xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/LazyValueInfo.cpp (revision ccfd87fe2ac0e2e6aeb1911a7d7cce6712a8564f)
1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interface for lazy computation of value constraint
10 // information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/LazyValueInfo.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/Analysis/ValueLattice.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/AssemblyAnnotationWriter.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/ValueHandle.h"
35 #include "llvm/InitializePasses.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/FormattedStream.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <optional>
41 using namespace llvm;
42 using namespace PatternMatch;
43 
44 #define DEBUG_TYPE "lazy-value-info"
45 
46 // This is the number of worklist items we will process to try to discover an
47 // answer for a given value.
48 static const unsigned MaxProcessedPerValue = 500;
49 
50 char LazyValueInfoWrapperPass::ID = 0;
51 LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) {
52   initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry());
53 }
54 INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info",
55                 "Lazy Value Information Analysis", false, true)
56 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
57 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
58 INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info",
59                 "Lazy Value Information Analysis", false, true)
60 
61 namespace llvm {
62   FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); }
63 }
64 
65 AnalysisKey LazyValueAnalysis::Key;
66 
67 /// Returns true if this lattice value represents at most one possible value.
68 /// This is as precise as any lattice value can get while still representing
69 /// reachable code.
70 static bool hasSingleValue(const ValueLatticeElement &Val) {
71   if (Val.isConstantRange() &&
72       Val.getConstantRange().isSingleElement())
73     // Integer constants are single element ranges
74     return true;
75   if (Val.isConstant())
76     // Non integer constants
77     return true;
78   return false;
79 }
80 
81 /// Combine two sets of facts about the same value into a single set of
82 /// facts.  Note that this method is not suitable for merging facts along
83 /// different paths in a CFG; that's what the mergeIn function is for.  This
84 /// is for merging facts gathered about the same value at the same location
85 /// through two independent means.
86 /// Notes:
87 /// * This method does not promise to return the most precise possible lattice
88 ///   value implied by A and B.  It is allowed to return any lattice element
89 ///   which is at least as strong as *either* A or B (unless our facts
90 ///   conflict, see below).
91 /// * Due to unreachable code, the intersection of two lattice values could be
92 ///   contradictory.  If this happens, we return some valid lattice value so as
93 ///   not confuse the rest of LVI.  Ideally, we'd always return Undefined, but
94 ///   we do not make this guarantee.  TODO: This would be a useful enhancement.
95 static ValueLatticeElement intersect(const ValueLatticeElement &A,
96                                      const ValueLatticeElement &B) {
97   // Undefined is the strongest state.  It means the value is known to be along
98   // an unreachable path.
99   if (A.isUnknown())
100     return A;
101   if (B.isUnknown())
102     return B;
103 
104   // If we gave up for one, but got a useable fact from the other, use it.
105   if (A.isOverdefined())
106     return B;
107   if (B.isOverdefined())
108     return A;
109 
110   // Can't get any more precise than constants.
111   if (hasSingleValue(A))
112     return A;
113   if (hasSingleValue(B))
114     return B;
115 
116   // Could be either constant range or not constant here.
117   if (!A.isConstantRange() || !B.isConstantRange()) {
118     // TODO: Arbitrary choice, could be improved
119     return A;
120   }
121 
122   // Intersect two constant ranges
123   ConstantRange Range =
124       A.getConstantRange().intersectWith(B.getConstantRange());
125   // Note: An empty range is implicitly converted to unknown or undef depending
126   // on MayIncludeUndef internally.
127   return ValueLatticeElement::getRange(
128       std::move(Range), /*MayIncludeUndef=*/A.isConstantRangeIncludingUndef() ||
129                             B.isConstantRangeIncludingUndef());
130 }
131 
132 //===----------------------------------------------------------------------===//
133 //                          LazyValueInfoCache Decl
134 //===----------------------------------------------------------------------===//
135 
136 namespace {
137   /// A callback value handle updates the cache when values are erased.
138   class LazyValueInfoCache;
139   struct LVIValueHandle final : public CallbackVH {
140     LazyValueInfoCache *Parent;
141 
142     LVIValueHandle(Value *V, LazyValueInfoCache *P = nullptr)
143       : CallbackVH(V), Parent(P) { }
144 
145     void deleted() override;
146     void allUsesReplacedWith(Value *V) override {
147       deleted();
148     }
149   };
150 } // end anonymous namespace
151 
152 namespace {
153   using NonNullPointerSet = SmallDenseSet<AssertingVH<Value>, 2>;
154 
155   /// This is the cache kept by LazyValueInfo which
156   /// maintains information about queries across the clients' queries.
157   class LazyValueInfoCache {
158     /// This is all of the cached information for one basic block. It contains
159     /// the per-value lattice elements, as well as a separate set for
160     /// overdefined values to reduce memory usage. Additionally pointers
161     /// dereferenced in the block are cached for nullability queries.
162     struct BlockCacheEntry {
163       SmallDenseMap<AssertingVH<Value>, ValueLatticeElement, 4> LatticeElements;
164       SmallDenseSet<AssertingVH<Value>, 4> OverDefined;
165       // None indicates that the nonnull pointers for this basic block
166       // block have not been computed yet.
167       std::optional<NonNullPointerSet> NonNullPointers;
168     };
169 
170     /// Cached information per basic block.
171     DenseMap<PoisoningVH<BasicBlock>, std::unique_ptr<BlockCacheEntry>>
172         BlockCache;
173     /// Set of value handles used to erase values from the cache on deletion.
174     DenseSet<LVIValueHandle, DenseMapInfo<Value *>> ValueHandles;
175 
176     const BlockCacheEntry *getBlockEntry(BasicBlock *BB) const {
177       auto It = BlockCache.find_as(BB);
178       if (It == BlockCache.end())
179         return nullptr;
180       return It->second.get();
181     }
182 
183     BlockCacheEntry *getOrCreateBlockEntry(BasicBlock *BB) {
184       auto It = BlockCache.find_as(BB);
185       if (It == BlockCache.end())
186         It = BlockCache.insert({ BB, std::make_unique<BlockCacheEntry>() })
187                        .first;
188 
189       return It->second.get();
190     }
191 
192     void addValueHandle(Value *Val) {
193       auto HandleIt = ValueHandles.find_as(Val);
194       if (HandleIt == ValueHandles.end())
195         ValueHandles.insert({ Val, this });
196     }
197 
198   public:
199     void insertResult(Value *Val, BasicBlock *BB,
200                       const ValueLatticeElement &Result) {
201       BlockCacheEntry *Entry = getOrCreateBlockEntry(BB);
202 
203       // Insert over-defined values into their own cache to reduce memory
204       // overhead.
205       if (Result.isOverdefined())
206         Entry->OverDefined.insert(Val);
207       else
208         Entry->LatticeElements.insert({ Val, Result });
209 
210       addValueHandle(Val);
211     }
212 
213     std::optional<ValueLatticeElement>
214     getCachedValueInfo(Value *V, BasicBlock *BB) const {
215       const BlockCacheEntry *Entry = getBlockEntry(BB);
216       if (!Entry)
217         return std::nullopt;
218 
219       if (Entry->OverDefined.count(V))
220         return ValueLatticeElement::getOverdefined();
221 
222       auto LatticeIt = Entry->LatticeElements.find_as(V);
223       if (LatticeIt == Entry->LatticeElements.end())
224         return std::nullopt;
225 
226       return LatticeIt->second;
227     }
228 
229     bool isNonNullAtEndOfBlock(
230         Value *V, BasicBlock *BB,
231         function_ref<NonNullPointerSet(BasicBlock *)> InitFn) {
232       BlockCacheEntry *Entry = getOrCreateBlockEntry(BB);
233       if (!Entry->NonNullPointers) {
234         Entry->NonNullPointers = InitFn(BB);
235         for (Value *V : *Entry->NonNullPointers)
236           addValueHandle(V);
237       }
238 
239       return Entry->NonNullPointers->count(V);
240     }
241 
242     /// clear - Empty the cache.
243     void clear() {
244       BlockCache.clear();
245       ValueHandles.clear();
246     }
247 
248     /// Inform the cache that a given value has been deleted.
249     void eraseValue(Value *V);
250 
251     /// This is part of the update interface to inform the cache
252     /// that a block has been deleted.
253     void eraseBlock(BasicBlock *BB);
254 
255     /// Updates the cache to remove any influence an overdefined value in
256     /// OldSucc might have (unless also overdefined in NewSucc).  This just
257     /// flushes elements from the cache and does not add any.
258     void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc);
259   };
260 }
261 
262 void LazyValueInfoCache::eraseValue(Value *V) {
263   for (auto &Pair : BlockCache) {
264     Pair.second->LatticeElements.erase(V);
265     Pair.second->OverDefined.erase(V);
266     if (Pair.second->NonNullPointers)
267       Pair.second->NonNullPointers->erase(V);
268   }
269 
270   auto HandleIt = ValueHandles.find_as(V);
271   if (HandleIt != ValueHandles.end())
272     ValueHandles.erase(HandleIt);
273 }
274 
275 void LVIValueHandle::deleted() {
276   // This erasure deallocates *this, so it MUST happen after we're done
277   // using any and all members of *this.
278   Parent->eraseValue(*this);
279 }
280 
281 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
282   BlockCache.erase(BB);
283 }
284 
285 void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc,
286                                         BasicBlock *NewSucc) {
287   // When an edge in the graph has been threaded, values that we could not
288   // determine a value for before (i.e. were marked overdefined) may be
289   // possible to solve now. We do NOT try to proactively update these values.
290   // Instead, we clear their entries from the cache, and allow lazy updating to
291   // recompute them when needed.
292 
293   // The updating process is fairly simple: we need to drop cached info
294   // for all values that were marked overdefined in OldSucc, and for those same
295   // values in any successor of OldSucc (except NewSucc) in which they were
296   // also marked overdefined.
297   std::vector<BasicBlock*> worklist;
298   worklist.push_back(OldSucc);
299 
300   const BlockCacheEntry *Entry = getBlockEntry(OldSucc);
301   if (!Entry || Entry->OverDefined.empty())
302     return; // Nothing to process here.
303   SmallVector<Value *, 4> ValsToClear(Entry->OverDefined.begin(),
304                                       Entry->OverDefined.end());
305 
306   // Use a worklist to perform a depth-first search of OldSucc's successors.
307   // NOTE: We do not need a visited list since any blocks we have already
308   // visited will have had their overdefined markers cleared already, and we
309   // thus won't loop to their successors.
310   while (!worklist.empty()) {
311     BasicBlock *ToUpdate = worklist.back();
312     worklist.pop_back();
313 
314     // Skip blocks only accessible through NewSucc.
315     if (ToUpdate == NewSucc) continue;
316 
317     // If a value was marked overdefined in OldSucc, and is here too...
318     auto OI = BlockCache.find_as(ToUpdate);
319     if (OI == BlockCache.end() || OI->second->OverDefined.empty())
320       continue;
321     auto &ValueSet = OI->second->OverDefined;
322 
323     bool changed = false;
324     for (Value *V : ValsToClear) {
325       if (!ValueSet.erase(V))
326         continue;
327 
328       // If we removed anything, then we potentially need to update
329       // blocks successors too.
330       changed = true;
331     }
332 
333     if (!changed) continue;
334 
335     llvm::append_range(worklist, successors(ToUpdate));
336   }
337 }
338 
339 
340 namespace {
341 /// An assembly annotator class to print LazyValueCache information in
342 /// comments.
343 class LazyValueInfoImpl;
344 class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter {
345   LazyValueInfoImpl *LVIImpl;
346   // While analyzing which blocks we can solve values for, we need the dominator
347   // information.
348   DominatorTree &DT;
349 
350 public:
351   LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree)
352       : LVIImpl(L), DT(DTree) {}
353 
354   void emitBasicBlockStartAnnot(const BasicBlock *BB,
355                                 formatted_raw_ostream &OS) override;
356 
357   void emitInstructionAnnot(const Instruction *I,
358                             formatted_raw_ostream &OS) override;
359 };
360 }
361 namespace {
362 // The actual implementation of the lazy analysis and update.  Note that the
363 // inheritance from LazyValueInfoCache is intended to be temporary while
364 // splitting the code and then transitioning to a has-a relationship.
365 class LazyValueInfoImpl {
366 
367   /// Cached results from previous queries
368   LazyValueInfoCache TheCache;
369 
370   /// This stack holds the state of the value solver during a query.
371   /// It basically emulates the callstack of the naive
372   /// recursive value lookup process.
373   SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack;
374 
375   /// Keeps track of which block-value pairs are in BlockValueStack.
376   DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
377 
378   /// Push BV onto BlockValueStack unless it's already in there.
379   /// Returns true on success.
380   bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
381     if (!BlockValueSet.insert(BV).second)
382       return false;  // It's already in the stack.
383 
384     LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in "
385                       << BV.first->getName() << "\n");
386     BlockValueStack.push_back(BV);
387     return true;
388   }
389 
390   AssumptionCache *AC;  ///< A pointer to the cache of @llvm.assume calls.
391   const DataLayout &DL; ///< A mandatory DataLayout
392 
393   /// Declaration of the llvm.experimental.guard() intrinsic,
394   /// if it exists in the module.
395   Function *GuardDecl;
396 
397   std::optional<ValueLatticeElement> getBlockValue(Value *Val, BasicBlock *BB,
398                                                    Instruction *CxtI);
399   std::optional<ValueLatticeElement> getEdgeValue(Value *V, BasicBlock *F,
400                                                   BasicBlock *T,
401                                                   Instruction *CxtI = nullptr);
402 
403   // These methods process one work item and may add more. A false value
404   // returned means that the work item was not completely processed and must
405   // be revisited after going through the new items.
406   bool solveBlockValue(Value *Val, BasicBlock *BB);
407   std::optional<ValueLatticeElement> solveBlockValueImpl(Value *Val,
408                                                          BasicBlock *BB);
409   std::optional<ValueLatticeElement> solveBlockValueNonLocal(Value *Val,
410                                                              BasicBlock *BB);
411   std::optional<ValueLatticeElement> solveBlockValuePHINode(PHINode *PN,
412                                                             BasicBlock *BB);
413   std::optional<ValueLatticeElement> solveBlockValueSelect(SelectInst *S,
414                                                            BasicBlock *BB);
415   std::optional<ConstantRange> getRangeFor(Value *V, Instruction *CxtI,
416                                            BasicBlock *BB);
417   std::optional<ValueLatticeElement> solveBlockValueBinaryOpImpl(
418       Instruction *I, BasicBlock *BB,
419       std::function<ConstantRange(const ConstantRange &, const ConstantRange &)>
420           OpFn);
421   std::optional<ValueLatticeElement>
422   solveBlockValueBinaryOp(BinaryOperator *BBI, BasicBlock *BB);
423   std::optional<ValueLatticeElement> solveBlockValueCast(CastInst *CI,
424                                                          BasicBlock *BB);
425   std::optional<ValueLatticeElement>
426   solveBlockValueOverflowIntrinsic(WithOverflowInst *WO, BasicBlock *BB);
427   std::optional<ValueLatticeElement> solveBlockValueIntrinsic(IntrinsicInst *II,
428                                                               BasicBlock *BB);
429   std::optional<ValueLatticeElement>
430   solveBlockValueExtractValue(ExtractValueInst *EVI, BasicBlock *BB);
431   bool isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB);
432   void intersectAssumeOrGuardBlockValueConstantRange(Value *Val,
433                                                      ValueLatticeElement &BBLV,
434                                                      Instruction *BBI);
435 
436   void solve();
437 
438 public:
439   /// This is the query interface to determine the lattice value for the
440   /// specified Value* at the context instruction (if specified) or at the
441   /// start of the block.
442   ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB,
443                                       Instruction *CxtI = nullptr);
444 
445   /// This is the query interface to determine the lattice value for the
446   /// specified Value* at the specified instruction using only information
447   /// from assumes/guards and range metadata. Unlike getValueInBlock(), no
448   /// recursive query is performed.
449   ValueLatticeElement getValueAt(Value *V, Instruction *CxtI);
450 
451   /// This is the query interface to determine the lattice
452   /// value for the specified Value* that is true on the specified edge.
453   ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB,
454                                      BasicBlock *ToBB,
455                                      Instruction *CxtI = nullptr);
456 
457   /// Complete flush all previously computed values
458   void clear() {
459     TheCache.clear();
460   }
461 
462   /// Printing the LazyValueInfo Analysis.
463   void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
464     LazyValueInfoAnnotatedWriter Writer(this, DTree);
465     F.print(OS, &Writer);
466   }
467 
468   /// This is part of the update interface to inform the cache
469   /// that a block has been deleted.
470   void eraseBlock(BasicBlock *BB) {
471     TheCache.eraseBlock(BB);
472   }
473 
474   /// This is the update interface to inform the cache that an edge from
475   /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
476   void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
477 
478   LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL,
479                     Function *GuardDecl)
480       : AC(AC), DL(DL), GuardDecl(GuardDecl) {}
481 };
482 } // end anonymous namespace
483 
484 
485 void LazyValueInfoImpl::solve() {
486   SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack(
487       BlockValueStack.begin(), BlockValueStack.end());
488 
489   unsigned processedCount = 0;
490   while (!BlockValueStack.empty()) {
491     processedCount++;
492     // Abort if we have to process too many values to get a result for this one.
493     // Because of the design of the overdefined cache currently being per-block
494     // to avoid naming-related issues (IE it wants to try to give different
495     // results for the same name in different blocks), overdefined results don't
496     // get cached globally, which in turn means we will often try to rediscover
497     // the same overdefined result again and again.  Once something like
498     // PredicateInfo is used in LVI or CVP, we should be able to make the
499     // overdefined cache global, and remove this throttle.
500     if (processedCount > MaxProcessedPerValue) {
501       LLVM_DEBUG(
502           dbgs() << "Giving up on stack because we are getting too deep\n");
503       // Fill in the original values
504       while (!StartingStack.empty()) {
505         std::pair<BasicBlock *, Value *> &e = StartingStack.back();
506         TheCache.insertResult(e.second, e.first,
507                               ValueLatticeElement::getOverdefined());
508         StartingStack.pop_back();
509       }
510       BlockValueSet.clear();
511       BlockValueStack.clear();
512       return;
513     }
514     std::pair<BasicBlock *, Value *> e = BlockValueStack.back();
515     assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");
516 
517     if (solveBlockValue(e.second, e.first)) {
518       // The work item was completely processed.
519       assert(BlockValueStack.back() == e && "Nothing should have been pushed!");
520 #ifndef NDEBUG
521       std::optional<ValueLatticeElement> BBLV =
522           TheCache.getCachedValueInfo(e.second, e.first);
523       assert(BBLV && "Result should be in cache!");
524       LLVM_DEBUG(
525           dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = "
526                  << *BBLV << "\n");
527 #endif
528 
529       BlockValueStack.pop_back();
530       BlockValueSet.erase(e);
531     } else {
532       // More work needs to be done before revisiting.
533       assert(BlockValueStack.back() != e && "Stack should have been pushed!");
534     }
535   }
536 }
537 
538 std::optional<ValueLatticeElement>
539 LazyValueInfoImpl::getBlockValue(Value *Val, BasicBlock *BB,
540                                  Instruction *CxtI) {
541   // If already a constant, there is nothing to compute.
542   if (Constant *VC = dyn_cast<Constant>(Val))
543     return ValueLatticeElement::get(VC);
544 
545   if (std::optional<ValueLatticeElement> OptLatticeVal =
546           TheCache.getCachedValueInfo(Val, BB)) {
547     intersectAssumeOrGuardBlockValueConstantRange(Val, *OptLatticeVal, CxtI);
548     return OptLatticeVal;
549   }
550 
551   // We have hit a cycle, assume overdefined.
552   if (!pushBlockValue({ BB, Val }))
553     return ValueLatticeElement::getOverdefined();
554 
555   // Yet to be resolved.
556   return std::nullopt;
557 }
558 
559 static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) {
560   switch (BBI->getOpcode()) {
561   default: break;
562   case Instruction::Load:
563   case Instruction::Call:
564   case Instruction::Invoke:
565     if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range))
566       if (isa<IntegerType>(BBI->getType())) {
567         return ValueLatticeElement::getRange(
568             getConstantRangeFromMetadata(*Ranges));
569       }
570     break;
571   };
572   // Nothing known - will be intersected with other facts
573   return ValueLatticeElement::getOverdefined();
574 }
575 
576 bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) {
577   assert(!isa<Constant>(Val) && "Value should not be constant");
578   assert(!TheCache.getCachedValueInfo(Val, BB) &&
579          "Value should not be in cache");
580 
581   // Hold off inserting this value into the Cache in case we have to return
582   // false and come back later.
583   std::optional<ValueLatticeElement> Res = solveBlockValueImpl(Val, BB);
584   if (!Res)
585     // Work pushed, will revisit
586     return false;
587 
588   TheCache.insertResult(Val, BB, *Res);
589   return true;
590 }
591 
592 std::optional<ValueLatticeElement>
593 LazyValueInfoImpl::solveBlockValueImpl(Value *Val, BasicBlock *BB) {
594   Instruction *BBI = dyn_cast<Instruction>(Val);
595   if (!BBI || BBI->getParent() != BB)
596     return solveBlockValueNonLocal(Val, BB);
597 
598   if (PHINode *PN = dyn_cast<PHINode>(BBI))
599     return solveBlockValuePHINode(PN, BB);
600 
601   if (auto *SI = dyn_cast<SelectInst>(BBI))
602     return solveBlockValueSelect(SI, BB);
603 
604   // If this value is a nonnull pointer, record it's range and bailout.  Note
605   // that for all other pointer typed values, we terminate the search at the
606   // definition.  We could easily extend this to look through geps, bitcasts,
607   // and the like to prove non-nullness, but it's not clear that's worth it
608   // compile time wise.  The context-insensitive value walk done inside
609   // isKnownNonZero gets most of the profitable cases at much less expense.
610   // This does mean that we have a sensitivity to where the defining
611   // instruction is placed, even if it could legally be hoisted much higher.
612   // That is unfortunate.
613   PointerType *PT = dyn_cast<PointerType>(BBI->getType());
614   if (PT && isKnownNonZero(BBI, DL))
615     return ValueLatticeElement::getNot(ConstantPointerNull::get(PT));
616 
617   if (BBI->getType()->isIntegerTy()) {
618     if (auto *CI = dyn_cast<CastInst>(BBI))
619       return solveBlockValueCast(CI, BB);
620 
621     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI))
622       return solveBlockValueBinaryOp(BO, BB);
623 
624     if (auto *EVI = dyn_cast<ExtractValueInst>(BBI))
625       return solveBlockValueExtractValue(EVI, BB);
626 
627     if (auto *II = dyn_cast<IntrinsicInst>(BBI))
628       return solveBlockValueIntrinsic(II, BB);
629   }
630 
631   LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
632                     << "' - unknown inst def found.\n");
633   return getFromRangeMetadata(BBI);
634 }
635 
636 static void AddNonNullPointer(Value *Ptr, NonNullPointerSet &PtrSet) {
637   // TODO: Use NullPointerIsDefined instead.
638   if (Ptr->getType()->getPointerAddressSpace() == 0)
639     PtrSet.insert(getUnderlyingObject(Ptr));
640 }
641 
642 static void AddNonNullPointersByInstruction(
643     Instruction *I, NonNullPointerSet &PtrSet) {
644   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
645     AddNonNullPointer(L->getPointerOperand(), PtrSet);
646   } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
647     AddNonNullPointer(S->getPointerOperand(), PtrSet);
648   } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
649     if (MI->isVolatile()) return;
650 
651     // FIXME: check whether it has a valuerange that excludes zero?
652     ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
653     if (!Len || Len->isZero()) return;
654 
655     AddNonNullPointer(MI->getRawDest(), PtrSet);
656     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
657       AddNonNullPointer(MTI->getRawSource(), PtrSet);
658   }
659 }
660 
661 bool LazyValueInfoImpl::isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB) {
662   if (NullPointerIsDefined(BB->getParent(),
663                            Val->getType()->getPointerAddressSpace()))
664     return false;
665 
666   Val = Val->stripInBoundsOffsets();
667   return TheCache.isNonNullAtEndOfBlock(Val, BB, [](BasicBlock *BB) {
668     NonNullPointerSet NonNullPointers;
669     for (Instruction &I : *BB)
670       AddNonNullPointersByInstruction(&I, NonNullPointers);
671     return NonNullPointers;
672   });
673 }
674 
675 std::optional<ValueLatticeElement>
676 LazyValueInfoImpl::solveBlockValueNonLocal(Value *Val, BasicBlock *BB) {
677   ValueLatticeElement Result;  // Start Undefined.
678 
679   // If this is the entry block, we must be asking about an argument.  The
680   // value is overdefined.
681   if (BB->isEntryBlock()) {
682     assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
683     return ValueLatticeElement::getOverdefined();
684   }
685 
686   // Loop over all of our predecessors, merging what we know from them into
687   // result.  If we encounter an unexplored predecessor, we eagerly explore it
688   // in a depth first manner.  In practice, this has the effect of discovering
689   // paths we can't analyze eagerly without spending compile times analyzing
690   // other paths.  This heuristic benefits from the fact that predecessors are
691   // frequently arranged such that dominating ones come first and we quickly
692   // find a path to function entry.  TODO: We should consider explicitly
693   // canonicalizing to make this true rather than relying on this happy
694   // accident.
695   for (BasicBlock *Pred : predecessors(BB)) {
696     std::optional<ValueLatticeElement> EdgeResult = getEdgeValue(Val, Pred, BB);
697     if (!EdgeResult)
698       // Explore that input, then return here
699       return std::nullopt;
700 
701     Result.mergeIn(*EdgeResult);
702 
703     // If we hit overdefined, exit early.  The BlockVals entry is already set
704     // to overdefined.
705     if (Result.isOverdefined()) {
706       LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
707                         << "' - overdefined because of pred '"
708                         << Pred->getName() << "' (non local).\n");
709       return Result;
710     }
711   }
712 
713   // Return the merged value, which is more precise than 'overdefined'.
714   assert(!Result.isOverdefined());
715   return Result;
716 }
717 
718 std::optional<ValueLatticeElement>
719 LazyValueInfoImpl::solveBlockValuePHINode(PHINode *PN, BasicBlock *BB) {
720   ValueLatticeElement Result;  // Start Undefined.
721 
722   // Loop over all of our predecessors, merging what we know from them into
723   // result.  See the comment about the chosen traversal order in
724   // solveBlockValueNonLocal; the same reasoning applies here.
725   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
726     BasicBlock *PhiBB = PN->getIncomingBlock(i);
727     Value *PhiVal = PN->getIncomingValue(i);
728     // Note that we can provide PN as the context value to getEdgeValue, even
729     // though the results will be cached, because PN is the value being used as
730     // the cache key in the caller.
731     std::optional<ValueLatticeElement> EdgeResult =
732         getEdgeValue(PhiVal, PhiBB, BB, PN);
733     if (!EdgeResult)
734       // Explore that input, then return here
735       return std::nullopt;
736 
737     Result.mergeIn(*EdgeResult);
738 
739     // If we hit overdefined, exit early.  The BlockVals entry is already set
740     // to overdefined.
741     if (Result.isOverdefined()) {
742       LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
743                         << "' - overdefined because of pred (local).\n");
744 
745       return Result;
746     }
747   }
748 
749   // Return the merged value, which is more precise than 'overdefined'.
750   assert(!Result.isOverdefined() && "Possible PHI in entry block?");
751   return Result;
752 }
753 
754 static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
755                                                  bool isTrueDest = true);
756 
757 // If we can determine a constraint on the value given conditions assumed by
758 // the program, intersect those constraints with BBLV
759 void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
760         Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) {
761   BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
762   if (!BBI)
763     return;
764 
765   BasicBlock *BB = BBI->getParent();
766   for (auto &AssumeVH : AC->assumptionsFor(Val)) {
767     if (!AssumeVH)
768       continue;
769 
770     // Only check assumes in the block of the context instruction. Other
771     // assumes will have already been taken into account when the value was
772     // propagated from predecessor blocks.
773     auto *I = cast<CallInst>(AssumeVH);
774     if (I->getParent() != BB || !isValidAssumeForContext(I, BBI))
775       continue;
776 
777     BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0)));
778   }
779 
780   // If guards are not used in the module, don't spend time looking for them
781   if (GuardDecl && !GuardDecl->use_empty() &&
782       BBI->getIterator() != BB->begin()) {
783     for (Instruction &I : make_range(std::next(BBI->getIterator().getReverse()),
784                                      BB->rend())) {
785       Value *Cond = nullptr;
786       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond))))
787         BBLV = intersect(BBLV, getValueFromCondition(Val, Cond));
788     }
789   }
790 
791   if (BBLV.isOverdefined()) {
792     // Check whether we're checking at the terminator, and the pointer has
793     // been dereferenced in this block.
794     PointerType *PTy = dyn_cast<PointerType>(Val->getType());
795     if (PTy && BB->getTerminator() == BBI &&
796         isNonNullAtEndOfBlock(Val, BB))
797       BBLV = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
798   }
799 }
800 
801 static ConstantRange getConstantRangeOrFull(const ValueLatticeElement &Val,
802                                             Type *Ty, const DataLayout &DL) {
803   if (Val.isConstantRange())
804     return Val.getConstantRange();
805   return ConstantRange::getFull(DL.getTypeSizeInBits(Ty));
806 }
807 
808 std::optional<ValueLatticeElement>
809 LazyValueInfoImpl::solveBlockValueSelect(SelectInst *SI, BasicBlock *BB) {
810   // Recurse on our inputs if needed
811   std::optional<ValueLatticeElement> OptTrueVal =
812       getBlockValue(SI->getTrueValue(), BB, SI);
813   if (!OptTrueVal)
814     return std::nullopt;
815   ValueLatticeElement &TrueVal = *OptTrueVal;
816 
817   std::optional<ValueLatticeElement> OptFalseVal =
818       getBlockValue(SI->getFalseValue(), BB, SI);
819   if (!OptFalseVal)
820     return std::nullopt;
821   ValueLatticeElement &FalseVal = *OptFalseVal;
822 
823   if (TrueVal.isConstantRange() || FalseVal.isConstantRange()) {
824     const ConstantRange &TrueCR =
825         getConstantRangeOrFull(TrueVal, SI->getType(), DL);
826     const ConstantRange &FalseCR =
827         getConstantRangeOrFull(FalseVal, SI->getType(), DL);
828     Value *LHS = nullptr;
829     Value *RHS = nullptr;
830     SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS);
831     // Is this a min specifically of our two inputs?  (Avoid the risk of
832     // ValueTracking getting smarter looking back past our immediate inputs.)
833     if (SelectPatternResult::isMinOrMax(SPR.Flavor) &&
834         ((LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) ||
835          (RHS == SI->getTrueValue() && LHS == SI->getFalseValue()))) {
836       ConstantRange ResultCR = [&]() {
837         switch (SPR.Flavor) {
838         default:
839           llvm_unreachable("unexpected minmax type!");
840         case SPF_SMIN:                   /// Signed minimum
841           return TrueCR.smin(FalseCR);
842         case SPF_UMIN:                   /// Unsigned minimum
843           return TrueCR.umin(FalseCR);
844         case SPF_SMAX:                   /// Signed maximum
845           return TrueCR.smax(FalseCR);
846         case SPF_UMAX:                   /// Unsigned maximum
847           return TrueCR.umax(FalseCR);
848         };
849       }();
850       return ValueLatticeElement::getRange(
851           ResultCR, TrueVal.isConstantRangeIncludingUndef() ||
852                         FalseVal.isConstantRangeIncludingUndef());
853     }
854 
855     if (SPR.Flavor == SPF_ABS) {
856       if (LHS == SI->getTrueValue())
857         return ValueLatticeElement::getRange(
858             TrueCR.abs(), TrueVal.isConstantRangeIncludingUndef());
859       if (LHS == SI->getFalseValue())
860         return ValueLatticeElement::getRange(
861             FalseCR.abs(), FalseVal.isConstantRangeIncludingUndef());
862     }
863 
864     if (SPR.Flavor == SPF_NABS) {
865       ConstantRange Zero(APInt::getZero(TrueCR.getBitWidth()));
866       if (LHS == SI->getTrueValue())
867         return ValueLatticeElement::getRange(
868             Zero.sub(TrueCR.abs()), FalseVal.isConstantRangeIncludingUndef());
869       if (LHS == SI->getFalseValue())
870         return ValueLatticeElement::getRange(
871             Zero.sub(FalseCR.abs()), FalseVal.isConstantRangeIncludingUndef());
872     }
873   }
874 
875   // Can we constrain the facts about the true and false values by using the
876   // condition itself?  This shows up with idioms like e.g. select(a > 5, a, 5).
877   // TODO: We could potentially refine an overdefined true value above.
878   Value *Cond = SI->getCondition();
879   TrueVal = intersect(TrueVal,
880                       getValueFromCondition(SI->getTrueValue(), Cond, true));
881   FalseVal = intersect(FalseVal,
882                        getValueFromCondition(SI->getFalseValue(), Cond, false));
883 
884   ValueLatticeElement Result = TrueVal;
885   Result.mergeIn(FalseVal);
886   return Result;
887 }
888 
889 std::optional<ConstantRange>
890 LazyValueInfoImpl::getRangeFor(Value *V, Instruction *CxtI, BasicBlock *BB) {
891   std::optional<ValueLatticeElement> OptVal = getBlockValue(V, BB, CxtI);
892   if (!OptVal)
893     return std::nullopt;
894   return getConstantRangeOrFull(*OptVal, V->getType(), DL);
895 }
896 
897 std::optional<ValueLatticeElement>
898 LazyValueInfoImpl::solveBlockValueCast(CastInst *CI, BasicBlock *BB) {
899   // Without knowing how wide the input is, we can't analyze it in any useful
900   // way.
901   if (!CI->getOperand(0)->getType()->isSized())
902     return ValueLatticeElement::getOverdefined();
903 
904   // Filter out casts we don't know how to reason about before attempting to
905   // recurse on our operand.  This can cut a long search short if we know we're
906   // not going to be able to get any useful information anways.
907   switch (CI->getOpcode()) {
908   case Instruction::Trunc:
909   case Instruction::SExt:
910   case Instruction::ZExt:
911   case Instruction::BitCast:
912     break;
913   default:
914     // Unhandled instructions are overdefined.
915     LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
916                       << "' - overdefined (unknown cast).\n");
917     return ValueLatticeElement::getOverdefined();
918   }
919 
920   // Figure out the range of the LHS.  If that fails, we still apply the
921   // transfer rule on the full set since we may be able to locally infer
922   // interesting facts.
923   std::optional<ConstantRange> LHSRes = getRangeFor(CI->getOperand(0), CI, BB);
924   if (!LHSRes)
925     // More work to do before applying this transfer rule.
926     return std::nullopt;
927   const ConstantRange &LHSRange = *LHSRes;
928 
929   const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth();
930 
931   // NOTE: We're currently limited by the set of operations that ConstantRange
932   // can evaluate symbolically.  Enhancing that set will allows us to analyze
933   // more definitions.
934   return ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(),
935                                                        ResultBitWidth));
936 }
937 
938 std::optional<ValueLatticeElement>
939 LazyValueInfoImpl::solveBlockValueBinaryOpImpl(
940     Instruction *I, BasicBlock *BB,
941     std::function<ConstantRange(const ConstantRange &, const ConstantRange &)>
942         OpFn) {
943   // Figure out the ranges of the operands.  If that fails, use a
944   // conservative range, but apply the transfer rule anyways.  This
945   // lets us pick up facts from expressions like "and i32 (call i32
946   // @foo()), 32"
947   std::optional<ConstantRange> LHSRes = getRangeFor(I->getOperand(0), I, BB);
948   std::optional<ConstantRange> RHSRes = getRangeFor(I->getOperand(1), I, BB);
949   if (!LHSRes || !RHSRes)
950     // More work to do before applying this transfer rule.
951     return std::nullopt;
952 
953   const ConstantRange &LHSRange = *LHSRes;
954   const ConstantRange &RHSRange = *RHSRes;
955   return ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange));
956 }
957 
958 std::optional<ValueLatticeElement>
959 LazyValueInfoImpl::solveBlockValueBinaryOp(BinaryOperator *BO, BasicBlock *BB) {
960   assert(BO->getOperand(0)->getType()->isSized() &&
961          "all operands to binary operators are sized");
962   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) {
963     unsigned NoWrapKind = 0;
964     if (OBO->hasNoUnsignedWrap())
965       NoWrapKind |= OverflowingBinaryOperator::NoUnsignedWrap;
966     if (OBO->hasNoSignedWrap())
967       NoWrapKind |= OverflowingBinaryOperator::NoSignedWrap;
968 
969     return solveBlockValueBinaryOpImpl(
970         BO, BB,
971         [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) {
972           return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind);
973         });
974   }
975 
976   return solveBlockValueBinaryOpImpl(
977       BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) {
978         return CR1.binaryOp(BO->getOpcode(), CR2);
979       });
980 }
981 
982 std::optional<ValueLatticeElement>
983 LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(WithOverflowInst *WO,
984                                                     BasicBlock *BB) {
985   return solveBlockValueBinaryOpImpl(
986       WO, BB, [WO](const ConstantRange &CR1, const ConstantRange &CR2) {
987         return CR1.binaryOp(WO->getBinaryOp(), CR2);
988       });
989 }
990 
991 std::optional<ValueLatticeElement>
992 LazyValueInfoImpl::solveBlockValueIntrinsic(IntrinsicInst *II, BasicBlock *BB) {
993   if (!ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
994     LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
995                       << "' - unknown intrinsic.\n");
996     return getFromRangeMetadata(II);
997   }
998 
999   SmallVector<ConstantRange, 2> OpRanges;
1000   for (Value *Op : II->args()) {
1001     std::optional<ConstantRange> Range = getRangeFor(Op, II, BB);
1002     if (!Range)
1003       return std::nullopt;
1004     OpRanges.push_back(*Range);
1005   }
1006 
1007   return ValueLatticeElement::getRange(
1008       ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges));
1009 }
1010 
1011 std::optional<ValueLatticeElement>
1012 LazyValueInfoImpl::solveBlockValueExtractValue(ExtractValueInst *EVI,
1013                                                BasicBlock *BB) {
1014   if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
1015     if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0)
1016       return solveBlockValueOverflowIntrinsic(WO, BB);
1017 
1018   // Handle extractvalue of insertvalue to allow further simplification
1019   // based on replaced with.overflow intrinsics.
1020   if (Value *V = simplifyExtractValueInst(
1021           EVI->getAggregateOperand(), EVI->getIndices(),
1022           EVI->getModule()->getDataLayout()))
1023     return getBlockValue(V, BB, EVI);
1024 
1025   LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
1026                     << "' - overdefined (unknown extractvalue).\n");
1027   return ValueLatticeElement::getOverdefined();
1028 }
1029 
1030 static bool matchICmpOperand(APInt &Offset, Value *LHS, Value *Val,
1031                              ICmpInst::Predicate Pred) {
1032   if (LHS == Val)
1033     return true;
1034 
1035   // Handle range checking idiom produced by InstCombine. We will subtract the
1036   // offset from the allowed range for RHS in this case.
1037   const APInt *C;
1038   if (match(LHS, m_Add(m_Specific(Val), m_APInt(C)))) {
1039     Offset = *C;
1040     return true;
1041   }
1042 
1043   // Handle the symmetric case. This appears in saturation patterns like
1044   // (x == 16) ? 16 : (x + 1).
1045   if (match(Val, m_Add(m_Specific(LHS), m_APInt(C)))) {
1046     Offset = -*C;
1047     return true;
1048   }
1049 
1050   // If (x | y) < C, then (x < C) && (y < C).
1051   if (match(LHS, m_c_Or(m_Specific(Val), m_Value())) &&
1052       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE))
1053     return true;
1054 
1055   // If (x & y) > C, then (x > C) && (y > C).
1056   if (match(LHS, m_c_And(m_Specific(Val), m_Value())) &&
1057       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE))
1058     return true;
1059 
1060   return false;
1061 }
1062 
1063 /// Get value range for a "(Val + Offset) Pred RHS" condition.
1064 static ValueLatticeElement getValueFromSimpleICmpCondition(
1065     CmpInst::Predicate Pred, Value *RHS, const APInt &Offset) {
1066   ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(),
1067                          /*isFullSet=*/true);
1068   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS))
1069     RHSRange = ConstantRange(CI->getValue());
1070   else if (Instruction *I = dyn_cast<Instruction>(RHS))
1071     if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
1072       RHSRange = getConstantRangeFromMetadata(*Ranges);
1073 
1074   ConstantRange TrueValues =
1075       ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
1076   return ValueLatticeElement::getRange(TrueValues.subtract(Offset));
1077 }
1078 
1079 static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI,
1080                                                      bool isTrueDest) {
1081   Value *LHS = ICI->getOperand(0);
1082   Value *RHS = ICI->getOperand(1);
1083 
1084   // Get the predicate that must hold along the considered edge.
1085   CmpInst::Predicate EdgePred =
1086       isTrueDest ? ICI->getPredicate() : ICI->getInversePredicate();
1087 
1088   if (isa<Constant>(RHS)) {
1089     if (ICI->isEquality() && LHS == Val) {
1090       if (EdgePred == ICmpInst::ICMP_EQ)
1091         return ValueLatticeElement::get(cast<Constant>(RHS));
1092       else if (!isa<UndefValue>(RHS))
1093         return ValueLatticeElement::getNot(cast<Constant>(RHS));
1094     }
1095   }
1096 
1097   Type *Ty = Val->getType();
1098   if (!Ty->isIntegerTy())
1099     return ValueLatticeElement::getOverdefined();
1100 
1101   unsigned BitWidth = Ty->getScalarSizeInBits();
1102   APInt Offset(BitWidth, 0);
1103   if (matchICmpOperand(Offset, LHS, Val, EdgePred))
1104     return getValueFromSimpleICmpCondition(EdgePred, RHS, Offset);
1105 
1106   CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(EdgePred);
1107   if (matchICmpOperand(Offset, RHS, Val, SwappedPred))
1108     return getValueFromSimpleICmpCondition(SwappedPred, LHS, Offset);
1109 
1110   const APInt *Mask, *C;
1111   if (match(LHS, m_And(m_Specific(Val), m_APInt(Mask))) &&
1112       match(RHS, m_APInt(C))) {
1113     // If (Val & Mask) == C then all the masked bits are known and we can
1114     // compute a value range based on that.
1115     if (EdgePred == ICmpInst::ICMP_EQ) {
1116       KnownBits Known;
1117       Known.Zero = ~*C & *Mask;
1118       Known.One = *C & *Mask;
1119       return ValueLatticeElement::getRange(
1120           ConstantRange::fromKnownBits(Known, /*IsSigned*/ false));
1121     }
1122     // If (Val & Mask) != 0 then the value must be larger than the lowest set
1123     // bit of Mask.
1124     if (EdgePred == ICmpInst::ICMP_NE && !Mask->isZero() && C->isZero()) {
1125       return ValueLatticeElement::getRange(ConstantRange::getNonEmpty(
1126           APInt::getOneBitSet(BitWidth, Mask->countTrailingZeros()),
1127           APInt::getZero(BitWidth)));
1128     }
1129   }
1130 
1131   // If (X urem Modulus) >= C, then X >= C.
1132   // If trunc X >= C, then X >= C.
1133   // TODO: An upper bound could be computed as well.
1134   if (match(LHS, m_CombineOr(m_URem(m_Specific(Val), m_Value()),
1135                              m_Trunc(m_Specific(Val)))) &&
1136       match(RHS, m_APInt(C))) {
1137     // Use the icmp region so we don't have to deal with different predicates.
1138     ConstantRange CR = ConstantRange::makeExactICmpRegion(EdgePred, *C);
1139     if (!CR.isEmptySet())
1140       return ValueLatticeElement::getRange(ConstantRange::getNonEmpty(
1141           CR.getUnsignedMin().zext(BitWidth), APInt(BitWidth, 0)));
1142   }
1143 
1144   return ValueLatticeElement::getOverdefined();
1145 }
1146 
1147 // Handle conditions of the form
1148 // extractvalue(op.with.overflow(%x, C), 1).
1149 static ValueLatticeElement getValueFromOverflowCondition(
1150     Value *Val, WithOverflowInst *WO, bool IsTrueDest) {
1151   // TODO: This only works with a constant RHS for now. We could also compute
1152   // the range of the RHS, but this doesn't fit into the current structure of
1153   // the edge value calculation.
1154   const APInt *C;
1155   if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C)))
1156     return ValueLatticeElement::getOverdefined();
1157 
1158   // Calculate the possible values of %x for which no overflow occurs.
1159   ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
1160       WO->getBinaryOp(), *C, WO->getNoWrapKind());
1161 
1162   // If overflow is false, %x is constrained to NWR. If overflow is true, %x is
1163   // constrained to it's inverse (all values that might cause overflow).
1164   if (IsTrueDest)
1165     NWR = NWR.inverse();
1166   return ValueLatticeElement::getRange(NWR);
1167 }
1168 
1169 // Tracks a Value * condition and whether we're interested in it or its inverse
1170 typedef PointerIntPair<Value *, 1, bool> CondValue;
1171 
1172 static std::optional<ValueLatticeElement> getValueFromConditionImpl(
1173     Value *Val, CondValue CondVal, bool isRevisit,
1174     SmallDenseMap<CondValue, ValueLatticeElement> &Visited,
1175     SmallVectorImpl<CondValue> &Worklist) {
1176 
1177   Value *Cond = CondVal.getPointer();
1178   bool isTrueDest = CondVal.getInt();
1179   if (!isRevisit) {
1180     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond))
1181       return getValueFromICmpCondition(Val, ICI, isTrueDest);
1182 
1183     if (auto *EVI = dyn_cast<ExtractValueInst>(Cond))
1184       if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
1185         if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1)
1186           return getValueFromOverflowCondition(Val, WO, isTrueDest);
1187   }
1188 
1189   Value *N;
1190   if (match(Cond, m_Not(m_Value(N)))) {
1191     CondValue NKey(N, !isTrueDest);
1192     auto NV = Visited.find(NKey);
1193     if (NV == Visited.end()) {
1194       Worklist.push_back(NKey);
1195       return std::nullopt;
1196     }
1197     return NV->second;
1198   }
1199 
1200   Value *L, *R;
1201   bool IsAnd;
1202   if (match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))))
1203     IsAnd = true;
1204   else if (match(Cond, m_LogicalOr(m_Value(L), m_Value(R))))
1205     IsAnd = false;
1206   else
1207     return ValueLatticeElement::getOverdefined();
1208 
1209   auto LV = Visited.find(CondValue(L, isTrueDest));
1210   auto RV = Visited.find(CondValue(R, isTrueDest));
1211 
1212   // if (L && R) -> intersect L and R
1213   // if (!(L || R)) -> intersect !L and !R
1214   // if (L || R) -> union L and R
1215   // if (!(L && R)) -> union !L and !R
1216   if ((isTrueDest ^ IsAnd) && (LV != Visited.end())) {
1217     ValueLatticeElement V = LV->second;
1218     if (V.isOverdefined())
1219       return V;
1220     if (RV != Visited.end()) {
1221       V.mergeIn(RV->second);
1222       return V;
1223     }
1224   }
1225 
1226   if (LV == Visited.end() || RV == Visited.end()) {
1227     assert(!isRevisit);
1228     if (LV == Visited.end())
1229       Worklist.push_back(CondValue(L, isTrueDest));
1230     if (RV == Visited.end())
1231       Worklist.push_back(CondValue(R, isTrueDest));
1232     return std::nullopt;
1233   }
1234 
1235   return intersect(LV->second, RV->second);
1236 }
1237 
1238 ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
1239                                           bool isTrueDest) {
1240   assert(Cond && "precondition");
1241   SmallDenseMap<CondValue, ValueLatticeElement> Visited;
1242   SmallVector<CondValue> Worklist;
1243 
1244   CondValue CondKey(Cond, isTrueDest);
1245   Worklist.push_back(CondKey);
1246   do {
1247     CondValue CurrentCond = Worklist.back();
1248     // Insert an Overdefined placeholder into the set to prevent
1249     // infinite recursion if there exists IRs that use not
1250     // dominated by its def as in this example:
1251     //   "%tmp3 = or i1 undef, %tmp4"
1252     //   "%tmp4 = or i1 undef, %tmp3"
1253     auto Iter =
1254         Visited.try_emplace(CurrentCond, ValueLatticeElement::getOverdefined());
1255     bool isRevisit = !Iter.second;
1256     std::optional<ValueLatticeElement> Result = getValueFromConditionImpl(
1257         Val, CurrentCond, isRevisit, Visited, Worklist);
1258     if (Result) {
1259       Visited[CurrentCond] = *Result;
1260       Worklist.pop_back();
1261     }
1262   } while (!Worklist.empty());
1263 
1264   auto Result = Visited.find(CondKey);
1265   assert(Result != Visited.end());
1266   return Result->second;
1267 }
1268 
1269 // Return true if Usr has Op as an operand, otherwise false.
1270 static bool usesOperand(User *Usr, Value *Op) {
1271   return is_contained(Usr->operands(), Op);
1272 }
1273 
1274 // Return true if the instruction type of Val is supported by
1275 // constantFoldUser(). Currently CastInst, BinaryOperator and FreezeInst only.
1276 // Call this before calling constantFoldUser() to find out if it's even worth
1277 // attempting to call it.
1278 static bool isOperationFoldable(User *Usr) {
1279   return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr) || isa<FreezeInst>(Usr);
1280 }
1281 
1282 // Check if Usr can be simplified to an integer constant when the value of one
1283 // of its operands Op is an integer constant OpConstVal. If so, return it as an
1284 // lattice value range with a single element or otherwise return an overdefined
1285 // lattice value.
1286 static ValueLatticeElement constantFoldUser(User *Usr, Value *Op,
1287                                             const APInt &OpConstVal,
1288                                             const DataLayout &DL) {
1289   assert(isOperationFoldable(Usr) && "Precondition");
1290   Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal);
1291   // Check if Usr can be simplified to a constant.
1292   if (auto *CI = dyn_cast<CastInst>(Usr)) {
1293     assert(CI->getOperand(0) == Op && "Operand 0 isn't Op");
1294     if (auto *C = dyn_cast_or_null<ConstantInt>(
1295             simplifyCastInst(CI->getOpcode(), OpConst,
1296                              CI->getDestTy(), DL))) {
1297       return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
1298     }
1299   } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) {
1300     bool Op0Match = BO->getOperand(0) == Op;
1301     bool Op1Match = BO->getOperand(1) == Op;
1302     assert((Op0Match || Op1Match) &&
1303            "Operand 0 nor Operand 1 isn't a match");
1304     Value *LHS = Op0Match ? OpConst : BO->getOperand(0);
1305     Value *RHS = Op1Match ? OpConst : BO->getOperand(1);
1306     if (auto *C = dyn_cast_or_null<ConstantInt>(
1307             simplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) {
1308       return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
1309     }
1310   } else if (isa<FreezeInst>(Usr)) {
1311     assert(cast<FreezeInst>(Usr)->getOperand(0) == Op && "Operand 0 isn't Op");
1312     return ValueLatticeElement::getRange(ConstantRange(OpConstVal));
1313   }
1314   return ValueLatticeElement::getOverdefined();
1315 }
1316 
1317 /// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
1318 /// Val is not constrained on the edge.  Result is unspecified if return value
1319 /// is false.
1320 static std::optional<ValueLatticeElement> getEdgeValueLocal(Value *Val,
1321                                                        BasicBlock *BBFrom,
1322                                                        BasicBlock *BBTo) {
1323   // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
1324   // know that v != 0.
1325   if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
1326     // If this is a conditional branch and only one successor goes to BBTo, then
1327     // we may be able to infer something from the condition.
1328     if (BI->isConditional() &&
1329         BI->getSuccessor(0) != BI->getSuccessor(1)) {
1330       bool isTrueDest = BI->getSuccessor(0) == BBTo;
1331       assert(BI->getSuccessor(!isTrueDest) == BBTo &&
1332              "BBTo isn't a successor of BBFrom");
1333       Value *Condition = BI->getCondition();
1334 
1335       // If V is the condition of the branch itself, then we know exactly what
1336       // it is.
1337       if (Condition == Val)
1338         return ValueLatticeElement::get(ConstantInt::get(
1339                               Type::getInt1Ty(Val->getContext()), isTrueDest));
1340 
1341       // If the condition of the branch is an equality comparison, we may be
1342       // able to infer the value.
1343       ValueLatticeElement Result = getValueFromCondition(Val, Condition,
1344                                                          isTrueDest);
1345       if (!Result.isOverdefined())
1346         return Result;
1347 
1348       if (User *Usr = dyn_cast<User>(Val)) {
1349         assert(Result.isOverdefined() && "Result isn't overdefined");
1350         // Check with isOperationFoldable() first to avoid linearly iterating
1351         // over the operands unnecessarily which can be expensive for
1352         // instructions with many operands.
1353         if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) {
1354           const DataLayout &DL = BBTo->getModule()->getDataLayout();
1355           if (usesOperand(Usr, Condition)) {
1356             // If Val has Condition as an operand and Val can be folded into a
1357             // constant with either Condition == true or Condition == false,
1358             // propagate the constant.
1359             // eg.
1360             //   ; %Val is true on the edge to %then.
1361             //   %Val = and i1 %Condition, true.
1362             //   br %Condition, label %then, label %else
1363             APInt ConditionVal(1, isTrueDest ? 1 : 0);
1364             Result = constantFoldUser(Usr, Condition, ConditionVal, DL);
1365           } else {
1366             // If one of Val's operand has an inferred value, we may be able to
1367             // infer the value of Val.
1368             // eg.
1369             //    ; %Val is 94 on the edge to %then.
1370             //    %Val = add i8 %Op, 1
1371             //    %Condition = icmp eq i8 %Op, 93
1372             //    br i1 %Condition, label %then, label %else
1373             for (unsigned i = 0; i < Usr->getNumOperands(); ++i) {
1374               Value *Op = Usr->getOperand(i);
1375               ValueLatticeElement OpLatticeVal =
1376                   getValueFromCondition(Op, Condition, isTrueDest);
1377               if (std::optional<APInt> OpConst =
1378                       OpLatticeVal.asConstantInteger()) {
1379                 Result = constantFoldUser(Usr, Op, *OpConst, DL);
1380                 break;
1381               }
1382             }
1383           }
1384         }
1385       }
1386       if (!Result.isOverdefined())
1387         return Result;
1388     }
1389   }
1390 
1391   // If the edge was formed by a switch on the value, then we may know exactly
1392   // what it is.
1393   if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
1394     Value *Condition = SI->getCondition();
1395     if (!isa<IntegerType>(Val->getType()))
1396       return std::nullopt;
1397     bool ValUsesConditionAndMayBeFoldable = false;
1398     if (Condition != Val) {
1399       // Check if Val has Condition as an operand.
1400       if (User *Usr = dyn_cast<User>(Val))
1401         ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) &&
1402             usesOperand(Usr, Condition);
1403       if (!ValUsesConditionAndMayBeFoldable)
1404         return std::nullopt;
1405     }
1406     assert((Condition == Val || ValUsesConditionAndMayBeFoldable) &&
1407            "Condition != Val nor Val doesn't use Condition");
1408 
1409     bool DefaultCase = SI->getDefaultDest() == BBTo;
1410     unsigned BitWidth = Val->getType()->getIntegerBitWidth();
1411     ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
1412 
1413     for (auto Case : SI->cases()) {
1414       APInt CaseValue = Case.getCaseValue()->getValue();
1415       ConstantRange EdgeVal(CaseValue);
1416       if (ValUsesConditionAndMayBeFoldable) {
1417         User *Usr = cast<User>(Val);
1418         const DataLayout &DL = BBTo->getModule()->getDataLayout();
1419         ValueLatticeElement EdgeLatticeVal =
1420             constantFoldUser(Usr, Condition, CaseValue, DL);
1421         if (EdgeLatticeVal.isOverdefined())
1422           return std::nullopt;
1423         EdgeVal = EdgeLatticeVal.getConstantRange();
1424       }
1425       if (DefaultCase) {
1426         // It is possible that the default destination is the destination of
1427         // some cases. We cannot perform difference for those cases.
1428         // We know Condition != CaseValue in BBTo.  In some cases we can use
1429         // this to infer Val == f(Condition) is != f(CaseValue).  For now, we
1430         // only do this when f is identity (i.e. Val == Condition), but we
1431         // should be able to do this for any injective f.
1432         if (Case.getCaseSuccessor() != BBTo && Condition == Val)
1433           EdgesVals = EdgesVals.difference(EdgeVal);
1434       } else if (Case.getCaseSuccessor() == BBTo)
1435         EdgesVals = EdgesVals.unionWith(EdgeVal);
1436     }
1437     return ValueLatticeElement::getRange(std::move(EdgesVals));
1438   }
1439   return std::nullopt;
1440 }
1441 
1442 /// Compute the value of Val on the edge BBFrom -> BBTo or the value at
1443 /// the basic block if the edge does not constrain Val.
1444 std::optional<ValueLatticeElement>
1445 LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom,
1446                                 BasicBlock *BBTo, Instruction *CxtI) {
1447   // If already a constant, there is nothing to compute.
1448   if (Constant *VC = dyn_cast<Constant>(Val))
1449     return ValueLatticeElement::get(VC);
1450 
1451   ValueLatticeElement LocalResult =
1452       getEdgeValueLocal(Val, BBFrom, BBTo)
1453           .value_or(ValueLatticeElement::getOverdefined());
1454   if (hasSingleValue(LocalResult))
1455     // Can't get any more precise here
1456     return LocalResult;
1457 
1458   std::optional<ValueLatticeElement> OptInBlock =
1459       getBlockValue(Val, BBFrom, BBFrom->getTerminator());
1460   if (!OptInBlock)
1461     return std::nullopt;
1462   ValueLatticeElement &InBlock = *OptInBlock;
1463 
1464   // We can use the context instruction (generically the ultimate instruction
1465   // the calling pass is trying to simplify) here, even though the result of
1466   // this function is generally cached when called from the solve* functions
1467   // (and that cached result might be used with queries using a different
1468   // context instruction), because when this function is called from the solve*
1469   // functions, the context instruction is not provided. When called from
1470   // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided,
1471   // but then the result is not cached.
1472   intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI);
1473 
1474   return intersect(LocalResult, InBlock);
1475 }
1476 
1477 ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB,
1478                                                        Instruction *CxtI) {
1479   LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
1480                     << BB->getName() << "'\n");
1481 
1482   assert(BlockValueStack.empty() && BlockValueSet.empty());
1483   std::optional<ValueLatticeElement> OptResult = getBlockValue(V, BB, CxtI);
1484   if (!OptResult) {
1485     solve();
1486     OptResult = getBlockValue(V, BB, CxtI);
1487     assert(OptResult && "Value not available after solving");
1488   }
1489 
1490   ValueLatticeElement Result = *OptResult;
1491   LLVM_DEBUG(dbgs() << "  Result = " << Result << "\n");
1492   return Result;
1493 }
1494 
1495 ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) {
1496   LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName()
1497                     << "'\n");
1498 
1499   if (auto *C = dyn_cast<Constant>(V))
1500     return ValueLatticeElement::get(C);
1501 
1502   ValueLatticeElement Result = ValueLatticeElement::getOverdefined();
1503   if (auto *I = dyn_cast<Instruction>(V))
1504     Result = getFromRangeMetadata(I);
1505   intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
1506 
1507   LLVM_DEBUG(dbgs() << "  Result = " << Result << "\n");
1508   return Result;
1509 }
1510 
1511 ValueLatticeElement LazyValueInfoImpl::
1512 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
1513                Instruction *CxtI) {
1514   LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
1515                     << FromBB->getName() << "' to '" << ToBB->getName()
1516                     << "'\n");
1517 
1518   std::optional<ValueLatticeElement> Result =
1519       getEdgeValue(V, FromBB, ToBB, CxtI);
1520   if (!Result) {
1521     solve();
1522     Result = getEdgeValue(V, FromBB, ToBB, CxtI);
1523     assert(Result && "More work to do after problem solved?");
1524   }
1525 
1526   LLVM_DEBUG(dbgs() << "  Result = " << *Result << "\n");
1527   return *Result;
1528 }
1529 
1530 void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1531                                    BasicBlock *NewSucc) {
1532   TheCache.threadEdgeImpl(OldSucc, NewSucc);
1533 }
1534 
1535 //===----------------------------------------------------------------------===//
1536 //                            LazyValueInfo Impl
1537 //===----------------------------------------------------------------------===//
1538 
1539 /// This lazily constructs the LazyValueInfoImpl.
1540 static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC,
1541                                   const Module *M) {
1542   if (!PImpl) {
1543     assert(M && "getCache() called with a null Module");
1544     const DataLayout &DL = M->getDataLayout();
1545     Function *GuardDecl = M->getFunction(
1546         Intrinsic::getName(Intrinsic::experimental_guard));
1547     PImpl = new LazyValueInfoImpl(AC, DL, GuardDecl);
1548   }
1549   return *static_cast<LazyValueInfoImpl*>(PImpl);
1550 }
1551 
1552 bool LazyValueInfoWrapperPass::runOnFunction(Function &F) {
1553   Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1554   Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1555 
1556   if (Info.PImpl)
1557     getImpl(Info.PImpl, Info.AC, F.getParent()).clear();
1558 
1559   // Fully lazy.
1560   return false;
1561 }
1562 
1563 void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1564   AU.setPreservesAll();
1565   AU.addRequired<AssumptionCacheTracker>();
1566   AU.addRequired<TargetLibraryInfoWrapperPass>();
1567 }
1568 
1569 LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; }
1570 
1571 LazyValueInfo::~LazyValueInfo() { releaseMemory(); }
1572 
1573 void LazyValueInfo::releaseMemory() {
1574   // If the cache was allocated, free it.
1575   if (PImpl) {
1576     delete &getImpl(PImpl, AC, nullptr);
1577     PImpl = nullptr;
1578   }
1579 }
1580 
1581 bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA,
1582                                FunctionAnalysisManager::Invalidator &Inv) {
1583   // We need to invalidate if we have either failed to preserve this analyses
1584   // result directly or if any of its dependencies have been invalidated.
1585   auto PAC = PA.getChecker<LazyValueAnalysis>();
1586   if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()))
1587     return true;
1588 
1589   return false;
1590 }
1591 
1592 void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); }
1593 
1594 LazyValueInfo LazyValueAnalysis::run(Function &F,
1595                                      FunctionAnalysisManager &FAM) {
1596   auto &AC = FAM.getResult<AssumptionAnalysis>(F);
1597   auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
1598 
1599   return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI);
1600 }
1601 
1602 /// Returns true if we can statically tell that this value will never be a
1603 /// "useful" constant.  In practice, this means we've got something like an
1604 /// alloca or a malloc call for which a comparison against a constant can
1605 /// only be guarding dead code.  Note that we are potentially giving up some
1606 /// precision in dead code (a constant result) in favour of avoiding a
1607 /// expensive search for a easily answered common query.
1608 static bool isKnownNonConstant(Value *V) {
1609   V = V->stripPointerCasts();
1610   // The return val of alloc cannot be a Constant.
1611   if (isa<AllocaInst>(V))
1612     return true;
1613   return false;
1614 }
1615 
1616 Constant *LazyValueInfo::getConstant(Value *V, Instruction *CxtI) {
1617   // Bail out early if V is known not to be a Constant.
1618   if (isKnownNonConstant(V))
1619     return nullptr;
1620 
1621   BasicBlock *BB = CxtI->getParent();
1622   ValueLatticeElement Result =
1623       getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI);
1624 
1625   if (Result.isConstant())
1626     return Result.getConstant();
1627   if (Result.isConstantRange()) {
1628     const ConstantRange &CR = Result.getConstantRange();
1629     if (const APInt *SingleVal = CR.getSingleElement())
1630       return ConstantInt::get(V->getContext(), *SingleVal);
1631   }
1632   return nullptr;
1633 }
1634 
1635 ConstantRange LazyValueInfo::getConstantRange(Value *V, Instruction *CxtI,
1636                                               bool UndefAllowed) {
1637   assert(V->getType()->isIntegerTy());
1638   unsigned Width = V->getType()->getIntegerBitWidth();
1639   BasicBlock *BB = CxtI->getParent();
1640   ValueLatticeElement Result =
1641       getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI);
1642   if (Result.isUnknown())
1643     return ConstantRange::getEmpty(Width);
1644   if (Result.isConstantRange(UndefAllowed))
1645     return Result.getConstantRange(UndefAllowed);
1646   // We represent ConstantInt constants as constant ranges but other kinds
1647   // of integer constants, i.e. ConstantExpr will be tagged as constants
1648   assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
1649          "ConstantInt value must be represented as constantrange");
1650   return ConstantRange::getFull(Width);
1651 }
1652 
1653 ConstantRange LazyValueInfo::getConstantRangeAtUse(const Use &U,
1654                                                    bool UndefAllowed) {
1655   Value *V = U.get();
1656   ConstantRange CR =
1657       getConstantRange(V, cast<Instruction>(U.getUser()), UndefAllowed);
1658 
1659   // Check whether the only (possibly transitive) use of the value is in a
1660   // position where V can be constrained by a select or branch condition.
1661   const Use *CurrU = &U;
1662   // TODO: Increase limit?
1663   const unsigned MaxUsesToInspect = 3;
1664   for (unsigned I = 0; I < MaxUsesToInspect; ++I) {
1665     std::optional<ValueLatticeElement> CondVal;
1666     auto *CurrI = cast<Instruction>(CurrU->getUser());
1667     if (auto *SI = dyn_cast<SelectInst>(CurrI)) {
1668       if (CurrU->getOperandNo() == 1)
1669         CondVal = getValueFromCondition(V, SI->getCondition(), true);
1670       else if (CurrU->getOperandNo() == 2)
1671         CondVal = getValueFromCondition(V, SI->getCondition(), false);
1672     } else if (auto *PHI = dyn_cast<PHINode>(CurrI)) {
1673       // TODO: Use non-local query?
1674       CondVal =
1675           getEdgeValueLocal(V, PHI->getIncomingBlock(*CurrU), PHI->getParent());
1676     }
1677     if (CondVal && CondVal->isConstantRange())
1678       CR = CR.intersectWith(CondVal->getConstantRange());
1679 
1680     // Only follow one-use chain, to allow direct intersection of conditions.
1681     // If there are multiple uses, we would have to intersect with the union of
1682     // all conditions at different uses.
1683     // Stop walking if we hit a non-speculatable instruction. Even if the
1684     // result is only used under a specific condition, executing the
1685     // instruction itself may cause side effects or UB already.
1686     // This also disallows looking through phi nodes: If the phi node is part
1687     // of a cycle, we might end up reasoning about values from different cycle
1688     // iterations (PR60629).
1689     if (!CurrI->hasOneUse() || !isSafeToSpeculativelyExecute(CurrI))
1690       break;
1691     CurrU = &*CurrI->use_begin();
1692   }
1693   return CR;
1694 }
1695 
1696 /// Determine whether the specified value is known to be a
1697 /// constant on the specified edge. Return null if not.
1698 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
1699                                            BasicBlock *ToBB,
1700                                            Instruction *CxtI) {
1701   Module *M = FromBB->getModule();
1702   ValueLatticeElement Result =
1703       getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);
1704 
1705   if (Result.isConstant())
1706     return Result.getConstant();
1707   if (Result.isConstantRange()) {
1708     const ConstantRange &CR = Result.getConstantRange();
1709     if (const APInt *SingleVal = CR.getSingleElement())
1710       return ConstantInt::get(V->getContext(), *SingleVal);
1711   }
1712   return nullptr;
1713 }
1714 
1715 ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V,
1716                                                     BasicBlock *FromBB,
1717                                                     BasicBlock *ToBB,
1718                                                     Instruction *CxtI) {
1719   unsigned Width = V->getType()->getIntegerBitWidth();
1720   Module *M = FromBB->getModule();
1721   ValueLatticeElement Result =
1722       getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);
1723 
1724   if (Result.isUnknown())
1725     return ConstantRange::getEmpty(Width);
1726   if (Result.isConstantRange())
1727     return Result.getConstantRange();
1728   // We represent ConstantInt constants as constant ranges but other kinds
1729   // of integer constants, i.e. ConstantExpr will be tagged as constants
1730   assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
1731          "ConstantInt value must be represented as constantrange");
1732   return ConstantRange::getFull(Width);
1733 }
1734 
1735 static LazyValueInfo::Tristate
1736 getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val,
1737                    const DataLayout &DL, TargetLibraryInfo *TLI) {
1738   // If we know the value is a constant, evaluate the conditional.
1739   Constant *Res = nullptr;
1740   if (Val.isConstant()) {
1741     Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI);
1742     if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
1743       return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
1744     return LazyValueInfo::Unknown;
1745   }
1746 
1747   if (Val.isConstantRange()) {
1748     ConstantInt *CI = dyn_cast<ConstantInt>(C);
1749     if (!CI) return LazyValueInfo::Unknown;
1750 
1751     const ConstantRange &CR = Val.getConstantRange();
1752     if (Pred == ICmpInst::ICMP_EQ) {
1753       if (!CR.contains(CI->getValue()))
1754         return LazyValueInfo::False;
1755 
1756       if (CR.isSingleElement())
1757         return LazyValueInfo::True;
1758     } else if (Pred == ICmpInst::ICMP_NE) {
1759       if (!CR.contains(CI->getValue()))
1760         return LazyValueInfo::True;
1761 
1762       if (CR.isSingleElement())
1763         return LazyValueInfo::False;
1764     } else {
1765       // Handle more complex predicates.
1766       ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(
1767           (ICmpInst::Predicate)Pred, CI->getValue());
1768       if (TrueValues.contains(CR))
1769         return LazyValueInfo::True;
1770       if (TrueValues.inverse().contains(CR))
1771         return LazyValueInfo::False;
1772     }
1773     return LazyValueInfo::Unknown;
1774   }
1775 
1776   if (Val.isNotConstant()) {
1777     // If this is an equality comparison, we can try to fold it knowing that
1778     // "V != C1".
1779     if (Pred == ICmpInst::ICMP_EQ) {
1780       // !C1 == C -> false iff C1 == C.
1781       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1782                                             Val.getNotConstant(), C, DL,
1783                                             TLI);
1784       if (Res->isNullValue())
1785         return LazyValueInfo::False;
1786     } else if (Pred == ICmpInst::ICMP_NE) {
1787       // !C1 != C -> true iff C1 == C.
1788       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1789                                             Val.getNotConstant(), C, DL,
1790                                             TLI);
1791       if (Res->isNullValue())
1792         return LazyValueInfo::True;
1793     }
1794     return LazyValueInfo::Unknown;
1795   }
1796 
1797   return LazyValueInfo::Unknown;
1798 }
1799 
1800 /// Determine whether the specified value comparison with a constant is known to
1801 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
1802 LazyValueInfo::Tristate
1803 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
1804                                   BasicBlock *FromBB, BasicBlock *ToBB,
1805                                   Instruction *CxtI) {
1806   Module *M = FromBB->getModule();
1807   ValueLatticeElement Result =
1808       getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);
1809 
1810   return getPredicateResult(Pred, C, Result, M->getDataLayout(), TLI);
1811 }
1812 
1813 LazyValueInfo::Tristate
1814 LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
1815                               Instruction *CxtI, bool UseBlockValue) {
1816   // Is or is not NonNull are common predicates being queried. If
1817   // isKnownNonZero can tell us the result of the predicate, we can
1818   // return it quickly. But this is only a fastpath, and falling
1819   // through would still be correct.
1820   Module *M = CxtI->getModule();
1821   const DataLayout &DL = M->getDataLayout();
1822   if (V->getType()->isPointerTy() && C->isNullValue() &&
1823       isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) {
1824     if (Pred == ICmpInst::ICMP_EQ)
1825       return LazyValueInfo::False;
1826     else if (Pred == ICmpInst::ICMP_NE)
1827       return LazyValueInfo::True;
1828   }
1829 
1830   ValueLatticeElement Result = UseBlockValue
1831       ? getImpl(PImpl, AC, M).getValueInBlock(V, CxtI->getParent(), CxtI)
1832       : getImpl(PImpl, AC, M).getValueAt(V, CxtI);
1833   Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI);
1834   if (Ret != Unknown)
1835     return Ret;
1836 
1837   // Note: The following bit of code is somewhat distinct from the rest of LVI;
1838   // LVI as a whole tries to compute a lattice value which is conservatively
1839   // correct at a given location.  In this case, we have a predicate which we
1840   // weren't able to prove about the merged result, and we're pushing that
1841   // predicate back along each incoming edge to see if we can prove it
1842   // separately for each input.  As a motivating example, consider:
1843   // bb1:
1844   //   %v1 = ... ; constantrange<1, 5>
1845   //   br label %merge
1846   // bb2:
1847   //   %v2 = ... ; constantrange<10, 20>
1848   //   br label %merge
1849   // merge:
1850   //   %phi = phi [%v1, %v2] ; constantrange<1,20>
1851   //   %pred = icmp eq i32 %phi, 8
1852   // We can't tell from the lattice value for '%phi' that '%pred' is false
1853   // along each path, but by checking the predicate over each input separately,
1854   // we can.
1855   // We limit the search to one step backwards from the current BB and value.
1856   // We could consider extending this to search further backwards through the
1857   // CFG and/or value graph, but there are non-obvious compile time vs quality
1858   // tradeoffs.
1859   BasicBlock *BB = CxtI->getParent();
1860 
1861   // Function entry or an unreachable block.  Bail to avoid confusing
1862   // analysis below.
1863   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1864   if (PI == PE)
1865     return Unknown;
1866 
1867   // If V is a PHI node in the same block as the context, we need to ask
1868   // questions about the predicate as applied to the incoming value along
1869   // each edge. This is useful for eliminating cases where the predicate is
1870   // known along all incoming edges.
1871   if (auto *PHI = dyn_cast<PHINode>(V))
1872     if (PHI->getParent() == BB) {
1873       Tristate Baseline = Unknown;
1874       for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) {
1875         Value *Incoming = PHI->getIncomingValue(i);
1876         BasicBlock *PredBB = PHI->getIncomingBlock(i);
1877         // Note that PredBB may be BB itself.
1878         Tristate Result =
1879             getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, CxtI);
1880 
1881         // Keep going as long as we've seen a consistent known result for
1882         // all inputs.
1883         Baseline = (i == 0) ? Result /* First iteration */
1884                             : (Baseline == Result ? Baseline
1885                                                   : Unknown); /* All others */
1886         if (Baseline == Unknown)
1887           break;
1888       }
1889       if (Baseline != Unknown)
1890         return Baseline;
1891     }
1892 
1893   // For a comparison where the V is outside this block, it's possible
1894   // that we've branched on it before. Look to see if the value is known
1895   // on all incoming edges.
1896   if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB) {
1897     // For predecessor edge, determine if the comparison is true or false
1898     // on that edge. If they're all true or all false, we can conclude
1899     // the value of the comparison in this block.
1900     Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1901     if (Baseline != Unknown) {
1902       // Check that all remaining incoming values match the first one.
1903       while (++PI != PE) {
1904         Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1905         if (Ret != Baseline)
1906           break;
1907       }
1908       // If we terminated early, then one of the values didn't match.
1909       if (PI == PE) {
1910         return Baseline;
1911       }
1912     }
1913   }
1914 
1915   return Unknown;
1916 }
1917 
1918 LazyValueInfo::Tristate LazyValueInfo::getPredicateAt(unsigned P, Value *LHS,
1919                                                       Value *RHS,
1920                                                       Instruction *CxtI,
1921                                                       bool UseBlockValue) {
1922   CmpInst::Predicate Pred = (CmpInst::Predicate)P;
1923 
1924   if (auto *C = dyn_cast<Constant>(RHS))
1925     return getPredicateAt(P, LHS, C, CxtI, UseBlockValue);
1926   if (auto *C = dyn_cast<Constant>(LHS))
1927     return getPredicateAt(CmpInst::getSwappedPredicate(Pred), RHS, C, CxtI,
1928                           UseBlockValue);
1929 
1930   // Got two non-Constant values. Try to determine the comparison results based
1931   // on the block values of the two operands, e.g. because they have
1932   // non-overlapping ranges.
1933   if (UseBlockValue) {
1934     Module *M = CxtI->getModule();
1935     ValueLatticeElement L =
1936         getImpl(PImpl, AC, M).getValueInBlock(LHS, CxtI->getParent(), CxtI);
1937     if (L.isOverdefined())
1938       return LazyValueInfo::Unknown;
1939 
1940     ValueLatticeElement R =
1941         getImpl(PImpl, AC, M).getValueInBlock(RHS, CxtI->getParent(), CxtI);
1942     Type *Ty = CmpInst::makeCmpResultType(LHS->getType());
1943     if (Constant *Res = L.getCompare((CmpInst::Predicate)P, Ty, R,
1944                                      M->getDataLayout())) {
1945       if (Res->isNullValue())
1946         return LazyValueInfo::False;
1947       if (Res->isOneValue())
1948         return LazyValueInfo::True;
1949     }
1950   }
1951   return LazyValueInfo::Unknown;
1952 }
1953 
1954 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1955                                BasicBlock *NewSucc) {
1956   if (PImpl) {
1957     getImpl(PImpl, AC, PredBB->getModule())
1958         .threadEdge(PredBB, OldSucc, NewSucc);
1959   }
1960 }
1961 
1962 void LazyValueInfo::eraseBlock(BasicBlock *BB) {
1963   if (PImpl) {
1964     getImpl(PImpl, AC, BB->getModule()).eraseBlock(BB);
1965   }
1966 }
1967 
1968 void LazyValueInfo::clear(const Module *M) {
1969   if (PImpl) {
1970     getImpl(PImpl, AC, M).clear();
1971   }
1972 }
1973 
1974 void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
1975   if (PImpl) {
1976     getImpl(PImpl, AC, F.getParent()).printLVI(F, DTree, OS);
1977   }
1978 }
1979 
1980 // Print the LVI for the function arguments at the start of each basic block.
1981 void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot(
1982     const BasicBlock *BB, formatted_raw_ostream &OS) {
1983   // Find if there are latticevalues defined for arguments of the function.
1984   auto *F = BB->getParent();
1985   for (const auto &Arg : F->args()) {
1986     ValueLatticeElement Result = LVIImpl->getValueInBlock(
1987         const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB));
1988     if (Result.isUnknown())
1989       continue;
1990     OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n";
1991   }
1992 }
1993 
1994 // This function prints the LVI analysis for the instruction I at the beginning
1995 // of various basic blocks. It relies on calculated values that are stored in
1996 // the LazyValueInfoCache, and in the absence of cached values, recalculate the
1997 // LazyValueInfo for `I`, and print that info.
1998 void LazyValueInfoAnnotatedWriter::emitInstructionAnnot(
1999     const Instruction *I, formatted_raw_ostream &OS) {
2000 
2001   auto *ParentBB = I->getParent();
2002   SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI;
2003   // We can generate (solve) LVI values only for blocks that are dominated by
2004   // the I's parent. However, to avoid generating LVI for all dominating blocks,
2005   // that contain redundant/uninteresting information, we print LVI for
2006   // blocks that may use this LVI information (such as immediate successor
2007   // blocks, and blocks that contain uses of `I`).
2008   auto printResult = [&](const BasicBlock *BB) {
2009     if (!BlocksContainingLVI.insert(BB).second)
2010       return;
2011     ValueLatticeElement Result = LVIImpl->getValueInBlock(
2012         const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB));
2013       OS << "; LatticeVal for: '" << *I << "' in BB: '";
2014       BB->printAsOperand(OS, false);
2015       OS << "' is: " << Result << "\n";
2016   };
2017 
2018   printResult(ParentBB);
2019   // Print the LVI analysis results for the immediate successor blocks, that
2020   // are dominated by `ParentBB`.
2021   for (const auto *BBSucc : successors(ParentBB))
2022     if (DT.dominates(ParentBB, BBSucc))
2023       printResult(BBSucc);
2024 
2025   // Print LVI in blocks where `I` is used.
2026   for (const auto *U : I->users())
2027     if (auto *UseI = dyn_cast<Instruction>(U))
2028       if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent()))
2029         printResult(UseI->getParent());
2030 
2031 }
2032 
2033 namespace {
2034 // Printer class for LazyValueInfo results.
2035 class LazyValueInfoPrinter : public FunctionPass {
2036 public:
2037   static char ID; // Pass identification, replacement for typeid
2038   LazyValueInfoPrinter() : FunctionPass(ID) {
2039     initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry());
2040   }
2041 
2042   void getAnalysisUsage(AnalysisUsage &AU) const override {
2043     AU.setPreservesAll();
2044     AU.addRequired<LazyValueInfoWrapperPass>();
2045     AU.addRequired<DominatorTreeWrapperPass>();
2046   }
2047 
2048   // Get the mandatory dominator tree analysis and pass this in to the
2049   // LVIPrinter. We cannot rely on the LVI's DT, since it's optional.
2050   bool runOnFunction(Function &F) override {
2051     dbgs() << "LVI for function '" << F.getName() << "':\n";
2052     auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI();
2053     auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2054     LVI.printLVI(F, DTree, dbgs());
2055     return false;
2056   }
2057 };
2058 }
2059 
2060 char LazyValueInfoPrinter::ID = 0;
2061 INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info",
2062                 "Lazy Value Info Printer Pass", false, false)
2063 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
2064 INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info",
2065                 "Lazy Value Info Printer Pass", false, false)
2066