1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass statically checks for common and easily-identified constructs 10 // which produce undefined or likely unintended behavior in LLVM IR. 11 // 12 // It is not a guarantee of correctness, in two ways. First, it isn't 13 // comprehensive. There are checks which could be done statically which are 14 // not yet implemented. Some of these are indicated by TODO comments, but 15 // those aren't comprehensive either. Second, many conditions cannot be 16 // checked statically. This pass does no dynamic instrumentation, so it 17 // can't check for all possible problems. 18 // 19 // Another limitation is that it assumes all code will be executed. A store 20 // through a null pointer in a basic block which is never reached is harmless, 21 // but this pass will warn about it anyway. This is the main reason why most 22 // of these checks live here instead of in the Verifier pass. 23 // 24 // Optimization passes may make conditions that this pass checks for more or 25 // less obvious. If an optimization pass appears to be introducing a warning, 26 // it may be that the optimization pass is merely exposing an existing 27 // condition in the code. 28 // 29 // This code may be run before instcombine. In many cases, instcombine checks 30 // for the same kinds of things and turns instructions with undefined behavior 31 // into unreachable (or equivalent). Because of this, this pass makes some 32 // effort to look through bitcasts and so on. 33 // 34 //===----------------------------------------------------------------------===// 35 36 #include "llvm/Analysis/Lint.h" 37 #include "llvm/ADT/APInt.h" 38 #include "llvm/ADT/ArrayRef.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/Twine.h" 41 #include "llvm/Analysis/AliasAnalysis.h" 42 #include "llvm/Analysis/AssumptionCache.h" 43 #include "llvm/Analysis/ConstantFolding.h" 44 #include "llvm/Analysis/InstructionSimplify.h" 45 #include "llvm/Analysis/Loads.h" 46 #include "llvm/Analysis/MemoryLocation.h" 47 #include "llvm/Analysis/Passes.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/IR/Argument.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/CallSite.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/GlobalVariable.h" 60 #include "llvm/IR/InstVisitor.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/LegacyPassManager.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Value.h" 69 #include "llvm/Pass.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/Debug.h" 72 #include "llvm/Support/KnownBits.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include <cassert> 76 #include <cstdint> 77 #include <iterator> 78 #include <string> 79 80 using namespace llvm; 81 82 namespace { 83 namespace MemRef { 84 static const unsigned Read = 1; 85 static const unsigned Write = 2; 86 static const unsigned Callee = 4; 87 static const unsigned Branchee = 8; 88 } // end namespace MemRef 89 90 class Lint : public FunctionPass, public InstVisitor<Lint> { 91 friend class InstVisitor<Lint>; 92 93 void visitFunction(Function &F); 94 95 void visitCallSite(CallSite CS); 96 void visitMemoryReference(Instruction &I, Value *Ptr, 97 uint64_t Size, unsigned Align, 98 Type *Ty, unsigned Flags); 99 void visitEHBeginCatch(IntrinsicInst *II); 100 void visitEHEndCatch(IntrinsicInst *II); 101 102 void visitCallInst(CallInst &I); 103 void visitInvokeInst(InvokeInst &I); 104 void visitReturnInst(ReturnInst &I); 105 void visitLoadInst(LoadInst &I); 106 void visitStoreInst(StoreInst &I); 107 void visitXor(BinaryOperator &I); 108 void visitSub(BinaryOperator &I); 109 void visitLShr(BinaryOperator &I); 110 void visitAShr(BinaryOperator &I); 111 void visitShl(BinaryOperator &I); 112 void visitSDiv(BinaryOperator &I); 113 void visitUDiv(BinaryOperator &I); 114 void visitSRem(BinaryOperator &I); 115 void visitURem(BinaryOperator &I); 116 void visitAllocaInst(AllocaInst &I); 117 void visitVAArgInst(VAArgInst &I); 118 void visitIndirectBrInst(IndirectBrInst &I); 119 void visitExtractElementInst(ExtractElementInst &I); 120 void visitInsertElementInst(InsertElementInst &I); 121 void visitUnreachableInst(UnreachableInst &I); 122 123 Value *findValue(Value *V, bool OffsetOk) const; 124 Value *findValueImpl(Value *V, bool OffsetOk, 125 SmallPtrSetImpl<Value *> &Visited) const; 126 127 public: 128 Module *Mod; 129 const DataLayout *DL; 130 AliasAnalysis *AA; 131 AssumptionCache *AC; 132 DominatorTree *DT; 133 TargetLibraryInfo *TLI; 134 135 std::string Messages; 136 raw_string_ostream MessagesStr; 137 138 static char ID; // Pass identification, replacement for typeid 139 Lint() : FunctionPass(ID), MessagesStr(Messages) { 140 initializeLintPass(*PassRegistry::getPassRegistry()); 141 } 142 143 bool runOnFunction(Function &F) override; 144 145 void getAnalysisUsage(AnalysisUsage &AU) const override { 146 AU.setPreservesAll(); 147 AU.addRequired<AAResultsWrapperPass>(); 148 AU.addRequired<AssumptionCacheTracker>(); 149 AU.addRequired<TargetLibraryInfoWrapperPass>(); 150 AU.addRequired<DominatorTreeWrapperPass>(); 151 } 152 void print(raw_ostream &O, const Module *M) const override {} 153 154 void WriteValues(ArrayRef<const Value *> Vs) { 155 for (const Value *V : Vs) { 156 if (!V) 157 continue; 158 if (isa<Instruction>(V)) { 159 MessagesStr << *V << '\n'; 160 } else { 161 V->printAsOperand(MessagesStr, true, Mod); 162 MessagesStr << '\n'; 163 } 164 } 165 } 166 167 /// A check failed, so printout out the condition and the message. 168 /// 169 /// This provides a nice place to put a breakpoint if you want to see why 170 /// something is not correct. 171 void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; } 172 173 /// A check failed (with values to print). 174 /// 175 /// This calls the Message-only version so that the above is easier to set 176 /// a breakpoint on. 177 template <typename T1, typename... Ts> 178 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &...Vs) { 179 CheckFailed(Message); 180 WriteValues({V1, Vs...}); 181 } 182 }; 183 } // end anonymous namespace 184 185 char Lint::ID = 0; 186 INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR", 187 false, true) 188 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 189 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 190 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 191 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 192 INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR", 193 false, true) 194 195 // Assert - We know that cond should be true, if not print an error message. 196 #define Assert(C, ...) \ 197 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 198 199 // Lint::run - This is the main Analysis entry point for a 200 // function. 201 // 202 bool Lint::runOnFunction(Function &F) { 203 Mod = F.getParent(); 204 DL = &F.getParent()->getDataLayout(); 205 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 206 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 207 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 208 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 209 visit(F); 210 dbgs() << MessagesStr.str(); 211 Messages.clear(); 212 return false; 213 } 214 215 void Lint::visitFunction(Function &F) { 216 // This isn't undefined behavior, it's just a little unusual, and it's a 217 // fairly common mistake to neglect to name a function. 218 Assert(F.hasName() || F.hasLocalLinkage(), 219 "Unusual: Unnamed function with non-local linkage", &F); 220 221 // TODO: Check for irreducible control flow. 222 } 223 224 void Lint::visitCallSite(CallSite CS) { 225 Instruction &I = *CS.getInstruction(); 226 Value *Callee = CS.getCalledValue(); 227 228 visitMemoryReference(I, Callee, MemoryLocation::UnknownSize, 0, nullptr, 229 MemRef::Callee); 230 231 if (Function *F = dyn_cast<Function>(findValue(Callee, 232 /*OffsetOk=*/false))) { 233 Assert(CS.getCallingConv() == F->getCallingConv(), 234 "Undefined behavior: Caller and callee calling convention differ", 235 &I); 236 237 FunctionType *FT = F->getFunctionType(); 238 unsigned NumActualArgs = CS.arg_size(); 239 240 Assert(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs 241 : FT->getNumParams() == NumActualArgs, 242 "Undefined behavior: Call argument count mismatches callee " 243 "argument count", 244 &I); 245 246 Assert(FT->getReturnType() == I.getType(), 247 "Undefined behavior: Call return type mismatches " 248 "callee return type", 249 &I); 250 251 // Check argument types (in case the callee was casted) and attributes. 252 // TODO: Verify that caller and callee attributes are compatible. 253 Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end(); 254 CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end(); 255 for (; AI != AE; ++AI) { 256 Value *Actual = *AI; 257 if (PI != PE) { 258 Argument *Formal = &*PI++; 259 Assert(Formal->getType() == Actual->getType(), 260 "Undefined behavior: Call argument type mismatches " 261 "callee parameter type", 262 &I); 263 264 // Check that noalias arguments don't alias other arguments. This is 265 // not fully precise because we don't know the sizes of the dereferenced 266 // memory regions. 267 if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) { 268 AttributeList PAL = CS.getAttributes(); 269 unsigned ArgNo = 0; 270 for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; 271 ++BI, ++ArgNo) { 272 // Skip ByVal arguments since they will be memcpy'd to the callee's 273 // stack so we're not really passing the pointer anyway. 274 if (PAL.hasParamAttribute(ArgNo, Attribute::ByVal)) 275 continue; 276 // If both arguments are readonly, they have no dependence. 277 if (Formal->onlyReadsMemory() && CS.onlyReadsMemory(ArgNo)) 278 continue; 279 if (AI != BI && (*BI)->getType()->isPointerTy()) { 280 AliasResult Result = AA->alias(*AI, *BI); 281 Assert(Result != MustAlias && Result != PartialAlias, 282 "Unusual: noalias argument aliases another argument", &I); 283 } 284 } 285 } 286 287 // Check that an sret argument points to valid memory. 288 if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) { 289 Type *Ty = 290 cast<PointerType>(Formal->getType())->getElementType(); 291 visitMemoryReference(I, Actual, DL->getTypeStoreSize(Ty), 292 DL->getABITypeAlignment(Ty), Ty, 293 MemRef::Read | MemRef::Write); 294 } 295 } 296 } 297 } 298 299 if (CS.isCall()) { 300 const CallInst *CI = cast<CallInst>(CS.getInstruction()); 301 if (CI->isTailCall()) { 302 const AttributeList &PAL = CI->getAttributes(); 303 unsigned ArgNo = 0; 304 for (Value *Arg : CS.args()) { 305 // Skip ByVal arguments since they will be memcpy'd to the callee's 306 // stack anyway. 307 if (PAL.hasParamAttribute(ArgNo++, Attribute::ByVal)) 308 continue; 309 Value *Obj = findValue(Arg, /*OffsetOk=*/true); 310 Assert(!isa<AllocaInst>(Obj), 311 "Undefined behavior: Call with \"tail\" keyword references " 312 "alloca", 313 &I); 314 } 315 } 316 } 317 318 319 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) 320 switch (II->getIntrinsicID()) { 321 default: break; 322 323 // TODO: Check more intrinsics 324 325 case Intrinsic::memcpy: { 326 MemCpyInst *MCI = cast<MemCpyInst>(&I); 327 // TODO: If the size is known, use it. 328 visitMemoryReference(I, MCI->getDest(), MemoryLocation::UnknownSize, 329 MCI->getDestAlignment(), nullptr, MemRef::Write); 330 visitMemoryReference(I, MCI->getSource(), MemoryLocation::UnknownSize, 331 MCI->getSourceAlignment(), nullptr, MemRef::Read); 332 333 // Check that the memcpy arguments don't overlap. The AliasAnalysis API 334 // isn't expressive enough for what we really want to do. Known partial 335 // overlap is not distinguished from the case where nothing is known. 336 auto Size = LocationSize::unknown(); 337 if (const ConstantInt *Len = 338 dyn_cast<ConstantInt>(findValue(MCI->getLength(), 339 /*OffsetOk=*/false))) 340 if (Len->getValue().isIntN(32)) 341 Size = LocationSize::precise(Len->getValue().getZExtValue()); 342 Assert(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) != 343 MustAlias, 344 "Undefined behavior: memcpy source and destination overlap", &I); 345 break; 346 } 347 case Intrinsic::memmove: { 348 MemMoveInst *MMI = cast<MemMoveInst>(&I); 349 // TODO: If the size is known, use it. 350 visitMemoryReference(I, MMI->getDest(), MemoryLocation::UnknownSize, 351 MMI->getDestAlignment(), nullptr, MemRef::Write); 352 visitMemoryReference(I, MMI->getSource(), MemoryLocation::UnknownSize, 353 MMI->getSourceAlignment(), nullptr, MemRef::Read); 354 break; 355 } 356 case Intrinsic::memset: { 357 MemSetInst *MSI = cast<MemSetInst>(&I); 358 // TODO: If the size is known, use it. 359 visitMemoryReference(I, MSI->getDest(), MemoryLocation::UnknownSize, 360 MSI->getDestAlignment(), nullptr, MemRef::Write); 361 break; 362 } 363 364 case Intrinsic::vastart: 365 Assert(I.getParent()->getParent()->isVarArg(), 366 "Undefined behavior: va_start called in a non-varargs function", 367 &I); 368 369 visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0, 370 nullptr, MemRef::Read | MemRef::Write); 371 break; 372 case Intrinsic::vacopy: 373 visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0, 374 nullptr, MemRef::Write); 375 visitMemoryReference(I, CS.getArgument(1), MemoryLocation::UnknownSize, 0, 376 nullptr, MemRef::Read); 377 break; 378 case Intrinsic::vaend: 379 visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0, 380 nullptr, MemRef::Read | MemRef::Write); 381 break; 382 383 case Intrinsic::stackrestore: 384 // Stackrestore doesn't read or write memory, but it sets the 385 // stack pointer, which the compiler may read from or write to 386 // at any time, so check it for both readability and writeability. 387 visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0, 388 nullptr, MemRef::Read | MemRef::Write); 389 break; 390 } 391 } 392 393 void Lint::visitCallInst(CallInst &I) { 394 return visitCallSite(&I); 395 } 396 397 void Lint::visitInvokeInst(InvokeInst &I) { 398 return visitCallSite(&I); 399 } 400 401 void Lint::visitReturnInst(ReturnInst &I) { 402 Function *F = I.getParent()->getParent(); 403 Assert(!F->doesNotReturn(), 404 "Unusual: Return statement in function with noreturn attribute", &I); 405 406 if (Value *V = I.getReturnValue()) { 407 Value *Obj = findValue(V, /*OffsetOk=*/true); 408 Assert(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I); 409 } 410 } 411 412 // TODO: Check that the reference is in bounds. 413 // TODO: Check readnone/readonly function attributes. 414 void Lint::visitMemoryReference(Instruction &I, 415 Value *Ptr, uint64_t Size, unsigned Align, 416 Type *Ty, unsigned Flags) { 417 // If no memory is being referenced, it doesn't matter if the pointer 418 // is valid. 419 if (Size == 0) 420 return; 421 422 Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true); 423 Assert(!isa<ConstantPointerNull>(UnderlyingObject), 424 "Undefined behavior: Null pointer dereference", &I); 425 Assert(!isa<UndefValue>(UnderlyingObject), 426 "Undefined behavior: Undef pointer dereference", &I); 427 Assert(!isa<ConstantInt>(UnderlyingObject) || 428 !cast<ConstantInt>(UnderlyingObject)->isMinusOne(), 429 "Unusual: All-ones pointer dereference", &I); 430 Assert(!isa<ConstantInt>(UnderlyingObject) || 431 !cast<ConstantInt>(UnderlyingObject)->isOne(), 432 "Unusual: Address one pointer dereference", &I); 433 434 if (Flags & MemRef::Write) { 435 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject)) 436 Assert(!GV->isConstant(), "Undefined behavior: Write to read-only memory", 437 &I); 438 Assert(!isa<Function>(UnderlyingObject) && 439 !isa<BlockAddress>(UnderlyingObject), 440 "Undefined behavior: Write to text section", &I); 441 } 442 if (Flags & MemRef::Read) { 443 Assert(!isa<Function>(UnderlyingObject), "Unusual: Load from function body", 444 &I); 445 Assert(!isa<BlockAddress>(UnderlyingObject), 446 "Undefined behavior: Load from block address", &I); 447 } 448 if (Flags & MemRef::Callee) { 449 Assert(!isa<BlockAddress>(UnderlyingObject), 450 "Undefined behavior: Call to block address", &I); 451 } 452 if (Flags & MemRef::Branchee) { 453 Assert(!isa<Constant>(UnderlyingObject) || 454 isa<BlockAddress>(UnderlyingObject), 455 "Undefined behavior: Branch to non-blockaddress", &I); 456 } 457 458 // Check for buffer overflows and misalignment. 459 // Only handles memory references that read/write something simple like an 460 // alloca instruction or a global variable. 461 int64_t Offset = 0; 462 if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) { 463 // OK, so the access is to a constant offset from Ptr. Check that Ptr is 464 // something we can handle and if so extract the size of this base object 465 // along with its alignment. 466 uint64_t BaseSize = MemoryLocation::UnknownSize; 467 unsigned BaseAlign = 0; 468 469 if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) { 470 Type *ATy = AI->getAllocatedType(); 471 if (!AI->isArrayAllocation() && ATy->isSized()) 472 BaseSize = DL->getTypeAllocSize(ATy); 473 BaseAlign = AI->getAlignment(); 474 if (BaseAlign == 0 && ATy->isSized()) 475 BaseAlign = DL->getABITypeAlignment(ATy); 476 } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) { 477 // If the global may be defined differently in another compilation unit 478 // then don't warn about funky memory accesses. 479 if (GV->hasDefinitiveInitializer()) { 480 Type *GTy = GV->getValueType(); 481 if (GTy->isSized()) 482 BaseSize = DL->getTypeAllocSize(GTy); 483 BaseAlign = GV->getAlignment(); 484 if (BaseAlign == 0 && GTy->isSized()) 485 BaseAlign = DL->getABITypeAlignment(GTy); 486 } 487 } 488 489 // Accesses from before the start or after the end of the object are not 490 // defined. 491 Assert(Size == MemoryLocation::UnknownSize || 492 BaseSize == MemoryLocation::UnknownSize || 493 (Offset >= 0 && Offset + Size <= BaseSize), 494 "Undefined behavior: Buffer overflow", &I); 495 496 // Accesses that say that the memory is more aligned than it is are not 497 // defined. 498 if (Align == 0 && Ty && Ty->isSized()) 499 Align = DL->getABITypeAlignment(Ty); 500 Assert(!BaseAlign || Align <= MinAlign(BaseAlign, Offset), 501 "Undefined behavior: Memory reference address is misaligned", &I); 502 } 503 } 504 505 void Lint::visitLoadInst(LoadInst &I) { 506 visitMemoryReference(I, I.getPointerOperand(), 507 DL->getTypeStoreSize(I.getType()), I.getAlignment(), 508 I.getType(), MemRef::Read); 509 } 510 511 void Lint::visitStoreInst(StoreInst &I) { 512 visitMemoryReference(I, I.getPointerOperand(), 513 DL->getTypeStoreSize(I.getOperand(0)->getType()), 514 I.getAlignment(), 515 I.getOperand(0)->getType(), MemRef::Write); 516 } 517 518 void Lint::visitXor(BinaryOperator &I) { 519 Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)), 520 "Undefined result: xor(undef, undef)", &I); 521 } 522 523 void Lint::visitSub(BinaryOperator &I) { 524 Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)), 525 "Undefined result: sub(undef, undef)", &I); 526 } 527 528 void Lint::visitLShr(BinaryOperator &I) { 529 if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1), 530 /*OffsetOk=*/false))) 531 Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), 532 "Undefined result: Shift count out of range", &I); 533 } 534 535 void Lint::visitAShr(BinaryOperator &I) { 536 if (ConstantInt *CI = 537 dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false))) 538 Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), 539 "Undefined result: Shift count out of range", &I); 540 } 541 542 void Lint::visitShl(BinaryOperator &I) { 543 if (ConstantInt *CI = 544 dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false))) 545 Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), 546 "Undefined result: Shift count out of range", &I); 547 } 548 549 static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, 550 AssumptionCache *AC) { 551 // Assume undef could be zero. 552 if (isa<UndefValue>(V)) 553 return true; 554 555 VectorType *VecTy = dyn_cast<VectorType>(V->getType()); 556 if (!VecTy) { 557 KnownBits Known = computeKnownBits(V, DL, 0, AC, dyn_cast<Instruction>(V), DT); 558 return Known.isZero(); 559 } 560 561 // Per-component check doesn't work with zeroinitializer 562 Constant *C = dyn_cast<Constant>(V); 563 if (!C) 564 return false; 565 566 if (C->isZeroValue()) 567 return true; 568 569 // For a vector, KnownZero will only be true if all values are zero, so check 570 // this per component 571 for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) { 572 Constant *Elem = C->getAggregateElement(I); 573 if (isa<UndefValue>(Elem)) 574 return true; 575 576 KnownBits Known = computeKnownBits(Elem, DL); 577 if (Known.isZero()) 578 return true; 579 } 580 581 return false; 582 } 583 584 void Lint::visitSDiv(BinaryOperator &I) { 585 Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), 586 "Undefined behavior: Division by zero", &I); 587 } 588 589 void Lint::visitUDiv(BinaryOperator &I) { 590 Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), 591 "Undefined behavior: Division by zero", &I); 592 } 593 594 void Lint::visitSRem(BinaryOperator &I) { 595 Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), 596 "Undefined behavior: Division by zero", &I); 597 } 598 599 void Lint::visitURem(BinaryOperator &I) { 600 Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), 601 "Undefined behavior: Division by zero", &I); 602 } 603 604 void Lint::visitAllocaInst(AllocaInst &I) { 605 if (isa<ConstantInt>(I.getArraySize())) 606 // This isn't undefined behavior, it's just an obvious pessimization. 607 Assert(&I.getParent()->getParent()->getEntryBlock() == I.getParent(), 608 "Pessimization: Static alloca outside of entry block", &I); 609 610 // TODO: Check for an unusual size (MSB set?) 611 } 612 613 void Lint::visitVAArgInst(VAArgInst &I) { 614 visitMemoryReference(I, I.getOperand(0), MemoryLocation::UnknownSize, 0, 615 nullptr, MemRef::Read | MemRef::Write); 616 } 617 618 void Lint::visitIndirectBrInst(IndirectBrInst &I) { 619 visitMemoryReference(I, I.getAddress(), MemoryLocation::UnknownSize, 0, 620 nullptr, MemRef::Branchee); 621 622 Assert(I.getNumDestinations() != 0, 623 "Undefined behavior: indirectbr with no destinations", &I); 624 } 625 626 void Lint::visitExtractElementInst(ExtractElementInst &I) { 627 if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(), 628 /*OffsetOk=*/false))) 629 Assert(CI->getValue().ult(I.getVectorOperandType()->getNumElements()), 630 "Undefined result: extractelement index out of range", &I); 631 } 632 633 void Lint::visitInsertElementInst(InsertElementInst &I) { 634 if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2), 635 /*OffsetOk=*/false))) 636 Assert(CI->getValue().ult(I.getType()->getNumElements()), 637 "Undefined result: insertelement index out of range", &I); 638 } 639 640 void Lint::visitUnreachableInst(UnreachableInst &I) { 641 // This isn't undefined behavior, it's merely suspicious. 642 Assert(&I == &I.getParent()->front() || 643 std::prev(I.getIterator())->mayHaveSideEffects(), 644 "Unusual: unreachable immediately preceded by instruction without " 645 "side effects", 646 &I); 647 } 648 649 /// findValue - Look through bitcasts and simple memory reference patterns 650 /// to identify an equivalent, but more informative, value. If OffsetOk 651 /// is true, look through getelementptrs with non-zero offsets too. 652 /// 653 /// Most analysis passes don't require this logic, because instcombine 654 /// will simplify most of these kinds of things away. But it's a goal of 655 /// this Lint pass to be useful even on non-optimized IR. 656 Value *Lint::findValue(Value *V, bool OffsetOk) const { 657 SmallPtrSet<Value *, 4> Visited; 658 return findValueImpl(V, OffsetOk, Visited); 659 } 660 661 /// findValueImpl - Implementation helper for findValue. 662 Value *Lint::findValueImpl(Value *V, bool OffsetOk, 663 SmallPtrSetImpl<Value *> &Visited) const { 664 // Detect self-referential values. 665 if (!Visited.insert(V).second) 666 return UndefValue::get(V->getType()); 667 668 // TODO: Look through sext or zext cast, when the result is known to 669 // be interpreted as signed or unsigned, respectively. 670 // TODO: Look through eliminable cast pairs. 671 // TODO: Look through calls with unique return values. 672 // TODO: Look through vector insert/extract/shuffle. 673 V = OffsetOk ? GetUnderlyingObject(V, *DL) : V->stripPointerCasts(); 674 if (LoadInst *L = dyn_cast<LoadInst>(V)) { 675 BasicBlock::iterator BBI = L->getIterator(); 676 BasicBlock *BB = L->getParent(); 677 SmallPtrSet<BasicBlock *, 4> VisitedBlocks; 678 for (;;) { 679 if (!VisitedBlocks.insert(BB).second) 680 break; 681 if (Value *U = 682 FindAvailableLoadedValue(L, BB, BBI, DefMaxInstsToScan, AA)) 683 return findValueImpl(U, OffsetOk, Visited); 684 if (BBI != BB->begin()) break; 685 BB = BB->getUniquePredecessor(); 686 if (!BB) break; 687 BBI = BB->end(); 688 } 689 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 690 if (Value *W = PN->hasConstantValue()) 691 if (W != V) 692 return findValueImpl(W, OffsetOk, Visited); 693 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 694 if (CI->isNoopCast(*DL)) 695 return findValueImpl(CI->getOperand(0), OffsetOk, Visited); 696 } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) { 697 if (Value *W = FindInsertedValue(Ex->getAggregateOperand(), 698 Ex->getIndices())) 699 if (W != V) 700 return findValueImpl(W, OffsetOk, Visited); 701 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 702 // Same as above, but for ConstantExpr instead of Instruction. 703 if (Instruction::isCast(CE->getOpcode())) { 704 if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()), 705 CE->getOperand(0)->getType(), CE->getType(), 706 *DL)) 707 return findValueImpl(CE->getOperand(0), OffsetOk, Visited); 708 } else if (CE->getOpcode() == Instruction::ExtractValue) { 709 ArrayRef<unsigned> Indices = CE->getIndices(); 710 if (Value *W = FindInsertedValue(CE->getOperand(0), Indices)) 711 if (W != V) 712 return findValueImpl(W, OffsetOk, Visited); 713 } 714 } 715 716 // As a last resort, try SimplifyInstruction or constant folding. 717 if (Instruction *Inst = dyn_cast<Instruction>(V)) { 718 if (Value *W = SimplifyInstruction(Inst, {*DL, TLI, DT, AC})) 719 return findValueImpl(W, OffsetOk, Visited); 720 } else if (auto *C = dyn_cast<Constant>(V)) { 721 if (Value *W = ConstantFoldConstant(C, *DL, TLI)) 722 if (W && W != V) 723 return findValueImpl(W, OffsetOk, Visited); 724 } 725 726 return V; 727 } 728 729 //===----------------------------------------------------------------------===// 730 // Implement the public interfaces to this file... 731 //===----------------------------------------------------------------------===// 732 733 FunctionPass *llvm::createLintPass() { 734 return new Lint(); 735 } 736 737 /// lintFunction - Check a function for errors, printing messages on stderr. 738 /// 739 void llvm::lintFunction(const Function &f) { 740 Function &F = const_cast<Function&>(f); 741 assert(!F.isDeclaration() && "Cannot lint external functions"); 742 743 legacy::FunctionPassManager FPM(F.getParent()); 744 Lint *V = new Lint(); 745 FPM.add(V); 746 FPM.run(F); 747 } 748 749 /// lintModule - Check a module for errors, printing messages on stderr. 750 /// 751 void llvm::lintModule(const Module &M) { 752 legacy::PassManager PM; 753 Lint *V = new Lint(); 754 PM.add(V); 755 PM.run(const_cast<Module&>(M)); 756 } 757