1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interface for lazy computation of value constraint 10 // information. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LazyValueInfo.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/ValueLattice.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/AssemblyAnnotationWriter.h" 24 #include "llvm/IR/CFG.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/IR/ValueHandle.h" 35 #include "llvm/InitializePasses.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/FormattedStream.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <optional> 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 #define DEBUG_TYPE "lazy-value-info" 45 46 // This is the number of worklist items we will process to try to discover an 47 // answer for a given value. 48 static const unsigned MaxProcessedPerValue = 500; 49 50 char LazyValueInfoWrapperPass::ID = 0; 51 LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) { 52 initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry()); 53 } 54 INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info", 55 "Lazy Value Information Analysis", false, true) 56 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 57 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 58 INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info", 59 "Lazy Value Information Analysis", false, true) 60 61 namespace llvm { 62 FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); } 63 } 64 65 AnalysisKey LazyValueAnalysis::Key; 66 67 /// Returns true if this lattice value represents at most one possible value. 68 /// This is as precise as any lattice value can get while still representing 69 /// reachable code. 70 static bool hasSingleValue(const ValueLatticeElement &Val) { 71 if (Val.isConstantRange() && 72 Val.getConstantRange().isSingleElement()) 73 // Integer constants are single element ranges 74 return true; 75 if (Val.isConstant()) 76 // Non integer constants 77 return true; 78 return false; 79 } 80 81 /// Combine two sets of facts about the same value into a single set of 82 /// facts. Note that this method is not suitable for merging facts along 83 /// different paths in a CFG; that's what the mergeIn function is for. This 84 /// is for merging facts gathered about the same value at the same location 85 /// through two independent means. 86 /// Notes: 87 /// * This method does not promise to return the most precise possible lattice 88 /// value implied by A and B. It is allowed to return any lattice element 89 /// which is at least as strong as *either* A or B (unless our facts 90 /// conflict, see below). 91 /// * Due to unreachable code, the intersection of two lattice values could be 92 /// contradictory. If this happens, we return some valid lattice value so as 93 /// not confuse the rest of LVI. Ideally, we'd always return Undefined, but 94 /// we do not make this guarantee. TODO: This would be a useful enhancement. 95 static ValueLatticeElement intersect(const ValueLatticeElement &A, 96 const ValueLatticeElement &B) { 97 // Undefined is the strongest state. It means the value is known to be along 98 // an unreachable path. 99 if (A.isUnknown()) 100 return A; 101 if (B.isUnknown()) 102 return B; 103 104 // If we gave up for one, but got a useable fact from the other, use it. 105 if (A.isOverdefined()) 106 return B; 107 if (B.isOverdefined()) 108 return A; 109 110 // Can't get any more precise than constants. 111 if (hasSingleValue(A)) 112 return A; 113 if (hasSingleValue(B)) 114 return B; 115 116 // Could be either constant range or not constant here. 117 if (!A.isConstantRange() || !B.isConstantRange()) { 118 // TODO: Arbitrary choice, could be improved 119 return A; 120 } 121 122 // Intersect two constant ranges 123 ConstantRange Range = 124 A.getConstantRange().intersectWith(B.getConstantRange()); 125 // Note: An empty range is implicitly converted to unknown or undef depending 126 // on MayIncludeUndef internally. 127 return ValueLatticeElement::getRange( 128 std::move(Range), /*MayIncludeUndef=*/A.isConstantRangeIncludingUndef() || 129 B.isConstantRangeIncludingUndef()); 130 } 131 132 //===----------------------------------------------------------------------===// 133 // LazyValueInfoCache Decl 134 //===----------------------------------------------------------------------===// 135 136 namespace { 137 /// A callback value handle updates the cache when values are erased. 138 class LazyValueInfoCache; 139 struct LVIValueHandle final : public CallbackVH { 140 LazyValueInfoCache *Parent; 141 142 LVIValueHandle(Value *V, LazyValueInfoCache *P = nullptr) 143 : CallbackVH(V), Parent(P) { } 144 145 void deleted() override; 146 void allUsesReplacedWith(Value *V) override { 147 deleted(); 148 } 149 }; 150 } // end anonymous namespace 151 152 namespace { 153 using NonNullPointerSet = SmallDenseSet<AssertingVH<Value>, 2>; 154 155 /// This is the cache kept by LazyValueInfo which 156 /// maintains information about queries across the clients' queries. 157 class LazyValueInfoCache { 158 /// This is all of the cached information for one basic block. It contains 159 /// the per-value lattice elements, as well as a separate set for 160 /// overdefined values to reduce memory usage. Additionally pointers 161 /// dereferenced in the block are cached for nullability queries. 162 struct BlockCacheEntry { 163 SmallDenseMap<AssertingVH<Value>, ValueLatticeElement, 4> LatticeElements; 164 SmallDenseSet<AssertingVH<Value>, 4> OverDefined; 165 // None indicates that the nonnull pointers for this basic block 166 // block have not been computed yet. 167 std::optional<NonNullPointerSet> NonNullPointers; 168 }; 169 170 /// Cached information per basic block. 171 DenseMap<PoisoningVH<BasicBlock>, std::unique_ptr<BlockCacheEntry>> 172 BlockCache; 173 /// Set of value handles used to erase values from the cache on deletion. 174 DenseSet<LVIValueHandle, DenseMapInfo<Value *>> ValueHandles; 175 176 const BlockCacheEntry *getBlockEntry(BasicBlock *BB) const { 177 auto It = BlockCache.find_as(BB); 178 if (It == BlockCache.end()) 179 return nullptr; 180 return It->second.get(); 181 } 182 183 BlockCacheEntry *getOrCreateBlockEntry(BasicBlock *BB) { 184 auto It = BlockCache.find_as(BB); 185 if (It == BlockCache.end()) 186 It = BlockCache.insert({ BB, std::make_unique<BlockCacheEntry>() }) 187 .first; 188 189 return It->second.get(); 190 } 191 192 void addValueHandle(Value *Val) { 193 auto HandleIt = ValueHandles.find_as(Val); 194 if (HandleIt == ValueHandles.end()) 195 ValueHandles.insert({ Val, this }); 196 } 197 198 public: 199 void insertResult(Value *Val, BasicBlock *BB, 200 const ValueLatticeElement &Result) { 201 BlockCacheEntry *Entry = getOrCreateBlockEntry(BB); 202 203 // Insert over-defined values into their own cache to reduce memory 204 // overhead. 205 if (Result.isOverdefined()) 206 Entry->OverDefined.insert(Val); 207 else 208 Entry->LatticeElements.insert({ Val, Result }); 209 210 addValueHandle(Val); 211 } 212 213 std::optional<ValueLatticeElement> 214 getCachedValueInfo(Value *V, BasicBlock *BB) const { 215 const BlockCacheEntry *Entry = getBlockEntry(BB); 216 if (!Entry) 217 return std::nullopt; 218 219 if (Entry->OverDefined.count(V)) 220 return ValueLatticeElement::getOverdefined(); 221 222 auto LatticeIt = Entry->LatticeElements.find_as(V); 223 if (LatticeIt == Entry->LatticeElements.end()) 224 return std::nullopt; 225 226 return LatticeIt->second; 227 } 228 229 bool isNonNullAtEndOfBlock( 230 Value *V, BasicBlock *BB, 231 function_ref<NonNullPointerSet(BasicBlock *)> InitFn) { 232 BlockCacheEntry *Entry = getOrCreateBlockEntry(BB); 233 if (!Entry->NonNullPointers) { 234 Entry->NonNullPointers = InitFn(BB); 235 for (Value *V : *Entry->NonNullPointers) 236 addValueHandle(V); 237 } 238 239 return Entry->NonNullPointers->count(V); 240 } 241 242 /// clear - Empty the cache. 243 void clear() { 244 BlockCache.clear(); 245 ValueHandles.clear(); 246 } 247 248 /// Inform the cache that a given value has been deleted. 249 void eraseValue(Value *V); 250 251 /// This is part of the update interface to inform the cache 252 /// that a block has been deleted. 253 void eraseBlock(BasicBlock *BB); 254 255 /// Updates the cache to remove any influence an overdefined value in 256 /// OldSucc might have (unless also overdefined in NewSucc). This just 257 /// flushes elements from the cache and does not add any. 258 void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc); 259 }; 260 } 261 262 void LazyValueInfoCache::eraseValue(Value *V) { 263 for (auto &Pair : BlockCache) { 264 Pair.second->LatticeElements.erase(V); 265 Pair.second->OverDefined.erase(V); 266 if (Pair.second->NonNullPointers) 267 Pair.second->NonNullPointers->erase(V); 268 } 269 270 auto HandleIt = ValueHandles.find_as(V); 271 if (HandleIt != ValueHandles.end()) 272 ValueHandles.erase(HandleIt); 273 } 274 275 void LVIValueHandle::deleted() { 276 // This erasure deallocates *this, so it MUST happen after we're done 277 // using any and all members of *this. 278 Parent->eraseValue(*this); 279 } 280 281 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { 282 BlockCache.erase(BB); 283 } 284 285 void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc, 286 BasicBlock *NewSucc) { 287 // When an edge in the graph has been threaded, values that we could not 288 // determine a value for before (i.e. were marked overdefined) may be 289 // possible to solve now. We do NOT try to proactively update these values. 290 // Instead, we clear their entries from the cache, and allow lazy updating to 291 // recompute them when needed. 292 293 // The updating process is fairly simple: we need to drop cached info 294 // for all values that were marked overdefined in OldSucc, and for those same 295 // values in any successor of OldSucc (except NewSucc) in which they were 296 // also marked overdefined. 297 std::vector<BasicBlock*> worklist; 298 worklist.push_back(OldSucc); 299 300 const BlockCacheEntry *Entry = getBlockEntry(OldSucc); 301 if (!Entry || Entry->OverDefined.empty()) 302 return; // Nothing to process here. 303 SmallVector<Value *, 4> ValsToClear(Entry->OverDefined.begin(), 304 Entry->OverDefined.end()); 305 306 // Use a worklist to perform a depth-first search of OldSucc's successors. 307 // NOTE: We do not need a visited list since any blocks we have already 308 // visited will have had their overdefined markers cleared already, and we 309 // thus won't loop to their successors. 310 while (!worklist.empty()) { 311 BasicBlock *ToUpdate = worklist.back(); 312 worklist.pop_back(); 313 314 // Skip blocks only accessible through NewSucc. 315 if (ToUpdate == NewSucc) continue; 316 317 // If a value was marked overdefined in OldSucc, and is here too... 318 auto OI = BlockCache.find_as(ToUpdate); 319 if (OI == BlockCache.end() || OI->second->OverDefined.empty()) 320 continue; 321 auto &ValueSet = OI->second->OverDefined; 322 323 bool changed = false; 324 for (Value *V : ValsToClear) { 325 if (!ValueSet.erase(V)) 326 continue; 327 328 // If we removed anything, then we potentially need to update 329 // blocks successors too. 330 changed = true; 331 } 332 333 if (!changed) continue; 334 335 llvm::append_range(worklist, successors(ToUpdate)); 336 } 337 } 338 339 340 namespace { 341 /// An assembly annotator class to print LazyValueCache information in 342 /// comments. 343 class LazyValueInfoImpl; 344 class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter { 345 LazyValueInfoImpl *LVIImpl; 346 // While analyzing which blocks we can solve values for, we need the dominator 347 // information. 348 DominatorTree &DT; 349 350 public: 351 LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree) 352 : LVIImpl(L), DT(DTree) {} 353 354 void emitBasicBlockStartAnnot(const BasicBlock *BB, 355 formatted_raw_ostream &OS) override; 356 357 void emitInstructionAnnot(const Instruction *I, 358 formatted_raw_ostream &OS) override; 359 }; 360 } 361 namespace { 362 // The actual implementation of the lazy analysis and update. Note that the 363 // inheritance from LazyValueInfoCache is intended to be temporary while 364 // splitting the code and then transitioning to a has-a relationship. 365 class LazyValueInfoImpl { 366 367 /// Cached results from previous queries 368 LazyValueInfoCache TheCache; 369 370 /// This stack holds the state of the value solver during a query. 371 /// It basically emulates the callstack of the naive 372 /// recursive value lookup process. 373 SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack; 374 375 /// Keeps track of which block-value pairs are in BlockValueStack. 376 DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet; 377 378 /// Push BV onto BlockValueStack unless it's already in there. 379 /// Returns true on success. 380 bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) { 381 if (!BlockValueSet.insert(BV).second) 382 return false; // It's already in the stack. 383 384 LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in " 385 << BV.first->getName() << "\n"); 386 BlockValueStack.push_back(BV); 387 return true; 388 } 389 390 AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls. 391 const DataLayout &DL; ///< A mandatory DataLayout 392 393 /// Declaration of the llvm.experimental.guard() intrinsic, 394 /// if it exists in the module. 395 Function *GuardDecl; 396 397 std::optional<ValueLatticeElement> getBlockValue(Value *Val, BasicBlock *BB, 398 Instruction *CxtI); 399 std::optional<ValueLatticeElement> getEdgeValue(Value *V, BasicBlock *F, 400 BasicBlock *T, 401 Instruction *CxtI = nullptr); 402 403 // These methods process one work item and may add more. A false value 404 // returned means that the work item was not completely processed and must 405 // be revisited after going through the new items. 406 bool solveBlockValue(Value *Val, BasicBlock *BB); 407 std::optional<ValueLatticeElement> solveBlockValueImpl(Value *Val, 408 BasicBlock *BB); 409 std::optional<ValueLatticeElement> solveBlockValueNonLocal(Value *Val, 410 BasicBlock *BB); 411 std::optional<ValueLatticeElement> solveBlockValuePHINode(PHINode *PN, 412 BasicBlock *BB); 413 std::optional<ValueLatticeElement> solveBlockValueSelect(SelectInst *S, 414 BasicBlock *BB); 415 std::optional<ConstantRange> getRangeFor(Value *V, Instruction *CxtI, 416 BasicBlock *BB); 417 std::optional<ValueLatticeElement> solveBlockValueBinaryOpImpl( 418 Instruction *I, BasicBlock *BB, 419 std::function<ConstantRange(const ConstantRange &, const ConstantRange &)> 420 OpFn); 421 std::optional<ValueLatticeElement> 422 solveBlockValueBinaryOp(BinaryOperator *BBI, BasicBlock *BB); 423 std::optional<ValueLatticeElement> solveBlockValueCast(CastInst *CI, 424 BasicBlock *BB); 425 std::optional<ValueLatticeElement> 426 solveBlockValueOverflowIntrinsic(WithOverflowInst *WO, BasicBlock *BB); 427 std::optional<ValueLatticeElement> solveBlockValueIntrinsic(IntrinsicInst *II, 428 BasicBlock *BB); 429 std::optional<ValueLatticeElement> 430 solveBlockValueExtractValue(ExtractValueInst *EVI, BasicBlock *BB); 431 bool isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB); 432 void intersectAssumeOrGuardBlockValueConstantRange(Value *Val, 433 ValueLatticeElement &BBLV, 434 Instruction *BBI); 435 436 void solve(); 437 438 public: 439 /// This is the query interface to determine the lattice value for the 440 /// specified Value* at the context instruction (if specified) or at the 441 /// start of the block. 442 ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB, 443 Instruction *CxtI = nullptr); 444 445 /// This is the query interface to determine the lattice value for the 446 /// specified Value* at the specified instruction using only information 447 /// from assumes/guards and range metadata. Unlike getValueInBlock(), no 448 /// recursive query is performed. 449 ValueLatticeElement getValueAt(Value *V, Instruction *CxtI); 450 451 /// This is the query interface to determine the lattice 452 /// value for the specified Value* that is true on the specified edge. 453 ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB, 454 BasicBlock *ToBB, 455 Instruction *CxtI = nullptr); 456 457 /// Complete flush all previously computed values 458 void clear() { 459 TheCache.clear(); 460 } 461 462 /// Printing the LazyValueInfo Analysis. 463 void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { 464 LazyValueInfoAnnotatedWriter Writer(this, DTree); 465 F.print(OS, &Writer); 466 } 467 468 /// This is part of the update interface to inform the cache 469 /// that a block has been deleted. 470 void eraseBlock(BasicBlock *BB) { 471 TheCache.eraseBlock(BB); 472 } 473 474 /// This is the update interface to inform the cache that an edge from 475 /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc. 476 void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); 477 478 LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL, 479 Function *GuardDecl) 480 : AC(AC), DL(DL), GuardDecl(GuardDecl) {} 481 }; 482 } // end anonymous namespace 483 484 485 void LazyValueInfoImpl::solve() { 486 SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack( 487 BlockValueStack.begin(), BlockValueStack.end()); 488 489 unsigned processedCount = 0; 490 while (!BlockValueStack.empty()) { 491 processedCount++; 492 // Abort if we have to process too many values to get a result for this one. 493 // Because of the design of the overdefined cache currently being per-block 494 // to avoid naming-related issues (IE it wants to try to give different 495 // results for the same name in different blocks), overdefined results don't 496 // get cached globally, which in turn means we will often try to rediscover 497 // the same overdefined result again and again. Once something like 498 // PredicateInfo is used in LVI or CVP, we should be able to make the 499 // overdefined cache global, and remove this throttle. 500 if (processedCount > MaxProcessedPerValue) { 501 LLVM_DEBUG( 502 dbgs() << "Giving up on stack because we are getting too deep\n"); 503 // Fill in the original values 504 while (!StartingStack.empty()) { 505 std::pair<BasicBlock *, Value *> &e = StartingStack.back(); 506 TheCache.insertResult(e.second, e.first, 507 ValueLatticeElement::getOverdefined()); 508 StartingStack.pop_back(); 509 } 510 BlockValueSet.clear(); 511 BlockValueStack.clear(); 512 return; 513 } 514 std::pair<BasicBlock *, Value *> e = BlockValueStack.back(); 515 assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!"); 516 517 if (solveBlockValue(e.second, e.first)) { 518 // The work item was completely processed. 519 assert(BlockValueStack.back() == e && "Nothing should have been pushed!"); 520 #ifndef NDEBUG 521 std::optional<ValueLatticeElement> BBLV = 522 TheCache.getCachedValueInfo(e.second, e.first); 523 assert(BBLV && "Result should be in cache!"); 524 LLVM_DEBUG( 525 dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = " 526 << *BBLV << "\n"); 527 #endif 528 529 BlockValueStack.pop_back(); 530 BlockValueSet.erase(e); 531 } else { 532 // More work needs to be done before revisiting. 533 assert(BlockValueStack.back() != e && "Stack should have been pushed!"); 534 } 535 } 536 } 537 538 std::optional<ValueLatticeElement> 539 LazyValueInfoImpl::getBlockValue(Value *Val, BasicBlock *BB, 540 Instruction *CxtI) { 541 // If already a constant, there is nothing to compute. 542 if (Constant *VC = dyn_cast<Constant>(Val)) 543 return ValueLatticeElement::get(VC); 544 545 if (std::optional<ValueLatticeElement> OptLatticeVal = 546 TheCache.getCachedValueInfo(Val, BB)) { 547 intersectAssumeOrGuardBlockValueConstantRange(Val, *OptLatticeVal, CxtI); 548 return OptLatticeVal; 549 } 550 551 // We have hit a cycle, assume overdefined. 552 if (!pushBlockValue({ BB, Val })) 553 return ValueLatticeElement::getOverdefined(); 554 555 // Yet to be resolved. 556 return std::nullopt; 557 } 558 559 static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) { 560 switch (BBI->getOpcode()) { 561 default: break; 562 case Instruction::Load: 563 case Instruction::Call: 564 case Instruction::Invoke: 565 if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range)) 566 if (isa<IntegerType>(BBI->getType())) { 567 return ValueLatticeElement::getRange( 568 getConstantRangeFromMetadata(*Ranges)); 569 } 570 break; 571 }; 572 // Nothing known - will be intersected with other facts 573 return ValueLatticeElement::getOverdefined(); 574 } 575 576 bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) { 577 assert(!isa<Constant>(Val) && "Value should not be constant"); 578 assert(!TheCache.getCachedValueInfo(Val, BB) && 579 "Value should not be in cache"); 580 581 // Hold off inserting this value into the Cache in case we have to return 582 // false and come back later. 583 std::optional<ValueLatticeElement> Res = solveBlockValueImpl(Val, BB); 584 if (!Res) 585 // Work pushed, will revisit 586 return false; 587 588 TheCache.insertResult(Val, BB, *Res); 589 return true; 590 } 591 592 std::optional<ValueLatticeElement> 593 LazyValueInfoImpl::solveBlockValueImpl(Value *Val, BasicBlock *BB) { 594 Instruction *BBI = dyn_cast<Instruction>(Val); 595 if (!BBI || BBI->getParent() != BB) 596 return solveBlockValueNonLocal(Val, BB); 597 598 if (PHINode *PN = dyn_cast<PHINode>(BBI)) 599 return solveBlockValuePHINode(PN, BB); 600 601 if (auto *SI = dyn_cast<SelectInst>(BBI)) 602 return solveBlockValueSelect(SI, BB); 603 604 // If this value is a nonnull pointer, record it's range and bailout. Note 605 // that for all other pointer typed values, we terminate the search at the 606 // definition. We could easily extend this to look through geps, bitcasts, 607 // and the like to prove non-nullness, but it's not clear that's worth it 608 // compile time wise. The context-insensitive value walk done inside 609 // isKnownNonZero gets most of the profitable cases at much less expense. 610 // This does mean that we have a sensitivity to where the defining 611 // instruction is placed, even if it could legally be hoisted much higher. 612 // That is unfortunate. 613 PointerType *PT = dyn_cast<PointerType>(BBI->getType()); 614 if (PT && isKnownNonZero(BBI, DL)) 615 return ValueLatticeElement::getNot(ConstantPointerNull::get(PT)); 616 617 if (BBI->getType()->isIntegerTy()) { 618 if (auto *CI = dyn_cast<CastInst>(BBI)) 619 return solveBlockValueCast(CI, BB); 620 621 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI)) 622 return solveBlockValueBinaryOp(BO, BB); 623 624 if (auto *EVI = dyn_cast<ExtractValueInst>(BBI)) 625 return solveBlockValueExtractValue(EVI, BB); 626 627 if (auto *II = dyn_cast<IntrinsicInst>(BBI)) 628 return solveBlockValueIntrinsic(II, BB); 629 } 630 631 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 632 << "' - unknown inst def found.\n"); 633 return getFromRangeMetadata(BBI); 634 } 635 636 static void AddNonNullPointer(Value *Ptr, NonNullPointerSet &PtrSet) { 637 // TODO: Use NullPointerIsDefined instead. 638 if (Ptr->getType()->getPointerAddressSpace() == 0) 639 PtrSet.insert(getUnderlyingObject(Ptr)); 640 } 641 642 static void AddNonNullPointersByInstruction( 643 Instruction *I, NonNullPointerSet &PtrSet) { 644 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 645 AddNonNullPointer(L->getPointerOperand(), PtrSet); 646 } else if (StoreInst *S = dyn_cast<StoreInst>(I)) { 647 AddNonNullPointer(S->getPointerOperand(), PtrSet); 648 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 649 if (MI->isVolatile()) return; 650 651 // FIXME: check whether it has a valuerange that excludes zero? 652 ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength()); 653 if (!Len || Len->isZero()) return; 654 655 AddNonNullPointer(MI->getRawDest(), PtrSet); 656 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 657 AddNonNullPointer(MTI->getRawSource(), PtrSet); 658 } 659 } 660 661 bool LazyValueInfoImpl::isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB) { 662 if (NullPointerIsDefined(BB->getParent(), 663 Val->getType()->getPointerAddressSpace())) 664 return false; 665 666 Val = Val->stripInBoundsOffsets(); 667 return TheCache.isNonNullAtEndOfBlock(Val, BB, [](BasicBlock *BB) { 668 NonNullPointerSet NonNullPointers; 669 for (Instruction &I : *BB) 670 AddNonNullPointersByInstruction(&I, NonNullPointers); 671 return NonNullPointers; 672 }); 673 } 674 675 std::optional<ValueLatticeElement> 676 LazyValueInfoImpl::solveBlockValueNonLocal(Value *Val, BasicBlock *BB) { 677 ValueLatticeElement Result; // Start Undefined. 678 679 // If this is the entry block, we must be asking about an argument. The 680 // value is overdefined. 681 if (BB->isEntryBlock()) { 682 assert(isa<Argument>(Val) && "Unknown live-in to the entry block"); 683 return ValueLatticeElement::getOverdefined(); 684 } 685 686 // Loop over all of our predecessors, merging what we know from them into 687 // result. If we encounter an unexplored predecessor, we eagerly explore it 688 // in a depth first manner. In practice, this has the effect of discovering 689 // paths we can't analyze eagerly without spending compile times analyzing 690 // other paths. This heuristic benefits from the fact that predecessors are 691 // frequently arranged such that dominating ones come first and we quickly 692 // find a path to function entry. TODO: We should consider explicitly 693 // canonicalizing to make this true rather than relying on this happy 694 // accident. 695 for (BasicBlock *Pred : predecessors(BB)) { 696 std::optional<ValueLatticeElement> EdgeResult = getEdgeValue(Val, Pred, BB); 697 if (!EdgeResult) 698 // Explore that input, then return here 699 return std::nullopt; 700 701 Result.mergeIn(*EdgeResult); 702 703 // If we hit overdefined, exit early. The BlockVals entry is already set 704 // to overdefined. 705 if (Result.isOverdefined()) { 706 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 707 << "' - overdefined because of pred '" 708 << Pred->getName() << "' (non local).\n"); 709 return Result; 710 } 711 } 712 713 // Return the merged value, which is more precise than 'overdefined'. 714 assert(!Result.isOverdefined()); 715 return Result; 716 } 717 718 std::optional<ValueLatticeElement> 719 LazyValueInfoImpl::solveBlockValuePHINode(PHINode *PN, BasicBlock *BB) { 720 ValueLatticeElement Result; // Start Undefined. 721 722 // Loop over all of our predecessors, merging what we know from them into 723 // result. See the comment about the chosen traversal order in 724 // solveBlockValueNonLocal; the same reasoning applies here. 725 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 726 BasicBlock *PhiBB = PN->getIncomingBlock(i); 727 Value *PhiVal = PN->getIncomingValue(i); 728 // Note that we can provide PN as the context value to getEdgeValue, even 729 // though the results will be cached, because PN is the value being used as 730 // the cache key in the caller. 731 std::optional<ValueLatticeElement> EdgeResult = 732 getEdgeValue(PhiVal, PhiBB, BB, PN); 733 if (!EdgeResult) 734 // Explore that input, then return here 735 return std::nullopt; 736 737 Result.mergeIn(*EdgeResult); 738 739 // If we hit overdefined, exit early. The BlockVals entry is already set 740 // to overdefined. 741 if (Result.isOverdefined()) { 742 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 743 << "' - overdefined because of pred (local).\n"); 744 745 return Result; 746 } 747 } 748 749 // Return the merged value, which is more precise than 'overdefined'. 750 assert(!Result.isOverdefined() && "Possible PHI in entry block?"); 751 return Result; 752 } 753 754 static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, 755 bool isTrueDest = true); 756 757 // If we can determine a constraint on the value given conditions assumed by 758 // the program, intersect those constraints with BBLV 759 void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange( 760 Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) { 761 BBI = BBI ? BBI : dyn_cast<Instruction>(Val); 762 if (!BBI) 763 return; 764 765 BasicBlock *BB = BBI->getParent(); 766 for (auto &AssumeVH : AC->assumptionsFor(Val)) { 767 if (!AssumeVH) 768 continue; 769 770 // Only check assumes in the block of the context instruction. Other 771 // assumes will have already been taken into account when the value was 772 // propagated from predecessor blocks. 773 auto *I = cast<CallInst>(AssumeVH); 774 if (I->getParent() != BB || !isValidAssumeForContext(I, BBI)) 775 continue; 776 777 BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0))); 778 } 779 780 // If guards are not used in the module, don't spend time looking for them 781 if (GuardDecl && !GuardDecl->use_empty() && 782 BBI->getIterator() != BB->begin()) { 783 for (Instruction &I : make_range(std::next(BBI->getIterator().getReverse()), 784 BB->rend())) { 785 Value *Cond = nullptr; 786 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond)))) 787 BBLV = intersect(BBLV, getValueFromCondition(Val, Cond)); 788 } 789 } 790 791 if (BBLV.isOverdefined()) { 792 // Check whether we're checking at the terminator, and the pointer has 793 // been dereferenced in this block. 794 PointerType *PTy = dyn_cast<PointerType>(Val->getType()); 795 if (PTy && BB->getTerminator() == BBI && 796 isNonNullAtEndOfBlock(Val, BB)) 797 BBLV = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); 798 } 799 } 800 801 static ConstantRange getConstantRangeOrFull(const ValueLatticeElement &Val, 802 Type *Ty, const DataLayout &DL) { 803 if (Val.isConstantRange()) 804 return Val.getConstantRange(); 805 return ConstantRange::getFull(DL.getTypeSizeInBits(Ty)); 806 } 807 808 std::optional<ValueLatticeElement> 809 LazyValueInfoImpl::solveBlockValueSelect(SelectInst *SI, BasicBlock *BB) { 810 // Recurse on our inputs if needed 811 std::optional<ValueLatticeElement> OptTrueVal = 812 getBlockValue(SI->getTrueValue(), BB, SI); 813 if (!OptTrueVal) 814 return std::nullopt; 815 ValueLatticeElement &TrueVal = *OptTrueVal; 816 817 std::optional<ValueLatticeElement> OptFalseVal = 818 getBlockValue(SI->getFalseValue(), BB, SI); 819 if (!OptFalseVal) 820 return std::nullopt; 821 ValueLatticeElement &FalseVal = *OptFalseVal; 822 823 if (TrueVal.isConstantRange() || FalseVal.isConstantRange()) { 824 const ConstantRange &TrueCR = 825 getConstantRangeOrFull(TrueVal, SI->getType(), DL); 826 const ConstantRange &FalseCR = 827 getConstantRangeOrFull(FalseVal, SI->getType(), DL); 828 Value *LHS = nullptr; 829 Value *RHS = nullptr; 830 SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS); 831 // Is this a min specifically of our two inputs? (Avoid the risk of 832 // ValueTracking getting smarter looking back past our immediate inputs.) 833 if (SelectPatternResult::isMinOrMax(SPR.Flavor) && 834 ((LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) || 835 (RHS == SI->getTrueValue() && LHS == SI->getFalseValue()))) { 836 ConstantRange ResultCR = [&]() { 837 switch (SPR.Flavor) { 838 default: 839 llvm_unreachable("unexpected minmax type!"); 840 case SPF_SMIN: /// Signed minimum 841 return TrueCR.smin(FalseCR); 842 case SPF_UMIN: /// Unsigned minimum 843 return TrueCR.umin(FalseCR); 844 case SPF_SMAX: /// Signed maximum 845 return TrueCR.smax(FalseCR); 846 case SPF_UMAX: /// Unsigned maximum 847 return TrueCR.umax(FalseCR); 848 }; 849 }(); 850 return ValueLatticeElement::getRange( 851 ResultCR, TrueVal.isConstantRangeIncludingUndef() || 852 FalseVal.isConstantRangeIncludingUndef()); 853 } 854 855 if (SPR.Flavor == SPF_ABS) { 856 if (LHS == SI->getTrueValue()) 857 return ValueLatticeElement::getRange( 858 TrueCR.abs(), TrueVal.isConstantRangeIncludingUndef()); 859 if (LHS == SI->getFalseValue()) 860 return ValueLatticeElement::getRange( 861 FalseCR.abs(), FalseVal.isConstantRangeIncludingUndef()); 862 } 863 864 if (SPR.Flavor == SPF_NABS) { 865 ConstantRange Zero(APInt::getZero(TrueCR.getBitWidth())); 866 if (LHS == SI->getTrueValue()) 867 return ValueLatticeElement::getRange( 868 Zero.sub(TrueCR.abs()), FalseVal.isConstantRangeIncludingUndef()); 869 if (LHS == SI->getFalseValue()) 870 return ValueLatticeElement::getRange( 871 Zero.sub(FalseCR.abs()), FalseVal.isConstantRangeIncludingUndef()); 872 } 873 } 874 875 // Can we constrain the facts about the true and false values by using the 876 // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5). 877 // TODO: We could potentially refine an overdefined true value above. 878 Value *Cond = SI->getCondition(); 879 TrueVal = intersect(TrueVal, 880 getValueFromCondition(SI->getTrueValue(), Cond, true)); 881 FalseVal = intersect(FalseVal, 882 getValueFromCondition(SI->getFalseValue(), Cond, false)); 883 884 ValueLatticeElement Result = TrueVal; 885 Result.mergeIn(FalseVal); 886 return Result; 887 } 888 889 std::optional<ConstantRange> 890 LazyValueInfoImpl::getRangeFor(Value *V, Instruction *CxtI, BasicBlock *BB) { 891 std::optional<ValueLatticeElement> OptVal = getBlockValue(V, BB, CxtI); 892 if (!OptVal) 893 return std::nullopt; 894 return getConstantRangeOrFull(*OptVal, V->getType(), DL); 895 } 896 897 std::optional<ValueLatticeElement> 898 LazyValueInfoImpl::solveBlockValueCast(CastInst *CI, BasicBlock *BB) { 899 // Without knowing how wide the input is, we can't analyze it in any useful 900 // way. 901 if (!CI->getOperand(0)->getType()->isSized()) 902 return ValueLatticeElement::getOverdefined(); 903 904 // Filter out casts we don't know how to reason about before attempting to 905 // recurse on our operand. This can cut a long search short if we know we're 906 // not going to be able to get any useful information anways. 907 switch (CI->getOpcode()) { 908 case Instruction::Trunc: 909 case Instruction::SExt: 910 case Instruction::ZExt: 911 case Instruction::BitCast: 912 break; 913 default: 914 // Unhandled instructions are overdefined. 915 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 916 << "' - overdefined (unknown cast).\n"); 917 return ValueLatticeElement::getOverdefined(); 918 } 919 920 // Figure out the range of the LHS. If that fails, we still apply the 921 // transfer rule on the full set since we may be able to locally infer 922 // interesting facts. 923 std::optional<ConstantRange> LHSRes = getRangeFor(CI->getOperand(0), CI, BB); 924 if (!LHSRes) 925 // More work to do before applying this transfer rule. 926 return std::nullopt; 927 const ConstantRange &LHSRange = *LHSRes; 928 929 const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth(); 930 931 // NOTE: We're currently limited by the set of operations that ConstantRange 932 // can evaluate symbolically. Enhancing that set will allows us to analyze 933 // more definitions. 934 return ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(), 935 ResultBitWidth)); 936 } 937 938 std::optional<ValueLatticeElement> 939 LazyValueInfoImpl::solveBlockValueBinaryOpImpl( 940 Instruction *I, BasicBlock *BB, 941 std::function<ConstantRange(const ConstantRange &, const ConstantRange &)> 942 OpFn) { 943 // Figure out the ranges of the operands. If that fails, use a 944 // conservative range, but apply the transfer rule anyways. This 945 // lets us pick up facts from expressions like "and i32 (call i32 946 // @foo()), 32" 947 std::optional<ConstantRange> LHSRes = getRangeFor(I->getOperand(0), I, BB); 948 std::optional<ConstantRange> RHSRes = getRangeFor(I->getOperand(1), I, BB); 949 if (!LHSRes || !RHSRes) 950 // More work to do before applying this transfer rule. 951 return std::nullopt; 952 953 const ConstantRange &LHSRange = *LHSRes; 954 const ConstantRange &RHSRange = *RHSRes; 955 return ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange)); 956 } 957 958 std::optional<ValueLatticeElement> 959 LazyValueInfoImpl::solveBlockValueBinaryOp(BinaryOperator *BO, BasicBlock *BB) { 960 assert(BO->getOperand(0)->getType()->isSized() && 961 "all operands to binary operators are sized"); 962 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) { 963 unsigned NoWrapKind = 0; 964 if (OBO->hasNoUnsignedWrap()) 965 NoWrapKind |= OverflowingBinaryOperator::NoUnsignedWrap; 966 if (OBO->hasNoSignedWrap()) 967 NoWrapKind |= OverflowingBinaryOperator::NoSignedWrap; 968 969 return solveBlockValueBinaryOpImpl( 970 BO, BB, 971 [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) { 972 return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind); 973 }); 974 } 975 976 return solveBlockValueBinaryOpImpl( 977 BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) { 978 return CR1.binaryOp(BO->getOpcode(), CR2); 979 }); 980 } 981 982 std::optional<ValueLatticeElement> 983 LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(WithOverflowInst *WO, 984 BasicBlock *BB) { 985 return solveBlockValueBinaryOpImpl( 986 WO, BB, [WO](const ConstantRange &CR1, const ConstantRange &CR2) { 987 return CR1.binaryOp(WO->getBinaryOp(), CR2); 988 }); 989 } 990 991 std::optional<ValueLatticeElement> 992 LazyValueInfoImpl::solveBlockValueIntrinsic(IntrinsicInst *II, BasicBlock *BB) { 993 if (!ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) { 994 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 995 << "' - unknown intrinsic.\n"); 996 return getFromRangeMetadata(II); 997 } 998 999 SmallVector<ConstantRange, 2> OpRanges; 1000 for (Value *Op : II->args()) { 1001 std::optional<ConstantRange> Range = getRangeFor(Op, II, BB); 1002 if (!Range) 1003 return std::nullopt; 1004 OpRanges.push_back(*Range); 1005 } 1006 1007 return ValueLatticeElement::getRange( 1008 ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges)); 1009 } 1010 1011 std::optional<ValueLatticeElement> 1012 LazyValueInfoImpl::solveBlockValueExtractValue(ExtractValueInst *EVI, 1013 BasicBlock *BB) { 1014 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) 1015 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0) 1016 return solveBlockValueOverflowIntrinsic(WO, BB); 1017 1018 // Handle extractvalue of insertvalue to allow further simplification 1019 // based on replaced with.overflow intrinsics. 1020 if (Value *V = simplifyExtractValueInst( 1021 EVI->getAggregateOperand(), EVI->getIndices(), 1022 EVI->getModule()->getDataLayout())) 1023 return getBlockValue(V, BB, EVI); 1024 1025 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 1026 << "' - overdefined (unknown extractvalue).\n"); 1027 return ValueLatticeElement::getOverdefined(); 1028 } 1029 1030 static bool matchICmpOperand(APInt &Offset, Value *LHS, Value *Val, 1031 ICmpInst::Predicate Pred) { 1032 if (LHS == Val) 1033 return true; 1034 1035 // Handle range checking idiom produced by InstCombine. We will subtract the 1036 // offset from the allowed range for RHS in this case. 1037 const APInt *C; 1038 if (match(LHS, m_Add(m_Specific(Val), m_APInt(C)))) { 1039 Offset = *C; 1040 return true; 1041 } 1042 1043 // Handle the symmetric case. This appears in saturation patterns like 1044 // (x == 16) ? 16 : (x + 1). 1045 if (match(Val, m_Add(m_Specific(LHS), m_APInt(C)))) { 1046 Offset = -*C; 1047 return true; 1048 } 1049 1050 // If (x | y) < C, then (x < C) && (y < C). 1051 if (match(LHS, m_c_Or(m_Specific(Val), m_Value())) && 1052 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)) 1053 return true; 1054 1055 // If (x & y) > C, then (x > C) && (y > C). 1056 if (match(LHS, m_c_And(m_Specific(Val), m_Value())) && 1057 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)) 1058 return true; 1059 1060 return false; 1061 } 1062 1063 /// Get value range for a "(Val + Offset) Pred RHS" condition. 1064 static ValueLatticeElement getValueFromSimpleICmpCondition( 1065 CmpInst::Predicate Pred, Value *RHS, const APInt &Offset) { 1066 ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(), 1067 /*isFullSet=*/true); 1068 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) 1069 RHSRange = ConstantRange(CI->getValue()); 1070 else if (Instruction *I = dyn_cast<Instruction>(RHS)) 1071 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 1072 RHSRange = getConstantRangeFromMetadata(*Ranges); 1073 1074 ConstantRange TrueValues = 1075 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 1076 return ValueLatticeElement::getRange(TrueValues.subtract(Offset)); 1077 } 1078 1079 static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI, 1080 bool isTrueDest) { 1081 Value *LHS = ICI->getOperand(0); 1082 Value *RHS = ICI->getOperand(1); 1083 1084 // Get the predicate that must hold along the considered edge. 1085 CmpInst::Predicate EdgePred = 1086 isTrueDest ? ICI->getPredicate() : ICI->getInversePredicate(); 1087 1088 if (isa<Constant>(RHS)) { 1089 if (ICI->isEquality() && LHS == Val) { 1090 if (EdgePred == ICmpInst::ICMP_EQ) 1091 return ValueLatticeElement::get(cast<Constant>(RHS)); 1092 else if (!isa<UndefValue>(RHS)) 1093 return ValueLatticeElement::getNot(cast<Constant>(RHS)); 1094 } 1095 } 1096 1097 Type *Ty = Val->getType(); 1098 if (!Ty->isIntegerTy()) 1099 return ValueLatticeElement::getOverdefined(); 1100 1101 unsigned BitWidth = Ty->getScalarSizeInBits(); 1102 APInt Offset(BitWidth, 0); 1103 if (matchICmpOperand(Offset, LHS, Val, EdgePred)) 1104 return getValueFromSimpleICmpCondition(EdgePred, RHS, Offset); 1105 1106 CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(EdgePred); 1107 if (matchICmpOperand(Offset, RHS, Val, SwappedPred)) 1108 return getValueFromSimpleICmpCondition(SwappedPred, LHS, Offset); 1109 1110 const APInt *Mask, *C; 1111 if (match(LHS, m_And(m_Specific(Val), m_APInt(Mask))) && 1112 match(RHS, m_APInt(C))) { 1113 // If (Val & Mask) == C then all the masked bits are known and we can 1114 // compute a value range based on that. 1115 if (EdgePred == ICmpInst::ICMP_EQ) { 1116 KnownBits Known; 1117 Known.Zero = ~*C & *Mask; 1118 Known.One = *C & *Mask; 1119 return ValueLatticeElement::getRange( 1120 ConstantRange::fromKnownBits(Known, /*IsSigned*/ false)); 1121 } 1122 // If (Val & Mask) != 0 then the value must be larger than the lowest set 1123 // bit of Mask. 1124 if (EdgePred == ICmpInst::ICMP_NE && !Mask->isZero() && C->isZero()) { 1125 return ValueLatticeElement::getRange(ConstantRange::getNonEmpty( 1126 APInt::getOneBitSet(BitWidth, Mask->countTrailingZeros()), 1127 APInt::getZero(BitWidth))); 1128 } 1129 } 1130 1131 // If (X urem Modulus) >= C, then X >= C. 1132 // If trunc X >= C, then X >= C. 1133 // TODO: An upper bound could be computed as well. 1134 if (match(LHS, m_CombineOr(m_URem(m_Specific(Val), m_Value()), 1135 m_Trunc(m_Specific(Val)))) && 1136 match(RHS, m_APInt(C))) { 1137 // Use the icmp region so we don't have to deal with different predicates. 1138 ConstantRange CR = ConstantRange::makeExactICmpRegion(EdgePred, *C); 1139 if (!CR.isEmptySet()) 1140 return ValueLatticeElement::getRange(ConstantRange::getNonEmpty( 1141 CR.getUnsignedMin().zext(BitWidth), APInt(BitWidth, 0))); 1142 } 1143 1144 return ValueLatticeElement::getOverdefined(); 1145 } 1146 1147 // Handle conditions of the form 1148 // extractvalue(op.with.overflow(%x, C), 1). 1149 static ValueLatticeElement getValueFromOverflowCondition( 1150 Value *Val, WithOverflowInst *WO, bool IsTrueDest) { 1151 // TODO: This only works with a constant RHS for now. We could also compute 1152 // the range of the RHS, but this doesn't fit into the current structure of 1153 // the edge value calculation. 1154 const APInt *C; 1155 if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C))) 1156 return ValueLatticeElement::getOverdefined(); 1157 1158 // Calculate the possible values of %x for which no overflow occurs. 1159 ConstantRange NWR = ConstantRange::makeExactNoWrapRegion( 1160 WO->getBinaryOp(), *C, WO->getNoWrapKind()); 1161 1162 // If overflow is false, %x is constrained to NWR. If overflow is true, %x is 1163 // constrained to it's inverse (all values that might cause overflow). 1164 if (IsTrueDest) 1165 NWR = NWR.inverse(); 1166 return ValueLatticeElement::getRange(NWR); 1167 } 1168 1169 // Tracks a Value * condition and whether we're interested in it or its inverse 1170 typedef PointerIntPair<Value *, 1, bool> CondValue; 1171 1172 static std::optional<ValueLatticeElement> getValueFromConditionImpl( 1173 Value *Val, CondValue CondVal, bool isRevisit, 1174 SmallDenseMap<CondValue, ValueLatticeElement> &Visited, 1175 SmallVectorImpl<CondValue> &Worklist) { 1176 1177 Value *Cond = CondVal.getPointer(); 1178 bool isTrueDest = CondVal.getInt(); 1179 if (!isRevisit) { 1180 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond)) 1181 return getValueFromICmpCondition(Val, ICI, isTrueDest); 1182 1183 if (auto *EVI = dyn_cast<ExtractValueInst>(Cond)) 1184 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) 1185 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1) 1186 return getValueFromOverflowCondition(Val, WO, isTrueDest); 1187 } 1188 1189 Value *N; 1190 if (match(Cond, m_Not(m_Value(N)))) { 1191 CondValue NKey(N, !isTrueDest); 1192 auto NV = Visited.find(NKey); 1193 if (NV == Visited.end()) { 1194 Worklist.push_back(NKey); 1195 return std::nullopt; 1196 } 1197 return NV->second; 1198 } 1199 1200 Value *L, *R; 1201 bool IsAnd; 1202 if (match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))) 1203 IsAnd = true; 1204 else if (match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) 1205 IsAnd = false; 1206 else 1207 return ValueLatticeElement::getOverdefined(); 1208 1209 auto LV = Visited.find(CondValue(L, isTrueDest)); 1210 auto RV = Visited.find(CondValue(R, isTrueDest)); 1211 1212 // if (L && R) -> intersect L and R 1213 // if (!(L || R)) -> intersect !L and !R 1214 // if (L || R) -> union L and R 1215 // if (!(L && R)) -> union !L and !R 1216 if ((isTrueDest ^ IsAnd) && (LV != Visited.end())) { 1217 ValueLatticeElement V = LV->second; 1218 if (V.isOverdefined()) 1219 return V; 1220 if (RV != Visited.end()) { 1221 V.mergeIn(RV->second); 1222 return V; 1223 } 1224 } 1225 1226 if (LV == Visited.end() || RV == Visited.end()) { 1227 assert(!isRevisit); 1228 if (LV == Visited.end()) 1229 Worklist.push_back(CondValue(L, isTrueDest)); 1230 if (RV == Visited.end()) 1231 Worklist.push_back(CondValue(R, isTrueDest)); 1232 return std::nullopt; 1233 } 1234 1235 return intersect(LV->second, RV->second); 1236 } 1237 1238 ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, 1239 bool isTrueDest) { 1240 assert(Cond && "precondition"); 1241 SmallDenseMap<CondValue, ValueLatticeElement> Visited; 1242 SmallVector<CondValue> Worklist; 1243 1244 CondValue CondKey(Cond, isTrueDest); 1245 Worklist.push_back(CondKey); 1246 do { 1247 CondValue CurrentCond = Worklist.back(); 1248 // Insert an Overdefined placeholder into the set to prevent 1249 // infinite recursion if there exists IRs that use not 1250 // dominated by its def as in this example: 1251 // "%tmp3 = or i1 undef, %tmp4" 1252 // "%tmp4 = or i1 undef, %tmp3" 1253 auto Iter = 1254 Visited.try_emplace(CurrentCond, ValueLatticeElement::getOverdefined()); 1255 bool isRevisit = !Iter.second; 1256 std::optional<ValueLatticeElement> Result = getValueFromConditionImpl( 1257 Val, CurrentCond, isRevisit, Visited, Worklist); 1258 if (Result) { 1259 Visited[CurrentCond] = *Result; 1260 Worklist.pop_back(); 1261 } 1262 } while (!Worklist.empty()); 1263 1264 auto Result = Visited.find(CondKey); 1265 assert(Result != Visited.end()); 1266 return Result->second; 1267 } 1268 1269 // Return true if Usr has Op as an operand, otherwise false. 1270 static bool usesOperand(User *Usr, Value *Op) { 1271 return is_contained(Usr->operands(), Op); 1272 } 1273 1274 // Return true if the instruction type of Val is supported by 1275 // constantFoldUser(). Currently CastInst, BinaryOperator and FreezeInst only. 1276 // Call this before calling constantFoldUser() to find out if it's even worth 1277 // attempting to call it. 1278 static bool isOperationFoldable(User *Usr) { 1279 return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr) || isa<FreezeInst>(Usr); 1280 } 1281 1282 // Check if Usr can be simplified to an integer constant when the value of one 1283 // of its operands Op is an integer constant OpConstVal. If so, return it as an 1284 // lattice value range with a single element or otherwise return an overdefined 1285 // lattice value. 1286 static ValueLatticeElement constantFoldUser(User *Usr, Value *Op, 1287 const APInt &OpConstVal, 1288 const DataLayout &DL) { 1289 assert(isOperationFoldable(Usr) && "Precondition"); 1290 Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal); 1291 // Check if Usr can be simplified to a constant. 1292 if (auto *CI = dyn_cast<CastInst>(Usr)) { 1293 assert(CI->getOperand(0) == Op && "Operand 0 isn't Op"); 1294 if (auto *C = dyn_cast_or_null<ConstantInt>( 1295 simplifyCastInst(CI->getOpcode(), OpConst, 1296 CI->getDestTy(), DL))) { 1297 return ValueLatticeElement::getRange(ConstantRange(C->getValue())); 1298 } 1299 } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) { 1300 bool Op0Match = BO->getOperand(0) == Op; 1301 bool Op1Match = BO->getOperand(1) == Op; 1302 assert((Op0Match || Op1Match) && 1303 "Operand 0 nor Operand 1 isn't a match"); 1304 Value *LHS = Op0Match ? OpConst : BO->getOperand(0); 1305 Value *RHS = Op1Match ? OpConst : BO->getOperand(1); 1306 if (auto *C = dyn_cast_or_null<ConstantInt>( 1307 simplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) { 1308 return ValueLatticeElement::getRange(ConstantRange(C->getValue())); 1309 } 1310 } else if (isa<FreezeInst>(Usr)) { 1311 assert(cast<FreezeInst>(Usr)->getOperand(0) == Op && "Operand 0 isn't Op"); 1312 return ValueLatticeElement::getRange(ConstantRange(OpConstVal)); 1313 } 1314 return ValueLatticeElement::getOverdefined(); 1315 } 1316 1317 /// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if 1318 /// Val is not constrained on the edge. Result is unspecified if return value 1319 /// is false. 1320 static std::optional<ValueLatticeElement> getEdgeValueLocal(Value *Val, 1321 BasicBlock *BBFrom, 1322 BasicBlock *BBTo) { 1323 // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we 1324 // know that v != 0. 1325 if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) { 1326 // If this is a conditional branch and only one successor goes to BBTo, then 1327 // we may be able to infer something from the condition. 1328 if (BI->isConditional() && 1329 BI->getSuccessor(0) != BI->getSuccessor(1)) { 1330 bool isTrueDest = BI->getSuccessor(0) == BBTo; 1331 assert(BI->getSuccessor(!isTrueDest) == BBTo && 1332 "BBTo isn't a successor of BBFrom"); 1333 Value *Condition = BI->getCondition(); 1334 1335 // If V is the condition of the branch itself, then we know exactly what 1336 // it is. 1337 if (Condition == Val) 1338 return ValueLatticeElement::get(ConstantInt::get( 1339 Type::getInt1Ty(Val->getContext()), isTrueDest)); 1340 1341 // If the condition of the branch is an equality comparison, we may be 1342 // able to infer the value. 1343 ValueLatticeElement Result = getValueFromCondition(Val, Condition, 1344 isTrueDest); 1345 if (!Result.isOverdefined()) 1346 return Result; 1347 1348 if (User *Usr = dyn_cast<User>(Val)) { 1349 assert(Result.isOverdefined() && "Result isn't overdefined"); 1350 // Check with isOperationFoldable() first to avoid linearly iterating 1351 // over the operands unnecessarily which can be expensive for 1352 // instructions with many operands. 1353 if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) { 1354 const DataLayout &DL = BBTo->getModule()->getDataLayout(); 1355 if (usesOperand(Usr, Condition)) { 1356 // If Val has Condition as an operand and Val can be folded into a 1357 // constant with either Condition == true or Condition == false, 1358 // propagate the constant. 1359 // eg. 1360 // ; %Val is true on the edge to %then. 1361 // %Val = and i1 %Condition, true. 1362 // br %Condition, label %then, label %else 1363 APInt ConditionVal(1, isTrueDest ? 1 : 0); 1364 Result = constantFoldUser(Usr, Condition, ConditionVal, DL); 1365 } else { 1366 // If one of Val's operand has an inferred value, we may be able to 1367 // infer the value of Val. 1368 // eg. 1369 // ; %Val is 94 on the edge to %then. 1370 // %Val = add i8 %Op, 1 1371 // %Condition = icmp eq i8 %Op, 93 1372 // br i1 %Condition, label %then, label %else 1373 for (unsigned i = 0; i < Usr->getNumOperands(); ++i) { 1374 Value *Op = Usr->getOperand(i); 1375 ValueLatticeElement OpLatticeVal = 1376 getValueFromCondition(Op, Condition, isTrueDest); 1377 if (std::optional<APInt> OpConst = 1378 OpLatticeVal.asConstantInteger()) { 1379 Result = constantFoldUser(Usr, Op, *OpConst, DL); 1380 break; 1381 } 1382 } 1383 } 1384 } 1385 } 1386 if (!Result.isOverdefined()) 1387 return Result; 1388 } 1389 } 1390 1391 // If the edge was formed by a switch on the value, then we may know exactly 1392 // what it is. 1393 if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) { 1394 Value *Condition = SI->getCondition(); 1395 if (!isa<IntegerType>(Val->getType())) 1396 return std::nullopt; 1397 bool ValUsesConditionAndMayBeFoldable = false; 1398 if (Condition != Val) { 1399 // Check if Val has Condition as an operand. 1400 if (User *Usr = dyn_cast<User>(Val)) 1401 ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) && 1402 usesOperand(Usr, Condition); 1403 if (!ValUsesConditionAndMayBeFoldable) 1404 return std::nullopt; 1405 } 1406 assert((Condition == Val || ValUsesConditionAndMayBeFoldable) && 1407 "Condition != Val nor Val doesn't use Condition"); 1408 1409 bool DefaultCase = SI->getDefaultDest() == BBTo; 1410 unsigned BitWidth = Val->getType()->getIntegerBitWidth(); 1411 ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/); 1412 1413 for (auto Case : SI->cases()) { 1414 APInt CaseValue = Case.getCaseValue()->getValue(); 1415 ConstantRange EdgeVal(CaseValue); 1416 if (ValUsesConditionAndMayBeFoldable) { 1417 User *Usr = cast<User>(Val); 1418 const DataLayout &DL = BBTo->getModule()->getDataLayout(); 1419 ValueLatticeElement EdgeLatticeVal = 1420 constantFoldUser(Usr, Condition, CaseValue, DL); 1421 if (EdgeLatticeVal.isOverdefined()) 1422 return std::nullopt; 1423 EdgeVal = EdgeLatticeVal.getConstantRange(); 1424 } 1425 if (DefaultCase) { 1426 // It is possible that the default destination is the destination of 1427 // some cases. We cannot perform difference for those cases. 1428 // We know Condition != CaseValue in BBTo. In some cases we can use 1429 // this to infer Val == f(Condition) is != f(CaseValue). For now, we 1430 // only do this when f is identity (i.e. Val == Condition), but we 1431 // should be able to do this for any injective f. 1432 if (Case.getCaseSuccessor() != BBTo && Condition == Val) 1433 EdgesVals = EdgesVals.difference(EdgeVal); 1434 } else if (Case.getCaseSuccessor() == BBTo) 1435 EdgesVals = EdgesVals.unionWith(EdgeVal); 1436 } 1437 return ValueLatticeElement::getRange(std::move(EdgesVals)); 1438 } 1439 return std::nullopt; 1440 } 1441 1442 /// Compute the value of Val on the edge BBFrom -> BBTo or the value at 1443 /// the basic block if the edge does not constrain Val. 1444 std::optional<ValueLatticeElement> 1445 LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom, 1446 BasicBlock *BBTo, Instruction *CxtI) { 1447 // If already a constant, there is nothing to compute. 1448 if (Constant *VC = dyn_cast<Constant>(Val)) 1449 return ValueLatticeElement::get(VC); 1450 1451 ValueLatticeElement LocalResult = 1452 getEdgeValueLocal(Val, BBFrom, BBTo) 1453 .value_or(ValueLatticeElement::getOverdefined()); 1454 if (hasSingleValue(LocalResult)) 1455 // Can't get any more precise here 1456 return LocalResult; 1457 1458 std::optional<ValueLatticeElement> OptInBlock = 1459 getBlockValue(Val, BBFrom, BBFrom->getTerminator()); 1460 if (!OptInBlock) 1461 return std::nullopt; 1462 ValueLatticeElement &InBlock = *OptInBlock; 1463 1464 // We can use the context instruction (generically the ultimate instruction 1465 // the calling pass is trying to simplify) here, even though the result of 1466 // this function is generally cached when called from the solve* functions 1467 // (and that cached result might be used with queries using a different 1468 // context instruction), because when this function is called from the solve* 1469 // functions, the context instruction is not provided. When called from 1470 // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided, 1471 // but then the result is not cached. 1472 intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI); 1473 1474 return intersect(LocalResult, InBlock); 1475 } 1476 1477 ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB, 1478 Instruction *CxtI) { 1479 LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" 1480 << BB->getName() << "'\n"); 1481 1482 assert(BlockValueStack.empty() && BlockValueSet.empty()); 1483 std::optional<ValueLatticeElement> OptResult = getBlockValue(V, BB, CxtI); 1484 if (!OptResult) { 1485 solve(); 1486 OptResult = getBlockValue(V, BB, CxtI); 1487 assert(OptResult && "Value not available after solving"); 1488 } 1489 1490 ValueLatticeElement Result = *OptResult; 1491 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); 1492 return Result; 1493 } 1494 1495 ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) { 1496 LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName() 1497 << "'\n"); 1498 1499 if (auto *C = dyn_cast<Constant>(V)) 1500 return ValueLatticeElement::get(C); 1501 1502 ValueLatticeElement Result = ValueLatticeElement::getOverdefined(); 1503 if (auto *I = dyn_cast<Instruction>(V)) 1504 Result = getFromRangeMetadata(I); 1505 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); 1506 1507 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); 1508 return Result; 1509 } 1510 1511 ValueLatticeElement LazyValueInfoImpl:: 1512 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, 1513 Instruction *CxtI) { 1514 LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" 1515 << FromBB->getName() << "' to '" << ToBB->getName() 1516 << "'\n"); 1517 1518 std::optional<ValueLatticeElement> Result = 1519 getEdgeValue(V, FromBB, ToBB, CxtI); 1520 if (!Result) { 1521 solve(); 1522 Result = getEdgeValue(V, FromBB, ToBB, CxtI); 1523 assert(Result && "More work to do after problem solved?"); 1524 } 1525 1526 LLVM_DEBUG(dbgs() << " Result = " << *Result << "\n"); 1527 return *Result; 1528 } 1529 1530 void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, 1531 BasicBlock *NewSucc) { 1532 TheCache.threadEdgeImpl(OldSucc, NewSucc); 1533 } 1534 1535 //===----------------------------------------------------------------------===// 1536 // LazyValueInfo Impl 1537 //===----------------------------------------------------------------------===// 1538 1539 /// This lazily constructs the LazyValueInfoImpl. 1540 static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC, 1541 const Module *M) { 1542 if (!PImpl) { 1543 assert(M && "getCache() called with a null Module"); 1544 const DataLayout &DL = M->getDataLayout(); 1545 Function *GuardDecl = M->getFunction( 1546 Intrinsic::getName(Intrinsic::experimental_guard)); 1547 PImpl = new LazyValueInfoImpl(AC, DL, GuardDecl); 1548 } 1549 return *static_cast<LazyValueInfoImpl*>(PImpl); 1550 } 1551 1552 bool LazyValueInfoWrapperPass::runOnFunction(Function &F) { 1553 Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1554 Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1555 1556 if (Info.PImpl) 1557 getImpl(Info.PImpl, Info.AC, F.getParent()).clear(); 1558 1559 // Fully lazy. 1560 return false; 1561 } 1562 1563 void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1564 AU.setPreservesAll(); 1565 AU.addRequired<AssumptionCacheTracker>(); 1566 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1567 } 1568 1569 LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; } 1570 1571 LazyValueInfo::~LazyValueInfo() { releaseMemory(); } 1572 1573 void LazyValueInfo::releaseMemory() { 1574 // If the cache was allocated, free it. 1575 if (PImpl) { 1576 delete &getImpl(PImpl, AC, nullptr); 1577 PImpl = nullptr; 1578 } 1579 } 1580 1581 bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA, 1582 FunctionAnalysisManager::Invalidator &Inv) { 1583 // We need to invalidate if we have either failed to preserve this analyses 1584 // result directly or if any of its dependencies have been invalidated. 1585 auto PAC = PA.getChecker<LazyValueAnalysis>(); 1586 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>())) 1587 return true; 1588 1589 return false; 1590 } 1591 1592 void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); } 1593 1594 LazyValueInfo LazyValueAnalysis::run(Function &F, 1595 FunctionAnalysisManager &FAM) { 1596 auto &AC = FAM.getResult<AssumptionAnalysis>(F); 1597 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 1598 1599 return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI); 1600 } 1601 1602 /// Returns true if we can statically tell that this value will never be a 1603 /// "useful" constant. In practice, this means we've got something like an 1604 /// alloca or a malloc call for which a comparison against a constant can 1605 /// only be guarding dead code. Note that we are potentially giving up some 1606 /// precision in dead code (a constant result) in favour of avoiding a 1607 /// expensive search for a easily answered common query. 1608 static bool isKnownNonConstant(Value *V) { 1609 V = V->stripPointerCasts(); 1610 // The return val of alloc cannot be a Constant. 1611 if (isa<AllocaInst>(V)) 1612 return true; 1613 return false; 1614 } 1615 1616 Constant *LazyValueInfo::getConstant(Value *V, Instruction *CxtI) { 1617 // Bail out early if V is known not to be a Constant. 1618 if (isKnownNonConstant(V)) 1619 return nullptr; 1620 1621 BasicBlock *BB = CxtI->getParent(); 1622 ValueLatticeElement Result = 1623 getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI); 1624 1625 if (Result.isConstant()) 1626 return Result.getConstant(); 1627 if (Result.isConstantRange()) { 1628 const ConstantRange &CR = Result.getConstantRange(); 1629 if (const APInt *SingleVal = CR.getSingleElement()) 1630 return ConstantInt::get(V->getContext(), *SingleVal); 1631 } 1632 return nullptr; 1633 } 1634 1635 ConstantRange LazyValueInfo::getConstantRange(Value *V, Instruction *CxtI, 1636 bool UndefAllowed) { 1637 assert(V->getType()->isIntegerTy()); 1638 unsigned Width = V->getType()->getIntegerBitWidth(); 1639 BasicBlock *BB = CxtI->getParent(); 1640 ValueLatticeElement Result = 1641 getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI); 1642 if (Result.isUnknown()) 1643 return ConstantRange::getEmpty(Width); 1644 if (Result.isConstantRange(UndefAllowed)) 1645 return Result.getConstantRange(UndefAllowed); 1646 // We represent ConstantInt constants as constant ranges but other kinds 1647 // of integer constants, i.e. ConstantExpr will be tagged as constants 1648 assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && 1649 "ConstantInt value must be represented as constantrange"); 1650 return ConstantRange::getFull(Width); 1651 } 1652 1653 ConstantRange LazyValueInfo::getConstantRangeAtUse(const Use &U, 1654 bool UndefAllowed) { 1655 Value *V = U.get(); 1656 ConstantRange CR = 1657 getConstantRange(V, cast<Instruction>(U.getUser()), UndefAllowed); 1658 1659 // Check whether the only (possibly transitive) use of the value is in a 1660 // position where V can be constrained by a select or branch condition. 1661 const Use *CurrU = &U; 1662 // TODO: Increase limit? 1663 const unsigned MaxUsesToInspect = 3; 1664 for (unsigned I = 0; I < MaxUsesToInspect; ++I) { 1665 std::optional<ValueLatticeElement> CondVal; 1666 auto *CurrI = cast<Instruction>(CurrU->getUser()); 1667 if (auto *SI = dyn_cast<SelectInst>(CurrI)) { 1668 if (CurrU->getOperandNo() == 1) 1669 CondVal = getValueFromCondition(V, SI->getCondition(), true); 1670 else if (CurrU->getOperandNo() == 2) 1671 CondVal = getValueFromCondition(V, SI->getCondition(), false); 1672 } else if (auto *PHI = dyn_cast<PHINode>(CurrI)) { 1673 // TODO: Use non-local query? 1674 CondVal = 1675 getEdgeValueLocal(V, PHI->getIncomingBlock(*CurrU), PHI->getParent()); 1676 } 1677 if (CondVal && CondVal->isConstantRange()) 1678 CR = CR.intersectWith(CondVal->getConstantRange()); 1679 1680 // Only follow one-use chain, to allow direct intersection of conditions. 1681 // If there are multiple uses, we would have to intersect with the union of 1682 // all conditions at different uses. 1683 // Stop walking if we hit a non-speculatable instruction. Even if the 1684 // result is only used under a specific condition, executing the 1685 // instruction itself may cause side effects or UB already. 1686 // This also disallows looking through phi nodes: If the phi node is part 1687 // of a cycle, we might end up reasoning about values from different cycle 1688 // iterations (PR60629). 1689 if (!CurrI->hasOneUse() || !isSafeToSpeculativelyExecute(CurrI)) 1690 break; 1691 CurrU = &*CurrI->use_begin(); 1692 } 1693 return CR; 1694 } 1695 1696 /// Determine whether the specified value is known to be a 1697 /// constant on the specified edge. Return null if not. 1698 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, 1699 BasicBlock *ToBB, 1700 Instruction *CxtI) { 1701 Module *M = FromBB->getModule(); 1702 ValueLatticeElement Result = 1703 getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI); 1704 1705 if (Result.isConstant()) 1706 return Result.getConstant(); 1707 if (Result.isConstantRange()) { 1708 const ConstantRange &CR = Result.getConstantRange(); 1709 if (const APInt *SingleVal = CR.getSingleElement()) 1710 return ConstantInt::get(V->getContext(), *SingleVal); 1711 } 1712 return nullptr; 1713 } 1714 1715 ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V, 1716 BasicBlock *FromBB, 1717 BasicBlock *ToBB, 1718 Instruction *CxtI) { 1719 unsigned Width = V->getType()->getIntegerBitWidth(); 1720 Module *M = FromBB->getModule(); 1721 ValueLatticeElement Result = 1722 getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI); 1723 1724 if (Result.isUnknown()) 1725 return ConstantRange::getEmpty(Width); 1726 if (Result.isConstantRange()) 1727 return Result.getConstantRange(); 1728 // We represent ConstantInt constants as constant ranges but other kinds 1729 // of integer constants, i.e. ConstantExpr will be tagged as constants 1730 assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && 1731 "ConstantInt value must be represented as constantrange"); 1732 return ConstantRange::getFull(Width); 1733 } 1734 1735 static LazyValueInfo::Tristate 1736 getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val, 1737 const DataLayout &DL, TargetLibraryInfo *TLI) { 1738 // If we know the value is a constant, evaluate the conditional. 1739 Constant *Res = nullptr; 1740 if (Val.isConstant()) { 1741 Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI); 1742 if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res)) 1743 return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True; 1744 return LazyValueInfo::Unknown; 1745 } 1746 1747 if (Val.isConstantRange()) { 1748 ConstantInt *CI = dyn_cast<ConstantInt>(C); 1749 if (!CI) return LazyValueInfo::Unknown; 1750 1751 const ConstantRange &CR = Val.getConstantRange(); 1752 if (Pred == ICmpInst::ICMP_EQ) { 1753 if (!CR.contains(CI->getValue())) 1754 return LazyValueInfo::False; 1755 1756 if (CR.isSingleElement()) 1757 return LazyValueInfo::True; 1758 } else if (Pred == ICmpInst::ICMP_NE) { 1759 if (!CR.contains(CI->getValue())) 1760 return LazyValueInfo::True; 1761 1762 if (CR.isSingleElement()) 1763 return LazyValueInfo::False; 1764 } else { 1765 // Handle more complex predicates. 1766 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion( 1767 (ICmpInst::Predicate)Pred, CI->getValue()); 1768 if (TrueValues.contains(CR)) 1769 return LazyValueInfo::True; 1770 if (TrueValues.inverse().contains(CR)) 1771 return LazyValueInfo::False; 1772 } 1773 return LazyValueInfo::Unknown; 1774 } 1775 1776 if (Val.isNotConstant()) { 1777 // If this is an equality comparison, we can try to fold it knowing that 1778 // "V != C1". 1779 if (Pred == ICmpInst::ICMP_EQ) { 1780 // !C1 == C -> false iff C1 == C. 1781 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, 1782 Val.getNotConstant(), C, DL, 1783 TLI); 1784 if (Res->isNullValue()) 1785 return LazyValueInfo::False; 1786 } else if (Pred == ICmpInst::ICMP_NE) { 1787 // !C1 != C -> true iff C1 == C. 1788 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, 1789 Val.getNotConstant(), C, DL, 1790 TLI); 1791 if (Res->isNullValue()) 1792 return LazyValueInfo::True; 1793 } 1794 return LazyValueInfo::Unknown; 1795 } 1796 1797 return LazyValueInfo::Unknown; 1798 } 1799 1800 /// Determine whether the specified value comparison with a constant is known to 1801 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate. 1802 LazyValueInfo::Tristate 1803 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, 1804 BasicBlock *FromBB, BasicBlock *ToBB, 1805 Instruction *CxtI) { 1806 Module *M = FromBB->getModule(); 1807 ValueLatticeElement Result = 1808 getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI); 1809 1810 return getPredicateResult(Pred, C, Result, M->getDataLayout(), TLI); 1811 } 1812 1813 LazyValueInfo::Tristate 1814 LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C, 1815 Instruction *CxtI, bool UseBlockValue) { 1816 // Is or is not NonNull are common predicates being queried. If 1817 // isKnownNonZero can tell us the result of the predicate, we can 1818 // return it quickly. But this is only a fastpath, and falling 1819 // through would still be correct. 1820 Module *M = CxtI->getModule(); 1821 const DataLayout &DL = M->getDataLayout(); 1822 if (V->getType()->isPointerTy() && C->isNullValue() && 1823 isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) { 1824 if (Pred == ICmpInst::ICMP_EQ) 1825 return LazyValueInfo::False; 1826 else if (Pred == ICmpInst::ICMP_NE) 1827 return LazyValueInfo::True; 1828 } 1829 1830 ValueLatticeElement Result = UseBlockValue 1831 ? getImpl(PImpl, AC, M).getValueInBlock(V, CxtI->getParent(), CxtI) 1832 : getImpl(PImpl, AC, M).getValueAt(V, CxtI); 1833 Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI); 1834 if (Ret != Unknown) 1835 return Ret; 1836 1837 // Note: The following bit of code is somewhat distinct from the rest of LVI; 1838 // LVI as a whole tries to compute a lattice value which is conservatively 1839 // correct at a given location. In this case, we have a predicate which we 1840 // weren't able to prove about the merged result, and we're pushing that 1841 // predicate back along each incoming edge to see if we can prove it 1842 // separately for each input. As a motivating example, consider: 1843 // bb1: 1844 // %v1 = ... ; constantrange<1, 5> 1845 // br label %merge 1846 // bb2: 1847 // %v2 = ... ; constantrange<10, 20> 1848 // br label %merge 1849 // merge: 1850 // %phi = phi [%v1, %v2] ; constantrange<1,20> 1851 // %pred = icmp eq i32 %phi, 8 1852 // We can't tell from the lattice value for '%phi' that '%pred' is false 1853 // along each path, but by checking the predicate over each input separately, 1854 // we can. 1855 // We limit the search to one step backwards from the current BB and value. 1856 // We could consider extending this to search further backwards through the 1857 // CFG and/or value graph, but there are non-obvious compile time vs quality 1858 // tradeoffs. 1859 BasicBlock *BB = CxtI->getParent(); 1860 1861 // Function entry or an unreachable block. Bail to avoid confusing 1862 // analysis below. 1863 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1864 if (PI == PE) 1865 return Unknown; 1866 1867 // If V is a PHI node in the same block as the context, we need to ask 1868 // questions about the predicate as applied to the incoming value along 1869 // each edge. This is useful for eliminating cases where the predicate is 1870 // known along all incoming edges. 1871 if (auto *PHI = dyn_cast<PHINode>(V)) 1872 if (PHI->getParent() == BB) { 1873 Tristate Baseline = Unknown; 1874 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) { 1875 Value *Incoming = PHI->getIncomingValue(i); 1876 BasicBlock *PredBB = PHI->getIncomingBlock(i); 1877 // Note that PredBB may be BB itself. 1878 Tristate Result = 1879 getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, CxtI); 1880 1881 // Keep going as long as we've seen a consistent known result for 1882 // all inputs. 1883 Baseline = (i == 0) ? Result /* First iteration */ 1884 : (Baseline == Result ? Baseline 1885 : Unknown); /* All others */ 1886 if (Baseline == Unknown) 1887 break; 1888 } 1889 if (Baseline != Unknown) 1890 return Baseline; 1891 } 1892 1893 // For a comparison where the V is outside this block, it's possible 1894 // that we've branched on it before. Look to see if the value is known 1895 // on all incoming edges. 1896 if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB) { 1897 // For predecessor edge, determine if the comparison is true or false 1898 // on that edge. If they're all true or all false, we can conclude 1899 // the value of the comparison in this block. 1900 Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); 1901 if (Baseline != Unknown) { 1902 // Check that all remaining incoming values match the first one. 1903 while (++PI != PE) { 1904 Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); 1905 if (Ret != Baseline) 1906 break; 1907 } 1908 // If we terminated early, then one of the values didn't match. 1909 if (PI == PE) { 1910 return Baseline; 1911 } 1912 } 1913 } 1914 1915 return Unknown; 1916 } 1917 1918 LazyValueInfo::Tristate LazyValueInfo::getPredicateAt(unsigned P, Value *LHS, 1919 Value *RHS, 1920 Instruction *CxtI, 1921 bool UseBlockValue) { 1922 CmpInst::Predicate Pred = (CmpInst::Predicate)P; 1923 1924 if (auto *C = dyn_cast<Constant>(RHS)) 1925 return getPredicateAt(P, LHS, C, CxtI, UseBlockValue); 1926 if (auto *C = dyn_cast<Constant>(LHS)) 1927 return getPredicateAt(CmpInst::getSwappedPredicate(Pred), RHS, C, CxtI, 1928 UseBlockValue); 1929 1930 // Got two non-Constant values. Try to determine the comparison results based 1931 // on the block values of the two operands, e.g. because they have 1932 // non-overlapping ranges. 1933 if (UseBlockValue) { 1934 Module *M = CxtI->getModule(); 1935 ValueLatticeElement L = 1936 getImpl(PImpl, AC, M).getValueInBlock(LHS, CxtI->getParent(), CxtI); 1937 if (L.isOverdefined()) 1938 return LazyValueInfo::Unknown; 1939 1940 ValueLatticeElement R = 1941 getImpl(PImpl, AC, M).getValueInBlock(RHS, CxtI->getParent(), CxtI); 1942 Type *Ty = CmpInst::makeCmpResultType(LHS->getType()); 1943 if (Constant *Res = L.getCompare((CmpInst::Predicate)P, Ty, R, 1944 M->getDataLayout())) { 1945 if (Res->isNullValue()) 1946 return LazyValueInfo::False; 1947 if (Res->isOneValue()) 1948 return LazyValueInfo::True; 1949 } 1950 } 1951 return LazyValueInfo::Unknown; 1952 } 1953 1954 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, 1955 BasicBlock *NewSucc) { 1956 if (PImpl) { 1957 getImpl(PImpl, AC, PredBB->getModule()) 1958 .threadEdge(PredBB, OldSucc, NewSucc); 1959 } 1960 } 1961 1962 void LazyValueInfo::eraseBlock(BasicBlock *BB) { 1963 if (PImpl) { 1964 getImpl(PImpl, AC, BB->getModule()).eraseBlock(BB); 1965 } 1966 } 1967 1968 void LazyValueInfo::clear(const Module *M) { 1969 if (PImpl) { 1970 getImpl(PImpl, AC, M).clear(); 1971 } 1972 } 1973 1974 void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { 1975 if (PImpl) { 1976 getImpl(PImpl, AC, F.getParent()).printLVI(F, DTree, OS); 1977 } 1978 } 1979 1980 // Print the LVI for the function arguments at the start of each basic block. 1981 void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot( 1982 const BasicBlock *BB, formatted_raw_ostream &OS) { 1983 // Find if there are latticevalues defined for arguments of the function. 1984 auto *F = BB->getParent(); 1985 for (const auto &Arg : F->args()) { 1986 ValueLatticeElement Result = LVIImpl->getValueInBlock( 1987 const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB)); 1988 if (Result.isUnknown()) 1989 continue; 1990 OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n"; 1991 } 1992 } 1993 1994 // This function prints the LVI analysis for the instruction I at the beginning 1995 // of various basic blocks. It relies on calculated values that are stored in 1996 // the LazyValueInfoCache, and in the absence of cached values, recalculate the 1997 // LazyValueInfo for `I`, and print that info. 1998 void LazyValueInfoAnnotatedWriter::emitInstructionAnnot( 1999 const Instruction *I, formatted_raw_ostream &OS) { 2000 2001 auto *ParentBB = I->getParent(); 2002 SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI; 2003 // We can generate (solve) LVI values only for blocks that are dominated by 2004 // the I's parent. However, to avoid generating LVI for all dominating blocks, 2005 // that contain redundant/uninteresting information, we print LVI for 2006 // blocks that may use this LVI information (such as immediate successor 2007 // blocks, and blocks that contain uses of `I`). 2008 auto printResult = [&](const BasicBlock *BB) { 2009 if (!BlocksContainingLVI.insert(BB).second) 2010 return; 2011 ValueLatticeElement Result = LVIImpl->getValueInBlock( 2012 const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB)); 2013 OS << "; LatticeVal for: '" << *I << "' in BB: '"; 2014 BB->printAsOperand(OS, false); 2015 OS << "' is: " << Result << "\n"; 2016 }; 2017 2018 printResult(ParentBB); 2019 // Print the LVI analysis results for the immediate successor blocks, that 2020 // are dominated by `ParentBB`. 2021 for (const auto *BBSucc : successors(ParentBB)) 2022 if (DT.dominates(ParentBB, BBSucc)) 2023 printResult(BBSucc); 2024 2025 // Print LVI in blocks where `I` is used. 2026 for (const auto *U : I->users()) 2027 if (auto *UseI = dyn_cast<Instruction>(U)) 2028 if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent())) 2029 printResult(UseI->getParent()); 2030 2031 } 2032 2033 namespace { 2034 // Printer class for LazyValueInfo results. 2035 class LazyValueInfoPrinter : public FunctionPass { 2036 public: 2037 static char ID; // Pass identification, replacement for typeid 2038 LazyValueInfoPrinter() : FunctionPass(ID) { 2039 initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry()); 2040 } 2041 2042 void getAnalysisUsage(AnalysisUsage &AU) const override { 2043 AU.setPreservesAll(); 2044 AU.addRequired<LazyValueInfoWrapperPass>(); 2045 AU.addRequired<DominatorTreeWrapperPass>(); 2046 } 2047 2048 // Get the mandatory dominator tree analysis and pass this in to the 2049 // LVIPrinter. We cannot rely on the LVI's DT, since it's optional. 2050 bool runOnFunction(Function &F) override { 2051 dbgs() << "LVI for function '" << F.getName() << "':\n"; 2052 auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 2053 auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2054 LVI.printLVI(F, DTree, dbgs()); 2055 return false; 2056 } 2057 }; 2058 } 2059 2060 char LazyValueInfoPrinter::ID = 0; 2061 INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info", 2062 "Lazy Value Info Printer Pass", false, false) 2063 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 2064 INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info", 2065 "Lazy Value Info Printer Pass", false, false) 2066