xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/Loads.cpp (revision 7c20397b724a55001c2054fa133a768e9d06eb1c)
1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines simple local analyses for load instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/Loads.h"
14 #include "llvm/Analysis/AliasAnalysis.h"
15 #include "llvm/Analysis/AssumeBundleQueries.h"
16 #include "llvm/Analysis/CaptureTracking.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/MemoryBuiltins.h"
19 #include "llvm/Analysis/MemoryLocation.h"
20 #include "llvm/Analysis/ScalarEvolution.h"
21 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/GlobalAlias.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Operator.h"
31 
32 using namespace llvm;
33 
34 static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment,
35                       const DataLayout &DL) {
36   Align BA = Base->getPointerAlignment(DL);
37   const APInt APAlign(Offset.getBitWidth(), Alignment.value());
38   assert(APAlign.isPowerOf2() && "must be a power of 2!");
39   return BA >= Alignment && !(Offset & (APAlign - 1));
40 }
41 
42 /// Test if V is always a pointer to allocated and suitably aligned memory for
43 /// a simple load or store.
44 static bool isDereferenceableAndAlignedPointer(
45     const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL,
46     const Instruction *CtxI, const DominatorTree *DT,
47     const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited,
48     unsigned MaxDepth) {
49   assert(V->getType()->isPointerTy() && "Base must be pointer");
50 
51   // Recursion limit.
52   if (MaxDepth-- == 0)
53     return false;
54 
55   // Already visited?  Bail out, we've likely hit unreachable code.
56   if (!Visited.insert(V).second)
57     return false;
58 
59   // Note that it is not safe to speculate into a malloc'd region because
60   // malloc may return null.
61 
62   // Recurse into both hands of select.
63   if (const SelectInst *Sel = dyn_cast<SelectInst>(V)) {
64     return isDereferenceableAndAlignedPointer(Sel->getTrueValue(), Alignment,
65                                               Size, DL, CtxI, DT, TLI, Visited,
66                                               MaxDepth) &&
67            isDereferenceableAndAlignedPointer(Sel->getFalseValue(), Alignment,
68                                               Size, DL, CtxI, DT, TLI, Visited,
69                                               MaxDepth);
70   }
71 
72   // bitcast instructions are no-ops as far as dereferenceability is concerned.
73   if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
74     if (BC->getSrcTy()->isPointerTy())
75       return isDereferenceableAndAlignedPointer(
76           BC->getOperand(0), Alignment, Size, DL, CtxI, DT, TLI,
77           Visited, MaxDepth);
78   }
79 
80   bool CheckForNonNull, CheckForFreed;
81   APInt KnownDerefBytes(Size.getBitWidth(),
82                         V->getPointerDereferenceableBytes(DL, CheckForNonNull,
83                                                           CheckForFreed));
84   if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) &&
85       !CheckForFreed)
86     if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) {
87       // As we recursed through GEPs to get here, we've incrementally checked
88       // that each step advanced by a multiple of the alignment. If our base is
89       // properly aligned, then the original offset accessed must also be.
90       Type *Ty = V->getType();
91       assert(Ty->isSized() && "must be sized");
92       APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
93       return isAligned(V, Offset, Alignment, DL);
94     }
95 
96   if (CtxI) {
97     /// Look through assumes to see if both dereferencability and alignment can
98     /// be provent by an assume
99     RetainedKnowledge AlignRK;
100     RetainedKnowledge DerefRK;
101     if (getKnowledgeForValue(
102             V, {Attribute::Dereferenceable, Attribute::Alignment}, nullptr,
103             [&](RetainedKnowledge RK, Instruction *Assume, auto) {
104               if (!isValidAssumeForContext(Assume, CtxI))
105                 return false;
106               if (RK.AttrKind == Attribute::Alignment)
107                 AlignRK = std::max(AlignRK, RK);
108               if (RK.AttrKind == Attribute::Dereferenceable)
109                 DerefRK = std::max(DerefRK, RK);
110               if (AlignRK && DerefRK && AlignRK.ArgValue >= Alignment.value() &&
111                   DerefRK.ArgValue >= Size.getZExtValue())
112                 return true; // We have found what we needed so we stop looking
113               return false;  // Other assumes may have better information. so
114                              // keep looking
115             }))
116       return true;
117   }
118   /// TODO refactor this function to be able to search independently for
119   /// Dereferencability and Alignment requirements.
120 
121   // For GEPs, determine if the indexing lands within the allocated object.
122   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
123     const Value *Base = GEP->getPointerOperand();
124 
125     APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
126     if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
127         !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value()))
128              .isMinValue())
129       return false;
130 
131     // If the base pointer is dereferenceable for Offset+Size bytes, then the
132     // GEP (== Base + Offset) is dereferenceable for Size bytes.  If the base
133     // pointer is aligned to Align bytes, and the Offset is divisible by Align
134     // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
135     // aligned to Align bytes.
136 
137     // Offset and Size may have different bit widths if we have visited an
138     // addrspacecast, so we can't do arithmetic directly on the APInt values.
139     return isDereferenceableAndAlignedPointer(
140         Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL,
141         CtxI, DT, TLI, Visited, MaxDepth);
142   }
143 
144   // For gc.relocate, look through relocations
145   if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
146     return isDereferenceableAndAlignedPointer(RelocateInst->getDerivedPtr(),
147                                               Alignment, Size, DL, CtxI, DT,
148                                               TLI, Visited, MaxDepth);
149 
150   if (const AddrSpaceCastOperator *ASC = dyn_cast<AddrSpaceCastOperator>(V))
151     return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment,
152                                               Size, DL, CtxI, DT, TLI,
153                                               Visited, MaxDepth);
154 
155   if (const auto *Call = dyn_cast<CallBase>(V)) {
156     if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
157       return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI,
158                                                 DT, TLI, Visited, MaxDepth);
159 
160     // If we have a call we can't recurse through, check to see if this is an
161     // allocation function for which we can establish an minimum object size.
162     // Such a minimum object size is analogous to a deref_or_null attribute in
163     // that we still need to prove the result non-null at point of use.
164     // NOTE: We can only use the object size as a base fact as we a) need to
165     // prove alignment too, and b) don't want the compile time impact of a
166     // separate recursive walk.
167     ObjectSizeOpts Opts;
168     // TODO: It may be okay to round to align, but that would imply that
169     // accessing slightly out of bounds was legal, and we're currently
170     // inconsistent about that.  For the moment, be conservative.
171     Opts.RoundToAlign = false;
172     Opts.NullIsUnknownSize = true;
173     uint64_t ObjSize;
174     if (getObjectSize(V, ObjSize, DL, TLI, Opts)) {
175       APInt KnownDerefBytes(Size.getBitWidth(), ObjSize);
176       if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) &&
177           isKnownNonZero(V, DL, 0, nullptr, CtxI, DT) && !V->canBeFreed()) {
178         // As we recursed through GEPs to get here, we've incrementally
179         // checked that each step advanced by a multiple of the alignment. If
180         // our base is properly aligned, then the original offset accessed
181         // must also be.
182         Type *Ty = V->getType();
183         assert(Ty->isSized() && "must be sized");
184         APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
185         return isAligned(V, Offset, Alignment, DL);
186       }
187     }
188   }
189 
190   // If we don't know, assume the worst.
191   return false;
192 }
193 
194 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Align Alignment,
195                                               const APInt &Size,
196                                               const DataLayout &DL,
197                                               const Instruction *CtxI,
198                                               const DominatorTree *DT,
199                                               const TargetLibraryInfo *TLI) {
200   // Note: At the moment, Size can be zero.  This ends up being interpreted as
201   // a query of whether [Base, V] is dereferenceable and V is aligned (since
202   // that's what the implementation happened to do).  It's unclear if this is
203   // the desired semantic, but at least SelectionDAG does exercise this case.
204 
205   SmallPtrSet<const Value *, 32> Visited;
206   return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT,
207                                               TLI, Visited, 16);
208 }
209 
210 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty,
211                                               Align Alignment,
212                                               const DataLayout &DL,
213                                               const Instruction *CtxI,
214                                               const DominatorTree *DT,
215                                               const TargetLibraryInfo *TLI) {
216   // For unsized types or scalable vectors we don't know exactly how many bytes
217   // are dereferenced, so bail out.
218   if (!Ty->isSized() || isa<ScalableVectorType>(Ty))
219     return false;
220 
221   // When dereferenceability information is provided by a dereferenceable
222   // attribute, we know exactly how many bytes are dereferenceable. If we can
223   // determine the exact offset to the attributed variable, we can use that
224   // information here.
225 
226   APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()),
227                    DL.getTypeStoreSize(Ty));
228   return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI,
229                                             DT, TLI);
230 }
231 
232 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty,
233                                     const DataLayout &DL,
234                                     const Instruction *CtxI,
235                                     const DominatorTree *DT,
236                                     const TargetLibraryInfo *TLI) {
237   return isDereferenceableAndAlignedPointer(V, Ty, Align(1), DL, CtxI, DT, TLI);
238 }
239 
240 /// Test if A and B will obviously have the same value.
241 ///
242 /// This includes recognizing that %t0 and %t1 will have the same
243 /// value in code like this:
244 /// \code
245 ///   %t0 = getelementptr \@a, 0, 3
246 ///   store i32 0, i32* %t0
247 ///   %t1 = getelementptr \@a, 0, 3
248 ///   %t2 = load i32* %t1
249 /// \endcode
250 ///
251 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
252   // Test if the values are trivially equivalent.
253   if (A == B)
254     return true;
255 
256   // Test if the values come from identical arithmetic instructions.
257   // Use isIdenticalToWhenDefined instead of isIdenticalTo because
258   // this function is only used when one address use dominates the
259   // other, which means that they'll always either have the same
260   // value or one of them will have an undefined value.
261   if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
262       isa<GetElementPtrInst>(A))
263     if (const Instruction *BI = dyn_cast<Instruction>(B))
264       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
265         return true;
266 
267   // Otherwise they may not be equivalent.
268   return false;
269 }
270 
271 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L,
272                                              ScalarEvolution &SE,
273                                              DominatorTree &DT) {
274   auto &DL = LI->getModule()->getDataLayout();
275   Value *Ptr = LI->getPointerOperand();
276 
277   APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()),
278                 DL.getTypeStoreSize(LI->getType()).getFixedSize());
279   const Align Alignment = LI->getAlign();
280 
281   Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI();
282 
283   // If given a uniform (i.e. non-varying) address, see if we can prove the
284   // access is safe within the loop w/o needing predication.
285   if (L->isLoopInvariant(Ptr))
286     return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL,
287                                               HeaderFirstNonPHI, &DT);
288 
289   // Otherwise, check to see if we have a repeating access pattern where we can
290   // prove that all accesses are well aligned and dereferenceable.
291   auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr));
292   if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine())
293     return false;
294   auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE));
295   if (!Step)
296     return false;
297   // TODO: generalize to access patterns which have gaps
298   if (Step->getAPInt() != EltSize)
299     return false;
300 
301   auto TC = SE.getSmallConstantMaxTripCount(L);
302   if (!TC)
303     return false;
304 
305   const APInt AccessSize = TC * EltSize;
306 
307   auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart());
308   if (!StartS)
309     return false;
310   assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition");
311   Value *Base = StartS->getValue();
312 
313   // For the moment, restrict ourselves to the case where the access size is a
314   // multiple of the requested alignment and the base is aligned.
315   // TODO: generalize if a case found which warrants
316   if (EltSize.urem(Alignment.value()) != 0)
317     return false;
318   return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL,
319                                             HeaderFirstNonPHI, &DT);
320 }
321 
322 /// Check if executing a load of this pointer value cannot trap.
323 ///
324 /// If DT and ScanFrom are specified this method performs context-sensitive
325 /// analysis and returns true if it is safe to load immediately before ScanFrom.
326 ///
327 /// If it is not obviously safe to load from the specified pointer, we do
328 /// a quick local scan of the basic block containing \c ScanFrom, to determine
329 /// if the address is already accessed.
330 ///
331 /// This uses the pointee type to determine how many bytes need to be safe to
332 /// load from the pointer.
333 bool llvm::isSafeToLoadUnconditionally(Value *V, Align Alignment, APInt &Size,
334                                        const DataLayout &DL,
335                                        Instruction *ScanFrom,
336                                        const DominatorTree *DT,
337                                        const TargetLibraryInfo *TLI) {
338   // If DT is not specified we can't make context-sensitive query
339   const Instruction* CtxI = DT ? ScanFrom : nullptr;
340   if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT, TLI))
341     return true;
342 
343   if (!ScanFrom)
344     return false;
345 
346   if (Size.getBitWidth() > 64)
347     return false;
348   const uint64_t LoadSize = Size.getZExtValue();
349 
350   // Otherwise, be a little bit aggressive by scanning the local block where we
351   // want to check to see if the pointer is already being loaded or stored
352   // from/to.  If so, the previous load or store would have already trapped,
353   // so there is no harm doing an extra load (also, CSE will later eliminate
354   // the load entirely).
355   BasicBlock::iterator BBI = ScanFrom->getIterator(),
356                        E = ScanFrom->getParent()->begin();
357 
358   // We can at least always strip pointer casts even though we can't use the
359   // base here.
360   V = V->stripPointerCasts();
361 
362   while (BBI != E) {
363     --BBI;
364 
365     // If we see a free or a call which may write to memory (i.e. which might do
366     // a free) the pointer could be marked invalid.
367     if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
368         !isa<DbgInfoIntrinsic>(BBI))
369       return false;
370 
371     Value *AccessedPtr;
372     Type *AccessedTy;
373     Align AccessedAlign;
374     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
375       // Ignore volatile loads. The execution of a volatile load cannot
376       // be used to prove an address is backed by regular memory; it can,
377       // for example, point to an MMIO register.
378       if (LI->isVolatile())
379         continue;
380       AccessedPtr = LI->getPointerOperand();
381       AccessedTy = LI->getType();
382       AccessedAlign = LI->getAlign();
383     } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
384       // Ignore volatile stores (see comment for loads).
385       if (SI->isVolatile())
386         continue;
387       AccessedPtr = SI->getPointerOperand();
388       AccessedTy = SI->getValueOperand()->getType();
389       AccessedAlign = SI->getAlign();
390     } else
391       continue;
392 
393     if (AccessedAlign < Alignment)
394       continue;
395 
396     // Handle trivial cases.
397     if (AccessedPtr == V &&
398         LoadSize <= DL.getTypeStoreSize(AccessedTy))
399       return true;
400 
401     if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
402         LoadSize <= DL.getTypeStoreSize(AccessedTy))
403       return true;
404   }
405   return false;
406 }
407 
408 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment,
409                                        const DataLayout &DL,
410                                        Instruction *ScanFrom,
411                                        const DominatorTree *DT,
412                                        const TargetLibraryInfo *TLI) {
413   APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty));
414   return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, DT, TLI);
415 }
416 
417 /// DefMaxInstsToScan - the default number of maximum instructions
418 /// to scan in the block, used by FindAvailableLoadedValue().
419 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
420 /// threading in part by eliminating partially redundant loads.
421 /// At that point, the value of MaxInstsToScan was already set to '6'
422 /// without documented explanation.
423 cl::opt<unsigned>
424 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
425   cl::desc("Use this to specify the default maximum number of instructions "
426            "to scan backward from a given instruction, when searching for "
427            "available loaded value"));
428 
429 Value *llvm::FindAvailableLoadedValue(LoadInst *Load,
430                                       BasicBlock *ScanBB,
431                                       BasicBlock::iterator &ScanFrom,
432                                       unsigned MaxInstsToScan,
433                                       AAResults *AA, bool *IsLoad,
434                                       unsigned *NumScanedInst) {
435   // Don't CSE load that is volatile or anything stronger than unordered.
436   if (!Load->isUnordered())
437     return nullptr;
438 
439   MemoryLocation Loc = MemoryLocation::get(Load);
440   return findAvailablePtrLoadStore(Loc, Load->getType(), Load->isAtomic(),
441                                    ScanBB, ScanFrom, MaxInstsToScan, AA, IsLoad,
442                                    NumScanedInst);
443 }
444 
445 // Check if the load and the store have the same base, constant offsets and
446 // non-overlapping access ranges.
447 static bool areNonOverlapSameBaseLoadAndStore(const Value *LoadPtr,
448                                               Type *LoadTy,
449                                               const Value *StorePtr,
450                                               Type *StoreTy,
451                                               const DataLayout &DL) {
452   APInt LoadOffset(DL.getIndexTypeSizeInBits(LoadPtr->getType()), 0);
453   APInt StoreOffset(DL.getIndexTypeSizeInBits(StorePtr->getType()), 0);
454   const Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets(
455       DL, LoadOffset, /* AllowNonInbounds */ false);
456   const Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets(
457       DL, StoreOffset, /* AllowNonInbounds */ false);
458   if (LoadBase != StoreBase)
459     return false;
460   auto LoadAccessSize = LocationSize::precise(DL.getTypeStoreSize(LoadTy));
461   auto StoreAccessSize = LocationSize::precise(DL.getTypeStoreSize(StoreTy));
462   ConstantRange LoadRange(LoadOffset,
463                           LoadOffset + LoadAccessSize.toRaw());
464   ConstantRange StoreRange(StoreOffset,
465                            StoreOffset + StoreAccessSize.toRaw());
466   return LoadRange.intersectWith(StoreRange).isEmptySet();
467 }
468 
469 static Value *getAvailableLoadStore(Instruction *Inst, const Value *Ptr,
470                                     Type *AccessTy, bool AtLeastAtomic,
471                                     const DataLayout &DL, bool *IsLoadCSE) {
472   // If this is a load of Ptr, the loaded value is available.
473   // (This is true even if the load is volatile or atomic, although
474   // those cases are unlikely.)
475   if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
476     // We can value forward from an atomic to a non-atomic, but not the
477     // other way around.
478     if (LI->isAtomic() < AtLeastAtomic)
479       return nullptr;
480 
481     Value *LoadPtr = LI->getPointerOperand()->stripPointerCasts();
482     if (!AreEquivalentAddressValues(LoadPtr, Ptr))
483       return nullptr;
484 
485     if (CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
486       if (IsLoadCSE)
487         *IsLoadCSE = true;
488       return LI;
489     }
490   }
491 
492   // If this is a store through Ptr, the value is available!
493   // (This is true even if the store is volatile or atomic, although
494   // those cases are unlikely.)
495   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
496     // We can value forward from an atomic to a non-atomic, but not the
497     // other way around.
498     if (SI->isAtomic() < AtLeastAtomic)
499       return nullptr;
500 
501     Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
502     if (!AreEquivalentAddressValues(StorePtr, Ptr))
503       return nullptr;
504 
505     if (IsLoadCSE)
506       *IsLoadCSE = false;
507 
508     Value *Val = SI->getValueOperand();
509     if (CastInst::isBitOrNoopPointerCastable(Val->getType(), AccessTy, DL))
510       return Val;
511 
512     TypeSize StoreSize = DL.getTypeStoreSize(Val->getType());
513     TypeSize LoadSize = DL.getTypeStoreSize(AccessTy);
514     if (TypeSize::isKnownLE(LoadSize, StoreSize))
515       if (auto *C = dyn_cast<Constant>(Val))
516         return ConstantFoldLoadFromConst(C, AccessTy, DL);
517   }
518 
519   return nullptr;
520 }
521 
522 Value *llvm::findAvailablePtrLoadStore(
523     const MemoryLocation &Loc, Type *AccessTy, bool AtLeastAtomic,
524     BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan,
525     AAResults *AA, bool *IsLoadCSE, unsigned *NumScanedInst) {
526   if (MaxInstsToScan == 0)
527     MaxInstsToScan = ~0U;
528 
529   const DataLayout &DL = ScanBB->getModule()->getDataLayout();
530   const Value *StrippedPtr = Loc.Ptr->stripPointerCasts();
531 
532   while (ScanFrom != ScanBB->begin()) {
533     // We must ignore debug info directives when counting (otherwise they
534     // would affect codegen).
535     Instruction *Inst = &*--ScanFrom;
536     if (Inst->isDebugOrPseudoInst())
537       continue;
538 
539     // Restore ScanFrom to expected value in case next test succeeds
540     ScanFrom++;
541 
542     if (NumScanedInst)
543       ++(*NumScanedInst);
544 
545     // Don't scan huge blocks.
546     if (MaxInstsToScan-- == 0)
547       return nullptr;
548 
549     --ScanFrom;
550 
551     if (Value *Available = getAvailableLoadStore(Inst, StrippedPtr, AccessTy,
552                                                  AtLeastAtomic, DL, IsLoadCSE))
553       return Available;
554 
555     // Try to get the store size for the type.
556     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
557       Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
558 
559       // If both StrippedPtr and StorePtr reach all the way to an alloca or
560       // global and they are different, ignore the store. This is a trivial form
561       // of alias analysis that is important for reg2mem'd code.
562       if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
563           (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
564           StrippedPtr != StorePtr)
565         continue;
566 
567       if (!AA) {
568         // When AA isn't available, but if the load and the store have the same
569         // base, constant offsets and non-overlapping access ranges, ignore the
570         // store. This is a simple form of alias analysis that is used by the
571         // inliner. FIXME: use BasicAA if possible.
572         if (areNonOverlapSameBaseLoadAndStore(
573                 Loc.Ptr, AccessTy, SI->getPointerOperand(),
574                 SI->getValueOperand()->getType(), DL))
575           continue;
576       } else {
577         // If we have alias analysis and it says the store won't modify the
578         // loaded value, ignore the store.
579         if (!isModSet(AA->getModRefInfo(SI, Loc)))
580           continue;
581       }
582 
583       // Otherwise the store that may or may not alias the pointer, bail out.
584       ++ScanFrom;
585       return nullptr;
586     }
587 
588     // If this is some other instruction that may clobber Ptr, bail out.
589     if (Inst->mayWriteToMemory()) {
590       // If alias analysis claims that it really won't modify the load,
591       // ignore it.
592       if (AA && !isModSet(AA->getModRefInfo(Inst, Loc)))
593         continue;
594 
595       // May modify the pointer, bail out.
596       ++ScanFrom;
597       return nullptr;
598     }
599   }
600 
601   // Got to the start of the block, we didn't find it, but are done for this
602   // block.
603   return nullptr;
604 }
605 
606 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, AAResults &AA,
607                                       bool *IsLoadCSE,
608                                       unsigned MaxInstsToScan) {
609   const DataLayout &DL = Load->getModule()->getDataLayout();
610   Value *StrippedPtr = Load->getPointerOperand()->stripPointerCasts();
611   BasicBlock *ScanBB = Load->getParent();
612   Type *AccessTy = Load->getType();
613   bool AtLeastAtomic = Load->isAtomic();
614 
615   if (!Load->isUnordered())
616     return nullptr;
617 
618   // Try to find an available value first, and delay expensive alias analysis
619   // queries until later.
620   Value *Available = nullptr;;
621   SmallVector<Instruction *> MustNotAliasInsts;
622   for (Instruction &Inst : make_range(++Load->getReverseIterator(),
623                                       ScanBB->rend())) {
624     if (Inst.isDebugOrPseudoInst())
625       continue;
626 
627     if (MaxInstsToScan-- == 0)
628       return nullptr;
629 
630     Available = getAvailableLoadStore(&Inst, StrippedPtr, AccessTy,
631                                       AtLeastAtomic, DL, IsLoadCSE);
632     if (Available)
633       break;
634 
635     if (Inst.mayWriteToMemory())
636       MustNotAliasInsts.push_back(&Inst);
637   }
638 
639   // If we found an available value, ensure that the instructions in between
640   // did not modify the memory location.
641   if (Available) {
642     MemoryLocation Loc = MemoryLocation::get(Load);
643     for (Instruction *Inst : MustNotAliasInsts)
644       if (isModSet(AA.getModRefInfo(Inst, Loc)))
645         return nullptr;
646   }
647 
648   return Available;
649 }
650 
651 bool llvm::canReplacePointersIfEqual(Value *A, Value *B, const DataLayout &DL,
652                                      Instruction *CtxI) {
653   Type *Ty = A->getType();
654   assert(Ty == B->getType() && Ty->isPointerTy() &&
655          "values must have matching pointer types");
656 
657   // NOTE: The checks in the function are incomplete and currently miss illegal
658   // cases! The current implementation is a starting point and the
659   // implementation should be made stricter over time.
660   if (auto *C = dyn_cast<Constant>(B)) {
661     // Do not allow replacing a pointer with a constant pointer, unless it is
662     // either null or at least one byte is dereferenceable.
663     APInt OneByte(DL.getPointerTypeSizeInBits(Ty), 1);
664     return C->isNullValue() ||
665            isDereferenceableAndAlignedPointer(B, Align(1), OneByte, DL, CtxI);
666   }
667 
668   return true;
669 }
670