xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/LazyValueInfo.cpp (revision ac77b2621508c6a50ab01d07fe8d43795d908f05)
1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interface for lazy computation of value constraint
10 // information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/LazyValueInfo.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/Analysis/ValueLattice.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/AssemblyAnnotationWriter.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/ValueHandle.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/FormattedStream.h"
39 #include "llvm/Support/KnownBits.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <optional>
42 using namespace llvm;
43 using namespace PatternMatch;
44 
45 #define DEBUG_TYPE "lazy-value-info"
46 
47 // This is the number of worklist items we will process to try to discover an
48 // answer for a given value.
49 static const unsigned MaxProcessedPerValue = 500;
50 
51 char LazyValueInfoWrapperPass::ID = 0;
52 LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) {
53   initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry());
54 }
55 INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info",
56                 "Lazy Value Information Analysis", false, true)
57 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
58 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
59 INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info",
60                 "Lazy Value Information Analysis", false, true)
61 
62 namespace llvm {
63   FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); }
64 }
65 
66 AnalysisKey LazyValueAnalysis::Key;
67 
68 /// Returns true if this lattice value represents at most one possible value.
69 /// This is as precise as any lattice value can get while still representing
70 /// reachable code.
71 static bool hasSingleValue(const ValueLatticeElement &Val) {
72   if (Val.isConstantRange() &&
73       Val.getConstantRange().isSingleElement())
74     // Integer constants are single element ranges
75     return true;
76   if (Val.isConstant())
77     // Non integer constants
78     return true;
79   return false;
80 }
81 
82 /// Combine two sets of facts about the same value into a single set of
83 /// facts.  Note that this method is not suitable for merging facts along
84 /// different paths in a CFG; that's what the mergeIn function is for.  This
85 /// is for merging facts gathered about the same value at the same location
86 /// through two independent means.
87 /// Notes:
88 /// * This method does not promise to return the most precise possible lattice
89 ///   value implied by A and B.  It is allowed to return any lattice element
90 ///   which is at least as strong as *either* A or B (unless our facts
91 ///   conflict, see below).
92 /// * Due to unreachable code, the intersection of two lattice values could be
93 ///   contradictory.  If this happens, we return some valid lattice value so as
94 ///   not confuse the rest of LVI.  Ideally, we'd always return Undefined, but
95 ///   we do not make this guarantee.  TODO: This would be a useful enhancement.
96 static ValueLatticeElement intersect(const ValueLatticeElement &A,
97                                      const ValueLatticeElement &B) {
98   // Undefined is the strongest state.  It means the value is known to be along
99   // an unreachable path.
100   if (A.isUnknown())
101     return A;
102   if (B.isUnknown())
103     return B;
104 
105   // If we gave up for one, but got a useable fact from the other, use it.
106   if (A.isOverdefined())
107     return B;
108   if (B.isOverdefined())
109     return A;
110 
111   // Can't get any more precise than constants.
112   if (hasSingleValue(A))
113     return A;
114   if (hasSingleValue(B))
115     return B;
116 
117   // Could be either constant range or not constant here.
118   if (!A.isConstantRange() || !B.isConstantRange()) {
119     // TODO: Arbitrary choice, could be improved
120     return A;
121   }
122 
123   // Intersect two constant ranges
124   ConstantRange Range =
125       A.getConstantRange().intersectWith(B.getConstantRange());
126   // Note: An empty range is implicitly converted to unknown or undef depending
127   // on MayIncludeUndef internally.
128   return ValueLatticeElement::getRange(
129       std::move(Range), /*MayIncludeUndef=*/A.isConstantRangeIncludingUndef() ||
130                             B.isConstantRangeIncludingUndef());
131 }
132 
133 //===----------------------------------------------------------------------===//
134 //                          LazyValueInfoCache Decl
135 //===----------------------------------------------------------------------===//
136 
137 namespace {
138   /// A callback value handle updates the cache when values are erased.
139   class LazyValueInfoCache;
140   struct LVIValueHandle final : public CallbackVH {
141     LazyValueInfoCache *Parent;
142 
143     LVIValueHandle(Value *V, LazyValueInfoCache *P = nullptr)
144       : CallbackVH(V), Parent(P) { }
145 
146     void deleted() override;
147     void allUsesReplacedWith(Value *V) override {
148       deleted();
149     }
150   };
151 } // end anonymous namespace
152 
153 namespace {
154   using NonNullPointerSet = SmallDenseSet<AssertingVH<Value>, 2>;
155 
156   /// This is the cache kept by LazyValueInfo which
157   /// maintains information about queries across the clients' queries.
158   class LazyValueInfoCache {
159     /// This is all of the cached information for one basic block. It contains
160     /// the per-value lattice elements, as well as a separate set for
161     /// overdefined values to reduce memory usage. Additionally pointers
162     /// dereferenced in the block are cached for nullability queries.
163     struct BlockCacheEntry {
164       SmallDenseMap<AssertingVH<Value>, ValueLatticeElement, 4> LatticeElements;
165       SmallDenseSet<AssertingVH<Value>, 4> OverDefined;
166       // std::nullopt indicates that the nonnull pointers for this basic block
167       // block have not been computed yet.
168       std::optional<NonNullPointerSet> NonNullPointers;
169     };
170 
171     /// Cached information per basic block.
172     DenseMap<PoisoningVH<BasicBlock>, std::unique_ptr<BlockCacheEntry>>
173         BlockCache;
174     /// Set of value handles used to erase values from the cache on deletion.
175     DenseSet<LVIValueHandle, DenseMapInfo<Value *>> ValueHandles;
176 
177     const BlockCacheEntry *getBlockEntry(BasicBlock *BB) const {
178       auto It = BlockCache.find_as(BB);
179       if (It == BlockCache.end())
180         return nullptr;
181       return It->second.get();
182     }
183 
184     BlockCacheEntry *getOrCreateBlockEntry(BasicBlock *BB) {
185       auto It = BlockCache.find_as(BB);
186       if (It == BlockCache.end())
187         It = BlockCache.insert({ BB, std::make_unique<BlockCacheEntry>() })
188                        .first;
189 
190       return It->second.get();
191     }
192 
193     void addValueHandle(Value *Val) {
194       auto HandleIt = ValueHandles.find_as(Val);
195       if (HandleIt == ValueHandles.end())
196         ValueHandles.insert({ Val, this });
197     }
198 
199   public:
200     void insertResult(Value *Val, BasicBlock *BB,
201                       const ValueLatticeElement &Result) {
202       BlockCacheEntry *Entry = getOrCreateBlockEntry(BB);
203 
204       // Insert over-defined values into their own cache to reduce memory
205       // overhead.
206       if (Result.isOverdefined())
207         Entry->OverDefined.insert(Val);
208       else
209         Entry->LatticeElements.insert({ Val, Result });
210 
211       addValueHandle(Val);
212     }
213 
214     std::optional<ValueLatticeElement>
215     getCachedValueInfo(Value *V, BasicBlock *BB) const {
216       const BlockCacheEntry *Entry = getBlockEntry(BB);
217       if (!Entry)
218         return std::nullopt;
219 
220       if (Entry->OverDefined.count(V))
221         return ValueLatticeElement::getOverdefined();
222 
223       auto LatticeIt = Entry->LatticeElements.find_as(V);
224       if (LatticeIt == Entry->LatticeElements.end())
225         return std::nullopt;
226 
227       return LatticeIt->second;
228     }
229 
230     bool isNonNullAtEndOfBlock(
231         Value *V, BasicBlock *BB,
232         function_ref<NonNullPointerSet(BasicBlock *)> InitFn) {
233       BlockCacheEntry *Entry = getOrCreateBlockEntry(BB);
234       if (!Entry->NonNullPointers) {
235         Entry->NonNullPointers = InitFn(BB);
236         for (Value *V : *Entry->NonNullPointers)
237           addValueHandle(V);
238       }
239 
240       return Entry->NonNullPointers->count(V);
241     }
242 
243     /// clear - Empty the cache.
244     void clear() {
245       BlockCache.clear();
246       ValueHandles.clear();
247     }
248 
249     /// Inform the cache that a given value has been deleted.
250     void eraseValue(Value *V);
251 
252     /// This is part of the update interface to inform the cache
253     /// that a block has been deleted.
254     void eraseBlock(BasicBlock *BB);
255 
256     /// Updates the cache to remove any influence an overdefined value in
257     /// OldSucc might have (unless also overdefined in NewSucc).  This just
258     /// flushes elements from the cache and does not add any.
259     void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc);
260   };
261 }
262 
263 void LazyValueInfoCache::eraseValue(Value *V) {
264   for (auto &Pair : BlockCache) {
265     Pair.second->LatticeElements.erase(V);
266     Pair.second->OverDefined.erase(V);
267     if (Pair.second->NonNullPointers)
268       Pair.second->NonNullPointers->erase(V);
269   }
270 
271   auto HandleIt = ValueHandles.find_as(V);
272   if (HandleIt != ValueHandles.end())
273     ValueHandles.erase(HandleIt);
274 }
275 
276 void LVIValueHandle::deleted() {
277   // This erasure deallocates *this, so it MUST happen after we're done
278   // using any and all members of *this.
279   Parent->eraseValue(*this);
280 }
281 
282 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
283   BlockCache.erase(BB);
284 }
285 
286 void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc,
287                                         BasicBlock *NewSucc) {
288   // When an edge in the graph has been threaded, values that we could not
289   // determine a value for before (i.e. were marked overdefined) may be
290   // possible to solve now. We do NOT try to proactively update these values.
291   // Instead, we clear their entries from the cache, and allow lazy updating to
292   // recompute them when needed.
293 
294   // The updating process is fairly simple: we need to drop cached info
295   // for all values that were marked overdefined in OldSucc, and for those same
296   // values in any successor of OldSucc (except NewSucc) in which they were
297   // also marked overdefined.
298   std::vector<BasicBlock*> worklist;
299   worklist.push_back(OldSucc);
300 
301   const BlockCacheEntry *Entry = getBlockEntry(OldSucc);
302   if (!Entry || Entry->OverDefined.empty())
303     return; // Nothing to process here.
304   SmallVector<Value *, 4> ValsToClear(Entry->OverDefined.begin(),
305                                       Entry->OverDefined.end());
306 
307   // Use a worklist to perform a depth-first search of OldSucc's successors.
308   // NOTE: We do not need a visited list since any blocks we have already
309   // visited will have had their overdefined markers cleared already, and we
310   // thus won't loop to their successors.
311   while (!worklist.empty()) {
312     BasicBlock *ToUpdate = worklist.back();
313     worklist.pop_back();
314 
315     // Skip blocks only accessible through NewSucc.
316     if (ToUpdate == NewSucc) continue;
317 
318     // If a value was marked overdefined in OldSucc, and is here too...
319     auto OI = BlockCache.find_as(ToUpdate);
320     if (OI == BlockCache.end() || OI->second->OverDefined.empty())
321       continue;
322     auto &ValueSet = OI->second->OverDefined;
323 
324     bool changed = false;
325     for (Value *V : ValsToClear) {
326       if (!ValueSet.erase(V))
327         continue;
328 
329       // If we removed anything, then we potentially need to update
330       // blocks successors too.
331       changed = true;
332     }
333 
334     if (!changed) continue;
335 
336     llvm::append_range(worklist, successors(ToUpdate));
337   }
338 }
339 
340 namespace llvm {
341 namespace {
342 /// An assembly annotator class to print LazyValueCache information in
343 /// comments.
344 class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter {
345   LazyValueInfoImpl *LVIImpl;
346   // While analyzing which blocks we can solve values for, we need the dominator
347   // information.
348   DominatorTree &DT;
349 
350 public:
351   LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree)
352       : LVIImpl(L), DT(DTree) {}
353 
354   void emitBasicBlockStartAnnot(const BasicBlock *BB,
355                                 formatted_raw_ostream &OS) override;
356 
357   void emitInstructionAnnot(const Instruction *I,
358                             formatted_raw_ostream &OS) override;
359 };
360 } // namespace
361 // The actual implementation of the lazy analysis and update.  Note that the
362 // inheritance from LazyValueInfoCache is intended to be temporary while
363 // splitting the code and then transitioning to a has-a relationship.
364 class LazyValueInfoImpl {
365 
366   /// Cached results from previous queries
367   LazyValueInfoCache TheCache;
368 
369   /// This stack holds the state of the value solver during a query.
370   /// It basically emulates the callstack of the naive
371   /// recursive value lookup process.
372   SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack;
373 
374   /// Keeps track of which block-value pairs are in BlockValueStack.
375   DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
376 
377   /// Push BV onto BlockValueStack unless it's already in there.
378   /// Returns true on success.
379   bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
380     if (!BlockValueSet.insert(BV).second)
381       return false;  // It's already in the stack.
382 
383     LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in "
384                       << BV.first->getName() << "\n");
385     BlockValueStack.push_back(BV);
386     return true;
387   }
388 
389   AssumptionCache *AC;  ///< A pointer to the cache of @llvm.assume calls.
390   const DataLayout &DL; ///< A mandatory DataLayout
391 
392   /// Declaration of the llvm.experimental.guard() intrinsic,
393   /// if it exists in the module.
394   Function *GuardDecl;
395 
396   std::optional<ValueLatticeElement> getBlockValue(Value *Val, BasicBlock *BB,
397                                                    Instruction *CxtI);
398   std::optional<ValueLatticeElement> getEdgeValue(Value *V, BasicBlock *F,
399                                                   BasicBlock *T,
400                                                   Instruction *CxtI = nullptr);
401 
402   // These methods process one work item and may add more. A false value
403   // returned means that the work item was not completely processed and must
404   // be revisited after going through the new items.
405   bool solveBlockValue(Value *Val, BasicBlock *BB);
406   std::optional<ValueLatticeElement> solveBlockValueImpl(Value *Val,
407                                                          BasicBlock *BB);
408   std::optional<ValueLatticeElement> solveBlockValueNonLocal(Value *Val,
409                                                              BasicBlock *BB);
410   std::optional<ValueLatticeElement> solveBlockValuePHINode(PHINode *PN,
411                                                             BasicBlock *BB);
412   std::optional<ValueLatticeElement> solveBlockValueSelect(SelectInst *S,
413                                                            BasicBlock *BB);
414   std::optional<ConstantRange> getRangeFor(Value *V, Instruction *CxtI,
415                                            BasicBlock *BB);
416   std::optional<ValueLatticeElement> solveBlockValueBinaryOpImpl(
417       Instruction *I, BasicBlock *BB,
418       std::function<ConstantRange(const ConstantRange &, const ConstantRange &)>
419           OpFn);
420   std::optional<ValueLatticeElement>
421   solveBlockValueBinaryOp(BinaryOperator *BBI, BasicBlock *BB);
422   std::optional<ValueLatticeElement> solveBlockValueCast(CastInst *CI,
423                                                          BasicBlock *BB);
424   std::optional<ValueLatticeElement>
425   solveBlockValueOverflowIntrinsic(WithOverflowInst *WO, BasicBlock *BB);
426   std::optional<ValueLatticeElement> solveBlockValueIntrinsic(IntrinsicInst *II,
427                                                               BasicBlock *BB);
428   std::optional<ValueLatticeElement>
429   solveBlockValueExtractValue(ExtractValueInst *EVI, BasicBlock *BB);
430   bool isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB);
431   void intersectAssumeOrGuardBlockValueConstantRange(Value *Val,
432                                                      ValueLatticeElement &BBLV,
433                                                      Instruction *BBI);
434 
435   void solve();
436 
437   // For the following methods, if UseBlockValue is true, the function may
438   // push additional values to the worklist and return nullopt. If
439   // UseBlockValue is false, it will never return nullopt.
440 
441   std::optional<ValueLatticeElement>
442   getValueFromSimpleICmpCondition(CmpInst::Predicate Pred, Value *RHS,
443                                   const APInt &Offset, Instruction *CxtI,
444                                   bool UseBlockValue);
445 
446   std::optional<ValueLatticeElement>
447   getValueFromICmpCondition(Value *Val, ICmpInst *ICI, bool isTrueDest,
448                             bool UseBlockValue);
449 
450   std::optional<ValueLatticeElement>
451   getValueFromCondition(Value *Val, Value *Cond, bool IsTrueDest,
452                         bool UseBlockValue, unsigned Depth = 0);
453 
454   std::optional<ValueLatticeElement> getEdgeValueLocal(Value *Val,
455                                                        BasicBlock *BBFrom,
456                                                        BasicBlock *BBTo,
457                                                        bool UseBlockValue);
458 
459 public:
460   /// This is the query interface to determine the lattice value for the
461   /// specified Value* at the context instruction (if specified) or at the
462   /// start of the block.
463   ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB,
464                                       Instruction *CxtI = nullptr);
465 
466   /// This is the query interface to determine the lattice value for the
467   /// specified Value* at the specified instruction using only information
468   /// from assumes/guards and range metadata. Unlike getValueInBlock(), no
469   /// recursive query is performed.
470   ValueLatticeElement getValueAt(Value *V, Instruction *CxtI);
471 
472   /// This is the query interface to determine the lattice
473   /// value for the specified Value* that is true on the specified edge.
474   ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB,
475                                      BasicBlock *ToBB,
476                                      Instruction *CxtI = nullptr);
477 
478   ValueLatticeElement getValueAtUse(const Use &U);
479 
480   /// Complete flush all previously computed values
481   void clear() {
482     TheCache.clear();
483   }
484 
485   /// Printing the LazyValueInfo Analysis.
486   void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
487     LazyValueInfoAnnotatedWriter Writer(this, DTree);
488     F.print(OS, &Writer);
489   }
490 
491   /// This is part of the update interface to remove information related to this
492   /// value from the cache.
493   void forgetValue(Value *V) { TheCache.eraseValue(V); }
494 
495   /// This is part of the update interface to inform the cache
496   /// that a block has been deleted.
497   void eraseBlock(BasicBlock *BB) {
498     TheCache.eraseBlock(BB);
499   }
500 
501   /// This is the update interface to inform the cache that an edge from
502   /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
503   void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
504 
505   LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL,
506                     Function *GuardDecl)
507       : AC(AC), DL(DL), GuardDecl(GuardDecl) {}
508 };
509 } // namespace llvm
510 
511 void LazyValueInfoImpl::solve() {
512   SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack(
513       BlockValueStack.begin(), BlockValueStack.end());
514 
515   unsigned processedCount = 0;
516   while (!BlockValueStack.empty()) {
517     processedCount++;
518     // Abort if we have to process too many values to get a result for this one.
519     // Because of the design of the overdefined cache currently being per-block
520     // to avoid naming-related issues (IE it wants to try to give different
521     // results for the same name in different blocks), overdefined results don't
522     // get cached globally, which in turn means we will often try to rediscover
523     // the same overdefined result again and again.  Once something like
524     // PredicateInfo is used in LVI or CVP, we should be able to make the
525     // overdefined cache global, and remove this throttle.
526     if (processedCount > MaxProcessedPerValue) {
527       LLVM_DEBUG(
528           dbgs() << "Giving up on stack because we are getting too deep\n");
529       // Fill in the original values
530       while (!StartingStack.empty()) {
531         std::pair<BasicBlock *, Value *> &e = StartingStack.back();
532         TheCache.insertResult(e.second, e.first,
533                               ValueLatticeElement::getOverdefined());
534         StartingStack.pop_back();
535       }
536       BlockValueSet.clear();
537       BlockValueStack.clear();
538       return;
539     }
540     std::pair<BasicBlock *, Value *> e = BlockValueStack.back();
541     assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");
542     unsigned StackSize = BlockValueStack.size();
543     (void) StackSize;
544 
545     if (solveBlockValue(e.second, e.first)) {
546       // The work item was completely processed.
547       assert(BlockValueStack.size() == StackSize &&
548              BlockValueStack.back() == e && "Nothing should have been pushed!");
549 #ifndef NDEBUG
550       std::optional<ValueLatticeElement> BBLV =
551           TheCache.getCachedValueInfo(e.second, e.first);
552       assert(BBLV && "Result should be in cache!");
553       LLVM_DEBUG(
554           dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = "
555                  << *BBLV << "\n");
556 #endif
557 
558       BlockValueStack.pop_back();
559       BlockValueSet.erase(e);
560     } else {
561       // More work needs to be done before revisiting.
562       assert(BlockValueStack.size() == StackSize + 1 &&
563              "Exactly one element should have been pushed!");
564     }
565   }
566 }
567 
568 std::optional<ValueLatticeElement>
569 LazyValueInfoImpl::getBlockValue(Value *Val, BasicBlock *BB,
570                                  Instruction *CxtI) {
571   // If already a constant, there is nothing to compute.
572   if (Constant *VC = dyn_cast<Constant>(Val))
573     return ValueLatticeElement::get(VC);
574 
575   if (std::optional<ValueLatticeElement> OptLatticeVal =
576           TheCache.getCachedValueInfo(Val, BB)) {
577     intersectAssumeOrGuardBlockValueConstantRange(Val, *OptLatticeVal, CxtI);
578     return OptLatticeVal;
579   }
580 
581   // We have hit a cycle, assume overdefined.
582   if (!pushBlockValue({ BB, Val }))
583     return ValueLatticeElement::getOverdefined();
584 
585   // Yet to be resolved.
586   return std::nullopt;
587 }
588 
589 static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) {
590   switch (BBI->getOpcode()) {
591   default: break;
592   case Instruction::Load:
593   case Instruction::Call:
594   case Instruction::Invoke:
595     if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range))
596       if (isa<IntegerType>(BBI->getType())) {
597         return ValueLatticeElement::getRange(
598             getConstantRangeFromMetadata(*Ranges));
599       }
600     break;
601   };
602   // Nothing known - will be intersected with other facts
603   return ValueLatticeElement::getOverdefined();
604 }
605 
606 bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) {
607   assert(!isa<Constant>(Val) && "Value should not be constant");
608   assert(!TheCache.getCachedValueInfo(Val, BB) &&
609          "Value should not be in cache");
610 
611   // Hold off inserting this value into the Cache in case we have to return
612   // false and come back later.
613   std::optional<ValueLatticeElement> Res = solveBlockValueImpl(Val, BB);
614   if (!Res)
615     // Work pushed, will revisit
616     return false;
617 
618   TheCache.insertResult(Val, BB, *Res);
619   return true;
620 }
621 
622 std::optional<ValueLatticeElement>
623 LazyValueInfoImpl::solveBlockValueImpl(Value *Val, BasicBlock *BB) {
624   Instruction *BBI = dyn_cast<Instruction>(Val);
625   if (!BBI || BBI->getParent() != BB)
626     return solveBlockValueNonLocal(Val, BB);
627 
628   if (PHINode *PN = dyn_cast<PHINode>(BBI))
629     return solveBlockValuePHINode(PN, BB);
630 
631   if (auto *SI = dyn_cast<SelectInst>(BBI))
632     return solveBlockValueSelect(SI, BB);
633 
634   // If this value is a nonnull pointer, record it's range and bailout.  Note
635   // that for all other pointer typed values, we terminate the search at the
636   // definition.  We could easily extend this to look through geps, bitcasts,
637   // and the like to prove non-nullness, but it's not clear that's worth it
638   // compile time wise.  The context-insensitive value walk done inside
639   // isKnownNonZero gets most of the profitable cases at much less expense.
640   // This does mean that we have a sensitivity to where the defining
641   // instruction is placed, even if it could legally be hoisted much higher.
642   // That is unfortunate.
643   PointerType *PT = dyn_cast<PointerType>(BBI->getType());
644   if (PT && isKnownNonZero(BBI, DL))
645     return ValueLatticeElement::getNot(ConstantPointerNull::get(PT));
646 
647   if (BBI->getType()->isIntegerTy()) {
648     if (auto *CI = dyn_cast<CastInst>(BBI))
649       return solveBlockValueCast(CI, BB);
650 
651     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI))
652       return solveBlockValueBinaryOp(BO, BB);
653 
654     if (auto *EVI = dyn_cast<ExtractValueInst>(BBI))
655       return solveBlockValueExtractValue(EVI, BB);
656 
657     if (auto *II = dyn_cast<IntrinsicInst>(BBI))
658       return solveBlockValueIntrinsic(II, BB);
659   }
660 
661   LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
662                     << "' - unknown inst def found.\n");
663   return getFromRangeMetadata(BBI);
664 }
665 
666 static void AddNonNullPointer(Value *Ptr, NonNullPointerSet &PtrSet) {
667   // TODO: Use NullPointerIsDefined instead.
668   if (Ptr->getType()->getPointerAddressSpace() == 0)
669     PtrSet.insert(getUnderlyingObject(Ptr));
670 }
671 
672 static void AddNonNullPointersByInstruction(
673     Instruction *I, NonNullPointerSet &PtrSet) {
674   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
675     AddNonNullPointer(L->getPointerOperand(), PtrSet);
676   } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
677     AddNonNullPointer(S->getPointerOperand(), PtrSet);
678   } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
679     if (MI->isVolatile()) return;
680 
681     // FIXME: check whether it has a valuerange that excludes zero?
682     ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
683     if (!Len || Len->isZero()) return;
684 
685     AddNonNullPointer(MI->getRawDest(), PtrSet);
686     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
687       AddNonNullPointer(MTI->getRawSource(), PtrSet);
688   }
689 }
690 
691 bool LazyValueInfoImpl::isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB) {
692   if (NullPointerIsDefined(BB->getParent(),
693                            Val->getType()->getPointerAddressSpace()))
694     return false;
695 
696   Val = Val->stripInBoundsOffsets();
697   return TheCache.isNonNullAtEndOfBlock(Val, BB, [](BasicBlock *BB) {
698     NonNullPointerSet NonNullPointers;
699     for (Instruction &I : *BB)
700       AddNonNullPointersByInstruction(&I, NonNullPointers);
701     return NonNullPointers;
702   });
703 }
704 
705 std::optional<ValueLatticeElement>
706 LazyValueInfoImpl::solveBlockValueNonLocal(Value *Val, BasicBlock *BB) {
707   ValueLatticeElement Result;  // Start Undefined.
708 
709   // If this is the entry block, we must be asking about an argument.  The
710   // value is overdefined.
711   if (BB->isEntryBlock()) {
712     assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
713     return ValueLatticeElement::getOverdefined();
714   }
715 
716   // Loop over all of our predecessors, merging what we know from them into
717   // result.  If we encounter an unexplored predecessor, we eagerly explore it
718   // in a depth first manner.  In practice, this has the effect of discovering
719   // paths we can't analyze eagerly without spending compile times analyzing
720   // other paths.  This heuristic benefits from the fact that predecessors are
721   // frequently arranged such that dominating ones come first and we quickly
722   // find a path to function entry.  TODO: We should consider explicitly
723   // canonicalizing to make this true rather than relying on this happy
724   // accident.
725   for (BasicBlock *Pred : predecessors(BB)) {
726     std::optional<ValueLatticeElement> EdgeResult = getEdgeValue(Val, Pred, BB);
727     if (!EdgeResult)
728       // Explore that input, then return here
729       return std::nullopt;
730 
731     Result.mergeIn(*EdgeResult);
732 
733     // If we hit overdefined, exit early.  The BlockVals entry is already set
734     // to overdefined.
735     if (Result.isOverdefined()) {
736       LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
737                         << "' - overdefined because of pred '"
738                         << Pred->getName() << "' (non local).\n");
739       return Result;
740     }
741   }
742 
743   // Return the merged value, which is more precise than 'overdefined'.
744   assert(!Result.isOverdefined());
745   return Result;
746 }
747 
748 std::optional<ValueLatticeElement>
749 LazyValueInfoImpl::solveBlockValuePHINode(PHINode *PN, BasicBlock *BB) {
750   ValueLatticeElement Result;  // Start Undefined.
751 
752   // Loop over all of our predecessors, merging what we know from them into
753   // result.  See the comment about the chosen traversal order in
754   // solveBlockValueNonLocal; the same reasoning applies here.
755   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
756     BasicBlock *PhiBB = PN->getIncomingBlock(i);
757     Value *PhiVal = PN->getIncomingValue(i);
758     // Note that we can provide PN as the context value to getEdgeValue, even
759     // though the results will be cached, because PN is the value being used as
760     // the cache key in the caller.
761     std::optional<ValueLatticeElement> EdgeResult =
762         getEdgeValue(PhiVal, PhiBB, BB, PN);
763     if (!EdgeResult)
764       // Explore that input, then return here
765       return std::nullopt;
766 
767     Result.mergeIn(*EdgeResult);
768 
769     // If we hit overdefined, exit early.  The BlockVals entry is already set
770     // to overdefined.
771     if (Result.isOverdefined()) {
772       LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
773                         << "' - overdefined because of pred (local).\n");
774 
775       return Result;
776     }
777   }
778 
779   // Return the merged value, which is more precise than 'overdefined'.
780   assert(!Result.isOverdefined() && "Possible PHI in entry block?");
781   return Result;
782 }
783 
784 // If we can determine a constraint on the value given conditions assumed by
785 // the program, intersect those constraints with BBLV
786 void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
787     Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) {
788   BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
789   if (!BBI)
790     return;
791 
792   BasicBlock *BB = BBI->getParent();
793   for (auto &AssumeVH : AC->assumptionsFor(Val)) {
794     if (!AssumeVH)
795       continue;
796 
797     // Only check assumes in the block of the context instruction. Other
798     // assumes will have already been taken into account when the value was
799     // propagated from predecessor blocks.
800     auto *I = cast<CallInst>(AssumeVH);
801     if (I->getParent() != BB || !isValidAssumeForContext(I, BBI))
802       continue;
803 
804     BBLV = intersect(BBLV, *getValueFromCondition(Val, I->getArgOperand(0),
805                                                   /*IsTrueDest*/ true,
806                                                   /*UseBlockValue*/ false));
807   }
808 
809   // If guards are not used in the module, don't spend time looking for them
810   if (GuardDecl && !GuardDecl->use_empty() &&
811       BBI->getIterator() != BB->begin()) {
812     for (Instruction &I :
813          make_range(std::next(BBI->getIterator().getReverse()), BB->rend())) {
814       Value *Cond = nullptr;
815       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond))))
816         BBLV = intersect(BBLV,
817                          *getValueFromCondition(Val, Cond, /*IsTrueDest*/ true,
818                                                 /*UseBlockValue*/ false));
819     }
820   }
821 
822   if (BBLV.isOverdefined()) {
823     // Check whether we're checking at the terminator, and the pointer has
824     // been dereferenced in this block.
825     PointerType *PTy = dyn_cast<PointerType>(Val->getType());
826     if (PTy && BB->getTerminator() == BBI &&
827         isNonNullAtEndOfBlock(Val, BB))
828       BBLV = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
829   }
830 }
831 
832 static ConstantRange toConstantRange(const ValueLatticeElement &Val,
833                                      Type *Ty, bool UndefAllowed = false) {
834   assert(Ty->isIntOrIntVectorTy() && "Must be integer type");
835   if (Val.isConstantRange(UndefAllowed))
836     return Val.getConstantRange();
837   unsigned BW = Ty->getScalarSizeInBits();
838   if (Val.isUnknown())
839     return ConstantRange::getEmpty(BW);
840   return ConstantRange::getFull(BW);
841 }
842 
843 std::optional<ValueLatticeElement>
844 LazyValueInfoImpl::solveBlockValueSelect(SelectInst *SI, BasicBlock *BB) {
845   // Recurse on our inputs if needed
846   std::optional<ValueLatticeElement> OptTrueVal =
847       getBlockValue(SI->getTrueValue(), BB, SI);
848   if (!OptTrueVal)
849     return std::nullopt;
850   ValueLatticeElement &TrueVal = *OptTrueVal;
851 
852   std::optional<ValueLatticeElement> OptFalseVal =
853       getBlockValue(SI->getFalseValue(), BB, SI);
854   if (!OptFalseVal)
855     return std::nullopt;
856   ValueLatticeElement &FalseVal = *OptFalseVal;
857 
858   if (TrueVal.isConstantRange() || FalseVal.isConstantRange()) {
859     const ConstantRange &TrueCR = toConstantRange(TrueVal, SI->getType());
860     const ConstantRange &FalseCR = toConstantRange(FalseVal, SI->getType());
861     Value *LHS = nullptr;
862     Value *RHS = nullptr;
863     SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS);
864     // Is this a min specifically of our two inputs?  (Avoid the risk of
865     // ValueTracking getting smarter looking back past our immediate inputs.)
866     if (SelectPatternResult::isMinOrMax(SPR.Flavor) &&
867         ((LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) ||
868          (RHS == SI->getTrueValue() && LHS == SI->getFalseValue()))) {
869       ConstantRange ResultCR = [&]() {
870         switch (SPR.Flavor) {
871         default:
872           llvm_unreachable("unexpected minmax type!");
873         case SPF_SMIN:                   /// Signed minimum
874           return TrueCR.smin(FalseCR);
875         case SPF_UMIN:                   /// Unsigned minimum
876           return TrueCR.umin(FalseCR);
877         case SPF_SMAX:                   /// Signed maximum
878           return TrueCR.smax(FalseCR);
879         case SPF_UMAX:                   /// Unsigned maximum
880           return TrueCR.umax(FalseCR);
881         };
882       }();
883       return ValueLatticeElement::getRange(
884           ResultCR, TrueVal.isConstantRangeIncludingUndef() ||
885                         FalseVal.isConstantRangeIncludingUndef());
886     }
887 
888     if (SPR.Flavor == SPF_ABS) {
889       if (LHS == SI->getTrueValue())
890         return ValueLatticeElement::getRange(
891             TrueCR.abs(), TrueVal.isConstantRangeIncludingUndef());
892       if (LHS == SI->getFalseValue())
893         return ValueLatticeElement::getRange(
894             FalseCR.abs(), FalseVal.isConstantRangeIncludingUndef());
895     }
896 
897     if (SPR.Flavor == SPF_NABS) {
898       ConstantRange Zero(APInt::getZero(TrueCR.getBitWidth()));
899       if (LHS == SI->getTrueValue())
900         return ValueLatticeElement::getRange(
901             Zero.sub(TrueCR.abs()), FalseVal.isConstantRangeIncludingUndef());
902       if (LHS == SI->getFalseValue())
903         return ValueLatticeElement::getRange(
904             Zero.sub(FalseCR.abs()), FalseVal.isConstantRangeIncludingUndef());
905     }
906   }
907 
908   // Can we constrain the facts about the true and false values by using the
909   // condition itself?  This shows up with idioms like e.g. select(a > 5, a, 5).
910   // TODO: We could potentially refine an overdefined true value above.
911   Value *Cond = SI->getCondition();
912   // If the value is undef, a different value may be chosen in
913   // the select condition.
914   if (isGuaranteedNotToBeUndef(Cond, AC)) {
915     TrueVal =
916         intersect(TrueVal, *getValueFromCondition(SI->getTrueValue(), Cond,
917                                                   /*IsTrueDest*/ true,
918                                                   /*UseBlockValue*/ false));
919     FalseVal =
920         intersect(FalseVal, *getValueFromCondition(SI->getFalseValue(), Cond,
921                                                    /*IsTrueDest*/ false,
922                                                    /*UseBlockValue*/ false));
923   }
924 
925   ValueLatticeElement Result = TrueVal;
926   Result.mergeIn(FalseVal);
927   return Result;
928 }
929 
930 std::optional<ConstantRange>
931 LazyValueInfoImpl::getRangeFor(Value *V, Instruction *CxtI, BasicBlock *BB) {
932   std::optional<ValueLatticeElement> OptVal = getBlockValue(V, BB, CxtI);
933   if (!OptVal)
934     return std::nullopt;
935   return toConstantRange(*OptVal, V->getType());
936 }
937 
938 std::optional<ValueLatticeElement>
939 LazyValueInfoImpl::solveBlockValueCast(CastInst *CI, BasicBlock *BB) {
940   // Filter out casts we don't know how to reason about before attempting to
941   // recurse on our operand.  This can cut a long search short if we know we're
942   // not going to be able to get any useful information anways.
943   switch (CI->getOpcode()) {
944   case Instruction::Trunc:
945   case Instruction::SExt:
946   case Instruction::ZExt:
947     break;
948   default:
949     // Unhandled instructions are overdefined.
950     LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
951                       << "' - overdefined (unknown cast).\n");
952     return ValueLatticeElement::getOverdefined();
953   }
954 
955   // Figure out the range of the LHS.  If that fails, we still apply the
956   // transfer rule on the full set since we may be able to locally infer
957   // interesting facts.
958   std::optional<ConstantRange> LHSRes = getRangeFor(CI->getOperand(0), CI, BB);
959   if (!LHSRes)
960     // More work to do before applying this transfer rule.
961     return std::nullopt;
962   const ConstantRange &LHSRange = *LHSRes;
963 
964   const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth();
965 
966   // NOTE: We're currently limited by the set of operations that ConstantRange
967   // can evaluate symbolically.  Enhancing that set will allows us to analyze
968   // more definitions.
969   return ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(),
970                                                        ResultBitWidth));
971 }
972 
973 std::optional<ValueLatticeElement>
974 LazyValueInfoImpl::solveBlockValueBinaryOpImpl(
975     Instruction *I, BasicBlock *BB,
976     std::function<ConstantRange(const ConstantRange &, const ConstantRange &)>
977         OpFn) {
978   // Figure out the ranges of the operands.  If that fails, use a
979   // conservative range, but apply the transfer rule anyways.  This
980   // lets us pick up facts from expressions like "and i32 (call i32
981   // @foo()), 32"
982   std::optional<ConstantRange> LHSRes = getRangeFor(I->getOperand(0), I, BB);
983   if (!LHSRes)
984     return std::nullopt;
985 
986   std::optional<ConstantRange> RHSRes = getRangeFor(I->getOperand(1), I, BB);
987   if (!RHSRes)
988     return std::nullopt;
989 
990   const ConstantRange &LHSRange = *LHSRes;
991   const ConstantRange &RHSRange = *RHSRes;
992   return ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange));
993 }
994 
995 std::optional<ValueLatticeElement>
996 LazyValueInfoImpl::solveBlockValueBinaryOp(BinaryOperator *BO, BasicBlock *BB) {
997   assert(BO->getOperand(0)->getType()->isSized() &&
998          "all operands to binary operators are sized");
999   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) {
1000     unsigned NoWrapKind = 0;
1001     if (OBO->hasNoUnsignedWrap())
1002       NoWrapKind |= OverflowingBinaryOperator::NoUnsignedWrap;
1003     if (OBO->hasNoSignedWrap())
1004       NoWrapKind |= OverflowingBinaryOperator::NoSignedWrap;
1005 
1006     return solveBlockValueBinaryOpImpl(
1007         BO, BB,
1008         [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) {
1009           return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind);
1010         });
1011   }
1012 
1013   return solveBlockValueBinaryOpImpl(
1014       BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) {
1015         return CR1.binaryOp(BO->getOpcode(), CR2);
1016       });
1017 }
1018 
1019 std::optional<ValueLatticeElement>
1020 LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(WithOverflowInst *WO,
1021                                                     BasicBlock *BB) {
1022   return solveBlockValueBinaryOpImpl(
1023       WO, BB, [WO](const ConstantRange &CR1, const ConstantRange &CR2) {
1024         return CR1.binaryOp(WO->getBinaryOp(), CR2);
1025       });
1026 }
1027 
1028 std::optional<ValueLatticeElement>
1029 LazyValueInfoImpl::solveBlockValueIntrinsic(IntrinsicInst *II, BasicBlock *BB) {
1030   ValueLatticeElement MetadataVal = getFromRangeMetadata(II);
1031   if (!ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
1032     LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
1033                       << "' - unknown intrinsic.\n");
1034     return MetadataVal;
1035   }
1036 
1037   SmallVector<ConstantRange, 2> OpRanges;
1038   for (Value *Op : II->args()) {
1039     std::optional<ConstantRange> Range = getRangeFor(Op, II, BB);
1040     if (!Range)
1041       return std::nullopt;
1042     OpRanges.push_back(*Range);
1043   }
1044 
1045   return intersect(ValueLatticeElement::getRange(ConstantRange::intrinsic(
1046                        II->getIntrinsicID(), OpRanges)),
1047                    MetadataVal);
1048 }
1049 
1050 std::optional<ValueLatticeElement>
1051 LazyValueInfoImpl::solveBlockValueExtractValue(ExtractValueInst *EVI,
1052                                                BasicBlock *BB) {
1053   if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
1054     if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0)
1055       return solveBlockValueOverflowIntrinsic(WO, BB);
1056 
1057   // Handle extractvalue of insertvalue to allow further simplification
1058   // based on replaced with.overflow intrinsics.
1059   if (Value *V = simplifyExtractValueInst(
1060           EVI->getAggregateOperand(), EVI->getIndices(),
1061           EVI->getModule()->getDataLayout()))
1062     return getBlockValue(V, BB, EVI);
1063 
1064   LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
1065                     << "' - overdefined (unknown extractvalue).\n");
1066   return ValueLatticeElement::getOverdefined();
1067 }
1068 
1069 static bool matchICmpOperand(APInt &Offset, Value *LHS, Value *Val,
1070                              ICmpInst::Predicate Pred) {
1071   if (LHS == Val)
1072     return true;
1073 
1074   // Handle range checking idiom produced by InstCombine. We will subtract the
1075   // offset from the allowed range for RHS in this case.
1076   const APInt *C;
1077   if (match(LHS, m_Add(m_Specific(Val), m_APInt(C)))) {
1078     Offset = *C;
1079     return true;
1080   }
1081 
1082   // Handle the symmetric case. This appears in saturation patterns like
1083   // (x == 16) ? 16 : (x + 1).
1084   if (match(Val, m_Add(m_Specific(LHS), m_APInt(C)))) {
1085     Offset = -*C;
1086     return true;
1087   }
1088 
1089   // If (x | y) < C, then (x < C) && (y < C).
1090   if (match(LHS, m_c_Or(m_Specific(Val), m_Value())) &&
1091       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE))
1092     return true;
1093 
1094   // If (x & y) > C, then (x > C) && (y > C).
1095   if (match(LHS, m_c_And(m_Specific(Val), m_Value())) &&
1096       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE))
1097     return true;
1098 
1099   return false;
1100 }
1101 
1102 /// Get value range for a "(Val + Offset) Pred RHS" condition.
1103 std::optional<ValueLatticeElement>
1104 LazyValueInfoImpl::getValueFromSimpleICmpCondition(CmpInst::Predicate Pred,
1105                                                    Value *RHS,
1106                                                    const APInt &Offset,
1107                                                    Instruction *CxtI,
1108                                                    bool UseBlockValue) {
1109   ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(),
1110                          /*isFullSet=*/true);
1111   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1112     RHSRange = ConstantRange(CI->getValue());
1113   } else if (UseBlockValue) {
1114     std::optional<ValueLatticeElement> R =
1115         getBlockValue(RHS, CxtI->getParent(), CxtI);
1116     if (!R)
1117       return std::nullopt;
1118     RHSRange = toConstantRange(*R, RHS->getType());
1119   } else if (Instruction *I = dyn_cast<Instruction>(RHS)) {
1120     if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
1121       RHSRange = getConstantRangeFromMetadata(*Ranges);
1122   }
1123 
1124   ConstantRange TrueValues =
1125       ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
1126   return ValueLatticeElement::getRange(TrueValues.subtract(Offset));
1127 }
1128 
1129 static std::optional<ConstantRange>
1130 getRangeViaSLT(CmpInst::Predicate Pred, APInt RHS,
1131                function_ref<std::optional<ConstantRange>(const APInt &)> Fn) {
1132   bool Invert = false;
1133   if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
1134     Pred = ICmpInst::getInversePredicate(Pred);
1135     Invert = true;
1136   }
1137   if (Pred == ICmpInst::ICMP_SLE) {
1138     Pred = ICmpInst::ICMP_SLT;
1139     if (RHS.isMaxSignedValue())
1140       return std::nullopt; // Could also return full/empty here, if we wanted.
1141     ++RHS;
1142   }
1143   assert(Pred == ICmpInst::ICMP_SLT && "Must be signed predicate");
1144   if (auto CR = Fn(RHS))
1145     return Invert ? CR->inverse() : CR;
1146   return std::nullopt;
1147 }
1148 
1149 std::optional<ValueLatticeElement> LazyValueInfoImpl::getValueFromICmpCondition(
1150     Value *Val, ICmpInst *ICI, bool isTrueDest, bool UseBlockValue) {
1151   Value *LHS = ICI->getOperand(0);
1152   Value *RHS = ICI->getOperand(1);
1153 
1154   // Get the predicate that must hold along the considered edge.
1155   CmpInst::Predicate EdgePred =
1156       isTrueDest ? ICI->getPredicate() : ICI->getInversePredicate();
1157 
1158   if (isa<Constant>(RHS)) {
1159     if (ICI->isEquality() && LHS == Val) {
1160       if (EdgePred == ICmpInst::ICMP_EQ)
1161         return ValueLatticeElement::get(cast<Constant>(RHS));
1162       else if (!isa<UndefValue>(RHS))
1163         return ValueLatticeElement::getNot(cast<Constant>(RHS));
1164     }
1165   }
1166 
1167   Type *Ty = Val->getType();
1168   if (!Ty->isIntegerTy())
1169     return ValueLatticeElement::getOverdefined();
1170 
1171   unsigned BitWidth = Ty->getScalarSizeInBits();
1172   APInt Offset(BitWidth, 0);
1173   if (matchICmpOperand(Offset, LHS, Val, EdgePred))
1174     return getValueFromSimpleICmpCondition(EdgePred, RHS, Offset, ICI,
1175                                            UseBlockValue);
1176 
1177   CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(EdgePred);
1178   if (matchICmpOperand(Offset, RHS, Val, SwappedPred))
1179     return getValueFromSimpleICmpCondition(SwappedPred, LHS, Offset, ICI,
1180                                            UseBlockValue);
1181 
1182   const APInt *Mask, *C;
1183   if (match(LHS, m_And(m_Specific(Val), m_APInt(Mask))) &&
1184       match(RHS, m_APInt(C))) {
1185     // If (Val & Mask) == C then all the masked bits are known and we can
1186     // compute a value range based on that.
1187     if (EdgePred == ICmpInst::ICMP_EQ) {
1188       KnownBits Known;
1189       Known.Zero = ~*C & *Mask;
1190       Known.One = *C & *Mask;
1191       return ValueLatticeElement::getRange(
1192           ConstantRange::fromKnownBits(Known, /*IsSigned*/ false));
1193     }
1194     // If (Val & Mask) != 0 then the value must be larger than the lowest set
1195     // bit of Mask.
1196     if (EdgePred == ICmpInst::ICMP_NE && !Mask->isZero() && C->isZero()) {
1197       return ValueLatticeElement::getRange(ConstantRange::getNonEmpty(
1198           APInt::getOneBitSet(BitWidth, Mask->countr_zero()),
1199           APInt::getZero(BitWidth)));
1200     }
1201   }
1202 
1203   // If (X urem Modulus) >= C, then X >= C.
1204   // If trunc X >= C, then X >= C.
1205   // TODO: An upper bound could be computed as well.
1206   if (match(LHS, m_CombineOr(m_URem(m_Specific(Val), m_Value()),
1207                              m_Trunc(m_Specific(Val)))) &&
1208       match(RHS, m_APInt(C))) {
1209     // Use the icmp region so we don't have to deal with different predicates.
1210     ConstantRange CR = ConstantRange::makeExactICmpRegion(EdgePred, *C);
1211     if (!CR.isEmptySet())
1212       return ValueLatticeElement::getRange(ConstantRange::getNonEmpty(
1213           CR.getUnsignedMin().zext(BitWidth), APInt(BitWidth, 0)));
1214   }
1215 
1216   // Recognize:
1217   // icmp slt (ashr X, ShAmtC), C --> icmp slt X, C << ShAmtC
1218   // Preconditions: (C << ShAmtC) >> ShAmtC == C
1219   const APInt *ShAmtC;
1220   if (CmpInst::isSigned(EdgePred) &&
1221       match(LHS, m_AShr(m_Specific(Val), m_APInt(ShAmtC))) &&
1222       match(RHS, m_APInt(C))) {
1223     auto CR = getRangeViaSLT(
1224         EdgePred, *C, [&](const APInt &RHS) -> std::optional<ConstantRange> {
1225           APInt New = RHS << *ShAmtC;
1226           if ((New.ashr(*ShAmtC)) != RHS)
1227             return std::nullopt;
1228           return ConstantRange::getNonEmpty(
1229               APInt::getSignedMinValue(New.getBitWidth()), New);
1230         });
1231     if (CR)
1232       return ValueLatticeElement::getRange(*CR);
1233   }
1234 
1235   return ValueLatticeElement::getOverdefined();
1236 }
1237 
1238 // Handle conditions of the form
1239 // extractvalue(op.with.overflow(%x, C), 1).
1240 static ValueLatticeElement getValueFromOverflowCondition(
1241     Value *Val, WithOverflowInst *WO, bool IsTrueDest) {
1242   // TODO: This only works with a constant RHS for now. We could also compute
1243   // the range of the RHS, but this doesn't fit into the current structure of
1244   // the edge value calculation.
1245   const APInt *C;
1246   if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C)))
1247     return ValueLatticeElement::getOverdefined();
1248 
1249   // Calculate the possible values of %x for which no overflow occurs.
1250   ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
1251       WO->getBinaryOp(), *C, WO->getNoWrapKind());
1252 
1253   // If overflow is false, %x is constrained to NWR. If overflow is true, %x is
1254   // constrained to it's inverse (all values that might cause overflow).
1255   if (IsTrueDest)
1256     NWR = NWR.inverse();
1257   return ValueLatticeElement::getRange(NWR);
1258 }
1259 
1260 std::optional<ValueLatticeElement>
1261 LazyValueInfoImpl::getValueFromCondition(Value *Val, Value *Cond,
1262                                          bool IsTrueDest, bool UseBlockValue,
1263                                          unsigned Depth) {
1264   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond))
1265     return getValueFromICmpCondition(Val, ICI, IsTrueDest, UseBlockValue);
1266 
1267   if (auto *EVI = dyn_cast<ExtractValueInst>(Cond))
1268     if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
1269       if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1)
1270         return getValueFromOverflowCondition(Val, WO, IsTrueDest);
1271 
1272   if (++Depth == MaxAnalysisRecursionDepth)
1273     return ValueLatticeElement::getOverdefined();
1274 
1275   Value *N;
1276   if (match(Cond, m_Not(m_Value(N))))
1277     return getValueFromCondition(Val, N, !IsTrueDest, UseBlockValue, Depth);
1278 
1279   Value *L, *R;
1280   bool IsAnd;
1281   if (match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))))
1282     IsAnd = true;
1283   else if (match(Cond, m_LogicalOr(m_Value(L), m_Value(R))))
1284     IsAnd = false;
1285   else
1286     return ValueLatticeElement::getOverdefined();
1287 
1288   std::optional<ValueLatticeElement> LV =
1289       getValueFromCondition(Val, L, IsTrueDest, UseBlockValue, Depth);
1290   if (!LV)
1291     return std::nullopt;
1292   std::optional<ValueLatticeElement> RV =
1293       getValueFromCondition(Val, R, IsTrueDest, UseBlockValue, Depth);
1294   if (!RV)
1295     return std::nullopt;
1296 
1297   // if (L && R) -> intersect L and R
1298   // if (!(L || R)) -> intersect !L and !R
1299   // if (L || R) -> union L and R
1300   // if (!(L && R)) -> union !L and !R
1301   if (IsTrueDest ^ IsAnd) {
1302     LV->mergeIn(*RV);
1303     return *LV;
1304   }
1305 
1306   return intersect(*LV, *RV);
1307 }
1308 
1309 // Return true if Usr has Op as an operand, otherwise false.
1310 static bool usesOperand(User *Usr, Value *Op) {
1311   return is_contained(Usr->operands(), Op);
1312 }
1313 
1314 // Return true if the instruction type of Val is supported by
1315 // constantFoldUser(). Currently CastInst, BinaryOperator and FreezeInst only.
1316 // Call this before calling constantFoldUser() to find out if it's even worth
1317 // attempting to call it.
1318 static bool isOperationFoldable(User *Usr) {
1319   return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr) || isa<FreezeInst>(Usr);
1320 }
1321 
1322 // Check if Usr can be simplified to an integer constant when the value of one
1323 // of its operands Op is an integer constant OpConstVal. If so, return it as an
1324 // lattice value range with a single element or otherwise return an overdefined
1325 // lattice value.
1326 static ValueLatticeElement constantFoldUser(User *Usr, Value *Op,
1327                                             const APInt &OpConstVal,
1328                                             const DataLayout &DL) {
1329   assert(isOperationFoldable(Usr) && "Precondition");
1330   Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal);
1331   // Check if Usr can be simplified to a constant.
1332   if (auto *CI = dyn_cast<CastInst>(Usr)) {
1333     assert(CI->getOperand(0) == Op && "Operand 0 isn't Op");
1334     if (auto *C = dyn_cast_or_null<ConstantInt>(
1335             simplifyCastInst(CI->getOpcode(), OpConst,
1336                              CI->getDestTy(), DL))) {
1337       return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
1338     }
1339   } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) {
1340     bool Op0Match = BO->getOperand(0) == Op;
1341     bool Op1Match = BO->getOperand(1) == Op;
1342     assert((Op0Match || Op1Match) &&
1343            "Operand 0 nor Operand 1 isn't a match");
1344     Value *LHS = Op0Match ? OpConst : BO->getOperand(0);
1345     Value *RHS = Op1Match ? OpConst : BO->getOperand(1);
1346     if (auto *C = dyn_cast_or_null<ConstantInt>(
1347             simplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) {
1348       return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
1349     }
1350   } else if (isa<FreezeInst>(Usr)) {
1351     assert(cast<FreezeInst>(Usr)->getOperand(0) == Op && "Operand 0 isn't Op");
1352     return ValueLatticeElement::getRange(ConstantRange(OpConstVal));
1353   }
1354   return ValueLatticeElement::getOverdefined();
1355 }
1356 
1357 /// Compute the value of Val on the edge BBFrom -> BBTo.
1358 std::optional<ValueLatticeElement>
1359 LazyValueInfoImpl::getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
1360                                      BasicBlock *BBTo, bool UseBlockValue) {
1361   // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
1362   // know that v != 0.
1363   if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
1364     // If this is a conditional branch and only one successor goes to BBTo, then
1365     // we may be able to infer something from the condition.
1366     if (BI->isConditional() &&
1367         BI->getSuccessor(0) != BI->getSuccessor(1)) {
1368       bool isTrueDest = BI->getSuccessor(0) == BBTo;
1369       assert(BI->getSuccessor(!isTrueDest) == BBTo &&
1370              "BBTo isn't a successor of BBFrom");
1371       Value *Condition = BI->getCondition();
1372 
1373       // If V is the condition of the branch itself, then we know exactly what
1374       // it is.
1375       if (Condition == Val)
1376         return ValueLatticeElement::get(ConstantInt::get(
1377                               Type::getInt1Ty(Val->getContext()), isTrueDest));
1378 
1379       // If the condition of the branch is an equality comparison, we may be
1380       // able to infer the value.
1381       std::optional<ValueLatticeElement> Result =
1382           getValueFromCondition(Val, Condition, isTrueDest, UseBlockValue);
1383       if (!Result)
1384         return std::nullopt;
1385 
1386       if (!Result->isOverdefined())
1387         return Result;
1388 
1389       if (User *Usr = dyn_cast<User>(Val)) {
1390         assert(Result->isOverdefined() && "Result isn't overdefined");
1391         // Check with isOperationFoldable() first to avoid linearly iterating
1392         // over the operands unnecessarily which can be expensive for
1393         // instructions with many operands.
1394         if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) {
1395           const DataLayout &DL = BBTo->getModule()->getDataLayout();
1396           if (usesOperand(Usr, Condition)) {
1397             // If Val has Condition as an operand and Val can be folded into a
1398             // constant with either Condition == true or Condition == false,
1399             // propagate the constant.
1400             // eg.
1401             //   ; %Val is true on the edge to %then.
1402             //   %Val = and i1 %Condition, true.
1403             //   br %Condition, label %then, label %else
1404             APInt ConditionVal(1, isTrueDest ? 1 : 0);
1405             Result = constantFoldUser(Usr, Condition, ConditionVal, DL);
1406           } else {
1407             // If one of Val's operand has an inferred value, we may be able to
1408             // infer the value of Val.
1409             // eg.
1410             //    ; %Val is 94 on the edge to %then.
1411             //    %Val = add i8 %Op, 1
1412             //    %Condition = icmp eq i8 %Op, 93
1413             //    br i1 %Condition, label %then, label %else
1414             for (unsigned i = 0; i < Usr->getNumOperands(); ++i) {
1415               Value *Op = Usr->getOperand(i);
1416               ValueLatticeElement OpLatticeVal = *getValueFromCondition(
1417                   Op, Condition, isTrueDest, /*UseBlockValue*/ false);
1418               if (std::optional<APInt> OpConst =
1419                       OpLatticeVal.asConstantInteger()) {
1420                 Result = constantFoldUser(Usr, Op, *OpConst, DL);
1421                 break;
1422               }
1423             }
1424           }
1425         }
1426       }
1427       if (!Result->isOverdefined())
1428         return Result;
1429     }
1430   }
1431 
1432   // If the edge was formed by a switch on the value, then we may know exactly
1433   // what it is.
1434   if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
1435     Value *Condition = SI->getCondition();
1436     if (!isa<IntegerType>(Val->getType()))
1437       return ValueLatticeElement::getOverdefined();
1438     bool ValUsesConditionAndMayBeFoldable = false;
1439     if (Condition != Val) {
1440       // Check if Val has Condition as an operand.
1441       if (User *Usr = dyn_cast<User>(Val))
1442         ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) &&
1443             usesOperand(Usr, Condition);
1444       if (!ValUsesConditionAndMayBeFoldable)
1445         return ValueLatticeElement::getOverdefined();
1446     }
1447     assert((Condition == Val || ValUsesConditionAndMayBeFoldable) &&
1448            "Condition != Val nor Val doesn't use Condition");
1449 
1450     bool DefaultCase = SI->getDefaultDest() == BBTo;
1451     unsigned BitWidth = Val->getType()->getIntegerBitWidth();
1452     ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
1453 
1454     for (auto Case : SI->cases()) {
1455       APInt CaseValue = Case.getCaseValue()->getValue();
1456       ConstantRange EdgeVal(CaseValue);
1457       if (ValUsesConditionAndMayBeFoldable) {
1458         User *Usr = cast<User>(Val);
1459         const DataLayout &DL = BBTo->getModule()->getDataLayout();
1460         ValueLatticeElement EdgeLatticeVal =
1461             constantFoldUser(Usr, Condition, CaseValue, DL);
1462         if (EdgeLatticeVal.isOverdefined())
1463           return ValueLatticeElement::getOverdefined();
1464         EdgeVal = EdgeLatticeVal.getConstantRange();
1465       }
1466       if (DefaultCase) {
1467         // It is possible that the default destination is the destination of
1468         // some cases. We cannot perform difference for those cases.
1469         // We know Condition != CaseValue in BBTo.  In some cases we can use
1470         // this to infer Val == f(Condition) is != f(CaseValue).  For now, we
1471         // only do this when f is identity (i.e. Val == Condition), but we
1472         // should be able to do this for any injective f.
1473         if (Case.getCaseSuccessor() != BBTo && Condition == Val)
1474           EdgesVals = EdgesVals.difference(EdgeVal);
1475       } else if (Case.getCaseSuccessor() == BBTo)
1476         EdgesVals = EdgesVals.unionWith(EdgeVal);
1477     }
1478     return ValueLatticeElement::getRange(std::move(EdgesVals));
1479   }
1480   return ValueLatticeElement::getOverdefined();
1481 }
1482 
1483 /// Compute the value of Val on the edge BBFrom -> BBTo or the value at
1484 /// the basic block if the edge does not constrain Val.
1485 std::optional<ValueLatticeElement>
1486 LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom,
1487                                 BasicBlock *BBTo, Instruction *CxtI) {
1488   // If already a constant, there is nothing to compute.
1489   if (Constant *VC = dyn_cast<Constant>(Val))
1490     return ValueLatticeElement::get(VC);
1491 
1492   std::optional<ValueLatticeElement> LocalResult =
1493       getEdgeValueLocal(Val, BBFrom, BBTo, /*UseBlockValue*/ true);
1494   if (!LocalResult)
1495     return std::nullopt;
1496 
1497   if (hasSingleValue(*LocalResult))
1498     // Can't get any more precise here
1499     return LocalResult;
1500 
1501   std::optional<ValueLatticeElement> OptInBlock =
1502       getBlockValue(Val, BBFrom, BBFrom->getTerminator());
1503   if (!OptInBlock)
1504     return std::nullopt;
1505   ValueLatticeElement &InBlock = *OptInBlock;
1506 
1507   // We can use the context instruction (generically the ultimate instruction
1508   // the calling pass is trying to simplify) here, even though the result of
1509   // this function is generally cached when called from the solve* functions
1510   // (and that cached result might be used with queries using a different
1511   // context instruction), because when this function is called from the solve*
1512   // functions, the context instruction is not provided. When called from
1513   // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided,
1514   // but then the result is not cached.
1515   intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI);
1516 
1517   return intersect(*LocalResult, InBlock);
1518 }
1519 
1520 ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB,
1521                                                        Instruction *CxtI) {
1522   LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
1523                     << BB->getName() << "'\n");
1524 
1525   assert(BlockValueStack.empty() && BlockValueSet.empty());
1526   std::optional<ValueLatticeElement> OptResult = getBlockValue(V, BB, CxtI);
1527   if (!OptResult) {
1528     solve();
1529     OptResult = getBlockValue(V, BB, CxtI);
1530     assert(OptResult && "Value not available after solving");
1531   }
1532 
1533   ValueLatticeElement Result = *OptResult;
1534   LLVM_DEBUG(dbgs() << "  Result = " << Result << "\n");
1535   return Result;
1536 }
1537 
1538 ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) {
1539   LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName()
1540                     << "'\n");
1541 
1542   if (auto *C = dyn_cast<Constant>(V))
1543     return ValueLatticeElement::get(C);
1544 
1545   ValueLatticeElement Result = ValueLatticeElement::getOverdefined();
1546   if (auto *I = dyn_cast<Instruction>(V))
1547     Result = getFromRangeMetadata(I);
1548   intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
1549 
1550   LLVM_DEBUG(dbgs() << "  Result = " << Result << "\n");
1551   return Result;
1552 }
1553 
1554 ValueLatticeElement LazyValueInfoImpl::
1555 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
1556                Instruction *CxtI) {
1557   LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
1558                     << FromBB->getName() << "' to '" << ToBB->getName()
1559                     << "'\n");
1560 
1561   std::optional<ValueLatticeElement> Result =
1562       getEdgeValue(V, FromBB, ToBB, CxtI);
1563   while (!Result) {
1564     // As the worklist only explicitly tracks block values (but not edge values)
1565     // we may have to call solve() multiple times, as the edge value calculation
1566     // may request additional block values.
1567     solve();
1568     Result = getEdgeValue(V, FromBB, ToBB, CxtI);
1569   }
1570 
1571   LLVM_DEBUG(dbgs() << "  Result = " << *Result << "\n");
1572   return *Result;
1573 }
1574 
1575 ValueLatticeElement LazyValueInfoImpl::getValueAtUse(const Use &U) {
1576   Value *V = U.get();
1577   auto *CxtI = cast<Instruction>(U.getUser());
1578   ValueLatticeElement VL = getValueInBlock(V, CxtI->getParent(), CxtI);
1579 
1580   // Check whether the only (possibly transitive) use of the value is in a
1581   // position where V can be constrained by a select or branch condition.
1582   const Use *CurrU = &U;
1583   // TODO: Increase limit?
1584   const unsigned MaxUsesToInspect = 3;
1585   for (unsigned I = 0; I < MaxUsesToInspect; ++I) {
1586     std::optional<ValueLatticeElement> CondVal;
1587     auto *CurrI = cast<Instruction>(CurrU->getUser());
1588     if (auto *SI = dyn_cast<SelectInst>(CurrI)) {
1589       // If the value is undef, a different value may be chosen in
1590       // the select condition and at use.
1591       if (!isGuaranteedNotToBeUndef(SI->getCondition(), AC))
1592         break;
1593       if (CurrU->getOperandNo() == 1)
1594         CondVal =
1595             *getValueFromCondition(V, SI->getCondition(), /*IsTrueDest*/ true,
1596                                    /*UseBlockValue*/ false);
1597       else if (CurrU->getOperandNo() == 2)
1598         CondVal =
1599             *getValueFromCondition(V, SI->getCondition(), /*IsTrueDest*/ false,
1600                                    /*UseBlockValue*/ false);
1601     } else if (auto *PHI = dyn_cast<PHINode>(CurrI)) {
1602       // TODO: Use non-local query?
1603       CondVal = *getEdgeValueLocal(V, PHI->getIncomingBlock(*CurrU),
1604                                    PHI->getParent(), /*UseBlockValue*/ false);
1605     }
1606     if (CondVal)
1607       VL = intersect(VL, *CondVal);
1608 
1609     // Only follow one-use chain, to allow direct intersection of conditions.
1610     // If there are multiple uses, we would have to intersect with the union of
1611     // all conditions at different uses.
1612     // Stop walking if we hit a non-speculatable instruction. Even if the
1613     // result is only used under a specific condition, executing the
1614     // instruction itself may cause side effects or UB already.
1615     // This also disallows looking through phi nodes: If the phi node is part
1616     // of a cycle, we might end up reasoning about values from different cycle
1617     // iterations (PR60629).
1618     if (!CurrI->hasOneUse() || !isSafeToSpeculativelyExecute(CurrI))
1619       break;
1620     CurrU = &*CurrI->use_begin();
1621   }
1622   return VL;
1623 }
1624 
1625 void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1626                                    BasicBlock *NewSucc) {
1627   TheCache.threadEdgeImpl(OldSucc, NewSucc);
1628 }
1629 
1630 //===----------------------------------------------------------------------===//
1631 //                            LazyValueInfo Impl
1632 //===----------------------------------------------------------------------===//
1633 
1634 bool LazyValueInfoWrapperPass::runOnFunction(Function &F) {
1635   Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1636 
1637   if (auto *Impl = Info.getImpl())
1638     Impl->clear();
1639 
1640   // Fully lazy.
1641   return false;
1642 }
1643 
1644 void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1645   AU.setPreservesAll();
1646   AU.addRequired<AssumptionCacheTracker>();
1647   AU.addRequired<TargetLibraryInfoWrapperPass>();
1648 }
1649 
1650 LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; }
1651 
1652 /// This lazily constructs the LazyValueInfoImpl.
1653 LazyValueInfoImpl &LazyValueInfo::getOrCreateImpl(const Module *M) {
1654   if (!PImpl) {
1655     assert(M && "getCache() called with a null Module");
1656     const DataLayout &DL = M->getDataLayout();
1657     Function *GuardDecl =
1658         M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
1659     PImpl = new LazyValueInfoImpl(AC, DL, GuardDecl);
1660   }
1661   return *static_cast<LazyValueInfoImpl *>(PImpl);
1662 }
1663 
1664 LazyValueInfoImpl *LazyValueInfo::getImpl() {
1665   if (!PImpl)
1666     return nullptr;
1667   return static_cast<LazyValueInfoImpl *>(PImpl);
1668 }
1669 
1670 LazyValueInfo::~LazyValueInfo() { releaseMemory(); }
1671 
1672 void LazyValueInfo::releaseMemory() {
1673   // If the cache was allocated, free it.
1674   if (auto *Impl = getImpl()) {
1675     delete &*Impl;
1676     PImpl = nullptr;
1677   }
1678 }
1679 
1680 bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA,
1681                                FunctionAnalysisManager::Invalidator &Inv) {
1682   // We need to invalidate if we have either failed to preserve this analyses
1683   // result directly or if any of its dependencies have been invalidated.
1684   auto PAC = PA.getChecker<LazyValueAnalysis>();
1685   if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()))
1686     return true;
1687 
1688   return false;
1689 }
1690 
1691 void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); }
1692 
1693 LazyValueInfo LazyValueAnalysis::run(Function &F,
1694                                      FunctionAnalysisManager &FAM) {
1695   auto &AC = FAM.getResult<AssumptionAnalysis>(F);
1696 
1697   return LazyValueInfo(&AC, &F.getParent()->getDataLayout());
1698 }
1699 
1700 /// Returns true if we can statically tell that this value will never be a
1701 /// "useful" constant.  In practice, this means we've got something like an
1702 /// alloca or a malloc call for which a comparison against a constant can
1703 /// only be guarding dead code.  Note that we are potentially giving up some
1704 /// precision in dead code (a constant result) in favour of avoiding a
1705 /// expensive search for a easily answered common query.
1706 static bool isKnownNonConstant(Value *V) {
1707   V = V->stripPointerCasts();
1708   // The return val of alloc cannot be a Constant.
1709   if (isa<AllocaInst>(V))
1710     return true;
1711   return false;
1712 }
1713 
1714 Constant *LazyValueInfo::getConstant(Value *V, Instruction *CxtI) {
1715   // Bail out early if V is known not to be a Constant.
1716   if (isKnownNonConstant(V))
1717     return nullptr;
1718 
1719   BasicBlock *BB = CxtI->getParent();
1720   ValueLatticeElement Result =
1721       getOrCreateImpl(BB->getModule()).getValueInBlock(V, BB, CxtI);
1722 
1723   if (Result.isConstant())
1724     return Result.getConstant();
1725   if (Result.isConstantRange()) {
1726     const ConstantRange &CR = Result.getConstantRange();
1727     if (const APInt *SingleVal = CR.getSingleElement())
1728       return ConstantInt::get(V->getContext(), *SingleVal);
1729   }
1730   return nullptr;
1731 }
1732 
1733 ConstantRange LazyValueInfo::getConstantRange(Value *V, Instruction *CxtI,
1734                                               bool UndefAllowed) {
1735   assert(V->getType()->isIntegerTy());
1736   BasicBlock *BB = CxtI->getParent();
1737   ValueLatticeElement Result =
1738       getOrCreateImpl(BB->getModule()).getValueInBlock(V, BB, CxtI);
1739   return toConstantRange(Result, V->getType(), UndefAllowed);
1740 }
1741 
1742 ConstantRange LazyValueInfo::getConstantRangeAtUse(const Use &U,
1743                                                    bool UndefAllowed) {
1744   auto *Inst = cast<Instruction>(U.getUser());
1745   ValueLatticeElement Result =
1746       getOrCreateImpl(Inst->getModule()).getValueAtUse(U);
1747   return toConstantRange(Result, U->getType(), UndefAllowed);
1748 }
1749 
1750 /// Determine whether the specified value is known to be a
1751 /// constant on the specified edge. Return null if not.
1752 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
1753                                            BasicBlock *ToBB,
1754                                            Instruction *CxtI) {
1755   Module *M = FromBB->getModule();
1756   ValueLatticeElement Result =
1757       getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI);
1758 
1759   if (Result.isConstant())
1760     return Result.getConstant();
1761   if (Result.isConstantRange()) {
1762     const ConstantRange &CR = Result.getConstantRange();
1763     if (const APInt *SingleVal = CR.getSingleElement())
1764       return ConstantInt::get(V->getContext(), *SingleVal);
1765   }
1766   return nullptr;
1767 }
1768 
1769 ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V,
1770                                                     BasicBlock *FromBB,
1771                                                     BasicBlock *ToBB,
1772                                                     Instruction *CxtI) {
1773   Module *M = FromBB->getModule();
1774   ValueLatticeElement Result =
1775       getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI);
1776   // TODO: Should undef be allowed here?
1777   return toConstantRange(Result, V->getType(), /*UndefAllowed*/ true);
1778 }
1779 
1780 static LazyValueInfo::Tristate
1781 getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val,
1782                    const DataLayout &DL) {
1783   // If we know the value is a constant, evaluate the conditional.
1784   Constant *Res = nullptr;
1785   if (Val.isConstant()) {
1786     Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL);
1787     if (ConstantInt *ResCI = dyn_cast_or_null<ConstantInt>(Res))
1788       return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
1789     return LazyValueInfo::Unknown;
1790   }
1791 
1792   if (Val.isConstantRange()) {
1793     ConstantInt *CI = dyn_cast<ConstantInt>(C);
1794     if (!CI) return LazyValueInfo::Unknown;
1795 
1796     const ConstantRange &CR = Val.getConstantRange();
1797     if (Pred == ICmpInst::ICMP_EQ) {
1798       if (!CR.contains(CI->getValue()))
1799         return LazyValueInfo::False;
1800 
1801       if (CR.isSingleElement())
1802         return LazyValueInfo::True;
1803     } else if (Pred == ICmpInst::ICMP_NE) {
1804       if (!CR.contains(CI->getValue()))
1805         return LazyValueInfo::True;
1806 
1807       if (CR.isSingleElement())
1808         return LazyValueInfo::False;
1809     } else {
1810       // Handle more complex predicates.
1811       ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(
1812           (ICmpInst::Predicate)Pred, CI->getValue());
1813       if (TrueValues.contains(CR))
1814         return LazyValueInfo::True;
1815       if (TrueValues.inverse().contains(CR))
1816         return LazyValueInfo::False;
1817     }
1818     return LazyValueInfo::Unknown;
1819   }
1820 
1821   if (Val.isNotConstant()) {
1822     // If this is an equality comparison, we can try to fold it knowing that
1823     // "V != C1".
1824     if (Pred == ICmpInst::ICMP_EQ) {
1825       // !C1 == C -> false iff C1 == C.
1826       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1827                                             Val.getNotConstant(), C, DL);
1828       if (Res && Res->isNullValue())
1829         return LazyValueInfo::False;
1830     } else if (Pred == ICmpInst::ICMP_NE) {
1831       // !C1 != C -> true iff C1 == C.
1832       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1833                                             Val.getNotConstant(), C, DL);
1834       if (Res && Res->isNullValue())
1835         return LazyValueInfo::True;
1836     }
1837     return LazyValueInfo::Unknown;
1838   }
1839 
1840   return LazyValueInfo::Unknown;
1841 }
1842 
1843 /// Determine whether the specified value comparison with a constant is known to
1844 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
1845 LazyValueInfo::Tristate
1846 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
1847                                   BasicBlock *FromBB, BasicBlock *ToBB,
1848                                   Instruction *CxtI) {
1849   Module *M = FromBB->getModule();
1850   ValueLatticeElement Result =
1851       getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI);
1852 
1853   return getPredicateResult(Pred, C, Result, M->getDataLayout());
1854 }
1855 
1856 LazyValueInfo::Tristate
1857 LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
1858                               Instruction *CxtI, bool UseBlockValue) {
1859   // Is or is not NonNull are common predicates being queried. If
1860   // isKnownNonZero can tell us the result of the predicate, we can
1861   // return it quickly. But this is only a fastpath, and falling
1862   // through would still be correct.
1863   Module *M = CxtI->getModule();
1864   const DataLayout &DL = M->getDataLayout();
1865   if (V->getType()->isPointerTy() && C->isNullValue() &&
1866       isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) {
1867     if (Pred == ICmpInst::ICMP_EQ)
1868       return LazyValueInfo::False;
1869     else if (Pred == ICmpInst::ICMP_NE)
1870       return LazyValueInfo::True;
1871   }
1872 
1873   auto &Impl = getOrCreateImpl(M);
1874   ValueLatticeElement Result =
1875       UseBlockValue ? Impl.getValueInBlock(V, CxtI->getParent(), CxtI)
1876                     : Impl.getValueAt(V, CxtI);
1877   Tristate Ret = getPredicateResult(Pred, C, Result, DL);
1878   if (Ret != Unknown)
1879     return Ret;
1880 
1881   // Note: The following bit of code is somewhat distinct from the rest of LVI;
1882   // LVI as a whole tries to compute a lattice value which is conservatively
1883   // correct at a given location.  In this case, we have a predicate which we
1884   // weren't able to prove about the merged result, and we're pushing that
1885   // predicate back along each incoming edge to see if we can prove it
1886   // separately for each input.  As a motivating example, consider:
1887   // bb1:
1888   //   %v1 = ... ; constantrange<1, 5>
1889   //   br label %merge
1890   // bb2:
1891   //   %v2 = ... ; constantrange<10, 20>
1892   //   br label %merge
1893   // merge:
1894   //   %phi = phi [%v1, %v2] ; constantrange<1,20>
1895   //   %pred = icmp eq i32 %phi, 8
1896   // We can't tell from the lattice value for '%phi' that '%pred' is false
1897   // along each path, but by checking the predicate over each input separately,
1898   // we can.
1899   // We limit the search to one step backwards from the current BB and value.
1900   // We could consider extending this to search further backwards through the
1901   // CFG and/or value graph, but there are non-obvious compile time vs quality
1902   // tradeoffs.
1903   BasicBlock *BB = CxtI->getParent();
1904 
1905   // Function entry or an unreachable block.  Bail to avoid confusing
1906   // analysis below.
1907   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1908   if (PI == PE)
1909     return Unknown;
1910 
1911   // If V is a PHI node in the same block as the context, we need to ask
1912   // questions about the predicate as applied to the incoming value along
1913   // each edge. This is useful for eliminating cases where the predicate is
1914   // known along all incoming edges.
1915   if (auto *PHI = dyn_cast<PHINode>(V))
1916     if (PHI->getParent() == BB) {
1917       Tristate Baseline = Unknown;
1918       for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) {
1919         Value *Incoming = PHI->getIncomingValue(i);
1920         BasicBlock *PredBB = PHI->getIncomingBlock(i);
1921         // Note that PredBB may be BB itself.
1922         Tristate Result =
1923             getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, CxtI);
1924 
1925         // Keep going as long as we've seen a consistent known result for
1926         // all inputs.
1927         Baseline = (i == 0) ? Result /* First iteration */
1928                             : (Baseline == Result ? Baseline
1929                                                   : Unknown); /* All others */
1930         if (Baseline == Unknown)
1931           break;
1932       }
1933       if (Baseline != Unknown)
1934         return Baseline;
1935     }
1936 
1937   // For a comparison where the V is outside this block, it's possible
1938   // that we've branched on it before. Look to see if the value is known
1939   // on all incoming edges.
1940   if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB) {
1941     // For predecessor edge, determine if the comparison is true or false
1942     // on that edge. If they're all true or all false, we can conclude
1943     // the value of the comparison in this block.
1944     Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1945     if (Baseline != Unknown) {
1946       // Check that all remaining incoming values match the first one.
1947       while (++PI != PE) {
1948         Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1949         if (Ret != Baseline)
1950           break;
1951       }
1952       // If we terminated early, then one of the values didn't match.
1953       if (PI == PE) {
1954         return Baseline;
1955       }
1956     }
1957   }
1958 
1959   return Unknown;
1960 }
1961 
1962 LazyValueInfo::Tristate LazyValueInfo::getPredicateAt(unsigned P, Value *LHS,
1963                                                       Value *RHS,
1964                                                       Instruction *CxtI,
1965                                                       bool UseBlockValue) {
1966   CmpInst::Predicate Pred = (CmpInst::Predicate)P;
1967 
1968   if (auto *C = dyn_cast<Constant>(RHS))
1969     return getPredicateAt(P, LHS, C, CxtI, UseBlockValue);
1970   if (auto *C = dyn_cast<Constant>(LHS))
1971     return getPredicateAt(CmpInst::getSwappedPredicate(Pred), RHS, C, CxtI,
1972                           UseBlockValue);
1973 
1974   // Got two non-Constant values. Try to determine the comparison results based
1975   // on the block values of the two operands, e.g. because they have
1976   // non-overlapping ranges.
1977   if (UseBlockValue) {
1978     Module *M = CxtI->getModule();
1979     ValueLatticeElement L =
1980         getOrCreateImpl(M).getValueInBlock(LHS, CxtI->getParent(), CxtI);
1981     if (L.isOverdefined())
1982       return LazyValueInfo::Unknown;
1983 
1984     ValueLatticeElement R =
1985         getOrCreateImpl(M).getValueInBlock(RHS, CxtI->getParent(), CxtI);
1986     Type *Ty = CmpInst::makeCmpResultType(LHS->getType());
1987     if (Constant *Res = L.getCompare((CmpInst::Predicate)P, Ty, R,
1988                                      M->getDataLayout())) {
1989       if (Res->isNullValue())
1990         return LazyValueInfo::False;
1991       if (Res->isOneValue())
1992         return LazyValueInfo::True;
1993     }
1994   }
1995   return LazyValueInfo::Unknown;
1996 }
1997 
1998 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1999                                BasicBlock *NewSucc) {
2000   if (auto *Impl = getImpl())
2001     Impl->threadEdge(PredBB, OldSucc, NewSucc);
2002 }
2003 
2004 void LazyValueInfo::forgetValue(Value *V) {
2005   if (auto *Impl = getImpl())
2006     Impl->forgetValue(V);
2007 }
2008 
2009 void LazyValueInfo::eraseBlock(BasicBlock *BB) {
2010   if (auto *Impl = getImpl())
2011     Impl->eraseBlock(BB);
2012 }
2013 
2014 void LazyValueInfo::clear() {
2015   if (auto *Impl = getImpl())
2016     Impl->clear();
2017 }
2018 
2019 void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
2020   if (auto *Impl = getImpl())
2021     Impl->printLVI(F, DTree, OS);
2022 }
2023 
2024 // Print the LVI for the function arguments at the start of each basic block.
2025 void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot(
2026     const BasicBlock *BB, formatted_raw_ostream &OS) {
2027   // Find if there are latticevalues defined for arguments of the function.
2028   auto *F = BB->getParent();
2029   for (const auto &Arg : F->args()) {
2030     ValueLatticeElement Result = LVIImpl->getValueInBlock(
2031         const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB));
2032     if (Result.isUnknown())
2033       continue;
2034     OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n";
2035   }
2036 }
2037 
2038 // This function prints the LVI analysis for the instruction I at the beginning
2039 // of various basic blocks. It relies on calculated values that are stored in
2040 // the LazyValueInfoCache, and in the absence of cached values, recalculate the
2041 // LazyValueInfo for `I`, and print that info.
2042 void LazyValueInfoAnnotatedWriter::emitInstructionAnnot(
2043     const Instruction *I, formatted_raw_ostream &OS) {
2044 
2045   auto *ParentBB = I->getParent();
2046   SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI;
2047   // We can generate (solve) LVI values only for blocks that are dominated by
2048   // the I's parent. However, to avoid generating LVI for all dominating blocks,
2049   // that contain redundant/uninteresting information, we print LVI for
2050   // blocks that may use this LVI information (such as immediate successor
2051   // blocks, and blocks that contain uses of `I`).
2052   auto printResult = [&](const BasicBlock *BB) {
2053     if (!BlocksContainingLVI.insert(BB).second)
2054       return;
2055     ValueLatticeElement Result = LVIImpl->getValueInBlock(
2056         const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB));
2057       OS << "; LatticeVal for: '" << *I << "' in BB: '";
2058       BB->printAsOperand(OS, false);
2059       OS << "' is: " << Result << "\n";
2060   };
2061 
2062   printResult(ParentBB);
2063   // Print the LVI analysis results for the immediate successor blocks, that
2064   // are dominated by `ParentBB`.
2065   for (const auto *BBSucc : successors(ParentBB))
2066     if (DT.dominates(ParentBB, BBSucc))
2067       printResult(BBSucc);
2068 
2069   // Print LVI in blocks where `I` is used.
2070   for (const auto *U : I->users())
2071     if (auto *UseI = dyn_cast<Instruction>(U))
2072       if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent()))
2073         printResult(UseI->getParent());
2074 
2075 }
2076 
2077 PreservedAnalyses LazyValueInfoPrinterPass::run(Function &F,
2078                                                 FunctionAnalysisManager &AM) {
2079   OS << "LVI for function '" << F.getName() << "':\n";
2080   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
2081   auto &DTree = AM.getResult<DominatorTreeAnalysis>(F);
2082   LVI.printLVI(F, DTree, OS);
2083   return PreservedAnalyses::all();
2084 }
2085