xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/Loads.cpp (revision 7ebc7d1ab76b9d06be9400d6c9fc74fcc43603a1)
1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines simple local analyses for load instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/Loads.h"
14 #include "llvm/Analysis/AliasAnalysis.h"
15 #include "llvm/Analysis/AssumeBundleQueries.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/MemoryBuiltins.h"
18 #include "llvm/Analysis/MemoryLocation.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26 
27 using namespace llvm;
28 
29 static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment,
30                       const DataLayout &DL) {
31   Align BA = Base->getPointerAlignment(DL);
32   return BA >= Alignment && Offset.isAligned(BA);
33 }
34 
35 /// Test if V is always a pointer to allocated and suitably aligned memory for
36 /// a simple load or store.
37 static bool isDereferenceableAndAlignedPointer(
38     const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL,
39     const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT,
40     const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited,
41     unsigned MaxDepth) {
42   assert(V->getType()->isPointerTy() && "Base must be pointer");
43 
44   // Recursion limit.
45   if (MaxDepth-- == 0)
46     return false;
47 
48   // Already visited?  Bail out, we've likely hit unreachable code.
49   if (!Visited.insert(V).second)
50     return false;
51 
52   // Note that it is not safe to speculate into a malloc'd region because
53   // malloc may return null.
54 
55   // For GEPs, determine if the indexing lands within the allocated object.
56   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
57     const Value *Base = GEP->getPointerOperand();
58 
59     APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
60     if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
61         !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value()))
62              .isMinValue())
63       return false;
64 
65     // If the base pointer is dereferenceable for Offset+Size bytes, then the
66     // GEP (== Base + Offset) is dereferenceable for Size bytes.  If the base
67     // pointer is aligned to Align bytes, and the Offset is divisible by Align
68     // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
69     // aligned to Align bytes.
70 
71     // Offset and Size may have different bit widths if we have visited an
72     // addrspacecast, so we can't do arithmetic directly on the APInt values.
73     return isDereferenceableAndAlignedPointer(
74         Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL,
75         CtxI, AC, DT, TLI, Visited, MaxDepth);
76   }
77 
78   // bitcast instructions are no-ops as far as dereferenceability is concerned.
79   if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
80     if (BC->getSrcTy()->isPointerTy())
81       return isDereferenceableAndAlignedPointer(
82         BC->getOperand(0), Alignment, Size, DL, CtxI, AC, DT, TLI,
83           Visited, MaxDepth);
84   }
85 
86   // Recurse into both hands of select.
87   if (const SelectInst *Sel = dyn_cast<SelectInst>(V)) {
88     return isDereferenceableAndAlignedPointer(Sel->getTrueValue(), Alignment,
89                                               Size, DL, CtxI, AC, DT, TLI,
90                                               Visited, MaxDepth) &&
91            isDereferenceableAndAlignedPointer(Sel->getFalseValue(), Alignment,
92                                               Size, DL, CtxI, AC, DT, TLI,
93                                               Visited, MaxDepth);
94   }
95 
96   bool CheckForNonNull, CheckForFreed;
97   APInt KnownDerefBytes(Size.getBitWidth(),
98                         V->getPointerDereferenceableBytes(DL, CheckForNonNull,
99                                                           CheckForFreed));
100   if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) &&
101       !CheckForFreed)
102     if (!CheckForNonNull ||
103         isKnownNonZero(V, SimplifyQuery(DL, DT, AC, CtxI))) {
104       // As we recursed through GEPs to get here, we've incrementally checked
105       // that each step advanced by a multiple of the alignment. If our base is
106       // properly aligned, then the original offset accessed must also be.
107       APInt Offset(DL.getTypeStoreSizeInBits(V->getType()), 0);
108       return isAligned(V, Offset, Alignment, DL);
109     }
110 
111   /// TODO refactor this function to be able to search independently for
112   /// Dereferencability and Alignment requirements.
113 
114 
115   if (const auto *Call = dyn_cast<CallBase>(V)) {
116     if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
117       return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI,
118                                                 AC, DT, TLI, Visited, MaxDepth);
119 
120     // If we have a call we can't recurse through, check to see if this is an
121     // allocation function for which we can establish an minimum object size.
122     // Such a minimum object size is analogous to a deref_or_null attribute in
123     // that we still need to prove the result non-null at point of use.
124     // NOTE: We can only use the object size as a base fact as we a) need to
125     // prove alignment too, and b) don't want the compile time impact of a
126     // separate recursive walk.
127     ObjectSizeOpts Opts;
128     // TODO: It may be okay to round to align, but that would imply that
129     // accessing slightly out of bounds was legal, and we're currently
130     // inconsistent about that.  For the moment, be conservative.
131     Opts.RoundToAlign = false;
132     Opts.NullIsUnknownSize = true;
133     uint64_t ObjSize;
134     if (getObjectSize(V, ObjSize, DL, TLI, Opts)) {
135       APInt KnownDerefBytes(Size.getBitWidth(), ObjSize);
136       if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) &&
137           isKnownNonZero(V, SimplifyQuery(DL, DT, AC, CtxI)) &&
138           !V->canBeFreed()) {
139         // As we recursed through GEPs to get here, we've incrementally
140         // checked that each step advanced by a multiple of the alignment. If
141         // our base is properly aligned, then the original offset accessed
142         // must also be.
143         APInt Offset(DL.getTypeStoreSizeInBits(V->getType()), 0);
144         return isAligned(V, Offset, Alignment, DL);
145       }
146     }
147   }
148 
149   // For gc.relocate, look through relocations
150   if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
151     return isDereferenceableAndAlignedPointer(RelocateInst->getDerivedPtr(),
152                                               Alignment, Size, DL, CtxI, AC, DT,
153                                               TLI, Visited, MaxDepth);
154 
155   if (const AddrSpaceCastOperator *ASC = dyn_cast<AddrSpaceCastOperator>(V))
156     return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment,
157                                               Size, DL, CtxI, AC, DT, TLI,
158                                               Visited, MaxDepth);
159 
160   if (CtxI) {
161     /// Look through assumes to see if both dereferencability and alignment can
162     /// be provent by an assume
163     RetainedKnowledge AlignRK;
164     RetainedKnowledge DerefRK;
165     if (getKnowledgeForValue(
166             V, {Attribute::Dereferenceable, Attribute::Alignment}, AC,
167             [&](RetainedKnowledge RK, Instruction *Assume, auto) {
168               if (!isValidAssumeForContext(Assume, CtxI, DT))
169                 return false;
170               if (RK.AttrKind == Attribute::Alignment)
171                 AlignRK = std::max(AlignRK, RK);
172               if (RK.AttrKind == Attribute::Dereferenceable)
173                 DerefRK = std::max(DerefRK, RK);
174               if (AlignRK && DerefRK && AlignRK.ArgValue >= Alignment.value() &&
175                   DerefRK.ArgValue >= Size.getZExtValue())
176                 return true; // We have found what we needed so we stop looking
177               return false;  // Other assumes may have better information. so
178                              // keep looking
179             }))
180       return true;
181   }
182 
183   // If we don't know, assume the worst.
184   return false;
185 }
186 
187 bool llvm::isDereferenceableAndAlignedPointer(
188     const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL,
189     const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT,
190     const TargetLibraryInfo *TLI) {
191   // Note: At the moment, Size can be zero.  This ends up being interpreted as
192   // a query of whether [Base, V] is dereferenceable and V is aligned (since
193   // that's what the implementation happened to do).  It's unclear if this is
194   // the desired semantic, but at least SelectionDAG does exercise this case.
195 
196   SmallPtrSet<const Value *, 32> Visited;
197   return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, AC,
198                                               DT, TLI, Visited, 16);
199 }
200 
201 bool llvm::isDereferenceableAndAlignedPointer(
202     const Value *V, Type *Ty, Align Alignment, const DataLayout &DL,
203     const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT,
204     const TargetLibraryInfo *TLI) {
205   // For unsized types or scalable vectors we don't know exactly how many bytes
206   // are dereferenced, so bail out.
207   if (!Ty->isSized() || Ty->isScalableTy())
208     return false;
209 
210   // When dereferenceability information is provided by a dereferenceable
211   // attribute, we know exactly how many bytes are dereferenceable. If we can
212   // determine the exact offset to the attributed variable, we can use that
213   // information here.
214 
215   APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()),
216                    DL.getTypeStoreSize(Ty));
217   return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI,
218                                             AC, DT, TLI);
219 }
220 
221 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty,
222                                     const DataLayout &DL,
223                                     const Instruction *CtxI,
224                                     AssumptionCache *AC,
225                                     const DominatorTree *DT,
226                                     const TargetLibraryInfo *TLI) {
227   return isDereferenceableAndAlignedPointer(V, Ty, Align(1), DL, CtxI, AC, DT,
228                                             TLI);
229 }
230 
231 /// Test if A and B will obviously have the same value.
232 ///
233 /// This includes recognizing that %t0 and %t1 will have the same
234 /// value in code like this:
235 /// \code
236 ///   %t0 = getelementptr \@a, 0, 3
237 ///   store i32 0, i32* %t0
238 ///   %t1 = getelementptr \@a, 0, 3
239 ///   %t2 = load i32* %t1
240 /// \endcode
241 ///
242 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
243   // Test if the values are trivially equivalent.
244   if (A == B)
245     return true;
246 
247   // Test if the values come from identical arithmetic instructions.
248   // Use isIdenticalToWhenDefined instead of isIdenticalTo because
249   // this function is only used when one address use dominates the
250   // other, which means that they'll always either have the same
251   // value or one of them will have an undefined value.
252   if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
253       isa<GetElementPtrInst>(A))
254     if (const Instruction *BI = dyn_cast<Instruction>(B))
255       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
256         return true;
257 
258   // Otherwise they may not be equivalent.
259   return false;
260 }
261 
262 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L,
263                                              ScalarEvolution &SE,
264                                              DominatorTree &DT,
265                                              AssumptionCache *AC) {
266   auto &DL = LI->getDataLayout();
267   Value *Ptr = LI->getPointerOperand();
268 
269   APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()),
270                 DL.getTypeStoreSize(LI->getType()).getFixedValue());
271   const Align Alignment = LI->getAlign();
272 
273   Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI();
274 
275   // If given a uniform (i.e. non-varying) address, see if we can prove the
276   // access is safe within the loop w/o needing predication.
277   if (L->isLoopInvariant(Ptr))
278     return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL,
279                                               HeaderFirstNonPHI, AC, &DT);
280 
281   // Otherwise, check to see if we have a repeating access pattern where we can
282   // prove that all accesses are well aligned and dereferenceable.
283   auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr));
284   if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine())
285     return false;
286   auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE));
287   if (!Step)
288     return false;
289 
290   auto TC = SE.getSmallConstantMaxTripCount(L);
291   if (!TC)
292     return false;
293 
294   // TODO: Handle overlapping accesses.
295   // We should be computing AccessSize as (TC - 1) * Step + EltSize.
296   if (EltSize.sgt(Step->getAPInt()))
297     return false;
298 
299   // Compute the total access size for access patterns with unit stride and
300   // patterns with gaps. For patterns with unit stride, Step and EltSize are the
301   // same.
302   // For patterns with gaps (i.e. non unit stride), we are
303   // accessing EltSize bytes at every Step.
304   APInt AccessSize = TC * Step->getAPInt();
305 
306   assert(SE.isLoopInvariant(AddRec->getStart(), L) &&
307          "implied by addrec definition");
308   Value *Base = nullptr;
309   if (auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart())) {
310     Base = StartS->getValue();
311   } else if (auto *StartS = dyn_cast<SCEVAddExpr>(AddRec->getStart())) {
312     // Handle (NewBase + offset) as start value.
313     const auto *Offset = dyn_cast<SCEVConstant>(StartS->getOperand(0));
314     const auto *NewBase = dyn_cast<SCEVUnknown>(StartS->getOperand(1));
315     if (StartS->getNumOperands() == 2 && Offset && NewBase) {
316       // The following code below assumes the offset is unsigned, but GEP
317       // offsets are treated as signed so we can end up with a signed value
318       // here too. For example, suppose the initial PHI value is (i8 255),
319       // the offset will be treated as (i8 -1) and sign-extended to (i64 -1).
320       if (Offset->getAPInt().isNegative())
321         return false;
322 
323       // For the moment, restrict ourselves to the case where the offset is a
324       // multiple of the requested alignment and the base is aligned.
325       // TODO: generalize if a case found which warrants
326       if (Offset->getAPInt().urem(Alignment.value()) != 0)
327         return false;
328       Base = NewBase->getValue();
329       bool Overflow = false;
330       AccessSize = AccessSize.uadd_ov(Offset->getAPInt(), Overflow);
331       if (Overflow)
332         return false;
333     }
334   }
335 
336   if (!Base)
337     return false;
338 
339   // For the moment, restrict ourselves to the case where the access size is a
340   // multiple of the requested alignment and the base is aligned.
341   // TODO: generalize if a case found which warrants
342   if (EltSize.urem(Alignment.value()) != 0)
343     return false;
344   return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL,
345                                             HeaderFirstNonPHI, AC, &DT);
346 }
347 
348 /// Check if executing a load of this pointer value cannot trap.
349 ///
350 /// If DT and ScanFrom are specified this method performs context-sensitive
351 /// analysis and returns true if it is safe to load immediately before ScanFrom.
352 ///
353 /// If it is not obviously safe to load from the specified pointer, we do
354 /// a quick local scan of the basic block containing \c ScanFrom, to determine
355 /// if the address is already accessed.
356 ///
357 /// This uses the pointee type to determine how many bytes need to be safe to
358 /// load from the pointer.
359 bool llvm::isSafeToLoadUnconditionally(Value *V, Align Alignment, const APInt &Size,
360                                        const DataLayout &DL,
361                                        Instruction *ScanFrom,
362                                        AssumptionCache *AC,
363                                        const DominatorTree *DT,
364                                        const TargetLibraryInfo *TLI) {
365   // If DT is not specified we can't make context-sensitive query
366   const Instruction* CtxI = DT ? ScanFrom : nullptr;
367   if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, AC, DT,
368                                          TLI))
369     return true;
370 
371   if (!ScanFrom)
372     return false;
373 
374   if (Size.getBitWidth() > 64)
375     return false;
376   const TypeSize LoadSize = TypeSize::getFixed(Size.getZExtValue());
377 
378   // Otherwise, be a little bit aggressive by scanning the local block where we
379   // want to check to see if the pointer is already being loaded or stored
380   // from/to.  If so, the previous load or store would have already trapped,
381   // so there is no harm doing an extra load (also, CSE will later eliminate
382   // the load entirely).
383   BasicBlock::iterator BBI = ScanFrom->getIterator(),
384                        E = ScanFrom->getParent()->begin();
385 
386   // We can at least always strip pointer casts even though we can't use the
387   // base here.
388   V = V->stripPointerCasts();
389 
390   while (BBI != E) {
391     --BBI;
392 
393     // If we see a free or a call which may write to memory (i.e. which might do
394     // a free) the pointer could be marked invalid.
395     if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
396         !isa<LifetimeIntrinsic>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
397       return false;
398 
399     Value *AccessedPtr;
400     Type *AccessedTy;
401     Align AccessedAlign;
402     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
403       // Ignore volatile loads. The execution of a volatile load cannot
404       // be used to prove an address is backed by regular memory; it can,
405       // for example, point to an MMIO register.
406       if (LI->isVolatile())
407         continue;
408       AccessedPtr = LI->getPointerOperand();
409       AccessedTy = LI->getType();
410       AccessedAlign = LI->getAlign();
411     } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
412       // Ignore volatile stores (see comment for loads).
413       if (SI->isVolatile())
414         continue;
415       AccessedPtr = SI->getPointerOperand();
416       AccessedTy = SI->getValueOperand()->getType();
417       AccessedAlign = SI->getAlign();
418     } else
419       continue;
420 
421     if (AccessedAlign < Alignment)
422       continue;
423 
424     // Handle trivial cases.
425     if (AccessedPtr == V &&
426         TypeSize::isKnownLE(LoadSize, DL.getTypeStoreSize(AccessedTy)))
427       return true;
428 
429     if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
430         TypeSize::isKnownLE(LoadSize, DL.getTypeStoreSize(AccessedTy)))
431       return true;
432   }
433   return false;
434 }
435 
436 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment,
437                                        const DataLayout &DL,
438                                        Instruction *ScanFrom,
439                                        AssumptionCache *AC,
440                                        const DominatorTree *DT,
441                                        const TargetLibraryInfo *TLI) {
442   TypeSize TySize = DL.getTypeStoreSize(Ty);
443   if (TySize.isScalable())
444     return false;
445   APInt Size(DL.getIndexTypeSizeInBits(V->getType()), TySize.getFixedValue());
446   return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, AC, DT,
447                                      TLI);
448 }
449 
450 /// DefMaxInstsToScan - the default number of maximum instructions
451 /// to scan in the block, used by FindAvailableLoadedValue().
452 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
453 /// threading in part by eliminating partially redundant loads.
454 /// At that point, the value of MaxInstsToScan was already set to '6'
455 /// without documented explanation.
456 cl::opt<unsigned>
457 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
458   cl::desc("Use this to specify the default maximum number of instructions "
459            "to scan backward from a given instruction, when searching for "
460            "available loaded value"));
461 
462 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, BasicBlock *ScanBB,
463                                       BasicBlock::iterator &ScanFrom,
464                                       unsigned MaxInstsToScan,
465                                       BatchAAResults *AA, bool *IsLoad,
466                                       unsigned *NumScanedInst) {
467   // Don't CSE load that is volatile or anything stronger than unordered.
468   if (!Load->isUnordered())
469     return nullptr;
470 
471   MemoryLocation Loc = MemoryLocation::get(Load);
472   return findAvailablePtrLoadStore(Loc, Load->getType(), Load->isAtomic(),
473                                    ScanBB, ScanFrom, MaxInstsToScan, AA, IsLoad,
474                                    NumScanedInst);
475 }
476 
477 // Check if the load and the store have the same base, constant offsets and
478 // non-overlapping access ranges.
479 static bool areNonOverlapSameBaseLoadAndStore(const Value *LoadPtr,
480                                               Type *LoadTy,
481                                               const Value *StorePtr,
482                                               Type *StoreTy,
483                                               const DataLayout &DL) {
484   APInt LoadOffset(DL.getIndexTypeSizeInBits(LoadPtr->getType()), 0);
485   APInt StoreOffset(DL.getIndexTypeSizeInBits(StorePtr->getType()), 0);
486   const Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets(
487       DL, LoadOffset, /* AllowNonInbounds */ false);
488   const Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets(
489       DL, StoreOffset, /* AllowNonInbounds */ false);
490   if (LoadBase != StoreBase)
491     return false;
492   auto LoadAccessSize = LocationSize::precise(DL.getTypeStoreSize(LoadTy));
493   auto StoreAccessSize = LocationSize::precise(DL.getTypeStoreSize(StoreTy));
494   ConstantRange LoadRange(LoadOffset,
495                           LoadOffset + LoadAccessSize.toRaw());
496   ConstantRange StoreRange(StoreOffset,
497                            StoreOffset + StoreAccessSize.toRaw());
498   return LoadRange.intersectWith(StoreRange).isEmptySet();
499 }
500 
501 static Value *getAvailableLoadStore(Instruction *Inst, const Value *Ptr,
502                                     Type *AccessTy, bool AtLeastAtomic,
503                                     const DataLayout &DL, bool *IsLoadCSE) {
504   // If this is a load of Ptr, the loaded value is available.
505   // (This is true even if the load is volatile or atomic, although
506   // those cases are unlikely.)
507   if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
508     // We can value forward from an atomic to a non-atomic, but not the
509     // other way around.
510     if (LI->isAtomic() < AtLeastAtomic)
511       return nullptr;
512 
513     Value *LoadPtr = LI->getPointerOperand()->stripPointerCasts();
514     if (!AreEquivalentAddressValues(LoadPtr, Ptr))
515       return nullptr;
516 
517     if (CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
518       if (IsLoadCSE)
519         *IsLoadCSE = true;
520       return LI;
521     }
522   }
523 
524   // If this is a store through Ptr, the value is available!
525   // (This is true even if the store is volatile or atomic, although
526   // those cases are unlikely.)
527   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
528     // We can value forward from an atomic to a non-atomic, but not the
529     // other way around.
530     if (SI->isAtomic() < AtLeastAtomic)
531       return nullptr;
532 
533     Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
534     if (!AreEquivalentAddressValues(StorePtr, Ptr))
535       return nullptr;
536 
537     if (IsLoadCSE)
538       *IsLoadCSE = false;
539 
540     Value *Val = SI->getValueOperand();
541     if (CastInst::isBitOrNoopPointerCastable(Val->getType(), AccessTy, DL))
542       return Val;
543 
544     TypeSize StoreSize = DL.getTypeSizeInBits(Val->getType());
545     TypeSize LoadSize = DL.getTypeSizeInBits(AccessTy);
546     if (TypeSize::isKnownLE(LoadSize, StoreSize))
547       if (auto *C = dyn_cast<Constant>(Val))
548         return ConstantFoldLoadFromConst(C, AccessTy, DL);
549   }
550 
551   if (auto *MSI = dyn_cast<MemSetInst>(Inst)) {
552     // Don't forward from (non-atomic) memset to atomic load.
553     if (AtLeastAtomic)
554       return nullptr;
555 
556     // Only handle constant memsets.
557     auto *Val = dyn_cast<ConstantInt>(MSI->getValue());
558     auto *Len = dyn_cast<ConstantInt>(MSI->getLength());
559     if (!Val || !Len)
560       return nullptr;
561 
562     // TODO: Handle offsets.
563     Value *Dst = MSI->getDest();
564     if (!AreEquivalentAddressValues(Dst, Ptr))
565       return nullptr;
566 
567     if (IsLoadCSE)
568       *IsLoadCSE = false;
569 
570     TypeSize LoadTypeSize = DL.getTypeSizeInBits(AccessTy);
571     if (LoadTypeSize.isScalable())
572       return nullptr;
573 
574     // Make sure the read bytes are contained in the memset.
575     uint64_t LoadSize = LoadTypeSize.getFixedValue();
576     if ((Len->getValue() * 8).ult(LoadSize))
577       return nullptr;
578 
579     APInt Splat = LoadSize >= 8 ? APInt::getSplat(LoadSize, Val->getValue())
580                                 : Val->getValue().trunc(LoadSize);
581     ConstantInt *SplatC = ConstantInt::get(MSI->getContext(), Splat);
582     if (CastInst::isBitOrNoopPointerCastable(SplatC->getType(), AccessTy, DL))
583       return SplatC;
584 
585     return nullptr;
586   }
587 
588   return nullptr;
589 }
590 
591 Value *llvm::findAvailablePtrLoadStore(
592     const MemoryLocation &Loc, Type *AccessTy, bool AtLeastAtomic,
593     BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan,
594     BatchAAResults *AA, bool *IsLoadCSE, unsigned *NumScanedInst) {
595   if (MaxInstsToScan == 0)
596     MaxInstsToScan = ~0U;
597 
598   const DataLayout &DL = ScanBB->getDataLayout();
599   const Value *StrippedPtr = Loc.Ptr->stripPointerCasts();
600 
601   while (ScanFrom != ScanBB->begin()) {
602     // We must ignore debug info directives when counting (otherwise they
603     // would affect codegen).
604     Instruction *Inst = &*--ScanFrom;
605     if (Inst->isDebugOrPseudoInst())
606       continue;
607 
608     // Restore ScanFrom to expected value in case next test succeeds
609     ScanFrom++;
610 
611     if (NumScanedInst)
612       ++(*NumScanedInst);
613 
614     // Don't scan huge blocks.
615     if (MaxInstsToScan-- == 0)
616       return nullptr;
617 
618     --ScanFrom;
619 
620     if (Value *Available = getAvailableLoadStore(Inst, StrippedPtr, AccessTy,
621                                                  AtLeastAtomic, DL, IsLoadCSE))
622       return Available;
623 
624     // Try to get the store size for the type.
625     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
626       Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
627 
628       // If both StrippedPtr and StorePtr reach all the way to an alloca or
629       // global and they are different, ignore the store. This is a trivial form
630       // of alias analysis that is important for reg2mem'd code.
631       if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
632           (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
633           StrippedPtr != StorePtr)
634         continue;
635 
636       if (!AA) {
637         // When AA isn't available, but if the load and the store have the same
638         // base, constant offsets and non-overlapping access ranges, ignore the
639         // store. This is a simple form of alias analysis that is used by the
640         // inliner. FIXME: use BasicAA if possible.
641         if (areNonOverlapSameBaseLoadAndStore(
642                 Loc.Ptr, AccessTy, SI->getPointerOperand(),
643                 SI->getValueOperand()->getType(), DL))
644           continue;
645       } else {
646         // If we have alias analysis and it says the store won't modify the
647         // loaded value, ignore the store.
648         if (!isModSet(AA->getModRefInfo(SI, Loc)))
649           continue;
650       }
651 
652       // Otherwise the store that may or may not alias the pointer, bail out.
653       ++ScanFrom;
654       return nullptr;
655     }
656 
657     // If this is some other instruction that may clobber Ptr, bail out.
658     if (Inst->mayWriteToMemory()) {
659       // If alias analysis claims that it really won't modify the load,
660       // ignore it.
661       if (AA && !isModSet(AA->getModRefInfo(Inst, Loc)))
662         continue;
663 
664       // May modify the pointer, bail out.
665       ++ScanFrom;
666       return nullptr;
667     }
668   }
669 
670   // Got to the start of the block, we didn't find it, but are done for this
671   // block.
672   return nullptr;
673 }
674 
675 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, BatchAAResults &AA,
676                                       bool *IsLoadCSE,
677                                       unsigned MaxInstsToScan) {
678   const DataLayout &DL = Load->getDataLayout();
679   Value *StrippedPtr = Load->getPointerOperand()->stripPointerCasts();
680   BasicBlock *ScanBB = Load->getParent();
681   Type *AccessTy = Load->getType();
682   bool AtLeastAtomic = Load->isAtomic();
683 
684   if (!Load->isUnordered())
685     return nullptr;
686 
687   // Try to find an available value first, and delay expensive alias analysis
688   // queries until later.
689   Value *Available = nullptr;
690   SmallVector<Instruction *> MustNotAliasInsts;
691   for (Instruction &Inst : make_range(++Load->getReverseIterator(),
692                                       ScanBB->rend())) {
693     if (Inst.isDebugOrPseudoInst())
694       continue;
695 
696     if (MaxInstsToScan-- == 0)
697       return nullptr;
698 
699     Available = getAvailableLoadStore(&Inst, StrippedPtr, AccessTy,
700                                       AtLeastAtomic, DL, IsLoadCSE);
701     if (Available)
702       break;
703 
704     if (Inst.mayWriteToMemory())
705       MustNotAliasInsts.push_back(&Inst);
706   }
707 
708   // If we found an available value, ensure that the instructions in between
709   // did not modify the memory location.
710   if (Available) {
711     MemoryLocation Loc = MemoryLocation::get(Load);
712     for (Instruction *Inst : MustNotAliasInsts)
713       if (isModSet(AA.getModRefInfo(Inst, Loc)))
714         return nullptr;
715   }
716 
717   return Available;
718 }
719 
720 // Returns true if a use is either in an ICmp/PtrToInt or a Phi/Select that only
721 // feeds into them.
722 static bool isPointerUseReplacable(const Use &U) {
723   unsigned Limit = 40;
724   SmallVector<const User *> Worklist({U.getUser()});
725   SmallPtrSet<const User *, 8> Visited;
726 
727   while (!Worklist.empty() && --Limit) {
728     auto *User = Worklist.pop_back_val();
729     if (!Visited.insert(User).second)
730       continue;
731     if (isa<ICmpInst, PtrToIntInst>(User))
732       continue;
733     if (isa<PHINode, SelectInst>(User))
734       Worklist.append(User->user_begin(), User->user_end());
735     else
736       return false;
737   }
738 
739   return Limit != 0;
740 }
741 
742 // Returns true if `To` is a null pointer, constant dereferenceable pointer or
743 // both pointers have the same underlying objects.
744 static bool isPointerAlwaysReplaceable(const Value *From, const Value *To,
745                                        const DataLayout &DL) {
746   // This is not strictly correct, but we do it for now to retain important
747   // optimizations.
748   if (isa<ConstantPointerNull>(To))
749     return true;
750   if (isa<Constant>(To) &&
751       isDereferenceablePointer(To, Type::getInt8Ty(To->getContext()), DL))
752     return true;
753   return getUnderlyingObjectAggressive(From) ==
754          getUnderlyingObjectAggressive(To);
755 }
756 
757 bool llvm::canReplacePointersInUseIfEqual(const Use &U, const Value *To,
758                                           const DataLayout &DL) {
759   assert(U->getType() == To->getType() && "values must have matching types");
760   // Not a pointer, just return true.
761   if (!To->getType()->isPointerTy())
762     return true;
763 
764   if (isPointerAlwaysReplaceable(&*U, To, DL))
765     return true;
766   return isPointerUseReplacable(U);
767 }
768 
769 bool llvm::canReplacePointersIfEqual(const Value *From, const Value *To,
770                                      const DataLayout &DL) {
771   assert(From->getType() == To->getType() && "values must have matching types");
772   // Not a pointer, just return true.
773   if (!From->getType()->isPointerTy())
774     return true;
775 
776   return isPointerAlwaysReplaceable(From, To, DL);
777 }
778 
779 bool llvm::isDereferenceableReadOnlyLoop(Loop *L, ScalarEvolution *SE,
780                                          DominatorTree *DT,
781                                          AssumptionCache *AC) {
782   for (BasicBlock *BB : L->blocks()) {
783     for (Instruction &I : *BB) {
784       if (auto *LI = dyn_cast<LoadInst>(&I)) {
785         if (!isDereferenceableAndAlignedInLoop(LI, L, *SE, *DT, AC))
786           return false;
787       } else if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow())
788         return false;
789     }
790   }
791   return true;
792 }
793