1 //===- Loads.cpp - Local load analysis ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines simple local analyses for load instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/Loads.h" 14 #include "llvm/Analysis/AliasAnalysis.h" 15 #include "llvm/Analysis/AssumeBundleQueries.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/MemoryBuiltins.h" 18 #include "llvm/Analysis/MemoryLocation.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 27 using namespace llvm; 28 29 static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment, 30 const DataLayout &DL) { 31 Align BA = Base->getPointerAlignment(DL); 32 const APInt APAlign(Offset.getBitWidth(), Alignment.value()); 33 assert(APAlign.isPowerOf2() && "must be a power of 2!"); 34 return BA >= Alignment && !(Offset & (APAlign - 1)); 35 } 36 37 /// Test if V is always a pointer to allocated and suitably aligned memory for 38 /// a simple load or store. 39 static bool isDereferenceableAndAlignedPointer( 40 const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, 41 const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT, 42 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited, 43 unsigned MaxDepth) { 44 assert(V->getType()->isPointerTy() && "Base must be pointer"); 45 46 // Recursion limit. 47 if (MaxDepth-- == 0) 48 return false; 49 50 // Already visited? Bail out, we've likely hit unreachable code. 51 if (!Visited.insert(V).second) 52 return false; 53 54 // Note that it is not safe to speculate into a malloc'd region because 55 // malloc may return null. 56 57 // For GEPs, determine if the indexing lands within the allocated object. 58 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 59 const Value *Base = GEP->getPointerOperand(); 60 61 APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0); 62 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() || 63 !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value())) 64 .isMinValue()) 65 return false; 66 67 // If the base pointer is dereferenceable for Offset+Size bytes, then the 68 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base 69 // pointer is aligned to Align bytes, and the Offset is divisible by Align 70 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also 71 // aligned to Align bytes. 72 73 // Offset and Size may have different bit widths if we have visited an 74 // addrspacecast, so we can't do arithmetic directly on the APInt values. 75 return isDereferenceableAndAlignedPointer( 76 Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL, 77 CtxI, AC, DT, TLI, Visited, MaxDepth); 78 } 79 80 // bitcast instructions are no-ops as far as dereferenceability is concerned. 81 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) { 82 if (BC->getSrcTy()->isPointerTy()) 83 return isDereferenceableAndAlignedPointer( 84 BC->getOperand(0), Alignment, Size, DL, CtxI, AC, DT, TLI, 85 Visited, MaxDepth); 86 } 87 88 // Recurse into both hands of select. 89 if (const SelectInst *Sel = dyn_cast<SelectInst>(V)) { 90 return isDereferenceableAndAlignedPointer(Sel->getTrueValue(), Alignment, 91 Size, DL, CtxI, AC, DT, TLI, 92 Visited, MaxDepth) && 93 isDereferenceableAndAlignedPointer(Sel->getFalseValue(), Alignment, 94 Size, DL, CtxI, AC, DT, TLI, 95 Visited, MaxDepth); 96 } 97 98 bool CheckForNonNull, CheckForFreed; 99 APInt KnownDerefBytes(Size.getBitWidth(), 100 V->getPointerDereferenceableBytes(DL, CheckForNonNull, 101 CheckForFreed)); 102 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) && 103 !CheckForFreed) 104 if (!CheckForNonNull || isKnownNonZero(V, DL, 0, AC, CtxI, DT)) { 105 // As we recursed through GEPs to get here, we've incrementally checked 106 // that each step advanced by a multiple of the alignment. If our base is 107 // properly aligned, then the original offset accessed must also be. 108 APInt Offset(DL.getTypeStoreSizeInBits(V->getType()), 0); 109 return isAligned(V, Offset, Alignment, DL); 110 } 111 112 /// TODO refactor this function to be able to search independently for 113 /// Dereferencability and Alignment requirements. 114 115 116 if (const auto *Call = dyn_cast<CallBase>(V)) { 117 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 118 return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI, 119 AC, DT, TLI, Visited, MaxDepth); 120 121 // If we have a call we can't recurse through, check to see if this is an 122 // allocation function for which we can establish an minimum object size. 123 // Such a minimum object size is analogous to a deref_or_null attribute in 124 // that we still need to prove the result non-null at point of use. 125 // NOTE: We can only use the object size as a base fact as we a) need to 126 // prove alignment too, and b) don't want the compile time impact of a 127 // separate recursive walk. 128 ObjectSizeOpts Opts; 129 // TODO: It may be okay to round to align, but that would imply that 130 // accessing slightly out of bounds was legal, and we're currently 131 // inconsistent about that. For the moment, be conservative. 132 Opts.RoundToAlign = false; 133 Opts.NullIsUnknownSize = true; 134 uint64_t ObjSize; 135 if (getObjectSize(V, ObjSize, DL, TLI, Opts)) { 136 APInt KnownDerefBytes(Size.getBitWidth(), ObjSize); 137 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) && 138 isKnownNonZero(V, DL, 0, AC, CtxI, DT) && !V->canBeFreed()) { 139 // As we recursed through GEPs to get here, we've incrementally 140 // checked that each step advanced by a multiple of the alignment. If 141 // our base is properly aligned, then the original offset accessed 142 // must also be. 143 APInt Offset(DL.getTypeStoreSizeInBits(V->getType()), 0); 144 return isAligned(V, Offset, Alignment, DL); 145 } 146 } 147 } 148 149 // For gc.relocate, look through relocations 150 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V)) 151 return isDereferenceableAndAlignedPointer(RelocateInst->getDerivedPtr(), 152 Alignment, Size, DL, CtxI, AC, DT, 153 TLI, Visited, MaxDepth); 154 155 if (const AddrSpaceCastOperator *ASC = dyn_cast<AddrSpaceCastOperator>(V)) 156 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment, 157 Size, DL, CtxI, AC, DT, TLI, 158 Visited, MaxDepth); 159 160 if (CtxI) { 161 /// Look through assumes to see if both dereferencability and alignment can 162 /// be provent by an assume 163 RetainedKnowledge AlignRK; 164 RetainedKnowledge DerefRK; 165 if (getKnowledgeForValue( 166 V, {Attribute::Dereferenceable, Attribute::Alignment}, AC, 167 [&](RetainedKnowledge RK, Instruction *Assume, auto) { 168 if (!isValidAssumeForContext(Assume, CtxI)) 169 return false; 170 if (RK.AttrKind == Attribute::Alignment) 171 AlignRK = std::max(AlignRK, RK); 172 if (RK.AttrKind == Attribute::Dereferenceable) 173 DerefRK = std::max(DerefRK, RK); 174 if (AlignRK && DerefRK && AlignRK.ArgValue >= Alignment.value() && 175 DerefRK.ArgValue >= Size.getZExtValue()) 176 return true; // We have found what we needed so we stop looking 177 return false; // Other assumes may have better information. so 178 // keep looking 179 })) 180 return true; 181 } 182 183 // If we don't know, assume the worst. 184 return false; 185 } 186 187 bool llvm::isDereferenceableAndAlignedPointer( 188 const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, 189 const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT, 190 const TargetLibraryInfo *TLI) { 191 // Note: At the moment, Size can be zero. This ends up being interpreted as 192 // a query of whether [Base, V] is dereferenceable and V is aligned (since 193 // that's what the implementation happened to do). It's unclear if this is 194 // the desired semantic, but at least SelectionDAG does exercise this case. 195 196 SmallPtrSet<const Value *, 32> Visited; 197 return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, AC, 198 DT, TLI, Visited, 16); 199 } 200 201 bool llvm::isDereferenceableAndAlignedPointer( 202 const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, 203 const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT, 204 const TargetLibraryInfo *TLI) { 205 // For unsized types or scalable vectors we don't know exactly how many bytes 206 // are dereferenced, so bail out. 207 if (!Ty->isSized() || isa<ScalableVectorType>(Ty)) 208 return false; 209 210 // When dereferenceability information is provided by a dereferenceable 211 // attribute, we know exactly how many bytes are dereferenceable. If we can 212 // determine the exact offset to the attributed variable, we can use that 213 // information here. 214 215 APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()), 216 DL.getTypeStoreSize(Ty)); 217 return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI, 218 AC, DT, TLI); 219 } 220 221 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty, 222 const DataLayout &DL, 223 const Instruction *CtxI, 224 AssumptionCache *AC, 225 const DominatorTree *DT, 226 const TargetLibraryInfo *TLI) { 227 return isDereferenceableAndAlignedPointer(V, Ty, Align(1), DL, CtxI, AC, DT, 228 TLI); 229 } 230 231 /// Test if A and B will obviously have the same value. 232 /// 233 /// This includes recognizing that %t0 and %t1 will have the same 234 /// value in code like this: 235 /// \code 236 /// %t0 = getelementptr \@a, 0, 3 237 /// store i32 0, i32* %t0 238 /// %t1 = getelementptr \@a, 0, 3 239 /// %t2 = load i32* %t1 240 /// \endcode 241 /// 242 static bool AreEquivalentAddressValues(const Value *A, const Value *B) { 243 // Test if the values are trivially equivalent. 244 if (A == B) 245 return true; 246 247 // Test if the values come from identical arithmetic instructions. 248 // Use isIdenticalToWhenDefined instead of isIdenticalTo because 249 // this function is only used when one address use dominates the 250 // other, which means that they'll always either have the same 251 // value or one of them will have an undefined value. 252 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) || 253 isa<GetElementPtrInst>(A)) 254 if (const Instruction *BI = dyn_cast<Instruction>(B)) 255 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 256 return true; 257 258 // Otherwise they may not be equivalent. 259 return false; 260 } 261 262 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L, 263 ScalarEvolution &SE, 264 DominatorTree &DT, 265 AssumptionCache *AC) { 266 auto &DL = LI->getModule()->getDataLayout(); 267 Value *Ptr = LI->getPointerOperand(); 268 269 APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()), 270 DL.getTypeStoreSize(LI->getType()).getFixedValue()); 271 const Align Alignment = LI->getAlign(); 272 273 Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI(); 274 275 // If given a uniform (i.e. non-varying) address, see if we can prove the 276 // access is safe within the loop w/o needing predication. 277 if (L->isLoopInvariant(Ptr)) 278 return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL, 279 HeaderFirstNonPHI, AC, &DT); 280 281 // Otherwise, check to see if we have a repeating access pattern where we can 282 // prove that all accesses are well aligned and dereferenceable. 283 auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr)); 284 if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine()) 285 return false; 286 auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE)); 287 if (!Step) 288 return false; 289 // TODO: generalize to access patterns which have gaps 290 if (Step->getAPInt() != EltSize) 291 return false; 292 293 auto TC = SE.getSmallConstantMaxTripCount(L); 294 if (!TC) 295 return false; 296 297 const APInt AccessSize = TC * EltSize; 298 299 auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart()); 300 if (!StartS) 301 return false; 302 assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition"); 303 Value *Base = StartS->getValue(); 304 305 // For the moment, restrict ourselves to the case where the access size is a 306 // multiple of the requested alignment and the base is aligned. 307 // TODO: generalize if a case found which warrants 308 if (EltSize.urem(Alignment.value()) != 0) 309 return false; 310 return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL, 311 HeaderFirstNonPHI, AC, &DT); 312 } 313 314 /// Check if executing a load of this pointer value cannot trap. 315 /// 316 /// If DT and ScanFrom are specified this method performs context-sensitive 317 /// analysis and returns true if it is safe to load immediately before ScanFrom. 318 /// 319 /// If it is not obviously safe to load from the specified pointer, we do 320 /// a quick local scan of the basic block containing \c ScanFrom, to determine 321 /// if the address is already accessed. 322 /// 323 /// This uses the pointee type to determine how many bytes need to be safe to 324 /// load from the pointer. 325 bool llvm::isSafeToLoadUnconditionally(Value *V, Align Alignment, APInt &Size, 326 const DataLayout &DL, 327 Instruction *ScanFrom, 328 AssumptionCache *AC, 329 const DominatorTree *DT, 330 const TargetLibraryInfo *TLI) { 331 // If DT is not specified we can't make context-sensitive query 332 const Instruction* CtxI = DT ? ScanFrom : nullptr; 333 if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, AC, DT, 334 TLI)) 335 return true; 336 337 if (!ScanFrom) 338 return false; 339 340 if (Size.getBitWidth() > 64) 341 return false; 342 const uint64_t LoadSize = Size.getZExtValue(); 343 344 // Otherwise, be a little bit aggressive by scanning the local block where we 345 // want to check to see if the pointer is already being loaded or stored 346 // from/to. If so, the previous load or store would have already trapped, 347 // so there is no harm doing an extra load (also, CSE will later eliminate 348 // the load entirely). 349 BasicBlock::iterator BBI = ScanFrom->getIterator(), 350 E = ScanFrom->getParent()->begin(); 351 352 // We can at least always strip pointer casts even though we can't use the 353 // base here. 354 V = V->stripPointerCasts(); 355 356 while (BBI != E) { 357 --BBI; 358 359 // If we see a free or a call which may write to memory (i.e. which might do 360 // a free) the pointer could be marked invalid. 361 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() && 362 !isa<LifetimeIntrinsic>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 363 return false; 364 365 Value *AccessedPtr; 366 Type *AccessedTy; 367 Align AccessedAlign; 368 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 369 // Ignore volatile loads. The execution of a volatile load cannot 370 // be used to prove an address is backed by regular memory; it can, 371 // for example, point to an MMIO register. 372 if (LI->isVolatile()) 373 continue; 374 AccessedPtr = LI->getPointerOperand(); 375 AccessedTy = LI->getType(); 376 AccessedAlign = LI->getAlign(); 377 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 378 // Ignore volatile stores (see comment for loads). 379 if (SI->isVolatile()) 380 continue; 381 AccessedPtr = SI->getPointerOperand(); 382 AccessedTy = SI->getValueOperand()->getType(); 383 AccessedAlign = SI->getAlign(); 384 } else 385 continue; 386 387 if (AccessedAlign < Alignment) 388 continue; 389 390 // Handle trivial cases. 391 if (AccessedPtr == V && 392 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 393 return true; 394 395 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) && 396 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 397 return true; 398 } 399 return false; 400 } 401 402 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment, 403 const DataLayout &DL, 404 Instruction *ScanFrom, 405 AssumptionCache *AC, 406 const DominatorTree *DT, 407 const TargetLibraryInfo *TLI) { 408 TypeSize TySize = DL.getTypeStoreSize(Ty); 409 if (TySize.isScalable()) 410 return false; 411 APInt Size(DL.getIndexTypeSizeInBits(V->getType()), TySize.getFixedValue()); 412 return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, AC, DT, 413 TLI); 414 } 415 416 /// DefMaxInstsToScan - the default number of maximum instructions 417 /// to scan in the block, used by FindAvailableLoadedValue(). 418 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump 419 /// threading in part by eliminating partially redundant loads. 420 /// At that point, the value of MaxInstsToScan was already set to '6' 421 /// without documented explanation. 422 cl::opt<unsigned> 423 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden, 424 cl::desc("Use this to specify the default maximum number of instructions " 425 "to scan backward from a given instruction, when searching for " 426 "available loaded value")); 427 428 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, 429 BasicBlock *ScanBB, 430 BasicBlock::iterator &ScanFrom, 431 unsigned MaxInstsToScan, 432 AAResults *AA, bool *IsLoad, 433 unsigned *NumScanedInst) { 434 // Don't CSE load that is volatile or anything stronger than unordered. 435 if (!Load->isUnordered()) 436 return nullptr; 437 438 MemoryLocation Loc = MemoryLocation::get(Load); 439 return findAvailablePtrLoadStore(Loc, Load->getType(), Load->isAtomic(), 440 ScanBB, ScanFrom, MaxInstsToScan, AA, IsLoad, 441 NumScanedInst); 442 } 443 444 // Check if the load and the store have the same base, constant offsets and 445 // non-overlapping access ranges. 446 static bool areNonOverlapSameBaseLoadAndStore(const Value *LoadPtr, 447 Type *LoadTy, 448 const Value *StorePtr, 449 Type *StoreTy, 450 const DataLayout &DL) { 451 APInt LoadOffset(DL.getIndexTypeSizeInBits(LoadPtr->getType()), 0); 452 APInt StoreOffset(DL.getIndexTypeSizeInBits(StorePtr->getType()), 0); 453 const Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets( 454 DL, LoadOffset, /* AllowNonInbounds */ false); 455 const Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets( 456 DL, StoreOffset, /* AllowNonInbounds */ false); 457 if (LoadBase != StoreBase) 458 return false; 459 auto LoadAccessSize = LocationSize::precise(DL.getTypeStoreSize(LoadTy)); 460 auto StoreAccessSize = LocationSize::precise(DL.getTypeStoreSize(StoreTy)); 461 ConstantRange LoadRange(LoadOffset, 462 LoadOffset + LoadAccessSize.toRaw()); 463 ConstantRange StoreRange(StoreOffset, 464 StoreOffset + StoreAccessSize.toRaw()); 465 return LoadRange.intersectWith(StoreRange).isEmptySet(); 466 } 467 468 static Value *getAvailableLoadStore(Instruction *Inst, const Value *Ptr, 469 Type *AccessTy, bool AtLeastAtomic, 470 const DataLayout &DL, bool *IsLoadCSE) { 471 // If this is a load of Ptr, the loaded value is available. 472 // (This is true even if the load is volatile or atomic, although 473 // those cases are unlikely.) 474 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 475 // We can value forward from an atomic to a non-atomic, but not the 476 // other way around. 477 if (LI->isAtomic() < AtLeastAtomic) 478 return nullptr; 479 480 Value *LoadPtr = LI->getPointerOperand()->stripPointerCasts(); 481 if (!AreEquivalentAddressValues(LoadPtr, Ptr)) 482 return nullptr; 483 484 if (CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) { 485 if (IsLoadCSE) 486 *IsLoadCSE = true; 487 return LI; 488 } 489 } 490 491 // If this is a store through Ptr, the value is available! 492 // (This is true even if the store is volatile or atomic, although 493 // those cases are unlikely.) 494 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 495 // We can value forward from an atomic to a non-atomic, but not the 496 // other way around. 497 if (SI->isAtomic() < AtLeastAtomic) 498 return nullptr; 499 500 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); 501 if (!AreEquivalentAddressValues(StorePtr, Ptr)) 502 return nullptr; 503 504 if (IsLoadCSE) 505 *IsLoadCSE = false; 506 507 Value *Val = SI->getValueOperand(); 508 if (CastInst::isBitOrNoopPointerCastable(Val->getType(), AccessTy, DL)) 509 return Val; 510 511 TypeSize StoreSize = DL.getTypeSizeInBits(Val->getType()); 512 TypeSize LoadSize = DL.getTypeSizeInBits(AccessTy); 513 if (TypeSize::isKnownLE(LoadSize, StoreSize)) 514 if (auto *C = dyn_cast<Constant>(Val)) 515 return ConstantFoldLoadFromConst(C, AccessTy, DL); 516 } 517 518 if (auto *MSI = dyn_cast<MemSetInst>(Inst)) { 519 // Don't forward from (non-atomic) memset to atomic load. 520 if (AtLeastAtomic) 521 return nullptr; 522 523 // Only handle constant memsets. 524 auto *Val = dyn_cast<ConstantInt>(MSI->getValue()); 525 auto *Len = dyn_cast<ConstantInt>(MSI->getLength()); 526 if (!Val || !Len) 527 return nullptr; 528 529 // TODO: Handle offsets. 530 Value *Dst = MSI->getDest(); 531 if (!AreEquivalentAddressValues(Dst, Ptr)) 532 return nullptr; 533 534 if (IsLoadCSE) 535 *IsLoadCSE = false; 536 537 TypeSize LoadTypeSize = DL.getTypeSizeInBits(AccessTy); 538 if (LoadTypeSize.isScalable()) 539 return nullptr; 540 541 // Make sure the read bytes are contained in the memset. 542 uint64_t LoadSize = LoadTypeSize.getFixedValue(); 543 if ((Len->getValue() * 8).ult(LoadSize)) 544 return nullptr; 545 546 APInt Splat = LoadSize >= 8 ? APInt::getSplat(LoadSize, Val->getValue()) 547 : Val->getValue().trunc(LoadSize); 548 ConstantInt *SplatC = ConstantInt::get(MSI->getContext(), Splat); 549 if (CastInst::isBitOrNoopPointerCastable(SplatC->getType(), AccessTy, DL)) 550 return SplatC; 551 552 return nullptr; 553 } 554 555 return nullptr; 556 } 557 558 Value *llvm::findAvailablePtrLoadStore( 559 const MemoryLocation &Loc, Type *AccessTy, bool AtLeastAtomic, 560 BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan, 561 AAResults *AA, bool *IsLoadCSE, unsigned *NumScanedInst) { 562 if (MaxInstsToScan == 0) 563 MaxInstsToScan = ~0U; 564 565 const DataLayout &DL = ScanBB->getModule()->getDataLayout(); 566 const Value *StrippedPtr = Loc.Ptr->stripPointerCasts(); 567 568 while (ScanFrom != ScanBB->begin()) { 569 // We must ignore debug info directives when counting (otherwise they 570 // would affect codegen). 571 Instruction *Inst = &*--ScanFrom; 572 if (Inst->isDebugOrPseudoInst()) 573 continue; 574 575 // Restore ScanFrom to expected value in case next test succeeds 576 ScanFrom++; 577 578 if (NumScanedInst) 579 ++(*NumScanedInst); 580 581 // Don't scan huge blocks. 582 if (MaxInstsToScan-- == 0) 583 return nullptr; 584 585 --ScanFrom; 586 587 if (Value *Available = getAvailableLoadStore(Inst, StrippedPtr, AccessTy, 588 AtLeastAtomic, DL, IsLoadCSE)) 589 return Available; 590 591 // Try to get the store size for the type. 592 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 593 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); 594 595 // If both StrippedPtr and StorePtr reach all the way to an alloca or 596 // global and they are different, ignore the store. This is a trivial form 597 // of alias analysis that is important for reg2mem'd code. 598 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) && 599 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) && 600 StrippedPtr != StorePtr) 601 continue; 602 603 if (!AA) { 604 // When AA isn't available, but if the load and the store have the same 605 // base, constant offsets and non-overlapping access ranges, ignore the 606 // store. This is a simple form of alias analysis that is used by the 607 // inliner. FIXME: use BasicAA if possible. 608 if (areNonOverlapSameBaseLoadAndStore( 609 Loc.Ptr, AccessTy, SI->getPointerOperand(), 610 SI->getValueOperand()->getType(), DL)) 611 continue; 612 } else { 613 // If we have alias analysis and it says the store won't modify the 614 // loaded value, ignore the store. 615 if (!isModSet(AA->getModRefInfo(SI, Loc))) 616 continue; 617 } 618 619 // Otherwise the store that may or may not alias the pointer, bail out. 620 ++ScanFrom; 621 return nullptr; 622 } 623 624 // If this is some other instruction that may clobber Ptr, bail out. 625 if (Inst->mayWriteToMemory()) { 626 // If alias analysis claims that it really won't modify the load, 627 // ignore it. 628 if (AA && !isModSet(AA->getModRefInfo(Inst, Loc))) 629 continue; 630 631 // May modify the pointer, bail out. 632 ++ScanFrom; 633 return nullptr; 634 } 635 } 636 637 // Got to the start of the block, we didn't find it, but are done for this 638 // block. 639 return nullptr; 640 } 641 642 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, AAResults &AA, 643 bool *IsLoadCSE, 644 unsigned MaxInstsToScan) { 645 const DataLayout &DL = Load->getModule()->getDataLayout(); 646 Value *StrippedPtr = Load->getPointerOperand()->stripPointerCasts(); 647 BasicBlock *ScanBB = Load->getParent(); 648 Type *AccessTy = Load->getType(); 649 bool AtLeastAtomic = Load->isAtomic(); 650 651 if (!Load->isUnordered()) 652 return nullptr; 653 654 // Try to find an available value first, and delay expensive alias analysis 655 // queries until later. 656 Value *Available = nullptr;; 657 SmallVector<Instruction *> MustNotAliasInsts; 658 for (Instruction &Inst : make_range(++Load->getReverseIterator(), 659 ScanBB->rend())) { 660 if (Inst.isDebugOrPseudoInst()) 661 continue; 662 663 if (MaxInstsToScan-- == 0) 664 return nullptr; 665 666 Available = getAvailableLoadStore(&Inst, StrippedPtr, AccessTy, 667 AtLeastAtomic, DL, IsLoadCSE); 668 if (Available) 669 break; 670 671 if (Inst.mayWriteToMemory()) 672 MustNotAliasInsts.push_back(&Inst); 673 } 674 675 // If we found an available value, ensure that the instructions in between 676 // did not modify the memory location. 677 if (Available) { 678 MemoryLocation Loc = MemoryLocation::get(Load); 679 for (Instruction *Inst : MustNotAliasInsts) 680 if (isModSet(AA.getModRefInfo(Inst, Loc))) 681 return nullptr; 682 } 683 684 return Available; 685 } 686 687 bool llvm::canReplacePointersIfEqual(Value *A, Value *B, const DataLayout &DL, 688 Instruction *CtxI) { 689 Type *Ty = A->getType(); 690 assert(Ty == B->getType() && Ty->isPointerTy() && 691 "values must have matching pointer types"); 692 693 // NOTE: The checks in the function are incomplete and currently miss illegal 694 // cases! The current implementation is a starting point and the 695 // implementation should be made stricter over time. 696 if (auto *C = dyn_cast<Constant>(B)) { 697 // Do not allow replacing a pointer with a constant pointer, unless it is 698 // either null or at least one byte is dereferenceable. 699 APInt OneByte(DL.getPointerTypeSizeInBits(Ty), 1); 700 return C->isNullValue() || 701 isDereferenceableAndAlignedPointer(B, Align(1), OneByte, DL, CtxI); 702 } 703 704 return true; 705 } 706