1 //===- Loads.cpp - Local load analysis ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines simple local analyses for load instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/Loads.h" 14 #include "llvm/Analysis/AliasAnalysis.h" 15 #include "llvm/Analysis/AssumeBundleQueries.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/MemoryBuiltins.h" 18 #include "llvm/Analysis/MemoryLocation.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 27 using namespace llvm; 28 29 static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment, 30 const DataLayout &DL) { 31 Align BA = Base->getPointerAlignment(DL); 32 return BA >= Alignment && Offset.isAligned(BA); 33 } 34 35 /// Test if V is always a pointer to allocated and suitably aligned memory for 36 /// a simple load or store. 37 static bool isDereferenceableAndAlignedPointer( 38 const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, 39 const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT, 40 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited, 41 unsigned MaxDepth) { 42 assert(V->getType()->isPointerTy() && "Base must be pointer"); 43 44 // Recursion limit. 45 if (MaxDepth-- == 0) 46 return false; 47 48 // Already visited? Bail out, we've likely hit unreachable code. 49 if (!Visited.insert(V).second) 50 return false; 51 52 // Note that it is not safe to speculate into a malloc'd region because 53 // malloc may return null. 54 55 // For GEPs, determine if the indexing lands within the allocated object. 56 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 57 const Value *Base = GEP->getPointerOperand(); 58 59 APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0); 60 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() || 61 !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value())) 62 .isMinValue()) 63 return false; 64 65 // If the base pointer is dereferenceable for Offset+Size bytes, then the 66 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base 67 // pointer is aligned to Align bytes, and the Offset is divisible by Align 68 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also 69 // aligned to Align bytes. 70 71 // Offset and Size may have different bit widths if we have visited an 72 // addrspacecast, so we can't do arithmetic directly on the APInt values. 73 return isDereferenceableAndAlignedPointer( 74 Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL, 75 CtxI, AC, DT, TLI, Visited, MaxDepth); 76 } 77 78 // bitcast instructions are no-ops as far as dereferenceability is concerned. 79 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) { 80 if (BC->getSrcTy()->isPointerTy()) 81 return isDereferenceableAndAlignedPointer( 82 BC->getOperand(0), Alignment, Size, DL, CtxI, AC, DT, TLI, 83 Visited, MaxDepth); 84 } 85 86 // Recurse into both hands of select. 87 if (const SelectInst *Sel = dyn_cast<SelectInst>(V)) { 88 return isDereferenceableAndAlignedPointer(Sel->getTrueValue(), Alignment, 89 Size, DL, CtxI, AC, DT, TLI, 90 Visited, MaxDepth) && 91 isDereferenceableAndAlignedPointer(Sel->getFalseValue(), Alignment, 92 Size, DL, CtxI, AC, DT, TLI, 93 Visited, MaxDepth); 94 } 95 96 bool CheckForNonNull, CheckForFreed; 97 APInt KnownDerefBytes(Size.getBitWidth(), 98 V->getPointerDereferenceableBytes(DL, CheckForNonNull, 99 CheckForFreed)); 100 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) && 101 !CheckForFreed) 102 if (!CheckForNonNull || isKnownNonZero(V, DL, 0, AC, CtxI, DT)) { 103 // As we recursed through GEPs to get here, we've incrementally checked 104 // that each step advanced by a multiple of the alignment. If our base is 105 // properly aligned, then the original offset accessed must also be. 106 APInt Offset(DL.getTypeStoreSizeInBits(V->getType()), 0); 107 return isAligned(V, Offset, Alignment, DL); 108 } 109 110 /// TODO refactor this function to be able to search independently for 111 /// Dereferencability and Alignment requirements. 112 113 114 if (const auto *Call = dyn_cast<CallBase>(V)) { 115 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 116 return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI, 117 AC, DT, TLI, Visited, MaxDepth); 118 119 // If we have a call we can't recurse through, check to see if this is an 120 // allocation function for which we can establish an minimum object size. 121 // Such a minimum object size is analogous to a deref_or_null attribute in 122 // that we still need to prove the result non-null at point of use. 123 // NOTE: We can only use the object size as a base fact as we a) need to 124 // prove alignment too, and b) don't want the compile time impact of a 125 // separate recursive walk. 126 ObjectSizeOpts Opts; 127 // TODO: It may be okay to round to align, but that would imply that 128 // accessing slightly out of bounds was legal, and we're currently 129 // inconsistent about that. For the moment, be conservative. 130 Opts.RoundToAlign = false; 131 Opts.NullIsUnknownSize = true; 132 uint64_t ObjSize; 133 if (getObjectSize(V, ObjSize, DL, TLI, Opts)) { 134 APInt KnownDerefBytes(Size.getBitWidth(), ObjSize); 135 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) && 136 isKnownNonZero(V, DL, 0, AC, CtxI, DT) && !V->canBeFreed()) { 137 // As we recursed through GEPs to get here, we've incrementally 138 // checked that each step advanced by a multiple of the alignment. If 139 // our base is properly aligned, then the original offset accessed 140 // must also be. 141 APInt Offset(DL.getTypeStoreSizeInBits(V->getType()), 0); 142 return isAligned(V, Offset, Alignment, DL); 143 } 144 } 145 } 146 147 // For gc.relocate, look through relocations 148 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V)) 149 return isDereferenceableAndAlignedPointer(RelocateInst->getDerivedPtr(), 150 Alignment, Size, DL, CtxI, AC, DT, 151 TLI, Visited, MaxDepth); 152 153 if (const AddrSpaceCastOperator *ASC = dyn_cast<AddrSpaceCastOperator>(V)) 154 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment, 155 Size, DL, CtxI, AC, DT, TLI, 156 Visited, MaxDepth); 157 158 if (CtxI) { 159 /// Look through assumes to see if both dereferencability and alignment can 160 /// be provent by an assume 161 RetainedKnowledge AlignRK; 162 RetainedKnowledge DerefRK; 163 if (getKnowledgeForValue( 164 V, {Attribute::Dereferenceable, Attribute::Alignment}, AC, 165 [&](RetainedKnowledge RK, Instruction *Assume, auto) { 166 if (!isValidAssumeForContext(Assume, CtxI)) 167 return false; 168 if (RK.AttrKind == Attribute::Alignment) 169 AlignRK = std::max(AlignRK, RK); 170 if (RK.AttrKind == Attribute::Dereferenceable) 171 DerefRK = std::max(DerefRK, RK); 172 if (AlignRK && DerefRK && AlignRK.ArgValue >= Alignment.value() && 173 DerefRK.ArgValue >= Size.getZExtValue()) 174 return true; // We have found what we needed so we stop looking 175 return false; // Other assumes may have better information. so 176 // keep looking 177 })) 178 return true; 179 } 180 181 // If we don't know, assume the worst. 182 return false; 183 } 184 185 bool llvm::isDereferenceableAndAlignedPointer( 186 const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, 187 const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT, 188 const TargetLibraryInfo *TLI) { 189 // Note: At the moment, Size can be zero. This ends up being interpreted as 190 // a query of whether [Base, V] is dereferenceable and V is aligned (since 191 // that's what the implementation happened to do). It's unclear if this is 192 // the desired semantic, but at least SelectionDAG does exercise this case. 193 194 SmallPtrSet<const Value *, 32> Visited; 195 return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, AC, 196 DT, TLI, Visited, 16); 197 } 198 199 bool llvm::isDereferenceableAndAlignedPointer( 200 const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, 201 const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT, 202 const TargetLibraryInfo *TLI) { 203 // For unsized types or scalable vectors we don't know exactly how many bytes 204 // are dereferenced, so bail out. 205 if (!Ty->isSized() || Ty->isScalableTy()) 206 return false; 207 208 // When dereferenceability information is provided by a dereferenceable 209 // attribute, we know exactly how many bytes are dereferenceable. If we can 210 // determine the exact offset to the attributed variable, we can use that 211 // information here. 212 213 APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()), 214 DL.getTypeStoreSize(Ty)); 215 return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI, 216 AC, DT, TLI); 217 } 218 219 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty, 220 const DataLayout &DL, 221 const Instruction *CtxI, 222 AssumptionCache *AC, 223 const DominatorTree *DT, 224 const TargetLibraryInfo *TLI) { 225 return isDereferenceableAndAlignedPointer(V, Ty, Align(1), DL, CtxI, AC, DT, 226 TLI); 227 } 228 229 /// Test if A and B will obviously have the same value. 230 /// 231 /// This includes recognizing that %t0 and %t1 will have the same 232 /// value in code like this: 233 /// \code 234 /// %t0 = getelementptr \@a, 0, 3 235 /// store i32 0, i32* %t0 236 /// %t1 = getelementptr \@a, 0, 3 237 /// %t2 = load i32* %t1 238 /// \endcode 239 /// 240 static bool AreEquivalentAddressValues(const Value *A, const Value *B) { 241 // Test if the values are trivially equivalent. 242 if (A == B) 243 return true; 244 245 // Test if the values come from identical arithmetic instructions. 246 // Use isIdenticalToWhenDefined instead of isIdenticalTo because 247 // this function is only used when one address use dominates the 248 // other, which means that they'll always either have the same 249 // value or one of them will have an undefined value. 250 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) || 251 isa<GetElementPtrInst>(A)) 252 if (const Instruction *BI = dyn_cast<Instruction>(B)) 253 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 254 return true; 255 256 // Otherwise they may not be equivalent. 257 return false; 258 } 259 260 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L, 261 ScalarEvolution &SE, 262 DominatorTree &DT, 263 AssumptionCache *AC) { 264 auto &DL = LI->getModule()->getDataLayout(); 265 Value *Ptr = LI->getPointerOperand(); 266 267 APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()), 268 DL.getTypeStoreSize(LI->getType()).getFixedValue()); 269 const Align Alignment = LI->getAlign(); 270 271 Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI(); 272 273 // If given a uniform (i.e. non-varying) address, see if we can prove the 274 // access is safe within the loop w/o needing predication. 275 if (L->isLoopInvariant(Ptr)) 276 return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL, 277 HeaderFirstNonPHI, AC, &DT); 278 279 // Otherwise, check to see if we have a repeating access pattern where we can 280 // prove that all accesses are well aligned and dereferenceable. 281 auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr)); 282 if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine()) 283 return false; 284 auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE)); 285 if (!Step) 286 return false; 287 288 auto TC = SE.getSmallConstantMaxTripCount(L); 289 if (!TC) 290 return false; 291 292 // TODO: Handle overlapping accesses. 293 // We should be computing AccessSize as (TC - 1) * Step + EltSize. 294 if (EltSize.sgt(Step->getAPInt())) 295 return false; 296 297 // Compute the total access size for access patterns with unit stride and 298 // patterns with gaps. For patterns with unit stride, Step and EltSize are the 299 // same. 300 // For patterns with gaps (i.e. non unit stride), we are 301 // accessing EltSize bytes at every Step. 302 APInt AccessSize = TC * Step->getAPInt(); 303 304 assert(SE.isLoopInvariant(AddRec->getStart(), L) && 305 "implied by addrec definition"); 306 Value *Base = nullptr; 307 if (auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart())) { 308 Base = StartS->getValue(); 309 } else if (auto *StartS = dyn_cast<SCEVAddExpr>(AddRec->getStart())) { 310 // Handle (NewBase + offset) as start value. 311 const auto *Offset = dyn_cast<SCEVConstant>(StartS->getOperand(0)); 312 const auto *NewBase = dyn_cast<SCEVUnknown>(StartS->getOperand(1)); 313 if (StartS->getNumOperands() == 2 && Offset && NewBase) { 314 // For the moment, restrict ourselves to the case where the offset is a 315 // multiple of the requested alignment and the base is aligned. 316 // TODO: generalize if a case found which warrants 317 if (Offset->getAPInt().urem(Alignment.value()) != 0) 318 return false; 319 Base = NewBase->getValue(); 320 bool Overflow = false; 321 AccessSize = AccessSize.uadd_ov(Offset->getAPInt(), Overflow); 322 if (Overflow) 323 return false; 324 } 325 } 326 327 if (!Base) 328 return false; 329 330 // For the moment, restrict ourselves to the case where the access size is a 331 // multiple of the requested alignment and the base is aligned. 332 // TODO: generalize if a case found which warrants 333 if (EltSize.urem(Alignment.value()) != 0) 334 return false; 335 return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL, 336 HeaderFirstNonPHI, AC, &DT); 337 } 338 339 /// Check if executing a load of this pointer value cannot trap. 340 /// 341 /// If DT and ScanFrom are specified this method performs context-sensitive 342 /// analysis and returns true if it is safe to load immediately before ScanFrom. 343 /// 344 /// If it is not obviously safe to load from the specified pointer, we do 345 /// a quick local scan of the basic block containing \c ScanFrom, to determine 346 /// if the address is already accessed. 347 /// 348 /// This uses the pointee type to determine how many bytes need to be safe to 349 /// load from the pointer. 350 bool llvm::isSafeToLoadUnconditionally(Value *V, Align Alignment, APInt &Size, 351 const DataLayout &DL, 352 Instruction *ScanFrom, 353 AssumptionCache *AC, 354 const DominatorTree *DT, 355 const TargetLibraryInfo *TLI) { 356 // If DT is not specified we can't make context-sensitive query 357 const Instruction* CtxI = DT ? ScanFrom : nullptr; 358 if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, AC, DT, 359 TLI)) 360 return true; 361 362 if (!ScanFrom) 363 return false; 364 365 if (Size.getBitWidth() > 64) 366 return false; 367 const uint64_t LoadSize = Size.getZExtValue(); 368 369 // Otherwise, be a little bit aggressive by scanning the local block where we 370 // want to check to see if the pointer is already being loaded or stored 371 // from/to. If so, the previous load or store would have already trapped, 372 // so there is no harm doing an extra load (also, CSE will later eliminate 373 // the load entirely). 374 BasicBlock::iterator BBI = ScanFrom->getIterator(), 375 E = ScanFrom->getParent()->begin(); 376 377 // We can at least always strip pointer casts even though we can't use the 378 // base here. 379 V = V->stripPointerCasts(); 380 381 while (BBI != E) { 382 --BBI; 383 384 // If we see a free or a call which may write to memory (i.e. which might do 385 // a free) the pointer could be marked invalid. 386 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() && 387 !isa<LifetimeIntrinsic>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 388 return false; 389 390 Value *AccessedPtr; 391 Type *AccessedTy; 392 Align AccessedAlign; 393 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 394 // Ignore volatile loads. The execution of a volatile load cannot 395 // be used to prove an address is backed by regular memory; it can, 396 // for example, point to an MMIO register. 397 if (LI->isVolatile()) 398 continue; 399 AccessedPtr = LI->getPointerOperand(); 400 AccessedTy = LI->getType(); 401 AccessedAlign = LI->getAlign(); 402 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 403 // Ignore volatile stores (see comment for loads). 404 if (SI->isVolatile()) 405 continue; 406 AccessedPtr = SI->getPointerOperand(); 407 AccessedTy = SI->getValueOperand()->getType(); 408 AccessedAlign = SI->getAlign(); 409 } else 410 continue; 411 412 if (AccessedAlign < Alignment) 413 continue; 414 415 // Handle trivial cases. 416 if (AccessedPtr == V && 417 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 418 return true; 419 420 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) && 421 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 422 return true; 423 } 424 return false; 425 } 426 427 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment, 428 const DataLayout &DL, 429 Instruction *ScanFrom, 430 AssumptionCache *AC, 431 const DominatorTree *DT, 432 const TargetLibraryInfo *TLI) { 433 TypeSize TySize = DL.getTypeStoreSize(Ty); 434 if (TySize.isScalable()) 435 return false; 436 APInt Size(DL.getIndexTypeSizeInBits(V->getType()), TySize.getFixedValue()); 437 return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, AC, DT, 438 TLI); 439 } 440 441 /// DefMaxInstsToScan - the default number of maximum instructions 442 /// to scan in the block, used by FindAvailableLoadedValue(). 443 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump 444 /// threading in part by eliminating partially redundant loads. 445 /// At that point, the value of MaxInstsToScan was already set to '6' 446 /// without documented explanation. 447 cl::opt<unsigned> 448 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden, 449 cl::desc("Use this to specify the default maximum number of instructions " 450 "to scan backward from a given instruction, when searching for " 451 "available loaded value")); 452 453 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, 454 BasicBlock *ScanBB, 455 BasicBlock::iterator &ScanFrom, 456 unsigned MaxInstsToScan, 457 AAResults *AA, bool *IsLoad, 458 unsigned *NumScanedInst) { 459 // Don't CSE load that is volatile or anything stronger than unordered. 460 if (!Load->isUnordered()) 461 return nullptr; 462 463 MemoryLocation Loc = MemoryLocation::get(Load); 464 return findAvailablePtrLoadStore(Loc, Load->getType(), Load->isAtomic(), 465 ScanBB, ScanFrom, MaxInstsToScan, AA, IsLoad, 466 NumScanedInst); 467 } 468 469 // Check if the load and the store have the same base, constant offsets and 470 // non-overlapping access ranges. 471 static bool areNonOverlapSameBaseLoadAndStore(const Value *LoadPtr, 472 Type *LoadTy, 473 const Value *StorePtr, 474 Type *StoreTy, 475 const DataLayout &DL) { 476 APInt LoadOffset(DL.getIndexTypeSizeInBits(LoadPtr->getType()), 0); 477 APInt StoreOffset(DL.getIndexTypeSizeInBits(StorePtr->getType()), 0); 478 const Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets( 479 DL, LoadOffset, /* AllowNonInbounds */ false); 480 const Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets( 481 DL, StoreOffset, /* AllowNonInbounds */ false); 482 if (LoadBase != StoreBase) 483 return false; 484 auto LoadAccessSize = LocationSize::precise(DL.getTypeStoreSize(LoadTy)); 485 auto StoreAccessSize = LocationSize::precise(DL.getTypeStoreSize(StoreTy)); 486 ConstantRange LoadRange(LoadOffset, 487 LoadOffset + LoadAccessSize.toRaw()); 488 ConstantRange StoreRange(StoreOffset, 489 StoreOffset + StoreAccessSize.toRaw()); 490 return LoadRange.intersectWith(StoreRange).isEmptySet(); 491 } 492 493 static Value *getAvailableLoadStore(Instruction *Inst, const Value *Ptr, 494 Type *AccessTy, bool AtLeastAtomic, 495 const DataLayout &DL, bool *IsLoadCSE) { 496 // If this is a load of Ptr, the loaded value is available. 497 // (This is true even if the load is volatile or atomic, although 498 // those cases are unlikely.) 499 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 500 // We can value forward from an atomic to a non-atomic, but not the 501 // other way around. 502 if (LI->isAtomic() < AtLeastAtomic) 503 return nullptr; 504 505 Value *LoadPtr = LI->getPointerOperand()->stripPointerCasts(); 506 if (!AreEquivalentAddressValues(LoadPtr, Ptr)) 507 return nullptr; 508 509 if (CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) { 510 if (IsLoadCSE) 511 *IsLoadCSE = true; 512 return LI; 513 } 514 } 515 516 // If this is a store through Ptr, the value is available! 517 // (This is true even if the store is volatile or atomic, although 518 // those cases are unlikely.) 519 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 520 // We can value forward from an atomic to a non-atomic, but not the 521 // other way around. 522 if (SI->isAtomic() < AtLeastAtomic) 523 return nullptr; 524 525 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); 526 if (!AreEquivalentAddressValues(StorePtr, Ptr)) 527 return nullptr; 528 529 if (IsLoadCSE) 530 *IsLoadCSE = false; 531 532 Value *Val = SI->getValueOperand(); 533 if (CastInst::isBitOrNoopPointerCastable(Val->getType(), AccessTy, DL)) 534 return Val; 535 536 TypeSize StoreSize = DL.getTypeSizeInBits(Val->getType()); 537 TypeSize LoadSize = DL.getTypeSizeInBits(AccessTy); 538 if (TypeSize::isKnownLE(LoadSize, StoreSize)) 539 if (auto *C = dyn_cast<Constant>(Val)) 540 return ConstantFoldLoadFromConst(C, AccessTy, DL); 541 } 542 543 if (auto *MSI = dyn_cast<MemSetInst>(Inst)) { 544 // Don't forward from (non-atomic) memset to atomic load. 545 if (AtLeastAtomic) 546 return nullptr; 547 548 // Only handle constant memsets. 549 auto *Val = dyn_cast<ConstantInt>(MSI->getValue()); 550 auto *Len = dyn_cast<ConstantInt>(MSI->getLength()); 551 if (!Val || !Len) 552 return nullptr; 553 554 // TODO: Handle offsets. 555 Value *Dst = MSI->getDest(); 556 if (!AreEquivalentAddressValues(Dst, Ptr)) 557 return nullptr; 558 559 if (IsLoadCSE) 560 *IsLoadCSE = false; 561 562 TypeSize LoadTypeSize = DL.getTypeSizeInBits(AccessTy); 563 if (LoadTypeSize.isScalable()) 564 return nullptr; 565 566 // Make sure the read bytes are contained in the memset. 567 uint64_t LoadSize = LoadTypeSize.getFixedValue(); 568 if ((Len->getValue() * 8).ult(LoadSize)) 569 return nullptr; 570 571 APInt Splat = LoadSize >= 8 ? APInt::getSplat(LoadSize, Val->getValue()) 572 : Val->getValue().trunc(LoadSize); 573 ConstantInt *SplatC = ConstantInt::get(MSI->getContext(), Splat); 574 if (CastInst::isBitOrNoopPointerCastable(SplatC->getType(), AccessTy, DL)) 575 return SplatC; 576 577 return nullptr; 578 } 579 580 return nullptr; 581 } 582 583 Value *llvm::findAvailablePtrLoadStore( 584 const MemoryLocation &Loc, Type *AccessTy, bool AtLeastAtomic, 585 BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan, 586 AAResults *AA, bool *IsLoadCSE, unsigned *NumScanedInst) { 587 if (MaxInstsToScan == 0) 588 MaxInstsToScan = ~0U; 589 590 const DataLayout &DL = ScanBB->getModule()->getDataLayout(); 591 const Value *StrippedPtr = Loc.Ptr->stripPointerCasts(); 592 593 while (ScanFrom != ScanBB->begin()) { 594 // We must ignore debug info directives when counting (otherwise they 595 // would affect codegen). 596 Instruction *Inst = &*--ScanFrom; 597 if (Inst->isDebugOrPseudoInst()) 598 continue; 599 600 // Restore ScanFrom to expected value in case next test succeeds 601 ScanFrom++; 602 603 if (NumScanedInst) 604 ++(*NumScanedInst); 605 606 // Don't scan huge blocks. 607 if (MaxInstsToScan-- == 0) 608 return nullptr; 609 610 --ScanFrom; 611 612 if (Value *Available = getAvailableLoadStore(Inst, StrippedPtr, AccessTy, 613 AtLeastAtomic, DL, IsLoadCSE)) 614 return Available; 615 616 // Try to get the store size for the type. 617 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 618 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); 619 620 // If both StrippedPtr and StorePtr reach all the way to an alloca or 621 // global and they are different, ignore the store. This is a trivial form 622 // of alias analysis that is important for reg2mem'd code. 623 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) && 624 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) && 625 StrippedPtr != StorePtr) 626 continue; 627 628 if (!AA) { 629 // When AA isn't available, but if the load and the store have the same 630 // base, constant offsets and non-overlapping access ranges, ignore the 631 // store. This is a simple form of alias analysis that is used by the 632 // inliner. FIXME: use BasicAA if possible. 633 if (areNonOverlapSameBaseLoadAndStore( 634 Loc.Ptr, AccessTy, SI->getPointerOperand(), 635 SI->getValueOperand()->getType(), DL)) 636 continue; 637 } else { 638 // If we have alias analysis and it says the store won't modify the 639 // loaded value, ignore the store. 640 if (!isModSet(AA->getModRefInfo(SI, Loc))) 641 continue; 642 } 643 644 // Otherwise the store that may or may not alias the pointer, bail out. 645 ++ScanFrom; 646 return nullptr; 647 } 648 649 // If this is some other instruction that may clobber Ptr, bail out. 650 if (Inst->mayWriteToMemory()) { 651 // If alias analysis claims that it really won't modify the load, 652 // ignore it. 653 if (AA && !isModSet(AA->getModRefInfo(Inst, Loc))) 654 continue; 655 656 // May modify the pointer, bail out. 657 ++ScanFrom; 658 return nullptr; 659 } 660 } 661 662 // Got to the start of the block, we didn't find it, but are done for this 663 // block. 664 return nullptr; 665 } 666 667 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, AAResults &AA, 668 bool *IsLoadCSE, 669 unsigned MaxInstsToScan) { 670 const DataLayout &DL = Load->getModule()->getDataLayout(); 671 Value *StrippedPtr = Load->getPointerOperand()->stripPointerCasts(); 672 BasicBlock *ScanBB = Load->getParent(); 673 Type *AccessTy = Load->getType(); 674 bool AtLeastAtomic = Load->isAtomic(); 675 676 if (!Load->isUnordered()) 677 return nullptr; 678 679 // Try to find an available value first, and delay expensive alias analysis 680 // queries until later. 681 Value *Available = nullptr; 682 SmallVector<Instruction *> MustNotAliasInsts; 683 for (Instruction &Inst : make_range(++Load->getReverseIterator(), 684 ScanBB->rend())) { 685 if (Inst.isDebugOrPseudoInst()) 686 continue; 687 688 if (MaxInstsToScan-- == 0) 689 return nullptr; 690 691 Available = getAvailableLoadStore(&Inst, StrippedPtr, AccessTy, 692 AtLeastAtomic, DL, IsLoadCSE); 693 if (Available) 694 break; 695 696 if (Inst.mayWriteToMemory()) 697 MustNotAliasInsts.push_back(&Inst); 698 } 699 700 // If we found an available value, ensure that the instructions in between 701 // did not modify the memory location. 702 if (Available) { 703 MemoryLocation Loc = MemoryLocation::get(Load); 704 for (Instruction *Inst : MustNotAliasInsts) 705 if (isModSet(AA.getModRefInfo(Inst, Loc))) 706 return nullptr; 707 } 708 709 return Available; 710 } 711 712 bool llvm::canReplacePointersIfEqual(Value *A, Value *B, const DataLayout &DL, 713 Instruction *CtxI) { 714 Type *Ty = A->getType(); 715 assert(Ty == B->getType() && Ty->isPointerTy() && 716 "values must have matching pointer types"); 717 718 // NOTE: The checks in the function are incomplete and currently miss illegal 719 // cases! The current implementation is a starting point and the 720 // implementation should be made stricter over time. 721 if (auto *C = dyn_cast<Constant>(B)) { 722 // Do not allow replacing a pointer with a constant pointer, unless it is 723 // either null or at least one byte is dereferenceable. 724 APInt OneByte(DL.getPointerTypeSizeInBits(Ty), 1); 725 return C->isNullValue() || 726 isDereferenceableAndAlignedPointer(B, Align(1), OneByte, DL, CtxI); 727 } 728 729 return true; 730 } 731