xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/Lint.cpp (revision 48daf251932bd09f2dc1356aa1cf72b043f1f892)
1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass statically checks for common and easily-identified constructs
10 // which produce undefined or likely unintended behavior in LLVM IR.
11 //
12 // It is not a guarantee of correctness, in two ways. First, it isn't
13 // comprehensive. There are checks which could be done statically which are
14 // not yet implemented. Some of these are indicated by TODO comments, but
15 // those aren't comprehensive either. Second, many conditions cannot be
16 // checked statically. This pass does no dynamic instrumentation, so it
17 // can't check for all possible problems.
18 //
19 // Another limitation is that it assumes all code will be executed. A store
20 // through a null pointer in a basic block which is never reached is harmless,
21 // but this pass will warn about it anyway. This is the main reason why most
22 // of these checks live here instead of in the Verifier pass.
23 //
24 // Optimization passes may make conditions that this pass checks for more or
25 // less obvious. If an optimization pass appears to be introducing a warning,
26 // it may be that the optimization pass is merely exposing an existing
27 // condition in the code.
28 //
29 // This code may be run before instcombine. In many cases, instcombine checks
30 // for the same kinds of things and turns instructions with undefined behavior
31 // into unreachable (or equivalent). Because of this, this pass makes some
32 // effort to look through bitcasts and so on.
33 //
34 //===----------------------------------------------------------------------===//
35 
36 #include "llvm/Analysis/Lint.h"
37 #include "llvm/ADT/APInt.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AliasAnalysis.h"
42 #include "llvm/Analysis/AssumptionCache.h"
43 #include "llvm/Analysis/ConstantFolding.h"
44 #include "llvm/Analysis/InstructionSimplify.h"
45 #include "llvm/Analysis/Loads.h"
46 #include "llvm/Analysis/MemoryLocation.h"
47 #include "llvm/Analysis/Passes.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/Analysis/ValueTracking.h"
50 #include "llvm/IR/Argument.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/CallSite.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/Dominators.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/GlobalVariable.h"
60 #include "llvm/IR/InstVisitor.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/LegacyPassManager.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Value.h"
69 #include "llvm/InitializePasses.h"
70 #include "llvm/Pass.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/KnownBits.h"
74 #include "llvm/Support/MathExtras.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include <cassert>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 
81 using namespace llvm;
82 
83 namespace {
84   namespace MemRef {
85     static const unsigned Read     = 1;
86     static const unsigned Write    = 2;
87     static const unsigned Callee   = 4;
88     static const unsigned Branchee = 8;
89   } // end namespace MemRef
90 
91   class Lint : public FunctionPass, public InstVisitor<Lint> {
92     friend class InstVisitor<Lint>;
93 
94     void visitFunction(Function &F);
95 
96     void visitCallSite(CallSite CS);
97     void visitMemoryReference(Instruction &I, Value *Ptr,
98                               uint64_t Size, unsigned Align,
99                               Type *Ty, unsigned Flags);
100     void visitEHBeginCatch(IntrinsicInst *II);
101     void visitEHEndCatch(IntrinsicInst *II);
102 
103     void visitCallInst(CallInst &I);
104     void visitInvokeInst(InvokeInst &I);
105     void visitReturnInst(ReturnInst &I);
106     void visitLoadInst(LoadInst &I);
107     void visitStoreInst(StoreInst &I);
108     void visitXor(BinaryOperator &I);
109     void visitSub(BinaryOperator &I);
110     void visitLShr(BinaryOperator &I);
111     void visitAShr(BinaryOperator &I);
112     void visitShl(BinaryOperator &I);
113     void visitSDiv(BinaryOperator &I);
114     void visitUDiv(BinaryOperator &I);
115     void visitSRem(BinaryOperator &I);
116     void visitURem(BinaryOperator &I);
117     void visitAllocaInst(AllocaInst &I);
118     void visitVAArgInst(VAArgInst &I);
119     void visitIndirectBrInst(IndirectBrInst &I);
120     void visitExtractElementInst(ExtractElementInst &I);
121     void visitInsertElementInst(InsertElementInst &I);
122     void visitUnreachableInst(UnreachableInst &I);
123 
124     Value *findValue(Value *V, bool OffsetOk) const;
125     Value *findValueImpl(Value *V, bool OffsetOk,
126                          SmallPtrSetImpl<Value *> &Visited) const;
127 
128   public:
129     Module *Mod;
130     const DataLayout *DL;
131     AliasAnalysis *AA;
132     AssumptionCache *AC;
133     DominatorTree *DT;
134     TargetLibraryInfo *TLI;
135 
136     std::string Messages;
137     raw_string_ostream MessagesStr;
138 
139     static char ID; // Pass identification, replacement for typeid
140     Lint() : FunctionPass(ID), MessagesStr(Messages) {
141       initializeLintPass(*PassRegistry::getPassRegistry());
142     }
143 
144     bool runOnFunction(Function &F) override;
145 
146     void getAnalysisUsage(AnalysisUsage &AU) const override {
147       AU.setPreservesAll();
148       AU.addRequired<AAResultsWrapperPass>();
149       AU.addRequired<AssumptionCacheTracker>();
150       AU.addRequired<TargetLibraryInfoWrapperPass>();
151       AU.addRequired<DominatorTreeWrapperPass>();
152     }
153     void print(raw_ostream &O, const Module *M) const override {}
154 
155     void WriteValues(ArrayRef<const Value *> Vs) {
156       for (const Value *V : Vs) {
157         if (!V)
158           continue;
159         if (isa<Instruction>(V)) {
160           MessagesStr << *V << '\n';
161         } else {
162           V->printAsOperand(MessagesStr, true, Mod);
163           MessagesStr << '\n';
164         }
165       }
166     }
167 
168     /// A check failed, so printout out the condition and the message.
169     ///
170     /// This provides a nice place to put a breakpoint if you want to see why
171     /// something is not correct.
172     void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; }
173 
174     /// A check failed (with values to print).
175     ///
176     /// This calls the Message-only version so that the above is easier to set
177     /// a breakpoint on.
178     template <typename T1, typename... Ts>
179     void CheckFailed(const Twine &Message, const T1 &V1, const Ts &...Vs) {
180       CheckFailed(Message);
181       WriteValues({V1, Vs...});
182     }
183   };
184 } // end anonymous namespace
185 
186 char Lint::ID = 0;
187 INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
188                       false, true)
189 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
190 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
191 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
192 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
193 INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
194                     false, true)
195 
196 // Assert - We know that cond should be true, if not print an error message.
197 #define Assert(C, ...) \
198     do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
199 
200 // Lint::run - This is the main Analysis entry point for a
201 // function.
202 //
203 bool Lint::runOnFunction(Function &F) {
204   Mod = F.getParent();
205   DL = &F.getParent()->getDataLayout();
206   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
207   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
208   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
209   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
210   visit(F);
211   dbgs() << MessagesStr.str();
212   Messages.clear();
213   return false;
214 }
215 
216 void Lint::visitFunction(Function &F) {
217   // This isn't undefined behavior, it's just a little unusual, and it's a
218   // fairly common mistake to neglect to name a function.
219   Assert(F.hasName() || F.hasLocalLinkage(),
220          "Unusual: Unnamed function with non-local linkage", &F);
221 
222   // TODO: Check for irreducible control flow.
223 }
224 
225 void Lint::visitCallSite(CallSite CS) {
226   Instruction &I = *CS.getInstruction();
227   Value *Callee = CS.getCalledValue();
228 
229   visitMemoryReference(I, Callee, MemoryLocation::UnknownSize, 0, nullptr,
230                        MemRef::Callee);
231 
232   if (Function *F = dyn_cast<Function>(findValue(Callee,
233                                                  /*OffsetOk=*/false))) {
234     Assert(CS.getCallingConv() == F->getCallingConv(),
235            "Undefined behavior: Caller and callee calling convention differ",
236            &I);
237 
238     FunctionType *FT = F->getFunctionType();
239     unsigned NumActualArgs = CS.arg_size();
240 
241     Assert(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs
242                           : FT->getNumParams() == NumActualArgs,
243            "Undefined behavior: Call argument count mismatches callee "
244            "argument count",
245            &I);
246 
247     Assert(FT->getReturnType() == I.getType(),
248            "Undefined behavior: Call return type mismatches "
249            "callee return type",
250            &I);
251 
252     // Check argument types (in case the callee was casted) and attributes.
253     // TODO: Verify that caller and callee attributes are compatible.
254     Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
255     CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
256     for (; AI != AE; ++AI) {
257       Value *Actual = *AI;
258       if (PI != PE) {
259         Argument *Formal = &*PI++;
260         Assert(Formal->getType() == Actual->getType(),
261                "Undefined behavior: Call argument type mismatches "
262                "callee parameter type",
263                &I);
264 
265         // Check that noalias arguments don't alias other arguments. This is
266         // not fully precise because we don't know the sizes of the dereferenced
267         // memory regions.
268         if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) {
269           AttributeList PAL = CS.getAttributes();
270           unsigned ArgNo = 0;
271           for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE;
272                ++BI, ++ArgNo) {
273             // Skip ByVal arguments since they will be memcpy'd to the callee's
274             // stack so we're not really passing the pointer anyway.
275             if (PAL.hasParamAttribute(ArgNo, Attribute::ByVal))
276               continue;
277             // If both arguments are readonly, they have no dependence.
278             if (Formal->onlyReadsMemory() && CS.onlyReadsMemory(ArgNo))
279               continue;
280             if (AI != BI && (*BI)->getType()->isPointerTy()) {
281               AliasResult Result = AA->alias(*AI, *BI);
282               Assert(Result != MustAlias && Result != PartialAlias,
283                      "Unusual: noalias argument aliases another argument", &I);
284             }
285           }
286         }
287 
288         // Check that an sret argument points to valid memory.
289         if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
290           Type *Ty =
291             cast<PointerType>(Formal->getType())->getElementType();
292           visitMemoryReference(I, Actual, DL->getTypeStoreSize(Ty),
293                                DL->getABITypeAlignment(Ty), Ty,
294                                MemRef::Read | MemRef::Write);
295         }
296       }
297     }
298   }
299 
300   if (CS.isCall()) {
301     const CallInst *CI = cast<CallInst>(CS.getInstruction());
302     if (CI->isTailCall()) {
303       const AttributeList &PAL = CI->getAttributes();
304       unsigned ArgNo = 0;
305       for (Value *Arg : CS.args()) {
306         // Skip ByVal arguments since they will be memcpy'd to the callee's
307         // stack anyway.
308         if (PAL.hasParamAttribute(ArgNo++, Attribute::ByVal))
309           continue;
310         Value *Obj = findValue(Arg, /*OffsetOk=*/true);
311         Assert(!isa<AllocaInst>(Obj),
312                "Undefined behavior: Call with \"tail\" keyword references "
313                "alloca",
314                &I);
315       }
316     }
317   }
318 
319 
320   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
321     switch (II->getIntrinsicID()) {
322     default: break;
323 
324     // TODO: Check more intrinsics
325 
326     case Intrinsic::memcpy: {
327       MemCpyInst *MCI = cast<MemCpyInst>(&I);
328       // TODO: If the size is known, use it.
329       visitMemoryReference(I, MCI->getDest(), MemoryLocation::UnknownSize,
330                            MCI->getDestAlignment(), nullptr, MemRef::Write);
331       visitMemoryReference(I, MCI->getSource(), MemoryLocation::UnknownSize,
332                            MCI->getSourceAlignment(), nullptr, MemRef::Read);
333 
334       // Check that the memcpy arguments don't overlap. The AliasAnalysis API
335       // isn't expressive enough for what we really want to do. Known partial
336       // overlap is not distinguished from the case where nothing is known.
337       auto Size = LocationSize::unknown();
338       if (const ConstantInt *Len =
339               dyn_cast<ConstantInt>(findValue(MCI->getLength(),
340                                               /*OffsetOk=*/false)))
341         if (Len->getValue().isIntN(32))
342           Size = LocationSize::precise(Len->getValue().getZExtValue());
343       Assert(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
344                  MustAlias,
345              "Undefined behavior: memcpy source and destination overlap", &I);
346       break;
347     }
348     case Intrinsic::memmove: {
349       MemMoveInst *MMI = cast<MemMoveInst>(&I);
350       // TODO: If the size is known, use it.
351       visitMemoryReference(I, MMI->getDest(), MemoryLocation::UnknownSize,
352                            MMI->getDestAlignment(), nullptr, MemRef::Write);
353       visitMemoryReference(I, MMI->getSource(), MemoryLocation::UnknownSize,
354                            MMI->getSourceAlignment(), nullptr, MemRef::Read);
355       break;
356     }
357     case Intrinsic::memset: {
358       MemSetInst *MSI = cast<MemSetInst>(&I);
359       // TODO: If the size is known, use it.
360       visitMemoryReference(I, MSI->getDest(), MemoryLocation::UnknownSize,
361                            MSI->getDestAlignment(), nullptr, MemRef::Write);
362       break;
363     }
364 
365     case Intrinsic::vastart:
366       Assert(I.getParent()->getParent()->isVarArg(),
367              "Undefined behavior: va_start called in a non-varargs function",
368              &I);
369 
370       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
371                            nullptr, MemRef::Read | MemRef::Write);
372       break;
373     case Intrinsic::vacopy:
374       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
375                            nullptr, MemRef::Write);
376       visitMemoryReference(I, CS.getArgument(1), MemoryLocation::UnknownSize, 0,
377                            nullptr, MemRef::Read);
378       break;
379     case Intrinsic::vaend:
380       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
381                            nullptr, MemRef::Read | MemRef::Write);
382       break;
383 
384     case Intrinsic::stackrestore:
385       // Stackrestore doesn't read or write memory, but it sets the
386       // stack pointer, which the compiler may read from or write to
387       // at any time, so check it for both readability and writeability.
388       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
389                            nullptr, MemRef::Read | MemRef::Write);
390       break;
391     }
392 }
393 
394 void Lint::visitCallInst(CallInst &I) {
395   return visitCallSite(&I);
396 }
397 
398 void Lint::visitInvokeInst(InvokeInst &I) {
399   return visitCallSite(&I);
400 }
401 
402 void Lint::visitReturnInst(ReturnInst &I) {
403   Function *F = I.getParent()->getParent();
404   Assert(!F->doesNotReturn(),
405          "Unusual: Return statement in function with noreturn attribute", &I);
406 
407   if (Value *V = I.getReturnValue()) {
408     Value *Obj = findValue(V, /*OffsetOk=*/true);
409     Assert(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I);
410   }
411 }
412 
413 // TODO: Check that the reference is in bounds.
414 // TODO: Check readnone/readonly function attributes.
415 void Lint::visitMemoryReference(Instruction &I,
416                                 Value *Ptr, uint64_t Size, unsigned Align,
417                                 Type *Ty, unsigned Flags) {
418   // If no memory is being referenced, it doesn't matter if the pointer
419   // is valid.
420   if (Size == 0)
421     return;
422 
423   Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
424   Assert(!isa<ConstantPointerNull>(UnderlyingObject),
425          "Undefined behavior: Null pointer dereference", &I);
426   Assert(!isa<UndefValue>(UnderlyingObject),
427          "Undefined behavior: Undef pointer dereference", &I);
428   Assert(!isa<ConstantInt>(UnderlyingObject) ||
429              !cast<ConstantInt>(UnderlyingObject)->isMinusOne(),
430          "Unusual: All-ones pointer dereference", &I);
431   Assert(!isa<ConstantInt>(UnderlyingObject) ||
432              !cast<ConstantInt>(UnderlyingObject)->isOne(),
433          "Unusual: Address one pointer dereference", &I);
434 
435   if (Flags & MemRef::Write) {
436     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
437       Assert(!GV->isConstant(), "Undefined behavior: Write to read-only memory",
438              &I);
439     Assert(!isa<Function>(UnderlyingObject) &&
440                !isa<BlockAddress>(UnderlyingObject),
441            "Undefined behavior: Write to text section", &I);
442   }
443   if (Flags & MemRef::Read) {
444     Assert(!isa<Function>(UnderlyingObject), "Unusual: Load from function body",
445            &I);
446     Assert(!isa<BlockAddress>(UnderlyingObject),
447            "Undefined behavior: Load from block address", &I);
448   }
449   if (Flags & MemRef::Callee) {
450     Assert(!isa<BlockAddress>(UnderlyingObject),
451            "Undefined behavior: Call to block address", &I);
452   }
453   if (Flags & MemRef::Branchee) {
454     Assert(!isa<Constant>(UnderlyingObject) ||
455                isa<BlockAddress>(UnderlyingObject),
456            "Undefined behavior: Branch to non-blockaddress", &I);
457   }
458 
459   // Check for buffer overflows and misalignment.
460   // Only handles memory references that read/write something simple like an
461   // alloca instruction or a global variable.
462   int64_t Offset = 0;
463   if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) {
464     // OK, so the access is to a constant offset from Ptr.  Check that Ptr is
465     // something we can handle and if so extract the size of this base object
466     // along with its alignment.
467     uint64_t BaseSize = MemoryLocation::UnknownSize;
468     unsigned BaseAlign = 0;
469 
470     if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
471       Type *ATy = AI->getAllocatedType();
472       if (!AI->isArrayAllocation() && ATy->isSized())
473         BaseSize = DL->getTypeAllocSize(ATy);
474       BaseAlign = AI->getAlignment();
475       if (BaseAlign == 0 && ATy->isSized())
476         BaseAlign = DL->getABITypeAlignment(ATy);
477     } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
478       // If the global may be defined differently in another compilation unit
479       // then don't warn about funky memory accesses.
480       if (GV->hasDefinitiveInitializer()) {
481         Type *GTy = GV->getValueType();
482         if (GTy->isSized())
483           BaseSize = DL->getTypeAllocSize(GTy);
484         BaseAlign = GV->getAlignment();
485         if (BaseAlign == 0 && GTy->isSized())
486           BaseAlign = DL->getABITypeAlignment(GTy);
487       }
488     }
489 
490     // Accesses from before the start or after the end of the object are not
491     // defined.
492     Assert(Size == MemoryLocation::UnknownSize ||
493                BaseSize == MemoryLocation::UnknownSize ||
494                (Offset >= 0 && Offset + Size <= BaseSize),
495            "Undefined behavior: Buffer overflow", &I);
496 
497     // Accesses that say that the memory is more aligned than it is are not
498     // defined.
499     if (Align == 0 && Ty && Ty->isSized())
500       Align = DL->getABITypeAlignment(Ty);
501     Assert(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
502            "Undefined behavior: Memory reference address is misaligned", &I);
503   }
504 }
505 
506 void Lint::visitLoadInst(LoadInst &I) {
507   visitMemoryReference(I, I.getPointerOperand(),
508                        DL->getTypeStoreSize(I.getType()), I.getAlignment(),
509                        I.getType(), MemRef::Read);
510 }
511 
512 void Lint::visitStoreInst(StoreInst &I) {
513   visitMemoryReference(I, I.getPointerOperand(),
514                        DL->getTypeStoreSize(I.getOperand(0)->getType()),
515                        I.getAlignment(),
516                        I.getOperand(0)->getType(), MemRef::Write);
517 }
518 
519 void Lint::visitXor(BinaryOperator &I) {
520   Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
521          "Undefined result: xor(undef, undef)", &I);
522 }
523 
524 void Lint::visitSub(BinaryOperator &I) {
525   Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
526          "Undefined result: sub(undef, undef)", &I);
527 }
528 
529 void Lint::visitLShr(BinaryOperator &I) {
530   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1),
531                                                         /*OffsetOk=*/false)))
532     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
533            "Undefined result: Shift count out of range", &I);
534 }
535 
536 void Lint::visitAShr(BinaryOperator &I) {
537   if (ConstantInt *CI =
538           dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
539     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
540            "Undefined result: Shift count out of range", &I);
541 }
542 
543 void Lint::visitShl(BinaryOperator &I) {
544   if (ConstantInt *CI =
545           dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
546     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
547            "Undefined result: Shift count out of range", &I);
548 }
549 
550 static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT,
551                    AssumptionCache *AC) {
552   // Assume undef could be zero.
553   if (isa<UndefValue>(V))
554     return true;
555 
556   VectorType *VecTy = dyn_cast<VectorType>(V->getType());
557   if (!VecTy) {
558     KnownBits Known = computeKnownBits(V, DL, 0, AC, dyn_cast<Instruction>(V), DT);
559     return Known.isZero();
560   }
561 
562   // Per-component check doesn't work with zeroinitializer
563   Constant *C = dyn_cast<Constant>(V);
564   if (!C)
565     return false;
566 
567   if (C->isZeroValue())
568     return true;
569 
570   // For a vector, KnownZero will only be true if all values are zero, so check
571   // this per component
572   for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) {
573     Constant *Elem = C->getAggregateElement(I);
574     if (isa<UndefValue>(Elem))
575       return true;
576 
577     KnownBits Known = computeKnownBits(Elem, DL);
578     if (Known.isZero())
579       return true;
580   }
581 
582   return false;
583 }
584 
585 void Lint::visitSDiv(BinaryOperator &I) {
586   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
587          "Undefined behavior: Division by zero", &I);
588 }
589 
590 void Lint::visitUDiv(BinaryOperator &I) {
591   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
592          "Undefined behavior: Division by zero", &I);
593 }
594 
595 void Lint::visitSRem(BinaryOperator &I) {
596   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
597          "Undefined behavior: Division by zero", &I);
598 }
599 
600 void Lint::visitURem(BinaryOperator &I) {
601   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
602          "Undefined behavior: Division by zero", &I);
603 }
604 
605 void Lint::visitAllocaInst(AllocaInst &I) {
606   if (isa<ConstantInt>(I.getArraySize()))
607     // This isn't undefined behavior, it's just an obvious pessimization.
608     Assert(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
609            "Pessimization: Static alloca outside of entry block", &I);
610 
611   // TODO: Check for an unusual size (MSB set?)
612 }
613 
614 void Lint::visitVAArgInst(VAArgInst &I) {
615   visitMemoryReference(I, I.getOperand(0), MemoryLocation::UnknownSize, 0,
616                        nullptr, MemRef::Read | MemRef::Write);
617 }
618 
619 void Lint::visitIndirectBrInst(IndirectBrInst &I) {
620   visitMemoryReference(I, I.getAddress(), MemoryLocation::UnknownSize, 0,
621                        nullptr, MemRef::Branchee);
622 
623   Assert(I.getNumDestinations() != 0,
624          "Undefined behavior: indirectbr with no destinations", &I);
625 }
626 
627 void Lint::visitExtractElementInst(ExtractElementInst &I) {
628   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
629                                                         /*OffsetOk=*/false)))
630     Assert(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
631            "Undefined result: extractelement index out of range", &I);
632 }
633 
634 void Lint::visitInsertElementInst(InsertElementInst &I) {
635   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2),
636                                                         /*OffsetOk=*/false)))
637     Assert(CI->getValue().ult(I.getType()->getNumElements()),
638            "Undefined result: insertelement index out of range", &I);
639 }
640 
641 void Lint::visitUnreachableInst(UnreachableInst &I) {
642   // This isn't undefined behavior, it's merely suspicious.
643   Assert(&I == &I.getParent()->front() ||
644              std::prev(I.getIterator())->mayHaveSideEffects(),
645          "Unusual: unreachable immediately preceded by instruction without "
646          "side effects",
647          &I);
648 }
649 
650 /// findValue - Look through bitcasts and simple memory reference patterns
651 /// to identify an equivalent, but more informative, value.  If OffsetOk
652 /// is true, look through getelementptrs with non-zero offsets too.
653 ///
654 /// Most analysis passes don't require this logic, because instcombine
655 /// will simplify most of these kinds of things away. But it's a goal of
656 /// this Lint pass to be useful even on non-optimized IR.
657 Value *Lint::findValue(Value *V, bool OffsetOk) const {
658   SmallPtrSet<Value *, 4> Visited;
659   return findValueImpl(V, OffsetOk, Visited);
660 }
661 
662 /// findValueImpl - Implementation helper for findValue.
663 Value *Lint::findValueImpl(Value *V, bool OffsetOk,
664                            SmallPtrSetImpl<Value *> &Visited) const {
665   // Detect self-referential values.
666   if (!Visited.insert(V).second)
667     return UndefValue::get(V->getType());
668 
669   // TODO: Look through sext or zext cast, when the result is known to
670   // be interpreted as signed or unsigned, respectively.
671   // TODO: Look through eliminable cast pairs.
672   // TODO: Look through calls with unique return values.
673   // TODO: Look through vector insert/extract/shuffle.
674   V = OffsetOk ? GetUnderlyingObject(V, *DL) : V->stripPointerCasts();
675   if (LoadInst *L = dyn_cast<LoadInst>(V)) {
676     BasicBlock::iterator BBI = L->getIterator();
677     BasicBlock *BB = L->getParent();
678     SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
679     for (;;) {
680       if (!VisitedBlocks.insert(BB).second)
681         break;
682       if (Value *U =
683           FindAvailableLoadedValue(L, BB, BBI, DefMaxInstsToScan, AA))
684         return findValueImpl(U, OffsetOk, Visited);
685       if (BBI != BB->begin()) break;
686       BB = BB->getUniquePredecessor();
687       if (!BB) break;
688       BBI = BB->end();
689     }
690   } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
691     if (Value *W = PN->hasConstantValue())
692       if (W != V)
693         return findValueImpl(W, OffsetOk, Visited);
694   } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
695     if (CI->isNoopCast(*DL))
696       return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
697   } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
698     if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
699                                      Ex->getIndices()))
700       if (W != V)
701         return findValueImpl(W, OffsetOk, Visited);
702   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
703     // Same as above, but for ConstantExpr instead of Instruction.
704     if (Instruction::isCast(CE->getOpcode())) {
705       if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
706                                CE->getOperand(0)->getType(), CE->getType(),
707                                *DL))
708         return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
709     } else if (CE->getOpcode() == Instruction::ExtractValue) {
710       ArrayRef<unsigned> Indices = CE->getIndices();
711       if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
712         if (W != V)
713           return findValueImpl(W, OffsetOk, Visited);
714     }
715   }
716 
717   // As a last resort, try SimplifyInstruction or constant folding.
718   if (Instruction *Inst = dyn_cast<Instruction>(V)) {
719     if (Value *W = SimplifyInstruction(Inst, {*DL, TLI, DT, AC}))
720       return findValueImpl(W, OffsetOk, Visited);
721   } else if (auto *C = dyn_cast<Constant>(V)) {
722     if (Value *W = ConstantFoldConstant(C, *DL, TLI))
723       if (W && W != V)
724         return findValueImpl(W, OffsetOk, Visited);
725   }
726 
727   return V;
728 }
729 
730 //===----------------------------------------------------------------------===//
731 //  Implement the public interfaces to this file...
732 //===----------------------------------------------------------------------===//
733 
734 FunctionPass *llvm::createLintPass() {
735   return new Lint();
736 }
737 
738 /// lintFunction - Check a function for errors, printing messages on stderr.
739 ///
740 void llvm::lintFunction(const Function &f) {
741   Function &F = const_cast<Function&>(f);
742   assert(!F.isDeclaration() && "Cannot lint external functions");
743 
744   legacy::FunctionPassManager FPM(F.getParent());
745   Lint *V = new Lint();
746   FPM.add(V);
747   FPM.run(F);
748 }
749 
750 /// lintModule - Check a module for errors, printing messages on stderr.
751 ///
752 void llvm::lintModule(const Module &M) {
753   legacy::PassManager PM;
754   Lint *V = new Lint();
755   PM.add(V);
756   PM.run(const_cast<Module&>(M));
757 }
758