1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interface for lazy computation of value constraint 10 // information. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LazyValueInfo.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/ValueLattice.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/AssemblyAnnotationWriter.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/ValueHandle.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/FormattedStream.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <map> 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 #define DEBUG_TYPE "lazy-value-info" 45 46 // This is the number of worklist items we will process to try to discover an 47 // answer for a given value. 48 static const unsigned MaxProcessedPerValue = 500; 49 50 char LazyValueInfoWrapperPass::ID = 0; 51 LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) { 52 initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry()); 53 } 54 INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info", 55 "Lazy Value Information Analysis", false, true) 56 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 57 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 58 INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info", 59 "Lazy Value Information Analysis", false, true) 60 61 namespace llvm { 62 FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); } 63 } 64 65 AnalysisKey LazyValueAnalysis::Key; 66 67 /// Returns true if this lattice value represents at most one possible value. 68 /// This is as precise as any lattice value can get while still representing 69 /// reachable code. 70 static bool hasSingleValue(const ValueLatticeElement &Val) { 71 if (Val.isConstantRange() && 72 Val.getConstantRange().isSingleElement()) 73 // Integer constants are single element ranges 74 return true; 75 if (Val.isConstant()) 76 // Non integer constants 77 return true; 78 return false; 79 } 80 81 /// Combine two sets of facts about the same value into a single set of 82 /// facts. Note that this method is not suitable for merging facts along 83 /// different paths in a CFG; that's what the mergeIn function is for. This 84 /// is for merging facts gathered about the same value at the same location 85 /// through two independent means. 86 /// Notes: 87 /// * This method does not promise to return the most precise possible lattice 88 /// value implied by A and B. It is allowed to return any lattice element 89 /// which is at least as strong as *either* A or B (unless our facts 90 /// conflict, see below). 91 /// * Due to unreachable code, the intersection of two lattice values could be 92 /// contradictory. If this happens, we return some valid lattice value so as 93 /// not confuse the rest of LVI. Ideally, we'd always return Undefined, but 94 /// we do not make this guarantee. TODO: This would be a useful enhancement. 95 static ValueLatticeElement intersect(const ValueLatticeElement &A, 96 const ValueLatticeElement &B) { 97 // Undefined is the strongest state. It means the value is known to be along 98 // an unreachable path. 99 if (A.isUnknown()) 100 return A; 101 if (B.isUnknown()) 102 return B; 103 104 // If we gave up for one, but got a useable fact from the other, use it. 105 if (A.isOverdefined()) 106 return B; 107 if (B.isOverdefined()) 108 return A; 109 110 // Can't get any more precise than constants. 111 if (hasSingleValue(A)) 112 return A; 113 if (hasSingleValue(B)) 114 return B; 115 116 // Could be either constant range or not constant here. 117 if (!A.isConstantRange() || !B.isConstantRange()) { 118 // TODO: Arbitrary choice, could be improved 119 return A; 120 } 121 122 // Intersect two constant ranges 123 ConstantRange Range = 124 A.getConstantRange().intersectWith(B.getConstantRange()); 125 // Note: An empty range is implicitly converted to unknown or undef depending 126 // on MayIncludeUndef internally. 127 return ValueLatticeElement::getRange( 128 std::move(Range), /*MayIncludeUndef=*/A.isConstantRangeIncludingUndef() | 129 B.isConstantRangeIncludingUndef()); 130 } 131 132 //===----------------------------------------------------------------------===// 133 // LazyValueInfoCache Decl 134 //===----------------------------------------------------------------------===// 135 136 namespace { 137 /// A callback value handle updates the cache when values are erased. 138 class LazyValueInfoCache; 139 struct LVIValueHandle final : public CallbackVH { 140 LazyValueInfoCache *Parent; 141 142 LVIValueHandle(Value *V, LazyValueInfoCache *P = nullptr) 143 : CallbackVH(V), Parent(P) { } 144 145 void deleted() override; 146 void allUsesReplacedWith(Value *V) override { 147 deleted(); 148 } 149 }; 150 } // end anonymous namespace 151 152 namespace { 153 /// This is the cache kept by LazyValueInfo which 154 /// maintains information about queries across the clients' queries. 155 class LazyValueInfoCache { 156 /// This is all of the cached information for one basic block. It contains 157 /// the per-value lattice elements, as well as a separate set for 158 /// overdefined values to reduce memory usage. 159 struct BlockCacheEntry { 160 SmallDenseMap<AssertingVH<Value>, ValueLatticeElement, 4> LatticeElements; 161 SmallDenseSet<AssertingVH<Value>, 4> OverDefined; 162 }; 163 164 /// Cached information per basic block. 165 DenseMap<PoisoningVH<BasicBlock>, std::unique_ptr<BlockCacheEntry>> 166 BlockCache; 167 /// Set of value handles used to erase values from the cache on deletion. 168 DenseSet<LVIValueHandle, DenseMapInfo<Value *>> ValueHandles; 169 170 const BlockCacheEntry *getBlockEntry(BasicBlock *BB) const { 171 auto It = BlockCache.find_as(BB); 172 if (It == BlockCache.end()) 173 return nullptr; 174 return It->second.get(); 175 } 176 177 BlockCacheEntry *getOrCreateBlockEntry(BasicBlock *BB) { 178 auto It = BlockCache.find_as(BB); 179 if (It == BlockCache.end()) 180 It = BlockCache.insert({ BB, std::make_unique<BlockCacheEntry>() }) 181 .first; 182 183 return It->second.get(); 184 } 185 186 void addValueHandle(Value *Val) { 187 auto HandleIt = ValueHandles.find_as(Val); 188 if (HandleIt == ValueHandles.end()) 189 ValueHandles.insert({ Val, this }); 190 } 191 192 public: 193 void insertResult(Value *Val, BasicBlock *BB, 194 const ValueLatticeElement &Result) { 195 BlockCacheEntry *Entry = getOrCreateBlockEntry(BB); 196 197 // Insert over-defined values into their own cache to reduce memory 198 // overhead. 199 if (Result.isOverdefined()) 200 Entry->OverDefined.insert(Val); 201 else 202 Entry->LatticeElements.insert({ Val, Result }); 203 204 addValueHandle(Val); 205 } 206 207 Optional<ValueLatticeElement> getCachedValueInfo(Value *V, 208 BasicBlock *BB) const { 209 const BlockCacheEntry *Entry = getBlockEntry(BB); 210 if (!Entry) 211 return None; 212 213 if (Entry->OverDefined.count(V)) 214 return ValueLatticeElement::getOverdefined(); 215 216 auto LatticeIt = Entry->LatticeElements.find_as(V); 217 if (LatticeIt == Entry->LatticeElements.end()) 218 return None; 219 220 return LatticeIt->second; 221 } 222 223 /// clear - Empty the cache. 224 void clear() { 225 BlockCache.clear(); 226 ValueHandles.clear(); 227 } 228 229 /// Inform the cache that a given value has been deleted. 230 void eraseValue(Value *V); 231 232 /// This is part of the update interface to inform the cache 233 /// that a block has been deleted. 234 void eraseBlock(BasicBlock *BB); 235 236 /// Updates the cache to remove any influence an overdefined value in 237 /// OldSucc might have (unless also overdefined in NewSucc). This just 238 /// flushes elements from the cache and does not add any. 239 void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc); 240 }; 241 } 242 243 void LazyValueInfoCache::eraseValue(Value *V) { 244 for (auto &Pair : BlockCache) { 245 Pair.second->LatticeElements.erase(V); 246 Pair.second->OverDefined.erase(V); 247 } 248 249 auto HandleIt = ValueHandles.find_as(V); 250 if (HandleIt != ValueHandles.end()) 251 ValueHandles.erase(HandleIt); 252 } 253 254 void LVIValueHandle::deleted() { 255 // This erasure deallocates *this, so it MUST happen after we're done 256 // using any and all members of *this. 257 Parent->eraseValue(*this); 258 } 259 260 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { 261 BlockCache.erase(BB); 262 } 263 264 void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc, 265 BasicBlock *NewSucc) { 266 // When an edge in the graph has been threaded, values that we could not 267 // determine a value for before (i.e. were marked overdefined) may be 268 // possible to solve now. We do NOT try to proactively update these values. 269 // Instead, we clear their entries from the cache, and allow lazy updating to 270 // recompute them when needed. 271 272 // The updating process is fairly simple: we need to drop cached info 273 // for all values that were marked overdefined in OldSucc, and for those same 274 // values in any successor of OldSucc (except NewSucc) in which they were 275 // also marked overdefined. 276 std::vector<BasicBlock*> worklist; 277 worklist.push_back(OldSucc); 278 279 const BlockCacheEntry *Entry = getBlockEntry(OldSucc); 280 if (!Entry || Entry->OverDefined.empty()) 281 return; // Nothing to process here. 282 SmallVector<Value *, 4> ValsToClear(Entry->OverDefined.begin(), 283 Entry->OverDefined.end()); 284 285 // Use a worklist to perform a depth-first search of OldSucc's successors. 286 // NOTE: We do not need a visited list since any blocks we have already 287 // visited will have had their overdefined markers cleared already, and we 288 // thus won't loop to their successors. 289 while (!worklist.empty()) { 290 BasicBlock *ToUpdate = worklist.back(); 291 worklist.pop_back(); 292 293 // Skip blocks only accessible through NewSucc. 294 if (ToUpdate == NewSucc) continue; 295 296 // If a value was marked overdefined in OldSucc, and is here too... 297 auto OI = BlockCache.find_as(ToUpdate); 298 if (OI == BlockCache.end() || OI->second->OverDefined.empty()) 299 continue; 300 auto &ValueSet = OI->second->OverDefined; 301 302 bool changed = false; 303 for (Value *V : ValsToClear) { 304 if (!ValueSet.erase(V)) 305 continue; 306 307 // If we removed anything, then we potentially need to update 308 // blocks successors too. 309 changed = true; 310 } 311 312 if (!changed) continue; 313 314 worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate)); 315 } 316 } 317 318 319 namespace { 320 /// An assembly annotator class to print LazyValueCache information in 321 /// comments. 322 class LazyValueInfoImpl; 323 class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter { 324 LazyValueInfoImpl *LVIImpl; 325 // While analyzing which blocks we can solve values for, we need the dominator 326 // information. 327 DominatorTree &DT; 328 329 public: 330 LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree) 331 : LVIImpl(L), DT(DTree) {} 332 333 void emitBasicBlockStartAnnot(const BasicBlock *BB, 334 formatted_raw_ostream &OS) override; 335 336 void emitInstructionAnnot(const Instruction *I, 337 formatted_raw_ostream &OS) override; 338 }; 339 } 340 namespace { 341 // The actual implementation of the lazy analysis and update. Note that the 342 // inheritance from LazyValueInfoCache is intended to be temporary while 343 // splitting the code and then transitioning to a has-a relationship. 344 class LazyValueInfoImpl { 345 346 /// Cached results from previous queries 347 LazyValueInfoCache TheCache; 348 349 /// This stack holds the state of the value solver during a query. 350 /// It basically emulates the callstack of the naive 351 /// recursive value lookup process. 352 SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack; 353 354 /// Keeps track of which block-value pairs are in BlockValueStack. 355 DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet; 356 357 /// Push BV onto BlockValueStack unless it's already in there. 358 /// Returns true on success. 359 bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) { 360 if (!BlockValueSet.insert(BV).second) 361 return false; // It's already in the stack. 362 363 LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in " 364 << BV.first->getName() << "\n"); 365 BlockValueStack.push_back(BV); 366 return true; 367 } 368 369 AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls. 370 const DataLayout &DL; ///< A mandatory DataLayout 371 372 /// Declaration of the llvm.experimental.guard() intrinsic, 373 /// if it exists in the module. 374 Function *GuardDecl; 375 376 Optional<ValueLatticeElement> getBlockValue(Value *Val, BasicBlock *BB); 377 Optional<ValueLatticeElement> getEdgeValue(Value *V, BasicBlock *F, 378 BasicBlock *T, Instruction *CxtI = nullptr); 379 380 // These methods process one work item and may add more. A false value 381 // returned means that the work item was not completely processed and must 382 // be revisited after going through the new items. 383 bool solveBlockValue(Value *Val, BasicBlock *BB); 384 Optional<ValueLatticeElement> solveBlockValueImpl(Value *Val, BasicBlock *BB); 385 Optional<ValueLatticeElement> solveBlockValueNonLocal(Value *Val, 386 BasicBlock *BB); 387 Optional<ValueLatticeElement> solveBlockValuePHINode(PHINode *PN, 388 BasicBlock *BB); 389 Optional<ValueLatticeElement> solveBlockValueSelect(SelectInst *S, 390 BasicBlock *BB); 391 Optional<ConstantRange> getRangeForOperand(unsigned Op, Instruction *I, 392 BasicBlock *BB); 393 Optional<ValueLatticeElement> solveBlockValueBinaryOpImpl( 394 Instruction *I, BasicBlock *BB, 395 std::function<ConstantRange(const ConstantRange &, 396 const ConstantRange &)> OpFn); 397 Optional<ValueLatticeElement> solveBlockValueBinaryOp(BinaryOperator *BBI, 398 BasicBlock *BB); 399 Optional<ValueLatticeElement> solveBlockValueCast(CastInst *CI, 400 BasicBlock *BB); 401 Optional<ValueLatticeElement> solveBlockValueOverflowIntrinsic( 402 WithOverflowInst *WO, BasicBlock *BB); 403 Optional<ValueLatticeElement> solveBlockValueSaturatingIntrinsic( 404 SaturatingInst *SI, BasicBlock *BB); 405 Optional<ValueLatticeElement> solveBlockValueIntrinsic(IntrinsicInst *II, 406 BasicBlock *BB); 407 Optional<ValueLatticeElement> solveBlockValueExtractValue( 408 ExtractValueInst *EVI, BasicBlock *BB); 409 void intersectAssumeOrGuardBlockValueConstantRange(Value *Val, 410 ValueLatticeElement &BBLV, 411 Instruction *BBI); 412 413 void solve(); 414 415 public: 416 /// This is the query interface to determine the lattice 417 /// value for the specified Value* at the end of the specified block. 418 ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB, 419 Instruction *CxtI = nullptr); 420 421 /// This is the query interface to determine the lattice 422 /// value for the specified Value* at the specified instruction (generally 423 /// from an assume intrinsic). 424 ValueLatticeElement getValueAt(Value *V, Instruction *CxtI); 425 426 /// This is the query interface to determine the lattice 427 /// value for the specified Value* that is true on the specified edge. 428 ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB, 429 BasicBlock *ToBB, 430 Instruction *CxtI = nullptr); 431 432 /// Complete flush all previously computed values 433 void clear() { 434 TheCache.clear(); 435 } 436 437 /// Printing the LazyValueInfo Analysis. 438 void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { 439 LazyValueInfoAnnotatedWriter Writer(this, DTree); 440 F.print(OS, &Writer); 441 } 442 443 /// This is part of the update interface to inform the cache 444 /// that a block has been deleted. 445 void eraseBlock(BasicBlock *BB) { 446 TheCache.eraseBlock(BB); 447 } 448 449 /// This is the update interface to inform the cache that an edge from 450 /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc. 451 void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); 452 453 LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL, 454 Function *GuardDecl) 455 : AC(AC), DL(DL), GuardDecl(GuardDecl) {} 456 }; 457 } // end anonymous namespace 458 459 460 void LazyValueInfoImpl::solve() { 461 SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack( 462 BlockValueStack.begin(), BlockValueStack.end()); 463 464 unsigned processedCount = 0; 465 while (!BlockValueStack.empty()) { 466 processedCount++; 467 // Abort if we have to process too many values to get a result for this one. 468 // Because of the design of the overdefined cache currently being per-block 469 // to avoid naming-related issues (IE it wants to try to give different 470 // results for the same name in different blocks), overdefined results don't 471 // get cached globally, which in turn means we will often try to rediscover 472 // the same overdefined result again and again. Once something like 473 // PredicateInfo is used in LVI or CVP, we should be able to make the 474 // overdefined cache global, and remove this throttle. 475 if (processedCount > MaxProcessedPerValue) { 476 LLVM_DEBUG( 477 dbgs() << "Giving up on stack because we are getting too deep\n"); 478 // Fill in the original values 479 while (!StartingStack.empty()) { 480 std::pair<BasicBlock *, Value *> &e = StartingStack.back(); 481 TheCache.insertResult(e.second, e.first, 482 ValueLatticeElement::getOverdefined()); 483 StartingStack.pop_back(); 484 } 485 BlockValueSet.clear(); 486 BlockValueStack.clear(); 487 return; 488 } 489 std::pair<BasicBlock *, Value *> e = BlockValueStack.back(); 490 assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!"); 491 492 if (solveBlockValue(e.second, e.first)) { 493 // The work item was completely processed. 494 assert(BlockValueStack.back() == e && "Nothing should have been pushed!"); 495 #ifndef NDEBUG 496 Optional<ValueLatticeElement> BBLV = 497 TheCache.getCachedValueInfo(e.second, e.first); 498 assert(BBLV && "Result should be in cache!"); 499 LLVM_DEBUG( 500 dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = " 501 << *BBLV << "\n"); 502 #endif 503 504 BlockValueStack.pop_back(); 505 BlockValueSet.erase(e); 506 } else { 507 // More work needs to be done before revisiting. 508 assert(BlockValueStack.back() != e && "Stack should have been pushed!"); 509 } 510 } 511 } 512 513 Optional<ValueLatticeElement> LazyValueInfoImpl::getBlockValue(Value *Val, 514 BasicBlock *BB) { 515 // If already a constant, there is nothing to compute. 516 if (Constant *VC = dyn_cast<Constant>(Val)) 517 return ValueLatticeElement::get(VC); 518 519 if (Optional<ValueLatticeElement> OptLatticeVal = 520 TheCache.getCachedValueInfo(Val, BB)) 521 return OptLatticeVal; 522 523 // We have hit a cycle, assume overdefined. 524 if (!pushBlockValue({ BB, Val })) 525 return ValueLatticeElement::getOverdefined(); 526 527 // Yet to be resolved. 528 return None; 529 } 530 531 static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) { 532 switch (BBI->getOpcode()) { 533 default: break; 534 case Instruction::Load: 535 case Instruction::Call: 536 case Instruction::Invoke: 537 if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range)) 538 if (isa<IntegerType>(BBI->getType())) { 539 return ValueLatticeElement::getRange( 540 getConstantRangeFromMetadata(*Ranges)); 541 } 542 break; 543 }; 544 // Nothing known - will be intersected with other facts 545 return ValueLatticeElement::getOverdefined(); 546 } 547 548 bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) { 549 assert(!isa<Constant>(Val) && "Value should not be constant"); 550 assert(!TheCache.getCachedValueInfo(Val, BB) && 551 "Value should not be in cache"); 552 553 // Hold off inserting this value into the Cache in case we have to return 554 // false and come back later. 555 Optional<ValueLatticeElement> Res = solveBlockValueImpl(Val, BB); 556 if (!Res) 557 // Work pushed, will revisit 558 return false; 559 560 TheCache.insertResult(Val, BB, *Res); 561 return true; 562 } 563 564 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueImpl( 565 Value *Val, BasicBlock *BB) { 566 Instruction *BBI = dyn_cast<Instruction>(Val); 567 if (!BBI || BBI->getParent() != BB) 568 return solveBlockValueNonLocal(Val, BB); 569 570 if (PHINode *PN = dyn_cast<PHINode>(BBI)) 571 return solveBlockValuePHINode(PN, BB); 572 573 if (auto *SI = dyn_cast<SelectInst>(BBI)) 574 return solveBlockValueSelect(SI, BB); 575 576 // If this value is a nonnull pointer, record it's range and bailout. Note 577 // that for all other pointer typed values, we terminate the search at the 578 // definition. We could easily extend this to look through geps, bitcasts, 579 // and the like to prove non-nullness, but it's not clear that's worth it 580 // compile time wise. The context-insensitive value walk done inside 581 // isKnownNonZero gets most of the profitable cases at much less expense. 582 // This does mean that we have a sensitivity to where the defining 583 // instruction is placed, even if it could legally be hoisted much higher. 584 // That is unfortunate. 585 PointerType *PT = dyn_cast<PointerType>(BBI->getType()); 586 if (PT && isKnownNonZero(BBI, DL)) 587 return ValueLatticeElement::getNot(ConstantPointerNull::get(PT)); 588 589 if (BBI->getType()->isIntegerTy()) { 590 if (auto *CI = dyn_cast<CastInst>(BBI)) 591 return solveBlockValueCast(CI, BB); 592 593 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI)) 594 return solveBlockValueBinaryOp(BO, BB); 595 596 if (auto *EVI = dyn_cast<ExtractValueInst>(BBI)) 597 return solveBlockValueExtractValue(EVI, BB); 598 599 if (auto *II = dyn_cast<IntrinsicInst>(BBI)) 600 return solveBlockValueIntrinsic(II, BB); 601 } 602 603 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 604 << "' - unknown inst def found.\n"); 605 return getFromRangeMetadata(BBI); 606 } 607 608 static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) { 609 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 610 return L->getPointerAddressSpace() == 0 && 611 GetUnderlyingObject(L->getPointerOperand(), 612 L->getModule()->getDataLayout()) == Ptr; 613 } 614 if (StoreInst *S = dyn_cast<StoreInst>(I)) { 615 return S->getPointerAddressSpace() == 0 && 616 GetUnderlyingObject(S->getPointerOperand(), 617 S->getModule()->getDataLayout()) == Ptr; 618 } 619 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 620 if (MI->isVolatile()) return false; 621 622 // FIXME: check whether it has a valuerange that excludes zero? 623 ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength()); 624 if (!Len || Len->isZero()) return false; 625 626 if (MI->getDestAddressSpace() == 0) 627 if (GetUnderlyingObject(MI->getRawDest(), 628 MI->getModule()->getDataLayout()) == Ptr) 629 return true; 630 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 631 if (MTI->getSourceAddressSpace() == 0) 632 if (GetUnderlyingObject(MTI->getRawSource(), 633 MTI->getModule()->getDataLayout()) == Ptr) 634 return true; 635 } 636 return false; 637 } 638 639 /// Return true if the allocation associated with Val is ever dereferenced 640 /// within the given basic block. This establishes the fact Val is not null, 641 /// but does not imply that the memory at Val is dereferenceable. (Val may 642 /// point off the end of the dereferenceable part of the object.) 643 static bool isObjectDereferencedInBlock(Value *Val, BasicBlock *BB) { 644 assert(Val->getType()->isPointerTy()); 645 646 const DataLayout &DL = BB->getModule()->getDataLayout(); 647 Value *UnderlyingVal = GetUnderlyingObject(Val, DL); 648 // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge 649 // inside InstructionDereferencesPointer either. 650 if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1)) 651 for (Instruction &I : *BB) 652 if (InstructionDereferencesPointer(&I, UnderlyingVal)) 653 return true; 654 return false; 655 } 656 657 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueNonLocal( 658 Value *Val, BasicBlock *BB) { 659 ValueLatticeElement Result; // Start Undefined. 660 661 // If this is the entry block, we must be asking about an argument. The 662 // value is overdefined. 663 if (BB == &BB->getParent()->getEntryBlock()) { 664 assert(isa<Argument>(Val) && "Unknown live-in to the entry block"); 665 // Before giving up, see if we can prove the pointer non-null local to 666 // this particular block. 667 PointerType *PTy = dyn_cast<PointerType>(Val->getType()); 668 if (PTy && 669 (isKnownNonZero(Val, DL) || 670 (isObjectDereferencedInBlock(Val, BB) && 671 !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())))) 672 return ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); 673 else 674 return ValueLatticeElement::getOverdefined(); 675 } 676 677 // Loop over all of our predecessors, merging what we know from them into 678 // result. If we encounter an unexplored predecessor, we eagerly explore it 679 // in a depth first manner. In practice, this has the effect of discovering 680 // paths we can't analyze eagerly without spending compile times analyzing 681 // other paths. This heuristic benefits from the fact that predecessors are 682 // frequently arranged such that dominating ones come first and we quickly 683 // find a path to function entry. TODO: We should consider explicitly 684 // canonicalizing to make this true rather than relying on this happy 685 // accident. 686 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 687 Optional<ValueLatticeElement> EdgeResult = getEdgeValue(Val, *PI, BB); 688 if (!EdgeResult) 689 // Explore that input, then return here 690 return None; 691 692 Result.mergeIn(*EdgeResult); 693 694 // If we hit overdefined, exit early. The BlockVals entry is already set 695 // to overdefined. 696 if (Result.isOverdefined()) { 697 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 698 << "' - overdefined because of pred (non local).\n"); 699 // Before giving up, see if we can prove the pointer non-null local to 700 // this particular block. 701 PointerType *PTy = dyn_cast<PointerType>(Val->getType()); 702 if (PTy && isObjectDereferencedInBlock(Val, BB) && 703 !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())) { 704 Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); 705 } 706 707 return Result; 708 } 709 } 710 711 // Return the merged value, which is more precise than 'overdefined'. 712 assert(!Result.isOverdefined()); 713 return Result; 714 } 715 716 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValuePHINode( 717 PHINode *PN, BasicBlock *BB) { 718 ValueLatticeElement Result; // Start Undefined. 719 720 // Loop over all of our predecessors, merging what we know from them into 721 // result. See the comment about the chosen traversal order in 722 // solveBlockValueNonLocal; the same reasoning applies here. 723 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 724 BasicBlock *PhiBB = PN->getIncomingBlock(i); 725 Value *PhiVal = PN->getIncomingValue(i); 726 // Note that we can provide PN as the context value to getEdgeValue, even 727 // though the results will be cached, because PN is the value being used as 728 // the cache key in the caller. 729 Optional<ValueLatticeElement> EdgeResult = 730 getEdgeValue(PhiVal, PhiBB, BB, PN); 731 if (!EdgeResult) 732 // Explore that input, then return here 733 return None; 734 735 Result.mergeIn(*EdgeResult); 736 737 // If we hit overdefined, exit early. The BlockVals entry is already set 738 // to overdefined. 739 if (Result.isOverdefined()) { 740 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 741 << "' - overdefined because of pred (local).\n"); 742 743 return Result; 744 } 745 } 746 747 // Return the merged value, which is more precise than 'overdefined'. 748 assert(!Result.isOverdefined() && "Possible PHI in entry block?"); 749 return Result; 750 } 751 752 static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, 753 bool isTrueDest = true); 754 755 // If we can determine a constraint on the value given conditions assumed by 756 // the program, intersect those constraints with BBLV 757 void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange( 758 Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) { 759 BBI = BBI ? BBI : dyn_cast<Instruction>(Val); 760 if (!BBI) 761 return; 762 763 BasicBlock *BB = BBI->getParent(); 764 for (auto &AssumeVH : AC->assumptionsFor(Val)) { 765 if (!AssumeVH) 766 continue; 767 768 // Only check assumes in the block of the context instruction. Other 769 // assumes will have already been taken into account when the value was 770 // propagated from predecessor blocks. 771 auto *I = cast<CallInst>(AssumeVH); 772 if (I->getParent() != BB || !isValidAssumeForContext(I, BBI)) 773 continue; 774 775 BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0))); 776 } 777 778 // If guards are not used in the module, don't spend time looking for them 779 if (!GuardDecl || GuardDecl->use_empty()) 780 return; 781 782 if (BBI->getIterator() == BB->begin()) 783 return; 784 for (Instruction &I : make_range(std::next(BBI->getIterator().getReverse()), 785 BB->rend())) { 786 Value *Cond = nullptr; 787 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond)))) 788 BBLV = intersect(BBLV, getValueFromCondition(Val, Cond)); 789 } 790 } 791 792 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueSelect( 793 SelectInst *SI, BasicBlock *BB) { 794 // Recurse on our inputs if needed 795 Optional<ValueLatticeElement> OptTrueVal = 796 getBlockValue(SI->getTrueValue(), BB); 797 if (!OptTrueVal) 798 return None; 799 ValueLatticeElement &TrueVal = *OptTrueVal; 800 801 // If we hit overdefined, don't ask more queries. We want to avoid poisoning 802 // extra slots in the table if we can. 803 if (TrueVal.isOverdefined()) 804 return ValueLatticeElement::getOverdefined(); 805 806 Optional<ValueLatticeElement> OptFalseVal = 807 getBlockValue(SI->getFalseValue(), BB); 808 if (!OptFalseVal) 809 return None; 810 ValueLatticeElement &FalseVal = *OptFalseVal; 811 812 // If we hit overdefined, don't ask more queries. We want to avoid poisoning 813 // extra slots in the table if we can. 814 if (FalseVal.isOverdefined()) 815 return ValueLatticeElement::getOverdefined(); 816 817 if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) { 818 const ConstantRange &TrueCR = TrueVal.getConstantRange(); 819 const ConstantRange &FalseCR = FalseVal.getConstantRange(); 820 Value *LHS = nullptr; 821 Value *RHS = nullptr; 822 SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS); 823 // Is this a min specifically of our two inputs? (Avoid the risk of 824 // ValueTracking getting smarter looking back past our immediate inputs.) 825 if (SelectPatternResult::isMinOrMax(SPR.Flavor) && 826 LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) { 827 ConstantRange ResultCR = [&]() { 828 switch (SPR.Flavor) { 829 default: 830 llvm_unreachable("unexpected minmax type!"); 831 case SPF_SMIN: /// Signed minimum 832 return TrueCR.smin(FalseCR); 833 case SPF_UMIN: /// Unsigned minimum 834 return TrueCR.umin(FalseCR); 835 case SPF_SMAX: /// Signed maximum 836 return TrueCR.smax(FalseCR); 837 case SPF_UMAX: /// Unsigned maximum 838 return TrueCR.umax(FalseCR); 839 }; 840 }(); 841 return ValueLatticeElement::getRange( 842 ResultCR, TrueVal.isConstantRangeIncludingUndef() | 843 FalseVal.isConstantRangeIncludingUndef()); 844 } 845 846 if (SPR.Flavor == SPF_ABS) { 847 if (LHS == SI->getTrueValue()) 848 return ValueLatticeElement::getRange( 849 TrueCR.abs(), TrueVal.isConstantRangeIncludingUndef()); 850 if (LHS == SI->getFalseValue()) 851 return ValueLatticeElement::getRange( 852 FalseCR.abs(), FalseVal.isConstantRangeIncludingUndef()); 853 } 854 855 if (SPR.Flavor == SPF_NABS) { 856 ConstantRange Zero(APInt::getNullValue(TrueCR.getBitWidth())); 857 if (LHS == SI->getTrueValue()) 858 return ValueLatticeElement::getRange( 859 Zero.sub(TrueCR.abs()), FalseVal.isConstantRangeIncludingUndef()); 860 if (LHS == SI->getFalseValue()) 861 return ValueLatticeElement::getRange( 862 Zero.sub(FalseCR.abs()), FalseVal.isConstantRangeIncludingUndef()); 863 } 864 } 865 866 // Can we constrain the facts about the true and false values by using the 867 // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5). 868 // TODO: We could potentially refine an overdefined true value above. 869 Value *Cond = SI->getCondition(); 870 TrueVal = intersect(TrueVal, 871 getValueFromCondition(SI->getTrueValue(), Cond, true)); 872 FalseVal = intersect(FalseVal, 873 getValueFromCondition(SI->getFalseValue(), Cond, false)); 874 875 // Handle clamp idioms such as: 876 // %24 = constantrange<0, 17> 877 // %39 = icmp eq i32 %24, 0 878 // %40 = add i32 %24, -1 879 // %siv.next = select i1 %39, i32 16, i32 %40 880 // %siv.next = constantrange<0, 17> not <-1, 17> 881 // In general, this can handle any clamp idiom which tests the edge 882 // condition via an equality or inequality. 883 if (auto *ICI = dyn_cast<ICmpInst>(Cond)) { 884 ICmpInst::Predicate Pred = ICI->getPredicate(); 885 Value *A = ICI->getOperand(0); 886 if (ConstantInt *CIBase = dyn_cast<ConstantInt>(ICI->getOperand(1))) { 887 auto addConstants = [](ConstantInt *A, ConstantInt *B) { 888 assert(A->getType() == B->getType()); 889 return ConstantInt::get(A->getType(), A->getValue() + B->getValue()); 890 }; 891 // See if either input is A + C2, subject to the constraint from the 892 // condition that A != C when that input is used. We can assume that 893 // that input doesn't include C + C2. 894 ConstantInt *CIAdded; 895 switch (Pred) { 896 default: break; 897 case ICmpInst::ICMP_EQ: 898 if (match(SI->getFalseValue(), m_Add(m_Specific(A), 899 m_ConstantInt(CIAdded)))) { 900 auto ResNot = addConstants(CIBase, CIAdded); 901 FalseVal = intersect(FalseVal, 902 ValueLatticeElement::getNot(ResNot)); 903 } 904 break; 905 case ICmpInst::ICMP_NE: 906 if (match(SI->getTrueValue(), m_Add(m_Specific(A), 907 m_ConstantInt(CIAdded)))) { 908 auto ResNot = addConstants(CIBase, CIAdded); 909 TrueVal = intersect(TrueVal, 910 ValueLatticeElement::getNot(ResNot)); 911 } 912 break; 913 }; 914 } 915 } 916 917 ValueLatticeElement Result = TrueVal; 918 Result.mergeIn(FalseVal); 919 return Result; 920 } 921 922 Optional<ConstantRange> LazyValueInfoImpl::getRangeForOperand(unsigned Op, 923 Instruction *I, 924 BasicBlock *BB) { 925 Optional<ValueLatticeElement> OptVal = getBlockValue(I->getOperand(Op), BB); 926 if (!OptVal) 927 return None; 928 929 ValueLatticeElement &Val = *OptVal; 930 intersectAssumeOrGuardBlockValueConstantRange(I->getOperand(Op), Val, I); 931 if (Val.isConstantRange()) 932 return Val.getConstantRange(); 933 934 const unsigned OperandBitWidth = 935 DL.getTypeSizeInBits(I->getOperand(Op)->getType()); 936 return ConstantRange::getFull(OperandBitWidth); 937 } 938 939 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueCast( 940 CastInst *CI, BasicBlock *BB) { 941 // Without knowing how wide the input is, we can't analyze it in any useful 942 // way. 943 if (!CI->getOperand(0)->getType()->isSized()) 944 return ValueLatticeElement::getOverdefined(); 945 946 // Filter out casts we don't know how to reason about before attempting to 947 // recurse on our operand. This can cut a long search short if we know we're 948 // not going to be able to get any useful information anways. 949 switch (CI->getOpcode()) { 950 case Instruction::Trunc: 951 case Instruction::SExt: 952 case Instruction::ZExt: 953 case Instruction::BitCast: 954 break; 955 default: 956 // Unhandled instructions are overdefined. 957 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 958 << "' - overdefined (unknown cast).\n"); 959 return ValueLatticeElement::getOverdefined(); 960 } 961 962 // Figure out the range of the LHS. If that fails, we still apply the 963 // transfer rule on the full set since we may be able to locally infer 964 // interesting facts. 965 Optional<ConstantRange> LHSRes = getRangeForOperand(0, CI, BB); 966 if (!LHSRes.hasValue()) 967 // More work to do before applying this transfer rule. 968 return None; 969 const ConstantRange &LHSRange = LHSRes.getValue(); 970 971 const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth(); 972 973 // NOTE: We're currently limited by the set of operations that ConstantRange 974 // can evaluate symbolically. Enhancing that set will allows us to analyze 975 // more definitions. 976 return ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(), 977 ResultBitWidth)); 978 } 979 980 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueBinaryOpImpl( 981 Instruction *I, BasicBlock *BB, 982 std::function<ConstantRange(const ConstantRange &, 983 const ConstantRange &)> OpFn) { 984 // Figure out the ranges of the operands. If that fails, use a 985 // conservative range, but apply the transfer rule anyways. This 986 // lets us pick up facts from expressions like "and i32 (call i32 987 // @foo()), 32" 988 Optional<ConstantRange> LHSRes = getRangeForOperand(0, I, BB); 989 Optional<ConstantRange> RHSRes = getRangeForOperand(1, I, BB); 990 if (!LHSRes.hasValue() || !RHSRes.hasValue()) 991 // More work to do before applying this transfer rule. 992 return None; 993 994 const ConstantRange &LHSRange = LHSRes.getValue(); 995 const ConstantRange &RHSRange = RHSRes.getValue(); 996 return ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange)); 997 } 998 999 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueBinaryOp( 1000 BinaryOperator *BO, BasicBlock *BB) { 1001 assert(BO->getOperand(0)->getType()->isSized() && 1002 "all operands to binary operators are sized"); 1003 if (BO->getOpcode() == Instruction::Xor) { 1004 // Xor is the only operation not supported by ConstantRange::binaryOp(). 1005 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 1006 << "' - overdefined (unknown binary operator).\n"); 1007 return ValueLatticeElement::getOverdefined(); 1008 } 1009 1010 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) { 1011 unsigned NoWrapKind = 0; 1012 if (OBO->hasNoUnsignedWrap()) 1013 NoWrapKind |= OverflowingBinaryOperator::NoUnsignedWrap; 1014 if (OBO->hasNoSignedWrap()) 1015 NoWrapKind |= OverflowingBinaryOperator::NoSignedWrap; 1016 1017 return solveBlockValueBinaryOpImpl( 1018 BO, BB, 1019 [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) { 1020 return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind); 1021 }); 1022 } 1023 1024 return solveBlockValueBinaryOpImpl( 1025 BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) { 1026 return CR1.binaryOp(BO->getOpcode(), CR2); 1027 }); 1028 } 1029 1030 Optional<ValueLatticeElement> 1031 LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(WithOverflowInst *WO, 1032 BasicBlock *BB) { 1033 return solveBlockValueBinaryOpImpl( 1034 WO, BB, [WO](const ConstantRange &CR1, const ConstantRange &CR2) { 1035 return CR1.binaryOp(WO->getBinaryOp(), CR2); 1036 }); 1037 } 1038 1039 Optional<ValueLatticeElement> 1040 LazyValueInfoImpl::solveBlockValueSaturatingIntrinsic(SaturatingInst *SI, 1041 BasicBlock *BB) { 1042 switch (SI->getIntrinsicID()) { 1043 case Intrinsic::uadd_sat: 1044 return solveBlockValueBinaryOpImpl( 1045 SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) { 1046 return CR1.uadd_sat(CR2); 1047 }); 1048 case Intrinsic::usub_sat: 1049 return solveBlockValueBinaryOpImpl( 1050 SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) { 1051 return CR1.usub_sat(CR2); 1052 }); 1053 case Intrinsic::sadd_sat: 1054 return solveBlockValueBinaryOpImpl( 1055 SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) { 1056 return CR1.sadd_sat(CR2); 1057 }); 1058 case Intrinsic::ssub_sat: 1059 return solveBlockValueBinaryOpImpl( 1060 SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) { 1061 return CR1.ssub_sat(CR2); 1062 }); 1063 default: 1064 llvm_unreachable("All llvm.sat intrinsic are handled."); 1065 } 1066 } 1067 1068 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueIntrinsic( 1069 IntrinsicInst *II, BasicBlock *BB) { 1070 if (auto *SI = dyn_cast<SaturatingInst>(II)) 1071 return solveBlockValueSaturatingIntrinsic(SI, BB); 1072 1073 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 1074 << "' - overdefined (unknown intrinsic).\n"); 1075 return ValueLatticeElement::getOverdefined(); 1076 } 1077 1078 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueExtractValue( 1079 ExtractValueInst *EVI, BasicBlock *BB) { 1080 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) 1081 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0) 1082 return solveBlockValueOverflowIntrinsic(WO, BB); 1083 1084 // Handle extractvalue of insertvalue to allow further simplification 1085 // based on replaced with.overflow intrinsics. 1086 if (Value *V = SimplifyExtractValueInst( 1087 EVI->getAggregateOperand(), EVI->getIndices(), 1088 EVI->getModule()->getDataLayout())) 1089 return getBlockValue(V, BB); 1090 1091 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 1092 << "' - overdefined (unknown extractvalue).\n"); 1093 return ValueLatticeElement::getOverdefined(); 1094 } 1095 1096 static bool matchICmpOperand(const APInt *&Offset, Value *LHS, Value *Val, 1097 ICmpInst::Predicate Pred) { 1098 if (LHS == Val) 1099 return true; 1100 1101 // Handle range checking idiom produced by InstCombine. We will subtract the 1102 // offset from the allowed range for RHS in this case. 1103 if (match(LHS, m_Add(m_Specific(Val), m_APInt(Offset)))) 1104 return true; 1105 1106 // If (x | y) < C, then (x < C) && (y < C). 1107 if (match(LHS, m_c_Or(m_Specific(Val), m_Value())) && 1108 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)) 1109 return true; 1110 1111 // If (x & y) > C, then (x > C) && (y > C). 1112 if (match(LHS, m_c_And(m_Specific(Val), m_Value())) && 1113 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)) 1114 return true; 1115 1116 return false; 1117 } 1118 1119 static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI, 1120 bool isTrueDest) { 1121 Value *LHS = ICI->getOperand(0); 1122 Value *RHS = ICI->getOperand(1); 1123 1124 // Get the predicate that must hold along the considered edge. 1125 CmpInst::Predicate EdgePred = 1126 isTrueDest ? ICI->getPredicate() : ICI->getInversePredicate(); 1127 1128 if (isa<Constant>(RHS)) { 1129 if (ICI->isEquality() && LHS == Val) { 1130 if (EdgePred == ICmpInst::ICMP_EQ) 1131 return ValueLatticeElement::get(cast<Constant>(RHS)); 1132 else if (!isa<UndefValue>(RHS)) 1133 return ValueLatticeElement::getNot(cast<Constant>(RHS)); 1134 } 1135 } 1136 1137 if (!Val->getType()->isIntegerTy()) 1138 return ValueLatticeElement::getOverdefined(); 1139 1140 const APInt *Offset = nullptr; 1141 if (!matchICmpOperand(Offset, LHS, Val, EdgePred)) { 1142 std::swap(LHS, RHS); 1143 EdgePred = CmpInst::getSwappedPredicate(EdgePred); 1144 if (!matchICmpOperand(Offset, LHS, Val, EdgePred)) 1145 return ValueLatticeElement::getOverdefined(); 1146 } 1147 1148 // Calculate the range of values that are allowed by the comparison. 1149 ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(), 1150 /*isFullSet=*/true); 1151 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) 1152 RHSRange = ConstantRange(CI->getValue()); 1153 else if (Instruction *I = dyn_cast<Instruction>(RHS)) 1154 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 1155 RHSRange = getConstantRangeFromMetadata(*Ranges); 1156 1157 // If we're interested in the false dest, invert the condition 1158 ConstantRange TrueValues = 1159 ConstantRange::makeAllowedICmpRegion(EdgePred, RHSRange); 1160 1161 if (Offset) // Apply the offset from above. 1162 TrueValues = TrueValues.subtract(*Offset); 1163 1164 return ValueLatticeElement::getRange(std::move(TrueValues)); 1165 } 1166 1167 // Handle conditions of the form 1168 // extractvalue(op.with.overflow(%x, C), 1). 1169 static ValueLatticeElement getValueFromOverflowCondition( 1170 Value *Val, WithOverflowInst *WO, bool IsTrueDest) { 1171 // TODO: This only works with a constant RHS for now. We could also compute 1172 // the range of the RHS, but this doesn't fit into the current structure of 1173 // the edge value calculation. 1174 const APInt *C; 1175 if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C))) 1176 return ValueLatticeElement::getOverdefined(); 1177 1178 // Calculate the possible values of %x for which no overflow occurs. 1179 ConstantRange NWR = ConstantRange::makeExactNoWrapRegion( 1180 WO->getBinaryOp(), *C, WO->getNoWrapKind()); 1181 1182 // If overflow is false, %x is constrained to NWR. If overflow is true, %x is 1183 // constrained to it's inverse (all values that might cause overflow). 1184 if (IsTrueDest) 1185 NWR = NWR.inverse(); 1186 return ValueLatticeElement::getRange(NWR); 1187 } 1188 1189 static ValueLatticeElement 1190 getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest, 1191 SmallDenseMap<Value*, ValueLatticeElement> &Visited); 1192 1193 static ValueLatticeElement 1194 getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest, 1195 SmallDenseMap<Value*, ValueLatticeElement> &Visited) { 1196 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond)) 1197 return getValueFromICmpCondition(Val, ICI, isTrueDest); 1198 1199 if (auto *EVI = dyn_cast<ExtractValueInst>(Cond)) 1200 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) 1201 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1) 1202 return getValueFromOverflowCondition(Val, WO, isTrueDest); 1203 1204 // Handle conditions in the form of (cond1 && cond2), we know that on the 1205 // true dest path both of the conditions hold. Similarly for conditions of 1206 // the form (cond1 || cond2), we know that on the false dest path neither 1207 // condition holds. 1208 BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond); 1209 if (!BO || (isTrueDest && BO->getOpcode() != BinaryOperator::And) || 1210 (!isTrueDest && BO->getOpcode() != BinaryOperator::Or)) 1211 return ValueLatticeElement::getOverdefined(); 1212 1213 // Prevent infinite recursion if Cond references itself as in this example: 1214 // Cond: "%tmp4 = and i1 %tmp4, undef" 1215 // BL: "%tmp4 = and i1 %tmp4, undef" 1216 // BR: "i1 undef" 1217 Value *BL = BO->getOperand(0); 1218 Value *BR = BO->getOperand(1); 1219 if (BL == Cond || BR == Cond) 1220 return ValueLatticeElement::getOverdefined(); 1221 1222 return intersect(getValueFromCondition(Val, BL, isTrueDest, Visited), 1223 getValueFromCondition(Val, BR, isTrueDest, Visited)); 1224 } 1225 1226 static ValueLatticeElement 1227 getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest, 1228 SmallDenseMap<Value*, ValueLatticeElement> &Visited) { 1229 auto I = Visited.find(Cond); 1230 if (I != Visited.end()) 1231 return I->second; 1232 1233 auto Result = getValueFromConditionImpl(Val, Cond, isTrueDest, Visited); 1234 Visited[Cond] = Result; 1235 return Result; 1236 } 1237 1238 ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, 1239 bool isTrueDest) { 1240 assert(Cond && "precondition"); 1241 SmallDenseMap<Value*, ValueLatticeElement> Visited; 1242 return getValueFromCondition(Val, Cond, isTrueDest, Visited); 1243 } 1244 1245 // Return true if Usr has Op as an operand, otherwise false. 1246 static bool usesOperand(User *Usr, Value *Op) { 1247 return find(Usr->operands(), Op) != Usr->op_end(); 1248 } 1249 1250 // Return true if the instruction type of Val is supported by 1251 // constantFoldUser(). Currently CastInst and BinaryOperator only. Call this 1252 // before calling constantFoldUser() to find out if it's even worth attempting 1253 // to call it. 1254 static bool isOperationFoldable(User *Usr) { 1255 return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr); 1256 } 1257 1258 // Check if Usr can be simplified to an integer constant when the value of one 1259 // of its operands Op is an integer constant OpConstVal. If so, return it as an 1260 // lattice value range with a single element or otherwise return an overdefined 1261 // lattice value. 1262 static ValueLatticeElement constantFoldUser(User *Usr, Value *Op, 1263 const APInt &OpConstVal, 1264 const DataLayout &DL) { 1265 assert(isOperationFoldable(Usr) && "Precondition"); 1266 Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal); 1267 // Check if Usr can be simplified to a constant. 1268 if (auto *CI = dyn_cast<CastInst>(Usr)) { 1269 assert(CI->getOperand(0) == Op && "Operand 0 isn't Op"); 1270 if (auto *C = dyn_cast_or_null<ConstantInt>( 1271 SimplifyCastInst(CI->getOpcode(), OpConst, 1272 CI->getDestTy(), DL))) { 1273 return ValueLatticeElement::getRange(ConstantRange(C->getValue())); 1274 } 1275 } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) { 1276 bool Op0Match = BO->getOperand(0) == Op; 1277 bool Op1Match = BO->getOperand(1) == Op; 1278 assert((Op0Match || Op1Match) && 1279 "Operand 0 nor Operand 1 isn't a match"); 1280 Value *LHS = Op0Match ? OpConst : BO->getOperand(0); 1281 Value *RHS = Op1Match ? OpConst : BO->getOperand(1); 1282 if (auto *C = dyn_cast_or_null<ConstantInt>( 1283 SimplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) { 1284 return ValueLatticeElement::getRange(ConstantRange(C->getValue())); 1285 } 1286 } 1287 return ValueLatticeElement::getOverdefined(); 1288 } 1289 1290 /// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if 1291 /// Val is not constrained on the edge. Result is unspecified if return value 1292 /// is false. 1293 static Optional<ValueLatticeElement> getEdgeValueLocal(Value *Val, 1294 BasicBlock *BBFrom, 1295 BasicBlock *BBTo) { 1296 // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we 1297 // know that v != 0. 1298 if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) { 1299 // If this is a conditional branch and only one successor goes to BBTo, then 1300 // we may be able to infer something from the condition. 1301 if (BI->isConditional() && 1302 BI->getSuccessor(0) != BI->getSuccessor(1)) { 1303 bool isTrueDest = BI->getSuccessor(0) == BBTo; 1304 assert(BI->getSuccessor(!isTrueDest) == BBTo && 1305 "BBTo isn't a successor of BBFrom"); 1306 Value *Condition = BI->getCondition(); 1307 1308 // If V is the condition of the branch itself, then we know exactly what 1309 // it is. 1310 if (Condition == Val) 1311 return ValueLatticeElement::get(ConstantInt::get( 1312 Type::getInt1Ty(Val->getContext()), isTrueDest)); 1313 1314 // If the condition of the branch is an equality comparison, we may be 1315 // able to infer the value. 1316 ValueLatticeElement Result = getValueFromCondition(Val, Condition, 1317 isTrueDest); 1318 if (!Result.isOverdefined()) 1319 return Result; 1320 1321 if (User *Usr = dyn_cast<User>(Val)) { 1322 assert(Result.isOverdefined() && "Result isn't overdefined"); 1323 // Check with isOperationFoldable() first to avoid linearly iterating 1324 // over the operands unnecessarily which can be expensive for 1325 // instructions with many operands. 1326 if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) { 1327 const DataLayout &DL = BBTo->getModule()->getDataLayout(); 1328 if (usesOperand(Usr, Condition)) { 1329 // If Val has Condition as an operand and Val can be folded into a 1330 // constant with either Condition == true or Condition == false, 1331 // propagate the constant. 1332 // eg. 1333 // ; %Val is true on the edge to %then. 1334 // %Val = and i1 %Condition, true. 1335 // br %Condition, label %then, label %else 1336 APInt ConditionVal(1, isTrueDest ? 1 : 0); 1337 Result = constantFoldUser(Usr, Condition, ConditionVal, DL); 1338 } else { 1339 // If one of Val's operand has an inferred value, we may be able to 1340 // infer the value of Val. 1341 // eg. 1342 // ; %Val is 94 on the edge to %then. 1343 // %Val = add i8 %Op, 1 1344 // %Condition = icmp eq i8 %Op, 93 1345 // br i1 %Condition, label %then, label %else 1346 for (unsigned i = 0; i < Usr->getNumOperands(); ++i) { 1347 Value *Op = Usr->getOperand(i); 1348 ValueLatticeElement OpLatticeVal = 1349 getValueFromCondition(Op, Condition, isTrueDest); 1350 if (Optional<APInt> OpConst = OpLatticeVal.asConstantInteger()) { 1351 Result = constantFoldUser(Usr, Op, OpConst.getValue(), DL); 1352 break; 1353 } 1354 } 1355 } 1356 } 1357 } 1358 if (!Result.isOverdefined()) 1359 return Result; 1360 } 1361 } 1362 1363 // If the edge was formed by a switch on the value, then we may know exactly 1364 // what it is. 1365 if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) { 1366 Value *Condition = SI->getCondition(); 1367 if (!isa<IntegerType>(Val->getType())) 1368 return None; 1369 bool ValUsesConditionAndMayBeFoldable = false; 1370 if (Condition != Val) { 1371 // Check if Val has Condition as an operand. 1372 if (User *Usr = dyn_cast<User>(Val)) 1373 ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) && 1374 usesOperand(Usr, Condition); 1375 if (!ValUsesConditionAndMayBeFoldable) 1376 return None; 1377 } 1378 assert((Condition == Val || ValUsesConditionAndMayBeFoldable) && 1379 "Condition != Val nor Val doesn't use Condition"); 1380 1381 bool DefaultCase = SI->getDefaultDest() == BBTo; 1382 unsigned BitWidth = Val->getType()->getIntegerBitWidth(); 1383 ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/); 1384 1385 for (auto Case : SI->cases()) { 1386 APInt CaseValue = Case.getCaseValue()->getValue(); 1387 ConstantRange EdgeVal(CaseValue); 1388 if (ValUsesConditionAndMayBeFoldable) { 1389 User *Usr = cast<User>(Val); 1390 const DataLayout &DL = BBTo->getModule()->getDataLayout(); 1391 ValueLatticeElement EdgeLatticeVal = 1392 constantFoldUser(Usr, Condition, CaseValue, DL); 1393 if (EdgeLatticeVal.isOverdefined()) 1394 return None; 1395 EdgeVal = EdgeLatticeVal.getConstantRange(); 1396 } 1397 if (DefaultCase) { 1398 // It is possible that the default destination is the destination of 1399 // some cases. We cannot perform difference for those cases. 1400 // We know Condition != CaseValue in BBTo. In some cases we can use 1401 // this to infer Val == f(Condition) is != f(CaseValue). For now, we 1402 // only do this when f is identity (i.e. Val == Condition), but we 1403 // should be able to do this for any injective f. 1404 if (Case.getCaseSuccessor() != BBTo && Condition == Val) 1405 EdgesVals = EdgesVals.difference(EdgeVal); 1406 } else if (Case.getCaseSuccessor() == BBTo) 1407 EdgesVals = EdgesVals.unionWith(EdgeVal); 1408 } 1409 return ValueLatticeElement::getRange(std::move(EdgesVals)); 1410 } 1411 return None; 1412 } 1413 1414 /// Compute the value of Val on the edge BBFrom -> BBTo or the value at 1415 /// the basic block if the edge does not constrain Val. 1416 Optional<ValueLatticeElement> LazyValueInfoImpl::getEdgeValue( 1417 Value *Val, BasicBlock *BBFrom, BasicBlock *BBTo, Instruction *CxtI) { 1418 // If already a constant, there is nothing to compute. 1419 if (Constant *VC = dyn_cast<Constant>(Val)) 1420 return ValueLatticeElement::get(VC); 1421 1422 ValueLatticeElement LocalResult = getEdgeValueLocal(Val, BBFrom, BBTo) 1423 .getValueOr(ValueLatticeElement::getOverdefined()); 1424 if (hasSingleValue(LocalResult)) 1425 // Can't get any more precise here 1426 return LocalResult; 1427 1428 Optional<ValueLatticeElement> OptInBlock = getBlockValue(Val, BBFrom); 1429 if (!OptInBlock) 1430 return None; 1431 ValueLatticeElement &InBlock = *OptInBlock; 1432 1433 // Try to intersect ranges of the BB and the constraint on the edge. 1434 intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, 1435 BBFrom->getTerminator()); 1436 // We can use the context instruction (generically the ultimate instruction 1437 // the calling pass is trying to simplify) here, even though the result of 1438 // this function is generally cached when called from the solve* functions 1439 // (and that cached result might be used with queries using a different 1440 // context instruction), because when this function is called from the solve* 1441 // functions, the context instruction is not provided. When called from 1442 // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided, 1443 // but then the result is not cached. 1444 intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI); 1445 1446 return intersect(LocalResult, InBlock); 1447 } 1448 1449 ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB, 1450 Instruction *CxtI) { 1451 LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" 1452 << BB->getName() << "'\n"); 1453 1454 assert(BlockValueStack.empty() && BlockValueSet.empty()); 1455 Optional<ValueLatticeElement> OptResult = getBlockValue(V, BB); 1456 if (!OptResult) { 1457 solve(); 1458 OptResult = getBlockValue(V, BB); 1459 assert(OptResult && "Value not available after solving"); 1460 } 1461 ValueLatticeElement Result = *OptResult; 1462 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); 1463 1464 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); 1465 return Result; 1466 } 1467 1468 ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) { 1469 LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName() 1470 << "'\n"); 1471 1472 if (auto *C = dyn_cast<Constant>(V)) 1473 return ValueLatticeElement::get(C); 1474 1475 ValueLatticeElement Result = ValueLatticeElement::getOverdefined(); 1476 if (auto *I = dyn_cast<Instruction>(V)) 1477 Result = getFromRangeMetadata(I); 1478 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); 1479 1480 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); 1481 return Result; 1482 } 1483 1484 ValueLatticeElement LazyValueInfoImpl:: 1485 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, 1486 Instruction *CxtI) { 1487 LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" 1488 << FromBB->getName() << "' to '" << ToBB->getName() 1489 << "'\n"); 1490 1491 Optional<ValueLatticeElement> Result = getEdgeValue(V, FromBB, ToBB, CxtI); 1492 if (!Result) { 1493 solve(); 1494 Result = getEdgeValue(V, FromBB, ToBB, CxtI); 1495 assert(Result && "More work to do after problem solved?"); 1496 } 1497 1498 LLVM_DEBUG(dbgs() << " Result = " << *Result << "\n"); 1499 return *Result; 1500 } 1501 1502 void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, 1503 BasicBlock *NewSucc) { 1504 TheCache.threadEdgeImpl(OldSucc, NewSucc); 1505 } 1506 1507 //===----------------------------------------------------------------------===// 1508 // LazyValueInfo Impl 1509 //===----------------------------------------------------------------------===// 1510 1511 /// This lazily constructs the LazyValueInfoImpl. 1512 static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC, 1513 const Module *M) { 1514 if (!PImpl) { 1515 assert(M && "getCache() called with a null Module"); 1516 const DataLayout &DL = M->getDataLayout(); 1517 Function *GuardDecl = M->getFunction( 1518 Intrinsic::getName(Intrinsic::experimental_guard)); 1519 PImpl = new LazyValueInfoImpl(AC, DL, GuardDecl); 1520 } 1521 return *static_cast<LazyValueInfoImpl*>(PImpl); 1522 } 1523 1524 bool LazyValueInfoWrapperPass::runOnFunction(Function &F) { 1525 Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1526 Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1527 1528 if (Info.PImpl) 1529 getImpl(Info.PImpl, Info.AC, F.getParent()).clear(); 1530 1531 // Fully lazy. 1532 return false; 1533 } 1534 1535 void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1536 AU.setPreservesAll(); 1537 AU.addRequired<AssumptionCacheTracker>(); 1538 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1539 } 1540 1541 LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; } 1542 1543 LazyValueInfo::~LazyValueInfo() { releaseMemory(); } 1544 1545 void LazyValueInfo::releaseMemory() { 1546 // If the cache was allocated, free it. 1547 if (PImpl) { 1548 delete &getImpl(PImpl, AC, nullptr); 1549 PImpl = nullptr; 1550 } 1551 } 1552 1553 bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA, 1554 FunctionAnalysisManager::Invalidator &Inv) { 1555 // We need to invalidate if we have either failed to preserve this analyses 1556 // result directly or if any of its dependencies have been invalidated. 1557 auto PAC = PA.getChecker<LazyValueAnalysis>(); 1558 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>())) 1559 return true; 1560 1561 return false; 1562 } 1563 1564 void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); } 1565 1566 LazyValueInfo LazyValueAnalysis::run(Function &F, 1567 FunctionAnalysisManager &FAM) { 1568 auto &AC = FAM.getResult<AssumptionAnalysis>(F); 1569 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 1570 1571 return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI); 1572 } 1573 1574 /// Returns true if we can statically tell that this value will never be a 1575 /// "useful" constant. In practice, this means we've got something like an 1576 /// alloca or a malloc call for which a comparison against a constant can 1577 /// only be guarding dead code. Note that we are potentially giving up some 1578 /// precision in dead code (a constant result) in favour of avoiding a 1579 /// expensive search for a easily answered common query. 1580 static bool isKnownNonConstant(Value *V) { 1581 V = V->stripPointerCasts(); 1582 // The return val of alloc cannot be a Constant. 1583 if (isa<AllocaInst>(V)) 1584 return true; 1585 return false; 1586 } 1587 1588 Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB, 1589 Instruction *CxtI) { 1590 // Bail out early if V is known not to be a Constant. 1591 if (isKnownNonConstant(V)) 1592 return nullptr; 1593 1594 ValueLatticeElement Result = 1595 getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI); 1596 1597 if (Result.isConstant()) 1598 return Result.getConstant(); 1599 if (Result.isConstantRange()) { 1600 const ConstantRange &CR = Result.getConstantRange(); 1601 if (const APInt *SingleVal = CR.getSingleElement()) 1602 return ConstantInt::get(V->getContext(), *SingleVal); 1603 } 1604 return nullptr; 1605 } 1606 1607 ConstantRange LazyValueInfo::getConstantRange(Value *V, BasicBlock *BB, 1608 Instruction *CxtI, 1609 bool UndefAllowed) { 1610 assert(V->getType()->isIntegerTy()); 1611 unsigned Width = V->getType()->getIntegerBitWidth(); 1612 ValueLatticeElement Result = 1613 getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI); 1614 if (Result.isUnknown()) 1615 return ConstantRange::getEmpty(Width); 1616 if (Result.isConstantRange(UndefAllowed)) 1617 return Result.getConstantRange(UndefAllowed); 1618 // We represent ConstantInt constants as constant ranges but other kinds 1619 // of integer constants, i.e. ConstantExpr will be tagged as constants 1620 assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && 1621 "ConstantInt value must be represented as constantrange"); 1622 return ConstantRange::getFull(Width); 1623 } 1624 1625 /// Determine whether the specified value is known to be a 1626 /// constant on the specified edge. Return null if not. 1627 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, 1628 BasicBlock *ToBB, 1629 Instruction *CxtI) { 1630 Module *M = FromBB->getModule(); 1631 ValueLatticeElement Result = 1632 getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI); 1633 1634 if (Result.isConstant()) 1635 return Result.getConstant(); 1636 if (Result.isConstantRange()) { 1637 const ConstantRange &CR = Result.getConstantRange(); 1638 if (const APInt *SingleVal = CR.getSingleElement()) 1639 return ConstantInt::get(V->getContext(), *SingleVal); 1640 } 1641 return nullptr; 1642 } 1643 1644 ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V, 1645 BasicBlock *FromBB, 1646 BasicBlock *ToBB, 1647 Instruction *CxtI) { 1648 unsigned Width = V->getType()->getIntegerBitWidth(); 1649 Module *M = FromBB->getModule(); 1650 ValueLatticeElement Result = 1651 getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI); 1652 1653 if (Result.isUnknown()) 1654 return ConstantRange::getEmpty(Width); 1655 if (Result.isConstantRange()) 1656 return Result.getConstantRange(); 1657 // We represent ConstantInt constants as constant ranges but other kinds 1658 // of integer constants, i.e. ConstantExpr will be tagged as constants 1659 assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && 1660 "ConstantInt value must be represented as constantrange"); 1661 return ConstantRange::getFull(Width); 1662 } 1663 1664 static LazyValueInfo::Tristate 1665 getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val, 1666 const DataLayout &DL, TargetLibraryInfo *TLI) { 1667 // If we know the value is a constant, evaluate the conditional. 1668 Constant *Res = nullptr; 1669 if (Val.isConstant()) { 1670 Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI); 1671 if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res)) 1672 return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True; 1673 return LazyValueInfo::Unknown; 1674 } 1675 1676 if (Val.isConstantRange()) { 1677 ConstantInt *CI = dyn_cast<ConstantInt>(C); 1678 if (!CI) return LazyValueInfo::Unknown; 1679 1680 const ConstantRange &CR = Val.getConstantRange(); 1681 if (Pred == ICmpInst::ICMP_EQ) { 1682 if (!CR.contains(CI->getValue())) 1683 return LazyValueInfo::False; 1684 1685 if (CR.isSingleElement()) 1686 return LazyValueInfo::True; 1687 } else if (Pred == ICmpInst::ICMP_NE) { 1688 if (!CR.contains(CI->getValue())) 1689 return LazyValueInfo::True; 1690 1691 if (CR.isSingleElement()) 1692 return LazyValueInfo::False; 1693 } else { 1694 // Handle more complex predicates. 1695 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion( 1696 (ICmpInst::Predicate)Pred, CI->getValue()); 1697 if (TrueValues.contains(CR)) 1698 return LazyValueInfo::True; 1699 if (TrueValues.inverse().contains(CR)) 1700 return LazyValueInfo::False; 1701 } 1702 return LazyValueInfo::Unknown; 1703 } 1704 1705 if (Val.isNotConstant()) { 1706 // If this is an equality comparison, we can try to fold it knowing that 1707 // "V != C1". 1708 if (Pred == ICmpInst::ICMP_EQ) { 1709 // !C1 == C -> false iff C1 == C. 1710 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, 1711 Val.getNotConstant(), C, DL, 1712 TLI); 1713 if (Res->isNullValue()) 1714 return LazyValueInfo::False; 1715 } else if (Pred == ICmpInst::ICMP_NE) { 1716 // !C1 != C -> true iff C1 == C. 1717 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, 1718 Val.getNotConstant(), C, DL, 1719 TLI); 1720 if (Res->isNullValue()) 1721 return LazyValueInfo::True; 1722 } 1723 return LazyValueInfo::Unknown; 1724 } 1725 1726 return LazyValueInfo::Unknown; 1727 } 1728 1729 /// Determine whether the specified value comparison with a constant is known to 1730 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate. 1731 LazyValueInfo::Tristate 1732 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, 1733 BasicBlock *FromBB, BasicBlock *ToBB, 1734 Instruction *CxtI) { 1735 Module *M = FromBB->getModule(); 1736 ValueLatticeElement Result = 1737 getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI); 1738 1739 return getPredicateResult(Pred, C, Result, M->getDataLayout(), TLI); 1740 } 1741 1742 LazyValueInfo::Tristate 1743 LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C, 1744 Instruction *CxtI) { 1745 // Is or is not NonNull are common predicates being queried. If 1746 // isKnownNonZero can tell us the result of the predicate, we can 1747 // return it quickly. But this is only a fastpath, and falling 1748 // through would still be correct. 1749 Module *M = CxtI->getModule(); 1750 const DataLayout &DL = M->getDataLayout(); 1751 if (V->getType()->isPointerTy() && C->isNullValue() && 1752 isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) { 1753 if (Pred == ICmpInst::ICMP_EQ) 1754 return LazyValueInfo::False; 1755 else if (Pred == ICmpInst::ICMP_NE) 1756 return LazyValueInfo::True; 1757 } 1758 ValueLatticeElement Result = getImpl(PImpl, AC, M).getValueAt(V, CxtI); 1759 Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI); 1760 if (Ret != Unknown) 1761 return Ret; 1762 1763 // Note: The following bit of code is somewhat distinct from the rest of LVI; 1764 // LVI as a whole tries to compute a lattice value which is conservatively 1765 // correct at a given location. In this case, we have a predicate which we 1766 // weren't able to prove about the merged result, and we're pushing that 1767 // predicate back along each incoming edge to see if we can prove it 1768 // separately for each input. As a motivating example, consider: 1769 // bb1: 1770 // %v1 = ... ; constantrange<1, 5> 1771 // br label %merge 1772 // bb2: 1773 // %v2 = ... ; constantrange<10, 20> 1774 // br label %merge 1775 // merge: 1776 // %phi = phi [%v1, %v2] ; constantrange<1,20> 1777 // %pred = icmp eq i32 %phi, 8 1778 // We can't tell from the lattice value for '%phi' that '%pred' is false 1779 // along each path, but by checking the predicate over each input separately, 1780 // we can. 1781 // We limit the search to one step backwards from the current BB and value. 1782 // We could consider extending this to search further backwards through the 1783 // CFG and/or value graph, but there are non-obvious compile time vs quality 1784 // tradeoffs. 1785 if (CxtI) { 1786 BasicBlock *BB = CxtI->getParent(); 1787 1788 // Function entry or an unreachable block. Bail to avoid confusing 1789 // analysis below. 1790 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1791 if (PI == PE) 1792 return Unknown; 1793 1794 // If V is a PHI node in the same block as the context, we need to ask 1795 // questions about the predicate as applied to the incoming value along 1796 // each edge. This is useful for eliminating cases where the predicate is 1797 // known along all incoming edges. 1798 if (auto *PHI = dyn_cast<PHINode>(V)) 1799 if (PHI->getParent() == BB) { 1800 Tristate Baseline = Unknown; 1801 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) { 1802 Value *Incoming = PHI->getIncomingValue(i); 1803 BasicBlock *PredBB = PHI->getIncomingBlock(i); 1804 // Note that PredBB may be BB itself. 1805 Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, 1806 CxtI); 1807 1808 // Keep going as long as we've seen a consistent known result for 1809 // all inputs. 1810 Baseline = (i == 0) ? Result /* First iteration */ 1811 : (Baseline == Result ? Baseline : Unknown); /* All others */ 1812 if (Baseline == Unknown) 1813 break; 1814 } 1815 if (Baseline != Unknown) 1816 return Baseline; 1817 } 1818 1819 // For a comparison where the V is outside this block, it's possible 1820 // that we've branched on it before. Look to see if the value is known 1821 // on all incoming edges. 1822 if (!isa<Instruction>(V) || 1823 cast<Instruction>(V)->getParent() != BB) { 1824 // For predecessor edge, determine if the comparison is true or false 1825 // on that edge. If they're all true or all false, we can conclude 1826 // the value of the comparison in this block. 1827 Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); 1828 if (Baseline != Unknown) { 1829 // Check that all remaining incoming values match the first one. 1830 while (++PI != PE) { 1831 Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); 1832 if (Ret != Baseline) break; 1833 } 1834 // If we terminated early, then one of the values didn't match. 1835 if (PI == PE) { 1836 return Baseline; 1837 } 1838 } 1839 } 1840 } 1841 return Unknown; 1842 } 1843 1844 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, 1845 BasicBlock *NewSucc) { 1846 if (PImpl) { 1847 getImpl(PImpl, AC, PredBB->getModule()) 1848 .threadEdge(PredBB, OldSucc, NewSucc); 1849 } 1850 } 1851 1852 void LazyValueInfo::eraseBlock(BasicBlock *BB) { 1853 if (PImpl) { 1854 getImpl(PImpl, AC, BB->getModule()).eraseBlock(BB); 1855 } 1856 } 1857 1858 1859 void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { 1860 if (PImpl) { 1861 getImpl(PImpl, AC, F.getParent()).printLVI(F, DTree, OS); 1862 } 1863 } 1864 1865 // Print the LVI for the function arguments at the start of each basic block. 1866 void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot( 1867 const BasicBlock *BB, formatted_raw_ostream &OS) { 1868 // Find if there are latticevalues defined for arguments of the function. 1869 auto *F = BB->getParent(); 1870 for (auto &Arg : F->args()) { 1871 ValueLatticeElement Result = LVIImpl->getValueInBlock( 1872 const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB)); 1873 if (Result.isUnknown()) 1874 continue; 1875 OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n"; 1876 } 1877 } 1878 1879 // This function prints the LVI analysis for the instruction I at the beginning 1880 // of various basic blocks. It relies on calculated values that are stored in 1881 // the LazyValueInfoCache, and in the absence of cached values, recalculate the 1882 // LazyValueInfo for `I`, and print that info. 1883 void LazyValueInfoAnnotatedWriter::emitInstructionAnnot( 1884 const Instruction *I, formatted_raw_ostream &OS) { 1885 1886 auto *ParentBB = I->getParent(); 1887 SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI; 1888 // We can generate (solve) LVI values only for blocks that are dominated by 1889 // the I's parent. However, to avoid generating LVI for all dominating blocks, 1890 // that contain redundant/uninteresting information, we print LVI for 1891 // blocks that may use this LVI information (such as immediate successor 1892 // blocks, and blocks that contain uses of `I`). 1893 auto printResult = [&](const BasicBlock *BB) { 1894 if (!BlocksContainingLVI.insert(BB).second) 1895 return; 1896 ValueLatticeElement Result = LVIImpl->getValueInBlock( 1897 const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB)); 1898 OS << "; LatticeVal for: '" << *I << "' in BB: '"; 1899 BB->printAsOperand(OS, false); 1900 OS << "' is: " << Result << "\n"; 1901 }; 1902 1903 printResult(ParentBB); 1904 // Print the LVI analysis results for the immediate successor blocks, that 1905 // are dominated by `ParentBB`. 1906 for (auto *BBSucc : successors(ParentBB)) 1907 if (DT.dominates(ParentBB, BBSucc)) 1908 printResult(BBSucc); 1909 1910 // Print LVI in blocks where `I` is used. 1911 for (auto *U : I->users()) 1912 if (auto *UseI = dyn_cast<Instruction>(U)) 1913 if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent())) 1914 printResult(UseI->getParent()); 1915 1916 } 1917 1918 namespace { 1919 // Printer class for LazyValueInfo results. 1920 class LazyValueInfoPrinter : public FunctionPass { 1921 public: 1922 static char ID; // Pass identification, replacement for typeid 1923 LazyValueInfoPrinter() : FunctionPass(ID) { 1924 initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry()); 1925 } 1926 1927 void getAnalysisUsage(AnalysisUsage &AU) const override { 1928 AU.setPreservesAll(); 1929 AU.addRequired<LazyValueInfoWrapperPass>(); 1930 AU.addRequired<DominatorTreeWrapperPass>(); 1931 } 1932 1933 // Get the mandatory dominator tree analysis and pass this in to the 1934 // LVIPrinter. We cannot rely on the LVI's DT, since it's optional. 1935 bool runOnFunction(Function &F) override { 1936 dbgs() << "LVI for function '" << F.getName() << "':\n"; 1937 auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 1938 auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1939 LVI.printLVI(F, DTree, dbgs()); 1940 return false; 1941 } 1942 }; 1943 } 1944 1945 char LazyValueInfoPrinter::ID = 0; 1946 INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info", 1947 "Lazy Value Info Printer Pass", false, false) 1948 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 1949 INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info", 1950 "Lazy Value Info Printer Pass", false, false) 1951