xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/Lint.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass statically checks for common and easily-identified constructs
10 // which produce undefined or likely unintended behavior in LLVM IR.
11 //
12 // It is not a guarantee of correctness, in two ways. First, it isn't
13 // comprehensive. There are checks which could be done statically which are
14 // not yet implemented. Some of these are indicated by TODO comments, but
15 // those aren't comprehensive either. Second, many conditions cannot be
16 // checked statically. This pass does no dynamic instrumentation, so it
17 // can't check for all possible problems.
18 //
19 // Another limitation is that it assumes all code will be executed. A store
20 // through a null pointer in a basic block which is never reached is harmless,
21 // but this pass will warn about it anyway. This is the main reason why most
22 // of these checks live here instead of in the Verifier pass.
23 //
24 // Optimization passes may make conditions that this pass checks for more or
25 // less obvious. If an optimization pass appears to be introducing a warning,
26 // it may be that the optimization pass is merely exposing an existing
27 // condition in the code.
28 //
29 // This code may be run before instcombine. In many cases, instcombine checks
30 // for the same kinds of things and turns instructions with undefined behavior
31 // into unreachable (or equivalent). Because of this, this pass makes some
32 // effort to look through bitcasts and so on.
33 //
34 //===----------------------------------------------------------------------===//
35 
36 #include "llvm/Analysis/Lint.h"
37 #include "llvm/ADT/APInt.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AliasAnalysis.h"
42 #include "llvm/Analysis/AssumptionCache.h"
43 #include "llvm/Analysis/BasicAliasAnalysis.h"
44 #include "llvm/Analysis/ConstantFolding.h"
45 #include "llvm/Analysis/InstructionSimplify.h"
46 #include "llvm/Analysis/Loads.h"
47 #include "llvm/Analysis/MemoryLocation.h"
48 #include "llvm/Analysis/ScopedNoAliasAA.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
51 #include "llvm/Analysis/ValueTracking.h"
52 #include "llvm/IR/Argument.h"
53 #include "llvm/IR/BasicBlock.h"
54 #include "llvm/IR/Constant.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DerivedTypes.h"
58 #include "llvm/IR/Dominators.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/GlobalVariable.h"
61 #include "llvm/IR/InstVisitor.h"
62 #include "llvm/IR/InstrTypes.h"
63 #include "llvm/IR/Instruction.h"
64 #include "llvm/IR/Instructions.h"
65 #include "llvm/IR/IntrinsicInst.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/PassManager.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include <cassert>
74 #include <cstdint>
75 #include <iterator>
76 #include <string>
77 
78 using namespace llvm;
79 
80 static const char LintAbortOnErrorArgName[] = "lint-abort-on-error";
81 static cl::opt<bool>
82     LintAbortOnError(LintAbortOnErrorArgName, cl::init(false),
83                      cl::desc("In the Lint pass, abort on errors."));
84 
85 namespace {
86 namespace MemRef {
87 static const unsigned Read = 1;
88 static const unsigned Write = 2;
89 static const unsigned Callee = 4;
90 static const unsigned Branchee = 8;
91 } // end namespace MemRef
92 
93 class Lint : public InstVisitor<Lint> {
94   friend class InstVisitor<Lint>;
95 
96   void visitFunction(Function &F);
97 
98   void visitCallBase(CallBase &CB);
99   void visitMemoryReference(Instruction &I, const MemoryLocation &Loc,
100                             MaybeAlign Alignment, Type *Ty, unsigned Flags);
101 
102   void visitReturnInst(ReturnInst &I);
103   void visitLoadInst(LoadInst &I);
104   void visitStoreInst(StoreInst &I);
105   void visitXor(BinaryOperator &I);
106   void visitSub(BinaryOperator &I);
107   void visitLShr(BinaryOperator &I);
108   void visitAShr(BinaryOperator &I);
109   void visitShl(BinaryOperator &I);
110   void visitSDiv(BinaryOperator &I);
111   void visitUDiv(BinaryOperator &I);
112   void visitSRem(BinaryOperator &I);
113   void visitURem(BinaryOperator &I);
114   void visitAllocaInst(AllocaInst &I);
115   void visitVAArgInst(VAArgInst &I);
116   void visitIndirectBrInst(IndirectBrInst &I);
117   void visitExtractElementInst(ExtractElementInst &I);
118   void visitInsertElementInst(InsertElementInst &I);
119   void visitUnreachableInst(UnreachableInst &I);
120 
121   Value *findValue(Value *V, bool OffsetOk) const;
122   Value *findValueImpl(Value *V, bool OffsetOk,
123                        SmallPtrSetImpl<Value *> &Visited) const;
124 
125 public:
126   Module *Mod;
127   const DataLayout *DL;
128   AliasAnalysis *AA;
129   AssumptionCache *AC;
130   DominatorTree *DT;
131   TargetLibraryInfo *TLI;
132 
133   std::string Messages;
134   raw_string_ostream MessagesStr;
135 
136   Lint(Module *Mod, const DataLayout *DL, AliasAnalysis *AA,
137        AssumptionCache *AC, DominatorTree *DT, TargetLibraryInfo *TLI)
138       : Mod(Mod), DL(DL), AA(AA), AC(AC), DT(DT), TLI(TLI),
139         MessagesStr(Messages) {}
140 
141   void WriteValues(ArrayRef<const Value *> Vs) {
142     for (const Value *V : Vs) {
143       if (!V)
144         continue;
145       if (isa<Instruction>(V)) {
146         MessagesStr << *V << '\n';
147       } else {
148         V->printAsOperand(MessagesStr, true, Mod);
149         MessagesStr << '\n';
150       }
151     }
152   }
153 
154   /// A check failed, so printout out the condition and the message.
155   ///
156   /// This provides a nice place to put a breakpoint if you want to see why
157   /// something is not correct.
158   void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; }
159 
160   /// A check failed (with values to print).
161   ///
162   /// This calls the Message-only version so that the above is easier to set
163   /// a breakpoint on.
164   template <typename T1, typename... Ts>
165   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
166     CheckFailed(Message);
167     WriteValues({V1, Vs...});
168   }
169 };
170 } // end anonymous namespace
171 
172 // Check - We know that cond should be true, if not print an error message.
173 #define Check(C, ...)                                                          \
174   do {                                                                         \
175     if (!(C)) {                                                                \
176       CheckFailed(__VA_ARGS__);                                                \
177       return;                                                                  \
178     }                                                                          \
179   } while (false)
180 
181 void Lint::visitFunction(Function &F) {
182   // This isn't undefined behavior, it's just a little unusual, and it's a
183   // fairly common mistake to neglect to name a function.
184   Check(F.hasName() || F.hasLocalLinkage(),
185         "Unusual: Unnamed function with non-local linkage", &F);
186 
187   // TODO: Check for irreducible control flow.
188 }
189 
190 void Lint::visitCallBase(CallBase &I) {
191   Value *Callee = I.getCalledOperand();
192 
193   visitMemoryReference(I, MemoryLocation::getAfter(Callee), std::nullopt,
194                        nullptr, MemRef::Callee);
195 
196   if (Function *F = dyn_cast<Function>(findValue(Callee,
197                                                  /*OffsetOk=*/false))) {
198     Check(I.getCallingConv() == F->getCallingConv(),
199           "Undefined behavior: Caller and callee calling convention differ",
200           &I);
201 
202     FunctionType *FT = F->getFunctionType();
203     unsigned NumActualArgs = I.arg_size();
204 
205     Check(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs
206                          : FT->getNumParams() == NumActualArgs,
207           "Undefined behavior: Call argument count mismatches callee "
208           "argument count",
209           &I);
210 
211     Check(FT->getReturnType() == I.getType(),
212           "Undefined behavior: Call return type mismatches "
213           "callee return type",
214           &I);
215 
216     // Check argument types (in case the callee was casted) and attributes.
217     // TODO: Verify that caller and callee attributes are compatible.
218     Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
219     auto AI = I.arg_begin(), AE = I.arg_end();
220     for (; AI != AE; ++AI) {
221       Value *Actual = *AI;
222       if (PI != PE) {
223         Argument *Formal = &*PI++;
224         Check(Formal->getType() == Actual->getType(),
225               "Undefined behavior: Call argument type mismatches "
226               "callee parameter type",
227               &I);
228 
229         // Check that noalias arguments don't alias other arguments. This is
230         // not fully precise because we don't know the sizes of the dereferenced
231         // memory regions.
232         if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) {
233           AttributeList PAL = I.getAttributes();
234           unsigned ArgNo = 0;
235           for (auto *BI = I.arg_begin(); BI != AE; ++BI, ++ArgNo) {
236             // Skip ByVal arguments since they will be memcpy'd to the callee's
237             // stack so we're not really passing the pointer anyway.
238             if (PAL.hasParamAttr(ArgNo, Attribute::ByVal))
239               continue;
240             // If both arguments are readonly, they have no dependence.
241             if (Formal->onlyReadsMemory() && I.onlyReadsMemory(ArgNo))
242               continue;
243             // Skip readnone arguments since those are guaranteed not to be
244             // dereferenced anyway.
245             if (I.doesNotAccessMemory(ArgNo))
246               continue;
247             if (AI != BI && (*BI)->getType()->isPointerTy()) {
248               AliasResult Result = AA->alias(*AI, *BI);
249               Check(Result != AliasResult::MustAlias &&
250                         Result != AliasResult::PartialAlias,
251                     "Unusual: noalias argument aliases another argument", &I);
252             }
253           }
254         }
255 
256         // Check that an sret argument points to valid memory.
257         if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
258           Type *Ty = Formal->getParamStructRetType();
259           MemoryLocation Loc(
260               Actual, LocationSize::precise(DL->getTypeStoreSize(Ty)));
261           visitMemoryReference(I, Loc, DL->getABITypeAlign(Ty), Ty,
262                                MemRef::Read | MemRef::Write);
263         }
264       }
265     }
266   }
267 
268   if (const auto *CI = dyn_cast<CallInst>(&I)) {
269     if (CI->isTailCall()) {
270       const AttributeList &PAL = CI->getAttributes();
271       unsigned ArgNo = 0;
272       for (Value *Arg : I.args()) {
273         // Skip ByVal arguments since they will be memcpy'd to the callee's
274         // stack anyway.
275         if (PAL.hasParamAttr(ArgNo++, Attribute::ByVal))
276           continue;
277         Value *Obj = findValue(Arg, /*OffsetOk=*/true);
278         Check(!isa<AllocaInst>(Obj),
279               "Undefined behavior: Call with \"tail\" keyword references "
280               "alloca",
281               &I);
282       }
283     }
284   }
285 
286   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
287     switch (II->getIntrinsicID()) {
288     default:
289       break;
290 
291       // TODO: Check more intrinsics
292 
293     case Intrinsic::memcpy:
294     case Intrinsic::memcpy_inline: {
295       MemCpyInst *MCI = cast<MemCpyInst>(&I);
296       visitMemoryReference(I, MemoryLocation::getForDest(MCI),
297                            MCI->getDestAlign(), nullptr, MemRef::Write);
298       visitMemoryReference(I, MemoryLocation::getForSource(MCI),
299                            MCI->getSourceAlign(), nullptr, MemRef::Read);
300 
301       // Check that the memcpy arguments don't overlap. The AliasAnalysis API
302       // isn't expressive enough for what we really want to do. Known partial
303       // overlap is not distinguished from the case where nothing is known.
304       auto Size = LocationSize::afterPointer();
305       if (const ConstantInt *Len =
306               dyn_cast<ConstantInt>(findValue(MCI->getLength(),
307                                               /*OffsetOk=*/false)))
308         if (Len->getValue().isIntN(32))
309           Size = LocationSize::precise(Len->getValue().getZExtValue());
310       Check(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
311                 AliasResult::MustAlias,
312             "Undefined behavior: memcpy source and destination overlap", &I);
313       break;
314     }
315     case Intrinsic::memmove: {
316       MemMoveInst *MMI = cast<MemMoveInst>(&I);
317       visitMemoryReference(I, MemoryLocation::getForDest(MMI),
318                            MMI->getDestAlign(), nullptr, MemRef::Write);
319       visitMemoryReference(I, MemoryLocation::getForSource(MMI),
320                            MMI->getSourceAlign(), nullptr, MemRef::Read);
321       break;
322     }
323     case Intrinsic::memset: {
324       MemSetInst *MSI = cast<MemSetInst>(&I);
325       visitMemoryReference(I, MemoryLocation::getForDest(MSI),
326                            MSI->getDestAlign(), nullptr, MemRef::Write);
327       break;
328     }
329     case Intrinsic::memset_inline: {
330       MemSetInlineInst *MSII = cast<MemSetInlineInst>(&I);
331       visitMemoryReference(I, MemoryLocation::getForDest(MSII),
332                            MSII->getDestAlign(), nullptr, MemRef::Write);
333       break;
334     }
335 
336     case Intrinsic::vastart:
337       // vastart in non-varargs function is rejected by the verifier
338       visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI),
339                            std::nullopt, nullptr, MemRef::Read | MemRef::Write);
340       break;
341     case Intrinsic::vacopy:
342       visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI),
343                            std::nullopt, nullptr, MemRef::Write);
344       visitMemoryReference(I, MemoryLocation::getForArgument(&I, 1, TLI),
345                            std::nullopt, nullptr, MemRef::Read);
346       break;
347     case Intrinsic::vaend:
348       visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI),
349                            std::nullopt, nullptr, MemRef::Read | MemRef::Write);
350       break;
351 
352     case Intrinsic::stackrestore:
353       // Stackrestore doesn't read or write memory, but it sets the
354       // stack pointer, which the compiler may read from or write to
355       // at any time, so check it for both readability and writeability.
356       visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI),
357                            std::nullopt, nullptr, MemRef::Read | MemRef::Write);
358       break;
359     case Intrinsic::get_active_lane_mask:
360       if (auto *TripCount = dyn_cast<ConstantInt>(I.getArgOperand(1)))
361         Check(!TripCount->isZero(),
362               "get_active_lane_mask: operand #2 "
363               "must be greater than 0",
364               &I);
365       break;
366     }
367 }
368 
369 void Lint::visitReturnInst(ReturnInst &I) {
370   Function *F = I.getParent()->getParent();
371   Check(!F->doesNotReturn(),
372         "Unusual: Return statement in function with noreturn attribute", &I);
373 
374   if (Value *V = I.getReturnValue()) {
375     Value *Obj = findValue(V, /*OffsetOk=*/true);
376     Check(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I);
377   }
378 }
379 
380 // TODO: Check that the reference is in bounds.
381 // TODO: Check readnone/readonly function attributes.
382 void Lint::visitMemoryReference(Instruction &I, const MemoryLocation &Loc,
383                                 MaybeAlign Align, Type *Ty, unsigned Flags) {
384   // If no memory is being referenced, it doesn't matter if the pointer
385   // is valid.
386   if (Loc.Size.isZero())
387     return;
388 
389   Value *Ptr = const_cast<Value *>(Loc.Ptr);
390   Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
391   Check(!isa<ConstantPointerNull>(UnderlyingObject),
392         "Undefined behavior: Null pointer dereference", &I);
393   Check(!isa<UndefValue>(UnderlyingObject),
394         "Undefined behavior: Undef pointer dereference", &I);
395   Check(!isa<ConstantInt>(UnderlyingObject) ||
396             !cast<ConstantInt>(UnderlyingObject)->isMinusOne(),
397         "Unusual: All-ones pointer dereference", &I);
398   Check(!isa<ConstantInt>(UnderlyingObject) ||
399             !cast<ConstantInt>(UnderlyingObject)->isOne(),
400         "Unusual: Address one pointer dereference", &I);
401 
402   if (Flags & MemRef::Write) {
403     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
404       Check(!GV->isConstant(), "Undefined behavior: Write to read-only memory",
405             &I);
406     Check(!isa<Function>(UnderlyingObject) &&
407               !isa<BlockAddress>(UnderlyingObject),
408           "Undefined behavior: Write to text section", &I);
409   }
410   if (Flags & MemRef::Read) {
411     Check(!isa<Function>(UnderlyingObject), "Unusual: Load from function body",
412           &I);
413     Check(!isa<BlockAddress>(UnderlyingObject),
414           "Undefined behavior: Load from block address", &I);
415   }
416   if (Flags & MemRef::Callee) {
417     Check(!isa<BlockAddress>(UnderlyingObject),
418           "Undefined behavior: Call to block address", &I);
419   }
420   if (Flags & MemRef::Branchee) {
421     Check(!isa<Constant>(UnderlyingObject) ||
422               isa<BlockAddress>(UnderlyingObject),
423           "Undefined behavior: Branch to non-blockaddress", &I);
424   }
425 
426   // Check for buffer overflows and misalignment.
427   // Only handles memory references that read/write something simple like an
428   // alloca instruction or a global variable.
429   int64_t Offset = 0;
430   if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) {
431     // OK, so the access is to a constant offset from Ptr.  Check that Ptr is
432     // something we can handle and if so extract the size of this base object
433     // along with its alignment.
434     uint64_t BaseSize = MemoryLocation::UnknownSize;
435     MaybeAlign BaseAlign;
436 
437     if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
438       Type *ATy = AI->getAllocatedType();
439       if (!AI->isArrayAllocation() && ATy->isSized())
440         BaseSize = DL->getTypeAllocSize(ATy);
441       BaseAlign = AI->getAlign();
442     } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
443       // If the global may be defined differently in another compilation unit
444       // then don't warn about funky memory accesses.
445       if (GV->hasDefinitiveInitializer()) {
446         Type *GTy = GV->getValueType();
447         if (GTy->isSized())
448           BaseSize = DL->getTypeAllocSize(GTy);
449         BaseAlign = GV->getAlign();
450         if (!BaseAlign && GTy->isSized())
451           BaseAlign = DL->getABITypeAlign(GTy);
452       }
453     }
454 
455     // Accesses from before the start or after the end of the object are not
456     // defined.
457     Check(!Loc.Size.hasValue() || BaseSize == MemoryLocation::UnknownSize ||
458               (Offset >= 0 && Offset + Loc.Size.getValue() <= BaseSize),
459           "Undefined behavior: Buffer overflow", &I);
460 
461     // Accesses that say that the memory is more aligned than it is are not
462     // defined.
463     if (!Align && Ty && Ty->isSized())
464       Align = DL->getABITypeAlign(Ty);
465     if (BaseAlign && Align)
466       Check(*Align <= commonAlignment(*BaseAlign, Offset),
467             "Undefined behavior: Memory reference address is misaligned", &I);
468   }
469 }
470 
471 void Lint::visitLoadInst(LoadInst &I) {
472   visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(), I.getType(),
473                        MemRef::Read);
474 }
475 
476 void Lint::visitStoreInst(StoreInst &I) {
477   visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(),
478                        I.getOperand(0)->getType(), MemRef::Write);
479 }
480 
481 void Lint::visitXor(BinaryOperator &I) {
482   Check(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
483         "Undefined result: xor(undef, undef)", &I);
484 }
485 
486 void Lint::visitSub(BinaryOperator &I) {
487   Check(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
488         "Undefined result: sub(undef, undef)", &I);
489 }
490 
491 void Lint::visitLShr(BinaryOperator &I) {
492   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1),
493                                                         /*OffsetOk=*/false)))
494     Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
495           "Undefined result: Shift count out of range", &I);
496 }
497 
498 void Lint::visitAShr(BinaryOperator &I) {
499   if (ConstantInt *CI =
500           dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
501     Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
502           "Undefined result: Shift count out of range", &I);
503 }
504 
505 void Lint::visitShl(BinaryOperator &I) {
506   if (ConstantInt *CI =
507           dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
508     Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
509           "Undefined result: Shift count out of range", &I);
510 }
511 
512 static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT,
513                    AssumptionCache *AC) {
514   // Assume undef could be zero.
515   if (isa<UndefValue>(V))
516     return true;
517 
518   VectorType *VecTy = dyn_cast<VectorType>(V->getType());
519   if (!VecTy) {
520     KnownBits Known =
521         computeKnownBits(V, DL, 0, AC, dyn_cast<Instruction>(V), DT);
522     return Known.isZero();
523   }
524 
525   // Per-component check doesn't work with zeroinitializer
526   Constant *C = dyn_cast<Constant>(V);
527   if (!C)
528     return false;
529 
530   if (C->isZeroValue())
531     return true;
532 
533   // For a vector, KnownZero will only be true if all values are zero, so check
534   // this per component
535   for (unsigned I = 0, N = cast<FixedVectorType>(VecTy)->getNumElements();
536        I != N; ++I) {
537     Constant *Elem = C->getAggregateElement(I);
538     if (isa<UndefValue>(Elem))
539       return true;
540 
541     KnownBits Known = computeKnownBits(Elem, DL);
542     if (Known.isZero())
543       return true;
544   }
545 
546   return false;
547 }
548 
549 void Lint::visitSDiv(BinaryOperator &I) {
550   Check(!isZero(I.getOperand(1), I.getDataLayout(), DT, AC),
551         "Undefined behavior: Division by zero", &I);
552 }
553 
554 void Lint::visitUDiv(BinaryOperator &I) {
555   Check(!isZero(I.getOperand(1), I.getDataLayout(), DT, AC),
556         "Undefined behavior: Division by zero", &I);
557 }
558 
559 void Lint::visitSRem(BinaryOperator &I) {
560   Check(!isZero(I.getOperand(1), I.getDataLayout(), DT, AC),
561         "Undefined behavior: Division by zero", &I);
562 }
563 
564 void Lint::visitURem(BinaryOperator &I) {
565   Check(!isZero(I.getOperand(1), I.getDataLayout(), DT, AC),
566         "Undefined behavior: Division by zero", &I);
567 }
568 
569 void Lint::visitAllocaInst(AllocaInst &I) {
570   if (isa<ConstantInt>(I.getArraySize()))
571     // This isn't undefined behavior, it's just an obvious pessimization.
572     Check(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
573           "Pessimization: Static alloca outside of entry block", &I);
574 
575   // TODO: Check for an unusual size (MSB set?)
576 }
577 
578 void Lint::visitVAArgInst(VAArgInst &I) {
579   visitMemoryReference(I, MemoryLocation::get(&I), std::nullopt, nullptr,
580                        MemRef::Read | MemRef::Write);
581 }
582 
583 void Lint::visitIndirectBrInst(IndirectBrInst &I) {
584   visitMemoryReference(I, MemoryLocation::getAfter(I.getAddress()),
585                        std::nullopt, nullptr, MemRef::Branchee);
586 
587   Check(I.getNumDestinations() != 0,
588         "Undefined behavior: indirectbr with no destinations", &I);
589 }
590 
591 void Lint::visitExtractElementInst(ExtractElementInst &I) {
592   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
593                                                         /*OffsetOk=*/false)))
594     Check(
595         CI->getValue().ult(
596             cast<FixedVectorType>(I.getVectorOperandType())->getNumElements()),
597         "Undefined result: extractelement index out of range", &I);
598 }
599 
600 void Lint::visitInsertElementInst(InsertElementInst &I) {
601   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2),
602                                                         /*OffsetOk=*/false)))
603     Check(CI->getValue().ult(
604               cast<FixedVectorType>(I.getType())->getNumElements()),
605           "Undefined result: insertelement index out of range", &I);
606 }
607 
608 void Lint::visitUnreachableInst(UnreachableInst &I) {
609   // This isn't undefined behavior, it's merely suspicious.
610   Check(&I == &I.getParent()->front() ||
611             std::prev(I.getIterator())->mayHaveSideEffects(),
612         "Unusual: unreachable immediately preceded by instruction without "
613         "side effects",
614         &I);
615 }
616 
617 /// findValue - Look through bitcasts and simple memory reference patterns
618 /// to identify an equivalent, but more informative, value.  If OffsetOk
619 /// is true, look through getelementptrs with non-zero offsets too.
620 ///
621 /// Most analysis passes don't require this logic, because instcombine
622 /// will simplify most of these kinds of things away. But it's a goal of
623 /// this Lint pass to be useful even on non-optimized IR.
624 Value *Lint::findValue(Value *V, bool OffsetOk) const {
625   SmallPtrSet<Value *, 4> Visited;
626   return findValueImpl(V, OffsetOk, Visited);
627 }
628 
629 /// findValueImpl - Implementation helper for findValue.
630 Value *Lint::findValueImpl(Value *V, bool OffsetOk,
631                            SmallPtrSetImpl<Value *> &Visited) const {
632   // Detect self-referential values.
633   if (!Visited.insert(V).second)
634     return PoisonValue::get(V->getType());
635 
636   // TODO: Look through sext or zext cast, when the result is known to
637   // be interpreted as signed or unsigned, respectively.
638   // TODO: Look through eliminable cast pairs.
639   // TODO: Look through calls with unique return values.
640   // TODO: Look through vector insert/extract/shuffle.
641   V = OffsetOk ? getUnderlyingObject(V) : V->stripPointerCasts();
642   if (LoadInst *L = dyn_cast<LoadInst>(V)) {
643     BasicBlock::iterator BBI = L->getIterator();
644     BasicBlock *BB = L->getParent();
645     SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
646     BatchAAResults BatchAA(*AA);
647     for (;;) {
648       if (!VisitedBlocks.insert(BB).second)
649         break;
650       if (Value *U =
651               FindAvailableLoadedValue(L, BB, BBI, DefMaxInstsToScan, &BatchAA))
652         return findValueImpl(U, OffsetOk, Visited);
653       if (BBI != BB->begin())
654         break;
655       BB = BB->getUniquePredecessor();
656       if (!BB)
657         break;
658       BBI = BB->end();
659     }
660   } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
661     if (Value *W = PN->hasConstantValue())
662       return findValueImpl(W, OffsetOk, Visited);
663   } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
664     if (CI->isNoopCast(*DL))
665       return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
666   } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
667     if (Value *W =
668             FindInsertedValue(Ex->getAggregateOperand(), Ex->getIndices()))
669       if (W != V)
670         return findValueImpl(W, OffsetOk, Visited);
671   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
672     // Same as above, but for ConstantExpr instead of Instruction.
673     if (Instruction::isCast(CE->getOpcode())) {
674       if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
675                                CE->getOperand(0)->getType(), CE->getType(),
676                                *DL))
677         return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
678     }
679   }
680 
681   // As a last resort, try SimplifyInstruction or constant folding.
682   if (Instruction *Inst = dyn_cast<Instruction>(V)) {
683     if (Value *W = simplifyInstruction(Inst, {*DL, TLI, DT, AC}))
684       return findValueImpl(W, OffsetOk, Visited);
685   } else if (auto *C = dyn_cast<Constant>(V)) {
686     Value *W = ConstantFoldConstant(C, *DL, TLI);
687     if (W != V)
688       return findValueImpl(W, OffsetOk, Visited);
689   }
690 
691   return V;
692 }
693 
694 PreservedAnalyses LintPass::run(Function &F, FunctionAnalysisManager &AM) {
695   auto *Mod = F.getParent();
696   auto *DL = &F.getDataLayout();
697   auto *AA = &AM.getResult<AAManager>(F);
698   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
699   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
700   auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
701   Lint L(Mod, DL, AA, AC, DT, TLI);
702   L.visit(F);
703   dbgs() << L.MessagesStr.str();
704   if (LintAbortOnError && !L.MessagesStr.str().empty())
705     report_fatal_error(Twine("Linter found errors, aborting. (enabled by --") +
706                            LintAbortOnErrorArgName + ")",
707                        false);
708   return PreservedAnalyses::all();
709 }
710 
711 //===----------------------------------------------------------------------===//
712 //  Implement the public interfaces to this file...
713 //===----------------------------------------------------------------------===//
714 
715 /// lintFunction - Check a function for errors, printing messages on stderr.
716 ///
717 void llvm::lintFunction(const Function &f) {
718   Function &F = const_cast<Function &>(f);
719   assert(!F.isDeclaration() && "Cannot lint external functions");
720 
721   FunctionAnalysisManager FAM;
722   FAM.registerPass([&] { return TargetLibraryAnalysis(); });
723   FAM.registerPass([&] { return DominatorTreeAnalysis(); });
724   FAM.registerPass([&] { return AssumptionAnalysis(); });
725   FAM.registerPass([&] {
726     AAManager AA;
727     AA.registerFunctionAnalysis<BasicAA>();
728     AA.registerFunctionAnalysis<ScopedNoAliasAA>();
729     AA.registerFunctionAnalysis<TypeBasedAA>();
730     return AA;
731   });
732   LintPass().run(F, FAM);
733 }
734 
735 /// lintModule - Check a module for errors, printing messages on stderr.
736 ///
737 void llvm::lintModule(const Module &M) {
738   for (const Function &F : M) {
739     if (!F.isDeclaration())
740       lintFunction(F);
741   }
742 }
743