitWidth(), BA->value()); 43 const APInt APAlign(Offset.getBitWidth(), Alignment.value()); 44 assert(APAlign.isPowerOf2() && "must be a power of 2!"); 45 return APBaseAlign.uge(APAlign) && !(Offset & (APAlign - 1)); 46 } 47 return false; 48 } 49 50 /// Test if V is always a pointer to allocated and suitably aligned memory for 51 /// a simple load or store. 52 static bool isDereferenceableAndAlignedPointer( 53 const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, 54 const Instruction *CtxI, const DominatorTree *DT, 55 SmallPtrSetImpl<const Value *> &Visited) { 56 // Already visited? Bail out, we've likely hit unreachable code. 57 if (!Visited.insert(V).second) 58 return false; 59 60 // Note that it is not safe to speculate into a malloc'd region because 61 // malloc may return null. 62 63 // bitcast instructions are no-ops as far as dereferenceability is concerned. 64 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) 65 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Alignment, 66 Size, DL, CtxI, DT, Visited); 67 68 bool CheckForNonNull = false; 69 APInt KnownDerefBytes(Size.getBitWidth(), 70 V->getPointerDereferenceableBytes(DL, CheckForNonNull)); 71 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size)) 72 if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) { 73 // As we recursed through GEPs to get here, we've incrementally checked 74 // that each step advanced by a multiple of the alignment. If our base is 75 // properly aligned, then the original offset accessed must also be. 76 Type *Ty = V->getType(); 77 assert(Ty->isSized() && "must be sized"); 78 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0); 79 return isAligned(V, Offset, Alignment, DL); 80 } 81 82 // For GEPs, determine if the indexing lands within the allocated object. 83 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 84 const Value *Base = GEP->getPointerOperand(); 85 86 APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0); 87 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() || 88 !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value())) 89 .isMinValue()) 90 return false; 91 92 // If the base pointer is dereferenceable for Offset+Size bytes, then the 93 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base 94 // pointer is aligned to Align bytes, and the Offset is divisible by Align 95 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also 96 // aligned to Align bytes. 97 98 // Offset and Size may have different bit widths if we have visited an 99 // addrspacecast, so we can't do arithmetic directly on the APInt values. 100 return isDereferenceableAndAlignedPointer( 101 Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL, 102 CtxI, DT, Visited); 103 } 104 105 // For gc.relocate, look through relocations 106 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V)) 107 return isDereferenceableAndAlignedPointer( 108 RelocateInst->getDerivedPtr(), Alignment, Size, DL, CtxI, DT, Visited); 109 110 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V)) 111 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment, 112 Size, DL, CtxI, DT, Visited); 113 114 if (const auto *Call = dyn_cast<CallBase>(V)) 115 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 116 return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI, 117 DT, Visited); 118 119 // If we don't know, assume the worst. 120 return false; 121 } 122 123 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Align Alignment, 124 const APInt &Size, 125 const DataLayout &DL, 126 const Instruction *CtxI, 127 const DominatorTree *DT) { 128 // Note: At the moment, Size can be zero. This ends up being interpreted as 129 // a query of whether [Base, V] is dereferenceable and V is aligned (since 130 // that's what the implementation happened to do). It's unclear if this is 131 // the desired semantic, but at least SelectionDAG does exercise this case. 132 133 SmallPtrSet<const Value *, 32> Visited; 134 return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT, 135 Visited); 136 } 137 138 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, 139 MaybeAlign MA, 140 const DataLayout &DL, 141 const Instruction *CtxI, 142 const DominatorTree *DT) { 143 if (!Ty->isSized()) 144 return false; 145 146 // When dereferenceability information is provided by a dereferenceable 147 // attribute, we know exactly how many bytes are dereferenceable. If we can 148 // determine the exact offset to the attributed variable, we can use that 149 // information here. 150 151 // Require ABI alignment for loads without alignment specification 152 const Align Alignment = DL.getValueOrABITypeAlignment(MA, Ty); 153 APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()), 154 DL.getTypeStoreSize(Ty)); 155 return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI, 156 DT); 157 } 158 159 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty, 160 const DataLayout &DL, 161 const Instruction *CtxI, 162 const DominatorTree *DT) { 163 return isDereferenceableAndAlignedPointer(V, Ty, Align::None(), DL, CtxI, DT); 164 } 165 166 /// Test if A and B will obviously have the same value. 167 /// 168 /// This includes recognizing that %t0 and %t1 will have the same 169 /// value in code like this: 170 /// \code 171 /// %t0 = getelementptr \@a, 0, 3 172 /// store i32 0, i32* %t0 173 /// %t1 = getelementptr \@a, 0, 3 174 /// %t2 = load i32* %t1 175 /// \endcode 176 /// 177 static bool AreEquivalentAddressValues(const Value *A, const Value *B) { 178 // Test if the values are trivially equivalent. 179 if (A == B) 180 return true; 181 182 // Test if the values come from identical arithmetic instructions. 183 // Use isIdenticalToWhenDefined instead of isIdenticalTo because 184 // this function is only used when one address use dominates the 185 // other, which means that they'll always either have the same 186 // value or one of them will have an undefined value. 187 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) || 188 isa<GetElementPtrInst>(A)) 189 if (const Instruction *BI = dyn_cast<Instruction>(B)) 190 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 191 return true; 192 193 // Otherwise they may not be equivalent. 194 return false; 195 } 196 197 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L, 198 ScalarEvolution &SE, 199 DominatorTree &DT) { 200 auto &DL = LI->getModule()->getDataLayout(); 201 Value *Ptr = LI->getPointerOperand(); 202 203 APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()), 204 DL.getTypeStoreSize(LI->getType())); 205 const Align Alignment = DL.getValueOrABITypeAlignment( 206 MaybeAlign(LI->getAlignment()), LI->getType()); 207 208 Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI(); 209 210 // If given a uniform (i.e. non-varying) address, see if we can prove the 211 // access is safe within the loop w/o needing predication. 212 if (L->isLoopInvariant(Ptr)) 213 return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL, 214 HeaderFirstNonPHI, &DT); 215 216 // Otherwise, check to see if we have a repeating access pattern where we can 217 // prove that all accesses are well aligned and dereferenceable. 218 auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr)); 219 if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine()) 220 return false; 221 auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE)); 222 if (!Step) 223 return false; 224 // TODO: generalize to access patterns which have gaps 225 if (Step->getAPInt() != EltSize) 226 return false; 227 228 // TODO: If the symbolic trip count has a small bound (max count), we might 229 // be able to prove safety. 230 auto TC = SE.getSmallConstantTripCount(L); 231 if (!TC) 232 return false; 233 234 const APInt AccessSize = TC * EltSize; 235 236 auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart()); 237 if (!StartS) 238 return false; 239 assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition"); 240 Value *Base = StartS->getValue(); 241 242 // For the moment, restrict ourselves to the case where the access size is a 243 // multiple of the requested alignment and the base is aligned. 244 // TODO: generalize if a case found which warrants 245 if (EltSize.urem(Alignment.value()) != 0) 246 return false; 247 return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL, 248 HeaderFirstNonPHI, &DT); 249 } 250 251 /// Check if executing a load of this pointer value cannot trap. 252 /// 253 /// If DT and ScanFrom are specified this method performs context-sensitive 254 /// analysis and returns true if it is safe to load immediately before ScanFrom. 255 /// 256 /// If it is not obviously safe to load from the specified pointer, we do 257 /// a quick local scan of the basic block containing \c ScanFrom, to determine 258 /// if the address is already accessed. 259 /// 260 /// This uses the pointee type to determine how many bytes need to be safe to 261 /// load from the pointer. 262 bool llvm::isSafeToLoadUnconditionally(Value *V, MaybeAlign MA, APInt &Size, 263 const DataLayout &DL, 264 Instruction *ScanFrom, 265 const DominatorTree *DT) { 266 // Zero alignment means that the load has the ABI alignment for the target 267 const Align Alignment = 268 DL.getValueOrABITypeAlignment(MA, V->getType()->getPointerElementType()); 269 270 // If DT is not specified we can't make context-sensitive query 271 const Instruction* CtxI = DT ? ScanFrom : nullptr; 272 if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT)) 273 return true; 274 275 if (!ScanFrom) 276 return false; 277 278 if (Size.getBitWidth() > 64) 279 return false; 280 const uint64_t LoadSize = Size.getZExtValue(); 281 282 // Otherwise, be a little bit aggressive by scanning the local block where we 283 // want to check to see if the pointer is already being loaded or stored 284 // from/to. If so, the previous load or store would have already trapped, 285 // so there is no harm doing an extra load (also, CSE will later eliminate 286 // the load entirely). 287 BasicBlock::iterator BBI = ScanFrom->getIterator(), 288 E = ScanFrom->getParent()->begin(); 289 290 // We can at least always strip pointer casts even though we can't use the 291 // base here. 292 V = V->stripPointerCasts(); 293 294 while (BBI != E) { 295 --BBI; 296 297 // If we see a free or a call which may write to memory (i.e. which might do 298 // a free) the pointer could be marked invalid. 299 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() && 300 !isa<DbgInfoIntrinsic>(BBI)) 301 return false; 302 303 Value *AccessedPtr; 304 MaybeAlign MaybeAccessedAlign; 305 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 306 // Ignore volatile loads. The execution of a volatile load cannot 307 // be used to prove an address is backed by regular memory; it can, 308 // for example, point to an MMIO register. 309 if (LI->isVolatile()) 310 continue; 311 AccessedPtr = LI->getPointerOperand(); 312 MaybeAccessedAlign = MaybeAlign(LI->getAlignment()); 313 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 314 // Ignore volatile stores (see comment for loads). 315 if (SI->isVolatile()) 316 continue; 317 AccessedPtr = SI->getPointerOperand(); 318 MaybeAccessedAlign = MaybeAlign(SI->getAlignment()); 319 } else 320 continue; 321 322 Type *AccessedTy = AccessedPtr->getType()->getPointerElementType(); 323 324 const Align AccessedAlign = 325 DL.getValueOrABITypeAlignment(MaybeAccessedAlign, AccessedTy); 326 if (AccessedAlign < Alignment) 327 continue; 328 329 // Handle trivial cases. 330 if (AccessedPtr == V && 331 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 332 return true; 333 334 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) && 335 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 336 return true; 337 } 338 return false; 339 } 340 341 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, MaybeAlign Alignment, 342 const DataLayout &DL, 343 Instruction *ScanFrom, 344 const DominatorTree *DT) { 345 APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty)); 346 return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, DT); 347 } 348 349 /// DefMaxInstsToScan - the default number of maximum instructions 350 /// to scan in the block, used by FindAvailableLoadedValue(). 351 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump 352 /// threading in part by eliminating partially redundant loads. 353 /// At that point, the value of MaxInstsToScan was already set to '6' 354 /// without documented explanation. 355 cl::opt<unsigned> 356 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden, 357 cl::desc("Use this to specify the default maximum number of instructions " 358 "to scan backward from a given instruction, when searching for " 359 "available loaded value")); 360 361 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, 362 BasicBlock *ScanBB, 363 BasicBlock::iterator &ScanFrom, 364 unsigned MaxInstsToScan, 365 AliasAnalysis *AA, bool *IsLoad, 366 unsigned *NumScanedInst) { 367 // Don't CSE load that is volatile or anything stronger than unordered. 368 if (!Load->isUnordered()) 369 return nullptr; 370 371 return FindAvailablePtrLoadStore( 372 Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB, 373 ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst); 374 } 375 376 Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy, 377 bool AtLeastAtomic, BasicBlock *ScanBB, 378 BasicBlock::iterator &ScanFrom, 379 unsigned MaxInstsToScan, 380 AliasAnalysis *AA, bool *IsLoadCSE, 381 unsigned *NumScanedInst) { 382 if (MaxInstsToScan == 0) 383 MaxInstsToScan = ~0U; 384 385 const DataLayout &DL = ScanBB->getModule()->getDataLayout(); 386 Value *StrippedPtr = Ptr->stripPointerCasts(); 387 388 while (ScanFrom != ScanBB->begin()) { 389 // We must ignore debug info directives when counting (otherwise they 390 // would affect codegen). 391 Instruction *Inst = &*--ScanFrom; 392 if (isa<DbgInfoIntrinsic>(Inst)) 393 continue; 394 395 // Restore ScanFrom to expected value in case next test succeeds 396 ScanFrom++; 397 398 if (NumScanedInst) 399 ++(*NumScanedInst); 400 401 // Don't scan huge blocks. 402 if (MaxInstsToScan-- == 0) 403 return nullptr; 404 405 --ScanFrom; 406 // If this is a load of Ptr, the loaded value is available. 407 // (This is true even if the load is volatile or atomic, although 408 // those cases are unlikely.) 409 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 410 if (AreEquivalentAddressValues( 411 LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) && 412 CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) { 413 414 // We can value forward from an atomic to a non-atomic, but not the 415 // other way around. 416 if (LI->isAtomic() < AtLeastAtomic) 417 return nullptr; 418 419 if (IsLoadCSE) 420 *IsLoadCSE = true; 421 return LI; 422 } 423 424 // Try to get the store size for the type. 425 auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy)); 426 427 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 428 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); 429 // If this is a store through Ptr, the value is available! 430 // (This is true even if the store is volatile or atomic, although 431 // those cases are unlikely.) 432 if (AreEquivalentAddressValues(StorePtr, StrippedPtr) && 433 CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(), 434 AccessTy, DL)) { 435 436 // We can value forward from an atomic to a non-atomic, but not the 437 // other way around. 438 if (SI->isAtomic() < AtLeastAtomic) 439 return nullptr; 440 441 if (IsLoadCSE) 442 *IsLoadCSE = false; 443 return SI->getOperand(0); 444 } 445 446 // If both StrippedPtr and StorePtr reach all the way to an alloca or 447 // global and they are different, ignore the store. This is a trivial form 448 // of alias analysis that is important for reg2mem'd code. 449 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) && 450 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) && 451 StrippedPtr != StorePtr) 452 continue; 453 454 // If we have alias analysis and it says the store won't modify the loaded 455 // value, ignore the store. 456 if (AA && !isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize))) 457 continue; 458 459 // Otherwise the store that may or may not alias the pointer, bail out. 460 ++ScanFrom; 461 return nullptr; 462 } 463 464 // If this is some other instruction that may clobber Ptr, bail out. 465 if (Inst->mayWriteToMemory()) { 466 // If alias analysis claims that it really won't modify the load, 467 // ignore it. 468 if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize))) 469 continue; 470 471 // May modify the pointer, bail out. 472 ++ScanFrom; 473 return nullptr; 474 } 475 } 476 477 // Got to the start of the block, we didn't find it, but are done for this 478 // block. 479 return nullptr; 480 } 481