xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/Loads.cpp (revision ce6a89e27cd190313be39bb479880aeda4778436)
1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines simple local analyses for load instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/Loads.h"
14 #include "llvm/Analysis/AliasAnalysis.h"
15 #include "llvm/Analysis/LoopInfo.h"
16 #include "llvm/Analysis/ScalarEvolution.h"
17 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/GlobalAlias.h"
21 #include "llvm/IR/GlobalVariable.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/Statepoint.h"
27 
28 using namespace llvm;
29 
30 static MaybeAlign getBaseAlign(const Value *Base, const DataLayout &DL) {
31   if (const MaybeAlign PA = Base->getPointerAlignment(DL))
32     return *PA;
33   Type *const Ty = Base->getType()->getPointerElementType();
34   if (!Ty->isSized())
35     return None;
36   return Align(DL.getABITypeAlignment(Ty));
37 }
38 
39 static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment,
40                       const DataLayout &DL) {
41   if (MaybeAlign BA = getBaseAlign(Base, DL)) {
42     const APInt APBaseAlign(Offset.getBitWidth(), BA->value());
43     const APInt APAlign(Offset.getBitWidth(), Alignment.value());
44     assert(APAlign.isPowerOf2() && "must be a power of 2!");
45     return APBaseAlign.uge(APAlign) && !(Offset & (APAlign - 1));
46   }
47   return false;
48 }
49 
50 /// Test if V is always a pointer to allocated and suitably aligned memory for
51 /// a simple load or store.
52 static bool isDereferenceableAndAlignedPointer(
53     const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL,
54     const Instruction *CtxI, const DominatorTree *DT,
55     SmallPtrSetImpl<const Value *> &Visited) {
56   // Already visited?  Bail out, we've likely hit unreachable code.
57   if (!Visited.insert(V).second)
58     return false;
59 
60   // Note that it is not safe to speculate into a malloc'd region because
61   // malloc may return null.
62 
63   // bitcast instructions are no-ops as far as dereferenceability is concerned.
64   if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V))
65     return isDereferenceableAndAlignedPointer(BC->getOperand(0), Alignment,
66                                               Size, DL, CtxI, DT, Visited);
67 
68   bool CheckForNonNull = false;
69   APInt KnownDerefBytes(Size.getBitWidth(),
70                         V->getPointerDereferenceableBytes(DL, CheckForNonNull));
71   if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size))
72     if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) {
73       // As we recursed through GEPs to get here, we've incrementally checked
74       // that each step advanced by a multiple of the alignment. If our base is
75       // properly aligned, then the original offset accessed must also be.
76       Type *Ty = V->getType();
77       assert(Ty->isSized() && "must be sized");
78       APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
79       return isAligned(V, Offset, Alignment, DL);
80     }
81 
82   // For GEPs, determine if the indexing lands within the allocated object.
83   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
84     const Value *Base = GEP->getPointerOperand();
85 
86     APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
87     if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
88         !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value()))
89              .isMinValue())
90       return false;
91 
92     // If the base pointer is dereferenceable for Offset+Size bytes, then the
93     // GEP (== Base + Offset) is dereferenceable for Size bytes.  If the base
94     // pointer is aligned to Align bytes, and the Offset is divisible by Align
95     // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
96     // aligned to Align bytes.
97 
98     // Offset and Size may have different bit widths if we have visited an
99     // addrspacecast, so we can't do arithmetic directly on the APInt values.
100     return isDereferenceableAndAlignedPointer(
101         Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL,
102         CtxI, DT, Visited);
103   }
104 
105   // For gc.relocate, look through relocations
106   if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
107     return isDereferenceableAndAlignedPointer(
108         RelocateInst->getDerivedPtr(), Alignment, Size, DL, CtxI, DT, Visited);
109 
110   if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
111     return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment,
112                                               Size, DL, CtxI, DT, Visited);
113 
114   if (const auto *Call = dyn_cast<CallBase>(V))
115     if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
116       return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI,
117                                                 DT, Visited);
118 
119   // If we don't know, assume the worst.
120   return false;
121 }
122 
123 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Align Alignment,
124                                               const APInt &Size,
125                                               const DataLayout &DL,
126                                               const Instruction *CtxI,
127                                               const DominatorTree *DT) {
128   // Note: At the moment, Size can be zero.  This ends up being interpreted as
129   // a query of whether [Base, V] is dereferenceable and V is aligned (since
130   // that's what the implementation happened to do).  It's unclear if this is
131   // the desired semantic, but at least SelectionDAG does exercise this case.
132 
133   SmallPtrSet<const Value *, 32> Visited;
134   return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT,
135                                               Visited);
136 }
137 
138 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty,
139                                               MaybeAlign MA,
140                                               const DataLayout &DL,
141                                               const Instruction *CtxI,
142                                               const DominatorTree *DT) {
143   if (!Ty->isSized())
144     return false;
145 
146   // When dereferenceability information is provided by a dereferenceable
147   // attribute, we know exactly how many bytes are dereferenceable. If we can
148   // determine the exact offset to the attributed variable, we can use that
149   // information here.
150 
151   // Require ABI alignment for loads without alignment specification
152   const Align Alignment = DL.getValueOrABITypeAlignment(MA, Ty);
153   APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()),
154                    DL.getTypeStoreSize(Ty));
155   return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI,
156                                             DT);
157 }
158 
159 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty,
160                                     const DataLayout &DL,
161                                     const Instruction *CtxI,
162                                     const DominatorTree *DT) {
163   return isDereferenceableAndAlignedPointer(V, Ty, Align::None(), DL, CtxI, DT);
164 }
165 
166 /// Test if A and B will obviously have the same value.
167 ///
168 /// This includes recognizing that %t0 and %t1 will have the same
169 /// value in code like this:
170 /// \code
171 ///   %t0 = getelementptr \@a, 0, 3
172 ///   store i32 0, i32* %t0
173 ///   %t1 = getelementptr \@a, 0, 3
174 ///   %t2 = load i32* %t1
175 /// \endcode
176 ///
177 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
178   // Test if the values are trivially equivalent.
179   if (A == B)
180     return true;
181 
182   // Test if the values come from identical arithmetic instructions.
183   // Use isIdenticalToWhenDefined instead of isIdenticalTo because
184   // this function is only used when one address use dominates the
185   // other, which means that they'll always either have the same
186   // value or one of them will have an undefined value.
187   if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
188       isa<GetElementPtrInst>(A))
189     if (const Instruction *BI = dyn_cast<Instruction>(B))
190       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
191         return true;
192 
193   // Otherwise they may not be equivalent.
194   return false;
195 }
196 
197 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L,
198                                              ScalarEvolution &SE,
199                                              DominatorTree &DT) {
200   auto &DL = LI->getModule()->getDataLayout();
201   Value *Ptr = LI->getPointerOperand();
202 
203   APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()),
204                 DL.getTypeStoreSize(LI->getType()));
205   const Align Alignment = DL.getValueOrABITypeAlignment(
206       MaybeAlign(LI->getAlignment()), LI->getType());
207 
208   Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI();
209 
210   // If given a uniform (i.e. non-varying) address, see if we can prove the
211   // access is safe within the loop w/o needing predication.
212   if (L->isLoopInvariant(Ptr))
213     return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL,
214                                               HeaderFirstNonPHI, &DT);
215 
216   // Otherwise, check to see if we have a repeating access pattern where we can
217   // prove that all accesses are well aligned and dereferenceable.
218   auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr));
219   if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine())
220     return false;
221   auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE));
222   if (!Step)
223     return false;
224   // TODO: generalize to access patterns which have gaps
225   if (Step->getAPInt() != EltSize)
226     return false;
227 
228   // TODO: If the symbolic trip count has a small bound (max count), we might
229   // be able to prove safety.
230   auto TC = SE.getSmallConstantTripCount(L);
231   if (!TC)
232     return false;
233 
234   const APInt AccessSize = TC * EltSize;
235 
236   auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart());
237   if (!StartS)
238     return false;
239   assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition");
240   Value *Base = StartS->getValue();
241 
242   // For the moment, restrict ourselves to the case where the access size is a
243   // multiple of the requested alignment and the base is aligned.
244   // TODO: generalize if a case found which warrants
245   if (EltSize.urem(Alignment.value()) != 0)
246     return false;
247   return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL,
248                                             HeaderFirstNonPHI, &DT);
249 }
250 
251 /// Check if executing a load of this pointer value cannot trap.
252 ///
253 /// If DT and ScanFrom are specified this method performs context-sensitive
254 /// analysis and returns true if it is safe to load immediately before ScanFrom.
255 ///
256 /// If it is not obviously safe to load from the specified pointer, we do
257 /// a quick local scan of the basic block containing \c ScanFrom, to determine
258 /// if the address is already accessed.
259 ///
260 /// This uses the pointee type to determine how many bytes need to be safe to
261 /// load from the pointer.
262 bool llvm::isSafeToLoadUnconditionally(Value *V, MaybeAlign MA, APInt &Size,
263                                        const DataLayout &DL,
264                                        Instruction *ScanFrom,
265                                        const DominatorTree *DT) {
266   // Zero alignment means that the load has the ABI alignment for the target
267   const Align Alignment =
268       DL.getValueOrABITypeAlignment(MA, V->getType()->getPointerElementType());
269 
270   // If DT is not specified we can't make context-sensitive query
271   const Instruction* CtxI = DT ? ScanFrom : nullptr;
272   if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT))
273     return true;
274 
275   if (!ScanFrom)
276     return false;
277 
278   if (Size.getBitWidth() > 64)
279     return false;
280   const uint64_t LoadSize = Size.getZExtValue();
281 
282   // Otherwise, be a little bit aggressive by scanning the local block where we
283   // want to check to see if the pointer is already being loaded or stored
284   // from/to.  If so, the previous load or store would have already trapped,
285   // so there is no harm doing an extra load (also, CSE will later eliminate
286   // the load entirely).
287   BasicBlock::iterator BBI = ScanFrom->getIterator(),
288                        E = ScanFrom->getParent()->begin();
289 
290   // We can at least always strip pointer casts even though we can't use the
291   // base here.
292   V = V->stripPointerCasts();
293 
294   while (BBI != E) {
295     --BBI;
296 
297     // If we see a free or a call which may write to memory (i.e. which might do
298     // a free) the pointer could be marked invalid.
299     if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
300         !isa<DbgInfoIntrinsic>(BBI))
301       return false;
302 
303     Value *AccessedPtr;
304     MaybeAlign MaybeAccessedAlign;
305     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
306       // Ignore volatile loads. The execution of a volatile load cannot
307       // be used to prove an address is backed by regular memory; it can,
308       // for example, point to an MMIO register.
309       if (LI->isVolatile())
310         continue;
311       AccessedPtr = LI->getPointerOperand();
312       MaybeAccessedAlign = MaybeAlign(LI->getAlignment());
313     } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
314       // Ignore volatile stores (see comment for loads).
315       if (SI->isVolatile())
316         continue;
317       AccessedPtr = SI->getPointerOperand();
318       MaybeAccessedAlign = MaybeAlign(SI->getAlignment());
319     } else
320       continue;
321 
322     Type *AccessedTy = AccessedPtr->getType()->getPointerElementType();
323 
324     const Align AccessedAlign =
325         DL.getValueOrABITypeAlignment(MaybeAccessedAlign, AccessedTy);
326     if (AccessedAlign < Alignment)
327       continue;
328 
329     // Handle trivial cases.
330     if (AccessedPtr == V &&
331         LoadSize <= DL.getTypeStoreSize(AccessedTy))
332       return true;
333 
334     if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
335         LoadSize <= DL.getTypeStoreSize(AccessedTy))
336       return true;
337   }
338   return false;
339 }
340 
341 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, MaybeAlign Alignment,
342                                        const DataLayout &DL,
343                                        Instruction *ScanFrom,
344                                        const DominatorTree *DT) {
345   APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty));
346   return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, DT);
347 }
348 
349   /// DefMaxInstsToScan - the default number of maximum instructions
350 /// to scan in the block, used by FindAvailableLoadedValue().
351 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
352 /// threading in part by eliminating partially redundant loads.
353 /// At that point, the value of MaxInstsToScan was already set to '6'
354 /// without documented explanation.
355 cl::opt<unsigned>
356 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
357   cl::desc("Use this to specify the default maximum number of instructions "
358            "to scan backward from a given instruction, when searching for "
359            "available loaded value"));
360 
361 Value *llvm::FindAvailableLoadedValue(LoadInst *Load,
362                                       BasicBlock *ScanBB,
363                                       BasicBlock::iterator &ScanFrom,
364                                       unsigned MaxInstsToScan,
365                                       AliasAnalysis *AA, bool *IsLoad,
366                                       unsigned *NumScanedInst) {
367   // Don't CSE load that is volatile or anything stronger than unordered.
368   if (!Load->isUnordered())
369     return nullptr;
370 
371   return FindAvailablePtrLoadStore(
372       Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB,
373       ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst);
374 }
375 
376 Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy,
377                                        bool AtLeastAtomic, BasicBlock *ScanBB,
378                                        BasicBlock::iterator &ScanFrom,
379                                        unsigned MaxInstsToScan,
380                                        AliasAnalysis *AA, bool *IsLoadCSE,
381                                        unsigned *NumScanedInst) {
382   if (MaxInstsToScan == 0)
383     MaxInstsToScan = ~0U;
384 
385   const DataLayout &DL = ScanBB->getModule()->getDataLayout();
386   Value *StrippedPtr = Ptr->stripPointerCasts();
387 
388   while (ScanFrom != ScanBB->begin()) {
389     // We must ignore debug info directives when counting (otherwise they
390     // would affect codegen).
391     Instruction *Inst = &*--ScanFrom;
392     if (isa<DbgInfoIntrinsic>(Inst))
393       continue;
394 
395     // Restore ScanFrom to expected value in case next test succeeds
396     ScanFrom++;
397 
398     if (NumScanedInst)
399       ++(*NumScanedInst);
400 
401     // Don't scan huge blocks.
402     if (MaxInstsToScan-- == 0)
403       return nullptr;
404 
405     --ScanFrom;
406     // If this is a load of Ptr, the loaded value is available.
407     // (This is true even if the load is volatile or atomic, although
408     // those cases are unlikely.)
409     if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
410       if (AreEquivalentAddressValues(
411               LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) &&
412           CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
413 
414         // We can value forward from an atomic to a non-atomic, but not the
415         // other way around.
416         if (LI->isAtomic() < AtLeastAtomic)
417           return nullptr;
418 
419         if (IsLoadCSE)
420             *IsLoadCSE = true;
421         return LI;
422       }
423 
424     // Try to get the store size for the type.
425     auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy));
426 
427     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
428       Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
429       // If this is a store through Ptr, the value is available!
430       // (This is true even if the store is volatile or atomic, although
431       // those cases are unlikely.)
432       if (AreEquivalentAddressValues(StorePtr, StrippedPtr) &&
433           CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(),
434                                                AccessTy, DL)) {
435 
436         // We can value forward from an atomic to a non-atomic, but not the
437         // other way around.
438         if (SI->isAtomic() < AtLeastAtomic)
439           return nullptr;
440 
441         if (IsLoadCSE)
442           *IsLoadCSE = false;
443         return SI->getOperand(0);
444       }
445 
446       // If both StrippedPtr and StorePtr reach all the way to an alloca or
447       // global and they are different, ignore the store. This is a trivial form
448       // of alias analysis that is important for reg2mem'd code.
449       if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
450           (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
451           StrippedPtr != StorePtr)
452         continue;
453 
454       // If we have alias analysis and it says the store won't modify the loaded
455       // value, ignore the store.
456       if (AA && !isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize)))
457         continue;
458 
459       // Otherwise the store that may or may not alias the pointer, bail out.
460       ++ScanFrom;
461       return nullptr;
462     }
463 
464     // If this is some other instruction that may clobber Ptr, bail out.
465     if (Inst->mayWriteToMemory()) {
466       // If alias analysis claims that it really won't modify the load,
467       // ignore it.
468       if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize)))
469         continue;
470 
471       // May modify the pointer, bail out.
472       ++ScanFrom;
473       return nullptr;
474     }
475   }
476 
477   // Got to the start of the block, we didn't find it, but are done for this
478   // block.
479   return nullptr;
480 }
481