xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/Lint.cpp (revision 96190b4fef3b4a0cc3ca0606b0c4e3e69a5e6717)
1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass statically checks for common and easily-identified constructs
10 // which produce undefined or likely unintended behavior in LLVM IR.
11 //
12 // It is not a guarantee of correctness, in two ways. First, it isn't
13 // comprehensive. There are checks which could be done statically which are
14 // not yet implemented. Some of these are indicated by TODO comments, but
15 // those aren't comprehensive either. Second, many conditions cannot be
16 // checked statically. This pass does no dynamic instrumentation, so it
17 // can't check for all possible problems.
18 //
19 // Another limitation is that it assumes all code will be executed. A store
20 // through a null pointer in a basic block which is never reached is harmless,
21 // but this pass will warn about it anyway. This is the main reason why most
22 // of these checks live here instead of in the Verifier pass.
23 //
24 // Optimization passes may make conditions that this pass checks for more or
25 // less obvious. If an optimization pass appears to be introducing a warning,
26 // it may be that the optimization pass is merely exposing an existing
27 // condition in the code.
28 //
29 // This code may be run before instcombine. In many cases, instcombine checks
30 // for the same kinds of things and turns instructions with undefined behavior
31 // into unreachable (or equivalent). Because of this, this pass makes some
32 // effort to look through bitcasts and so on.
33 //
34 //===----------------------------------------------------------------------===//
35 
36 #include "llvm/Analysis/Lint.h"
37 #include "llvm/ADT/APInt.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AliasAnalysis.h"
42 #include "llvm/Analysis/AssumptionCache.h"
43 #include "llvm/Analysis/BasicAliasAnalysis.h"
44 #include "llvm/Analysis/ConstantFolding.h"
45 #include "llvm/Analysis/InstructionSimplify.h"
46 #include "llvm/Analysis/Loads.h"
47 #include "llvm/Analysis/MemoryLocation.h"
48 #include "llvm/Analysis/ScopedNoAliasAA.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
51 #include "llvm/Analysis/ValueTracking.h"
52 #include "llvm/IR/Argument.h"
53 #include "llvm/IR/BasicBlock.h"
54 #include "llvm/IR/Constant.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DerivedTypes.h"
58 #include "llvm/IR/Dominators.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/GlobalVariable.h"
61 #include "llvm/IR/InstVisitor.h"
62 #include "llvm/IR/InstrTypes.h"
63 #include "llvm/IR/Instruction.h"
64 #include "llvm/IR/Instructions.h"
65 #include "llvm/IR/IntrinsicInst.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/PassManager.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include <cassert>
74 #include <cstdint>
75 #include <iterator>
76 #include <string>
77 
78 using namespace llvm;
79 
80 namespace {
81 namespace MemRef {
82 static const unsigned Read = 1;
83 static const unsigned Write = 2;
84 static const unsigned Callee = 4;
85 static const unsigned Branchee = 8;
86 } // end namespace MemRef
87 
88 class Lint : public InstVisitor<Lint> {
89   friend class InstVisitor<Lint>;
90 
91   void visitFunction(Function &F);
92 
93   void visitCallBase(CallBase &CB);
94   void visitMemoryReference(Instruction &I, const MemoryLocation &Loc,
95                             MaybeAlign Alignment, Type *Ty, unsigned Flags);
96 
97   void visitReturnInst(ReturnInst &I);
98   void visitLoadInst(LoadInst &I);
99   void visitStoreInst(StoreInst &I);
100   void visitXor(BinaryOperator &I);
101   void visitSub(BinaryOperator &I);
102   void visitLShr(BinaryOperator &I);
103   void visitAShr(BinaryOperator &I);
104   void visitShl(BinaryOperator &I);
105   void visitSDiv(BinaryOperator &I);
106   void visitUDiv(BinaryOperator &I);
107   void visitSRem(BinaryOperator &I);
108   void visitURem(BinaryOperator &I);
109   void visitAllocaInst(AllocaInst &I);
110   void visitVAArgInst(VAArgInst &I);
111   void visitIndirectBrInst(IndirectBrInst &I);
112   void visitExtractElementInst(ExtractElementInst &I);
113   void visitInsertElementInst(InsertElementInst &I);
114   void visitUnreachableInst(UnreachableInst &I);
115 
116   Value *findValue(Value *V, bool OffsetOk) const;
117   Value *findValueImpl(Value *V, bool OffsetOk,
118                        SmallPtrSetImpl<Value *> &Visited) const;
119 
120 public:
121   Module *Mod;
122   const DataLayout *DL;
123   AliasAnalysis *AA;
124   AssumptionCache *AC;
125   DominatorTree *DT;
126   TargetLibraryInfo *TLI;
127 
128   std::string Messages;
129   raw_string_ostream MessagesStr;
130 
131   Lint(Module *Mod, const DataLayout *DL, AliasAnalysis *AA,
132        AssumptionCache *AC, DominatorTree *DT, TargetLibraryInfo *TLI)
133       : Mod(Mod), DL(DL), AA(AA), AC(AC), DT(DT), TLI(TLI),
134         MessagesStr(Messages) {}
135 
136   void WriteValues(ArrayRef<const Value *> Vs) {
137     for (const Value *V : Vs) {
138       if (!V)
139         continue;
140       if (isa<Instruction>(V)) {
141         MessagesStr << *V << '\n';
142       } else {
143         V->printAsOperand(MessagesStr, true, Mod);
144         MessagesStr << '\n';
145       }
146     }
147   }
148 
149   /// A check failed, so printout out the condition and the message.
150   ///
151   /// This provides a nice place to put a breakpoint if you want to see why
152   /// something is not correct.
153   void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; }
154 
155   /// A check failed (with values to print).
156   ///
157   /// This calls the Message-only version so that the above is easier to set
158   /// a breakpoint on.
159   template <typename T1, typename... Ts>
160   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
161     CheckFailed(Message);
162     WriteValues({V1, Vs...});
163   }
164 };
165 } // end anonymous namespace
166 
167 // Check - We know that cond should be true, if not print an error message.
168 #define Check(C, ...)                                                          \
169   do {                                                                         \
170     if (!(C)) {                                                                \
171       CheckFailed(__VA_ARGS__);                                                \
172       return;                                                                  \
173     }                                                                          \
174   } while (false)
175 
176 void Lint::visitFunction(Function &F) {
177   // This isn't undefined behavior, it's just a little unusual, and it's a
178   // fairly common mistake to neglect to name a function.
179   Check(F.hasName() || F.hasLocalLinkage(),
180         "Unusual: Unnamed function with non-local linkage", &F);
181 
182   // TODO: Check for irreducible control flow.
183 }
184 
185 void Lint::visitCallBase(CallBase &I) {
186   Value *Callee = I.getCalledOperand();
187 
188   visitMemoryReference(I, MemoryLocation::getAfter(Callee), std::nullopt,
189                        nullptr, MemRef::Callee);
190 
191   if (Function *F = dyn_cast<Function>(findValue(Callee,
192                                                  /*OffsetOk=*/false))) {
193     Check(I.getCallingConv() == F->getCallingConv(),
194           "Undefined behavior: Caller and callee calling convention differ",
195           &I);
196 
197     FunctionType *FT = F->getFunctionType();
198     unsigned NumActualArgs = I.arg_size();
199 
200     Check(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs
201                          : FT->getNumParams() == NumActualArgs,
202           "Undefined behavior: Call argument count mismatches callee "
203           "argument count",
204           &I);
205 
206     Check(FT->getReturnType() == I.getType(),
207           "Undefined behavior: Call return type mismatches "
208           "callee return type",
209           &I);
210 
211     // Check argument types (in case the callee was casted) and attributes.
212     // TODO: Verify that caller and callee attributes are compatible.
213     Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
214     auto AI = I.arg_begin(), AE = I.arg_end();
215     for (; AI != AE; ++AI) {
216       Value *Actual = *AI;
217       if (PI != PE) {
218         Argument *Formal = &*PI++;
219         Check(Formal->getType() == Actual->getType(),
220               "Undefined behavior: Call argument type mismatches "
221               "callee parameter type",
222               &I);
223 
224         // Check that noalias arguments don't alias other arguments. This is
225         // not fully precise because we don't know the sizes of the dereferenced
226         // memory regions.
227         if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) {
228           AttributeList PAL = I.getAttributes();
229           unsigned ArgNo = 0;
230           for (auto *BI = I.arg_begin(); BI != AE; ++BI, ++ArgNo) {
231             // Skip ByVal arguments since they will be memcpy'd to the callee's
232             // stack so we're not really passing the pointer anyway.
233             if (PAL.hasParamAttr(ArgNo, Attribute::ByVal))
234               continue;
235             // If both arguments are readonly, they have no dependence.
236             if (Formal->onlyReadsMemory() && I.onlyReadsMemory(ArgNo))
237               continue;
238             // Skip readnone arguments since those are guaranteed not to be
239             // dereferenced anyway.
240             if (I.doesNotAccessMemory(ArgNo))
241               continue;
242             if (AI != BI && (*BI)->getType()->isPointerTy()) {
243               AliasResult Result = AA->alias(*AI, *BI);
244               Check(Result != AliasResult::MustAlias &&
245                         Result != AliasResult::PartialAlias,
246                     "Unusual: noalias argument aliases another argument", &I);
247             }
248           }
249         }
250 
251         // Check that an sret argument points to valid memory.
252         if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
253           Type *Ty = Formal->getParamStructRetType();
254           MemoryLocation Loc(
255               Actual, LocationSize::precise(DL->getTypeStoreSize(Ty)));
256           visitMemoryReference(I, Loc, DL->getABITypeAlign(Ty), Ty,
257                                MemRef::Read | MemRef::Write);
258         }
259       }
260     }
261   }
262 
263   if (const auto *CI = dyn_cast<CallInst>(&I)) {
264     if (CI->isTailCall()) {
265       const AttributeList &PAL = CI->getAttributes();
266       unsigned ArgNo = 0;
267       for (Value *Arg : I.args()) {
268         // Skip ByVal arguments since they will be memcpy'd to the callee's
269         // stack anyway.
270         if (PAL.hasParamAttr(ArgNo++, Attribute::ByVal))
271           continue;
272         Value *Obj = findValue(Arg, /*OffsetOk=*/true);
273         Check(!isa<AllocaInst>(Obj),
274               "Undefined behavior: Call with \"tail\" keyword references "
275               "alloca",
276               &I);
277       }
278     }
279   }
280 
281   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
282     switch (II->getIntrinsicID()) {
283     default:
284       break;
285 
286       // TODO: Check more intrinsics
287 
288     case Intrinsic::memcpy: {
289       MemCpyInst *MCI = cast<MemCpyInst>(&I);
290       visitMemoryReference(I, MemoryLocation::getForDest(MCI),
291                            MCI->getDestAlign(), nullptr, MemRef::Write);
292       visitMemoryReference(I, MemoryLocation::getForSource(MCI),
293                            MCI->getSourceAlign(), nullptr, MemRef::Read);
294 
295       // Check that the memcpy arguments don't overlap. The AliasAnalysis API
296       // isn't expressive enough for what we really want to do. Known partial
297       // overlap is not distinguished from the case where nothing is known.
298       auto Size = LocationSize::afterPointer();
299       if (const ConstantInt *Len =
300               dyn_cast<ConstantInt>(findValue(MCI->getLength(),
301                                               /*OffsetOk=*/false)))
302         if (Len->getValue().isIntN(32))
303           Size = LocationSize::precise(Len->getValue().getZExtValue());
304       Check(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
305                 AliasResult::MustAlias,
306             "Undefined behavior: memcpy source and destination overlap", &I);
307       break;
308     }
309     case Intrinsic::memcpy_inline: {
310       MemCpyInlineInst *MCII = cast<MemCpyInlineInst>(&I);
311       const uint64_t Size = MCII->getLength()->getValue().getLimitedValue();
312       visitMemoryReference(I, MemoryLocation::getForDest(MCII),
313                            MCII->getDestAlign(), nullptr, MemRef::Write);
314       visitMemoryReference(I, MemoryLocation::getForSource(MCII),
315                            MCII->getSourceAlign(), nullptr, MemRef::Read);
316 
317       // Check that the memcpy arguments don't overlap. The AliasAnalysis API
318       // isn't expressive enough for what we really want to do. Known partial
319       // overlap is not distinguished from the case where nothing is known.
320       const LocationSize LS = LocationSize::precise(Size);
321       Check(AA->alias(MCII->getSource(), LS, MCII->getDest(), LS) !=
322                 AliasResult::MustAlias,
323             "Undefined behavior: memcpy source and destination overlap", &I);
324       break;
325     }
326     case Intrinsic::memmove: {
327       MemMoveInst *MMI = cast<MemMoveInst>(&I);
328       visitMemoryReference(I, MemoryLocation::getForDest(MMI),
329                            MMI->getDestAlign(), nullptr, MemRef::Write);
330       visitMemoryReference(I, MemoryLocation::getForSource(MMI),
331                            MMI->getSourceAlign(), nullptr, MemRef::Read);
332       break;
333     }
334     case Intrinsic::memset: {
335       MemSetInst *MSI = cast<MemSetInst>(&I);
336       visitMemoryReference(I, MemoryLocation::getForDest(MSI),
337                            MSI->getDestAlign(), nullptr, MemRef::Write);
338       break;
339     }
340     case Intrinsic::memset_inline: {
341       MemSetInlineInst *MSII = cast<MemSetInlineInst>(&I);
342       visitMemoryReference(I, MemoryLocation::getForDest(MSII),
343                            MSII->getDestAlign(), nullptr, MemRef::Write);
344       break;
345     }
346 
347     case Intrinsic::vastart:
348       Check(I.getParent()->getParent()->isVarArg(),
349             "Undefined behavior: va_start called in a non-varargs function",
350             &I);
351 
352       visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI),
353                            std::nullopt, nullptr, MemRef::Read | MemRef::Write);
354       break;
355     case Intrinsic::vacopy:
356       visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI),
357                            std::nullopt, nullptr, MemRef::Write);
358       visitMemoryReference(I, MemoryLocation::getForArgument(&I, 1, TLI),
359                            std::nullopt, nullptr, MemRef::Read);
360       break;
361     case Intrinsic::vaend:
362       visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI),
363                            std::nullopt, nullptr, MemRef::Read | MemRef::Write);
364       break;
365 
366     case Intrinsic::stackrestore:
367       // Stackrestore doesn't read or write memory, but it sets the
368       // stack pointer, which the compiler may read from or write to
369       // at any time, so check it for both readability and writeability.
370       visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI),
371                            std::nullopt, nullptr, MemRef::Read | MemRef::Write);
372       break;
373     case Intrinsic::get_active_lane_mask:
374       if (auto *TripCount = dyn_cast<ConstantInt>(I.getArgOperand(1)))
375         Check(!TripCount->isZero(),
376               "get_active_lane_mask: operand #2 "
377               "must be greater than 0",
378               &I);
379       break;
380     }
381 }
382 
383 void Lint::visitReturnInst(ReturnInst &I) {
384   Function *F = I.getParent()->getParent();
385   Check(!F->doesNotReturn(),
386         "Unusual: Return statement in function with noreturn attribute", &I);
387 
388   if (Value *V = I.getReturnValue()) {
389     Value *Obj = findValue(V, /*OffsetOk=*/true);
390     Check(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I);
391   }
392 }
393 
394 // TODO: Check that the reference is in bounds.
395 // TODO: Check readnone/readonly function attributes.
396 void Lint::visitMemoryReference(Instruction &I, const MemoryLocation &Loc,
397                                 MaybeAlign Align, Type *Ty, unsigned Flags) {
398   // If no memory is being referenced, it doesn't matter if the pointer
399   // is valid.
400   if (Loc.Size.isZero())
401     return;
402 
403   Value *Ptr = const_cast<Value *>(Loc.Ptr);
404   Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
405   Check(!isa<ConstantPointerNull>(UnderlyingObject),
406         "Undefined behavior: Null pointer dereference", &I);
407   Check(!isa<UndefValue>(UnderlyingObject),
408         "Undefined behavior: Undef pointer dereference", &I);
409   Check(!isa<ConstantInt>(UnderlyingObject) ||
410             !cast<ConstantInt>(UnderlyingObject)->isMinusOne(),
411         "Unusual: All-ones pointer dereference", &I);
412   Check(!isa<ConstantInt>(UnderlyingObject) ||
413             !cast<ConstantInt>(UnderlyingObject)->isOne(),
414         "Unusual: Address one pointer dereference", &I);
415 
416   if (Flags & MemRef::Write) {
417     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
418       Check(!GV->isConstant(), "Undefined behavior: Write to read-only memory",
419             &I);
420     Check(!isa<Function>(UnderlyingObject) &&
421               !isa<BlockAddress>(UnderlyingObject),
422           "Undefined behavior: Write to text section", &I);
423   }
424   if (Flags & MemRef::Read) {
425     Check(!isa<Function>(UnderlyingObject), "Unusual: Load from function body",
426           &I);
427     Check(!isa<BlockAddress>(UnderlyingObject),
428           "Undefined behavior: Load from block address", &I);
429   }
430   if (Flags & MemRef::Callee) {
431     Check(!isa<BlockAddress>(UnderlyingObject),
432           "Undefined behavior: Call to block address", &I);
433   }
434   if (Flags & MemRef::Branchee) {
435     Check(!isa<Constant>(UnderlyingObject) ||
436               isa<BlockAddress>(UnderlyingObject),
437           "Undefined behavior: Branch to non-blockaddress", &I);
438   }
439 
440   // Check for buffer overflows and misalignment.
441   // Only handles memory references that read/write something simple like an
442   // alloca instruction or a global variable.
443   int64_t Offset = 0;
444   if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) {
445     // OK, so the access is to a constant offset from Ptr.  Check that Ptr is
446     // something we can handle and if so extract the size of this base object
447     // along with its alignment.
448     uint64_t BaseSize = MemoryLocation::UnknownSize;
449     MaybeAlign BaseAlign;
450 
451     if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
452       Type *ATy = AI->getAllocatedType();
453       if (!AI->isArrayAllocation() && ATy->isSized())
454         BaseSize = DL->getTypeAllocSize(ATy);
455       BaseAlign = AI->getAlign();
456     } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
457       // If the global may be defined differently in another compilation unit
458       // then don't warn about funky memory accesses.
459       if (GV->hasDefinitiveInitializer()) {
460         Type *GTy = GV->getValueType();
461         if (GTy->isSized())
462           BaseSize = DL->getTypeAllocSize(GTy);
463         BaseAlign = GV->getAlign();
464         if (!BaseAlign && GTy->isSized())
465           BaseAlign = DL->getABITypeAlign(GTy);
466       }
467     }
468 
469     // Accesses from before the start or after the end of the object are not
470     // defined.
471     Check(!Loc.Size.hasValue() || BaseSize == MemoryLocation::UnknownSize ||
472               (Offset >= 0 && Offset + Loc.Size.getValue() <= BaseSize),
473           "Undefined behavior: Buffer overflow", &I);
474 
475     // Accesses that say that the memory is more aligned than it is are not
476     // defined.
477     if (!Align && Ty && Ty->isSized())
478       Align = DL->getABITypeAlign(Ty);
479     if (BaseAlign && Align)
480       Check(*Align <= commonAlignment(*BaseAlign, Offset),
481             "Undefined behavior: Memory reference address is misaligned", &I);
482   }
483 }
484 
485 void Lint::visitLoadInst(LoadInst &I) {
486   visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(), I.getType(),
487                        MemRef::Read);
488 }
489 
490 void Lint::visitStoreInst(StoreInst &I) {
491   visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(),
492                        I.getOperand(0)->getType(), MemRef::Write);
493 }
494 
495 void Lint::visitXor(BinaryOperator &I) {
496   Check(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
497         "Undefined result: xor(undef, undef)", &I);
498 }
499 
500 void Lint::visitSub(BinaryOperator &I) {
501   Check(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
502         "Undefined result: sub(undef, undef)", &I);
503 }
504 
505 void Lint::visitLShr(BinaryOperator &I) {
506   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1),
507                                                         /*OffsetOk=*/false)))
508     Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
509           "Undefined result: Shift count out of range", &I);
510 }
511 
512 void Lint::visitAShr(BinaryOperator &I) {
513   if (ConstantInt *CI =
514           dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
515     Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
516           "Undefined result: Shift count out of range", &I);
517 }
518 
519 void Lint::visitShl(BinaryOperator &I) {
520   if (ConstantInt *CI =
521           dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
522     Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
523           "Undefined result: Shift count out of range", &I);
524 }
525 
526 static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT,
527                    AssumptionCache *AC) {
528   // Assume undef could be zero.
529   if (isa<UndefValue>(V))
530     return true;
531 
532   VectorType *VecTy = dyn_cast<VectorType>(V->getType());
533   if (!VecTy) {
534     KnownBits Known =
535         computeKnownBits(V, DL, 0, AC, dyn_cast<Instruction>(V), DT);
536     return Known.isZero();
537   }
538 
539   // Per-component check doesn't work with zeroinitializer
540   Constant *C = dyn_cast<Constant>(V);
541   if (!C)
542     return false;
543 
544   if (C->isZeroValue())
545     return true;
546 
547   // For a vector, KnownZero will only be true if all values are zero, so check
548   // this per component
549   for (unsigned I = 0, N = cast<FixedVectorType>(VecTy)->getNumElements();
550        I != N; ++I) {
551     Constant *Elem = C->getAggregateElement(I);
552     if (isa<UndefValue>(Elem))
553       return true;
554 
555     KnownBits Known = computeKnownBits(Elem, DL);
556     if (Known.isZero())
557       return true;
558   }
559 
560   return false;
561 }
562 
563 void Lint::visitSDiv(BinaryOperator &I) {
564   Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
565         "Undefined behavior: Division by zero", &I);
566 }
567 
568 void Lint::visitUDiv(BinaryOperator &I) {
569   Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
570         "Undefined behavior: Division by zero", &I);
571 }
572 
573 void Lint::visitSRem(BinaryOperator &I) {
574   Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
575         "Undefined behavior: Division by zero", &I);
576 }
577 
578 void Lint::visitURem(BinaryOperator &I) {
579   Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
580         "Undefined behavior: Division by zero", &I);
581 }
582 
583 void Lint::visitAllocaInst(AllocaInst &I) {
584   if (isa<ConstantInt>(I.getArraySize()))
585     // This isn't undefined behavior, it's just an obvious pessimization.
586     Check(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
587           "Pessimization: Static alloca outside of entry block", &I);
588 
589   // TODO: Check for an unusual size (MSB set?)
590 }
591 
592 void Lint::visitVAArgInst(VAArgInst &I) {
593   visitMemoryReference(I, MemoryLocation::get(&I), std::nullopt, nullptr,
594                        MemRef::Read | MemRef::Write);
595 }
596 
597 void Lint::visitIndirectBrInst(IndirectBrInst &I) {
598   visitMemoryReference(I, MemoryLocation::getAfter(I.getAddress()),
599                        std::nullopt, nullptr, MemRef::Branchee);
600 
601   Check(I.getNumDestinations() != 0,
602         "Undefined behavior: indirectbr with no destinations", &I);
603 }
604 
605 void Lint::visitExtractElementInst(ExtractElementInst &I) {
606   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
607                                                         /*OffsetOk=*/false)))
608     Check(
609         CI->getValue().ult(
610             cast<FixedVectorType>(I.getVectorOperandType())->getNumElements()),
611         "Undefined result: extractelement index out of range", &I);
612 }
613 
614 void Lint::visitInsertElementInst(InsertElementInst &I) {
615   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2),
616                                                         /*OffsetOk=*/false)))
617     Check(CI->getValue().ult(
618               cast<FixedVectorType>(I.getType())->getNumElements()),
619           "Undefined result: insertelement index out of range", &I);
620 }
621 
622 void Lint::visitUnreachableInst(UnreachableInst &I) {
623   // This isn't undefined behavior, it's merely suspicious.
624   Check(&I == &I.getParent()->front() ||
625             std::prev(I.getIterator())->mayHaveSideEffects(),
626         "Unusual: unreachable immediately preceded by instruction without "
627         "side effects",
628         &I);
629 }
630 
631 /// findValue - Look through bitcasts and simple memory reference patterns
632 /// to identify an equivalent, but more informative, value.  If OffsetOk
633 /// is true, look through getelementptrs with non-zero offsets too.
634 ///
635 /// Most analysis passes don't require this logic, because instcombine
636 /// will simplify most of these kinds of things away. But it's a goal of
637 /// this Lint pass to be useful even on non-optimized IR.
638 Value *Lint::findValue(Value *V, bool OffsetOk) const {
639   SmallPtrSet<Value *, 4> Visited;
640   return findValueImpl(V, OffsetOk, Visited);
641 }
642 
643 /// findValueImpl - Implementation helper for findValue.
644 Value *Lint::findValueImpl(Value *V, bool OffsetOk,
645                            SmallPtrSetImpl<Value *> &Visited) const {
646   // Detect self-referential values.
647   if (!Visited.insert(V).second)
648     return UndefValue::get(V->getType());
649 
650   // TODO: Look through sext or zext cast, when the result is known to
651   // be interpreted as signed or unsigned, respectively.
652   // TODO: Look through eliminable cast pairs.
653   // TODO: Look through calls with unique return values.
654   // TODO: Look through vector insert/extract/shuffle.
655   V = OffsetOk ? getUnderlyingObject(V) : V->stripPointerCasts();
656   if (LoadInst *L = dyn_cast<LoadInst>(V)) {
657     BasicBlock::iterator BBI = L->getIterator();
658     BasicBlock *BB = L->getParent();
659     SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
660     BatchAAResults BatchAA(*AA);
661     for (;;) {
662       if (!VisitedBlocks.insert(BB).second)
663         break;
664       if (Value *U =
665               FindAvailableLoadedValue(L, BB, BBI, DefMaxInstsToScan, &BatchAA))
666         return findValueImpl(U, OffsetOk, Visited);
667       if (BBI != BB->begin())
668         break;
669       BB = BB->getUniquePredecessor();
670       if (!BB)
671         break;
672       BBI = BB->end();
673     }
674   } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
675     if (Value *W = PN->hasConstantValue())
676       return findValueImpl(W, OffsetOk, Visited);
677   } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
678     if (CI->isNoopCast(*DL))
679       return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
680   } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
681     if (Value *W =
682             FindInsertedValue(Ex->getAggregateOperand(), Ex->getIndices()))
683       if (W != V)
684         return findValueImpl(W, OffsetOk, Visited);
685   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
686     // Same as above, but for ConstantExpr instead of Instruction.
687     if (Instruction::isCast(CE->getOpcode())) {
688       if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
689                                CE->getOperand(0)->getType(), CE->getType(),
690                                *DL))
691         return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
692     }
693   }
694 
695   // As a last resort, try SimplifyInstruction or constant folding.
696   if (Instruction *Inst = dyn_cast<Instruction>(V)) {
697     if (Value *W = simplifyInstruction(Inst, {*DL, TLI, DT, AC}))
698       return findValueImpl(W, OffsetOk, Visited);
699   } else if (auto *C = dyn_cast<Constant>(V)) {
700     Value *W = ConstantFoldConstant(C, *DL, TLI);
701     if (W != V)
702       return findValueImpl(W, OffsetOk, Visited);
703   }
704 
705   return V;
706 }
707 
708 PreservedAnalyses LintPass::run(Function &F, FunctionAnalysisManager &AM) {
709   auto *Mod = F.getParent();
710   auto *DL = &F.getParent()->getDataLayout();
711   auto *AA = &AM.getResult<AAManager>(F);
712   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
713   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
714   auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
715   Lint L(Mod, DL, AA, AC, DT, TLI);
716   L.visit(F);
717   dbgs() << L.MessagesStr.str();
718   return PreservedAnalyses::all();
719 }
720 
721 //===----------------------------------------------------------------------===//
722 //  Implement the public interfaces to this file...
723 //===----------------------------------------------------------------------===//
724 
725 /// lintFunction - Check a function for errors, printing messages on stderr.
726 ///
727 void llvm::lintFunction(const Function &f) {
728   Function &F = const_cast<Function &>(f);
729   assert(!F.isDeclaration() && "Cannot lint external functions");
730 
731   FunctionAnalysisManager FAM;
732   FAM.registerPass([&] { return TargetLibraryAnalysis(); });
733   FAM.registerPass([&] { return DominatorTreeAnalysis(); });
734   FAM.registerPass([&] { return AssumptionAnalysis(); });
735   FAM.registerPass([&] {
736     AAManager AA;
737     AA.registerFunctionAnalysis<BasicAA>();
738     AA.registerFunctionAnalysis<ScopedNoAliasAA>();
739     AA.registerFunctionAnalysis<TypeBasedAA>();
740     return AA;
741   });
742   LintPass().run(F, FAM);
743 }
744 
745 /// lintModule - Check a module for errors, printing messages on stderr.
746 ///
747 void llvm::lintModule(const Module &M) {
748   for (const Function &F : M) {
749     if (!F.isDeclaration())
750       lintFunction(F);
751   }
752 }
753