xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/Loads.cpp (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines simple local analyses for load instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/Loads.h"
14 #include "llvm/Analysis/AliasAnalysis.h"
15 #include "llvm/Analysis/AssumeBundleQueries.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/MemoryBuiltins.h"
18 #include "llvm/Analysis/MemoryLocation.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26 
27 using namespace llvm;
28 
29 static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment,
30                       const DataLayout &DL) {
31   Align BA = Base->getPointerAlignment(DL);
32   const APInt APAlign(Offset.getBitWidth(), Alignment.value());
33   assert(APAlign.isPowerOf2() && "must be a power of 2!");
34   return BA >= Alignment && !(Offset & (APAlign - 1));
35 }
36 
37 /// Test if V is always a pointer to allocated and suitably aligned memory for
38 /// a simple load or store.
39 static bool isDereferenceableAndAlignedPointer(
40     const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL,
41     const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT,
42     const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited,
43     unsigned MaxDepth) {
44   assert(V->getType()->isPointerTy() && "Base must be pointer");
45 
46   // Recursion limit.
47   if (MaxDepth-- == 0)
48     return false;
49 
50   // Already visited?  Bail out, we've likely hit unreachable code.
51   if (!Visited.insert(V).second)
52     return false;
53 
54   // Note that it is not safe to speculate into a malloc'd region because
55   // malloc may return null.
56 
57   // For GEPs, determine if the indexing lands within the allocated object.
58   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
59     const Value *Base = GEP->getPointerOperand();
60 
61     APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
62     if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
63         !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value()))
64              .isMinValue())
65       return false;
66 
67     // If the base pointer is dereferenceable for Offset+Size bytes, then the
68     // GEP (== Base + Offset) is dereferenceable for Size bytes.  If the base
69     // pointer is aligned to Align bytes, and the Offset is divisible by Align
70     // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
71     // aligned to Align bytes.
72 
73     // Offset and Size may have different bit widths if we have visited an
74     // addrspacecast, so we can't do arithmetic directly on the APInt values.
75     return isDereferenceableAndAlignedPointer(
76         Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL,
77         CtxI, AC, DT, TLI, Visited, MaxDepth);
78   }
79 
80   // bitcast instructions are no-ops as far as dereferenceability is concerned.
81   if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
82     if (BC->getSrcTy()->isPointerTy())
83       return isDereferenceableAndAlignedPointer(
84         BC->getOperand(0), Alignment, Size, DL, CtxI, AC, DT, TLI,
85           Visited, MaxDepth);
86   }
87 
88   // Recurse into both hands of select.
89   if (const SelectInst *Sel = dyn_cast<SelectInst>(V)) {
90     return isDereferenceableAndAlignedPointer(Sel->getTrueValue(), Alignment,
91                                               Size, DL, CtxI, AC, DT, TLI,
92                                               Visited, MaxDepth) &&
93            isDereferenceableAndAlignedPointer(Sel->getFalseValue(), Alignment,
94                                               Size, DL, CtxI, AC, DT, TLI,
95                                               Visited, MaxDepth);
96   }
97 
98   bool CheckForNonNull, CheckForFreed;
99   APInt KnownDerefBytes(Size.getBitWidth(),
100                         V->getPointerDereferenceableBytes(DL, CheckForNonNull,
101                                                           CheckForFreed));
102   if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) &&
103       !CheckForFreed)
104     if (!CheckForNonNull || isKnownNonZero(V, DL, 0, AC, CtxI, DT)) {
105       // As we recursed through GEPs to get here, we've incrementally checked
106       // that each step advanced by a multiple of the alignment. If our base is
107       // properly aligned, then the original offset accessed must also be.
108       APInt Offset(DL.getTypeStoreSizeInBits(V->getType()), 0);
109       return isAligned(V, Offset, Alignment, DL);
110     }
111 
112   /// TODO refactor this function to be able to search independently for
113   /// Dereferencability and Alignment requirements.
114 
115 
116   if (const auto *Call = dyn_cast<CallBase>(V)) {
117     if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
118       return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI,
119                                                 AC, DT, TLI, Visited, MaxDepth);
120 
121     // If we have a call we can't recurse through, check to see if this is an
122     // allocation function for which we can establish an minimum object size.
123     // Such a minimum object size is analogous to a deref_or_null attribute in
124     // that we still need to prove the result non-null at point of use.
125     // NOTE: We can only use the object size as a base fact as we a) need to
126     // prove alignment too, and b) don't want the compile time impact of a
127     // separate recursive walk.
128     ObjectSizeOpts Opts;
129     // TODO: It may be okay to round to align, but that would imply that
130     // accessing slightly out of bounds was legal, and we're currently
131     // inconsistent about that.  For the moment, be conservative.
132     Opts.RoundToAlign = false;
133     Opts.NullIsUnknownSize = true;
134     uint64_t ObjSize;
135     if (getObjectSize(V, ObjSize, DL, TLI, Opts)) {
136       APInt KnownDerefBytes(Size.getBitWidth(), ObjSize);
137       if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) &&
138           isKnownNonZero(V, DL, 0, AC, CtxI, DT) && !V->canBeFreed()) {
139         // As we recursed through GEPs to get here, we've incrementally
140         // checked that each step advanced by a multiple of the alignment. If
141         // our base is properly aligned, then the original offset accessed
142         // must also be.
143         APInt Offset(DL.getTypeStoreSizeInBits(V->getType()), 0);
144         return isAligned(V, Offset, Alignment, DL);
145       }
146     }
147   }
148 
149   // For gc.relocate, look through relocations
150   if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
151     return isDereferenceableAndAlignedPointer(RelocateInst->getDerivedPtr(),
152                                               Alignment, Size, DL, CtxI, AC, DT,
153                                               TLI, Visited, MaxDepth);
154 
155   if (const AddrSpaceCastOperator *ASC = dyn_cast<AddrSpaceCastOperator>(V))
156     return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment,
157                                               Size, DL, CtxI, AC, DT, TLI,
158                                               Visited, MaxDepth);
159 
160   if (CtxI) {
161     /// Look through assumes to see if both dereferencability and alignment can
162     /// be provent by an assume
163     RetainedKnowledge AlignRK;
164     RetainedKnowledge DerefRK;
165     if (getKnowledgeForValue(
166             V, {Attribute::Dereferenceable, Attribute::Alignment}, AC,
167             [&](RetainedKnowledge RK, Instruction *Assume, auto) {
168               if (!isValidAssumeForContext(Assume, CtxI))
169                 return false;
170               if (RK.AttrKind == Attribute::Alignment)
171                 AlignRK = std::max(AlignRK, RK);
172               if (RK.AttrKind == Attribute::Dereferenceable)
173                 DerefRK = std::max(DerefRK, RK);
174               if (AlignRK && DerefRK && AlignRK.ArgValue >= Alignment.value() &&
175                   DerefRK.ArgValue >= Size.getZExtValue())
176                 return true; // We have found what we needed so we stop looking
177               return false;  // Other assumes may have better information. so
178                              // keep looking
179             }))
180       return true;
181   }
182 
183   // If we don't know, assume the worst.
184   return false;
185 }
186 
187 bool llvm::isDereferenceableAndAlignedPointer(
188     const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL,
189     const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT,
190     const TargetLibraryInfo *TLI) {
191   // Note: At the moment, Size can be zero.  This ends up being interpreted as
192   // a query of whether [Base, V] is dereferenceable and V is aligned (since
193   // that's what the implementation happened to do).  It's unclear if this is
194   // the desired semantic, but at least SelectionDAG does exercise this case.
195 
196   SmallPtrSet<const Value *, 32> Visited;
197   return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, AC,
198                                               DT, TLI, Visited, 16);
199 }
200 
201 bool llvm::isDereferenceableAndAlignedPointer(
202     const Value *V, Type *Ty, Align Alignment, const DataLayout &DL,
203     const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT,
204     const TargetLibraryInfo *TLI) {
205   // For unsized types or scalable vectors we don't know exactly how many bytes
206   // are dereferenced, so bail out.
207   if (!Ty->isSized() || isa<ScalableVectorType>(Ty))
208     return false;
209 
210   // When dereferenceability information is provided by a dereferenceable
211   // attribute, we know exactly how many bytes are dereferenceable. If we can
212   // determine the exact offset to the attributed variable, we can use that
213   // information here.
214 
215   APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()),
216                    DL.getTypeStoreSize(Ty));
217   return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI,
218                                             AC, DT, TLI);
219 }
220 
221 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty,
222                                     const DataLayout &DL,
223                                     const Instruction *CtxI,
224                                     AssumptionCache *AC,
225                                     const DominatorTree *DT,
226                                     const TargetLibraryInfo *TLI) {
227   return isDereferenceableAndAlignedPointer(V, Ty, Align(1), DL, CtxI, AC, DT,
228                                             TLI);
229 }
230 
231 /// Test if A and B will obviously have the same value.
232 ///
233 /// This includes recognizing that %t0 and %t1 will have the same
234 /// value in code like this:
235 /// \code
236 ///   %t0 = getelementptr \@a, 0, 3
237 ///   store i32 0, i32* %t0
238 ///   %t1 = getelementptr \@a, 0, 3
239 ///   %t2 = load i32* %t1
240 /// \endcode
241 ///
242 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
243   // Test if the values are trivially equivalent.
244   if (A == B)
245     return true;
246 
247   // Test if the values come from identical arithmetic instructions.
248   // Use isIdenticalToWhenDefined instead of isIdenticalTo because
249   // this function is only used when one address use dominates the
250   // other, which means that they'll always either have the same
251   // value or one of them will have an undefined value.
252   if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
253       isa<GetElementPtrInst>(A))
254     if (const Instruction *BI = dyn_cast<Instruction>(B))
255       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
256         return true;
257 
258   // Otherwise they may not be equivalent.
259   return false;
260 }
261 
262 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L,
263                                              ScalarEvolution &SE,
264                                              DominatorTree &DT,
265                                              AssumptionCache *AC) {
266   auto &DL = LI->getModule()->getDataLayout();
267   Value *Ptr = LI->getPointerOperand();
268 
269   APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()),
270                 DL.getTypeStoreSize(LI->getType()).getFixedValue());
271   const Align Alignment = LI->getAlign();
272 
273   Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI();
274 
275   // If given a uniform (i.e. non-varying) address, see if we can prove the
276   // access is safe within the loop w/o needing predication.
277   if (L->isLoopInvariant(Ptr))
278     return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL,
279                                               HeaderFirstNonPHI, AC, &DT);
280 
281   // Otherwise, check to see if we have a repeating access pattern where we can
282   // prove that all accesses are well aligned and dereferenceable.
283   auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr));
284   if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine())
285     return false;
286   auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE));
287   if (!Step)
288     return false;
289   // TODO: generalize to access patterns which have gaps
290   if (Step->getAPInt() != EltSize)
291     return false;
292 
293   auto TC = SE.getSmallConstantMaxTripCount(L);
294   if (!TC)
295     return false;
296 
297   const APInt AccessSize = TC * EltSize;
298 
299   auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart());
300   if (!StartS)
301     return false;
302   assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition");
303   Value *Base = StartS->getValue();
304 
305   // For the moment, restrict ourselves to the case where the access size is a
306   // multiple of the requested alignment and the base is aligned.
307   // TODO: generalize if a case found which warrants
308   if (EltSize.urem(Alignment.value()) != 0)
309     return false;
310   return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL,
311                                             HeaderFirstNonPHI, AC, &DT);
312 }
313 
314 /// Check if executing a load of this pointer value cannot trap.
315 ///
316 /// If DT and ScanFrom are specified this method performs context-sensitive
317 /// analysis and returns true if it is safe to load immediately before ScanFrom.
318 ///
319 /// If it is not obviously safe to load from the specified pointer, we do
320 /// a quick local scan of the basic block containing \c ScanFrom, to determine
321 /// if the address is already accessed.
322 ///
323 /// This uses the pointee type to determine how many bytes need to be safe to
324 /// load from the pointer.
325 bool llvm::isSafeToLoadUnconditionally(Value *V, Align Alignment, APInt &Size,
326                                        const DataLayout &DL,
327                                        Instruction *ScanFrom,
328                                        AssumptionCache *AC,
329                                        const DominatorTree *DT,
330                                        const TargetLibraryInfo *TLI) {
331   // If DT is not specified we can't make context-sensitive query
332   const Instruction* CtxI = DT ? ScanFrom : nullptr;
333   if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, AC, DT,
334                                          TLI))
335     return true;
336 
337   if (!ScanFrom)
338     return false;
339 
340   if (Size.getBitWidth() > 64)
341     return false;
342   const uint64_t LoadSize = Size.getZExtValue();
343 
344   // Otherwise, be a little bit aggressive by scanning the local block where we
345   // want to check to see if the pointer is already being loaded or stored
346   // from/to.  If so, the previous load or store would have already trapped,
347   // so there is no harm doing an extra load (also, CSE will later eliminate
348   // the load entirely).
349   BasicBlock::iterator BBI = ScanFrom->getIterator(),
350                        E = ScanFrom->getParent()->begin();
351 
352   // We can at least always strip pointer casts even though we can't use the
353   // base here.
354   V = V->stripPointerCasts();
355 
356   while (BBI != E) {
357     --BBI;
358 
359     // If we see a free or a call which may write to memory (i.e. which might do
360     // a free) the pointer could be marked invalid.
361     if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
362         !isa<LifetimeIntrinsic>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
363       return false;
364 
365     Value *AccessedPtr;
366     Type *AccessedTy;
367     Align AccessedAlign;
368     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
369       // Ignore volatile loads. The execution of a volatile load cannot
370       // be used to prove an address is backed by regular memory; it can,
371       // for example, point to an MMIO register.
372       if (LI->isVolatile())
373         continue;
374       AccessedPtr = LI->getPointerOperand();
375       AccessedTy = LI->getType();
376       AccessedAlign = LI->getAlign();
377     } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
378       // Ignore volatile stores (see comment for loads).
379       if (SI->isVolatile())
380         continue;
381       AccessedPtr = SI->getPointerOperand();
382       AccessedTy = SI->getValueOperand()->getType();
383       AccessedAlign = SI->getAlign();
384     } else
385       continue;
386 
387     if (AccessedAlign < Alignment)
388       continue;
389 
390     // Handle trivial cases.
391     if (AccessedPtr == V &&
392         LoadSize <= DL.getTypeStoreSize(AccessedTy))
393       return true;
394 
395     if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
396         LoadSize <= DL.getTypeStoreSize(AccessedTy))
397       return true;
398   }
399   return false;
400 }
401 
402 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment,
403                                        const DataLayout &DL,
404                                        Instruction *ScanFrom,
405                                        AssumptionCache *AC,
406                                        const DominatorTree *DT,
407                                        const TargetLibraryInfo *TLI) {
408   TypeSize TySize = DL.getTypeStoreSize(Ty);
409   if (TySize.isScalable())
410     return false;
411   APInt Size(DL.getIndexTypeSizeInBits(V->getType()), TySize.getFixedValue());
412   return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, AC, DT,
413                                      TLI);
414 }
415 
416 /// DefMaxInstsToScan - the default number of maximum instructions
417 /// to scan in the block, used by FindAvailableLoadedValue().
418 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
419 /// threading in part by eliminating partially redundant loads.
420 /// At that point, the value of MaxInstsToScan was already set to '6'
421 /// without documented explanation.
422 cl::opt<unsigned>
423 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
424   cl::desc("Use this to specify the default maximum number of instructions "
425            "to scan backward from a given instruction, when searching for "
426            "available loaded value"));
427 
428 Value *llvm::FindAvailableLoadedValue(LoadInst *Load,
429                                       BasicBlock *ScanBB,
430                                       BasicBlock::iterator &ScanFrom,
431                                       unsigned MaxInstsToScan,
432                                       AAResults *AA, bool *IsLoad,
433                                       unsigned *NumScanedInst) {
434   // Don't CSE load that is volatile or anything stronger than unordered.
435   if (!Load->isUnordered())
436     return nullptr;
437 
438   MemoryLocation Loc = MemoryLocation::get(Load);
439   return findAvailablePtrLoadStore(Loc, Load->getType(), Load->isAtomic(),
440                                    ScanBB, ScanFrom, MaxInstsToScan, AA, IsLoad,
441                                    NumScanedInst);
442 }
443 
444 // Check if the load and the store have the same base, constant offsets and
445 // non-overlapping access ranges.
446 static bool areNonOverlapSameBaseLoadAndStore(const Value *LoadPtr,
447                                               Type *LoadTy,
448                                               const Value *StorePtr,
449                                               Type *StoreTy,
450                                               const DataLayout &DL) {
451   APInt LoadOffset(DL.getIndexTypeSizeInBits(LoadPtr->getType()), 0);
452   APInt StoreOffset(DL.getIndexTypeSizeInBits(StorePtr->getType()), 0);
453   const Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets(
454       DL, LoadOffset, /* AllowNonInbounds */ false);
455   const Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets(
456       DL, StoreOffset, /* AllowNonInbounds */ false);
457   if (LoadBase != StoreBase)
458     return false;
459   auto LoadAccessSize = LocationSize::precise(DL.getTypeStoreSize(LoadTy));
460   auto StoreAccessSize = LocationSize::precise(DL.getTypeStoreSize(StoreTy));
461   ConstantRange LoadRange(LoadOffset,
462                           LoadOffset + LoadAccessSize.toRaw());
463   ConstantRange StoreRange(StoreOffset,
464                            StoreOffset + StoreAccessSize.toRaw());
465   return LoadRange.intersectWith(StoreRange).isEmptySet();
466 }
467 
468 static Value *getAvailableLoadStore(Instruction *Inst, const Value *Ptr,
469                                     Type *AccessTy, bool AtLeastAtomic,
470                                     const DataLayout &DL, bool *IsLoadCSE) {
471   // If this is a load of Ptr, the loaded value is available.
472   // (This is true even if the load is volatile or atomic, although
473   // those cases are unlikely.)
474   if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
475     // We can value forward from an atomic to a non-atomic, but not the
476     // other way around.
477     if (LI->isAtomic() < AtLeastAtomic)
478       return nullptr;
479 
480     Value *LoadPtr = LI->getPointerOperand()->stripPointerCasts();
481     if (!AreEquivalentAddressValues(LoadPtr, Ptr))
482       return nullptr;
483 
484     if (CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
485       if (IsLoadCSE)
486         *IsLoadCSE = true;
487       return LI;
488     }
489   }
490 
491   // If this is a store through Ptr, the value is available!
492   // (This is true even if the store is volatile or atomic, although
493   // those cases are unlikely.)
494   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
495     // We can value forward from an atomic to a non-atomic, but not the
496     // other way around.
497     if (SI->isAtomic() < AtLeastAtomic)
498       return nullptr;
499 
500     Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
501     if (!AreEquivalentAddressValues(StorePtr, Ptr))
502       return nullptr;
503 
504     if (IsLoadCSE)
505       *IsLoadCSE = false;
506 
507     Value *Val = SI->getValueOperand();
508     if (CastInst::isBitOrNoopPointerCastable(Val->getType(), AccessTy, DL))
509       return Val;
510 
511     TypeSize StoreSize = DL.getTypeSizeInBits(Val->getType());
512     TypeSize LoadSize = DL.getTypeSizeInBits(AccessTy);
513     if (TypeSize::isKnownLE(LoadSize, StoreSize))
514       if (auto *C = dyn_cast<Constant>(Val))
515         return ConstantFoldLoadFromConst(C, AccessTy, DL);
516   }
517 
518   if (auto *MSI = dyn_cast<MemSetInst>(Inst)) {
519     // Don't forward from (non-atomic) memset to atomic load.
520     if (AtLeastAtomic)
521       return nullptr;
522 
523     // Only handle constant memsets.
524     auto *Val = dyn_cast<ConstantInt>(MSI->getValue());
525     auto *Len = dyn_cast<ConstantInt>(MSI->getLength());
526     if (!Val || !Len)
527       return nullptr;
528 
529     // TODO: Handle offsets.
530     Value *Dst = MSI->getDest();
531     if (!AreEquivalentAddressValues(Dst, Ptr))
532       return nullptr;
533 
534     if (IsLoadCSE)
535       *IsLoadCSE = false;
536 
537     TypeSize LoadTypeSize = DL.getTypeSizeInBits(AccessTy);
538     if (LoadTypeSize.isScalable())
539       return nullptr;
540 
541     // Make sure the read bytes are contained in the memset.
542     uint64_t LoadSize = LoadTypeSize.getFixedValue();
543     if ((Len->getValue() * 8).ult(LoadSize))
544       return nullptr;
545 
546     APInt Splat = LoadSize >= 8 ? APInt::getSplat(LoadSize, Val->getValue())
547                                 : Val->getValue().trunc(LoadSize);
548     ConstantInt *SplatC = ConstantInt::get(MSI->getContext(), Splat);
549     if (CastInst::isBitOrNoopPointerCastable(SplatC->getType(), AccessTy, DL))
550       return SplatC;
551 
552     return nullptr;
553   }
554 
555   return nullptr;
556 }
557 
558 Value *llvm::findAvailablePtrLoadStore(
559     const MemoryLocation &Loc, Type *AccessTy, bool AtLeastAtomic,
560     BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan,
561     AAResults *AA, bool *IsLoadCSE, unsigned *NumScanedInst) {
562   if (MaxInstsToScan == 0)
563     MaxInstsToScan = ~0U;
564 
565   const DataLayout &DL = ScanBB->getModule()->getDataLayout();
566   const Value *StrippedPtr = Loc.Ptr->stripPointerCasts();
567 
568   while (ScanFrom != ScanBB->begin()) {
569     // We must ignore debug info directives when counting (otherwise they
570     // would affect codegen).
571     Instruction *Inst = &*--ScanFrom;
572     if (Inst->isDebugOrPseudoInst())
573       continue;
574 
575     // Restore ScanFrom to expected value in case next test succeeds
576     ScanFrom++;
577 
578     if (NumScanedInst)
579       ++(*NumScanedInst);
580 
581     // Don't scan huge blocks.
582     if (MaxInstsToScan-- == 0)
583       return nullptr;
584 
585     --ScanFrom;
586 
587     if (Value *Available = getAvailableLoadStore(Inst, StrippedPtr, AccessTy,
588                                                  AtLeastAtomic, DL, IsLoadCSE))
589       return Available;
590 
591     // Try to get the store size for the type.
592     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
593       Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
594 
595       // If both StrippedPtr and StorePtr reach all the way to an alloca or
596       // global and they are different, ignore the store. This is a trivial form
597       // of alias analysis that is important for reg2mem'd code.
598       if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
599           (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
600           StrippedPtr != StorePtr)
601         continue;
602 
603       if (!AA) {
604         // When AA isn't available, but if the load and the store have the same
605         // base, constant offsets and non-overlapping access ranges, ignore the
606         // store. This is a simple form of alias analysis that is used by the
607         // inliner. FIXME: use BasicAA if possible.
608         if (areNonOverlapSameBaseLoadAndStore(
609                 Loc.Ptr, AccessTy, SI->getPointerOperand(),
610                 SI->getValueOperand()->getType(), DL))
611           continue;
612       } else {
613         // If we have alias analysis and it says the store won't modify the
614         // loaded value, ignore the store.
615         if (!isModSet(AA->getModRefInfo(SI, Loc)))
616           continue;
617       }
618 
619       // Otherwise the store that may or may not alias the pointer, bail out.
620       ++ScanFrom;
621       return nullptr;
622     }
623 
624     // If this is some other instruction that may clobber Ptr, bail out.
625     if (Inst->mayWriteToMemory()) {
626       // If alias analysis claims that it really won't modify the load,
627       // ignore it.
628       if (AA && !isModSet(AA->getModRefInfo(Inst, Loc)))
629         continue;
630 
631       // May modify the pointer, bail out.
632       ++ScanFrom;
633       return nullptr;
634     }
635   }
636 
637   // Got to the start of the block, we didn't find it, but are done for this
638   // block.
639   return nullptr;
640 }
641 
642 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, AAResults &AA,
643                                       bool *IsLoadCSE,
644                                       unsigned MaxInstsToScan) {
645   const DataLayout &DL = Load->getModule()->getDataLayout();
646   Value *StrippedPtr = Load->getPointerOperand()->stripPointerCasts();
647   BasicBlock *ScanBB = Load->getParent();
648   Type *AccessTy = Load->getType();
649   bool AtLeastAtomic = Load->isAtomic();
650 
651   if (!Load->isUnordered())
652     return nullptr;
653 
654   // Try to find an available value first, and delay expensive alias analysis
655   // queries until later.
656   Value *Available = nullptr;;
657   SmallVector<Instruction *> MustNotAliasInsts;
658   for (Instruction &Inst : make_range(++Load->getReverseIterator(),
659                                       ScanBB->rend())) {
660     if (Inst.isDebugOrPseudoInst())
661       continue;
662 
663     if (MaxInstsToScan-- == 0)
664       return nullptr;
665 
666     Available = getAvailableLoadStore(&Inst, StrippedPtr, AccessTy,
667                                       AtLeastAtomic, DL, IsLoadCSE);
668     if (Available)
669       break;
670 
671     if (Inst.mayWriteToMemory())
672       MustNotAliasInsts.push_back(&Inst);
673   }
674 
675   // If we found an available value, ensure that the instructions in between
676   // did not modify the memory location.
677   if (Available) {
678     MemoryLocation Loc = MemoryLocation::get(Load);
679     for (Instruction *Inst : MustNotAliasInsts)
680       if (isModSet(AA.getModRefInfo(Inst, Loc)))
681         return nullptr;
682   }
683 
684   return Available;
685 }
686 
687 bool llvm::canReplacePointersIfEqual(Value *A, Value *B, const DataLayout &DL,
688                                      Instruction *CtxI) {
689   Type *Ty = A->getType();
690   assert(Ty == B->getType() && Ty->isPointerTy() &&
691          "values must have matching pointer types");
692 
693   // NOTE: The checks in the function are incomplete and currently miss illegal
694   // cases! The current implementation is a starting point and the
695   // implementation should be made stricter over time.
696   if (auto *C = dyn_cast<Constant>(B)) {
697     // Do not allow replacing a pointer with a constant pointer, unless it is
698     // either null or at least one byte is dereferenceable.
699     APInt OneByte(DL.getPointerTypeSizeInBits(Ty), 1);
700     return C->isNullValue() ||
701            isDereferenceableAndAlignedPointer(B, Align(1), OneByte, DL, CtxI);
702   }
703 
704   return true;
705 }
706