1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interface for lazy computation of value constraint 10 // information. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LazyValueInfo.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/ValueLattice.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/AssemblyAnnotationWriter.h" 24 #include "llvm/IR/CFG.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/InstrTypes.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/ValueHandle.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/FormattedStream.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <optional> 42 using namespace llvm; 43 using namespace PatternMatch; 44 45 #define DEBUG_TYPE "lazy-value-info" 46 47 // This is the number of worklist items we will process to try to discover an 48 // answer for a given value. 49 static const unsigned MaxProcessedPerValue = 500; 50 51 char LazyValueInfoWrapperPass::ID = 0; 52 LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) { 53 initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry()); 54 } 55 INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info", 56 "Lazy Value Information Analysis", false, true) 57 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 58 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 59 INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info", 60 "Lazy Value Information Analysis", false, true) 61 62 namespace llvm { 63 FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); } 64 } 65 66 AnalysisKey LazyValueAnalysis::Key; 67 68 /// Returns true if this lattice value represents at most one possible value. 69 /// This is as precise as any lattice value can get while still representing 70 /// reachable code. 71 static bool hasSingleValue(const ValueLatticeElement &Val) { 72 if (Val.isConstantRange() && 73 Val.getConstantRange().isSingleElement()) 74 // Integer constants are single element ranges 75 return true; 76 if (Val.isConstant()) 77 // Non integer constants 78 return true; 79 return false; 80 } 81 82 /// Combine two sets of facts about the same value into a single set of 83 /// facts. Note that this method is not suitable for merging facts along 84 /// different paths in a CFG; that's what the mergeIn function is for. This 85 /// is for merging facts gathered about the same value at the same location 86 /// through two independent means. 87 /// Notes: 88 /// * This method does not promise to return the most precise possible lattice 89 /// value implied by A and B. It is allowed to return any lattice element 90 /// which is at least as strong as *either* A or B (unless our facts 91 /// conflict, see below). 92 /// * Due to unreachable code, the intersection of two lattice values could be 93 /// contradictory. If this happens, we return some valid lattice value so as 94 /// not confuse the rest of LVI. Ideally, we'd always return Undefined, but 95 /// we do not make this guarantee. TODO: This would be a useful enhancement. 96 static ValueLatticeElement intersect(const ValueLatticeElement &A, 97 const ValueLatticeElement &B) { 98 // Undefined is the strongest state. It means the value is known to be along 99 // an unreachable path. 100 if (A.isUnknown()) 101 return A; 102 if (B.isUnknown()) 103 return B; 104 105 // If we gave up for one, but got a useable fact from the other, use it. 106 if (A.isOverdefined()) 107 return B; 108 if (B.isOverdefined()) 109 return A; 110 111 // Can't get any more precise than constants. 112 if (hasSingleValue(A)) 113 return A; 114 if (hasSingleValue(B)) 115 return B; 116 117 // Could be either constant range or not constant here. 118 if (!A.isConstantRange() || !B.isConstantRange()) { 119 // TODO: Arbitrary choice, could be improved 120 return A; 121 } 122 123 // Intersect two constant ranges 124 ConstantRange Range = 125 A.getConstantRange().intersectWith(B.getConstantRange()); 126 // Note: An empty range is implicitly converted to unknown or undef depending 127 // on MayIncludeUndef internally. 128 return ValueLatticeElement::getRange( 129 std::move(Range), /*MayIncludeUndef=*/A.isConstantRangeIncludingUndef() || 130 B.isConstantRangeIncludingUndef()); 131 } 132 133 //===----------------------------------------------------------------------===// 134 // LazyValueInfoCache Decl 135 //===----------------------------------------------------------------------===// 136 137 namespace { 138 /// A callback value handle updates the cache when values are erased. 139 class LazyValueInfoCache; 140 struct LVIValueHandle final : public CallbackVH { 141 LazyValueInfoCache *Parent; 142 143 LVIValueHandle(Value *V, LazyValueInfoCache *P = nullptr) 144 : CallbackVH(V), Parent(P) { } 145 146 void deleted() override; 147 void allUsesReplacedWith(Value *V) override { 148 deleted(); 149 } 150 }; 151 } // end anonymous namespace 152 153 namespace { 154 using NonNullPointerSet = SmallDenseSet<AssertingVH<Value>, 2>; 155 156 /// This is the cache kept by LazyValueInfo which 157 /// maintains information about queries across the clients' queries. 158 class LazyValueInfoCache { 159 /// This is all of the cached information for one basic block. It contains 160 /// the per-value lattice elements, as well as a separate set for 161 /// overdefined values to reduce memory usage. Additionally pointers 162 /// dereferenced in the block are cached for nullability queries. 163 struct BlockCacheEntry { 164 SmallDenseMap<AssertingVH<Value>, ValueLatticeElement, 4> LatticeElements; 165 SmallDenseSet<AssertingVH<Value>, 4> OverDefined; 166 // std::nullopt indicates that the nonnull pointers for this basic block 167 // block have not been computed yet. 168 std::optional<NonNullPointerSet> NonNullPointers; 169 }; 170 171 /// Cached information per basic block. 172 DenseMap<PoisoningVH<BasicBlock>, std::unique_ptr<BlockCacheEntry>> 173 BlockCache; 174 /// Set of value handles used to erase values from the cache on deletion. 175 DenseSet<LVIValueHandle, DenseMapInfo<Value *>> ValueHandles; 176 177 const BlockCacheEntry *getBlockEntry(BasicBlock *BB) const { 178 auto It = BlockCache.find_as(BB); 179 if (It == BlockCache.end()) 180 return nullptr; 181 return It->second.get(); 182 } 183 184 BlockCacheEntry *getOrCreateBlockEntry(BasicBlock *BB) { 185 auto It = BlockCache.find_as(BB); 186 if (It == BlockCache.end()) 187 It = BlockCache.insert({ BB, std::make_unique<BlockCacheEntry>() }) 188 .first; 189 190 return It->second.get(); 191 } 192 193 void addValueHandle(Value *Val) { 194 auto HandleIt = ValueHandles.find_as(Val); 195 if (HandleIt == ValueHandles.end()) 196 ValueHandles.insert({ Val, this }); 197 } 198 199 public: 200 void insertResult(Value *Val, BasicBlock *BB, 201 const ValueLatticeElement &Result) { 202 BlockCacheEntry *Entry = getOrCreateBlockEntry(BB); 203 204 // Insert over-defined values into their own cache to reduce memory 205 // overhead. 206 if (Result.isOverdefined()) 207 Entry->OverDefined.insert(Val); 208 else 209 Entry->LatticeElements.insert({ Val, Result }); 210 211 addValueHandle(Val); 212 } 213 214 std::optional<ValueLatticeElement> 215 getCachedValueInfo(Value *V, BasicBlock *BB) const { 216 const BlockCacheEntry *Entry = getBlockEntry(BB); 217 if (!Entry) 218 return std::nullopt; 219 220 if (Entry->OverDefined.count(V)) 221 return ValueLatticeElement::getOverdefined(); 222 223 auto LatticeIt = Entry->LatticeElements.find_as(V); 224 if (LatticeIt == Entry->LatticeElements.end()) 225 return std::nullopt; 226 227 return LatticeIt->second; 228 } 229 230 bool isNonNullAtEndOfBlock( 231 Value *V, BasicBlock *BB, 232 function_ref<NonNullPointerSet(BasicBlock *)> InitFn) { 233 BlockCacheEntry *Entry = getOrCreateBlockEntry(BB); 234 if (!Entry->NonNullPointers) { 235 Entry->NonNullPointers = InitFn(BB); 236 for (Value *V : *Entry->NonNullPointers) 237 addValueHandle(V); 238 } 239 240 return Entry->NonNullPointers->count(V); 241 } 242 243 /// clear - Empty the cache. 244 void clear() { 245 BlockCache.clear(); 246 ValueHandles.clear(); 247 } 248 249 /// Inform the cache that a given value has been deleted. 250 void eraseValue(Value *V); 251 252 /// This is part of the update interface to inform the cache 253 /// that a block has been deleted. 254 void eraseBlock(BasicBlock *BB); 255 256 /// Updates the cache to remove any influence an overdefined value in 257 /// OldSucc might have (unless also overdefined in NewSucc). This just 258 /// flushes elements from the cache and does not add any. 259 void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc); 260 }; 261 } 262 263 void LazyValueInfoCache::eraseValue(Value *V) { 264 for (auto &Pair : BlockCache) { 265 Pair.second->LatticeElements.erase(V); 266 Pair.second->OverDefined.erase(V); 267 if (Pair.second->NonNullPointers) 268 Pair.second->NonNullPointers->erase(V); 269 } 270 271 auto HandleIt = ValueHandles.find_as(V); 272 if (HandleIt != ValueHandles.end()) 273 ValueHandles.erase(HandleIt); 274 } 275 276 void LVIValueHandle::deleted() { 277 // This erasure deallocates *this, so it MUST happen after we're done 278 // using any and all members of *this. 279 Parent->eraseValue(*this); 280 } 281 282 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { 283 BlockCache.erase(BB); 284 } 285 286 void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc, 287 BasicBlock *NewSucc) { 288 // When an edge in the graph has been threaded, values that we could not 289 // determine a value for before (i.e. were marked overdefined) may be 290 // possible to solve now. We do NOT try to proactively update these values. 291 // Instead, we clear their entries from the cache, and allow lazy updating to 292 // recompute them when needed. 293 294 // The updating process is fairly simple: we need to drop cached info 295 // for all values that were marked overdefined in OldSucc, and for those same 296 // values in any successor of OldSucc (except NewSucc) in which they were 297 // also marked overdefined. 298 std::vector<BasicBlock*> worklist; 299 worklist.push_back(OldSucc); 300 301 const BlockCacheEntry *Entry = getBlockEntry(OldSucc); 302 if (!Entry || Entry->OverDefined.empty()) 303 return; // Nothing to process here. 304 SmallVector<Value *, 4> ValsToClear(Entry->OverDefined.begin(), 305 Entry->OverDefined.end()); 306 307 // Use a worklist to perform a depth-first search of OldSucc's successors. 308 // NOTE: We do not need a visited list since any blocks we have already 309 // visited will have had their overdefined markers cleared already, and we 310 // thus won't loop to their successors. 311 while (!worklist.empty()) { 312 BasicBlock *ToUpdate = worklist.back(); 313 worklist.pop_back(); 314 315 // Skip blocks only accessible through NewSucc. 316 if (ToUpdate == NewSucc) continue; 317 318 // If a value was marked overdefined in OldSucc, and is here too... 319 auto OI = BlockCache.find_as(ToUpdate); 320 if (OI == BlockCache.end() || OI->second->OverDefined.empty()) 321 continue; 322 auto &ValueSet = OI->second->OverDefined; 323 324 bool changed = false; 325 for (Value *V : ValsToClear) { 326 if (!ValueSet.erase(V)) 327 continue; 328 329 // If we removed anything, then we potentially need to update 330 // blocks successors too. 331 changed = true; 332 } 333 334 if (!changed) continue; 335 336 llvm::append_range(worklist, successors(ToUpdate)); 337 } 338 } 339 340 namespace llvm { 341 namespace { 342 /// An assembly annotator class to print LazyValueCache information in 343 /// comments. 344 class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter { 345 LazyValueInfoImpl *LVIImpl; 346 // While analyzing which blocks we can solve values for, we need the dominator 347 // information. 348 DominatorTree &DT; 349 350 public: 351 LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree) 352 : LVIImpl(L), DT(DTree) {} 353 354 void emitBasicBlockStartAnnot(const BasicBlock *BB, 355 formatted_raw_ostream &OS) override; 356 357 void emitInstructionAnnot(const Instruction *I, 358 formatted_raw_ostream &OS) override; 359 }; 360 } // namespace 361 // The actual implementation of the lazy analysis and update. Note that the 362 // inheritance from LazyValueInfoCache is intended to be temporary while 363 // splitting the code and then transitioning to a has-a relationship. 364 class LazyValueInfoImpl { 365 366 /// Cached results from previous queries 367 LazyValueInfoCache TheCache; 368 369 /// This stack holds the state of the value solver during a query. 370 /// It basically emulates the callstack of the naive 371 /// recursive value lookup process. 372 SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack; 373 374 /// Keeps track of which block-value pairs are in BlockValueStack. 375 DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet; 376 377 /// Push BV onto BlockValueStack unless it's already in there. 378 /// Returns true on success. 379 bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) { 380 if (!BlockValueSet.insert(BV).second) 381 return false; // It's already in the stack. 382 383 LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in " 384 << BV.first->getName() << "\n"); 385 BlockValueStack.push_back(BV); 386 return true; 387 } 388 389 AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls. 390 const DataLayout &DL; ///< A mandatory DataLayout 391 392 /// Declaration of the llvm.experimental.guard() intrinsic, 393 /// if it exists in the module. 394 Function *GuardDecl; 395 396 std::optional<ValueLatticeElement> getBlockValue(Value *Val, BasicBlock *BB, 397 Instruction *CxtI); 398 std::optional<ValueLatticeElement> getEdgeValue(Value *V, BasicBlock *F, 399 BasicBlock *T, 400 Instruction *CxtI = nullptr); 401 402 // These methods process one work item and may add more. A false value 403 // returned means that the work item was not completely processed and must 404 // be revisited after going through the new items. 405 bool solveBlockValue(Value *Val, BasicBlock *BB); 406 std::optional<ValueLatticeElement> solveBlockValueImpl(Value *Val, 407 BasicBlock *BB); 408 std::optional<ValueLatticeElement> solveBlockValueNonLocal(Value *Val, 409 BasicBlock *BB); 410 std::optional<ValueLatticeElement> solveBlockValuePHINode(PHINode *PN, 411 BasicBlock *BB); 412 std::optional<ValueLatticeElement> solveBlockValueSelect(SelectInst *S, 413 BasicBlock *BB); 414 std::optional<ConstantRange> getRangeFor(Value *V, Instruction *CxtI, 415 BasicBlock *BB); 416 std::optional<ValueLatticeElement> solveBlockValueBinaryOpImpl( 417 Instruction *I, BasicBlock *BB, 418 std::function<ConstantRange(const ConstantRange &, const ConstantRange &)> 419 OpFn); 420 std::optional<ValueLatticeElement> 421 solveBlockValueBinaryOp(BinaryOperator *BBI, BasicBlock *BB); 422 std::optional<ValueLatticeElement> solveBlockValueCast(CastInst *CI, 423 BasicBlock *BB); 424 std::optional<ValueLatticeElement> 425 solveBlockValueOverflowIntrinsic(WithOverflowInst *WO, BasicBlock *BB); 426 std::optional<ValueLatticeElement> solveBlockValueIntrinsic(IntrinsicInst *II, 427 BasicBlock *BB); 428 std::optional<ValueLatticeElement> 429 solveBlockValueExtractValue(ExtractValueInst *EVI, BasicBlock *BB); 430 bool isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB); 431 void intersectAssumeOrGuardBlockValueConstantRange(Value *Val, 432 ValueLatticeElement &BBLV, 433 Instruction *BBI); 434 435 void solve(); 436 437 // For the following methods, if UseBlockValue is true, the function may 438 // push additional values to the worklist and return nullopt. If 439 // UseBlockValue is false, it will never return nullopt. 440 441 std::optional<ValueLatticeElement> 442 getValueFromSimpleICmpCondition(CmpInst::Predicate Pred, Value *RHS, 443 const APInt &Offset, Instruction *CxtI, 444 bool UseBlockValue); 445 446 std::optional<ValueLatticeElement> 447 getValueFromICmpCondition(Value *Val, ICmpInst *ICI, bool isTrueDest, 448 bool UseBlockValue); 449 450 std::optional<ValueLatticeElement> 451 getValueFromCondition(Value *Val, Value *Cond, bool IsTrueDest, 452 bool UseBlockValue, unsigned Depth = 0); 453 454 std::optional<ValueLatticeElement> getEdgeValueLocal(Value *Val, 455 BasicBlock *BBFrom, 456 BasicBlock *BBTo, 457 bool UseBlockValue); 458 459 public: 460 /// This is the query interface to determine the lattice value for the 461 /// specified Value* at the context instruction (if specified) or at the 462 /// start of the block. 463 ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB, 464 Instruction *CxtI = nullptr); 465 466 /// This is the query interface to determine the lattice value for the 467 /// specified Value* at the specified instruction using only information 468 /// from assumes/guards and range metadata. Unlike getValueInBlock(), no 469 /// recursive query is performed. 470 ValueLatticeElement getValueAt(Value *V, Instruction *CxtI); 471 472 /// This is the query interface to determine the lattice 473 /// value for the specified Value* that is true on the specified edge. 474 ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB, 475 BasicBlock *ToBB, 476 Instruction *CxtI = nullptr); 477 478 ValueLatticeElement getValueAtUse(const Use &U); 479 480 /// Complete flush all previously computed values 481 void clear() { 482 TheCache.clear(); 483 } 484 485 /// Printing the LazyValueInfo Analysis. 486 void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { 487 LazyValueInfoAnnotatedWriter Writer(this, DTree); 488 F.print(OS, &Writer); 489 } 490 491 /// This is part of the update interface to remove information related to this 492 /// value from the cache. 493 void forgetValue(Value *V) { TheCache.eraseValue(V); } 494 495 /// This is part of the update interface to inform the cache 496 /// that a block has been deleted. 497 void eraseBlock(BasicBlock *BB) { 498 TheCache.eraseBlock(BB); 499 } 500 501 /// This is the update interface to inform the cache that an edge from 502 /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc. 503 void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); 504 505 LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL, 506 Function *GuardDecl) 507 : AC(AC), DL(DL), GuardDecl(GuardDecl) {} 508 }; 509 } // namespace llvm 510 511 void LazyValueInfoImpl::solve() { 512 SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack( 513 BlockValueStack.begin(), BlockValueStack.end()); 514 515 unsigned processedCount = 0; 516 while (!BlockValueStack.empty()) { 517 processedCount++; 518 // Abort if we have to process too many values to get a result for this one. 519 // Because of the design of the overdefined cache currently being per-block 520 // to avoid naming-related issues (IE it wants to try to give different 521 // results for the same name in different blocks), overdefined results don't 522 // get cached globally, which in turn means we will often try to rediscover 523 // the same overdefined result again and again. Once something like 524 // PredicateInfo is used in LVI or CVP, we should be able to make the 525 // overdefined cache global, and remove this throttle. 526 if (processedCount > MaxProcessedPerValue) { 527 LLVM_DEBUG( 528 dbgs() << "Giving up on stack because we are getting too deep\n"); 529 // Fill in the original values 530 while (!StartingStack.empty()) { 531 std::pair<BasicBlock *, Value *> &e = StartingStack.back(); 532 TheCache.insertResult(e.second, e.first, 533 ValueLatticeElement::getOverdefined()); 534 StartingStack.pop_back(); 535 } 536 BlockValueSet.clear(); 537 BlockValueStack.clear(); 538 return; 539 } 540 std::pair<BasicBlock *, Value *> e = BlockValueStack.back(); 541 assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!"); 542 unsigned StackSize = BlockValueStack.size(); 543 (void) StackSize; 544 545 if (solveBlockValue(e.second, e.first)) { 546 // The work item was completely processed. 547 assert(BlockValueStack.size() == StackSize && 548 BlockValueStack.back() == e && "Nothing should have been pushed!"); 549 #ifndef NDEBUG 550 std::optional<ValueLatticeElement> BBLV = 551 TheCache.getCachedValueInfo(e.second, e.first); 552 assert(BBLV && "Result should be in cache!"); 553 LLVM_DEBUG( 554 dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = " 555 << *BBLV << "\n"); 556 #endif 557 558 BlockValueStack.pop_back(); 559 BlockValueSet.erase(e); 560 } else { 561 // More work needs to be done before revisiting. 562 assert(BlockValueStack.size() == StackSize + 1 && 563 "Exactly one element should have been pushed!"); 564 } 565 } 566 } 567 568 std::optional<ValueLatticeElement> 569 LazyValueInfoImpl::getBlockValue(Value *Val, BasicBlock *BB, 570 Instruction *CxtI) { 571 // If already a constant, there is nothing to compute. 572 if (Constant *VC = dyn_cast<Constant>(Val)) 573 return ValueLatticeElement::get(VC); 574 575 if (std::optional<ValueLatticeElement> OptLatticeVal = 576 TheCache.getCachedValueInfo(Val, BB)) { 577 intersectAssumeOrGuardBlockValueConstantRange(Val, *OptLatticeVal, CxtI); 578 return OptLatticeVal; 579 } 580 581 // We have hit a cycle, assume overdefined. 582 if (!pushBlockValue({ BB, Val })) 583 return ValueLatticeElement::getOverdefined(); 584 585 // Yet to be resolved. 586 return std::nullopt; 587 } 588 589 static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) { 590 switch (BBI->getOpcode()) { 591 default: break; 592 case Instruction::Load: 593 case Instruction::Call: 594 case Instruction::Invoke: 595 if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range)) 596 if (isa<IntegerType>(BBI->getType())) { 597 return ValueLatticeElement::getRange( 598 getConstantRangeFromMetadata(*Ranges)); 599 } 600 break; 601 }; 602 // Nothing known - will be intersected with other facts 603 return ValueLatticeElement::getOverdefined(); 604 } 605 606 bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) { 607 assert(!isa<Constant>(Val) && "Value should not be constant"); 608 assert(!TheCache.getCachedValueInfo(Val, BB) && 609 "Value should not be in cache"); 610 611 // Hold off inserting this value into the Cache in case we have to return 612 // false and come back later. 613 std::optional<ValueLatticeElement> Res = solveBlockValueImpl(Val, BB); 614 if (!Res) 615 // Work pushed, will revisit 616 return false; 617 618 TheCache.insertResult(Val, BB, *Res); 619 return true; 620 } 621 622 std::optional<ValueLatticeElement> 623 LazyValueInfoImpl::solveBlockValueImpl(Value *Val, BasicBlock *BB) { 624 Instruction *BBI = dyn_cast<Instruction>(Val); 625 if (!BBI || BBI->getParent() != BB) 626 return solveBlockValueNonLocal(Val, BB); 627 628 if (PHINode *PN = dyn_cast<PHINode>(BBI)) 629 return solveBlockValuePHINode(PN, BB); 630 631 if (auto *SI = dyn_cast<SelectInst>(BBI)) 632 return solveBlockValueSelect(SI, BB); 633 634 // If this value is a nonnull pointer, record it's range and bailout. Note 635 // that for all other pointer typed values, we terminate the search at the 636 // definition. We could easily extend this to look through geps, bitcasts, 637 // and the like to prove non-nullness, but it's not clear that's worth it 638 // compile time wise. The context-insensitive value walk done inside 639 // isKnownNonZero gets most of the profitable cases at much less expense. 640 // This does mean that we have a sensitivity to where the defining 641 // instruction is placed, even if it could legally be hoisted much higher. 642 // That is unfortunate. 643 PointerType *PT = dyn_cast<PointerType>(BBI->getType()); 644 if (PT && isKnownNonZero(BBI, DL)) 645 return ValueLatticeElement::getNot(ConstantPointerNull::get(PT)); 646 647 if (BBI->getType()->isIntegerTy()) { 648 if (auto *CI = dyn_cast<CastInst>(BBI)) 649 return solveBlockValueCast(CI, BB); 650 651 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI)) 652 return solveBlockValueBinaryOp(BO, BB); 653 654 if (auto *EVI = dyn_cast<ExtractValueInst>(BBI)) 655 return solveBlockValueExtractValue(EVI, BB); 656 657 if (auto *II = dyn_cast<IntrinsicInst>(BBI)) 658 return solveBlockValueIntrinsic(II, BB); 659 } 660 661 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 662 << "' - unknown inst def found.\n"); 663 return getFromRangeMetadata(BBI); 664 } 665 666 static void AddNonNullPointer(Value *Ptr, NonNullPointerSet &PtrSet) { 667 // TODO: Use NullPointerIsDefined instead. 668 if (Ptr->getType()->getPointerAddressSpace() == 0) 669 PtrSet.insert(getUnderlyingObject(Ptr)); 670 } 671 672 static void AddNonNullPointersByInstruction( 673 Instruction *I, NonNullPointerSet &PtrSet) { 674 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 675 AddNonNullPointer(L->getPointerOperand(), PtrSet); 676 } else if (StoreInst *S = dyn_cast<StoreInst>(I)) { 677 AddNonNullPointer(S->getPointerOperand(), PtrSet); 678 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 679 if (MI->isVolatile()) return; 680 681 // FIXME: check whether it has a valuerange that excludes zero? 682 ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength()); 683 if (!Len || Len->isZero()) return; 684 685 AddNonNullPointer(MI->getRawDest(), PtrSet); 686 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 687 AddNonNullPointer(MTI->getRawSource(), PtrSet); 688 } 689 } 690 691 bool LazyValueInfoImpl::isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB) { 692 if (NullPointerIsDefined(BB->getParent(), 693 Val->getType()->getPointerAddressSpace())) 694 return false; 695 696 Val = Val->stripInBoundsOffsets(); 697 return TheCache.isNonNullAtEndOfBlock(Val, BB, [](BasicBlock *BB) { 698 NonNullPointerSet NonNullPointers; 699 for (Instruction &I : *BB) 700 AddNonNullPointersByInstruction(&I, NonNullPointers); 701 return NonNullPointers; 702 }); 703 } 704 705 std::optional<ValueLatticeElement> 706 LazyValueInfoImpl::solveBlockValueNonLocal(Value *Val, BasicBlock *BB) { 707 ValueLatticeElement Result; // Start Undefined. 708 709 // If this is the entry block, we must be asking about an argument. The 710 // value is overdefined. 711 if (BB->isEntryBlock()) { 712 assert(isa<Argument>(Val) && "Unknown live-in to the entry block"); 713 return ValueLatticeElement::getOverdefined(); 714 } 715 716 // Loop over all of our predecessors, merging what we know from them into 717 // result. If we encounter an unexplored predecessor, we eagerly explore it 718 // in a depth first manner. In practice, this has the effect of discovering 719 // paths we can't analyze eagerly without spending compile times analyzing 720 // other paths. This heuristic benefits from the fact that predecessors are 721 // frequently arranged such that dominating ones come first and we quickly 722 // find a path to function entry. TODO: We should consider explicitly 723 // canonicalizing to make this true rather than relying on this happy 724 // accident. 725 for (BasicBlock *Pred : predecessors(BB)) { 726 std::optional<ValueLatticeElement> EdgeResult = getEdgeValue(Val, Pred, BB); 727 if (!EdgeResult) 728 // Explore that input, then return here 729 return std::nullopt; 730 731 Result.mergeIn(*EdgeResult); 732 733 // If we hit overdefined, exit early. The BlockVals entry is already set 734 // to overdefined. 735 if (Result.isOverdefined()) { 736 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 737 << "' - overdefined because of pred '" 738 << Pred->getName() << "' (non local).\n"); 739 return Result; 740 } 741 } 742 743 // Return the merged value, which is more precise than 'overdefined'. 744 assert(!Result.isOverdefined()); 745 return Result; 746 } 747 748 std::optional<ValueLatticeElement> 749 LazyValueInfoImpl::solveBlockValuePHINode(PHINode *PN, BasicBlock *BB) { 750 ValueLatticeElement Result; // Start Undefined. 751 752 // Loop over all of our predecessors, merging what we know from them into 753 // result. See the comment about the chosen traversal order in 754 // solveBlockValueNonLocal; the same reasoning applies here. 755 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 756 BasicBlock *PhiBB = PN->getIncomingBlock(i); 757 Value *PhiVal = PN->getIncomingValue(i); 758 // Note that we can provide PN as the context value to getEdgeValue, even 759 // though the results will be cached, because PN is the value being used as 760 // the cache key in the caller. 761 std::optional<ValueLatticeElement> EdgeResult = 762 getEdgeValue(PhiVal, PhiBB, BB, PN); 763 if (!EdgeResult) 764 // Explore that input, then return here 765 return std::nullopt; 766 767 Result.mergeIn(*EdgeResult); 768 769 // If we hit overdefined, exit early. The BlockVals entry is already set 770 // to overdefined. 771 if (Result.isOverdefined()) { 772 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 773 << "' - overdefined because of pred (local).\n"); 774 775 return Result; 776 } 777 } 778 779 // Return the merged value, which is more precise than 'overdefined'. 780 assert(!Result.isOverdefined() && "Possible PHI in entry block?"); 781 return Result; 782 } 783 784 // If we can determine a constraint on the value given conditions assumed by 785 // the program, intersect those constraints with BBLV 786 void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange( 787 Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) { 788 BBI = BBI ? BBI : dyn_cast<Instruction>(Val); 789 if (!BBI) 790 return; 791 792 BasicBlock *BB = BBI->getParent(); 793 for (auto &AssumeVH : AC->assumptionsFor(Val)) { 794 if (!AssumeVH) 795 continue; 796 797 // Only check assumes in the block of the context instruction. Other 798 // assumes will have already been taken into account when the value was 799 // propagated from predecessor blocks. 800 auto *I = cast<CallInst>(AssumeVH); 801 if (I->getParent() != BB || !isValidAssumeForContext(I, BBI)) 802 continue; 803 804 BBLV = intersect(BBLV, *getValueFromCondition(Val, I->getArgOperand(0), 805 /*IsTrueDest*/ true, 806 /*UseBlockValue*/ false)); 807 } 808 809 // If guards are not used in the module, don't spend time looking for them 810 if (GuardDecl && !GuardDecl->use_empty() && 811 BBI->getIterator() != BB->begin()) { 812 for (Instruction &I : 813 make_range(std::next(BBI->getIterator().getReverse()), BB->rend())) { 814 Value *Cond = nullptr; 815 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond)))) 816 BBLV = intersect(BBLV, 817 *getValueFromCondition(Val, Cond, /*IsTrueDest*/ true, 818 /*UseBlockValue*/ false)); 819 } 820 } 821 822 if (BBLV.isOverdefined()) { 823 // Check whether we're checking at the terminator, and the pointer has 824 // been dereferenced in this block. 825 PointerType *PTy = dyn_cast<PointerType>(Val->getType()); 826 if (PTy && BB->getTerminator() == BBI && 827 isNonNullAtEndOfBlock(Val, BB)) 828 BBLV = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); 829 } 830 } 831 832 static ConstantRange toConstantRange(const ValueLatticeElement &Val, 833 Type *Ty, bool UndefAllowed = false) { 834 assert(Ty->isIntOrIntVectorTy() && "Must be integer type"); 835 if (Val.isConstantRange(UndefAllowed)) 836 return Val.getConstantRange(); 837 unsigned BW = Ty->getScalarSizeInBits(); 838 if (Val.isUnknown()) 839 return ConstantRange::getEmpty(BW); 840 return ConstantRange::getFull(BW); 841 } 842 843 std::optional<ValueLatticeElement> 844 LazyValueInfoImpl::solveBlockValueSelect(SelectInst *SI, BasicBlock *BB) { 845 // Recurse on our inputs if needed 846 std::optional<ValueLatticeElement> OptTrueVal = 847 getBlockValue(SI->getTrueValue(), BB, SI); 848 if (!OptTrueVal) 849 return std::nullopt; 850 ValueLatticeElement &TrueVal = *OptTrueVal; 851 852 std::optional<ValueLatticeElement> OptFalseVal = 853 getBlockValue(SI->getFalseValue(), BB, SI); 854 if (!OptFalseVal) 855 return std::nullopt; 856 ValueLatticeElement &FalseVal = *OptFalseVal; 857 858 if (TrueVal.isConstantRange() || FalseVal.isConstantRange()) { 859 const ConstantRange &TrueCR = toConstantRange(TrueVal, SI->getType()); 860 const ConstantRange &FalseCR = toConstantRange(FalseVal, SI->getType()); 861 Value *LHS = nullptr; 862 Value *RHS = nullptr; 863 SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS); 864 // Is this a min specifically of our two inputs? (Avoid the risk of 865 // ValueTracking getting smarter looking back past our immediate inputs.) 866 if (SelectPatternResult::isMinOrMax(SPR.Flavor) && 867 ((LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) || 868 (RHS == SI->getTrueValue() && LHS == SI->getFalseValue()))) { 869 ConstantRange ResultCR = [&]() { 870 switch (SPR.Flavor) { 871 default: 872 llvm_unreachable("unexpected minmax type!"); 873 case SPF_SMIN: /// Signed minimum 874 return TrueCR.smin(FalseCR); 875 case SPF_UMIN: /// Unsigned minimum 876 return TrueCR.umin(FalseCR); 877 case SPF_SMAX: /// Signed maximum 878 return TrueCR.smax(FalseCR); 879 case SPF_UMAX: /// Unsigned maximum 880 return TrueCR.umax(FalseCR); 881 }; 882 }(); 883 return ValueLatticeElement::getRange( 884 ResultCR, TrueVal.isConstantRangeIncludingUndef() || 885 FalseVal.isConstantRangeIncludingUndef()); 886 } 887 888 if (SPR.Flavor == SPF_ABS) { 889 if (LHS == SI->getTrueValue()) 890 return ValueLatticeElement::getRange( 891 TrueCR.abs(), TrueVal.isConstantRangeIncludingUndef()); 892 if (LHS == SI->getFalseValue()) 893 return ValueLatticeElement::getRange( 894 FalseCR.abs(), FalseVal.isConstantRangeIncludingUndef()); 895 } 896 897 if (SPR.Flavor == SPF_NABS) { 898 ConstantRange Zero(APInt::getZero(TrueCR.getBitWidth())); 899 if (LHS == SI->getTrueValue()) 900 return ValueLatticeElement::getRange( 901 Zero.sub(TrueCR.abs()), FalseVal.isConstantRangeIncludingUndef()); 902 if (LHS == SI->getFalseValue()) 903 return ValueLatticeElement::getRange( 904 Zero.sub(FalseCR.abs()), FalseVal.isConstantRangeIncludingUndef()); 905 } 906 } 907 908 // Can we constrain the facts about the true and false values by using the 909 // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5). 910 // TODO: We could potentially refine an overdefined true value above. 911 Value *Cond = SI->getCondition(); 912 // If the value is undef, a different value may be chosen in 913 // the select condition. 914 if (isGuaranteedNotToBeUndef(Cond, AC)) { 915 TrueVal = 916 intersect(TrueVal, *getValueFromCondition(SI->getTrueValue(), Cond, 917 /*IsTrueDest*/ true, 918 /*UseBlockValue*/ false)); 919 FalseVal = 920 intersect(FalseVal, *getValueFromCondition(SI->getFalseValue(), Cond, 921 /*IsTrueDest*/ false, 922 /*UseBlockValue*/ false)); 923 } 924 925 ValueLatticeElement Result = TrueVal; 926 Result.mergeIn(FalseVal); 927 return Result; 928 } 929 930 std::optional<ConstantRange> 931 LazyValueInfoImpl::getRangeFor(Value *V, Instruction *CxtI, BasicBlock *BB) { 932 std::optional<ValueLatticeElement> OptVal = getBlockValue(V, BB, CxtI); 933 if (!OptVal) 934 return std::nullopt; 935 return toConstantRange(*OptVal, V->getType()); 936 } 937 938 std::optional<ValueLatticeElement> 939 LazyValueInfoImpl::solveBlockValueCast(CastInst *CI, BasicBlock *BB) { 940 // Filter out casts we don't know how to reason about before attempting to 941 // recurse on our operand. This can cut a long search short if we know we're 942 // not going to be able to get any useful information anways. 943 switch (CI->getOpcode()) { 944 case Instruction::Trunc: 945 case Instruction::SExt: 946 case Instruction::ZExt: 947 break; 948 default: 949 // Unhandled instructions are overdefined. 950 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 951 << "' - overdefined (unknown cast).\n"); 952 return ValueLatticeElement::getOverdefined(); 953 } 954 955 // Figure out the range of the LHS. If that fails, we still apply the 956 // transfer rule on the full set since we may be able to locally infer 957 // interesting facts. 958 std::optional<ConstantRange> LHSRes = getRangeFor(CI->getOperand(0), CI, BB); 959 if (!LHSRes) 960 // More work to do before applying this transfer rule. 961 return std::nullopt; 962 const ConstantRange &LHSRange = *LHSRes; 963 964 const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth(); 965 966 // NOTE: We're currently limited by the set of operations that ConstantRange 967 // can evaluate symbolically. Enhancing that set will allows us to analyze 968 // more definitions. 969 return ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(), 970 ResultBitWidth)); 971 } 972 973 std::optional<ValueLatticeElement> 974 LazyValueInfoImpl::solveBlockValueBinaryOpImpl( 975 Instruction *I, BasicBlock *BB, 976 std::function<ConstantRange(const ConstantRange &, const ConstantRange &)> 977 OpFn) { 978 // Figure out the ranges of the operands. If that fails, use a 979 // conservative range, but apply the transfer rule anyways. This 980 // lets us pick up facts from expressions like "and i32 (call i32 981 // @foo()), 32" 982 std::optional<ConstantRange> LHSRes = getRangeFor(I->getOperand(0), I, BB); 983 if (!LHSRes) 984 return std::nullopt; 985 986 std::optional<ConstantRange> RHSRes = getRangeFor(I->getOperand(1), I, BB); 987 if (!RHSRes) 988 return std::nullopt; 989 990 const ConstantRange &LHSRange = *LHSRes; 991 const ConstantRange &RHSRange = *RHSRes; 992 return ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange)); 993 } 994 995 std::optional<ValueLatticeElement> 996 LazyValueInfoImpl::solveBlockValueBinaryOp(BinaryOperator *BO, BasicBlock *BB) { 997 assert(BO->getOperand(0)->getType()->isSized() && 998 "all operands to binary operators are sized"); 999 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) { 1000 unsigned NoWrapKind = 0; 1001 if (OBO->hasNoUnsignedWrap()) 1002 NoWrapKind |= OverflowingBinaryOperator::NoUnsignedWrap; 1003 if (OBO->hasNoSignedWrap()) 1004 NoWrapKind |= OverflowingBinaryOperator::NoSignedWrap; 1005 1006 return solveBlockValueBinaryOpImpl( 1007 BO, BB, 1008 [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) { 1009 return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind); 1010 }); 1011 } 1012 1013 return solveBlockValueBinaryOpImpl( 1014 BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) { 1015 return CR1.binaryOp(BO->getOpcode(), CR2); 1016 }); 1017 } 1018 1019 std::optional<ValueLatticeElement> 1020 LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(WithOverflowInst *WO, 1021 BasicBlock *BB) { 1022 return solveBlockValueBinaryOpImpl( 1023 WO, BB, [WO](const ConstantRange &CR1, const ConstantRange &CR2) { 1024 return CR1.binaryOp(WO->getBinaryOp(), CR2); 1025 }); 1026 } 1027 1028 std::optional<ValueLatticeElement> 1029 LazyValueInfoImpl::solveBlockValueIntrinsic(IntrinsicInst *II, BasicBlock *BB) { 1030 ValueLatticeElement MetadataVal = getFromRangeMetadata(II); 1031 if (!ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) { 1032 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 1033 << "' - unknown intrinsic.\n"); 1034 return MetadataVal; 1035 } 1036 1037 SmallVector<ConstantRange, 2> OpRanges; 1038 for (Value *Op : II->args()) { 1039 std::optional<ConstantRange> Range = getRangeFor(Op, II, BB); 1040 if (!Range) 1041 return std::nullopt; 1042 OpRanges.push_back(*Range); 1043 } 1044 1045 return intersect(ValueLatticeElement::getRange(ConstantRange::intrinsic( 1046 II->getIntrinsicID(), OpRanges)), 1047 MetadataVal); 1048 } 1049 1050 std::optional<ValueLatticeElement> 1051 LazyValueInfoImpl::solveBlockValueExtractValue(ExtractValueInst *EVI, 1052 BasicBlock *BB) { 1053 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) 1054 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0) 1055 return solveBlockValueOverflowIntrinsic(WO, BB); 1056 1057 // Handle extractvalue of insertvalue to allow further simplification 1058 // based on replaced with.overflow intrinsics. 1059 if (Value *V = simplifyExtractValueInst( 1060 EVI->getAggregateOperand(), EVI->getIndices(), 1061 EVI->getModule()->getDataLayout())) 1062 return getBlockValue(V, BB, EVI); 1063 1064 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 1065 << "' - overdefined (unknown extractvalue).\n"); 1066 return ValueLatticeElement::getOverdefined(); 1067 } 1068 1069 static bool matchICmpOperand(APInt &Offset, Value *LHS, Value *Val, 1070 ICmpInst::Predicate Pred) { 1071 if (LHS == Val) 1072 return true; 1073 1074 // Handle range checking idiom produced by InstCombine. We will subtract the 1075 // offset from the allowed range for RHS in this case. 1076 const APInt *C; 1077 if (match(LHS, m_Add(m_Specific(Val), m_APInt(C)))) { 1078 Offset = *C; 1079 return true; 1080 } 1081 1082 // Handle the symmetric case. This appears in saturation patterns like 1083 // (x == 16) ? 16 : (x + 1). 1084 if (match(Val, m_Add(m_Specific(LHS), m_APInt(C)))) { 1085 Offset = -*C; 1086 return true; 1087 } 1088 1089 // If (x | y) < C, then (x < C) && (y < C). 1090 if (match(LHS, m_c_Or(m_Specific(Val), m_Value())) && 1091 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)) 1092 return true; 1093 1094 // If (x & y) > C, then (x > C) && (y > C). 1095 if (match(LHS, m_c_And(m_Specific(Val), m_Value())) && 1096 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)) 1097 return true; 1098 1099 return false; 1100 } 1101 1102 /// Get value range for a "(Val + Offset) Pred RHS" condition. 1103 std::optional<ValueLatticeElement> 1104 LazyValueInfoImpl::getValueFromSimpleICmpCondition(CmpInst::Predicate Pred, 1105 Value *RHS, 1106 const APInt &Offset, 1107 Instruction *CxtI, 1108 bool UseBlockValue) { 1109 ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(), 1110 /*isFullSet=*/true); 1111 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1112 RHSRange = ConstantRange(CI->getValue()); 1113 } else if (UseBlockValue) { 1114 std::optional<ValueLatticeElement> R = 1115 getBlockValue(RHS, CxtI->getParent(), CxtI); 1116 if (!R) 1117 return std::nullopt; 1118 RHSRange = toConstantRange(*R, RHS->getType()); 1119 } else if (Instruction *I = dyn_cast<Instruction>(RHS)) { 1120 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 1121 RHSRange = getConstantRangeFromMetadata(*Ranges); 1122 } 1123 1124 ConstantRange TrueValues = 1125 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 1126 return ValueLatticeElement::getRange(TrueValues.subtract(Offset)); 1127 } 1128 1129 static std::optional<ConstantRange> 1130 getRangeViaSLT(CmpInst::Predicate Pred, APInt RHS, 1131 function_ref<std::optional<ConstantRange>(const APInt &)> Fn) { 1132 bool Invert = false; 1133 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 1134 Pred = ICmpInst::getInversePredicate(Pred); 1135 Invert = true; 1136 } 1137 if (Pred == ICmpInst::ICMP_SLE) { 1138 Pred = ICmpInst::ICMP_SLT; 1139 if (RHS.isMaxSignedValue()) 1140 return std::nullopt; // Could also return full/empty here, if we wanted. 1141 ++RHS; 1142 } 1143 assert(Pred == ICmpInst::ICMP_SLT && "Must be signed predicate"); 1144 if (auto CR = Fn(RHS)) 1145 return Invert ? CR->inverse() : CR; 1146 return std::nullopt; 1147 } 1148 1149 std::optional<ValueLatticeElement> LazyValueInfoImpl::getValueFromICmpCondition( 1150 Value *Val, ICmpInst *ICI, bool isTrueDest, bool UseBlockValue) { 1151 Value *LHS = ICI->getOperand(0); 1152 Value *RHS = ICI->getOperand(1); 1153 1154 // Get the predicate that must hold along the considered edge. 1155 CmpInst::Predicate EdgePred = 1156 isTrueDest ? ICI->getPredicate() : ICI->getInversePredicate(); 1157 1158 if (isa<Constant>(RHS)) { 1159 if (ICI->isEquality() && LHS == Val) { 1160 if (EdgePred == ICmpInst::ICMP_EQ) 1161 return ValueLatticeElement::get(cast<Constant>(RHS)); 1162 else if (!isa<UndefValue>(RHS)) 1163 return ValueLatticeElement::getNot(cast<Constant>(RHS)); 1164 } 1165 } 1166 1167 Type *Ty = Val->getType(); 1168 if (!Ty->isIntegerTy()) 1169 return ValueLatticeElement::getOverdefined(); 1170 1171 unsigned BitWidth = Ty->getScalarSizeInBits(); 1172 APInt Offset(BitWidth, 0); 1173 if (matchICmpOperand(Offset, LHS, Val, EdgePred)) 1174 return getValueFromSimpleICmpCondition(EdgePred, RHS, Offset, ICI, 1175 UseBlockValue); 1176 1177 CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(EdgePred); 1178 if (matchICmpOperand(Offset, RHS, Val, SwappedPred)) 1179 return getValueFromSimpleICmpCondition(SwappedPred, LHS, Offset, ICI, 1180 UseBlockValue); 1181 1182 const APInt *Mask, *C; 1183 if (match(LHS, m_And(m_Specific(Val), m_APInt(Mask))) && 1184 match(RHS, m_APInt(C))) { 1185 // If (Val & Mask) == C then all the masked bits are known and we can 1186 // compute a value range based on that. 1187 if (EdgePred == ICmpInst::ICMP_EQ) { 1188 KnownBits Known; 1189 Known.Zero = ~*C & *Mask; 1190 Known.One = *C & *Mask; 1191 return ValueLatticeElement::getRange( 1192 ConstantRange::fromKnownBits(Known, /*IsSigned*/ false)); 1193 } 1194 // If (Val & Mask) != 0 then the value must be larger than the lowest set 1195 // bit of Mask. 1196 if (EdgePred == ICmpInst::ICMP_NE && !Mask->isZero() && C->isZero()) { 1197 return ValueLatticeElement::getRange(ConstantRange::getNonEmpty( 1198 APInt::getOneBitSet(BitWidth, Mask->countr_zero()), 1199 APInt::getZero(BitWidth))); 1200 } 1201 } 1202 1203 // If (X urem Modulus) >= C, then X >= C. 1204 // If trunc X >= C, then X >= C. 1205 // TODO: An upper bound could be computed as well. 1206 if (match(LHS, m_CombineOr(m_URem(m_Specific(Val), m_Value()), 1207 m_Trunc(m_Specific(Val)))) && 1208 match(RHS, m_APInt(C))) { 1209 // Use the icmp region so we don't have to deal with different predicates. 1210 ConstantRange CR = ConstantRange::makeExactICmpRegion(EdgePred, *C); 1211 if (!CR.isEmptySet()) 1212 return ValueLatticeElement::getRange(ConstantRange::getNonEmpty( 1213 CR.getUnsignedMin().zext(BitWidth), APInt(BitWidth, 0))); 1214 } 1215 1216 // Recognize: 1217 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, C << ShAmtC 1218 // Preconditions: (C << ShAmtC) >> ShAmtC == C 1219 const APInt *ShAmtC; 1220 if (CmpInst::isSigned(EdgePred) && 1221 match(LHS, m_AShr(m_Specific(Val), m_APInt(ShAmtC))) && 1222 match(RHS, m_APInt(C))) { 1223 auto CR = getRangeViaSLT( 1224 EdgePred, *C, [&](const APInt &RHS) -> std::optional<ConstantRange> { 1225 APInt New = RHS << *ShAmtC; 1226 if ((New.ashr(*ShAmtC)) != RHS) 1227 return std::nullopt; 1228 return ConstantRange::getNonEmpty( 1229 APInt::getSignedMinValue(New.getBitWidth()), New); 1230 }); 1231 if (CR) 1232 return ValueLatticeElement::getRange(*CR); 1233 } 1234 1235 return ValueLatticeElement::getOverdefined(); 1236 } 1237 1238 // Handle conditions of the form 1239 // extractvalue(op.with.overflow(%x, C), 1). 1240 static ValueLatticeElement getValueFromOverflowCondition( 1241 Value *Val, WithOverflowInst *WO, bool IsTrueDest) { 1242 // TODO: This only works with a constant RHS for now. We could also compute 1243 // the range of the RHS, but this doesn't fit into the current structure of 1244 // the edge value calculation. 1245 const APInt *C; 1246 if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C))) 1247 return ValueLatticeElement::getOverdefined(); 1248 1249 // Calculate the possible values of %x for which no overflow occurs. 1250 ConstantRange NWR = ConstantRange::makeExactNoWrapRegion( 1251 WO->getBinaryOp(), *C, WO->getNoWrapKind()); 1252 1253 // If overflow is false, %x is constrained to NWR. If overflow is true, %x is 1254 // constrained to it's inverse (all values that might cause overflow). 1255 if (IsTrueDest) 1256 NWR = NWR.inverse(); 1257 return ValueLatticeElement::getRange(NWR); 1258 } 1259 1260 std::optional<ValueLatticeElement> 1261 LazyValueInfoImpl::getValueFromCondition(Value *Val, Value *Cond, 1262 bool IsTrueDest, bool UseBlockValue, 1263 unsigned Depth) { 1264 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond)) 1265 return getValueFromICmpCondition(Val, ICI, IsTrueDest, UseBlockValue); 1266 1267 if (auto *EVI = dyn_cast<ExtractValueInst>(Cond)) 1268 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) 1269 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1) 1270 return getValueFromOverflowCondition(Val, WO, IsTrueDest); 1271 1272 if (++Depth == MaxAnalysisRecursionDepth) 1273 return ValueLatticeElement::getOverdefined(); 1274 1275 Value *N; 1276 if (match(Cond, m_Not(m_Value(N)))) 1277 return getValueFromCondition(Val, N, !IsTrueDest, UseBlockValue, Depth); 1278 1279 Value *L, *R; 1280 bool IsAnd; 1281 if (match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))) 1282 IsAnd = true; 1283 else if (match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) 1284 IsAnd = false; 1285 else 1286 return ValueLatticeElement::getOverdefined(); 1287 1288 std::optional<ValueLatticeElement> LV = 1289 getValueFromCondition(Val, L, IsTrueDest, UseBlockValue, Depth); 1290 if (!LV) 1291 return std::nullopt; 1292 std::optional<ValueLatticeElement> RV = 1293 getValueFromCondition(Val, R, IsTrueDest, UseBlockValue, Depth); 1294 if (!RV) 1295 return std::nullopt; 1296 1297 // if (L && R) -> intersect L and R 1298 // if (!(L || R)) -> intersect !L and !R 1299 // if (L || R) -> union L and R 1300 // if (!(L && R)) -> union !L and !R 1301 if (IsTrueDest ^ IsAnd) { 1302 LV->mergeIn(*RV); 1303 return *LV; 1304 } 1305 1306 return intersect(*LV, *RV); 1307 } 1308 1309 // Return true if Usr has Op as an operand, otherwise false. 1310 static bool usesOperand(User *Usr, Value *Op) { 1311 return is_contained(Usr->operands(), Op); 1312 } 1313 1314 // Return true if the instruction type of Val is supported by 1315 // constantFoldUser(). Currently CastInst, BinaryOperator and FreezeInst only. 1316 // Call this before calling constantFoldUser() to find out if it's even worth 1317 // attempting to call it. 1318 static bool isOperationFoldable(User *Usr) { 1319 return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr) || isa<FreezeInst>(Usr); 1320 } 1321 1322 // Check if Usr can be simplified to an integer constant when the value of one 1323 // of its operands Op is an integer constant OpConstVal. If so, return it as an 1324 // lattice value range with a single element or otherwise return an overdefined 1325 // lattice value. 1326 static ValueLatticeElement constantFoldUser(User *Usr, Value *Op, 1327 const APInt &OpConstVal, 1328 const DataLayout &DL) { 1329 assert(isOperationFoldable(Usr) && "Precondition"); 1330 Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal); 1331 // Check if Usr can be simplified to a constant. 1332 if (auto *CI = dyn_cast<CastInst>(Usr)) { 1333 assert(CI->getOperand(0) == Op && "Operand 0 isn't Op"); 1334 if (auto *C = dyn_cast_or_null<ConstantInt>( 1335 simplifyCastInst(CI->getOpcode(), OpConst, 1336 CI->getDestTy(), DL))) { 1337 return ValueLatticeElement::getRange(ConstantRange(C->getValue())); 1338 } 1339 } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) { 1340 bool Op0Match = BO->getOperand(0) == Op; 1341 bool Op1Match = BO->getOperand(1) == Op; 1342 assert((Op0Match || Op1Match) && 1343 "Operand 0 nor Operand 1 isn't a match"); 1344 Value *LHS = Op0Match ? OpConst : BO->getOperand(0); 1345 Value *RHS = Op1Match ? OpConst : BO->getOperand(1); 1346 if (auto *C = dyn_cast_or_null<ConstantInt>( 1347 simplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) { 1348 return ValueLatticeElement::getRange(ConstantRange(C->getValue())); 1349 } 1350 } else if (isa<FreezeInst>(Usr)) { 1351 assert(cast<FreezeInst>(Usr)->getOperand(0) == Op && "Operand 0 isn't Op"); 1352 return ValueLatticeElement::getRange(ConstantRange(OpConstVal)); 1353 } 1354 return ValueLatticeElement::getOverdefined(); 1355 } 1356 1357 /// Compute the value of Val on the edge BBFrom -> BBTo. 1358 std::optional<ValueLatticeElement> 1359 LazyValueInfoImpl::getEdgeValueLocal(Value *Val, BasicBlock *BBFrom, 1360 BasicBlock *BBTo, bool UseBlockValue) { 1361 // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we 1362 // know that v != 0. 1363 if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) { 1364 // If this is a conditional branch and only one successor goes to BBTo, then 1365 // we may be able to infer something from the condition. 1366 if (BI->isConditional() && 1367 BI->getSuccessor(0) != BI->getSuccessor(1)) { 1368 bool isTrueDest = BI->getSuccessor(0) == BBTo; 1369 assert(BI->getSuccessor(!isTrueDest) == BBTo && 1370 "BBTo isn't a successor of BBFrom"); 1371 Value *Condition = BI->getCondition(); 1372 1373 // If V is the condition of the branch itself, then we know exactly what 1374 // it is. 1375 if (Condition == Val) 1376 return ValueLatticeElement::get(ConstantInt::get( 1377 Type::getInt1Ty(Val->getContext()), isTrueDest)); 1378 1379 // If the condition of the branch is an equality comparison, we may be 1380 // able to infer the value. 1381 std::optional<ValueLatticeElement> Result = 1382 getValueFromCondition(Val, Condition, isTrueDest, UseBlockValue); 1383 if (!Result) 1384 return std::nullopt; 1385 1386 if (!Result->isOverdefined()) 1387 return Result; 1388 1389 if (User *Usr = dyn_cast<User>(Val)) { 1390 assert(Result->isOverdefined() && "Result isn't overdefined"); 1391 // Check with isOperationFoldable() first to avoid linearly iterating 1392 // over the operands unnecessarily which can be expensive for 1393 // instructions with many operands. 1394 if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) { 1395 const DataLayout &DL = BBTo->getModule()->getDataLayout(); 1396 if (usesOperand(Usr, Condition)) { 1397 // If Val has Condition as an operand and Val can be folded into a 1398 // constant with either Condition == true or Condition == false, 1399 // propagate the constant. 1400 // eg. 1401 // ; %Val is true on the edge to %then. 1402 // %Val = and i1 %Condition, true. 1403 // br %Condition, label %then, label %else 1404 APInt ConditionVal(1, isTrueDest ? 1 : 0); 1405 Result = constantFoldUser(Usr, Condition, ConditionVal, DL); 1406 } else { 1407 // If one of Val's operand has an inferred value, we may be able to 1408 // infer the value of Val. 1409 // eg. 1410 // ; %Val is 94 on the edge to %then. 1411 // %Val = add i8 %Op, 1 1412 // %Condition = icmp eq i8 %Op, 93 1413 // br i1 %Condition, label %then, label %else 1414 for (unsigned i = 0; i < Usr->getNumOperands(); ++i) { 1415 Value *Op = Usr->getOperand(i); 1416 ValueLatticeElement OpLatticeVal = *getValueFromCondition( 1417 Op, Condition, isTrueDest, /*UseBlockValue*/ false); 1418 if (std::optional<APInt> OpConst = 1419 OpLatticeVal.asConstantInteger()) { 1420 Result = constantFoldUser(Usr, Op, *OpConst, DL); 1421 break; 1422 } 1423 } 1424 } 1425 } 1426 } 1427 if (!Result->isOverdefined()) 1428 return Result; 1429 } 1430 } 1431 1432 // If the edge was formed by a switch on the value, then we may know exactly 1433 // what it is. 1434 if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) { 1435 Value *Condition = SI->getCondition(); 1436 if (!isa<IntegerType>(Val->getType())) 1437 return ValueLatticeElement::getOverdefined(); 1438 bool ValUsesConditionAndMayBeFoldable = false; 1439 if (Condition != Val) { 1440 // Check if Val has Condition as an operand. 1441 if (User *Usr = dyn_cast<User>(Val)) 1442 ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) && 1443 usesOperand(Usr, Condition); 1444 if (!ValUsesConditionAndMayBeFoldable) 1445 return ValueLatticeElement::getOverdefined(); 1446 } 1447 assert((Condition == Val || ValUsesConditionAndMayBeFoldable) && 1448 "Condition != Val nor Val doesn't use Condition"); 1449 1450 bool DefaultCase = SI->getDefaultDest() == BBTo; 1451 unsigned BitWidth = Val->getType()->getIntegerBitWidth(); 1452 ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/); 1453 1454 for (auto Case : SI->cases()) { 1455 APInt CaseValue = Case.getCaseValue()->getValue(); 1456 ConstantRange EdgeVal(CaseValue); 1457 if (ValUsesConditionAndMayBeFoldable) { 1458 User *Usr = cast<User>(Val); 1459 const DataLayout &DL = BBTo->getModule()->getDataLayout(); 1460 ValueLatticeElement EdgeLatticeVal = 1461 constantFoldUser(Usr, Condition, CaseValue, DL); 1462 if (EdgeLatticeVal.isOverdefined()) 1463 return ValueLatticeElement::getOverdefined(); 1464 EdgeVal = EdgeLatticeVal.getConstantRange(); 1465 } 1466 if (DefaultCase) { 1467 // It is possible that the default destination is the destination of 1468 // some cases. We cannot perform difference for those cases. 1469 // We know Condition != CaseValue in BBTo. In some cases we can use 1470 // this to infer Val == f(Condition) is != f(CaseValue). For now, we 1471 // only do this when f is identity (i.e. Val == Condition), but we 1472 // should be able to do this for any injective f. 1473 if (Case.getCaseSuccessor() != BBTo && Condition == Val) 1474 EdgesVals = EdgesVals.difference(EdgeVal); 1475 } else if (Case.getCaseSuccessor() == BBTo) 1476 EdgesVals = EdgesVals.unionWith(EdgeVal); 1477 } 1478 return ValueLatticeElement::getRange(std::move(EdgesVals)); 1479 } 1480 return ValueLatticeElement::getOverdefined(); 1481 } 1482 1483 /// Compute the value of Val on the edge BBFrom -> BBTo or the value at 1484 /// the basic block if the edge does not constrain Val. 1485 std::optional<ValueLatticeElement> 1486 LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom, 1487 BasicBlock *BBTo, Instruction *CxtI) { 1488 // If already a constant, there is nothing to compute. 1489 if (Constant *VC = dyn_cast<Constant>(Val)) 1490 return ValueLatticeElement::get(VC); 1491 1492 std::optional<ValueLatticeElement> LocalResult = 1493 getEdgeValueLocal(Val, BBFrom, BBTo, /*UseBlockValue*/ true); 1494 if (!LocalResult) 1495 return std::nullopt; 1496 1497 if (hasSingleValue(*LocalResult)) 1498 // Can't get any more precise here 1499 return LocalResult; 1500 1501 std::optional<ValueLatticeElement> OptInBlock = 1502 getBlockValue(Val, BBFrom, BBFrom->getTerminator()); 1503 if (!OptInBlock) 1504 return std::nullopt; 1505 ValueLatticeElement &InBlock = *OptInBlock; 1506 1507 // We can use the context instruction (generically the ultimate instruction 1508 // the calling pass is trying to simplify) here, even though the result of 1509 // this function is generally cached when called from the solve* functions 1510 // (and that cached result might be used with queries using a different 1511 // context instruction), because when this function is called from the solve* 1512 // functions, the context instruction is not provided. When called from 1513 // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided, 1514 // but then the result is not cached. 1515 intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI); 1516 1517 return intersect(*LocalResult, InBlock); 1518 } 1519 1520 ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB, 1521 Instruction *CxtI) { 1522 LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" 1523 << BB->getName() << "'\n"); 1524 1525 assert(BlockValueStack.empty() && BlockValueSet.empty()); 1526 std::optional<ValueLatticeElement> OptResult = getBlockValue(V, BB, CxtI); 1527 if (!OptResult) { 1528 solve(); 1529 OptResult = getBlockValue(V, BB, CxtI); 1530 assert(OptResult && "Value not available after solving"); 1531 } 1532 1533 ValueLatticeElement Result = *OptResult; 1534 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); 1535 return Result; 1536 } 1537 1538 ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) { 1539 LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName() 1540 << "'\n"); 1541 1542 if (auto *C = dyn_cast<Constant>(V)) 1543 return ValueLatticeElement::get(C); 1544 1545 ValueLatticeElement Result = ValueLatticeElement::getOverdefined(); 1546 if (auto *I = dyn_cast<Instruction>(V)) 1547 Result = getFromRangeMetadata(I); 1548 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); 1549 1550 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); 1551 return Result; 1552 } 1553 1554 ValueLatticeElement LazyValueInfoImpl:: 1555 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, 1556 Instruction *CxtI) { 1557 LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" 1558 << FromBB->getName() << "' to '" << ToBB->getName() 1559 << "'\n"); 1560 1561 std::optional<ValueLatticeElement> Result = 1562 getEdgeValue(V, FromBB, ToBB, CxtI); 1563 while (!Result) { 1564 // As the worklist only explicitly tracks block values (but not edge values) 1565 // we may have to call solve() multiple times, as the edge value calculation 1566 // may request additional block values. 1567 solve(); 1568 Result = getEdgeValue(V, FromBB, ToBB, CxtI); 1569 } 1570 1571 LLVM_DEBUG(dbgs() << " Result = " << *Result << "\n"); 1572 return *Result; 1573 } 1574 1575 ValueLatticeElement LazyValueInfoImpl::getValueAtUse(const Use &U) { 1576 Value *V = U.get(); 1577 auto *CxtI = cast<Instruction>(U.getUser()); 1578 ValueLatticeElement VL = getValueInBlock(V, CxtI->getParent(), CxtI); 1579 1580 // Check whether the only (possibly transitive) use of the value is in a 1581 // position where V can be constrained by a select or branch condition. 1582 const Use *CurrU = &U; 1583 // TODO: Increase limit? 1584 const unsigned MaxUsesToInspect = 3; 1585 for (unsigned I = 0; I < MaxUsesToInspect; ++I) { 1586 std::optional<ValueLatticeElement> CondVal; 1587 auto *CurrI = cast<Instruction>(CurrU->getUser()); 1588 if (auto *SI = dyn_cast<SelectInst>(CurrI)) { 1589 // If the value is undef, a different value may be chosen in 1590 // the select condition and at use. 1591 if (!isGuaranteedNotToBeUndef(SI->getCondition(), AC)) 1592 break; 1593 if (CurrU->getOperandNo() == 1) 1594 CondVal = 1595 *getValueFromCondition(V, SI->getCondition(), /*IsTrueDest*/ true, 1596 /*UseBlockValue*/ false); 1597 else if (CurrU->getOperandNo() == 2) 1598 CondVal = 1599 *getValueFromCondition(V, SI->getCondition(), /*IsTrueDest*/ false, 1600 /*UseBlockValue*/ false); 1601 } else if (auto *PHI = dyn_cast<PHINode>(CurrI)) { 1602 // TODO: Use non-local query? 1603 CondVal = *getEdgeValueLocal(V, PHI->getIncomingBlock(*CurrU), 1604 PHI->getParent(), /*UseBlockValue*/ false); 1605 } 1606 if (CondVal) 1607 VL = intersect(VL, *CondVal); 1608 1609 // Only follow one-use chain, to allow direct intersection of conditions. 1610 // If there are multiple uses, we would have to intersect with the union of 1611 // all conditions at different uses. 1612 // Stop walking if we hit a non-speculatable instruction. Even if the 1613 // result is only used under a specific condition, executing the 1614 // instruction itself may cause side effects or UB already. 1615 // This also disallows looking through phi nodes: If the phi node is part 1616 // of a cycle, we might end up reasoning about values from different cycle 1617 // iterations (PR60629). 1618 if (!CurrI->hasOneUse() || !isSafeToSpeculativelyExecute(CurrI)) 1619 break; 1620 CurrU = &*CurrI->use_begin(); 1621 } 1622 return VL; 1623 } 1624 1625 void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, 1626 BasicBlock *NewSucc) { 1627 TheCache.threadEdgeImpl(OldSucc, NewSucc); 1628 } 1629 1630 //===----------------------------------------------------------------------===// 1631 // LazyValueInfo Impl 1632 //===----------------------------------------------------------------------===// 1633 1634 bool LazyValueInfoWrapperPass::runOnFunction(Function &F) { 1635 Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1636 1637 if (auto *Impl = Info.getImpl()) 1638 Impl->clear(); 1639 1640 // Fully lazy. 1641 return false; 1642 } 1643 1644 void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1645 AU.setPreservesAll(); 1646 AU.addRequired<AssumptionCacheTracker>(); 1647 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1648 } 1649 1650 LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; } 1651 1652 /// This lazily constructs the LazyValueInfoImpl. 1653 LazyValueInfoImpl &LazyValueInfo::getOrCreateImpl(const Module *M) { 1654 if (!PImpl) { 1655 assert(M && "getCache() called with a null Module"); 1656 const DataLayout &DL = M->getDataLayout(); 1657 Function *GuardDecl = 1658 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); 1659 PImpl = new LazyValueInfoImpl(AC, DL, GuardDecl); 1660 } 1661 return *static_cast<LazyValueInfoImpl *>(PImpl); 1662 } 1663 1664 LazyValueInfoImpl *LazyValueInfo::getImpl() { 1665 if (!PImpl) 1666 return nullptr; 1667 return static_cast<LazyValueInfoImpl *>(PImpl); 1668 } 1669 1670 LazyValueInfo::~LazyValueInfo() { releaseMemory(); } 1671 1672 void LazyValueInfo::releaseMemory() { 1673 // If the cache was allocated, free it. 1674 if (auto *Impl = getImpl()) { 1675 delete &*Impl; 1676 PImpl = nullptr; 1677 } 1678 } 1679 1680 bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA, 1681 FunctionAnalysisManager::Invalidator &Inv) { 1682 // We need to invalidate if we have either failed to preserve this analyses 1683 // result directly or if any of its dependencies have been invalidated. 1684 auto PAC = PA.getChecker<LazyValueAnalysis>(); 1685 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>())) 1686 return true; 1687 1688 return false; 1689 } 1690 1691 void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); } 1692 1693 LazyValueInfo LazyValueAnalysis::run(Function &F, 1694 FunctionAnalysisManager &FAM) { 1695 auto &AC = FAM.getResult<AssumptionAnalysis>(F); 1696 1697 return LazyValueInfo(&AC, &F.getParent()->getDataLayout()); 1698 } 1699 1700 /// Returns true if we can statically tell that this value will never be a 1701 /// "useful" constant. In practice, this means we've got something like an 1702 /// alloca or a malloc call for which a comparison against a constant can 1703 /// only be guarding dead code. Note that we are potentially giving up some 1704 /// precision in dead code (a constant result) in favour of avoiding a 1705 /// expensive search for a easily answered common query. 1706 static bool isKnownNonConstant(Value *V) { 1707 V = V->stripPointerCasts(); 1708 // The return val of alloc cannot be a Constant. 1709 if (isa<AllocaInst>(V)) 1710 return true; 1711 return false; 1712 } 1713 1714 Constant *LazyValueInfo::getConstant(Value *V, Instruction *CxtI) { 1715 // Bail out early if V is known not to be a Constant. 1716 if (isKnownNonConstant(V)) 1717 return nullptr; 1718 1719 BasicBlock *BB = CxtI->getParent(); 1720 ValueLatticeElement Result = 1721 getOrCreateImpl(BB->getModule()).getValueInBlock(V, BB, CxtI); 1722 1723 if (Result.isConstant()) 1724 return Result.getConstant(); 1725 if (Result.isConstantRange()) { 1726 const ConstantRange &CR = Result.getConstantRange(); 1727 if (const APInt *SingleVal = CR.getSingleElement()) 1728 return ConstantInt::get(V->getContext(), *SingleVal); 1729 } 1730 return nullptr; 1731 } 1732 1733 ConstantRange LazyValueInfo::getConstantRange(Value *V, Instruction *CxtI, 1734 bool UndefAllowed) { 1735 assert(V->getType()->isIntegerTy()); 1736 BasicBlock *BB = CxtI->getParent(); 1737 ValueLatticeElement Result = 1738 getOrCreateImpl(BB->getModule()).getValueInBlock(V, BB, CxtI); 1739 return toConstantRange(Result, V->getType(), UndefAllowed); 1740 } 1741 1742 ConstantRange LazyValueInfo::getConstantRangeAtUse(const Use &U, 1743 bool UndefAllowed) { 1744 auto *Inst = cast<Instruction>(U.getUser()); 1745 ValueLatticeElement Result = 1746 getOrCreateImpl(Inst->getModule()).getValueAtUse(U); 1747 return toConstantRange(Result, U->getType(), UndefAllowed); 1748 } 1749 1750 /// Determine whether the specified value is known to be a 1751 /// constant on the specified edge. Return null if not. 1752 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, 1753 BasicBlock *ToBB, 1754 Instruction *CxtI) { 1755 Module *M = FromBB->getModule(); 1756 ValueLatticeElement Result = 1757 getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI); 1758 1759 if (Result.isConstant()) 1760 return Result.getConstant(); 1761 if (Result.isConstantRange()) { 1762 const ConstantRange &CR = Result.getConstantRange(); 1763 if (const APInt *SingleVal = CR.getSingleElement()) 1764 return ConstantInt::get(V->getContext(), *SingleVal); 1765 } 1766 return nullptr; 1767 } 1768 1769 ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V, 1770 BasicBlock *FromBB, 1771 BasicBlock *ToBB, 1772 Instruction *CxtI) { 1773 Module *M = FromBB->getModule(); 1774 ValueLatticeElement Result = 1775 getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI); 1776 // TODO: Should undef be allowed here? 1777 return toConstantRange(Result, V->getType(), /*UndefAllowed*/ true); 1778 } 1779 1780 static LazyValueInfo::Tristate 1781 getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val, 1782 const DataLayout &DL) { 1783 // If we know the value is a constant, evaluate the conditional. 1784 Constant *Res = nullptr; 1785 if (Val.isConstant()) { 1786 Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL); 1787 if (ConstantInt *ResCI = dyn_cast_or_null<ConstantInt>(Res)) 1788 return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True; 1789 return LazyValueInfo::Unknown; 1790 } 1791 1792 if (Val.isConstantRange()) { 1793 ConstantInt *CI = dyn_cast<ConstantInt>(C); 1794 if (!CI) return LazyValueInfo::Unknown; 1795 1796 const ConstantRange &CR = Val.getConstantRange(); 1797 if (Pred == ICmpInst::ICMP_EQ) { 1798 if (!CR.contains(CI->getValue())) 1799 return LazyValueInfo::False; 1800 1801 if (CR.isSingleElement()) 1802 return LazyValueInfo::True; 1803 } else if (Pred == ICmpInst::ICMP_NE) { 1804 if (!CR.contains(CI->getValue())) 1805 return LazyValueInfo::True; 1806 1807 if (CR.isSingleElement()) 1808 return LazyValueInfo::False; 1809 } else { 1810 // Handle more complex predicates. 1811 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion( 1812 (ICmpInst::Predicate)Pred, CI->getValue()); 1813 if (TrueValues.contains(CR)) 1814 return LazyValueInfo::True; 1815 if (TrueValues.inverse().contains(CR)) 1816 return LazyValueInfo::False; 1817 } 1818 return LazyValueInfo::Unknown; 1819 } 1820 1821 if (Val.isNotConstant()) { 1822 // If this is an equality comparison, we can try to fold it knowing that 1823 // "V != C1". 1824 if (Pred == ICmpInst::ICMP_EQ) { 1825 // !C1 == C -> false iff C1 == C. 1826 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, 1827 Val.getNotConstant(), C, DL); 1828 if (Res && Res->isNullValue()) 1829 return LazyValueInfo::False; 1830 } else if (Pred == ICmpInst::ICMP_NE) { 1831 // !C1 != C -> true iff C1 == C. 1832 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, 1833 Val.getNotConstant(), C, DL); 1834 if (Res && Res->isNullValue()) 1835 return LazyValueInfo::True; 1836 } 1837 return LazyValueInfo::Unknown; 1838 } 1839 1840 return LazyValueInfo::Unknown; 1841 } 1842 1843 /// Determine whether the specified value comparison with a constant is known to 1844 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate. 1845 LazyValueInfo::Tristate 1846 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, 1847 BasicBlock *FromBB, BasicBlock *ToBB, 1848 Instruction *CxtI) { 1849 Module *M = FromBB->getModule(); 1850 ValueLatticeElement Result = 1851 getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI); 1852 1853 return getPredicateResult(Pred, C, Result, M->getDataLayout()); 1854 } 1855 1856 LazyValueInfo::Tristate 1857 LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C, 1858 Instruction *CxtI, bool UseBlockValue) { 1859 // Is or is not NonNull are common predicates being queried. If 1860 // isKnownNonZero can tell us the result of the predicate, we can 1861 // return it quickly. But this is only a fastpath, and falling 1862 // through would still be correct. 1863 Module *M = CxtI->getModule(); 1864 const DataLayout &DL = M->getDataLayout(); 1865 if (V->getType()->isPointerTy() && C->isNullValue() && 1866 isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) { 1867 if (Pred == ICmpInst::ICMP_EQ) 1868 return LazyValueInfo::False; 1869 else if (Pred == ICmpInst::ICMP_NE) 1870 return LazyValueInfo::True; 1871 } 1872 1873 auto &Impl = getOrCreateImpl(M); 1874 ValueLatticeElement Result = 1875 UseBlockValue ? Impl.getValueInBlock(V, CxtI->getParent(), CxtI) 1876 : Impl.getValueAt(V, CxtI); 1877 Tristate Ret = getPredicateResult(Pred, C, Result, DL); 1878 if (Ret != Unknown) 1879 return Ret; 1880 1881 // Note: The following bit of code is somewhat distinct from the rest of LVI; 1882 // LVI as a whole tries to compute a lattice value which is conservatively 1883 // correct at a given location. In this case, we have a predicate which we 1884 // weren't able to prove about the merged result, and we're pushing that 1885 // predicate back along each incoming edge to see if we can prove it 1886 // separately for each input. As a motivating example, consider: 1887 // bb1: 1888 // %v1 = ... ; constantrange<1, 5> 1889 // br label %merge 1890 // bb2: 1891 // %v2 = ... ; constantrange<10, 20> 1892 // br label %merge 1893 // merge: 1894 // %phi = phi [%v1, %v2] ; constantrange<1,20> 1895 // %pred = icmp eq i32 %phi, 8 1896 // We can't tell from the lattice value for '%phi' that '%pred' is false 1897 // along each path, but by checking the predicate over each input separately, 1898 // we can. 1899 // We limit the search to one step backwards from the current BB and value. 1900 // We could consider extending this to search further backwards through the 1901 // CFG and/or value graph, but there are non-obvious compile time vs quality 1902 // tradeoffs. 1903 BasicBlock *BB = CxtI->getParent(); 1904 1905 // Function entry or an unreachable block. Bail to avoid confusing 1906 // analysis below. 1907 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1908 if (PI == PE) 1909 return Unknown; 1910 1911 // If V is a PHI node in the same block as the context, we need to ask 1912 // questions about the predicate as applied to the incoming value along 1913 // each edge. This is useful for eliminating cases where the predicate is 1914 // known along all incoming edges. 1915 if (auto *PHI = dyn_cast<PHINode>(V)) 1916 if (PHI->getParent() == BB) { 1917 Tristate Baseline = Unknown; 1918 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) { 1919 Value *Incoming = PHI->getIncomingValue(i); 1920 BasicBlock *PredBB = PHI->getIncomingBlock(i); 1921 // Note that PredBB may be BB itself. 1922 Tristate Result = 1923 getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, CxtI); 1924 1925 // Keep going as long as we've seen a consistent known result for 1926 // all inputs. 1927 Baseline = (i == 0) ? Result /* First iteration */ 1928 : (Baseline == Result ? Baseline 1929 : Unknown); /* All others */ 1930 if (Baseline == Unknown) 1931 break; 1932 } 1933 if (Baseline != Unknown) 1934 return Baseline; 1935 } 1936 1937 // For a comparison where the V is outside this block, it's possible 1938 // that we've branched on it before. Look to see if the value is known 1939 // on all incoming edges. 1940 if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB) { 1941 // For predecessor edge, determine if the comparison is true or false 1942 // on that edge. If they're all true or all false, we can conclude 1943 // the value of the comparison in this block. 1944 Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); 1945 if (Baseline != Unknown) { 1946 // Check that all remaining incoming values match the first one. 1947 while (++PI != PE) { 1948 Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); 1949 if (Ret != Baseline) 1950 break; 1951 } 1952 // If we terminated early, then one of the values didn't match. 1953 if (PI == PE) { 1954 return Baseline; 1955 } 1956 } 1957 } 1958 1959 return Unknown; 1960 } 1961 1962 LazyValueInfo::Tristate LazyValueInfo::getPredicateAt(unsigned P, Value *LHS, 1963 Value *RHS, 1964 Instruction *CxtI, 1965 bool UseBlockValue) { 1966 CmpInst::Predicate Pred = (CmpInst::Predicate)P; 1967 1968 if (auto *C = dyn_cast<Constant>(RHS)) 1969 return getPredicateAt(P, LHS, C, CxtI, UseBlockValue); 1970 if (auto *C = dyn_cast<Constant>(LHS)) 1971 return getPredicateAt(CmpInst::getSwappedPredicate(Pred), RHS, C, CxtI, 1972 UseBlockValue); 1973 1974 // Got two non-Constant values. Try to determine the comparison results based 1975 // on the block values of the two operands, e.g. because they have 1976 // non-overlapping ranges. 1977 if (UseBlockValue) { 1978 Module *M = CxtI->getModule(); 1979 ValueLatticeElement L = 1980 getOrCreateImpl(M).getValueInBlock(LHS, CxtI->getParent(), CxtI); 1981 if (L.isOverdefined()) 1982 return LazyValueInfo::Unknown; 1983 1984 ValueLatticeElement R = 1985 getOrCreateImpl(M).getValueInBlock(RHS, CxtI->getParent(), CxtI); 1986 Type *Ty = CmpInst::makeCmpResultType(LHS->getType()); 1987 if (Constant *Res = L.getCompare((CmpInst::Predicate)P, Ty, R, 1988 M->getDataLayout())) { 1989 if (Res->isNullValue()) 1990 return LazyValueInfo::False; 1991 if (Res->isOneValue()) 1992 return LazyValueInfo::True; 1993 } 1994 } 1995 return LazyValueInfo::Unknown; 1996 } 1997 1998 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, 1999 BasicBlock *NewSucc) { 2000 if (auto *Impl = getImpl()) 2001 Impl->threadEdge(PredBB, OldSucc, NewSucc); 2002 } 2003 2004 void LazyValueInfo::forgetValue(Value *V) { 2005 if (auto *Impl = getImpl()) 2006 Impl->forgetValue(V); 2007 } 2008 2009 void LazyValueInfo::eraseBlock(BasicBlock *BB) { 2010 if (auto *Impl = getImpl()) 2011 Impl->eraseBlock(BB); 2012 } 2013 2014 void LazyValueInfo::clear() { 2015 if (auto *Impl = getImpl()) 2016 Impl->clear(); 2017 } 2018 2019 void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { 2020 if (auto *Impl = getImpl()) 2021 Impl->printLVI(F, DTree, OS); 2022 } 2023 2024 // Print the LVI for the function arguments at the start of each basic block. 2025 void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot( 2026 const BasicBlock *BB, formatted_raw_ostream &OS) { 2027 // Find if there are latticevalues defined for arguments of the function. 2028 auto *F = BB->getParent(); 2029 for (const auto &Arg : F->args()) { 2030 ValueLatticeElement Result = LVIImpl->getValueInBlock( 2031 const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB)); 2032 if (Result.isUnknown()) 2033 continue; 2034 OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n"; 2035 } 2036 } 2037 2038 // This function prints the LVI analysis for the instruction I at the beginning 2039 // of various basic blocks. It relies on calculated values that are stored in 2040 // the LazyValueInfoCache, and in the absence of cached values, recalculate the 2041 // LazyValueInfo for `I`, and print that info. 2042 void LazyValueInfoAnnotatedWriter::emitInstructionAnnot( 2043 const Instruction *I, formatted_raw_ostream &OS) { 2044 2045 auto *ParentBB = I->getParent(); 2046 SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI; 2047 // We can generate (solve) LVI values only for blocks that are dominated by 2048 // the I's parent. However, to avoid generating LVI for all dominating blocks, 2049 // that contain redundant/uninteresting information, we print LVI for 2050 // blocks that may use this LVI information (such as immediate successor 2051 // blocks, and blocks that contain uses of `I`). 2052 auto printResult = [&](const BasicBlock *BB) { 2053 if (!BlocksContainingLVI.insert(BB).second) 2054 return; 2055 ValueLatticeElement Result = LVIImpl->getValueInBlock( 2056 const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB)); 2057 OS << "; LatticeVal for: '" << *I << "' in BB: '"; 2058 BB->printAsOperand(OS, false); 2059 OS << "' is: " << Result << "\n"; 2060 }; 2061 2062 printResult(ParentBB); 2063 // Print the LVI analysis results for the immediate successor blocks, that 2064 // are dominated by `ParentBB`. 2065 for (const auto *BBSucc : successors(ParentBB)) 2066 if (DT.dominates(ParentBB, BBSucc)) 2067 printResult(BBSucc); 2068 2069 // Print LVI in blocks where `I` is used. 2070 for (const auto *U : I->users()) 2071 if (auto *UseI = dyn_cast<Instruction>(U)) 2072 if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent())) 2073 printResult(UseI->getParent()); 2074 2075 } 2076 2077 PreservedAnalyses LazyValueInfoPrinterPass::run(Function &F, 2078 FunctionAnalysisManager &AM) { 2079 OS << "LVI for function '" << F.getName() << "':\n"; 2080 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 2081 auto &DTree = AM.getResult<DominatorTreeAnalysis>(F); 2082 LVI.printLVI(F, DTree, OS); 2083 return PreservedAnalyses::all(); 2084 } 2085