xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/Lint.cpp (revision 5fb307d29b364982acbde82cbf77db3cae486f8c)
1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass statically checks for common and easily-identified constructs
10 // which produce undefined or likely unintended behavior in LLVM IR.
11 //
12 // It is not a guarantee of correctness, in two ways. First, it isn't
13 // comprehensive. There are checks which could be done statically which are
14 // not yet implemented. Some of these are indicated by TODO comments, but
15 // those aren't comprehensive either. Second, many conditions cannot be
16 // checked statically. This pass does no dynamic instrumentation, so it
17 // can't check for all possible problems.
18 //
19 // Another limitation is that it assumes all code will be executed. A store
20 // through a null pointer in a basic block which is never reached is harmless,
21 // but this pass will warn about it anyway. This is the main reason why most
22 // of these checks live here instead of in the Verifier pass.
23 //
24 // Optimization passes may make conditions that this pass checks for more or
25 // less obvious. If an optimization pass appears to be introducing a warning,
26 // it may be that the optimization pass is merely exposing an existing
27 // condition in the code.
28 //
29 // This code may be run before instcombine. In many cases, instcombine checks
30 // for the same kinds of things and turns instructions with undefined behavior
31 // into unreachable (or equivalent). Because of this, this pass makes some
32 // effort to look through bitcasts and so on.
33 //
34 //===----------------------------------------------------------------------===//
35 
36 #include "llvm/Analysis/Lint.h"
37 #include "llvm/ADT/APInt.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AliasAnalysis.h"
42 #include "llvm/Analysis/AssumptionCache.h"
43 #include "llvm/Analysis/BasicAliasAnalysis.h"
44 #include "llvm/Analysis/ConstantFolding.h"
45 #include "llvm/Analysis/InstructionSimplify.h"
46 #include "llvm/Analysis/Loads.h"
47 #include "llvm/Analysis/MemoryLocation.h"
48 #include "llvm/Analysis/ScopedNoAliasAA.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
51 #include "llvm/Analysis/ValueTracking.h"
52 #include "llvm/IR/Argument.h"
53 #include "llvm/IR/BasicBlock.h"
54 #include "llvm/IR/Constant.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DerivedTypes.h"
58 #include "llvm/IR/Dominators.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/GlobalVariable.h"
61 #include "llvm/IR/InstVisitor.h"
62 #include "llvm/IR/InstrTypes.h"
63 #include "llvm/IR/Instruction.h"
64 #include "llvm/IR/Instructions.h"
65 #include "llvm/IR/IntrinsicInst.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/PassManager.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include <cassert>
74 #include <cstdint>
75 #include <iterator>
76 #include <string>
77 
78 using namespace llvm;
79 
80 namespace {
81 namespace MemRef {
82 static const unsigned Read = 1;
83 static const unsigned Write = 2;
84 static const unsigned Callee = 4;
85 static const unsigned Branchee = 8;
86 } // end namespace MemRef
87 
88 class Lint : public InstVisitor<Lint> {
89   friend class InstVisitor<Lint>;
90 
91   void visitFunction(Function &F);
92 
93   void visitCallBase(CallBase &CB);
94   void visitMemoryReference(Instruction &I, const MemoryLocation &Loc,
95                             MaybeAlign Alignment, Type *Ty, unsigned Flags);
96 
97   void visitReturnInst(ReturnInst &I);
98   void visitLoadInst(LoadInst &I);
99   void visitStoreInst(StoreInst &I);
100   void visitXor(BinaryOperator &I);
101   void visitSub(BinaryOperator &I);
102   void visitLShr(BinaryOperator &I);
103   void visitAShr(BinaryOperator &I);
104   void visitShl(BinaryOperator &I);
105   void visitSDiv(BinaryOperator &I);
106   void visitUDiv(BinaryOperator &I);
107   void visitSRem(BinaryOperator &I);
108   void visitURem(BinaryOperator &I);
109   void visitAllocaInst(AllocaInst &I);
110   void visitVAArgInst(VAArgInst &I);
111   void visitIndirectBrInst(IndirectBrInst &I);
112   void visitExtractElementInst(ExtractElementInst &I);
113   void visitInsertElementInst(InsertElementInst &I);
114   void visitUnreachableInst(UnreachableInst &I);
115 
116   Value *findValue(Value *V, bool OffsetOk) const;
117   Value *findValueImpl(Value *V, bool OffsetOk,
118                        SmallPtrSetImpl<Value *> &Visited) const;
119 
120 public:
121   Module *Mod;
122   const DataLayout *DL;
123   AliasAnalysis *AA;
124   AssumptionCache *AC;
125   DominatorTree *DT;
126   TargetLibraryInfo *TLI;
127 
128   std::string Messages;
129   raw_string_ostream MessagesStr;
130 
131   Lint(Module *Mod, const DataLayout *DL, AliasAnalysis *AA,
132        AssumptionCache *AC, DominatorTree *DT, TargetLibraryInfo *TLI)
133       : Mod(Mod), DL(DL), AA(AA), AC(AC), DT(DT), TLI(TLI),
134         MessagesStr(Messages) {}
135 
136   void WriteValues(ArrayRef<const Value *> Vs) {
137     for (const Value *V : Vs) {
138       if (!V)
139         continue;
140       if (isa<Instruction>(V)) {
141         MessagesStr << *V << '\n';
142       } else {
143         V->printAsOperand(MessagesStr, true, Mod);
144         MessagesStr << '\n';
145       }
146     }
147   }
148 
149   /// A check failed, so printout out the condition and the message.
150   ///
151   /// This provides a nice place to put a breakpoint if you want to see why
152   /// something is not correct.
153   void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; }
154 
155   /// A check failed (with values to print).
156   ///
157   /// This calls the Message-only version so that the above is easier to set
158   /// a breakpoint on.
159   template <typename T1, typename... Ts>
160   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
161     CheckFailed(Message);
162     WriteValues({V1, Vs...});
163   }
164 };
165 } // end anonymous namespace
166 
167 // Check - We know that cond should be true, if not print an error message.
168 #define Check(C, ...)                                                          \
169   do {                                                                         \
170     if (!(C)) {                                                                \
171       CheckFailed(__VA_ARGS__);                                                \
172       return;                                                                  \
173     }                                                                          \
174   } while (false)
175 
176 void Lint::visitFunction(Function &F) {
177   // This isn't undefined behavior, it's just a little unusual, and it's a
178   // fairly common mistake to neglect to name a function.
179   Check(F.hasName() || F.hasLocalLinkage(),
180         "Unusual: Unnamed function with non-local linkage", &F);
181 
182   // TODO: Check for irreducible control flow.
183 }
184 
185 void Lint::visitCallBase(CallBase &I) {
186   Value *Callee = I.getCalledOperand();
187 
188   visitMemoryReference(I, MemoryLocation::getAfter(Callee), std::nullopt,
189                        nullptr, MemRef::Callee);
190 
191   if (Function *F = dyn_cast<Function>(findValue(Callee,
192                                                  /*OffsetOk=*/false))) {
193     Check(I.getCallingConv() == F->getCallingConv(),
194           "Undefined behavior: Caller and callee calling convention differ",
195           &I);
196 
197     FunctionType *FT = F->getFunctionType();
198     unsigned NumActualArgs = I.arg_size();
199 
200     Check(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs
201                          : FT->getNumParams() == NumActualArgs,
202           "Undefined behavior: Call argument count mismatches callee "
203           "argument count",
204           &I);
205 
206     Check(FT->getReturnType() == I.getType(),
207           "Undefined behavior: Call return type mismatches "
208           "callee return type",
209           &I);
210 
211     // Check argument types (in case the callee was casted) and attributes.
212     // TODO: Verify that caller and callee attributes are compatible.
213     Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
214     auto AI = I.arg_begin(), AE = I.arg_end();
215     for (; AI != AE; ++AI) {
216       Value *Actual = *AI;
217       if (PI != PE) {
218         Argument *Formal = &*PI++;
219         Check(Formal->getType() == Actual->getType(),
220               "Undefined behavior: Call argument type mismatches "
221               "callee parameter type",
222               &I);
223 
224         // Check that noalias arguments don't alias other arguments. This is
225         // not fully precise because we don't know the sizes of the dereferenced
226         // memory regions.
227         if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) {
228           AttributeList PAL = I.getAttributes();
229           unsigned ArgNo = 0;
230           for (auto *BI = I.arg_begin(); BI != AE; ++BI, ++ArgNo) {
231             // Skip ByVal arguments since they will be memcpy'd to the callee's
232             // stack so we're not really passing the pointer anyway.
233             if (PAL.hasParamAttr(ArgNo, Attribute::ByVal))
234               continue;
235             // If both arguments are readonly, they have no dependence.
236             if (Formal->onlyReadsMemory() && I.onlyReadsMemory(ArgNo))
237               continue;
238             if (AI != BI && (*BI)->getType()->isPointerTy()) {
239               AliasResult Result = AA->alias(*AI, *BI);
240               Check(Result != AliasResult::MustAlias &&
241                         Result != AliasResult::PartialAlias,
242                     "Unusual: noalias argument aliases another argument", &I);
243             }
244           }
245         }
246 
247         // Check that an sret argument points to valid memory.
248         if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
249           Type *Ty = Formal->getParamStructRetType();
250           MemoryLocation Loc(
251               Actual, LocationSize::precise(DL->getTypeStoreSize(Ty)));
252           visitMemoryReference(I, Loc, DL->getABITypeAlign(Ty), Ty,
253                                MemRef::Read | MemRef::Write);
254         }
255       }
256     }
257   }
258 
259   if (const auto *CI = dyn_cast<CallInst>(&I)) {
260     if (CI->isTailCall()) {
261       const AttributeList &PAL = CI->getAttributes();
262       unsigned ArgNo = 0;
263       for (Value *Arg : I.args()) {
264         // Skip ByVal arguments since they will be memcpy'd to the callee's
265         // stack anyway.
266         if (PAL.hasParamAttr(ArgNo++, Attribute::ByVal))
267           continue;
268         Value *Obj = findValue(Arg, /*OffsetOk=*/true);
269         Check(!isa<AllocaInst>(Obj),
270               "Undefined behavior: Call with \"tail\" keyword references "
271               "alloca",
272               &I);
273       }
274     }
275   }
276 
277   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
278     switch (II->getIntrinsicID()) {
279     default:
280       break;
281 
282       // TODO: Check more intrinsics
283 
284     case Intrinsic::memcpy: {
285       MemCpyInst *MCI = cast<MemCpyInst>(&I);
286       visitMemoryReference(I, MemoryLocation::getForDest(MCI),
287                            MCI->getDestAlign(), nullptr, MemRef::Write);
288       visitMemoryReference(I, MemoryLocation::getForSource(MCI),
289                            MCI->getSourceAlign(), nullptr, MemRef::Read);
290 
291       // Check that the memcpy arguments don't overlap. The AliasAnalysis API
292       // isn't expressive enough for what we really want to do. Known partial
293       // overlap is not distinguished from the case where nothing is known.
294       auto Size = LocationSize::afterPointer();
295       if (const ConstantInt *Len =
296               dyn_cast<ConstantInt>(findValue(MCI->getLength(),
297                                               /*OffsetOk=*/false)))
298         if (Len->getValue().isIntN(32))
299           Size = LocationSize::precise(Len->getValue().getZExtValue());
300       Check(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
301                 AliasResult::MustAlias,
302             "Undefined behavior: memcpy source and destination overlap", &I);
303       break;
304     }
305     case Intrinsic::memcpy_inline: {
306       MemCpyInlineInst *MCII = cast<MemCpyInlineInst>(&I);
307       const uint64_t Size = MCII->getLength()->getValue().getLimitedValue();
308       visitMemoryReference(I, MemoryLocation::getForDest(MCII),
309                            MCII->getDestAlign(), nullptr, MemRef::Write);
310       visitMemoryReference(I, MemoryLocation::getForSource(MCII),
311                            MCII->getSourceAlign(), nullptr, MemRef::Read);
312 
313       // Check that the memcpy arguments don't overlap. The AliasAnalysis API
314       // isn't expressive enough for what we really want to do. Known partial
315       // overlap is not distinguished from the case where nothing is known.
316       const LocationSize LS = LocationSize::precise(Size);
317       Check(AA->alias(MCII->getSource(), LS, MCII->getDest(), LS) !=
318                 AliasResult::MustAlias,
319             "Undefined behavior: memcpy source and destination overlap", &I);
320       break;
321     }
322     case Intrinsic::memmove: {
323       MemMoveInst *MMI = cast<MemMoveInst>(&I);
324       visitMemoryReference(I, MemoryLocation::getForDest(MMI),
325                            MMI->getDestAlign(), nullptr, MemRef::Write);
326       visitMemoryReference(I, MemoryLocation::getForSource(MMI),
327                            MMI->getSourceAlign(), nullptr, MemRef::Read);
328       break;
329     }
330     case Intrinsic::memset: {
331       MemSetInst *MSI = cast<MemSetInst>(&I);
332       visitMemoryReference(I, MemoryLocation::getForDest(MSI),
333                            MSI->getDestAlign(), nullptr, MemRef::Write);
334       break;
335     }
336     case Intrinsic::memset_inline: {
337       MemSetInlineInst *MSII = cast<MemSetInlineInst>(&I);
338       visitMemoryReference(I, MemoryLocation::getForDest(MSII),
339                            MSII->getDestAlign(), nullptr, MemRef::Write);
340       break;
341     }
342 
343     case Intrinsic::vastart:
344       Check(I.getParent()->getParent()->isVarArg(),
345             "Undefined behavior: va_start called in a non-varargs function",
346             &I);
347 
348       visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI),
349                            std::nullopt, nullptr, MemRef::Read | MemRef::Write);
350       break;
351     case Intrinsic::vacopy:
352       visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI),
353                            std::nullopt, nullptr, MemRef::Write);
354       visitMemoryReference(I, MemoryLocation::getForArgument(&I, 1, TLI),
355                            std::nullopt, nullptr, MemRef::Read);
356       break;
357     case Intrinsic::vaend:
358       visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI),
359                            std::nullopt, nullptr, MemRef::Read | MemRef::Write);
360       break;
361 
362     case Intrinsic::stackrestore:
363       // Stackrestore doesn't read or write memory, but it sets the
364       // stack pointer, which the compiler may read from or write to
365       // at any time, so check it for both readability and writeability.
366       visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI),
367                            std::nullopt, nullptr, MemRef::Read | MemRef::Write);
368       break;
369     case Intrinsic::get_active_lane_mask:
370       if (auto *TripCount = dyn_cast<ConstantInt>(I.getArgOperand(1)))
371         Check(!TripCount->isZero(),
372               "get_active_lane_mask: operand #2 "
373               "must be greater than 0",
374               &I);
375       break;
376     }
377 }
378 
379 void Lint::visitReturnInst(ReturnInst &I) {
380   Function *F = I.getParent()->getParent();
381   Check(!F->doesNotReturn(),
382         "Unusual: Return statement in function with noreturn attribute", &I);
383 
384   if (Value *V = I.getReturnValue()) {
385     Value *Obj = findValue(V, /*OffsetOk=*/true);
386     Check(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I);
387   }
388 }
389 
390 // TODO: Check that the reference is in bounds.
391 // TODO: Check readnone/readonly function attributes.
392 void Lint::visitMemoryReference(Instruction &I, const MemoryLocation &Loc,
393                                 MaybeAlign Align, Type *Ty, unsigned Flags) {
394   // If no memory is being referenced, it doesn't matter if the pointer
395   // is valid.
396   if (Loc.Size.isZero())
397     return;
398 
399   Value *Ptr = const_cast<Value *>(Loc.Ptr);
400   Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
401   Check(!isa<ConstantPointerNull>(UnderlyingObject),
402         "Undefined behavior: Null pointer dereference", &I);
403   Check(!isa<UndefValue>(UnderlyingObject),
404         "Undefined behavior: Undef pointer dereference", &I);
405   Check(!isa<ConstantInt>(UnderlyingObject) ||
406             !cast<ConstantInt>(UnderlyingObject)->isMinusOne(),
407         "Unusual: All-ones pointer dereference", &I);
408   Check(!isa<ConstantInt>(UnderlyingObject) ||
409             !cast<ConstantInt>(UnderlyingObject)->isOne(),
410         "Unusual: Address one pointer dereference", &I);
411 
412   if (Flags & MemRef::Write) {
413     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
414       Check(!GV->isConstant(), "Undefined behavior: Write to read-only memory",
415             &I);
416     Check(!isa<Function>(UnderlyingObject) &&
417               !isa<BlockAddress>(UnderlyingObject),
418           "Undefined behavior: Write to text section", &I);
419   }
420   if (Flags & MemRef::Read) {
421     Check(!isa<Function>(UnderlyingObject), "Unusual: Load from function body",
422           &I);
423     Check(!isa<BlockAddress>(UnderlyingObject),
424           "Undefined behavior: Load from block address", &I);
425   }
426   if (Flags & MemRef::Callee) {
427     Check(!isa<BlockAddress>(UnderlyingObject),
428           "Undefined behavior: Call to block address", &I);
429   }
430   if (Flags & MemRef::Branchee) {
431     Check(!isa<Constant>(UnderlyingObject) ||
432               isa<BlockAddress>(UnderlyingObject),
433           "Undefined behavior: Branch to non-blockaddress", &I);
434   }
435 
436   // Check for buffer overflows and misalignment.
437   // Only handles memory references that read/write something simple like an
438   // alloca instruction or a global variable.
439   int64_t Offset = 0;
440   if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) {
441     // OK, so the access is to a constant offset from Ptr.  Check that Ptr is
442     // something we can handle and if so extract the size of this base object
443     // along with its alignment.
444     uint64_t BaseSize = MemoryLocation::UnknownSize;
445     MaybeAlign BaseAlign;
446 
447     if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
448       Type *ATy = AI->getAllocatedType();
449       if (!AI->isArrayAllocation() && ATy->isSized())
450         BaseSize = DL->getTypeAllocSize(ATy);
451       BaseAlign = AI->getAlign();
452     } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
453       // If the global may be defined differently in another compilation unit
454       // then don't warn about funky memory accesses.
455       if (GV->hasDefinitiveInitializer()) {
456         Type *GTy = GV->getValueType();
457         if (GTy->isSized())
458           BaseSize = DL->getTypeAllocSize(GTy);
459         BaseAlign = GV->getAlign();
460         if (!BaseAlign && GTy->isSized())
461           BaseAlign = DL->getABITypeAlign(GTy);
462       }
463     }
464 
465     // Accesses from before the start or after the end of the object are not
466     // defined.
467     Check(!Loc.Size.hasValue() || BaseSize == MemoryLocation::UnknownSize ||
468               (Offset >= 0 && Offset + Loc.Size.getValue() <= BaseSize),
469           "Undefined behavior: Buffer overflow", &I);
470 
471     // Accesses that say that the memory is more aligned than it is are not
472     // defined.
473     if (!Align && Ty && Ty->isSized())
474       Align = DL->getABITypeAlign(Ty);
475     if (BaseAlign && Align)
476       Check(*Align <= commonAlignment(*BaseAlign, Offset),
477             "Undefined behavior: Memory reference address is misaligned", &I);
478   }
479 }
480 
481 void Lint::visitLoadInst(LoadInst &I) {
482   visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(), I.getType(),
483                        MemRef::Read);
484 }
485 
486 void Lint::visitStoreInst(StoreInst &I) {
487   visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(),
488                        I.getOperand(0)->getType(), MemRef::Write);
489 }
490 
491 void Lint::visitXor(BinaryOperator &I) {
492   Check(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
493         "Undefined result: xor(undef, undef)", &I);
494 }
495 
496 void Lint::visitSub(BinaryOperator &I) {
497   Check(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
498         "Undefined result: sub(undef, undef)", &I);
499 }
500 
501 void Lint::visitLShr(BinaryOperator &I) {
502   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1),
503                                                         /*OffsetOk=*/false)))
504     Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
505           "Undefined result: Shift count out of range", &I);
506 }
507 
508 void Lint::visitAShr(BinaryOperator &I) {
509   if (ConstantInt *CI =
510           dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
511     Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
512           "Undefined result: Shift count out of range", &I);
513 }
514 
515 void Lint::visitShl(BinaryOperator &I) {
516   if (ConstantInt *CI =
517           dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
518     Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
519           "Undefined result: Shift count out of range", &I);
520 }
521 
522 static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT,
523                    AssumptionCache *AC) {
524   // Assume undef could be zero.
525   if (isa<UndefValue>(V))
526     return true;
527 
528   VectorType *VecTy = dyn_cast<VectorType>(V->getType());
529   if (!VecTy) {
530     KnownBits Known =
531         computeKnownBits(V, DL, 0, AC, dyn_cast<Instruction>(V), DT);
532     return Known.isZero();
533   }
534 
535   // Per-component check doesn't work with zeroinitializer
536   Constant *C = dyn_cast<Constant>(V);
537   if (!C)
538     return false;
539 
540   if (C->isZeroValue())
541     return true;
542 
543   // For a vector, KnownZero will only be true if all values are zero, so check
544   // this per component
545   for (unsigned I = 0, N = cast<FixedVectorType>(VecTy)->getNumElements();
546        I != N; ++I) {
547     Constant *Elem = C->getAggregateElement(I);
548     if (isa<UndefValue>(Elem))
549       return true;
550 
551     KnownBits Known = computeKnownBits(Elem, DL);
552     if (Known.isZero())
553       return true;
554   }
555 
556   return false;
557 }
558 
559 void Lint::visitSDiv(BinaryOperator &I) {
560   Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
561         "Undefined behavior: Division by zero", &I);
562 }
563 
564 void Lint::visitUDiv(BinaryOperator &I) {
565   Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
566         "Undefined behavior: Division by zero", &I);
567 }
568 
569 void Lint::visitSRem(BinaryOperator &I) {
570   Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
571         "Undefined behavior: Division by zero", &I);
572 }
573 
574 void Lint::visitURem(BinaryOperator &I) {
575   Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
576         "Undefined behavior: Division by zero", &I);
577 }
578 
579 void Lint::visitAllocaInst(AllocaInst &I) {
580   if (isa<ConstantInt>(I.getArraySize()))
581     // This isn't undefined behavior, it's just an obvious pessimization.
582     Check(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
583           "Pessimization: Static alloca outside of entry block", &I);
584 
585   // TODO: Check for an unusual size (MSB set?)
586 }
587 
588 void Lint::visitVAArgInst(VAArgInst &I) {
589   visitMemoryReference(I, MemoryLocation::get(&I), std::nullopt, nullptr,
590                        MemRef::Read | MemRef::Write);
591 }
592 
593 void Lint::visitIndirectBrInst(IndirectBrInst &I) {
594   visitMemoryReference(I, MemoryLocation::getAfter(I.getAddress()),
595                        std::nullopt, nullptr, MemRef::Branchee);
596 
597   Check(I.getNumDestinations() != 0,
598         "Undefined behavior: indirectbr with no destinations", &I);
599 }
600 
601 void Lint::visitExtractElementInst(ExtractElementInst &I) {
602   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
603                                                         /*OffsetOk=*/false)))
604     Check(
605         CI->getValue().ult(
606             cast<FixedVectorType>(I.getVectorOperandType())->getNumElements()),
607         "Undefined result: extractelement index out of range", &I);
608 }
609 
610 void Lint::visitInsertElementInst(InsertElementInst &I) {
611   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2),
612                                                         /*OffsetOk=*/false)))
613     Check(CI->getValue().ult(
614               cast<FixedVectorType>(I.getType())->getNumElements()),
615           "Undefined result: insertelement index out of range", &I);
616 }
617 
618 void Lint::visitUnreachableInst(UnreachableInst &I) {
619   // This isn't undefined behavior, it's merely suspicious.
620   Check(&I == &I.getParent()->front() ||
621             std::prev(I.getIterator())->mayHaveSideEffects(),
622         "Unusual: unreachable immediately preceded by instruction without "
623         "side effects",
624         &I);
625 }
626 
627 /// findValue - Look through bitcasts and simple memory reference patterns
628 /// to identify an equivalent, but more informative, value.  If OffsetOk
629 /// is true, look through getelementptrs with non-zero offsets too.
630 ///
631 /// Most analysis passes don't require this logic, because instcombine
632 /// will simplify most of these kinds of things away. But it's a goal of
633 /// this Lint pass to be useful even on non-optimized IR.
634 Value *Lint::findValue(Value *V, bool OffsetOk) const {
635   SmallPtrSet<Value *, 4> Visited;
636   return findValueImpl(V, OffsetOk, Visited);
637 }
638 
639 /// findValueImpl - Implementation helper for findValue.
640 Value *Lint::findValueImpl(Value *V, bool OffsetOk,
641                            SmallPtrSetImpl<Value *> &Visited) const {
642   // Detect self-referential values.
643   if (!Visited.insert(V).second)
644     return UndefValue::get(V->getType());
645 
646   // TODO: Look through sext or zext cast, when the result is known to
647   // be interpreted as signed or unsigned, respectively.
648   // TODO: Look through eliminable cast pairs.
649   // TODO: Look through calls with unique return values.
650   // TODO: Look through vector insert/extract/shuffle.
651   V = OffsetOk ? getUnderlyingObject(V) : V->stripPointerCasts();
652   if (LoadInst *L = dyn_cast<LoadInst>(V)) {
653     BasicBlock::iterator BBI = L->getIterator();
654     BasicBlock *BB = L->getParent();
655     SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
656     for (;;) {
657       if (!VisitedBlocks.insert(BB).second)
658         break;
659       if (Value *U =
660               FindAvailableLoadedValue(L, BB, BBI, DefMaxInstsToScan, AA))
661         return findValueImpl(U, OffsetOk, Visited);
662       if (BBI != BB->begin())
663         break;
664       BB = BB->getUniquePredecessor();
665       if (!BB)
666         break;
667       BBI = BB->end();
668     }
669   } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
670     if (Value *W = PN->hasConstantValue())
671       return findValueImpl(W, OffsetOk, Visited);
672   } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
673     if (CI->isNoopCast(*DL))
674       return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
675   } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
676     if (Value *W =
677             FindInsertedValue(Ex->getAggregateOperand(), Ex->getIndices()))
678       if (W != V)
679         return findValueImpl(W, OffsetOk, Visited);
680   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
681     // Same as above, but for ConstantExpr instead of Instruction.
682     if (Instruction::isCast(CE->getOpcode())) {
683       if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
684                                CE->getOperand(0)->getType(), CE->getType(),
685                                *DL))
686         return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
687     }
688   }
689 
690   // As a last resort, try SimplifyInstruction or constant folding.
691   if (Instruction *Inst = dyn_cast<Instruction>(V)) {
692     if (Value *W = simplifyInstruction(Inst, {*DL, TLI, DT, AC}))
693       return findValueImpl(W, OffsetOk, Visited);
694   } else if (auto *C = dyn_cast<Constant>(V)) {
695     Value *W = ConstantFoldConstant(C, *DL, TLI);
696     if (W != V)
697       return findValueImpl(W, OffsetOk, Visited);
698   }
699 
700   return V;
701 }
702 
703 PreservedAnalyses LintPass::run(Function &F, FunctionAnalysisManager &AM) {
704   auto *Mod = F.getParent();
705   auto *DL = &F.getParent()->getDataLayout();
706   auto *AA = &AM.getResult<AAManager>(F);
707   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
708   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
709   auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
710   Lint L(Mod, DL, AA, AC, DT, TLI);
711   L.visit(F);
712   dbgs() << L.MessagesStr.str();
713   return PreservedAnalyses::all();
714 }
715 
716 //===----------------------------------------------------------------------===//
717 //  Implement the public interfaces to this file...
718 //===----------------------------------------------------------------------===//
719 
720 /// lintFunction - Check a function for errors, printing messages on stderr.
721 ///
722 void llvm::lintFunction(const Function &f) {
723   Function &F = const_cast<Function &>(f);
724   assert(!F.isDeclaration() && "Cannot lint external functions");
725 
726   FunctionAnalysisManager FAM;
727   FAM.registerPass([&] { return TargetLibraryAnalysis(); });
728   FAM.registerPass([&] { return DominatorTreeAnalysis(); });
729   FAM.registerPass([&] { return AssumptionAnalysis(); });
730   FAM.registerPass([&] {
731     AAManager AA;
732     AA.registerFunctionAnalysis<BasicAA>();
733     AA.registerFunctionAnalysis<ScopedNoAliasAA>();
734     AA.registerFunctionAnalysis<TypeBasedAA>();
735     return AA;
736   });
737   LintPass().run(F, FAM);
738 }
739 
740 /// lintModule - Check a module for errors, printing messages on stderr.
741 ///
742 void llvm::lintModule(const Module &M) {
743   for (const Function &F : M) {
744     if (!F.isDeclaration())
745       lintFunction(F);
746   }
747 }
748