xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/Lint.cpp (revision 4b50c451720d8b427757a6da1dd2bb4c52cd9e35)
1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass statically checks for common and easily-identified constructs
10 // which produce undefined or likely unintended behavior in LLVM IR.
11 //
12 // It is not a guarantee of correctness, in two ways. First, it isn't
13 // comprehensive. There are checks which could be done statically which are
14 // not yet implemented. Some of these are indicated by TODO comments, but
15 // those aren't comprehensive either. Second, many conditions cannot be
16 // checked statically. This pass does no dynamic instrumentation, so it
17 // can't check for all possible problems.
18 //
19 // Another limitation is that it assumes all code will be executed. A store
20 // through a null pointer in a basic block which is never reached is harmless,
21 // but this pass will warn about it anyway. This is the main reason why most
22 // of these checks live here instead of in the Verifier pass.
23 //
24 // Optimization passes may make conditions that this pass checks for more or
25 // less obvious. If an optimization pass appears to be introducing a warning,
26 // it may be that the optimization pass is merely exposing an existing
27 // condition in the code.
28 //
29 // This code may be run before instcombine. In many cases, instcombine checks
30 // for the same kinds of things and turns instructions with undefined behavior
31 // into unreachable (or equivalent). Because of this, this pass makes some
32 // effort to look through bitcasts and so on.
33 //
34 //===----------------------------------------------------------------------===//
35 
36 #include "llvm/Analysis/Lint.h"
37 #include "llvm/ADT/APInt.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AliasAnalysis.h"
42 #include "llvm/Analysis/AssumptionCache.h"
43 #include "llvm/Analysis/ConstantFolding.h"
44 #include "llvm/Analysis/InstructionSimplify.h"
45 #include "llvm/Analysis/Loads.h"
46 #include "llvm/Analysis/MemoryLocation.h"
47 #include "llvm/Analysis/Passes.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/Analysis/ValueTracking.h"
50 #include "llvm/IR/Argument.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/CallSite.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/Dominators.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/GlobalVariable.h"
60 #include "llvm/IR/InstVisitor.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/LegacyPassManager.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Value.h"
69 #include "llvm/Pass.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/KnownBits.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include <cassert>
76 #include <cstdint>
77 #include <iterator>
78 #include <string>
79 
80 using namespace llvm;
81 
82 namespace {
83   namespace MemRef {
84     static const unsigned Read     = 1;
85     static const unsigned Write    = 2;
86     static const unsigned Callee   = 4;
87     static const unsigned Branchee = 8;
88   } // end namespace MemRef
89 
90   class Lint : public FunctionPass, public InstVisitor<Lint> {
91     friend class InstVisitor<Lint>;
92 
93     void visitFunction(Function &F);
94 
95     void visitCallSite(CallSite CS);
96     void visitMemoryReference(Instruction &I, Value *Ptr,
97                               uint64_t Size, unsigned Align,
98                               Type *Ty, unsigned Flags);
99     void visitEHBeginCatch(IntrinsicInst *II);
100     void visitEHEndCatch(IntrinsicInst *II);
101 
102     void visitCallInst(CallInst &I);
103     void visitInvokeInst(InvokeInst &I);
104     void visitReturnInst(ReturnInst &I);
105     void visitLoadInst(LoadInst &I);
106     void visitStoreInst(StoreInst &I);
107     void visitXor(BinaryOperator &I);
108     void visitSub(BinaryOperator &I);
109     void visitLShr(BinaryOperator &I);
110     void visitAShr(BinaryOperator &I);
111     void visitShl(BinaryOperator &I);
112     void visitSDiv(BinaryOperator &I);
113     void visitUDiv(BinaryOperator &I);
114     void visitSRem(BinaryOperator &I);
115     void visitURem(BinaryOperator &I);
116     void visitAllocaInst(AllocaInst &I);
117     void visitVAArgInst(VAArgInst &I);
118     void visitIndirectBrInst(IndirectBrInst &I);
119     void visitExtractElementInst(ExtractElementInst &I);
120     void visitInsertElementInst(InsertElementInst &I);
121     void visitUnreachableInst(UnreachableInst &I);
122 
123     Value *findValue(Value *V, bool OffsetOk) const;
124     Value *findValueImpl(Value *V, bool OffsetOk,
125                          SmallPtrSetImpl<Value *> &Visited) const;
126 
127   public:
128     Module *Mod;
129     const DataLayout *DL;
130     AliasAnalysis *AA;
131     AssumptionCache *AC;
132     DominatorTree *DT;
133     TargetLibraryInfo *TLI;
134 
135     std::string Messages;
136     raw_string_ostream MessagesStr;
137 
138     static char ID; // Pass identification, replacement for typeid
139     Lint() : FunctionPass(ID), MessagesStr(Messages) {
140       initializeLintPass(*PassRegistry::getPassRegistry());
141     }
142 
143     bool runOnFunction(Function &F) override;
144 
145     void getAnalysisUsage(AnalysisUsage &AU) const override {
146       AU.setPreservesAll();
147       AU.addRequired<AAResultsWrapperPass>();
148       AU.addRequired<AssumptionCacheTracker>();
149       AU.addRequired<TargetLibraryInfoWrapperPass>();
150       AU.addRequired<DominatorTreeWrapperPass>();
151     }
152     void print(raw_ostream &O, const Module *M) const override {}
153 
154     void WriteValues(ArrayRef<const Value *> Vs) {
155       for (const Value *V : Vs) {
156         if (!V)
157           continue;
158         if (isa<Instruction>(V)) {
159           MessagesStr << *V << '\n';
160         } else {
161           V->printAsOperand(MessagesStr, true, Mod);
162           MessagesStr << '\n';
163         }
164       }
165     }
166 
167     /// A check failed, so printout out the condition and the message.
168     ///
169     /// This provides a nice place to put a breakpoint if you want to see why
170     /// something is not correct.
171     void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; }
172 
173     /// A check failed (with values to print).
174     ///
175     /// This calls the Message-only version so that the above is easier to set
176     /// a breakpoint on.
177     template <typename T1, typename... Ts>
178     void CheckFailed(const Twine &Message, const T1 &V1, const Ts &...Vs) {
179       CheckFailed(Message);
180       WriteValues({V1, Vs...});
181     }
182   };
183 } // end anonymous namespace
184 
185 char Lint::ID = 0;
186 INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
187                       false, true)
188 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
189 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
190 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
191 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
192 INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
193                     false, true)
194 
195 // Assert - We know that cond should be true, if not print an error message.
196 #define Assert(C, ...) \
197     do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
198 
199 // Lint::run - This is the main Analysis entry point for a
200 // function.
201 //
202 bool Lint::runOnFunction(Function &F) {
203   Mod = F.getParent();
204   DL = &F.getParent()->getDataLayout();
205   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
206   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
207   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
208   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
209   visit(F);
210   dbgs() << MessagesStr.str();
211   Messages.clear();
212   return false;
213 }
214 
215 void Lint::visitFunction(Function &F) {
216   // This isn't undefined behavior, it's just a little unusual, and it's a
217   // fairly common mistake to neglect to name a function.
218   Assert(F.hasName() || F.hasLocalLinkage(),
219          "Unusual: Unnamed function with non-local linkage", &F);
220 
221   // TODO: Check for irreducible control flow.
222 }
223 
224 void Lint::visitCallSite(CallSite CS) {
225   Instruction &I = *CS.getInstruction();
226   Value *Callee = CS.getCalledValue();
227 
228   visitMemoryReference(I, Callee, MemoryLocation::UnknownSize, 0, nullptr,
229                        MemRef::Callee);
230 
231   if (Function *F = dyn_cast<Function>(findValue(Callee,
232                                                  /*OffsetOk=*/false))) {
233     Assert(CS.getCallingConv() == F->getCallingConv(),
234            "Undefined behavior: Caller and callee calling convention differ",
235            &I);
236 
237     FunctionType *FT = F->getFunctionType();
238     unsigned NumActualArgs = CS.arg_size();
239 
240     Assert(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs
241                           : FT->getNumParams() == NumActualArgs,
242            "Undefined behavior: Call argument count mismatches callee "
243            "argument count",
244            &I);
245 
246     Assert(FT->getReturnType() == I.getType(),
247            "Undefined behavior: Call return type mismatches "
248            "callee return type",
249            &I);
250 
251     // Check argument types (in case the callee was casted) and attributes.
252     // TODO: Verify that caller and callee attributes are compatible.
253     Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
254     CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
255     for (; AI != AE; ++AI) {
256       Value *Actual = *AI;
257       if (PI != PE) {
258         Argument *Formal = &*PI++;
259         Assert(Formal->getType() == Actual->getType(),
260                "Undefined behavior: Call argument type mismatches "
261                "callee parameter type",
262                &I);
263 
264         // Check that noalias arguments don't alias other arguments. This is
265         // not fully precise because we don't know the sizes of the dereferenced
266         // memory regions.
267         if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) {
268           AttributeList PAL = CS.getAttributes();
269           unsigned ArgNo = 0;
270           for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE;
271                ++BI, ++ArgNo) {
272             // Skip ByVal arguments since they will be memcpy'd to the callee's
273             // stack so we're not really passing the pointer anyway.
274             if (PAL.hasParamAttribute(ArgNo, Attribute::ByVal))
275               continue;
276             // If both arguments are readonly, they have no dependence.
277             if (Formal->onlyReadsMemory() && CS.onlyReadsMemory(ArgNo))
278               continue;
279             if (AI != BI && (*BI)->getType()->isPointerTy()) {
280               AliasResult Result = AA->alias(*AI, *BI);
281               Assert(Result != MustAlias && Result != PartialAlias,
282                      "Unusual: noalias argument aliases another argument", &I);
283             }
284           }
285         }
286 
287         // Check that an sret argument points to valid memory.
288         if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
289           Type *Ty =
290             cast<PointerType>(Formal->getType())->getElementType();
291           visitMemoryReference(I, Actual, DL->getTypeStoreSize(Ty),
292                                DL->getABITypeAlignment(Ty), Ty,
293                                MemRef::Read | MemRef::Write);
294         }
295       }
296     }
297   }
298 
299   if (CS.isCall()) {
300     const CallInst *CI = cast<CallInst>(CS.getInstruction());
301     if (CI->isTailCall()) {
302       const AttributeList &PAL = CI->getAttributes();
303       unsigned ArgNo = 0;
304       for (Value *Arg : CS.args()) {
305         // Skip ByVal arguments since they will be memcpy'd to the callee's
306         // stack anyway.
307         if (PAL.hasParamAttribute(ArgNo++, Attribute::ByVal))
308           continue;
309         Value *Obj = findValue(Arg, /*OffsetOk=*/true);
310         Assert(!isa<AllocaInst>(Obj),
311                "Undefined behavior: Call with \"tail\" keyword references "
312                "alloca",
313                &I);
314       }
315     }
316   }
317 
318 
319   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
320     switch (II->getIntrinsicID()) {
321     default: break;
322 
323     // TODO: Check more intrinsics
324 
325     case Intrinsic::memcpy: {
326       MemCpyInst *MCI = cast<MemCpyInst>(&I);
327       // TODO: If the size is known, use it.
328       visitMemoryReference(I, MCI->getDest(), MemoryLocation::UnknownSize,
329                            MCI->getDestAlignment(), nullptr, MemRef::Write);
330       visitMemoryReference(I, MCI->getSource(), MemoryLocation::UnknownSize,
331                            MCI->getSourceAlignment(), nullptr, MemRef::Read);
332 
333       // Check that the memcpy arguments don't overlap. The AliasAnalysis API
334       // isn't expressive enough for what we really want to do. Known partial
335       // overlap is not distinguished from the case where nothing is known.
336       auto Size = LocationSize::unknown();
337       if (const ConstantInt *Len =
338               dyn_cast<ConstantInt>(findValue(MCI->getLength(),
339                                               /*OffsetOk=*/false)))
340         if (Len->getValue().isIntN(32))
341           Size = LocationSize::precise(Len->getValue().getZExtValue());
342       Assert(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
343                  MustAlias,
344              "Undefined behavior: memcpy source and destination overlap", &I);
345       break;
346     }
347     case Intrinsic::memmove: {
348       MemMoveInst *MMI = cast<MemMoveInst>(&I);
349       // TODO: If the size is known, use it.
350       visitMemoryReference(I, MMI->getDest(), MemoryLocation::UnknownSize,
351                            MMI->getDestAlignment(), nullptr, MemRef::Write);
352       visitMemoryReference(I, MMI->getSource(), MemoryLocation::UnknownSize,
353                            MMI->getSourceAlignment(), nullptr, MemRef::Read);
354       break;
355     }
356     case Intrinsic::memset: {
357       MemSetInst *MSI = cast<MemSetInst>(&I);
358       // TODO: If the size is known, use it.
359       visitMemoryReference(I, MSI->getDest(), MemoryLocation::UnknownSize,
360                            MSI->getDestAlignment(), nullptr, MemRef::Write);
361       break;
362     }
363 
364     case Intrinsic::vastart:
365       Assert(I.getParent()->getParent()->isVarArg(),
366              "Undefined behavior: va_start called in a non-varargs function",
367              &I);
368 
369       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
370                            nullptr, MemRef::Read | MemRef::Write);
371       break;
372     case Intrinsic::vacopy:
373       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
374                            nullptr, MemRef::Write);
375       visitMemoryReference(I, CS.getArgument(1), MemoryLocation::UnknownSize, 0,
376                            nullptr, MemRef::Read);
377       break;
378     case Intrinsic::vaend:
379       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
380                            nullptr, MemRef::Read | MemRef::Write);
381       break;
382 
383     case Intrinsic::stackrestore:
384       // Stackrestore doesn't read or write memory, but it sets the
385       // stack pointer, which the compiler may read from or write to
386       // at any time, so check it for both readability and writeability.
387       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
388                            nullptr, MemRef::Read | MemRef::Write);
389       break;
390     }
391 }
392 
393 void Lint::visitCallInst(CallInst &I) {
394   return visitCallSite(&I);
395 }
396 
397 void Lint::visitInvokeInst(InvokeInst &I) {
398   return visitCallSite(&I);
399 }
400 
401 void Lint::visitReturnInst(ReturnInst &I) {
402   Function *F = I.getParent()->getParent();
403   Assert(!F->doesNotReturn(),
404          "Unusual: Return statement in function with noreturn attribute", &I);
405 
406   if (Value *V = I.getReturnValue()) {
407     Value *Obj = findValue(V, /*OffsetOk=*/true);
408     Assert(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I);
409   }
410 }
411 
412 // TODO: Check that the reference is in bounds.
413 // TODO: Check readnone/readonly function attributes.
414 void Lint::visitMemoryReference(Instruction &I,
415                                 Value *Ptr, uint64_t Size, unsigned Align,
416                                 Type *Ty, unsigned Flags) {
417   // If no memory is being referenced, it doesn't matter if the pointer
418   // is valid.
419   if (Size == 0)
420     return;
421 
422   Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
423   Assert(!isa<ConstantPointerNull>(UnderlyingObject),
424          "Undefined behavior: Null pointer dereference", &I);
425   Assert(!isa<UndefValue>(UnderlyingObject),
426          "Undefined behavior: Undef pointer dereference", &I);
427   Assert(!isa<ConstantInt>(UnderlyingObject) ||
428              !cast<ConstantInt>(UnderlyingObject)->isMinusOne(),
429          "Unusual: All-ones pointer dereference", &I);
430   Assert(!isa<ConstantInt>(UnderlyingObject) ||
431              !cast<ConstantInt>(UnderlyingObject)->isOne(),
432          "Unusual: Address one pointer dereference", &I);
433 
434   if (Flags & MemRef::Write) {
435     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
436       Assert(!GV->isConstant(), "Undefined behavior: Write to read-only memory",
437              &I);
438     Assert(!isa<Function>(UnderlyingObject) &&
439                !isa<BlockAddress>(UnderlyingObject),
440            "Undefined behavior: Write to text section", &I);
441   }
442   if (Flags & MemRef::Read) {
443     Assert(!isa<Function>(UnderlyingObject), "Unusual: Load from function body",
444            &I);
445     Assert(!isa<BlockAddress>(UnderlyingObject),
446            "Undefined behavior: Load from block address", &I);
447   }
448   if (Flags & MemRef::Callee) {
449     Assert(!isa<BlockAddress>(UnderlyingObject),
450            "Undefined behavior: Call to block address", &I);
451   }
452   if (Flags & MemRef::Branchee) {
453     Assert(!isa<Constant>(UnderlyingObject) ||
454                isa<BlockAddress>(UnderlyingObject),
455            "Undefined behavior: Branch to non-blockaddress", &I);
456   }
457 
458   // Check for buffer overflows and misalignment.
459   // Only handles memory references that read/write something simple like an
460   // alloca instruction or a global variable.
461   int64_t Offset = 0;
462   if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) {
463     // OK, so the access is to a constant offset from Ptr.  Check that Ptr is
464     // something we can handle and if so extract the size of this base object
465     // along with its alignment.
466     uint64_t BaseSize = MemoryLocation::UnknownSize;
467     unsigned BaseAlign = 0;
468 
469     if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
470       Type *ATy = AI->getAllocatedType();
471       if (!AI->isArrayAllocation() && ATy->isSized())
472         BaseSize = DL->getTypeAllocSize(ATy);
473       BaseAlign = AI->getAlignment();
474       if (BaseAlign == 0 && ATy->isSized())
475         BaseAlign = DL->getABITypeAlignment(ATy);
476     } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
477       // If the global may be defined differently in another compilation unit
478       // then don't warn about funky memory accesses.
479       if (GV->hasDefinitiveInitializer()) {
480         Type *GTy = GV->getValueType();
481         if (GTy->isSized())
482           BaseSize = DL->getTypeAllocSize(GTy);
483         BaseAlign = GV->getAlignment();
484         if (BaseAlign == 0 && GTy->isSized())
485           BaseAlign = DL->getABITypeAlignment(GTy);
486       }
487     }
488 
489     // Accesses from before the start or after the end of the object are not
490     // defined.
491     Assert(Size == MemoryLocation::UnknownSize ||
492                BaseSize == MemoryLocation::UnknownSize ||
493                (Offset >= 0 && Offset + Size <= BaseSize),
494            "Undefined behavior: Buffer overflow", &I);
495 
496     // Accesses that say that the memory is more aligned than it is are not
497     // defined.
498     if (Align == 0 && Ty && Ty->isSized())
499       Align = DL->getABITypeAlignment(Ty);
500     Assert(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
501            "Undefined behavior: Memory reference address is misaligned", &I);
502   }
503 }
504 
505 void Lint::visitLoadInst(LoadInst &I) {
506   visitMemoryReference(I, I.getPointerOperand(),
507                        DL->getTypeStoreSize(I.getType()), I.getAlignment(),
508                        I.getType(), MemRef::Read);
509 }
510 
511 void Lint::visitStoreInst(StoreInst &I) {
512   visitMemoryReference(I, I.getPointerOperand(),
513                        DL->getTypeStoreSize(I.getOperand(0)->getType()),
514                        I.getAlignment(),
515                        I.getOperand(0)->getType(), MemRef::Write);
516 }
517 
518 void Lint::visitXor(BinaryOperator &I) {
519   Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
520          "Undefined result: xor(undef, undef)", &I);
521 }
522 
523 void Lint::visitSub(BinaryOperator &I) {
524   Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
525          "Undefined result: sub(undef, undef)", &I);
526 }
527 
528 void Lint::visitLShr(BinaryOperator &I) {
529   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1),
530                                                         /*OffsetOk=*/false)))
531     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
532            "Undefined result: Shift count out of range", &I);
533 }
534 
535 void Lint::visitAShr(BinaryOperator &I) {
536   if (ConstantInt *CI =
537           dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
538     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
539            "Undefined result: Shift count out of range", &I);
540 }
541 
542 void Lint::visitShl(BinaryOperator &I) {
543   if (ConstantInt *CI =
544           dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
545     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
546            "Undefined result: Shift count out of range", &I);
547 }
548 
549 static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT,
550                    AssumptionCache *AC) {
551   // Assume undef could be zero.
552   if (isa<UndefValue>(V))
553     return true;
554 
555   VectorType *VecTy = dyn_cast<VectorType>(V->getType());
556   if (!VecTy) {
557     KnownBits Known = computeKnownBits(V, DL, 0, AC, dyn_cast<Instruction>(V), DT);
558     return Known.isZero();
559   }
560 
561   // Per-component check doesn't work with zeroinitializer
562   Constant *C = dyn_cast<Constant>(V);
563   if (!C)
564     return false;
565 
566   if (C->isZeroValue())
567     return true;
568 
569   // For a vector, KnownZero will only be true if all values are zero, so check
570   // this per component
571   for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) {
572     Constant *Elem = C->getAggregateElement(I);
573     if (isa<UndefValue>(Elem))
574       return true;
575 
576     KnownBits Known = computeKnownBits(Elem, DL);
577     if (Known.isZero())
578       return true;
579   }
580 
581   return false;
582 }
583 
584 void Lint::visitSDiv(BinaryOperator &I) {
585   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
586          "Undefined behavior: Division by zero", &I);
587 }
588 
589 void Lint::visitUDiv(BinaryOperator &I) {
590   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
591          "Undefined behavior: Division by zero", &I);
592 }
593 
594 void Lint::visitSRem(BinaryOperator &I) {
595   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
596          "Undefined behavior: Division by zero", &I);
597 }
598 
599 void Lint::visitURem(BinaryOperator &I) {
600   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
601          "Undefined behavior: Division by zero", &I);
602 }
603 
604 void Lint::visitAllocaInst(AllocaInst &I) {
605   if (isa<ConstantInt>(I.getArraySize()))
606     // This isn't undefined behavior, it's just an obvious pessimization.
607     Assert(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
608            "Pessimization: Static alloca outside of entry block", &I);
609 
610   // TODO: Check for an unusual size (MSB set?)
611 }
612 
613 void Lint::visitVAArgInst(VAArgInst &I) {
614   visitMemoryReference(I, I.getOperand(0), MemoryLocation::UnknownSize, 0,
615                        nullptr, MemRef::Read | MemRef::Write);
616 }
617 
618 void Lint::visitIndirectBrInst(IndirectBrInst &I) {
619   visitMemoryReference(I, I.getAddress(), MemoryLocation::UnknownSize, 0,
620                        nullptr, MemRef::Branchee);
621 
622   Assert(I.getNumDestinations() != 0,
623          "Undefined behavior: indirectbr with no destinations", &I);
624 }
625 
626 void Lint::visitExtractElementInst(ExtractElementInst &I) {
627   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
628                                                         /*OffsetOk=*/false)))
629     Assert(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
630            "Undefined result: extractelement index out of range", &I);
631 }
632 
633 void Lint::visitInsertElementInst(InsertElementInst &I) {
634   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2),
635                                                         /*OffsetOk=*/false)))
636     Assert(CI->getValue().ult(I.getType()->getNumElements()),
637            "Undefined result: insertelement index out of range", &I);
638 }
639 
640 void Lint::visitUnreachableInst(UnreachableInst &I) {
641   // This isn't undefined behavior, it's merely suspicious.
642   Assert(&I == &I.getParent()->front() ||
643              std::prev(I.getIterator())->mayHaveSideEffects(),
644          "Unusual: unreachable immediately preceded by instruction without "
645          "side effects",
646          &I);
647 }
648 
649 /// findValue - Look through bitcasts and simple memory reference patterns
650 /// to identify an equivalent, but more informative, value.  If OffsetOk
651 /// is true, look through getelementptrs with non-zero offsets too.
652 ///
653 /// Most analysis passes don't require this logic, because instcombine
654 /// will simplify most of these kinds of things away. But it's a goal of
655 /// this Lint pass to be useful even on non-optimized IR.
656 Value *Lint::findValue(Value *V, bool OffsetOk) const {
657   SmallPtrSet<Value *, 4> Visited;
658   return findValueImpl(V, OffsetOk, Visited);
659 }
660 
661 /// findValueImpl - Implementation helper for findValue.
662 Value *Lint::findValueImpl(Value *V, bool OffsetOk,
663                            SmallPtrSetImpl<Value *> &Visited) const {
664   // Detect self-referential values.
665   if (!Visited.insert(V).second)
666     return UndefValue::get(V->getType());
667 
668   // TODO: Look through sext or zext cast, when the result is known to
669   // be interpreted as signed or unsigned, respectively.
670   // TODO: Look through eliminable cast pairs.
671   // TODO: Look through calls with unique return values.
672   // TODO: Look through vector insert/extract/shuffle.
673   V = OffsetOk ? GetUnderlyingObject(V, *DL) : V->stripPointerCasts();
674   if (LoadInst *L = dyn_cast<LoadInst>(V)) {
675     BasicBlock::iterator BBI = L->getIterator();
676     BasicBlock *BB = L->getParent();
677     SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
678     for (;;) {
679       if (!VisitedBlocks.insert(BB).second)
680         break;
681       if (Value *U =
682           FindAvailableLoadedValue(L, BB, BBI, DefMaxInstsToScan, AA))
683         return findValueImpl(U, OffsetOk, Visited);
684       if (BBI != BB->begin()) break;
685       BB = BB->getUniquePredecessor();
686       if (!BB) break;
687       BBI = BB->end();
688     }
689   } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
690     if (Value *W = PN->hasConstantValue())
691       if (W != V)
692         return findValueImpl(W, OffsetOk, Visited);
693   } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
694     if (CI->isNoopCast(*DL))
695       return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
696   } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
697     if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
698                                      Ex->getIndices()))
699       if (W != V)
700         return findValueImpl(W, OffsetOk, Visited);
701   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
702     // Same as above, but for ConstantExpr instead of Instruction.
703     if (Instruction::isCast(CE->getOpcode())) {
704       if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
705                                CE->getOperand(0)->getType(), CE->getType(),
706                                *DL))
707         return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
708     } else if (CE->getOpcode() == Instruction::ExtractValue) {
709       ArrayRef<unsigned> Indices = CE->getIndices();
710       if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
711         if (W != V)
712           return findValueImpl(W, OffsetOk, Visited);
713     }
714   }
715 
716   // As a last resort, try SimplifyInstruction or constant folding.
717   if (Instruction *Inst = dyn_cast<Instruction>(V)) {
718     if (Value *W = SimplifyInstruction(Inst, {*DL, TLI, DT, AC}))
719       return findValueImpl(W, OffsetOk, Visited);
720   } else if (auto *C = dyn_cast<Constant>(V)) {
721     if (Value *W = ConstantFoldConstant(C, *DL, TLI))
722       if (W && W != V)
723         return findValueImpl(W, OffsetOk, Visited);
724   }
725 
726   return V;
727 }
728 
729 //===----------------------------------------------------------------------===//
730 //  Implement the public interfaces to this file...
731 //===----------------------------------------------------------------------===//
732 
733 FunctionPass *llvm::createLintPass() {
734   return new Lint();
735 }
736 
737 /// lintFunction - Check a function for errors, printing messages on stderr.
738 ///
739 void llvm::lintFunction(const Function &f) {
740   Function &F = const_cast<Function&>(f);
741   assert(!F.isDeclaration() && "Cannot lint external functions");
742 
743   legacy::FunctionPassManager FPM(F.getParent());
744   Lint *V = new Lint();
745   FPM.add(V);
746   FPM.run(F);
747 }
748 
749 /// lintModule - Check a module for errors, printing messages on stderr.
750 ///
751 void llvm::lintModule(const Module &M) {
752   legacy::PassManager PM;
753   Lint *V = new Lint();
754   PM.add(V);
755   PM.run(const_cast<Module&>(M));
756 }
757