1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass statically checks for common and easily-identified constructs 10 // which produce undefined or likely unintended behavior in LLVM IR. 11 // 12 // It is not a guarantee of correctness, in two ways. First, it isn't 13 // comprehensive. There are checks which could be done statically which are 14 // not yet implemented. Some of these are indicated by TODO comments, but 15 // those aren't comprehensive either. Second, many conditions cannot be 16 // checked statically. This pass does no dynamic instrumentation, so it 17 // can't check for all possible problems. 18 // 19 // Another limitation is that it assumes all code will be executed. A store 20 // through a null pointer in a basic block which is never reached is harmless, 21 // but this pass will warn about it anyway. This is the main reason why most 22 // of these checks live here instead of in the Verifier pass. 23 // 24 // Optimization passes may make conditions that this pass checks for more or 25 // less obvious. If an optimization pass appears to be introducing a warning, 26 // it may be that the optimization pass is merely exposing an existing 27 // condition in the code. 28 // 29 // This code may be run before instcombine. In many cases, instcombine checks 30 // for the same kinds of things and turns instructions with undefined behavior 31 // into unreachable (or equivalent). Because of this, this pass makes some 32 // effort to look through bitcasts and so on. 33 // 34 //===----------------------------------------------------------------------===// 35 36 #include "llvm/Analysis/Lint.h" 37 #include "llvm/ADT/APInt.h" 38 #include "llvm/ADT/ArrayRef.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/Twine.h" 41 #include "llvm/Analysis/AliasAnalysis.h" 42 #include "llvm/Analysis/AssumptionCache.h" 43 #include "llvm/Analysis/BasicAliasAnalysis.h" 44 #include "llvm/Analysis/ConstantFolding.h" 45 #include "llvm/Analysis/InstructionSimplify.h" 46 #include "llvm/Analysis/Loads.h" 47 #include "llvm/Analysis/MemoryLocation.h" 48 #include "llvm/Analysis/ScopedNoAliasAA.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/Analysis/TypeBasedAliasAnalysis.h" 51 #include "llvm/Analysis/ValueTracking.h" 52 #include "llvm/IR/Argument.h" 53 #include "llvm/IR/BasicBlock.h" 54 #include "llvm/IR/Constant.h" 55 #include "llvm/IR/Constants.h" 56 #include "llvm/IR/DataLayout.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/GlobalVariable.h" 61 #include "llvm/IR/InstVisitor.h" 62 #include "llvm/IR/InstrTypes.h" 63 #include "llvm/IR/Instruction.h" 64 #include "llvm/IR/Instructions.h" 65 #include "llvm/IR/IntrinsicInst.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/PassManager.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/KnownBits.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <cassert> 74 #include <cstdint> 75 #include <iterator> 76 #include <string> 77 78 using namespace llvm; 79 80 namespace { 81 namespace MemRef { 82 static const unsigned Read = 1; 83 static const unsigned Write = 2; 84 static const unsigned Callee = 4; 85 static const unsigned Branchee = 8; 86 } // end namespace MemRef 87 88 class Lint : public InstVisitor<Lint> { 89 friend class InstVisitor<Lint>; 90 91 void visitFunction(Function &F); 92 93 void visitCallBase(CallBase &CB); 94 void visitMemoryReference(Instruction &I, const MemoryLocation &Loc, 95 MaybeAlign Alignment, Type *Ty, unsigned Flags); 96 97 void visitReturnInst(ReturnInst &I); 98 void visitLoadInst(LoadInst &I); 99 void visitStoreInst(StoreInst &I); 100 void visitXor(BinaryOperator &I); 101 void visitSub(BinaryOperator &I); 102 void visitLShr(BinaryOperator &I); 103 void visitAShr(BinaryOperator &I); 104 void visitShl(BinaryOperator &I); 105 void visitSDiv(BinaryOperator &I); 106 void visitUDiv(BinaryOperator &I); 107 void visitSRem(BinaryOperator &I); 108 void visitURem(BinaryOperator &I); 109 void visitAllocaInst(AllocaInst &I); 110 void visitVAArgInst(VAArgInst &I); 111 void visitIndirectBrInst(IndirectBrInst &I); 112 void visitExtractElementInst(ExtractElementInst &I); 113 void visitInsertElementInst(InsertElementInst &I); 114 void visitUnreachableInst(UnreachableInst &I); 115 116 Value *findValue(Value *V, bool OffsetOk) const; 117 Value *findValueImpl(Value *V, bool OffsetOk, 118 SmallPtrSetImpl<Value *> &Visited) const; 119 120 public: 121 Module *Mod; 122 const DataLayout *DL; 123 AliasAnalysis *AA; 124 AssumptionCache *AC; 125 DominatorTree *DT; 126 TargetLibraryInfo *TLI; 127 128 std::string Messages; 129 raw_string_ostream MessagesStr; 130 131 Lint(Module *Mod, const DataLayout *DL, AliasAnalysis *AA, 132 AssumptionCache *AC, DominatorTree *DT, TargetLibraryInfo *TLI) 133 : Mod(Mod), DL(DL), AA(AA), AC(AC), DT(DT), TLI(TLI), 134 MessagesStr(Messages) {} 135 136 void WriteValues(ArrayRef<const Value *> Vs) { 137 for (const Value *V : Vs) { 138 if (!V) 139 continue; 140 if (isa<Instruction>(V)) { 141 MessagesStr << *V << '\n'; 142 } else { 143 V->printAsOperand(MessagesStr, true, Mod); 144 MessagesStr << '\n'; 145 } 146 } 147 } 148 149 /// A check failed, so printout out the condition and the message. 150 /// 151 /// This provides a nice place to put a breakpoint if you want to see why 152 /// something is not correct. 153 void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; } 154 155 /// A check failed (with values to print). 156 /// 157 /// This calls the Message-only version so that the above is easier to set 158 /// a breakpoint on. 159 template <typename T1, typename... Ts> 160 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 161 CheckFailed(Message); 162 WriteValues({V1, Vs...}); 163 } 164 }; 165 } // end anonymous namespace 166 167 // Check - We know that cond should be true, if not print an error message. 168 #define Check(C, ...) \ 169 do { \ 170 if (!(C)) { \ 171 CheckFailed(__VA_ARGS__); \ 172 return; \ 173 } \ 174 } while (false) 175 176 void Lint::visitFunction(Function &F) { 177 // This isn't undefined behavior, it's just a little unusual, and it's a 178 // fairly common mistake to neglect to name a function. 179 Check(F.hasName() || F.hasLocalLinkage(), 180 "Unusual: Unnamed function with non-local linkage", &F); 181 182 // TODO: Check for irreducible control flow. 183 } 184 185 void Lint::visitCallBase(CallBase &I) { 186 Value *Callee = I.getCalledOperand(); 187 188 visitMemoryReference(I, MemoryLocation::getAfter(Callee), std::nullopt, 189 nullptr, MemRef::Callee); 190 191 if (Function *F = dyn_cast<Function>(findValue(Callee, 192 /*OffsetOk=*/false))) { 193 Check(I.getCallingConv() == F->getCallingConv(), 194 "Undefined behavior: Caller and callee calling convention differ", 195 &I); 196 197 FunctionType *FT = F->getFunctionType(); 198 unsigned NumActualArgs = I.arg_size(); 199 200 Check(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs 201 : FT->getNumParams() == NumActualArgs, 202 "Undefined behavior: Call argument count mismatches callee " 203 "argument count", 204 &I); 205 206 Check(FT->getReturnType() == I.getType(), 207 "Undefined behavior: Call return type mismatches " 208 "callee return type", 209 &I); 210 211 // Check argument types (in case the callee was casted) and attributes. 212 // TODO: Verify that caller and callee attributes are compatible. 213 Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end(); 214 auto AI = I.arg_begin(), AE = I.arg_end(); 215 for (; AI != AE; ++AI) { 216 Value *Actual = *AI; 217 if (PI != PE) { 218 Argument *Formal = &*PI++; 219 Check(Formal->getType() == Actual->getType(), 220 "Undefined behavior: Call argument type mismatches " 221 "callee parameter type", 222 &I); 223 224 // Check that noalias arguments don't alias other arguments. This is 225 // not fully precise because we don't know the sizes of the dereferenced 226 // memory regions. 227 if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) { 228 AttributeList PAL = I.getAttributes(); 229 unsigned ArgNo = 0; 230 for (auto *BI = I.arg_begin(); BI != AE; ++BI, ++ArgNo) { 231 // Skip ByVal arguments since they will be memcpy'd to the callee's 232 // stack so we're not really passing the pointer anyway. 233 if (PAL.hasParamAttr(ArgNo, Attribute::ByVal)) 234 continue; 235 // If both arguments are readonly, they have no dependence. 236 if (Formal->onlyReadsMemory() && I.onlyReadsMemory(ArgNo)) 237 continue; 238 // Skip readnone arguments since those are guaranteed not to be 239 // dereferenced anyway. 240 if (I.doesNotAccessMemory(ArgNo)) 241 continue; 242 if (AI != BI && (*BI)->getType()->isPointerTy()) { 243 AliasResult Result = AA->alias(*AI, *BI); 244 Check(Result != AliasResult::MustAlias && 245 Result != AliasResult::PartialAlias, 246 "Unusual: noalias argument aliases another argument", &I); 247 } 248 } 249 } 250 251 // Check that an sret argument points to valid memory. 252 if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) { 253 Type *Ty = Formal->getParamStructRetType(); 254 MemoryLocation Loc( 255 Actual, LocationSize::precise(DL->getTypeStoreSize(Ty))); 256 visitMemoryReference(I, Loc, DL->getABITypeAlign(Ty), Ty, 257 MemRef::Read | MemRef::Write); 258 } 259 } 260 } 261 } 262 263 if (const auto *CI = dyn_cast<CallInst>(&I)) { 264 if (CI->isTailCall()) { 265 const AttributeList &PAL = CI->getAttributes(); 266 unsigned ArgNo = 0; 267 for (Value *Arg : I.args()) { 268 // Skip ByVal arguments since they will be memcpy'd to the callee's 269 // stack anyway. 270 if (PAL.hasParamAttr(ArgNo++, Attribute::ByVal)) 271 continue; 272 Value *Obj = findValue(Arg, /*OffsetOk=*/true); 273 Check(!isa<AllocaInst>(Obj), 274 "Undefined behavior: Call with \"tail\" keyword references " 275 "alloca", 276 &I); 277 } 278 } 279 } 280 281 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) 282 switch (II->getIntrinsicID()) { 283 default: 284 break; 285 286 // TODO: Check more intrinsics 287 288 case Intrinsic::memcpy: { 289 MemCpyInst *MCI = cast<MemCpyInst>(&I); 290 visitMemoryReference(I, MemoryLocation::getForDest(MCI), 291 MCI->getDestAlign(), nullptr, MemRef::Write); 292 visitMemoryReference(I, MemoryLocation::getForSource(MCI), 293 MCI->getSourceAlign(), nullptr, MemRef::Read); 294 295 // Check that the memcpy arguments don't overlap. The AliasAnalysis API 296 // isn't expressive enough for what we really want to do. Known partial 297 // overlap is not distinguished from the case where nothing is known. 298 auto Size = LocationSize::afterPointer(); 299 if (const ConstantInt *Len = 300 dyn_cast<ConstantInt>(findValue(MCI->getLength(), 301 /*OffsetOk=*/false))) 302 if (Len->getValue().isIntN(32)) 303 Size = LocationSize::precise(Len->getValue().getZExtValue()); 304 Check(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) != 305 AliasResult::MustAlias, 306 "Undefined behavior: memcpy source and destination overlap", &I); 307 break; 308 } 309 case Intrinsic::memcpy_inline: { 310 MemCpyInlineInst *MCII = cast<MemCpyInlineInst>(&I); 311 const uint64_t Size = MCII->getLength()->getValue().getLimitedValue(); 312 visitMemoryReference(I, MemoryLocation::getForDest(MCII), 313 MCII->getDestAlign(), nullptr, MemRef::Write); 314 visitMemoryReference(I, MemoryLocation::getForSource(MCII), 315 MCII->getSourceAlign(), nullptr, MemRef::Read); 316 317 // Check that the memcpy arguments don't overlap. The AliasAnalysis API 318 // isn't expressive enough for what we really want to do. Known partial 319 // overlap is not distinguished from the case where nothing is known. 320 const LocationSize LS = LocationSize::precise(Size); 321 Check(AA->alias(MCII->getSource(), LS, MCII->getDest(), LS) != 322 AliasResult::MustAlias, 323 "Undefined behavior: memcpy source and destination overlap", &I); 324 break; 325 } 326 case Intrinsic::memmove: { 327 MemMoveInst *MMI = cast<MemMoveInst>(&I); 328 visitMemoryReference(I, MemoryLocation::getForDest(MMI), 329 MMI->getDestAlign(), nullptr, MemRef::Write); 330 visitMemoryReference(I, MemoryLocation::getForSource(MMI), 331 MMI->getSourceAlign(), nullptr, MemRef::Read); 332 break; 333 } 334 case Intrinsic::memset: { 335 MemSetInst *MSI = cast<MemSetInst>(&I); 336 visitMemoryReference(I, MemoryLocation::getForDest(MSI), 337 MSI->getDestAlign(), nullptr, MemRef::Write); 338 break; 339 } 340 case Intrinsic::memset_inline: { 341 MemSetInlineInst *MSII = cast<MemSetInlineInst>(&I); 342 visitMemoryReference(I, MemoryLocation::getForDest(MSII), 343 MSII->getDestAlign(), nullptr, MemRef::Write); 344 break; 345 } 346 347 case Intrinsic::vastart: 348 Check(I.getParent()->getParent()->isVarArg(), 349 "Undefined behavior: va_start called in a non-varargs function", 350 &I); 351 352 visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), 353 std::nullopt, nullptr, MemRef::Read | MemRef::Write); 354 break; 355 case Intrinsic::vacopy: 356 visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), 357 std::nullopt, nullptr, MemRef::Write); 358 visitMemoryReference(I, MemoryLocation::getForArgument(&I, 1, TLI), 359 std::nullopt, nullptr, MemRef::Read); 360 break; 361 case Intrinsic::vaend: 362 visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), 363 std::nullopt, nullptr, MemRef::Read | MemRef::Write); 364 break; 365 366 case Intrinsic::stackrestore: 367 // Stackrestore doesn't read or write memory, but it sets the 368 // stack pointer, which the compiler may read from or write to 369 // at any time, so check it for both readability and writeability. 370 visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), 371 std::nullopt, nullptr, MemRef::Read | MemRef::Write); 372 break; 373 case Intrinsic::get_active_lane_mask: 374 if (auto *TripCount = dyn_cast<ConstantInt>(I.getArgOperand(1))) 375 Check(!TripCount->isZero(), 376 "get_active_lane_mask: operand #2 " 377 "must be greater than 0", 378 &I); 379 break; 380 } 381 } 382 383 void Lint::visitReturnInst(ReturnInst &I) { 384 Function *F = I.getParent()->getParent(); 385 Check(!F->doesNotReturn(), 386 "Unusual: Return statement in function with noreturn attribute", &I); 387 388 if (Value *V = I.getReturnValue()) { 389 Value *Obj = findValue(V, /*OffsetOk=*/true); 390 Check(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I); 391 } 392 } 393 394 // TODO: Check that the reference is in bounds. 395 // TODO: Check readnone/readonly function attributes. 396 void Lint::visitMemoryReference(Instruction &I, const MemoryLocation &Loc, 397 MaybeAlign Align, Type *Ty, unsigned Flags) { 398 // If no memory is being referenced, it doesn't matter if the pointer 399 // is valid. 400 if (Loc.Size.isZero()) 401 return; 402 403 Value *Ptr = const_cast<Value *>(Loc.Ptr); 404 Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true); 405 Check(!isa<ConstantPointerNull>(UnderlyingObject), 406 "Undefined behavior: Null pointer dereference", &I); 407 Check(!isa<UndefValue>(UnderlyingObject), 408 "Undefined behavior: Undef pointer dereference", &I); 409 Check(!isa<ConstantInt>(UnderlyingObject) || 410 !cast<ConstantInt>(UnderlyingObject)->isMinusOne(), 411 "Unusual: All-ones pointer dereference", &I); 412 Check(!isa<ConstantInt>(UnderlyingObject) || 413 !cast<ConstantInt>(UnderlyingObject)->isOne(), 414 "Unusual: Address one pointer dereference", &I); 415 416 if (Flags & MemRef::Write) { 417 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject)) 418 Check(!GV->isConstant(), "Undefined behavior: Write to read-only memory", 419 &I); 420 Check(!isa<Function>(UnderlyingObject) && 421 !isa<BlockAddress>(UnderlyingObject), 422 "Undefined behavior: Write to text section", &I); 423 } 424 if (Flags & MemRef::Read) { 425 Check(!isa<Function>(UnderlyingObject), "Unusual: Load from function body", 426 &I); 427 Check(!isa<BlockAddress>(UnderlyingObject), 428 "Undefined behavior: Load from block address", &I); 429 } 430 if (Flags & MemRef::Callee) { 431 Check(!isa<BlockAddress>(UnderlyingObject), 432 "Undefined behavior: Call to block address", &I); 433 } 434 if (Flags & MemRef::Branchee) { 435 Check(!isa<Constant>(UnderlyingObject) || 436 isa<BlockAddress>(UnderlyingObject), 437 "Undefined behavior: Branch to non-blockaddress", &I); 438 } 439 440 // Check for buffer overflows and misalignment. 441 // Only handles memory references that read/write something simple like an 442 // alloca instruction or a global variable. 443 int64_t Offset = 0; 444 if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) { 445 // OK, so the access is to a constant offset from Ptr. Check that Ptr is 446 // something we can handle and if so extract the size of this base object 447 // along with its alignment. 448 uint64_t BaseSize = MemoryLocation::UnknownSize; 449 MaybeAlign BaseAlign; 450 451 if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) { 452 Type *ATy = AI->getAllocatedType(); 453 if (!AI->isArrayAllocation() && ATy->isSized()) 454 BaseSize = DL->getTypeAllocSize(ATy); 455 BaseAlign = AI->getAlign(); 456 } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) { 457 // If the global may be defined differently in another compilation unit 458 // then don't warn about funky memory accesses. 459 if (GV->hasDefinitiveInitializer()) { 460 Type *GTy = GV->getValueType(); 461 if (GTy->isSized()) 462 BaseSize = DL->getTypeAllocSize(GTy); 463 BaseAlign = GV->getAlign(); 464 if (!BaseAlign && GTy->isSized()) 465 BaseAlign = DL->getABITypeAlign(GTy); 466 } 467 } 468 469 // Accesses from before the start or after the end of the object are not 470 // defined. 471 Check(!Loc.Size.hasValue() || BaseSize == MemoryLocation::UnknownSize || 472 (Offset >= 0 && Offset + Loc.Size.getValue() <= BaseSize), 473 "Undefined behavior: Buffer overflow", &I); 474 475 // Accesses that say that the memory is more aligned than it is are not 476 // defined. 477 if (!Align && Ty && Ty->isSized()) 478 Align = DL->getABITypeAlign(Ty); 479 if (BaseAlign && Align) 480 Check(*Align <= commonAlignment(*BaseAlign, Offset), 481 "Undefined behavior: Memory reference address is misaligned", &I); 482 } 483 } 484 485 void Lint::visitLoadInst(LoadInst &I) { 486 visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(), I.getType(), 487 MemRef::Read); 488 } 489 490 void Lint::visitStoreInst(StoreInst &I) { 491 visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(), 492 I.getOperand(0)->getType(), MemRef::Write); 493 } 494 495 void Lint::visitXor(BinaryOperator &I) { 496 Check(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)), 497 "Undefined result: xor(undef, undef)", &I); 498 } 499 500 void Lint::visitSub(BinaryOperator &I) { 501 Check(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)), 502 "Undefined result: sub(undef, undef)", &I); 503 } 504 505 void Lint::visitLShr(BinaryOperator &I) { 506 if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1), 507 /*OffsetOk=*/false))) 508 Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), 509 "Undefined result: Shift count out of range", &I); 510 } 511 512 void Lint::visitAShr(BinaryOperator &I) { 513 if (ConstantInt *CI = 514 dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false))) 515 Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), 516 "Undefined result: Shift count out of range", &I); 517 } 518 519 void Lint::visitShl(BinaryOperator &I) { 520 if (ConstantInt *CI = 521 dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false))) 522 Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), 523 "Undefined result: Shift count out of range", &I); 524 } 525 526 static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, 527 AssumptionCache *AC) { 528 // Assume undef could be zero. 529 if (isa<UndefValue>(V)) 530 return true; 531 532 VectorType *VecTy = dyn_cast<VectorType>(V->getType()); 533 if (!VecTy) { 534 KnownBits Known = 535 computeKnownBits(V, DL, 0, AC, dyn_cast<Instruction>(V), DT); 536 return Known.isZero(); 537 } 538 539 // Per-component check doesn't work with zeroinitializer 540 Constant *C = dyn_cast<Constant>(V); 541 if (!C) 542 return false; 543 544 if (C->isZeroValue()) 545 return true; 546 547 // For a vector, KnownZero will only be true if all values are zero, so check 548 // this per component 549 for (unsigned I = 0, N = cast<FixedVectorType>(VecTy)->getNumElements(); 550 I != N; ++I) { 551 Constant *Elem = C->getAggregateElement(I); 552 if (isa<UndefValue>(Elem)) 553 return true; 554 555 KnownBits Known = computeKnownBits(Elem, DL); 556 if (Known.isZero()) 557 return true; 558 } 559 560 return false; 561 } 562 563 void Lint::visitSDiv(BinaryOperator &I) { 564 Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), 565 "Undefined behavior: Division by zero", &I); 566 } 567 568 void Lint::visitUDiv(BinaryOperator &I) { 569 Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), 570 "Undefined behavior: Division by zero", &I); 571 } 572 573 void Lint::visitSRem(BinaryOperator &I) { 574 Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), 575 "Undefined behavior: Division by zero", &I); 576 } 577 578 void Lint::visitURem(BinaryOperator &I) { 579 Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), 580 "Undefined behavior: Division by zero", &I); 581 } 582 583 void Lint::visitAllocaInst(AllocaInst &I) { 584 if (isa<ConstantInt>(I.getArraySize())) 585 // This isn't undefined behavior, it's just an obvious pessimization. 586 Check(&I.getParent()->getParent()->getEntryBlock() == I.getParent(), 587 "Pessimization: Static alloca outside of entry block", &I); 588 589 // TODO: Check for an unusual size (MSB set?) 590 } 591 592 void Lint::visitVAArgInst(VAArgInst &I) { 593 visitMemoryReference(I, MemoryLocation::get(&I), std::nullopt, nullptr, 594 MemRef::Read | MemRef::Write); 595 } 596 597 void Lint::visitIndirectBrInst(IndirectBrInst &I) { 598 visitMemoryReference(I, MemoryLocation::getAfter(I.getAddress()), 599 std::nullopt, nullptr, MemRef::Branchee); 600 601 Check(I.getNumDestinations() != 0, 602 "Undefined behavior: indirectbr with no destinations", &I); 603 } 604 605 void Lint::visitExtractElementInst(ExtractElementInst &I) { 606 if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(), 607 /*OffsetOk=*/false))) 608 Check( 609 CI->getValue().ult( 610 cast<FixedVectorType>(I.getVectorOperandType())->getNumElements()), 611 "Undefined result: extractelement index out of range", &I); 612 } 613 614 void Lint::visitInsertElementInst(InsertElementInst &I) { 615 if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2), 616 /*OffsetOk=*/false))) 617 Check(CI->getValue().ult( 618 cast<FixedVectorType>(I.getType())->getNumElements()), 619 "Undefined result: insertelement index out of range", &I); 620 } 621 622 void Lint::visitUnreachableInst(UnreachableInst &I) { 623 // This isn't undefined behavior, it's merely suspicious. 624 Check(&I == &I.getParent()->front() || 625 std::prev(I.getIterator())->mayHaveSideEffects(), 626 "Unusual: unreachable immediately preceded by instruction without " 627 "side effects", 628 &I); 629 } 630 631 /// findValue - Look through bitcasts and simple memory reference patterns 632 /// to identify an equivalent, but more informative, value. If OffsetOk 633 /// is true, look through getelementptrs with non-zero offsets too. 634 /// 635 /// Most analysis passes don't require this logic, because instcombine 636 /// will simplify most of these kinds of things away. But it's a goal of 637 /// this Lint pass to be useful even on non-optimized IR. 638 Value *Lint::findValue(Value *V, bool OffsetOk) const { 639 SmallPtrSet<Value *, 4> Visited; 640 return findValueImpl(V, OffsetOk, Visited); 641 } 642 643 /// findValueImpl - Implementation helper for findValue. 644 Value *Lint::findValueImpl(Value *V, bool OffsetOk, 645 SmallPtrSetImpl<Value *> &Visited) const { 646 // Detect self-referential values. 647 if (!Visited.insert(V).second) 648 return UndefValue::get(V->getType()); 649 650 // TODO: Look through sext or zext cast, when the result is known to 651 // be interpreted as signed or unsigned, respectively. 652 // TODO: Look through eliminable cast pairs. 653 // TODO: Look through calls with unique return values. 654 // TODO: Look through vector insert/extract/shuffle. 655 V = OffsetOk ? getUnderlyingObject(V) : V->stripPointerCasts(); 656 if (LoadInst *L = dyn_cast<LoadInst>(V)) { 657 BasicBlock::iterator BBI = L->getIterator(); 658 BasicBlock *BB = L->getParent(); 659 SmallPtrSet<BasicBlock *, 4> VisitedBlocks; 660 BatchAAResults BatchAA(*AA); 661 for (;;) { 662 if (!VisitedBlocks.insert(BB).second) 663 break; 664 if (Value *U = 665 FindAvailableLoadedValue(L, BB, BBI, DefMaxInstsToScan, &BatchAA)) 666 return findValueImpl(U, OffsetOk, Visited); 667 if (BBI != BB->begin()) 668 break; 669 BB = BB->getUniquePredecessor(); 670 if (!BB) 671 break; 672 BBI = BB->end(); 673 } 674 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 675 if (Value *W = PN->hasConstantValue()) 676 return findValueImpl(W, OffsetOk, Visited); 677 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 678 if (CI->isNoopCast(*DL)) 679 return findValueImpl(CI->getOperand(0), OffsetOk, Visited); 680 } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) { 681 if (Value *W = 682 FindInsertedValue(Ex->getAggregateOperand(), Ex->getIndices())) 683 if (W != V) 684 return findValueImpl(W, OffsetOk, Visited); 685 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 686 // Same as above, but for ConstantExpr instead of Instruction. 687 if (Instruction::isCast(CE->getOpcode())) { 688 if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()), 689 CE->getOperand(0)->getType(), CE->getType(), 690 *DL)) 691 return findValueImpl(CE->getOperand(0), OffsetOk, Visited); 692 } 693 } 694 695 // As a last resort, try SimplifyInstruction or constant folding. 696 if (Instruction *Inst = dyn_cast<Instruction>(V)) { 697 if (Value *W = simplifyInstruction(Inst, {*DL, TLI, DT, AC})) 698 return findValueImpl(W, OffsetOk, Visited); 699 } else if (auto *C = dyn_cast<Constant>(V)) { 700 Value *W = ConstantFoldConstant(C, *DL, TLI); 701 if (W != V) 702 return findValueImpl(W, OffsetOk, Visited); 703 } 704 705 return V; 706 } 707 708 PreservedAnalyses LintPass::run(Function &F, FunctionAnalysisManager &AM) { 709 auto *Mod = F.getParent(); 710 auto *DL = &F.getParent()->getDataLayout(); 711 auto *AA = &AM.getResult<AAManager>(F); 712 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 713 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 714 auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F); 715 Lint L(Mod, DL, AA, AC, DT, TLI); 716 L.visit(F); 717 dbgs() << L.MessagesStr.str(); 718 return PreservedAnalyses::all(); 719 } 720 721 //===----------------------------------------------------------------------===// 722 // Implement the public interfaces to this file... 723 //===----------------------------------------------------------------------===// 724 725 /// lintFunction - Check a function for errors, printing messages on stderr. 726 /// 727 void llvm::lintFunction(const Function &f) { 728 Function &F = const_cast<Function &>(f); 729 assert(!F.isDeclaration() && "Cannot lint external functions"); 730 731 FunctionAnalysisManager FAM; 732 FAM.registerPass([&] { return TargetLibraryAnalysis(); }); 733 FAM.registerPass([&] { return DominatorTreeAnalysis(); }); 734 FAM.registerPass([&] { return AssumptionAnalysis(); }); 735 FAM.registerPass([&] { 736 AAManager AA; 737 AA.registerFunctionAnalysis<BasicAA>(); 738 AA.registerFunctionAnalysis<ScopedNoAliasAA>(); 739 AA.registerFunctionAnalysis<TypeBasedAA>(); 740 return AA; 741 }); 742 LintPass().run(F, FAM); 743 } 744 745 /// lintModule - Check a module for errors, printing messages on stderr. 746 /// 747 void llvm::lintModule(const Module &M) { 748 for (const Function &F : M) { 749 if (!F.isDeclaration()) 750 lintFunction(F); 751 } 752 } 753