1 //===- Loads.cpp - Local load analysis ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines simple local analyses for load instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/Loads.h" 14 #include "llvm/Analysis/AliasAnalysis.h" 15 #include "llvm/Analysis/AssumeBundleQueries.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/MemoryBuiltins.h" 18 #include "llvm/Analysis/MemoryLocation.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 27 using namespace llvm; 28 29 static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment, 30 const DataLayout &DL) { 31 Align BA = Base->getPointerAlignment(DL); 32 return BA >= Alignment && Offset.isAligned(BA); 33 } 34 35 /// Test if V is always a pointer to allocated and suitably aligned memory for 36 /// a simple load or store. 37 static bool isDereferenceableAndAlignedPointer( 38 const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, 39 const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT, 40 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited, 41 unsigned MaxDepth) { 42 assert(V->getType()->isPointerTy() && "Base must be pointer"); 43 44 // Recursion limit. 45 if (MaxDepth-- == 0) 46 return false; 47 48 // Already visited? Bail out, we've likely hit unreachable code. 49 if (!Visited.insert(V).second) 50 return false; 51 52 // Note that it is not safe to speculate into a malloc'd region because 53 // malloc may return null. 54 55 // For GEPs, determine if the indexing lands within the allocated object. 56 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 57 const Value *Base = GEP->getPointerOperand(); 58 59 APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0); 60 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() || 61 !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value())) 62 .isMinValue()) 63 return false; 64 65 // If the base pointer is dereferenceable for Offset+Size bytes, then the 66 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base 67 // pointer is aligned to Align bytes, and the Offset is divisible by Align 68 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also 69 // aligned to Align bytes. 70 71 // Offset and Size may have different bit widths if we have visited an 72 // addrspacecast, so we can't do arithmetic directly on the APInt values. 73 return isDereferenceableAndAlignedPointer( 74 Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL, 75 CtxI, AC, DT, TLI, Visited, MaxDepth); 76 } 77 78 // bitcast instructions are no-ops as far as dereferenceability is concerned. 79 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) { 80 if (BC->getSrcTy()->isPointerTy()) 81 return isDereferenceableAndAlignedPointer( 82 BC->getOperand(0), Alignment, Size, DL, CtxI, AC, DT, TLI, 83 Visited, MaxDepth); 84 } 85 86 // Recurse into both hands of select. 87 if (const SelectInst *Sel = dyn_cast<SelectInst>(V)) { 88 return isDereferenceableAndAlignedPointer(Sel->getTrueValue(), Alignment, 89 Size, DL, CtxI, AC, DT, TLI, 90 Visited, MaxDepth) && 91 isDereferenceableAndAlignedPointer(Sel->getFalseValue(), Alignment, 92 Size, DL, CtxI, AC, DT, TLI, 93 Visited, MaxDepth); 94 } 95 96 bool CheckForNonNull, CheckForFreed; 97 APInt KnownDerefBytes(Size.getBitWidth(), 98 V->getPointerDereferenceableBytes(DL, CheckForNonNull, 99 CheckForFreed)); 100 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) && 101 !CheckForFreed) 102 if (!CheckForNonNull || 103 isKnownNonZero(V, SimplifyQuery(DL, DT, AC, CtxI))) { 104 // As we recursed through GEPs to get here, we've incrementally checked 105 // that each step advanced by a multiple of the alignment. If our base is 106 // properly aligned, then the original offset accessed must also be. 107 APInt Offset(DL.getTypeStoreSizeInBits(V->getType()), 0); 108 return isAligned(V, Offset, Alignment, DL); 109 } 110 111 /// TODO refactor this function to be able to search independently for 112 /// Dereferencability and Alignment requirements. 113 114 115 if (const auto *Call = dyn_cast<CallBase>(V)) { 116 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 117 return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI, 118 AC, DT, TLI, Visited, MaxDepth); 119 120 // If we have a call we can't recurse through, check to see if this is an 121 // allocation function for which we can establish an minimum object size. 122 // Such a minimum object size is analogous to a deref_or_null attribute in 123 // that we still need to prove the result non-null at point of use. 124 // NOTE: We can only use the object size as a base fact as we a) need to 125 // prove alignment too, and b) don't want the compile time impact of a 126 // separate recursive walk. 127 ObjectSizeOpts Opts; 128 // TODO: It may be okay to round to align, but that would imply that 129 // accessing slightly out of bounds was legal, and we're currently 130 // inconsistent about that. For the moment, be conservative. 131 Opts.RoundToAlign = false; 132 Opts.NullIsUnknownSize = true; 133 uint64_t ObjSize; 134 if (getObjectSize(V, ObjSize, DL, TLI, Opts)) { 135 APInt KnownDerefBytes(Size.getBitWidth(), ObjSize); 136 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) && 137 isKnownNonZero(V, SimplifyQuery(DL, DT, AC, CtxI)) && 138 !V->canBeFreed()) { 139 // As we recursed through GEPs to get here, we've incrementally 140 // checked that each step advanced by a multiple of the alignment. If 141 // our base is properly aligned, then the original offset accessed 142 // must also be. 143 APInt Offset(DL.getTypeStoreSizeInBits(V->getType()), 0); 144 return isAligned(V, Offset, Alignment, DL); 145 } 146 } 147 } 148 149 // For gc.relocate, look through relocations 150 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V)) 151 return isDereferenceableAndAlignedPointer(RelocateInst->getDerivedPtr(), 152 Alignment, Size, DL, CtxI, AC, DT, 153 TLI, Visited, MaxDepth); 154 155 if (const AddrSpaceCastOperator *ASC = dyn_cast<AddrSpaceCastOperator>(V)) 156 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment, 157 Size, DL, CtxI, AC, DT, TLI, 158 Visited, MaxDepth); 159 160 if (CtxI) { 161 /// Look through assumes to see if both dereferencability and alignment can 162 /// be provent by an assume 163 RetainedKnowledge AlignRK; 164 RetainedKnowledge DerefRK; 165 if (getKnowledgeForValue( 166 V, {Attribute::Dereferenceable, Attribute::Alignment}, AC, 167 [&](RetainedKnowledge RK, Instruction *Assume, auto) { 168 if (!isValidAssumeForContext(Assume, CtxI, DT)) 169 return false; 170 if (RK.AttrKind == Attribute::Alignment) 171 AlignRK = std::max(AlignRK, RK); 172 if (RK.AttrKind == Attribute::Dereferenceable) 173 DerefRK = std::max(DerefRK, RK); 174 if (AlignRK && DerefRK && AlignRK.ArgValue >= Alignment.value() && 175 DerefRK.ArgValue >= Size.getZExtValue()) 176 return true; // We have found what we needed so we stop looking 177 return false; // Other assumes may have better information. so 178 // keep looking 179 })) 180 return true; 181 } 182 183 // If we don't know, assume the worst. 184 return false; 185 } 186 187 bool llvm::isDereferenceableAndAlignedPointer( 188 const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, 189 const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT, 190 const TargetLibraryInfo *TLI) { 191 // Note: At the moment, Size can be zero. This ends up being interpreted as 192 // a query of whether [Base, V] is dereferenceable and V is aligned (since 193 // that's what the implementation happened to do). It's unclear if this is 194 // the desired semantic, but at least SelectionDAG does exercise this case. 195 196 SmallPtrSet<const Value *, 32> Visited; 197 return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, AC, 198 DT, TLI, Visited, 16); 199 } 200 201 bool llvm::isDereferenceableAndAlignedPointer( 202 const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, 203 const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT, 204 const TargetLibraryInfo *TLI) { 205 // For unsized types or scalable vectors we don't know exactly how many bytes 206 // are dereferenced, so bail out. 207 if (!Ty->isSized() || Ty->isScalableTy()) 208 return false; 209 210 // When dereferenceability information is provided by a dereferenceable 211 // attribute, we know exactly how many bytes are dereferenceable. If we can 212 // determine the exact offset to the attributed variable, we can use that 213 // information here. 214 215 APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()), 216 DL.getTypeStoreSize(Ty)); 217 return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI, 218 AC, DT, TLI); 219 } 220 221 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty, 222 const DataLayout &DL, 223 const Instruction *CtxI, 224 AssumptionCache *AC, 225 const DominatorTree *DT, 226 const TargetLibraryInfo *TLI) { 227 return isDereferenceableAndAlignedPointer(V, Ty, Align(1), DL, CtxI, AC, DT, 228 TLI); 229 } 230 231 /// Test if A and B will obviously have the same value. 232 /// 233 /// This includes recognizing that %t0 and %t1 will have the same 234 /// value in code like this: 235 /// \code 236 /// %t0 = getelementptr \@a, 0, 3 237 /// store i32 0, i32* %t0 238 /// %t1 = getelementptr \@a, 0, 3 239 /// %t2 = load i32* %t1 240 /// \endcode 241 /// 242 static bool AreEquivalentAddressValues(const Value *A, const Value *B) { 243 // Test if the values are trivially equivalent. 244 if (A == B) 245 return true; 246 247 // Test if the values come from identical arithmetic instructions. 248 // Use isIdenticalToWhenDefined instead of isIdenticalTo because 249 // this function is only used when one address use dominates the 250 // other, which means that they'll always either have the same 251 // value or one of them will have an undefined value. 252 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) || 253 isa<GetElementPtrInst>(A)) 254 if (const Instruction *BI = dyn_cast<Instruction>(B)) 255 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 256 return true; 257 258 // Otherwise they may not be equivalent. 259 return false; 260 } 261 262 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L, 263 ScalarEvolution &SE, 264 DominatorTree &DT, 265 AssumptionCache *AC) { 266 auto &DL = LI->getDataLayout(); 267 Value *Ptr = LI->getPointerOperand(); 268 269 APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()), 270 DL.getTypeStoreSize(LI->getType()).getFixedValue()); 271 const Align Alignment = LI->getAlign(); 272 273 Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI(); 274 275 // If given a uniform (i.e. non-varying) address, see if we can prove the 276 // access is safe within the loop w/o needing predication. 277 if (L->isLoopInvariant(Ptr)) 278 return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL, 279 HeaderFirstNonPHI, AC, &DT); 280 281 // Otherwise, check to see if we have a repeating access pattern where we can 282 // prove that all accesses are well aligned and dereferenceable. 283 auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr)); 284 if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine()) 285 return false; 286 auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE)); 287 if (!Step) 288 return false; 289 290 auto TC = SE.getSmallConstantMaxTripCount(L); 291 if (!TC) 292 return false; 293 294 // TODO: Handle overlapping accesses. 295 // We should be computing AccessSize as (TC - 1) * Step + EltSize. 296 if (EltSize.sgt(Step->getAPInt())) 297 return false; 298 299 // Compute the total access size for access patterns with unit stride and 300 // patterns with gaps. For patterns with unit stride, Step and EltSize are the 301 // same. 302 // For patterns with gaps (i.e. non unit stride), we are 303 // accessing EltSize bytes at every Step. 304 APInt AccessSize = TC * Step->getAPInt(); 305 306 assert(SE.isLoopInvariant(AddRec->getStart(), L) && 307 "implied by addrec definition"); 308 Value *Base = nullptr; 309 if (auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart())) { 310 Base = StartS->getValue(); 311 } else if (auto *StartS = dyn_cast<SCEVAddExpr>(AddRec->getStart())) { 312 // Handle (NewBase + offset) as start value. 313 const auto *Offset = dyn_cast<SCEVConstant>(StartS->getOperand(0)); 314 const auto *NewBase = dyn_cast<SCEVUnknown>(StartS->getOperand(1)); 315 if (StartS->getNumOperands() == 2 && Offset && NewBase) { 316 // The following code below assumes the offset is unsigned, but GEP 317 // offsets are treated as signed so we can end up with a signed value 318 // here too. For example, suppose the initial PHI value is (i8 255), 319 // the offset will be treated as (i8 -1) and sign-extended to (i64 -1). 320 if (Offset->getAPInt().isNegative()) 321 return false; 322 323 // For the moment, restrict ourselves to the case where the offset is a 324 // multiple of the requested alignment and the base is aligned. 325 // TODO: generalize if a case found which warrants 326 if (Offset->getAPInt().urem(Alignment.value()) != 0) 327 return false; 328 Base = NewBase->getValue(); 329 bool Overflow = false; 330 AccessSize = AccessSize.uadd_ov(Offset->getAPInt(), Overflow); 331 if (Overflow) 332 return false; 333 } 334 } 335 336 if (!Base) 337 return false; 338 339 // For the moment, restrict ourselves to the case where the access size is a 340 // multiple of the requested alignment and the base is aligned. 341 // TODO: generalize if a case found which warrants 342 if (EltSize.urem(Alignment.value()) != 0) 343 return false; 344 return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL, 345 HeaderFirstNonPHI, AC, &DT); 346 } 347 348 /// Check if executing a load of this pointer value cannot trap. 349 /// 350 /// If DT and ScanFrom are specified this method performs context-sensitive 351 /// analysis and returns true if it is safe to load immediately before ScanFrom. 352 /// 353 /// If it is not obviously safe to load from the specified pointer, we do 354 /// a quick local scan of the basic block containing \c ScanFrom, to determine 355 /// if the address is already accessed. 356 /// 357 /// This uses the pointee type to determine how many bytes need to be safe to 358 /// load from the pointer. 359 bool llvm::isSafeToLoadUnconditionally(Value *V, Align Alignment, const APInt &Size, 360 const DataLayout &DL, 361 Instruction *ScanFrom, 362 AssumptionCache *AC, 363 const DominatorTree *DT, 364 const TargetLibraryInfo *TLI) { 365 // If DT is not specified we can't make context-sensitive query 366 const Instruction* CtxI = DT ? ScanFrom : nullptr; 367 if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, AC, DT, 368 TLI)) 369 return true; 370 371 if (!ScanFrom) 372 return false; 373 374 if (Size.getBitWidth() > 64) 375 return false; 376 const TypeSize LoadSize = TypeSize::getFixed(Size.getZExtValue()); 377 378 // Otherwise, be a little bit aggressive by scanning the local block where we 379 // want to check to see if the pointer is already being loaded or stored 380 // from/to. If so, the previous load or store would have already trapped, 381 // so there is no harm doing an extra load (also, CSE will later eliminate 382 // the load entirely). 383 BasicBlock::iterator BBI = ScanFrom->getIterator(), 384 E = ScanFrom->getParent()->begin(); 385 386 // We can at least always strip pointer casts even though we can't use the 387 // base here. 388 V = V->stripPointerCasts(); 389 390 while (BBI != E) { 391 --BBI; 392 393 // If we see a free or a call which may write to memory (i.e. which might do 394 // a free) the pointer could be marked invalid. 395 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() && 396 !isa<LifetimeIntrinsic>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 397 return false; 398 399 Value *AccessedPtr; 400 Type *AccessedTy; 401 Align AccessedAlign; 402 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 403 // Ignore volatile loads. The execution of a volatile load cannot 404 // be used to prove an address is backed by regular memory; it can, 405 // for example, point to an MMIO register. 406 if (LI->isVolatile()) 407 continue; 408 AccessedPtr = LI->getPointerOperand(); 409 AccessedTy = LI->getType(); 410 AccessedAlign = LI->getAlign(); 411 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 412 // Ignore volatile stores (see comment for loads). 413 if (SI->isVolatile()) 414 continue; 415 AccessedPtr = SI->getPointerOperand(); 416 AccessedTy = SI->getValueOperand()->getType(); 417 AccessedAlign = SI->getAlign(); 418 } else 419 continue; 420 421 if (AccessedAlign < Alignment) 422 continue; 423 424 // Handle trivial cases. 425 if (AccessedPtr == V && 426 TypeSize::isKnownLE(LoadSize, DL.getTypeStoreSize(AccessedTy))) 427 return true; 428 429 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) && 430 TypeSize::isKnownLE(LoadSize, DL.getTypeStoreSize(AccessedTy))) 431 return true; 432 } 433 return false; 434 } 435 436 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment, 437 const DataLayout &DL, 438 Instruction *ScanFrom, 439 AssumptionCache *AC, 440 const DominatorTree *DT, 441 const TargetLibraryInfo *TLI) { 442 TypeSize TySize = DL.getTypeStoreSize(Ty); 443 if (TySize.isScalable()) 444 return false; 445 APInt Size(DL.getIndexTypeSizeInBits(V->getType()), TySize.getFixedValue()); 446 return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, AC, DT, 447 TLI); 448 } 449 450 /// DefMaxInstsToScan - the default number of maximum instructions 451 /// to scan in the block, used by FindAvailableLoadedValue(). 452 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump 453 /// threading in part by eliminating partially redundant loads. 454 /// At that point, the value of MaxInstsToScan was already set to '6' 455 /// without documented explanation. 456 cl::opt<unsigned> 457 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden, 458 cl::desc("Use this to specify the default maximum number of instructions " 459 "to scan backward from a given instruction, when searching for " 460 "available loaded value")); 461 462 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, BasicBlock *ScanBB, 463 BasicBlock::iterator &ScanFrom, 464 unsigned MaxInstsToScan, 465 BatchAAResults *AA, bool *IsLoad, 466 unsigned *NumScanedInst) { 467 // Don't CSE load that is volatile or anything stronger than unordered. 468 if (!Load->isUnordered()) 469 return nullptr; 470 471 MemoryLocation Loc = MemoryLocation::get(Load); 472 return findAvailablePtrLoadStore(Loc, Load->getType(), Load->isAtomic(), 473 ScanBB, ScanFrom, MaxInstsToScan, AA, IsLoad, 474 NumScanedInst); 475 } 476 477 // Check if the load and the store have the same base, constant offsets and 478 // non-overlapping access ranges. 479 static bool areNonOverlapSameBaseLoadAndStore(const Value *LoadPtr, 480 Type *LoadTy, 481 const Value *StorePtr, 482 Type *StoreTy, 483 const DataLayout &DL) { 484 APInt LoadOffset(DL.getIndexTypeSizeInBits(LoadPtr->getType()), 0); 485 APInt StoreOffset(DL.getIndexTypeSizeInBits(StorePtr->getType()), 0); 486 const Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets( 487 DL, LoadOffset, /* AllowNonInbounds */ false); 488 const Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets( 489 DL, StoreOffset, /* AllowNonInbounds */ false); 490 if (LoadBase != StoreBase) 491 return false; 492 auto LoadAccessSize = LocationSize::precise(DL.getTypeStoreSize(LoadTy)); 493 auto StoreAccessSize = LocationSize::precise(DL.getTypeStoreSize(StoreTy)); 494 ConstantRange LoadRange(LoadOffset, 495 LoadOffset + LoadAccessSize.toRaw()); 496 ConstantRange StoreRange(StoreOffset, 497 StoreOffset + StoreAccessSize.toRaw()); 498 return LoadRange.intersectWith(StoreRange).isEmptySet(); 499 } 500 501 static Value *getAvailableLoadStore(Instruction *Inst, const Value *Ptr, 502 Type *AccessTy, bool AtLeastAtomic, 503 const DataLayout &DL, bool *IsLoadCSE) { 504 // If this is a load of Ptr, the loaded value is available. 505 // (This is true even if the load is volatile or atomic, although 506 // those cases are unlikely.) 507 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 508 // We can value forward from an atomic to a non-atomic, but not the 509 // other way around. 510 if (LI->isAtomic() < AtLeastAtomic) 511 return nullptr; 512 513 Value *LoadPtr = LI->getPointerOperand()->stripPointerCasts(); 514 if (!AreEquivalentAddressValues(LoadPtr, Ptr)) 515 return nullptr; 516 517 if (CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) { 518 if (IsLoadCSE) 519 *IsLoadCSE = true; 520 return LI; 521 } 522 } 523 524 // If this is a store through Ptr, the value is available! 525 // (This is true even if the store is volatile or atomic, although 526 // those cases are unlikely.) 527 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 528 // We can value forward from an atomic to a non-atomic, but not the 529 // other way around. 530 if (SI->isAtomic() < AtLeastAtomic) 531 return nullptr; 532 533 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); 534 if (!AreEquivalentAddressValues(StorePtr, Ptr)) 535 return nullptr; 536 537 if (IsLoadCSE) 538 *IsLoadCSE = false; 539 540 Value *Val = SI->getValueOperand(); 541 if (CastInst::isBitOrNoopPointerCastable(Val->getType(), AccessTy, DL)) 542 return Val; 543 544 TypeSize StoreSize = DL.getTypeSizeInBits(Val->getType()); 545 TypeSize LoadSize = DL.getTypeSizeInBits(AccessTy); 546 if (TypeSize::isKnownLE(LoadSize, StoreSize)) 547 if (auto *C = dyn_cast<Constant>(Val)) 548 return ConstantFoldLoadFromConst(C, AccessTy, DL); 549 } 550 551 if (auto *MSI = dyn_cast<MemSetInst>(Inst)) { 552 // Don't forward from (non-atomic) memset to atomic load. 553 if (AtLeastAtomic) 554 return nullptr; 555 556 // Only handle constant memsets. 557 auto *Val = dyn_cast<ConstantInt>(MSI->getValue()); 558 auto *Len = dyn_cast<ConstantInt>(MSI->getLength()); 559 if (!Val || !Len) 560 return nullptr; 561 562 // TODO: Handle offsets. 563 Value *Dst = MSI->getDest(); 564 if (!AreEquivalentAddressValues(Dst, Ptr)) 565 return nullptr; 566 567 if (IsLoadCSE) 568 *IsLoadCSE = false; 569 570 TypeSize LoadTypeSize = DL.getTypeSizeInBits(AccessTy); 571 if (LoadTypeSize.isScalable()) 572 return nullptr; 573 574 // Make sure the read bytes are contained in the memset. 575 uint64_t LoadSize = LoadTypeSize.getFixedValue(); 576 if ((Len->getValue() * 8).ult(LoadSize)) 577 return nullptr; 578 579 APInt Splat = LoadSize >= 8 ? APInt::getSplat(LoadSize, Val->getValue()) 580 : Val->getValue().trunc(LoadSize); 581 ConstantInt *SplatC = ConstantInt::get(MSI->getContext(), Splat); 582 if (CastInst::isBitOrNoopPointerCastable(SplatC->getType(), AccessTy, DL)) 583 return SplatC; 584 585 return nullptr; 586 } 587 588 return nullptr; 589 } 590 591 Value *llvm::findAvailablePtrLoadStore( 592 const MemoryLocation &Loc, Type *AccessTy, bool AtLeastAtomic, 593 BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan, 594 BatchAAResults *AA, bool *IsLoadCSE, unsigned *NumScanedInst) { 595 if (MaxInstsToScan == 0) 596 MaxInstsToScan = ~0U; 597 598 const DataLayout &DL = ScanBB->getDataLayout(); 599 const Value *StrippedPtr = Loc.Ptr->stripPointerCasts(); 600 601 while (ScanFrom != ScanBB->begin()) { 602 // We must ignore debug info directives when counting (otherwise they 603 // would affect codegen). 604 Instruction *Inst = &*--ScanFrom; 605 if (Inst->isDebugOrPseudoInst()) 606 continue; 607 608 // Restore ScanFrom to expected value in case next test succeeds 609 ScanFrom++; 610 611 if (NumScanedInst) 612 ++(*NumScanedInst); 613 614 // Don't scan huge blocks. 615 if (MaxInstsToScan-- == 0) 616 return nullptr; 617 618 --ScanFrom; 619 620 if (Value *Available = getAvailableLoadStore(Inst, StrippedPtr, AccessTy, 621 AtLeastAtomic, DL, IsLoadCSE)) 622 return Available; 623 624 // Try to get the store size for the type. 625 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 626 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); 627 628 // If both StrippedPtr and StorePtr reach all the way to an alloca or 629 // global and they are different, ignore the store. This is a trivial form 630 // of alias analysis that is important for reg2mem'd code. 631 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) && 632 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) && 633 StrippedPtr != StorePtr) 634 continue; 635 636 if (!AA) { 637 // When AA isn't available, but if the load and the store have the same 638 // base, constant offsets and non-overlapping access ranges, ignore the 639 // store. This is a simple form of alias analysis that is used by the 640 // inliner. FIXME: use BasicAA if possible. 641 if (areNonOverlapSameBaseLoadAndStore( 642 Loc.Ptr, AccessTy, SI->getPointerOperand(), 643 SI->getValueOperand()->getType(), DL)) 644 continue; 645 } else { 646 // If we have alias analysis and it says the store won't modify the 647 // loaded value, ignore the store. 648 if (!isModSet(AA->getModRefInfo(SI, Loc))) 649 continue; 650 } 651 652 // Otherwise the store that may or may not alias the pointer, bail out. 653 ++ScanFrom; 654 return nullptr; 655 } 656 657 // If this is some other instruction that may clobber Ptr, bail out. 658 if (Inst->mayWriteToMemory()) { 659 // If alias analysis claims that it really won't modify the load, 660 // ignore it. 661 if (AA && !isModSet(AA->getModRefInfo(Inst, Loc))) 662 continue; 663 664 // May modify the pointer, bail out. 665 ++ScanFrom; 666 return nullptr; 667 } 668 } 669 670 // Got to the start of the block, we didn't find it, but are done for this 671 // block. 672 return nullptr; 673 } 674 675 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, BatchAAResults &AA, 676 bool *IsLoadCSE, 677 unsigned MaxInstsToScan) { 678 const DataLayout &DL = Load->getDataLayout(); 679 Value *StrippedPtr = Load->getPointerOperand()->stripPointerCasts(); 680 BasicBlock *ScanBB = Load->getParent(); 681 Type *AccessTy = Load->getType(); 682 bool AtLeastAtomic = Load->isAtomic(); 683 684 if (!Load->isUnordered()) 685 return nullptr; 686 687 // Try to find an available value first, and delay expensive alias analysis 688 // queries until later. 689 Value *Available = nullptr; 690 SmallVector<Instruction *> MustNotAliasInsts; 691 for (Instruction &Inst : make_range(++Load->getReverseIterator(), 692 ScanBB->rend())) { 693 if (Inst.isDebugOrPseudoInst()) 694 continue; 695 696 if (MaxInstsToScan-- == 0) 697 return nullptr; 698 699 Available = getAvailableLoadStore(&Inst, StrippedPtr, AccessTy, 700 AtLeastAtomic, DL, IsLoadCSE); 701 if (Available) 702 break; 703 704 if (Inst.mayWriteToMemory()) 705 MustNotAliasInsts.push_back(&Inst); 706 } 707 708 // If we found an available value, ensure that the instructions in between 709 // did not modify the memory location. 710 if (Available) { 711 MemoryLocation Loc = MemoryLocation::get(Load); 712 for (Instruction *Inst : MustNotAliasInsts) 713 if (isModSet(AA.getModRefInfo(Inst, Loc))) 714 return nullptr; 715 } 716 717 return Available; 718 } 719 720 // Returns true if a use is either in an ICmp/PtrToInt or a Phi/Select that only 721 // feeds into them. 722 static bool isPointerUseReplacable(const Use &U) { 723 unsigned Limit = 40; 724 SmallVector<const User *> Worklist({U.getUser()}); 725 SmallPtrSet<const User *, 8> Visited; 726 727 while (!Worklist.empty() && --Limit) { 728 auto *User = Worklist.pop_back_val(); 729 if (!Visited.insert(User).second) 730 continue; 731 if (isa<ICmpInst, PtrToIntInst>(User)) 732 continue; 733 if (isa<PHINode, SelectInst>(User)) 734 Worklist.append(User->user_begin(), User->user_end()); 735 else 736 return false; 737 } 738 739 return Limit != 0; 740 } 741 742 // Returns true if `To` is a null pointer, constant dereferenceable pointer or 743 // both pointers have the same underlying objects. 744 static bool isPointerAlwaysReplaceable(const Value *From, const Value *To, 745 const DataLayout &DL) { 746 // This is not strictly correct, but we do it for now to retain important 747 // optimizations. 748 if (isa<ConstantPointerNull>(To)) 749 return true; 750 if (isa<Constant>(To) && 751 isDereferenceablePointer(To, Type::getInt8Ty(To->getContext()), DL)) 752 return true; 753 return getUnderlyingObjectAggressive(From) == 754 getUnderlyingObjectAggressive(To); 755 } 756 757 bool llvm::canReplacePointersInUseIfEqual(const Use &U, const Value *To, 758 const DataLayout &DL) { 759 assert(U->getType() == To->getType() && "values must have matching types"); 760 // Not a pointer, just return true. 761 if (!To->getType()->isPointerTy()) 762 return true; 763 764 if (isPointerAlwaysReplaceable(&*U, To, DL)) 765 return true; 766 return isPointerUseReplacable(U); 767 } 768 769 bool llvm::canReplacePointersIfEqual(const Value *From, const Value *To, 770 const DataLayout &DL) { 771 assert(From->getType() == To->getType() && "values must have matching types"); 772 // Not a pointer, just return true. 773 if (!From->getType()->isPointerTy()) 774 return true; 775 776 return isPointerAlwaysReplaceable(From, To, DL); 777 } 778 779 bool llvm::isDereferenceableReadOnlyLoop(Loop *L, ScalarEvolution *SE, 780 DominatorTree *DT, 781 AssumptionCache *AC) { 782 for (BasicBlock *BB : L->blocks()) { 783 for (Instruction &I : *BB) { 784 if (auto *LI = dyn_cast<LoadInst>(&I)) { 785 if (!isDereferenceableAndAlignedInLoop(LI, L, *SE, *DT, AC)) 786 return false; 787 } else if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow()) 788 return false; 789 } 790 } 791 return true; 792 } 793