xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/Lint.cpp (revision 1f1e2261e341e6ca6862f82261066ef1705f0a7a)
1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass statically checks for common and easily-identified constructs
10 // which produce undefined or likely unintended behavior in LLVM IR.
11 //
12 // It is not a guarantee of correctness, in two ways. First, it isn't
13 // comprehensive. There are checks which could be done statically which are
14 // not yet implemented. Some of these are indicated by TODO comments, but
15 // those aren't comprehensive either. Second, many conditions cannot be
16 // checked statically. This pass does no dynamic instrumentation, so it
17 // can't check for all possible problems.
18 //
19 // Another limitation is that it assumes all code will be executed. A store
20 // through a null pointer in a basic block which is never reached is harmless,
21 // but this pass will warn about it anyway. This is the main reason why most
22 // of these checks live here instead of in the Verifier pass.
23 //
24 // Optimization passes may make conditions that this pass checks for more or
25 // less obvious. If an optimization pass appears to be introducing a warning,
26 // it may be that the optimization pass is merely exposing an existing
27 // condition in the code.
28 //
29 // This code may be run before instcombine. In many cases, instcombine checks
30 // for the same kinds of things and turns instructions with undefined behavior
31 // into unreachable (or equivalent). Because of this, this pass makes some
32 // effort to look through bitcasts and so on.
33 //
34 //===----------------------------------------------------------------------===//
35 
36 #include "llvm/Analysis/Lint.h"
37 #include "llvm/ADT/APInt.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AliasAnalysis.h"
42 #include "llvm/Analysis/AssumptionCache.h"
43 #include "llvm/Analysis/ConstantFolding.h"
44 #include "llvm/Analysis/InstructionSimplify.h"
45 #include "llvm/Analysis/Loads.h"
46 #include "llvm/Analysis/MemoryLocation.h"
47 #include "llvm/Analysis/Passes.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/Analysis/ValueTracking.h"
50 #include "llvm/IR/Argument.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/Constant.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DerivedTypes.h"
56 #include "llvm/IR/Dominators.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/GlobalVariable.h"
59 #include "llvm/IR/InstVisitor.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/LegacyPassManager.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/PassManager.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Value.h"
69 #include "llvm/InitializePasses.h"
70 #include "llvm/Pass.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/KnownBits.h"
74 #include "llvm/Support/MathExtras.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include <cassert>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 
81 using namespace llvm;
82 
83 namespace {
84 namespace MemRef {
85 static const unsigned Read = 1;
86 static const unsigned Write = 2;
87 static const unsigned Callee = 4;
88 static const unsigned Branchee = 8;
89 } // end namespace MemRef
90 
91 class Lint : public InstVisitor<Lint> {
92   friend class InstVisitor<Lint>;
93 
94   void visitFunction(Function &F);
95 
96   void visitCallBase(CallBase &CB);
97   void visitMemoryReference(Instruction &I, const MemoryLocation &Loc,
98                             MaybeAlign Alignment, Type *Ty, unsigned Flags);
99   void visitEHBeginCatch(IntrinsicInst *II);
100   void visitEHEndCatch(IntrinsicInst *II);
101 
102   void visitReturnInst(ReturnInst &I);
103   void visitLoadInst(LoadInst &I);
104   void visitStoreInst(StoreInst &I);
105   void visitXor(BinaryOperator &I);
106   void visitSub(BinaryOperator &I);
107   void visitLShr(BinaryOperator &I);
108   void visitAShr(BinaryOperator &I);
109   void visitShl(BinaryOperator &I);
110   void visitSDiv(BinaryOperator &I);
111   void visitUDiv(BinaryOperator &I);
112   void visitSRem(BinaryOperator &I);
113   void visitURem(BinaryOperator &I);
114   void visitAllocaInst(AllocaInst &I);
115   void visitVAArgInst(VAArgInst &I);
116   void visitIndirectBrInst(IndirectBrInst &I);
117   void visitExtractElementInst(ExtractElementInst &I);
118   void visitInsertElementInst(InsertElementInst &I);
119   void visitUnreachableInst(UnreachableInst &I);
120 
121   Value *findValue(Value *V, bool OffsetOk) const;
122   Value *findValueImpl(Value *V, bool OffsetOk,
123                        SmallPtrSetImpl<Value *> &Visited) const;
124 
125 public:
126   Module *Mod;
127   const DataLayout *DL;
128   AliasAnalysis *AA;
129   AssumptionCache *AC;
130   DominatorTree *DT;
131   TargetLibraryInfo *TLI;
132 
133   std::string Messages;
134   raw_string_ostream MessagesStr;
135 
136   Lint(Module *Mod, const DataLayout *DL, AliasAnalysis *AA,
137        AssumptionCache *AC, DominatorTree *DT, TargetLibraryInfo *TLI)
138       : Mod(Mod), DL(DL), AA(AA), AC(AC), DT(DT), TLI(TLI),
139         MessagesStr(Messages) {}
140 
141   void WriteValues(ArrayRef<const Value *> Vs) {
142     for (const Value *V : Vs) {
143       if (!V)
144         continue;
145       if (isa<Instruction>(V)) {
146         MessagesStr << *V << '\n';
147       } else {
148         V->printAsOperand(MessagesStr, true, Mod);
149         MessagesStr << '\n';
150       }
151     }
152   }
153 
154   /// A check failed, so printout out the condition and the message.
155   ///
156   /// This provides a nice place to put a breakpoint if you want to see why
157   /// something is not correct.
158   void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; }
159 
160   /// A check failed (with values to print).
161   ///
162   /// This calls the Message-only version so that the above is easier to set
163   /// a breakpoint on.
164   template <typename T1, typename... Ts>
165   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
166     CheckFailed(Message);
167     WriteValues({V1, Vs...});
168   }
169 };
170 } // end anonymous namespace
171 
172 // Assert - We know that cond should be true, if not print an error message.
173 #define Assert(C, ...)                                                         \
174   do {                                                                         \
175     if (!(C)) {                                                                \
176       CheckFailed(__VA_ARGS__);                                                \
177       return;                                                                  \
178     }                                                                          \
179   } while (false)
180 
181 void Lint::visitFunction(Function &F) {
182   // This isn't undefined behavior, it's just a little unusual, and it's a
183   // fairly common mistake to neglect to name a function.
184   Assert(F.hasName() || F.hasLocalLinkage(),
185          "Unusual: Unnamed function with non-local linkage", &F);
186 
187   // TODO: Check for irreducible control flow.
188 }
189 
190 void Lint::visitCallBase(CallBase &I) {
191   Value *Callee = I.getCalledOperand();
192 
193   visitMemoryReference(I, MemoryLocation::getAfter(Callee), None, nullptr,
194                        MemRef::Callee);
195 
196   if (Function *F = dyn_cast<Function>(findValue(Callee,
197                                                  /*OffsetOk=*/false))) {
198     Assert(I.getCallingConv() == F->getCallingConv(),
199            "Undefined behavior: Caller and callee calling convention differ",
200            &I);
201 
202     FunctionType *FT = F->getFunctionType();
203     unsigned NumActualArgs = I.arg_size();
204 
205     Assert(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs
206                           : FT->getNumParams() == NumActualArgs,
207            "Undefined behavior: Call argument count mismatches callee "
208            "argument count",
209            &I);
210 
211     Assert(FT->getReturnType() == I.getType(),
212            "Undefined behavior: Call return type mismatches "
213            "callee return type",
214            &I);
215 
216     // Check argument types (in case the callee was casted) and attributes.
217     // TODO: Verify that caller and callee attributes are compatible.
218     Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
219     auto AI = I.arg_begin(), AE = I.arg_end();
220     for (; AI != AE; ++AI) {
221       Value *Actual = *AI;
222       if (PI != PE) {
223         Argument *Formal = &*PI++;
224         Assert(Formal->getType() == Actual->getType(),
225                "Undefined behavior: Call argument type mismatches "
226                "callee parameter type",
227                &I);
228 
229         // Check that noalias arguments don't alias other arguments. This is
230         // not fully precise because we don't know the sizes of the dereferenced
231         // memory regions.
232         if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) {
233           AttributeList PAL = I.getAttributes();
234           unsigned ArgNo = 0;
235           for (auto BI = I.arg_begin(); BI != AE; ++BI, ++ArgNo) {
236             // Skip ByVal arguments since they will be memcpy'd to the callee's
237             // stack so we're not really passing the pointer anyway.
238             if (PAL.hasParamAttr(ArgNo, Attribute::ByVal))
239               continue;
240             // If both arguments are readonly, they have no dependence.
241             if (Formal->onlyReadsMemory() && I.onlyReadsMemory(ArgNo))
242               continue;
243             if (AI != BI && (*BI)->getType()->isPointerTy()) {
244               AliasResult Result = AA->alias(*AI, *BI);
245               Assert(Result != AliasResult::MustAlias &&
246                          Result != AliasResult::PartialAlias,
247                      "Unusual: noalias argument aliases another argument", &I);
248             }
249           }
250         }
251 
252         // Check that an sret argument points to valid memory.
253         if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
254           Type *Ty = Formal->getParamStructRetType();
255           MemoryLocation Loc(
256               Actual, LocationSize::precise(DL->getTypeStoreSize(Ty)));
257           visitMemoryReference(I, Loc, DL->getABITypeAlign(Ty), Ty,
258                                MemRef::Read | MemRef::Write);
259         }
260       }
261     }
262   }
263 
264   if (const auto *CI = dyn_cast<CallInst>(&I)) {
265     if (CI->isTailCall()) {
266       const AttributeList &PAL = CI->getAttributes();
267       unsigned ArgNo = 0;
268       for (Value *Arg : I.args()) {
269         // Skip ByVal arguments since they will be memcpy'd to the callee's
270         // stack anyway.
271         if (PAL.hasParamAttr(ArgNo++, Attribute::ByVal))
272           continue;
273         Value *Obj = findValue(Arg, /*OffsetOk=*/true);
274         Assert(!isa<AllocaInst>(Obj),
275                "Undefined behavior: Call with \"tail\" keyword references "
276                "alloca",
277                &I);
278       }
279     }
280   }
281 
282   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
283     switch (II->getIntrinsicID()) {
284     default:
285       break;
286 
287       // TODO: Check more intrinsics
288 
289     case Intrinsic::memcpy: {
290       MemCpyInst *MCI = cast<MemCpyInst>(&I);
291       visitMemoryReference(I, MemoryLocation::getForDest(MCI),
292                            MCI->getDestAlign(), nullptr, MemRef::Write);
293       visitMemoryReference(I, MemoryLocation::getForSource(MCI),
294                            MCI->getSourceAlign(), nullptr, MemRef::Read);
295 
296       // Check that the memcpy arguments don't overlap. The AliasAnalysis API
297       // isn't expressive enough for what we really want to do. Known partial
298       // overlap is not distinguished from the case where nothing is known.
299       auto Size = LocationSize::afterPointer();
300       if (const ConstantInt *Len =
301               dyn_cast<ConstantInt>(findValue(MCI->getLength(),
302                                               /*OffsetOk=*/false)))
303         if (Len->getValue().isIntN(32))
304           Size = LocationSize::precise(Len->getValue().getZExtValue());
305       Assert(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
306                  AliasResult::MustAlias,
307              "Undefined behavior: memcpy source and destination overlap", &I);
308       break;
309     }
310     case Intrinsic::memcpy_inline: {
311       MemCpyInlineInst *MCII = cast<MemCpyInlineInst>(&I);
312       const uint64_t Size = MCII->getLength()->getValue().getLimitedValue();
313       visitMemoryReference(I, MemoryLocation::getForDest(MCII),
314                            MCII->getDestAlign(), nullptr, MemRef::Write);
315       visitMemoryReference(I, MemoryLocation::getForSource(MCII),
316                            MCII->getSourceAlign(), nullptr, MemRef::Read);
317 
318       // Check that the memcpy arguments don't overlap. The AliasAnalysis API
319       // isn't expressive enough for what we really want to do. Known partial
320       // overlap is not distinguished from the case where nothing is known.
321       const LocationSize LS = LocationSize::precise(Size);
322       Assert(AA->alias(MCII->getSource(), LS, MCII->getDest(), LS) !=
323                  AliasResult::MustAlias,
324              "Undefined behavior: memcpy source and destination overlap", &I);
325       break;
326     }
327     case Intrinsic::memmove: {
328       MemMoveInst *MMI = cast<MemMoveInst>(&I);
329       visitMemoryReference(I, MemoryLocation::getForDest(MMI),
330                            MMI->getDestAlign(), nullptr, MemRef::Write);
331       visitMemoryReference(I, MemoryLocation::getForSource(MMI),
332                            MMI->getSourceAlign(), nullptr, MemRef::Read);
333       break;
334     }
335     case Intrinsic::memset: {
336       MemSetInst *MSI = cast<MemSetInst>(&I);
337       visitMemoryReference(I, MemoryLocation::getForDest(MSI),
338                            MSI->getDestAlign(), nullptr, MemRef::Write);
339       break;
340     }
341 
342     case Intrinsic::vastart:
343       Assert(I.getParent()->getParent()->isVarArg(),
344              "Undefined behavior: va_start called in a non-varargs function",
345              &I);
346 
347       visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), None,
348                            nullptr, MemRef::Read | MemRef::Write);
349       break;
350     case Intrinsic::vacopy:
351       visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), None,
352                            nullptr, MemRef::Write);
353       visitMemoryReference(I, MemoryLocation::getForArgument(&I, 1, TLI), None,
354                            nullptr, MemRef::Read);
355       break;
356     case Intrinsic::vaend:
357       visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), None,
358                            nullptr, MemRef::Read | MemRef::Write);
359       break;
360 
361     case Intrinsic::stackrestore:
362       // Stackrestore doesn't read or write memory, but it sets the
363       // stack pointer, which the compiler may read from or write to
364       // at any time, so check it for both readability and writeability.
365       visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), None,
366                            nullptr, MemRef::Read | MemRef::Write);
367       break;
368     case Intrinsic::get_active_lane_mask:
369       if (auto *TripCount = dyn_cast<ConstantInt>(I.getArgOperand(1)))
370         Assert(!TripCount->isZero(), "get_active_lane_mask: operand #2 "
371                "must be greater than 0", &I);
372       break;
373     }
374 }
375 
376 void Lint::visitReturnInst(ReturnInst &I) {
377   Function *F = I.getParent()->getParent();
378   Assert(!F->doesNotReturn(),
379          "Unusual: Return statement in function with noreturn attribute", &I);
380 
381   if (Value *V = I.getReturnValue()) {
382     Value *Obj = findValue(V, /*OffsetOk=*/true);
383     Assert(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I);
384   }
385 }
386 
387 // TODO: Check that the reference is in bounds.
388 // TODO: Check readnone/readonly function attributes.
389 void Lint::visitMemoryReference(Instruction &I, const MemoryLocation &Loc,
390                                 MaybeAlign Align, Type *Ty, unsigned Flags) {
391   // If no memory is being referenced, it doesn't matter if the pointer
392   // is valid.
393   if (Loc.Size.isZero())
394     return;
395 
396   Value *Ptr = const_cast<Value *>(Loc.Ptr);
397   Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
398   Assert(!isa<ConstantPointerNull>(UnderlyingObject),
399          "Undefined behavior: Null pointer dereference", &I);
400   Assert(!isa<UndefValue>(UnderlyingObject),
401          "Undefined behavior: Undef pointer dereference", &I);
402   Assert(!isa<ConstantInt>(UnderlyingObject) ||
403              !cast<ConstantInt>(UnderlyingObject)->isMinusOne(),
404          "Unusual: All-ones pointer dereference", &I);
405   Assert(!isa<ConstantInt>(UnderlyingObject) ||
406              !cast<ConstantInt>(UnderlyingObject)->isOne(),
407          "Unusual: Address one pointer dereference", &I);
408 
409   if (Flags & MemRef::Write) {
410     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
411       Assert(!GV->isConstant(), "Undefined behavior: Write to read-only memory",
412              &I);
413     Assert(!isa<Function>(UnderlyingObject) &&
414                !isa<BlockAddress>(UnderlyingObject),
415            "Undefined behavior: Write to text section", &I);
416   }
417   if (Flags & MemRef::Read) {
418     Assert(!isa<Function>(UnderlyingObject), "Unusual: Load from function body",
419            &I);
420     Assert(!isa<BlockAddress>(UnderlyingObject),
421            "Undefined behavior: Load from block address", &I);
422   }
423   if (Flags & MemRef::Callee) {
424     Assert(!isa<BlockAddress>(UnderlyingObject),
425            "Undefined behavior: Call to block address", &I);
426   }
427   if (Flags & MemRef::Branchee) {
428     Assert(!isa<Constant>(UnderlyingObject) ||
429                isa<BlockAddress>(UnderlyingObject),
430            "Undefined behavior: Branch to non-blockaddress", &I);
431   }
432 
433   // Check for buffer overflows and misalignment.
434   // Only handles memory references that read/write something simple like an
435   // alloca instruction or a global variable.
436   int64_t Offset = 0;
437   if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) {
438     // OK, so the access is to a constant offset from Ptr.  Check that Ptr is
439     // something we can handle and if so extract the size of this base object
440     // along with its alignment.
441     uint64_t BaseSize = MemoryLocation::UnknownSize;
442     MaybeAlign BaseAlign;
443 
444     if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
445       Type *ATy = AI->getAllocatedType();
446       if (!AI->isArrayAllocation() && ATy->isSized())
447         BaseSize = DL->getTypeAllocSize(ATy);
448       BaseAlign = AI->getAlign();
449     } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
450       // If the global may be defined differently in another compilation unit
451       // then don't warn about funky memory accesses.
452       if (GV->hasDefinitiveInitializer()) {
453         Type *GTy = GV->getValueType();
454         if (GTy->isSized())
455           BaseSize = DL->getTypeAllocSize(GTy);
456         BaseAlign = GV->getAlign();
457         if (!BaseAlign && GTy->isSized())
458           BaseAlign = DL->getABITypeAlign(GTy);
459       }
460     }
461 
462     // Accesses from before the start or after the end of the object are not
463     // defined.
464     Assert(!Loc.Size.hasValue() || BaseSize == MemoryLocation::UnknownSize ||
465                (Offset >= 0 && Offset + Loc.Size.getValue() <= BaseSize),
466            "Undefined behavior: Buffer overflow", &I);
467 
468     // Accesses that say that the memory is more aligned than it is are not
469     // defined.
470     if (!Align && Ty && Ty->isSized())
471       Align = DL->getABITypeAlign(Ty);
472     if (BaseAlign && Align)
473       Assert(*Align <= commonAlignment(*BaseAlign, Offset),
474              "Undefined behavior: Memory reference address is misaligned", &I);
475   }
476 }
477 
478 void Lint::visitLoadInst(LoadInst &I) {
479   visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(), I.getType(),
480                        MemRef::Read);
481 }
482 
483 void Lint::visitStoreInst(StoreInst &I) {
484   visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(),
485                        I.getOperand(0)->getType(), MemRef::Write);
486 }
487 
488 void Lint::visitXor(BinaryOperator &I) {
489   Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
490          "Undefined result: xor(undef, undef)", &I);
491 }
492 
493 void Lint::visitSub(BinaryOperator &I) {
494   Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
495          "Undefined result: sub(undef, undef)", &I);
496 }
497 
498 void Lint::visitLShr(BinaryOperator &I) {
499   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1),
500                                                         /*OffsetOk=*/false)))
501     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
502            "Undefined result: Shift count out of range", &I);
503 }
504 
505 void Lint::visitAShr(BinaryOperator &I) {
506   if (ConstantInt *CI =
507           dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
508     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
509            "Undefined result: Shift count out of range", &I);
510 }
511 
512 void Lint::visitShl(BinaryOperator &I) {
513   if (ConstantInt *CI =
514           dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
515     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
516            "Undefined result: Shift count out of range", &I);
517 }
518 
519 static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT,
520                    AssumptionCache *AC) {
521   // Assume undef could be zero.
522   if (isa<UndefValue>(V))
523     return true;
524 
525   VectorType *VecTy = dyn_cast<VectorType>(V->getType());
526   if (!VecTy) {
527     KnownBits Known =
528         computeKnownBits(V, DL, 0, AC, dyn_cast<Instruction>(V), DT);
529     return Known.isZero();
530   }
531 
532   // Per-component check doesn't work with zeroinitializer
533   Constant *C = dyn_cast<Constant>(V);
534   if (!C)
535     return false;
536 
537   if (C->isZeroValue())
538     return true;
539 
540   // For a vector, KnownZero will only be true if all values are zero, so check
541   // this per component
542   for (unsigned I = 0, N = cast<FixedVectorType>(VecTy)->getNumElements();
543        I != N; ++I) {
544     Constant *Elem = C->getAggregateElement(I);
545     if (isa<UndefValue>(Elem))
546       return true;
547 
548     KnownBits Known = computeKnownBits(Elem, DL);
549     if (Known.isZero())
550       return true;
551   }
552 
553   return false;
554 }
555 
556 void Lint::visitSDiv(BinaryOperator &I) {
557   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
558          "Undefined behavior: Division by zero", &I);
559 }
560 
561 void Lint::visitUDiv(BinaryOperator &I) {
562   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
563          "Undefined behavior: Division by zero", &I);
564 }
565 
566 void Lint::visitSRem(BinaryOperator &I) {
567   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
568          "Undefined behavior: Division by zero", &I);
569 }
570 
571 void Lint::visitURem(BinaryOperator &I) {
572   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
573          "Undefined behavior: Division by zero", &I);
574 }
575 
576 void Lint::visitAllocaInst(AllocaInst &I) {
577   if (isa<ConstantInt>(I.getArraySize()))
578     // This isn't undefined behavior, it's just an obvious pessimization.
579     Assert(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
580            "Pessimization: Static alloca outside of entry block", &I);
581 
582   // TODO: Check for an unusual size (MSB set?)
583 }
584 
585 void Lint::visitVAArgInst(VAArgInst &I) {
586   visitMemoryReference(I, MemoryLocation::get(&I), None, nullptr,
587                        MemRef::Read | MemRef::Write);
588 }
589 
590 void Lint::visitIndirectBrInst(IndirectBrInst &I) {
591   visitMemoryReference(I, MemoryLocation::getAfter(I.getAddress()), None,
592                        nullptr, MemRef::Branchee);
593 
594   Assert(I.getNumDestinations() != 0,
595          "Undefined behavior: indirectbr with no destinations", &I);
596 }
597 
598 void Lint::visitExtractElementInst(ExtractElementInst &I) {
599   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
600                                                         /*OffsetOk=*/false)))
601     Assert(
602         CI->getValue().ult(
603             cast<FixedVectorType>(I.getVectorOperandType())->getNumElements()),
604         "Undefined result: extractelement index out of range", &I);
605 }
606 
607 void Lint::visitInsertElementInst(InsertElementInst &I) {
608   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2),
609                                                         /*OffsetOk=*/false)))
610     Assert(CI->getValue().ult(
611                cast<FixedVectorType>(I.getType())->getNumElements()),
612            "Undefined result: insertelement index out of range", &I);
613 }
614 
615 void Lint::visitUnreachableInst(UnreachableInst &I) {
616   // This isn't undefined behavior, it's merely suspicious.
617   Assert(&I == &I.getParent()->front() ||
618              std::prev(I.getIterator())->mayHaveSideEffects(),
619          "Unusual: unreachable immediately preceded by instruction without "
620          "side effects",
621          &I);
622 }
623 
624 /// findValue - Look through bitcasts and simple memory reference patterns
625 /// to identify an equivalent, but more informative, value.  If OffsetOk
626 /// is true, look through getelementptrs with non-zero offsets too.
627 ///
628 /// Most analysis passes don't require this logic, because instcombine
629 /// will simplify most of these kinds of things away. But it's a goal of
630 /// this Lint pass to be useful even on non-optimized IR.
631 Value *Lint::findValue(Value *V, bool OffsetOk) const {
632   SmallPtrSet<Value *, 4> Visited;
633   return findValueImpl(V, OffsetOk, Visited);
634 }
635 
636 /// findValueImpl - Implementation helper for findValue.
637 Value *Lint::findValueImpl(Value *V, bool OffsetOk,
638                            SmallPtrSetImpl<Value *> &Visited) const {
639   // Detect self-referential values.
640   if (!Visited.insert(V).second)
641     return UndefValue::get(V->getType());
642 
643   // TODO: Look through sext or zext cast, when the result is known to
644   // be interpreted as signed or unsigned, respectively.
645   // TODO: Look through eliminable cast pairs.
646   // TODO: Look through calls with unique return values.
647   // TODO: Look through vector insert/extract/shuffle.
648   V = OffsetOk ? getUnderlyingObject(V) : V->stripPointerCasts();
649   if (LoadInst *L = dyn_cast<LoadInst>(V)) {
650     BasicBlock::iterator BBI = L->getIterator();
651     BasicBlock *BB = L->getParent();
652     SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
653     for (;;) {
654       if (!VisitedBlocks.insert(BB).second)
655         break;
656       if (Value *U =
657               FindAvailableLoadedValue(L, BB, BBI, DefMaxInstsToScan, AA))
658         return findValueImpl(U, OffsetOk, Visited);
659       if (BBI != BB->begin())
660         break;
661       BB = BB->getUniquePredecessor();
662       if (!BB)
663         break;
664       BBI = BB->end();
665     }
666   } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
667     if (Value *W = PN->hasConstantValue())
668       return findValueImpl(W, OffsetOk, Visited);
669   } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
670     if (CI->isNoopCast(*DL))
671       return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
672   } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
673     if (Value *W =
674             FindInsertedValue(Ex->getAggregateOperand(), Ex->getIndices()))
675       if (W != V)
676         return findValueImpl(W, OffsetOk, Visited);
677   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
678     // Same as above, but for ConstantExpr instead of Instruction.
679     if (Instruction::isCast(CE->getOpcode())) {
680       if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
681                                CE->getOperand(0)->getType(), CE->getType(),
682                                *DL))
683         return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
684     } else if (CE->getOpcode() == Instruction::ExtractValue) {
685       ArrayRef<unsigned> Indices = CE->getIndices();
686       if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
687         if (W != V)
688           return findValueImpl(W, OffsetOk, Visited);
689     }
690   }
691 
692   // As a last resort, try SimplifyInstruction or constant folding.
693   if (Instruction *Inst = dyn_cast<Instruction>(V)) {
694     if (Value *W = SimplifyInstruction(Inst, {*DL, TLI, DT, AC}))
695       return findValueImpl(W, OffsetOk, Visited);
696   } else if (auto *C = dyn_cast<Constant>(V)) {
697     Value *W = ConstantFoldConstant(C, *DL, TLI);
698     if (W != V)
699       return findValueImpl(W, OffsetOk, Visited);
700   }
701 
702   return V;
703 }
704 
705 PreservedAnalyses LintPass::run(Function &F, FunctionAnalysisManager &AM) {
706   auto *Mod = F.getParent();
707   auto *DL = &F.getParent()->getDataLayout();
708   auto *AA = &AM.getResult<AAManager>(F);
709   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
710   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
711   auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
712   Lint L(Mod, DL, AA, AC, DT, TLI);
713   L.visit(F);
714   dbgs() << L.MessagesStr.str();
715   return PreservedAnalyses::all();
716 }
717 
718 namespace {
719 class LintLegacyPass : public FunctionPass {
720 public:
721   static char ID; // Pass identification, replacement for typeid
722   LintLegacyPass() : FunctionPass(ID) {
723     initializeLintLegacyPassPass(*PassRegistry::getPassRegistry());
724   }
725 
726   bool runOnFunction(Function &F) override;
727 
728   void getAnalysisUsage(AnalysisUsage &AU) const override {
729     AU.setPreservesAll();
730     AU.addRequired<AAResultsWrapperPass>();
731     AU.addRequired<AssumptionCacheTracker>();
732     AU.addRequired<TargetLibraryInfoWrapperPass>();
733     AU.addRequired<DominatorTreeWrapperPass>();
734   }
735   void print(raw_ostream &O, const Module *M) const override {}
736 };
737 } // namespace
738 
739 char LintLegacyPass::ID = 0;
740 INITIALIZE_PASS_BEGIN(LintLegacyPass, "lint", "Statically lint-checks LLVM IR",
741                       false, true)
742 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
743 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
744 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
745 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
746 INITIALIZE_PASS_END(LintLegacyPass, "lint", "Statically lint-checks LLVM IR",
747                     false, true)
748 
749 bool LintLegacyPass::runOnFunction(Function &F) {
750   auto *Mod = F.getParent();
751   auto *DL = &F.getParent()->getDataLayout();
752   auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
753   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
754   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
755   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
756   Lint L(Mod, DL, AA, AC, DT, TLI);
757   L.visit(F);
758   dbgs() << L.MessagesStr.str();
759   return false;
760 }
761 
762 //===----------------------------------------------------------------------===//
763 //  Implement the public interfaces to this file...
764 //===----------------------------------------------------------------------===//
765 
766 FunctionPass *llvm::createLintLegacyPassPass() { return new LintLegacyPass(); }
767 
768 /// lintFunction - Check a function for errors, printing messages on stderr.
769 ///
770 void llvm::lintFunction(const Function &f) {
771   Function &F = const_cast<Function &>(f);
772   assert(!F.isDeclaration() && "Cannot lint external functions");
773 
774   legacy::FunctionPassManager FPM(F.getParent());
775   auto *V = new LintLegacyPass();
776   FPM.add(V);
777   FPM.run(F);
778 }
779 
780 /// lintModule - Check a module for errors, printing messages on stderr.
781 ///
782 void llvm::lintModule(const Module &M) {
783   legacy::PassManager PM;
784   auto *V = new LintLegacyPass();
785   PM.add(V);
786   PM.run(const_cast<Module &>(M));
787 }
788