1 //===- Loads.cpp - Local load analysis ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines simple local analyses for load instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/Loads.h" 14 #include "llvm/Analysis/AliasAnalysis.h" 15 #include "llvm/Analysis/LoopInfo.h" 16 #include "llvm/Analysis/ScalarEvolution.h" 17 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/GlobalAlias.h" 21 #include "llvm/IR/GlobalVariable.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/Statepoint.h" 27 28 using namespace llvm; 29 30 static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment, 31 const DataLayout &DL) { 32 Align BA = Base->getPointerAlignment(DL); 33 const APInt APAlign(Offset.getBitWidth(), Alignment.value()); 34 assert(APAlign.isPowerOf2() && "must be a power of 2!"); 35 return BA >= Alignment && !(Offset & (APAlign - 1)); 36 } 37 38 /// Test if V is always a pointer to allocated and suitably aligned memory for 39 /// a simple load or store. 40 static bool isDereferenceableAndAlignedPointer( 41 const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, 42 const Instruction *CtxI, const DominatorTree *DT, 43 SmallPtrSetImpl<const Value *> &Visited, unsigned MaxDepth) { 44 assert(V->getType()->isPointerTy() && "Base must be pointer"); 45 46 // Recursion limit. 47 if (MaxDepth-- == 0) 48 return false; 49 50 // Already visited? Bail out, we've likely hit unreachable code. 51 if (!Visited.insert(V).second) 52 return false; 53 54 // Note that it is not safe to speculate into a malloc'd region because 55 // malloc may return null. 56 57 // bitcast instructions are no-ops as far as dereferenceability is concerned. 58 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) { 59 if (BC->getSrcTy()->isPointerTy()) 60 return isDereferenceableAndAlignedPointer( 61 BC->getOperand(0), Alignment, Size, DL, CtxI, DT, Visited, MaxDepth); 62 } 63 64 bool CheckForNonNull = false; 65 APInt KnownDerefBytes(Size.getBitWidth(), 66 V->getPointerDereferenceableBytes(DL, CheckForNonNull)); 67 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size)) 68 if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) { 69 // As we recursed through GEPs to get here, we've incrementally checked 70 // that each step advanced by a multiple of the alignment. If our base is 71 // properly aligned, then the original offset accessed must also be. 72 Type *Ty = V->getType(); 73 assert(Ty->isSized() && "must be sized"); 74 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0); 75 return isAligned(V, Offset, Alignment, DL); 76 } 77 78 // For GEPs, determine if the indexing lands within the allocated object. 79 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 80 const Value *Base = GEP->getPointerOperand(); 81 82 APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0); 83 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() || 84 !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value())) 85 .isMinValue()) 86 return false; 87 88 // If the base pointer is dereferenceable for Offset+Size bytes, then the 89 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base 90 // pointer is aligned to Align bytes, and the Offset is divisible by Align 91 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also 92 // aligned to Align bytes. 93 94 // Offset and Size may have different bit widths if we have visited an 95 // addrspacecast, so we can't do arithmetic directly on the APInt values. 96 return isDereferenceableAndAlignedPointer( 97 Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL, 98 CtxI, DT, Visited, MaxDepth); 99 } 100 101 // For gc.relocate, look through relocations 102 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V)) 103 return isDereferenceableAndAlignedPointer( 104 RelocateInst->getDerivedPtr(), Alignment, Size, DL, CtxI, DT, Visited, MaxDepth); 105 106 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V)) 107 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment, 108 Size, DL, CtxI, DT, Visited, MaxDepth); 109 110 if (const auto *Call = dyn_cast<CallBase>(V)) 111 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 112 return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI, 113 DT, Visited, MaxDepth); 114 115 // If we don't know, assume the worst. 116 return false; 117 } 118 119 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Align Alignment, 120 const APInt &Size, 121 const DataLayout &DL, 122 const Instruction *CtxI, 123 const DominatorTree *DT) { 124 // Note: At the moment, Size can be zero. This ends up being interpreted as 125 // a query of whether [Base, V] is dereferenceable and V is aligned (since 126 // that's what the implementation happened to do). It's unclear if this is 127 // the desired semantic, but at least SelectionDAG does exercise this case. 128 129 SmallPtrSet<const Value *, 32> Visited; 130 return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT, 131 Visited, 16); 132 } 133 134 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, 135 MaybeAlign MA, 136 const DataLayout &DL, 137 const Instruction *CtxI, 138 const DominatorTree *DT) { 139 // For unsized types or scalable vectors we don't know exactly how many bytes 140 // are dereferenced, so bail out. 141 if (!Ty->isSized() || isa<ScalableVectorType>(Ty)) 142 return false; 143 144 // When dereferenceability information is provided by a dereferenceable 145 // attribute, we know exactly how many bytes are dereferenceable. If we can 146 // determine the exact offset to the attributed variable, we can use that 147 // information here. 148 149 // Require ABI alignment for loads without alignment specification 150 const Align Alignment = DL.getValueOrABITypeAlignment(MA, Ty); 151 APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()), 152 DL.getTypeStoreSize(Ty)); 153 return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI, 154 DT); 155 } 156 157 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty, 158 const DataLayout &DL, 159 const Instruction *CtxI, 160 const DominatorTree *DT) { 161 return isDereferenceableAndAlignedPointer(V, Ty, Align(1), DL, CtxI, DT); 162 } 163 164 /// Test if A and B will obviously have the same value. 165 /// 166 /// This includes recognizing that %t0 and %t1 will have the same 167 /// value in code like this: 168 /// \code 169 /// %t0 = getelementptr \@a, 0, 3 170 /// store i32 0, i32* %t0 171 /// %t1 = getelementptr \@a, 0, 3 172 /// %t2 = load i32* %t1 173 /// \endcode 174 /// 175 static bool AreEquivalentAddressValues(const Value *A, const Value *B) { 176 // Test if the values are trivially equivalent. 177 if (A == B) 178 return true; 179 180 // Test if the values come from identical arithmetic instructions. 181 // Use isIdenticalToWhenDefined instead of isIdenticalTo because 182 // this function is only used when one address use dominates the 183 // other, which means that they'll always either have the same 184 // value or one of them will have an undefined value. 185 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) || 186 isa<GetElementPtrInst>(A)) 187 if (const Instruction *BI = dyn_cast<Instruction>(B)) 188 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 189 return true; 190 191 // Otherwise they may not be equivalent. 192 return false; 193 } 194 195 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L, 196 ScalarEvolution &SE, 197 DominatorTree &DT) { 198 auto &DL = LI->getModule()->getDataLayout(); 199 Value *Ptr = LI->getPointerOperand(); 200 201 APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()), 202 DL.getTypeStoreSize(LI->getType())); 203 const Align Alignment = LI->getAlign(); 204 205 Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI(); 206 207 // If given a uniform (i.e. non-varying) address, see if we can prove the 208 // access is safe within the loop w/o needing predication. 209 if (L->isLoopInvariant(Ptr)) 210 return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL, 211 HeaderFirstNonPHI, &DT); 212 213 // Otherwise, check to see if we have a repeating access pattern where we can 214 // prove that all accesses are well aligned and dereferenceable. 215 auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr)); 216 if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine()) 217 return false; 218 auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE)); 219 if (!Step) 220 return false; 221 // TODO: generalize to access patterns which have gaps 222 if (Step->getAPInt() != EltSize) 223 return false; 224 225 // TODO: If the symbolic trip count has a small bound (max count), we might 226 // be able to prove safety. 227 auto TC = SE.getSmallConstantTripCount(L); 228 if (!TC) 229 return false; 230 231 const APInt AccessSize = TC * EltSize; 232 233 auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart()); 234 if (!StartS) 235 return false; 236 assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition"); 237 Value *Base = StartS->getValue(); 238 239 // For the moment, restrict ourselves to the case where the access size is a 240 // multiple of the requested alignment and the base is aligned. 241 // TODO: generalize if a case found which warrants 242 if (EltSize.urem(Alignment.value()) != 0) 243 return false; 244 return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL, 245 HeaderFirstNonPHI, &DT); 246 } 247 248 /// Check if executing a load of this pointer value cannot trap. 249 /// 250 /// If DT and ScanFrom are specified this method performs context-sensitive 251 /// analysis and returns true if it is safe to load immediately before ScanFrom. 252 /// 253 /// If it is not obviously safe to load from the specified pointer, we do 254 /// a quick local scan of the basic block containing \c ScanFrom, to determine 255 /// if the address is already accessed. 256 /// 257 /// This uses the pointee type to determine how many bytes need to be safe to 258 /// load from the pointer. 259 bool llvm::isSafeToLoadUnconditionally(Value *V, Align Alignment, APInt &Size, 260 const DataLayout &DL, 261 Instruction *ScanFrom, 262 const DominatorTree *DT) { 263 // If DT is not specified we can't make context-sensitive query 264 const Instruction* CtxI = DT ? ScanFrom : nullptr; 265 if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT)) 266 return true; 267 268 if (!ScanFrom) 269 return false; 270 271 if (Size.getBitWidth() > 64) 272 return false; 273 const uint64_t LoadSize = Size.getZExtValue(); 274 275 // Otherwise, be a little bit aggressive by scanning the local block where we 276 // want to check to see if the pointer is already being loaded or stored 277 // from/to. If so, the previous load or store would have already trapped, 278 // so there is no harm doing an extra load (also, CSE will later eliminate 279 // the load entirely). 280 BasicBlock::iterator BBI = ScanFrom->getIterator(), 281 E = ScanFrom->getParent()->begin(); 282 283 // We can at least always strip pointer casts even though we can't use the 284 // base here. 285 V = V->stripPointerCasts(); 286 287 while (BBI != E) { 288 --BBI; 289 290 // If we see a free or a call which may write to memory (i.e. which might do 291 // a free) the pointer could be marked invalid. 292 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() && 293 !isa<DbgInfoIntrinsic>(BBI)) 294 return false; 295 296 Value *AccessedPtr; 297 Type *AccessedTy; 298 Align AccessedAlign; 299 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 300 // Ignore volatile loads. The execution of a volatile load cannot 301 // be used to prove an address is backed by regular memory; it can, 302 // for example, point to an MMIO register. 303 if (LI->isVolatile()) 304 continue; 305 AccessedPtr = LI->getPointerOperand(); 306 AccessedTy = LI->getType(); 307 AccessedAlign = LI->getAlign(); 308 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 309 // Ignore volatile stores (see comment for loads). 310 if (SI->isVolatile()) 311 continue; 312 AccessedPtr = SI->getPointerOperand(); 313 AccessedTy = SI->getValueOperand()->getType(); 314 AccessedAlign = SI->getAlign(); 315 } else 316 continue; 317 318 if (AccessedAlign < Alignment) 319 continue; 320 321 // Handle trivial cases. 322 if (AccessedPtr == V && 323 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 324 return true; 325 326 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) && 327 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 328 return true; 329 } 330 return false; 331 } 332 333 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment, 334 const DataLayout &DL, 335 Instruction *ScanFrom, 336 const DominatorTree *DT) { 337 APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty)); 338 return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, DT); 339 } 340 341 /// DefMaxInstsToScan - the default number of maximum instructions 342 /// to scan in the block, used by FindAvailableLoadedValue(). 343 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump 344 /// threading in part by eliminating partially redundant loads. 345 /// At that point, the value of MaxInstsToScan was already set to '6' 346 /// without documented explanation. 347 cl::opt<unsigned> 348 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden, 349 cl::desc("Use this to specify the default maximum number of instructions " 350 "to scan backward from a given instruction, when searching for " 351 "available loaded value")); 352 353 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, 354 BasicBlock *ScanBB, 355 BasicBlock::iterator &ScanFrom, 356 unsigned MaxInstsToScan, 357 AAResults *AA, bool *IsLoad, 358 unsigned *NumScanedInst) { 359 // Don't CSE load that is volatile or anything stronger than unordered. 360 if (!Load->isUnordered()) 361 return nullptr; 362 363 return FindAvailablePtrLoadStore( 364 Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB, 365 ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst); 366 } 367 368 // Check if the load and the store have the same base, constant offsets and 369 // non-overlapping access ranges. 370 static bool AreNonOverlapSameBaseLoadAndStore( 371 Value *LoadPtr, Type *LoadTy, Value *StorePtr, Type *StoreTy, 372 const DataLayout &DL) { 373 APInt LoadOffset(DL.getTypeSizeInBits(LoadPtr->getType()), 0); 374 APInt StoreOffset(DL.getTypeSizeInBits(StorePtr->getType()), 0); 375 Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets( 376 DL, LoadOffset, /* AllowNonInbounds */ false); 377 Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets( 378 DL, StoreOffset, /* AllowNonInbounds */ false); 379 if (LoadBase != StoreBase) 380 return false; 381 auto LoadAccessSize = LocationSize::precise(DL.getTypeStoreSize(LoadTy)); 382 auto StoreAccessSize = LocationSize::precise(DL.getTypeStoreSize(StoreTy)); 383 ConstantRange LoadRange(LoadOffset, 384 LoadOffset + LoadAccessSize.toRaw()); 385 ConstantRange StoreRange(StoreOffset, 386 StoreOffset + StoreAccessSize.toRaw()); 387 return LoadRange.intersectWith(StoreRange).isEmptySet(); 388 } 389 390 Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy, 391 bool AtLeastAtomic, BasicBlock *ScanBB, 392 BasicBlock::iterator &ScanFrom, 393 unsigned MaxInstsToScan, 394 AAResults *AA, bool *IsLoadCSE, 395 unsigned *NumScanedInst) { 396 if (MaxInstsToScan == 0) 397 MaxInstsToScan = ~0U; 398 399 const DataLayout &DL = ScanBB->getModule()->getDataLayout(); 400 Value *StrippedPtr = Ptr->stripPointerCasts(); 401 402 while (ScanFrom != ScanBB->begin()) { 403 // We must ignore debug info directives when counting (otherwise they 404 // would affect codegen). 405 Instruction *Inst = &*--ScanFrom; 406 if (isa<DbgInfoIntrinsic>(Inst)) 407 continue; 408 409 // Restore ScanFrom to expected value in case next test succeeds 410 ScanFrom++; 411 412 if (NumScanedInst) 413 ++(*NumScanedInst); 414 415 // Don't scan huge blocks. 416 if (MaxInstsToScan-- == 0) 417 return nullptr; 418 419 --ScanFrom; 420 // If this is a load of Ptr, the loaded value is available. 421 // (This is true even if the load is volatile or atomic, although 422 // those cases are unlikely.) 423 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 424 if (AreEquivalentAddressValues( 425 LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) && 426 CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) { 427 428 // We can value forward from an atomic to a non-atomic, but not the 429 // other way around. 430 if (LI->isAtomic() < AtLeastAtomic) 431 return nullptr; 432 433 if (IsLoadCSE) 434 *IsLoadCSE = true; 435 return LI; 436 } 437 438 // Try to get the store size for the type. 439 auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy)); 440 441 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 442 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); 443 // If this is a store through Ptr, the value is available! 444 // (This is true even if the store is volatile or atomic, although 445 // those cases are unlikely.) 446 if (AreEquivalentAddressValues(StorePtr, StrippedPtr) && 447 CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(), 448 AccessTy, DL)) { 449 450 // We can value forward from an atomic to a non-atomic, but not the 451 // other way around. 452 if (SI->isAtomic() < AtLeastAtomic) 453 return nullptr; 454 455 if (IsLoadCSE) 456 *IsLoadCSE = false; 457 return SI->getOperand(0); 458 } 459 460 // If both StrippedPtr and StorePtr reach all the way to an alloca or 461 // global and they are different, ignore the store. This is a trivial form 462 // of alias analysis that is important for reg2mem'd code. 463 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) && 464 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) && 465 StrippedPtr != StorePtr) 466 continue; 467 468 if (!AA) { 469 // When AA isn't available, but if the load and the store have the same 470 // base, constant offsets and non-overlapping access ranges, ignore the 471 // store. This is a simple form of alias analysis that is used by the 472 // inliner. FIXME: use BasicAA if possible. 473 if (AreNonOverlapSameBaseLoadAndStore( 474 Ptr, AccessTy, SI->getPointerOperand(), 475 SI->getValueOperand()->getType(), DL)) 476 continue; 477 } else { 478 // If we have alias analysis and it says the store won't modify the 479 // loaded value, ignore the store. 480 if (!isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize))) 481 continue; 482 } 483 484 // Otherwise the store that may or may not alias the pointer, bail out. 485 ++ScanFrom; 486 return nullptr; 487 } 488 489 // If this is some other instruction that may clobber Ptr, bail out. 490 if (Inst->mayWriteToMemory()) { 491 // If alias analysis claims that it really won't modify the load, 492 // ignore it. 493 if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize))) 494 continue; 495 496 // May modify the pointer, bail out. 497 ++ScanFrom; 498 return nullptr; 499 } 500 } 501 502 // Got to the start of the block, we didn't find it, but are done for this 503 // block. 504 return nullptr; 505 } 506