1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interface for lazy computation of value constraint 10 // information. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LazyValueInfo.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/ValueLattice.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/AssemblyAnnotationWriter.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/ValueHandle.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/FormattedStream.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Support/raw_ostream.h" 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 #define DEBUG_TYPE "lazy-value-info" 45 46 // This is the number of worklist items we will process to try to discover an 47 // answer for a given value. 48 static const unsigned MaxProcessedPerValue = 500; 49 50 char LazyValueInfoWrapperPass::ID = 0; 51 LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) { 52 initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry()); 53 } 54 INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info", 55 "Lazy Value Information Analysis", false, true) 56 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 57 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 58 INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info", 59 "Lazy Value Information Analysis", false, true) 60 61 namespace llvm { 62 FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); } 63 } 64 65 AnalysisKey LazyValueAnalysis::Key; 66 67 /// Returns true if this lattice value represents at most one possible value. 68 /// This is as precise as any lattice value can get while still representing 69 /// reachable code. 70 static bool hasSingleValue(const ValueLatticeElement &Val) { 71 if (Val.isConstantRange() && 72 Val.getConstantRange().isSingleElement()) 73 // Integer constants are single element ranges 74 return true; 75 if (Val.isConstant()) 76 // Non integer constants 77 return true; 78 return false; 79 } 80 81 /// Combine two sets of facts about the same value into a single set of 82 /// facts. Note that this method is not suitable for merging facts along 83 /// different paths in a CFG; that's what the mergeIn function is for. This 84 /// is for merging facts gathered about the same value at the same location 85 /// through two independent means. 86 /// Notes: 87 /// * This method does not promise to return the most precise possible lattice 88 /// value implied by A and B. It is allowed to return any lattice element 89 /// which is at least as strong as *either* A or B (unless our facts 90 /// conflict, see below). 91 /// * Due to unreachable code, the intersection of two lattice values could be 92 /// contradictory. If this happens, we return some valid lattice value so as 93 /// not confuse the rest of LVI. Ideally, we'd always return Undefined, but 94 /// we do not make this guarantee. TODO: This would be a useful enhancement. 95 static ValueLatticeElement intersect(const ValueLatticeElement &A, 96 const ValueLatticeElement &B) { 97 // Undefined is the strongest state. It means the value is known to be along 98 // an unreachable path. 99 if (A.isUnknown()) 100 return A; 101 if (B.isUnknown()) 102 return B; 103 104 // If we gave up for one, but got a useable fact from the other, use it. 105 if (A.isOverdefined()) 106 return B; 107 if (B.isOverdefined()) 108 return A; 109 110 // Can't get any more precise than constants. 111 if (hasSingleValue(A)) 112 return A; 113 if (hasSingleValue(B)) 114 return B; 115 116 // Could be either constant range or not constant here. 117 if (!A.isConstantRange() || !B.isConstantRange()) { 118 // TODO: Arbitrary choice, could be improved 119 return A; 120 } 121 122 // Intersect two constant ranges 123 ConstantRange Range = 124 A.getConstantRange().intersectWith(B.getConstantRange()); 125 // Note: An empty range is implicitly converted to unknown or undef depending 126 // on MayIncludeUndef internally. 127 return ValueLatticeElement::getRange( 128 std::move(Range), /*MayIncludeUndef=*/A.isConstantRangeIncludingUndef() || 129 B.isConstantRangeIncludingUndef()); 130 } 131 132 //===----------------------------------------------------------------------===// 133 // LazyValueInfoCache Decl 134 //===----------------------------------------------------------------------===// 135 136 namespace { 137 /// A callback value handle updates the cache when values are erased. 138 class LazyValueInfoCache; 139 struct LVIValueHandle final : public CallbackVH { 140 LazyValueInfoCache *Parent; 141 142 LVIValueHandle(Value *V, LazyValueInfoCache *P = nullptr) 143 : CallbackVH(V), Parent(P) { } 144 145 void deleted() override; 146 void allUsesReplacedWith(Value *V) override { 147 deleted(); 148 } 149 }; 150 } // end anonymous namespace 151 152 namespace { 153 using NonNullPointerSet = SmallDenseSet<AssertingVH<Value>, 2>; 154 155 /// This is the cache kept by LazyValueInfo which 156 /// maintains information about queries across the clients' queries. 157 class LazyValueInfoCache { 158 /// This is all of the cached information for one basic block. It contains 159 /// the per-value lattice elements, as well as a separate set for 160 /// overdefined values to reduce memory usage. Additionally pointers 161 /// dereferenced in the block are cached for nullability queries. 162 struct BlockCacheEntry { 163 SmallDenseMap<AssertingVH<Value>, ValueLatticeElement, 4> LatticeElements; 164 SmallDenseSet<AssertingVH<Value>, 4> OverDefined; 165 // None indicates that the nonnull pointers for this basic block 166 // block have not been computed yet. 167 Optional<NonNullPointerSet> NonNullPointers; 168 }; 169 170 /// Cached information per basic block. 171 DenseMap<PoisoningVH<BasicBlock>, std::unique_ptr<BlockCacheEntry>> 172 BlockCache; 173 /// Set of value handles used to erase values from the cache on deletion. 174 DenseSet<LVIValueHandle, DenseMapInfo<Value *>> ValueHandles; 175 176 const BlockCacheEntry *getBlockEntry(BasicBlock *BB) const { 177 auto It = BlockCache.find_as(BB); 178 if (It == BlockCache.end()) 179 return nullptr; 180 return It->second.get(); 181 } 182 183 BlockCacheEntry *getOrCreateBlockEntry(BasicBlock *BB) { 184 auto It = BlockCache.find_as(BB); 185 if (It == BlockCache.end()) 186 It = BlockCache.insert({ BB, std::make_unique<BlockCacheEntry>() }) 187 .first; 188 189 return It->second.get(); 190 } 191 192 void addValueHandle(Value *Val) { 193 auto HandleIt = ValueHandles.find_as(Val); 194 if (HandleIt == ValueHandles.end()) 195 ValueHandles.insert({ Val, this }); 196 } 197 198 public: 199 void insertResult(Value *Val, BasicBlock *BB, 200 const ValueLatticeElement &Result) { 201 BlockCacheEntry *Entry = getOrCreateBlockEntry(BB); 202 203 // Insert over-defined values into their own cache to reduce memory 204 // overhead. 205 if (Result.isOverdefined()) 206 Entry->OverDefined.insert(Val); 207 else 208 Entry->LatticeElements.insert({ Val, Result }); 209 210 addValueHandle(Val); 211 } 212 213 Optional<ValueLatticeElement> getCachedValueInfo(Value *V, 214 BasicBlock *BB) const { 215 const BlockCacheEntry *Entry = getBlockEntry(BB); 216 if (!Entry) 217 return None; 218 219 if (Entry->OverDefined.count(V)) 220 return ValueLatticeElement::getOverdefined(); 221 222 auto LatticeIt = Entry->LatticeElements.find_as(V); 223 if (LatticeIt == Entry->LatticeElements.end()) 224 return None; 225 226 return LatticeIt->second; 227 } 228 229 bool isNonNullAtEndOfBlock( 230 Value *V, BasicBlock *BB, 231 function_ref<NonNullPointerSet(BasicBlock *)> InitFn) { 232 BlockCacheEntry *Entry = getOrCreateBlockEntry(BB); 233 if (!Entry->NonNullPointers) { 234 Entry->NonNullPointers = InitFn(BB); 235 for (Value *V : *Entry->NonNullPointers) 236 addValueHandle(V); 237 } 238 239 return Entry->NonNullPointers->count(V); 240 } 241 242 /// clear - Empty the cache. 243 void clear() { 244 BlockCache.clear(); 245 ValueHandles.clear(); 246 } 247 248 /// Inform the cache that a given value has been deleted. 249 void eraseValue(Value *V); 250 251 /// This is part of the update interface to inform the cache 252 /// that a block has been deleted. 253 void eraseBlock(BasicBlock *BB); 254 255 /// Updates the cache to remove any influence an overdefined value in 256 /// OldSucc might have (unless also overdefined in NewSucc). This just 257 /// flushes elements from the cache and does not add any. 258 void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc); 259 }; 260 } 261 262 void LazyValueInfoCache::eraseValue(Value *V) { 263 for (auto &Pair : BlockCache) { 264 Pair.second->LatticeElements.erase(V); 265 Pair.second->OverDefined.erase(V); 266 if (Pair.second->NonNullPointers) 267 Pair.second->NonNullPointers->erase(V); 268 } 269 270 auto HandleIt = ValueHandles.find_as(V); 271 if (HandleIt != ValueHandles.end()) 272 ValueHandles.erase(HandleIt); 273 } 274 275 void LVIValueHandle::deleted() { 276 // This erasure deallocates *this, so it MUST happen after we're done 277 // using any and all members of *this. 278 Parent->eraseValue(*this); 279 } 280 281 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { 282 BlockCache.erase(BB); 283 } 284 285 void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc, 286 BasicBlock *NewSucc) { 287 // When an edge in the graph has been threaded, values that we could not 288 // determine a value for before (i.e. were marked overdefined) may be 289 // possible to solve now. We do NOT try to proactively update these values. 290 // Instead, we clear their entries from the cache, and allow lazy updating to 291 // recompute them when needed. 292 293 // The updating process is fairly simple: we need to drop cached info 294 // for all values that were marked overdefined in OldSucc, and for those same 295 // values in any successor of OldSucc (except NewSucc) in which they were 296 // also marked overdefined. 297 std::vector<BasicBlock*> worklist; 298 worklist.push_back(OldSucc); 299 300 const BlockCacheEntry *Entry = getBlockEntry(OldSucc); 301 if (!Entry || Entry->OverDefined.empty()) 302 return; // Nothing to process here. 303 SmallVector<Value *, 4> ValsToClear(Entry->OverDefined.begin(), 304 Entry->OverDefined.end()); 305 306 // Use a worklist to perform a depth-first search of OldSucc's successors. 307 // NOTE: We do not need a visited list since any blocks we have already 308 // visited will have had their overdefined markers cleared already, and we 309 // thus won't loop to their successors. 310 while (!worklist.empty()) { 311 BasicBlock *ToUpdate = worklist.back(); 312 worklist.pop_back(); 313 314 // Skip blocks only accessible through NewSucc. 315 if (ToUpdate == NewSucc) continue; 316 317 // If a value was marked overdefined in OldSucc, and is here too... 318 auto OI = BlockCache.find_as(ToUpdate); 319 if (OI == BlockCache.end() || OI->second->OverDefined.empty()) 320 continue; 321 auto &ValueSet = OI->second->OverDefined; 322 323 bool changed = false; 324 for (Value *V : ValsToClear) { 325 if (!ValueSet.erase(V)) 326 continue; 327 328 // If we removed anything, then we potentially need to update 329 // blocks successors too. 330 changed = true; 331 } 332 333 if (!changed) continue; 334 335 llvm::append_range(worklist, successors(ToUpdate)); 336 } 337 } 338 339 340 namespace { 341 /// An assembly annotator class to print LazyValueCache information in 342 /// comments. 343 class LazyValueInfoImpl; 344 class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter { 345 LazyValueInfoImpl *LVIImpl; 346 // While analyzing which blocks we can solve values for, we need the dominator 347 // information. 348 DominatorTree &DT; 349 350 public: 351 LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree) 352 : LVIImpl(L), DT(DTree) {} 353 354 void emitBasicBlockStartAnnot(const BasicBlock *BB, 355 formatted_raw_ostream &OS) override; 356 357 void emitInstructionAnnot(const Instruction *I, 358 formatted_raw_ostream &OS) override; 359 }; 360 } 361 namespace { 362 // The actual implementation of the lazy analysis and update. Note that the 363 // inheritance from LazyValueInfoCache is intended to be temporary while 364 // splitting the code and then transitioning to a has-a relationship. 365 class LazyValueInfoImpl { 366 367 /// Cached results from previous queries 368 LazyValueInfoCache TheCache; 369 370 /// This stack holds the state of the value solver during a query. 371 /// It basically emulates the callstack of the naive 372 /// recursive value lookup process. 373 SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack; 374 375 /// Keeps track of which block-value pairs are in BlockValueStack. 376 DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet; 377 378 /// Push BV onto BlockValueStack unless it's already in there. 379 /// Returns true on success. 380 bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) { 381 if (!BlockValueSet.insert(BV).second) 382 return false; // It's already in the stack. 383 384 LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in " 385 << BV.first->getName() << "\n"); 386 BlockValueStack.push_back(BV); 387 return true; 388 } 389 390 AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls. 391 const DataLayout &DL; ///< A mandatory DataLayout 392 393 /// Declaration of the llvm.experimental.guard() intrinsic, 394 /// if it exists in the module. 395 Function *GuardDecl; 396 397 Optional<ValueLatticeElement> getBlockValue(Value *Val, BasicBlock *BB, 398 Instruction *CxtI); 399 Optional<ValueLatticeElement> getEdgeValue(Value *V, BasicBlock *F, 400 BasicBlock *T, Instruction *CxtI = nullptr); 401 402 // These methods process one work item and may add more. A false value 403 // returned means that the work item was not completely processed and must 404 // be revisited after going through the new items. 405 bool solveBlockValue(Value *Val, BasicBlock *BB); 406 Optional<ValueLatticeElement> solveBlockValueImpl(Value *Val, BasicBlock *BB); 407 Optional<ValueLatticeElement> solveBlockValueNonLocal(Value *Val, 408 BasicBlock *BB); 409 Optional<ValueLatticeElement> solveBlockValuePHINode(PHINode *PN, 410 BasicBlock *BB); 411 Optional<ValueLatticeElement> solveBlockValueSelect(SelectInst *S, 412 BasicBlock *BB); 413 Optional<ConstantRange> getRangeFor(Value *V, Instruction *CxtI, 414 BasicBlock *BB); 415 Optional<ValueLatticeElement> solveBlockValueBinaryOpImpl( 416 Instruction *I, BasicBlock *BB, 417 std::function<ConstantRange(const ConstantRange &, 418 const ConstantRange &)> OpFn); 419 Optional<ValueLatticeElement> solveBlockValueBinaryOp(BinaryOperator *BBI, 420 BasicBlock *BB); 421 Optional<ValueLatticeElement> solveBlockValueCast(CastInst *CI, 422 BasicBlock *BB); 423 Optional<ValueLatticeElement> solveBlockValueOverflowIntrinsic( 424 WithOverflowInst *WO, BasicBlock *BB); 425 Optional<ValueLatticeElement> solveBlockValueIntrinsic(IntrinsicInst *II, 426 BasicBlock *BB); 427 Optional<ValueLatticeElement> solveBlockValueExtractValue( 428 ExtractValueInst *EVI, BasicBlock *BB); 429 bool isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB); 430 void intersectAssumeOrGuardBlockValueConstantRange(Value *Val, 431 ValueLatticeElement &BBLV, 432 Instruction *BBI); 433 434 void solve(); 435 436 public: 437 /// This is the query interface to determine the lattice value for the 438 /// specified Value* at the context instruction (if specified) or at the 439 /// start of the block. 440 ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB, 441 Instruction *CxtI = nullptr); 442 443 /// This is the query interface to determine the lattice value for the 444 /// specified Value* at the specified instruction using only information 445 /// from assumes/guards and range metadata. Unlike getValueInBlock(), no 446 /// recursive query is performed. 447 ValueLatticeElement getValueAt(Value *V, Instruction *CxtI); 448 449 /// This is the query interface to determine the lattice 450 /// value for the specified Value* that is true on the specified edge. 451 ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB, 452 BasicBlock *ToBB, 453 Instruction *CxtI = nullptr); 454 455 /// Complete flush all previously computed values 456 void clear() { 457 TheCache.clear(); 458 } 459 460 /// Printing the LazyValueInfo Analysis. 461 void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { 462 LazyValueInfoAnnotatedWriter Writer(this, DTree); 463 F.print(OS, &Writer); 464 } 465 466 /// This is part of the update interface to inform the cache 467 /// that a block has been deleted. 468 void eraseBlock(BasicBlock *BB) { 469 TheCache.eraseBlock(BB); 470 } 471 472 /// This is the update interface to inform the cache that an edge from 473 /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc. 474 void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); 475 476 LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL, 477 Function *GuardDecl) 478 : AC(AC), DL(DL), GuardDecl(GuardDecl) {} 479 }; 480 } // end anonymous namespace 481 482 483 void LazyValueInfoImpl::solve() { 484 SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack( 485 BlockValueStack.begin(), BlockValueStack.end()); 486 487 unsigned processedCount = 0; 488 while (!BlockValueStack.empty()) { 489 processedCount++; 490 // Abort if we have to process too many values to get a result for this one. 491 // Because of the design of the overdefined cache currently being per-block 492 // to avoid naming-related issues (IE it wants to try to give different 493 // results for the same name in different blocks), overdefined results don't 494 // get cached globally, which in turn means we will often try to rediscover 495 // the same overdefined result again and again. Once something like 496 // PredicateInfo is used in LVI or CVP, we should be able to make the 497 // overdefined cache global, and remove this throttle. 498 if (processedCount > MaxProcessedPerValue) { 499 LLVM_DEBUG( 500 dbgs() << "Giving up on stack because we are getting too deep\n"); 501 // Fill in the original values 502 while (!StartingStack.empty()) { 503 std::pair<BasicBlock *, Value *> &e = StartingStack.back(); 504 TheCache.insertResult(e.second, e.first, 505 ValueLatticeElement::getOverdefined()); 506 StartingStack.pop_back(); 507 } 508 BlockValueSet.clear(); 509 BlockValueStack.clear(); 510 return; 511 } 512 std::pair<BasicBlock *, Value *> e = BlockValueStack.back(); 513 assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!"); 514 515 if (solveBlockValue(e.second, e.first)) { 516 // The work item was completely processed. 517 assert(BlockValueStack.back() == e && "Nothing should have been pushed!"); 518 #ifndef NDEBUG 519 Optional<ValueLatticeElement> BBLV = 520 TheCache.getCachedValueInfo(e.second, e.first); 521 assert(BBLV && "Result should be in cache!"); 522 LLVM_DEBUG( 523 dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = " 524 << *BBLV << "\n"); 525 #endif 526 527 BlockValueStack.pop_back(); 528 BlockValueSet.erase(e); 529 } else { 530 // More work needs to be done before revisiting. 531 assert(BlockValueStack.back() != e && "Stack should have been pushed!"); 532 } 533 } 534 } 535 536 Optional<ValueLatticeElement> LazyValueInfoImpl::getBlockValue( 537 Value *Val, BasicBlock *BB, Instruction *CxtI) { 538 // If already a constant, there is nothing to compute. 539 if (Constant *VC = dyn_cast<Constant>(Val)) 540 return ValueLatticeElement::get(VC); 541 542 if (Optional<ValueLatticeElement> OptLatticeVal = 543 TheCache.getCachedValueInfo(Val, BB)) { 544 intersectAssumeOrGuardBlockValueConstantRange(Val, *OptLatticeVal, CxtI); 545 return OptLatticeVal; 546 } 547 548 // We have hit a cycle, assume overdefined. 549 if (!pushBlockValue({ BB, Val })) 550 return ValueLatticeElement::getOverdefined(); 551 552 // Yet to be resolved. 553 return None; 554 } 555 556 static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) { 557 switch (BBI->getOpcode()) { 558 default: break; 559 case Instruction::Load: 560 case Instruction::Call: 561 case Instruction::Invoke: 562 if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range)) 563 if (isa<IntegerType>(BBI->getType())) { 564 return ValueLatticeElement::getRange( 565 getConstantRangeFromMetadata(*Ranges)); 566 } 567 break; 568 }; 569 // Nothing known - will be intersected with other facts 570 return ValueLatticeElement::getOverdefined(); 571 } 572 573 bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) { 574 assert(!isa<Constant>(Val) && "Value should not be constant"); 575 assert(!TheCache.getCachedValueInfo(Val, BB) && 576 "Value should not be in cache"); 577 578 // Hold off inserting this value into the Cache in case we have to return 579 // false and come back later. 580 Optional<ValueLatticeElement> Res = solveBlockValueImpl(Val, BB); 581 if (!Res) 582 // Work pushed, will revisit 583 return false; 584 585 TheCache.insertResult(Val, BB, *Res); 586 return true; 587 } 588 589 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueImpl( 590 Value *Val, BasicBlock *BB) { 591 Instruction *BBI = dyn_cast<Instruction>(Val); 592 if (!BBI || BBI->getParent() != BB) 593 return solveBlockValueNonLocal(Val, BB); 594 595 if (PHINode *PN = dyn_cast<PHINode>(BBI)) 596 return solveBlockValuePHINode(PN, BB); 597 598 if (auto *SI = dyn_cast<SelectInst>(BBI)) 599 return solveBlockValueSelect(SI, BB); 600 601 // If this value is a nonnull pointer, record it's range and bailout. Note 602 // that for all other pointer typed values, we terminate the search at the 603 // definition. We could easily extend this to look through geps, bitcasts, 604 // and the like to prove non-nullness, but it's not clear that's worth it 605 // compile time wise. The context-insensitive value walk done inside 606 // isKnownNonZero gets most of the profitable cases at much less expense. 607 // This does mean that we have a sensitivity to where the defining 608 // instruction is placed, even if it could legally be hoisted much higher. 609 // That is unfortunate. 610 PointerType *PT = dyn_cast<PointerType>(BBI->getType()); 611 if (PT && isKnownNonZero(BBI, DL)) 612 return ValueLatticeElement::getNot(ConstantPointerNull::get(PT)); 613 614 if (BBI->getType()->isIntegerTy()) { 615 if (auto *CI = dyn_cast<CastInst>(BBI)) 616 return solveBlockValueCast(CI, BB); 617 618 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI)) 619 return solveBlockValueBinaryOp(BO, BB); 620 621 if (auto *EVI = dyn_cast<ExtractValueInst>(BBI)) 622 return solveBlockValueExtractValue(EVI, BB); 623 624 if (auto *II = dyn_cast<IntrinsicInst>(BBI)) 625 return solveBlockValueIntrinsic(II, BB); 626 } 627 628 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 629 << "' - unknown inst def found.\n"); 630 return getFromRangeMetadata(BBI); 631 } 632 633 static void AddNonNullPointer(Value *Ptr, NonNullPointerSet &PtrSet) { 634 // TODO: Use NullPointerIsDefined instead. 635 if (Ptr->getType()->getPointerAddressSpace() == 0) 636 PtrSet.insert(getUnderlyingObject(Ptr)); 637 } 638 639 static void AddNonNullPointersByInstruction( 640 Instruction *I, NonNullPointerSet &PtrSet) { 641 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 642 AddNonNullPointer(L->getPointerOperand(), PtrSet); 643 } else if (StoreInst *S = dyn_cast<StoreInst>(I)) { 644 AddNonNullPointer(S->getPointerOperand(), PtrSet); 645 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 646 if (MI->isVolatile()) return; 647 648 // FIXME: check whether it has a valuerange that excludes zero? 649 ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength()); 650 if (!Len || Len->isZero()) return; 651 652 AddNonNullPointer(MI->getRawDest(), PtrSet); 653 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 654 AddNonNullPointer(MTI->getRawSource(), PtrSet); 655 } 656 } 657 658 bool LazyValueInfoImpl::isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB) { 659 if (NullPointerIsDefined(BB->getParent(), 660 Val->getType()->getPointerAddressSpace())) 661 return false; 662 663 Val = Val->stripInBoundsOffsets(); 664 return TheCache.isNonNullAtEndOfBlock(Val, BB, [](BasicBlock *BB) { 665 NonNullPointerSet NonNullPointers; 666 for (Instruction &I : *BB) 667 AddNonNullPointersByInstruction(&I, NonNullPointers); 668 return NonNullPointers; 669 }); 670 } 671 672 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueNonLocal( 673 Value *Val, BasicBlock *BB) { 674 ValueLatticeElement Result; // Start Undefined. 675 676 // If this is the entry block, we must be asking about an argument. The 677 // value is overdefined. 678 if (BB->isEntryBlock()) { 679 assert(isa<Argument>(Val) && "Unknown live-in to the entry block"); 680 return ValueLatticeElement::getOverdefined(); 681 } 682 683 // Loop over all of our predecessors, merging what we know from them into 684 // result. If we encounter an unexplored predecessor, we eagerly explore it 685 // in a depth first manner. In practice, this has the effect of discovering 686 // paths we can't analyze eagerly without spending compile times analyzing 687 // other paths. This heuristic benefits from the fact that predecessors are 688 // frequently arranged such that dominating ones come first and we quickly 689 // find a path to function entry. TODO: We should consider explicitly 690 // canonicalizing to make this true rather than relying on this happy 691 // accident. 692 for (BasicBlock *Pred : predecessors(BB)) { 693 Optional<ValueLatticeElement> EdgeResult = getEdgeValue(Val, Pred, BB); 694 if (!EdgeResult) 695 // Explore that input, then return here 696 return None; 697 698 Result.mergeIn(*EdgeResult); 699 700 // If we hit overdefined, exit early. The BlockVals entry is already set 701 // to overdefined. 702 if (Result.isOverdefined()) { 703 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 704 << "' - overdefined because of pred (non local).\n"); 705 return Result; 706 } 707 } 708 709 // Return the merged value, which is more precise than 'overdefined'. 710 assert(!Result.isOverdefined()); 711 return Result; 712 } 713 714 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValuePHINode( 715 PHINode *PN, BasicBlock *BB) { 716 ValueLatticeElement Result; // Start Undefined. 717 718 // Loop over all of our predecessors, merging what we know from them into 719 // result. See the comment about the chosen traversal order in 720 // solveBlockValueNonLocal; the same reasoning applies here. 721 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 722 BasicBlock *PhiBB = PN->getIncomingBlock(i); 723 Value *PhiVal = PN->getIncomingValue(i); 724 // Note that we can provide PN as the context value to getEdgeValue, even 725 // though the results will be cached, because PN is the value being used as 726 // the cache key in the caller. 727 Optional<ValueLatticeElement> EdgeResult = 728 getEdgeValue(PhiVal, PhiBB, BB, PN); 729 if (!EdgeResult) 730 // Explore that input, then return here 731 return None; 732 733 Result.mergeIn(*EdgeResult); 734 735 // If we hit overdefined, exit early. The BlockVals entry is already set 736 // to overdefined. 737 if (Result.isOverdefined()) { 738 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 739 << "' - overdefined because of pred (local).\n"); 740 741 return Result; 742 } 743 } 744 745 // Return the merged value, which is more precise than 'overdefined'. 746 assert(!Result.isOverdefined() && "Possible PHI in entry block?"); 747 return Result; 748 } 749 750 static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, 751 bool isTrueDest = true); 752 753 // If we can determine a constraint on the value given conditions assumed by 754 // the program, intersect those constraints with BBLV 755 void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange( 756 Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) { 757 BBI = BBI ? BBI : dyn_cast<Instruction>(Val); 758 if (!BBI) 759 return; 760 761 BasicBlock *BB = BBI->getParent(); 762 for (auto &AssumeVH : AC->assumptionsFor(Val)) { 763 if (!AssumeVH) 764 continue; 765 766 // Only check assumes in the block of the context instruction. Other 767 // assumes will have already been taken into account when the value was 768 // propagated from predecessor blocks. 769 auto *I = cast<CallInst>(AssumeVH); 770 if (I->getParent() != BB || !isValidAssumeForContext(I, BBI)) 771 continue; 772 773 BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0))); 774 } 775 776 // If guards are not used in the module, don't spend time looking for them 777 if (GuardDecl && !GuardDecl->use_empty() && 778 BBI->getIterator() != BB->begin()) { 779 for (Instruction &I : make_range(std::next(BBI->getIterator().getReverse()), 780 BB->rend())) { 781 Value *Cond = nullptr; 782 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond)))) 783 BBLV = intersect(BBLV, getValueFromCondition(Val, Cond)); 784 } 785 } 786 787 if (BBLV.isOverdefined()) { 788 // Check whether we're checking at the terminator, and the pointer has 789 // been dereferenced in this block. 790 PointerType *PTy = dyn_cast<PointerType>(Val->getType()); 791 if (PTy && BB->getTerminator() == BBI && 792 isNonNullAtEndOfBlock(Val, BB)) 793 BBLV = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); 794 } 795 } 796 797 static ConstantRange getConstantRangeOrFull(const ValueLatticeElement &Val, 798 Type *Ty, const DataLayout &DL) { 799 if (Val.isConstantRange()) 800 return Val.getConstantRange(); 801 return ConstantRange::getFull(DL.getTypeSizeInBits(Ty)); 802 } 803 804 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueSelect( 805 SelectInst *SI, BasicBlock *BB) { 806 // Recurse on our inputs if needed 807 Optional<ValueLatticeElement> OptTrueVal = 808 getBlockValue(SI->getTrueValue(), BB, SI); 809 if (!OptTrueVal) 810 return None; 811 ValueLatticeElement &TrueVal = *OptTrueVal; 812 813 Optional<ValueLatticeElement> OptFalseVal = 814 getBlockValue(SI->getFalseValue(), BB, SI); 815 if (!OptFalseVal) 816 return None; 817 ValueLatticeElement &FalseVal = *OptFalseVal; 818 819 if (TrueVal.isConstantRange() || FalseVal.isConstantRange()) { 820 const ConstantRange &TrueCR = 821 getConstantRangeOrFull(TrueVal, SI->getType(), DL); 822 const ConstantRange &FalseCR = 823 getConstantRangeOrFull(FalseVal, SI->getType(), DL); 824 Value *LHS = nullptr; 825 Value *RHS = nullptr; 826 SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS); 827 // Is this a min specifically of our two inputs? (Avoid the risk of 828 // ValueTracking getting smarter looking back past our immediate inputs.) 829 if (SelectPatternResult::isMinOrMax(SPR.Flavor) && 830 ((LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) || 831 (RHS == SI->getTrueValue() && LHS == SI->getFalseValue()))) { 832 ConstantRange ResultCR = [&]() { 833 switch (SPR.Flavor) { 834 default: 835 llvm_unreachable("unexpected minmax type!"); 836 case SPF_SMIN: /// Signed minimum 837 return TrueCR.smin(FalseCR); 838 case SPF_UMIN: /// Unsigned minimum 839 return TrueCR.umin(FalseCR); 840 case SPF_SMAX: /// Signed maximum 841 return TrueCR.smax(FalseCR); 842 case SPF_UMAX: /// Unsigned maximum 843 return TrueCR.umax(FalseCR); 844 }; 845 }(); 846 return ValueLatticeElement::getRange( 847 ResultCR, TrueVal.isConstantRangeIncludingUndef() || 848 FalseVal.isConstantRangeIncludingUndef()); 849 } 850 851 if (SPR.Flavor == SPF_ABS) { 852 if (LHS == SI->getTrueValue()) 853 return ValueLatticeElement::getRange( 854 TrueCR.abs(), TrueVal.isConstantRangeIncludingUndef()); 855 if (LHS == SI->getFalseValue()) 856 return ValueLatticeElement::getRange( 857 FalseCR.abs(), FalseVal.isConstantRangeIncludingUndef()); 858 } 859 860 if (SPR.Flavor == SPF_NABS) { 861 ConstantRange Zero(APInt::getZero(TrueCR.getBitWidth())); 862 if (LHS == SI->getTrueValue()) 863 return ValueLatticeElement::getRange( 864 Zero.sub(TrueCR.abs()), FalseVal.isConstantRangeIncludingUndef()); 865 if (LHS == SI->getFalseValue()) 866 return ValueLatticeElement::getRange( 867 Zero.sub(FalseCR.abs()), FalseVal.isConstantRangeIncludingUndef()); 868 } 869 } 870 871 // Can we constrain the facts about the true and false values by using the 872 // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5). 873 // TODO: We could potentially refine an overdefined true value above. 874 Value *Cond = SI->getCondition(); 875 TrueVal = intersect(TrueVal, 876 getValueFromCondition(SI->getTrueValue(), Cond, true)); 877 FalseVal = intersect(FalseVal, 878 getValueFromCondition(SI->getFalseValue(), Cond, false)); 879 880 ValueLatticeElement Result = TrueVal; 881 Result.mergeIn(FalseVal); 882 return Result; 883 } 884 885 Optional<ConstantRange> LazyValueInfoImpl::getRangeFor(Value *V, 886 Instruction *CxtI, 887 BasicBlock *BB) { 888 Optional<ValueLatticeElement> OptVal = getBlockValue(V, BB, CxtI); 889 if (!OptVal) 890 return None; 891 return getConstantRangeOrFull(*OptVal, V->getType(), DL); 892 } 893 894 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueCast( 895 CastInst *CI, BasicBlock *BB) { 896 // Without knowing how wide the input is, we can't analyze it in any useful 897 // way. 898 if (!CI->getOperand(0)->getType()->isSized()) 899 return ValueLatticeElement::getOverdefined(); 900 901 // Filter out casts we don't know how to reason about before attempting to 902 // recurse on our operand. This can cut a long search short if we know we're 903 // not going to be able to get any useful information anways. 904 switch (CI->getOpcode()) { 905 case Instruction::Trunc: 906 case Instruction::SExt: 907 case Instruction::ZExt: 908 case Instruction::BitCast: 909 break; 910 default: 911 // Unhandled instructions are overdefined. 912 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 913 << "' - overdefined (unknown cast).\n"); 914 return ValueLatticeElement::getOverdefined(); 915 } 916 917 // Figure out the range of the LHS. If that fails, we still apply the 918 // transfer rule on the full set since we may be able to locally infer 919 // interesting facts. 920 Optional<ConstantRange> LHSRes = getRangeFor(CI->getOperand(0), CI, BB); 921 if (!LHSRes) 922 // More work to do before applying this transfer rule. 923 return None; 924 const ConstantRange &LHSRange = LHSRes.value(); 925 926 const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth(); 927 928 // NOTE: We're currently limited by the set of operations that ConstantRange 929 // can evaluate symbolically. Enhancing that set will allows us to analyze 930 // more definitions. 931 return ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(), 932 ResultBitWidth)); 933 } 934 935 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueBinaryOpImpl( 936 Instruction *I, BasicBlock *BB, 937 std::function<ConstantRange(const ConstantRange &, 938 const ConstantRange &)> OpFn) { 939 // Figure out the ranges of the operands. If that fails, use a 940 // conservative range, but apply the transfer rule anyways. This 941 // lets us pick up facts from expressions like "and i32 (call i32 942 // @foo()), 32" 943 Optional<ConstantRange> LHSRes = getRangeFor(I->getOperand(0), I, BB); 944 Optional<ConstantRange> RHSRes = getRangeFor(I->getOperand(1), I, BB); 945 if (!LHSRes || !RHSRes) 946 // More work to do before applying this transfer rule. 947 return None; 948 949 const ConstantRange &LHSRange = LHSRes.value(); 950 const ConstantRange &RHSRange = RHSRes.value(); 951 return ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange)); 952 } 953 954 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueBinaryOp( 955 BinaryOperator *BO, BasicBlock *BB) { 956 assert(BO->getOperand(0)->getType()->isSized() && 957 "all operands to binary operators are sized"); 958 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) { 959 unsigned NoWrapKind = 0; 960 if (OBO->hasNoUnsignedWrap()) 961 NoWrapKind |= OverflowingBinaryOperator::NoUnsignedWrap; 962 if (OBO->hasNoSignedWrap()) 963 NoWrapKind |= OverflowingBinaryOperator::NoSignedWrap; 964 965 return solveBlockValueBinaryOpImpl( 966 BO, BB, 967 [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) { 968 return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind); 969 }); 970 } 971 972 return solveBlockValueBinaryOpImpl( 973 BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) { 974 return CR1.binaryOp(BO->getOpcode(), CR2); 975 }); 976 } 977 978 Optional<ValueLatticeElement> 979 LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(WithOverflowInst *WO, 980 BasicBlock *BB) { 981 return solveBlockValueBinaryOpImpl( 982 WO, BB, [WO](const ConstantRange &CR1, const ConstantRange &CR2) { 983 return CR1.binaryOp(WO->getBinaryOp(), CR2); 984 }); 985 } 986 987 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueIntrinsic( 988 IntrinsicInst *II, BasicBlock *BB) { 989 if (!ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) { 990 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 991 << "' - unknown intrinsic.\n"); 992 return getFromRangeMetadata(II); 993 } 994 995 SmallVector<ConstantRange, 2> OpRanges; 996 for (Value *Op : II->args()) { 997 Optional<ConstantRange> Range = getRangeFor(Op, II, BB); 998 if (!Range) 999 return None; 1000 OpRanges.push_back(*Range); 1001 } 1002 1003 return ValueLatticeElement::getRange( 1004 ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges)); 1005 } 1006 1007 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueExtractValue( 1008 ExtractValueInst *EVI, BasicBlock *BB) { 1009 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) 1010 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0) 1011 return solveBlockValueOverflowIntrinsic(WO, BB); 1012 1013 // Handle extractvalue of insertvalue to allow further simplification 1014 // based on replaced with.overflow intrinsics. 1015 if (Value *V = simplifyExtractValueInst( 1016 EVI->getAggregateOperand(), EVI->getIndices(), 1017 EVI->getModule()->getDataLayout())) 1018 return getBlockValue(V, BB, EVI); 1019 1020 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 1021 << "' - overdefined (unknown extractvalue).\n"); 1022 return ValueLatticeElement::getOverdefined(); 1023 } 1024 1025 static bool matchICmpOperand(APInt &Offset, Value *LHS, Value *Val, 1026 ICmpInst::Predicate Pred) { 1027 if (LHS == Val) 1028 return true; 1029 1030 // Handle range checking idiom produced by InstCombine. We will subtract the 1031 // offset from the allowed range for RHS in this case. 1032 const APInt *C; 1033 if (match(LHS, m_Add(m_Specific(Val), m_APInt(C)))) { 1034 Offset = *C; 1035 return true; 1036 } 1037 1038 // Handle the symmetric case. This appears in saturation patterns like 1039 // (x == 16) ? 16 : (x + 1). 1040 if (match(Val, m_Add(m_Specific(LHS), m_APInt(C)))) { 1041 Offset = -*C; 1042 return true; 1043 } 1044 1045 // If (x | y) < C, then (x < C) && (y < C). 1046 if (match(LHS, m_c_Or(m_Specific(Val), m_Value())) && 1047 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)) 1048 return true; 1049 1050 // If (x & y) > C, then (x > C) && (y > C). 1051 if (match(LHS, m_c_And(m_Specific(Val), m_Value())) && 1052 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)) 1053 return true; 1054 1055 return false; 1056 } 1057 1058 /// Get value range for a "(Val + Offset) Pred RHS" condition. 1059 static ValueLatticeElement getValueFromSimpleICmpCondition( 1060 CmpInst::Predicate Pred, Value *RHS, const APInt &Offset) { 1061 ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(), 1062 /*isFullSet=*/true); 1063 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) 1064 RHSRange = ConstantRange(CI->getValue()); 1065 else if (Instruction *I = dyn_cast<Instruction>(RHS)) 1066 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 1067 RHSRange = getConstantRangeFromMetadata(*Ranges); 1068 1069 ConstantRange TrueValues = 1070 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 1071 return ValueLatticeElement::getRange(TrueValues.subtract(Offset)); 1072 } 1073 1074 static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI, 1075 bool isTrueDest) { 1076 Value *LHS = ICI->getOperand(0); 1077 Value *RHS = ICI->getOperand(1); 1078 1079 // Get the predicate that must hold along the considered edge. 1080 CmpInst::Predicate EdgePred = 1081 isTrueDest ? ICI->getPredicate() : ICI->getInversePredicate(); 1082 1083 if (isa<Constant>(RHS)) { 1084 if (ICI->isEquality() && LHS == Val) { 1085 if (EdgePred == ICmpInst::ICMP_EQ) 1086 return ValueLatticeElement::get(cast<Constant>(RHS)); 1087 else if (!isa<UndefValue>(RHS)) 1088 return ValueLatticeElement::getNot(cast<Constant>(RHS)); 1089 } 1090 } 1091 1092 Type *Ty = Val->getType(); 1093 if (!Ty->isIntegerTy()) 1094 return ValueLatticeElement::getOverdefined(); 1095 1096 unsigned BitWidth = Ty->getScalarSizeInBits(); 1097 APInt Offset(BitWidth, 0); 1098 if (matchICmpOperand(Offset, LHS, Val, EdgePred)) 1099 return getValueFromSimpleICmpCondition(EdgePred, RHS, Offset); 1100 1101 CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(EdgePred); 1102 if (matchICmpOperand(Offset, RHS, Val, SwappedPred)) 1103 return getValueFromSimpleICmpCondition(SwappedPred, LHS, Offset); 1104 1105 const APInt *Mask, *C; 1106 if (match(LHS, m_And(m_Specific(Val), m_APInt(Mask))) && 1107 match(RHS, m_APInt(C))) { 1108 // If (Val & Mask) == C then all the masked bits are known and we can 1109 // compute a value range based on that. 1110 if (EdgePred == ICmpInst::ICMP_EQ) { 1111 KnownBits Known; 1112 Known.Zero = ~*C & *Mask; 1113 Known.One = *C & *Mask; 1114 return ValueLatticeElement::getRange( 1115 ConstantRange::fromKnownBits(Known, /*IsSigned*/ false)); 1116 } 1117 // If (Val & Mask) != 0 then the value must be larger than the lowest set 1118 // bit of Mask. 1119 if (EdgePred == ICmpInst::ICMP_NE && !Mask->isZero() && C->isZero()) { 1120 return ValueLatticeElement::getRange(ConstantRange::getNonEmpty( 1121 APInt::getOneBitSet(BitWidth, Mask->countTrailingZeros()), 1122 APInt::getZero(BitWidth))); 1123 } 1124 } 1125 1126 // If (X urem Modulus) >= C, then X >= C. 1127 // If trunc X >= C, then X >= C. 1128 // TODO: An upper bound could be computed as well. 1129 if (match(LHS, m_CombineOr(m_URem(m_Specific(Val), m_Value()), 1130 m_Trunc(m_Specific(Val)))) && 1131 match(RHS, m_APInt(C))) { 1132 // Use the icmp region so we don't have to deal with different predicates. 1133 ConstantRange CR = ConstantRange::makeExactICmpRegion(EdgePred, *C); 1134 if (!CR.isEmptySet()) 1135 return ValueLatticeElement::getRange(ConstantRange::getNonEmpty( 1136 CR.getUnsignedMin().zext(BitWidth), APInt(BitWidth, 0))); 1137 } 1138 1139 return ValueLatticeElement::getOverdefined(); 1140 } 1141 1142 // Handle conditions of the form 1143 // extractvalue(op.with.overflow(%x, C), 1). 1144 static ValueLatticeElement getValueFromOverflowCondition( 1145 Value *Val, WithOverflowInst *WO, bool IsTrueDest) { 1146 // TODO: This only works with a constant RHS for now. We could also compute 1147 // the range of the RHS, but this doesn't fit into the current structure of 1148 // the edge value calculation. 1149 const APInt *C; 1150 if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C))) 1151 return ValueLatticeElement::getOverdefined(); 1152 1153 // Calculate the possible values of %x for which no overflow occurs. 1154 ConstantRange NWR = ConstantRange::makeExactNoWrapRegion( 1155 WO->getBinaryOp(), *C, WO->getNoWrapKind()); 1156 1157 // If overflow is false, %x is constrained to NWR. If overflow is true, %x is 1158 // constrained to it's inverse (all values that might cause overflow). 1159 if (IsTrueDest) 1160 NWR = NWR.inverse(); 1161 return ValueLatticeElement::getRange(NWR); 1162 } 1163 1164 static Optional<ValueLatticeElement> 1165 getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest, 1166 bool isRevisit, 1167 SmallDenseMap<Value *, ValueLatticeElement> &Visited, 1168 SmallVectorImpl<Value *> &Worklist) { 1169 if (!isRevisit) { 1170 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond)) 1171 return getValueFromICmpCondition(Val, ICI, isTrueDest); 1172 1173 if (auto *EVI = dyn_cast<ExtractValueInst>(Cond)) 1174 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) 1175 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1) 1176 return getValueFromOverflowCondition(Val, WO, isTrueDest); 1177 } 1178 1179 Value *L, *R; 1180 bool IsAnd; 1181 if (match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))) 1182 IsAnd = true; 1183 else if (match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) 1184 IsAnd = false; 1185 else 1186 return ValueLatticeElement::getOverdefined(); 1187 1188 auto LV = Visited.find(L); 1189 auto RV = Visited.find(R); 1190 1191 // if (L && R) -> intersect L and R 1192 // if (!(L || R)) -> intersect L and R 1193 // if (L || R) -> union L and R 1194 // if (!(L && R)) -> union L and R 1195 if ((isTrueDest ^ IsAnd) && (LV != Visited.end())) { 1196 ValueLatticeElement V = LV->second; 1197 if (V.isOverdefined()) 1198 return V; 1199 if (RV != Visited.end()) { 1200 V.mergeIn(RV->second); 1201 return V; 1202 } 1203 } 1204 1205 if (LV == Visited.end() || RV == Visited.end()) { 1206 assert(!isRevisit); 1207 if (LV == Visited.end()) 1208 Worklist.push_back(L); 1209 if (RV == Visited.end()) 1210 Worklist.push_back(R); 1211 return None; 1212 } 1213 1214 return intersect(LV->second, RV->second); 1215 } 1216 1217 ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, 1218 bool isTrueDest) { 1219 assert(Cond && "precondition"); 1220 SmallDenseMap<Value*, ValueLatticeElement> Visited; 1221 SmallVector<Value *> Worklist; 1222 1223 Worklist.push_back(Cond); 1224 do { 1225 Value *CurrentCond = Worklist.back(); 1226 // Insert an Overdefined placeholder into the set to prevent 1227 // infinite recursion if there exists IRs that use not 1228 // dominated by its def as in this example: 1229 // "%tmp3 = or i1 undef, %tmp4" 1230 // "%tmp4 = or i1 undef, %tmp3" 1231 auto Iter = 1232 Visited.try_emplace(CurrentCond, ValueLatticeElement::getOverdefined()); 1233 bool isRevisit = !Iter.second; 1234 Optional<ValueLatticeElement> Result = getValueFromConditionImpl( 1235 Val, CurrentCond, isTrueDest, isRevisit, Visited, Worklist); 1236 if (Result) { 1237 Visited[CurrentCond] = *Result; 1238 Worklist.pop_back(); 1239 } 1240 } while (!Worklist.empty()); 1241 1242 auto Result = Visited.find(Cond); 1243 assert(Result != Visited.end()); 1244 return Result->second; 1245 } 1246 1247 // Return true if Usr has Op as an operand, otherwise false. 1248 static bool usesOperand(User *Usr, Value *Op) { 1249 return is_contained(Usr->operands(), Op); 1250 } 1251 1252 // Return true if the instruction type of Val is supported by 1253 // constantFoldUser(). Currently CastInst, BinaryOperator and FreezeInst only. 1254 // Call this before calling constantFoldUser() to find out if it's even worth 1255 // attempting to call it. 1256 static bool isOperationFoldable(User *Usr) { 1257 return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr) || isa<FreezeInst>(Usr); 1258 } 1259 1260 // Check if Usr can be simplified to an integer constant when the value of one 1261 // of its operands Op is an integer constant OpConstVal. If so, return it as an 1262 // lattice value range with a single element or otherwise return an overdefined 1263 // lattice value. 1264 static ValueLatticeElement constantFoldUser(User *Usr, Value *Op, 1265 const APInt &OpConstVal, 1266 const DataLayout &DL) { 1267 assert(isOperationFoldable(Usr) && "Precondition"); 1268 Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal); 1269 // Check if Usr can be simplified to a constant. 1270 if (auto *CI = dyn_cast<CastInst>(Usr)) { 1271 assert(CI->getOperand(0) == Op && "Operand 0 isn't Op"); 1272 if (auto *C = dyn_cast_or_null<ConstantInt>( 1273 simplifyCastInst(CI->getOpcode(), OpConst, 1274 CI->getDestTy(), DL))) { 1275 return ValueLatticeElement::getRange(ConstantRange(C->getValue())); 1276 } 1277 } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) { 1278 bool Op0Match = BO->getOperand(0) == Op; 1279 bool Op1Match = BO->getOperand(1) == Op; 1280 assert((Op0Match || Op1Match) && 1281 "Operand 0 nor Operand 1 isn't a match"); 1282 Value *LHS = Op0Match ? OpConst : BO->getOperand(0); 1283 Value *RHS = Op1Match ? OpConst : BO->getOperand(1); 1284 if (auto *C = dyn_cast_or_null<ConstantInt>( 1285 simplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) { 1286 return ValueLatticeElement::getRange(ConstantRange(C->getValue())); 1287 } 1288 } else if (isa<FreezeInst>(Usr)) { 1289 assert(cast<FreezeInst>(Usr)->getOperand(0) == Op && "Operand 0 isn't Op"); 1290 return ValueLatticeElement::getRange(ConstantRange(OpConstVal)); 1291 } 1292 return ValueLatticeElement::getOverdefined(); 1293 } 1294 1295 /// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if 1296 /// Val is not constrained on the edge. Result is unspecified if return value 1297 /// is false. 1298 static Optional<ValueLatticeElement> getEdgeValueLocal(Value *Val, 1299 BasicBlock *BBFrom, 1300 BasicBlock *BBTo) { 1301 // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we 1302 // know that v != 0. 1303 if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) { 1304 // If this is a conditional branch and only one successor goes to BBTo, then 1305 // we may be able to infer something from the condition. 1306 if (BI->isConditional() && 1307 BI->getSuccessor(0) != BI->getSuccessor(1)) { 1308 bool isTrueDest = BI->getSuccessor(0) == BBTo; 1309 assert(BI->getSuccessor(!isTrueDest) == BBTo && 1310 "BBTo isn't a successor of BBFrom"); 1311 Value *Condition = BI->getCondition(); 1312 1313 // If V is the condition of the branch itself, then we know exactly what 1314 // it is. 1315 if (Condition == Val) 1316 return ValueLatticeElement::get(ConstantInt::get( 1317 Type::getInt1Ty(Val->getContext()), isTrueDest)); 1318 1319 // If the condition of the branch is an equality comparison, we may be 1320 // able to infer the value. 1321 ValueLatticeElement Result = getValueFromCondition(Val, Condition, 1322 isTrueDest); 1323 if (!Result.isOverdefined()) 1324 return Result; 1325 1326 if (User *Usr = dyn_cast<User>(Val)) { 1327 assert(Result.isOverdefined() && "Result isn't overdefined"); 1328 // Check with isOperationFoldable() first to avoid linearly iterating 1329 // over the operands unnecessarily which can be expensive for 1330 // instructions with many operands. 1331 if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) { 1332 const DataLayout &DL = BBTo->getModule()->getDataLayout(); 1333 if (usesOperand(Usr, Condition)) { 1334 // If Val has Condition as an operand and Val can be folded into a 1335 // constant with either Condition == true or Condition == false, 1336 // propagate the constant. 1337 // eg. 1338 // ; %Val is true on the edge to %then. 1339 // %Val = and i1 %Condition, true. 1340 // br %Condition, label %then, label %else 1341 APInt ConditionVal(1, isTrueDest ? 1 : 0); 1342 Result = constantFoldUser(Usr, Condition, ConditionVal, DL); 1343 } else { 1344 // If one of Val's operand has an inferred value, we may be able to 1345 // infer the value of Val. 1346 // eg. 1347 // ; %Val is 94 on the edge to %then. 1348 // %Val = add i8 %Op, 1 1349 // %Condition = icmp eq i8 %Op, 93 1350 // br i1 %Condition, label %then, label %else 1351 for (unsigned i = 0; i < Usr->getNumOperands(); ++i) { 1352 Value *Op = Usr->getOperand(i); 1353 ValueLatticeElement OpLatticeVal = 1354 getValueFromCondition(Op, Condition, isTrueDest); 1355 if (Optional<APInt> OpConst = OpLatticeVal.asConstantInteger()) { 1356 Result = constantFoldUser(Usr, Op, *OpConst, DL); 1357 break; 1358 } 1359 } 1360 } 1361 } 1362 } 1363 if (!Result.isOverdefined()) 1364 return Result; 1365 } 1366 } 1367 1368 // If the edge was formed by a switch on the value, then we may know exactly 1369 // what it is. 1370 if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) { 1371 Value *Condition = SI->getCondition(); 1372 if (!isa<IntegerType>(Val->getType())) 1373 return None; 1374 bool ValUsesConditionAndMayBeFoldable = false; 1375 if (Condition != Val) { 1376 // Check if Val has Condition as an operand. 1377 if (User *Usr = dyn_cast<User>(Val)) 1378 ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) && 1379 usesOperand(Usr, Condition); 1380 if (!ValUsesConditionAndMayBeFoldable) 1381 return None; 1382 } 1383 assert((Condition == Val || ValUsesConditionAndMayBeFoldable) && 1384 "Condition != Val nor Val doesn't use Condition"); 1385 1386 bool DefaultCase = SI->getDefaultDest() == BBTo; 1387 unsigned BitWidth = Val->getType()->getIntegerBitWidth(); 1388 ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/); 1389 1390 for (auto Case : SI->cases()) { 1391 APInt CaseValue = Case.getCaseValue()->getValue(); 1392 ConstantRange EdgeVal(CaseValue); 1393 if (ValUsesConditionAndMayBeFoldable) { 1394 User *Usr = cast<User>(Val); 1395 const DataLayout &DL = BBTo->getModule()->getDataLayout(); 1396 ValueLatticeElement EdgeLatticeVal = 1397 constantFoldUser(Usr, Condition, CaseValue, DL); 1398 if (EdgeLatticeVal.isOverdefined()) 1399 return None; 1400 EdgeVal = EdgeLatticeVal.getConstantRange(); 1401 } 1402 if (DefaultCase) { 1403 // It is possible that the default destination is the destination of 1404 // some cases. We cannot perform difference for those cases. 1405 // We know Condition != CaseValue in BBTo. In some cases we can use 1406 // this to infer Val == f(Condition) is != f(CaseValue). For now, we 1407 // only do this when f is identity (i.e. Val == Condition), but we 1408 // should be able to do this for any injective f. 1409 if (Case.getCaseSuccessor() != BBTo && Condition == Val) 1410 EdgesVals = EdgesVals.difference(EdgeVal); 1411 } else if (Case.getCaseSuccessor() == BBTo) 1412 EdgesVals = EdgesVals.unionWith(EdgeVal); 1413 } 1414 return ValueLatticeElement::getRange(std::move(EdgesVals)); 1415 } 1416 return None; 1417 } 1418 1419 /// Compute the value of Val on the edge BBFrom -> BBTo or the value at 1420 /// the basic block if the edge does not constrain Val. 1421 Optional<ValueLatticeElement> LazyValueInfoImpl::getEdgeValue( 1422 Value *Val, BasicBlock *BBFrom, BasicBlock *BBTo, Instruction *CxtI) { 1423 // If already a constant, there is nothing to compute. 1424 if (Constant *VC = dyn_cast<Constant>(Val)) 1425 return ValueLatticeElement::get(VC); 1426 1427 ValueLatticeElement LocalResult = 1428 getEdgeValueLocal(Val, BBFrom, BBTo) 1429 .value_or(ValueLatticeElement::getOverdefined()); 1430 if (hasSingleValue(LocalResult)) 1431 // Can't get any more precise here 1432 return LocalResult; 1433 1434 Optional<ValueLatticeElement> OptInBlock = 1435 getBlockValue(Val, BBFrom, BBFrom->getTerminator()); 1436 if (!OptInBlock) 1437 return None; 1438 ValueLatticeElement &InBlock = *OptInBlock; 1439 1440 // We can use the context instruction (generically the ultimate instruction 1441 // the calling pass is trying to simplify) here, even though the result of 1442 // this function is generally cached when called from the solve* functions 1443 // (and that cached result might be used with queries using a different 1444 // context instruction), because when this function is called from the solve* 1445 // functions, the context instruction is not provided. When called from 1446 // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided, 1447 // but then the result is not cached. 1448 intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI); 1449 1450 return intersect(LocalResult, InBlock); 1451 } 1452 1453 ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB, 1454 Instruction *CxtI) { 1455 LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" 1456 << BB->getName() << "'\n"); 1457 1458 assert(BlockValueStack.empty() && BlockValueSet.empty()); 1459 Optional<ValueLatticeElement> OptResult = getBlockValue(V, BB, CxtI); 1460 if (!OptResult) { 1461 solve(); 1462 OptResult = getBlockValue(V, BB, CxtI); 1463 assert(OptResult && "Value not available after solving"); 1464 } 1465 1466 ValueLatticeElement Result = *OptResult; 1467 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); 1468 return Result; 1469 } 1470 1471 ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) { 1472 LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName() 1473 << "'\n"); 1474 1475 if (auto *C = dyn_cast<Constant>(V)) 1476 return ValueLatticeElement::get(C); 1477 1478 ValueLatticeElement Result = ValueLatticeElement::getOverdefined(); 1479 if (auto *I = dyn_cast<Instruction>(V)) 1480 Result = getFromRangeMetadata(I); 1481 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); 1482 1483 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); 1484 return Result; 1485 } 1486 1487 ValueLatticeElement LazyValueInfoImpl:: 1488 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, 1489 Instruction *CxtI) { 1490 LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" 1491 << FromBB->getName() << "' to '" << ToBB->getName() 1492 << "'\n"); 1493 1494 Optional<ValueLatticeElement> Result = getEdgeValue(V, FromBB, ToBB, CxtI); 1495 if (!Result) { 1496 solve(); 1497 Result = getEdgeValue(V, FromBB, ToBB, CxtI); 1498 assert(Result && "More work to do after problem solved?"); 1499 } 1500 1501 LLVM_DEBUG(dbgs() << " Result = " << *Result << "\n"); 1502 return *Result; 1503 } 1504 1505 void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, 1506 BasicBlock *NewSucc) { 1507 TheCache.threadEdgeImpl(OldSucc, NewSucc); 1508 } 1509 1510 //===----------------------------------------------------------------------===// 1511 // LazyValueInfo Impl 1512 //===----------------------------------------------------------------------===// 1513 1514 /// This lazily constructs the LazyValueInfoImpl. 1515 static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC, 1516 const Module *M) { 1517 if (!PImpl) { 1518 assert(M && "getCache() called with a null Module"); 1519 const DataLayout &DL = M->getDataLayout(); 1520 Function *GuardDecl = M->getFunction( 1521 Intrinsic::getName(Intrinsic::experimental_guard)); 1522 PImpl = new LazyValueInfoImpl(AC, DL, GuardDecl); 1523 } 1524 return *static_cast<LazyValueInfoImpl*>(PImpl); 1525 } 1526 1527 bool LazyValueInfoWrapperPass::runOnFunction(Function &F) { 1528 Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1529 Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1530 1531 if (Info.PImpl) 1532 getImpl(Info.PImpl, Info.AC, F.getParent()).clear(); 1533 1534 // Fully lazy. 1535 return false; 1536 } 1537 1538 void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1539 AU.setPreservesAll(); 1540 AU.addRequired<AssumptionCacheTracker>(); 1541 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1542 } 1543 1544 LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; } 1545 1546 LazyValueInfo::~LazyValueInfo() { releaseMemory(); } 1547 1548 void LazyValueInfo::releaseMemory() { 1549 // If the cache was allocated, free it. 1550 if (PImpl) { 1551 delete &getImpl(PImpl, AC, nullptr); 1552 PImpl = nullptr; 1553 } 1554 } 1555 1556 bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA, 1557 FunctionAnalysisManager::Invalidator &Inv) { 1558 // We need to invalidate if we have either failed to preserve this analyses 1559 // result directly or if any of its dependencies have been invalidated. 1560 auto PAC = PA.getChecker<LazyValueAnalysis>(); 1561 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>())) 1562 return true; 1563 1564 return false; 1565 } 1566 1567 void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); } 1568 1569 LazyValueInfo LazyValueAnalysis::run(Function &F, 1570 FunctionAnalysisManager &FAM) { 1571 auto &AC = FAM.getResult<AssumptionAnalysis>(F); 1572 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 1573 1574 return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI); 1575 } 1576 1577 /// Returns true if we can statically tell that this value will never be a 1578 /// "useful" constant. In practice, this means we've got something like an 1579 /// alloca or a malloc call for which a comparison against a constant can 1580 /// only be guarding dead code. Note that we are potentially giving up some 1581 /// precision in dead code (a constant result) in favour of avoiding a 1582 /// expensive search for a easily answered common query. 1583 static bool isKnownNonConstant(Value *V) { 1584 V = V->stripPointerCasts(); 1585 // The return val of alloc cannot be a Constant. 1586 if (isa<AllocaInst>(V)) 1587 return true; 1588 return false; 1589 } 1590 1591 Constant *LazyValueInfo::getConstant(Value *V, Instruction *CxtI) { 1592 // Bail out early if V is known not to be a Constant. 1593 if (isKnownNonConstant(V)) 1594 return nullptr; 1595 1596 BasicBlock *BB = CxtI->getParent(); 1597 ValueLatticeElement Result = 1598 getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI); 1599 1600 if (Result.isConstant()) 1601 return Result.getConstant(); 1602 if (Result.isConstantRange()) { 1603 const ConstantRange &CR = Result.getConstantRange(); 1604 if (const APInt *SingleVal = CR.getSingleElement()) 1605 return ConstantInt::get(V->getContext(), *SingleVal); 1606 } 1607 return nullptr; 1608 } 1609 1610 ConstantRange LazyValueInfo::getConstantRange(Value *V, Instruction *CxtI, 1611 bool UndefAllowed) { 1612 assert(V->getType()->isIntegerTy()); 1613 unsigned Width = V->getType()->getIntegerBitWidth(); 1614 BasicBlock *BB = CxtI->getParent(); 1615 ValueLatticeElement Result = 1616 getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI); 1617 if (Result.isUnknown()) 1618 return ConstantRange::getEmpty(Width); 1619 if (Result.isConstantRange(UndefAllowed)) 1620 return Result.getConstantRange(UndefAllowed); 1621 // We represent ConstantInt constants as constant ranges but other kinds 1622 // of integer constants, i.e. ConstantExpr will be tagged as constants 1623 assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && 1624 "ConstantInt value must be represented as constantrange"); 1625 return ConstantRange::getFull(Width); 1626 } 1627 1628 /// Determine whether the specified value is known to be a 1629 /// constant on the specified edge. Return null if not. 1630 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, 1631 BasicBlock *ToBB, 1632 Instruction *CxtI) { 1633 Module *M = FromBB->getModule(); 1634 ValueLatticeElement Result = 1635 getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI); 1636 1637 if (Result.isConstant()) 1638 return Result.getConstant(); 1639 if (Result.isConstantRange()) { 1640 const ConstantRange &CR = Result.getConstantRange(); 1641 if (const APInt *SingleVal = CR.getSingleElement()) 1642 return ConstantInt::get(V->getContext(), *SingleVal); 1643 } 1644 return nullptr; 1645 } 1646 1647 ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V, 1648 BasicBlock *FromBB, 1649 BasicBlock *ToBB, 1650 Instruction *CxtI) { 1651 unsigned Width = V->getType()->getIntegerBitWidth(); 1652 Module *M = FromBB->getModule(); 1653 ValueLatticeElement Result = 1654 getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI); 1655 1656 if (Result.isUnknown()) 1657 return ConstantRange::getEmpty(Width); 1658 if (Result.isConstantRange()) 1659 return Result.getConstantRange(); 1660 // We represent ConstantInt constants as constant ranges but other kinds 1661 // of integer constants, i.e. ConstantExpr will be tagged as constants 1662 assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && 1663 "ConstantInt value must be represented as constantrange"); 1664 return ConstantRange::getFull(Width); 1665 } 1666 1667 static LazyValueInfo::Tristate 1668 getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val, 1669 const DataLayout &DL, TargetLibraryInfo *TLI) { 1670 // If we know the value is a constant, evaluate the conditional. 1671 Constant *Res = nullptr; 1672 if (Val.isConstant()) { 1673 Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI); 1674 if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res)) 1675 return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True; 1676 return LazyValueInfo::Unknown; 1677 } 1678 1679 if (Val.isConstantRange()) { 1680 ConstantInt *CI = dyn_cast<ConstantInt>(C); 1681 if (!CI) return LazyValueInfo::Unknown; 1682 1683 const ConstantRange &CR = Val.getConstantRange(); 1684 if (Pred == ICmpInst::ICMP_EQ) { 1685 if (!CR.contains(CI->getValue())) 1686 return LazyValueInfo::False; 1687 1688 if (CR.isSingleElement()) 1689 return LazyValueInfo::True; 1690 } else if (Pred == ICmpInst::ICMP_NE) { 1691 if (!CR.contains(CI->getValue())) 1692 return LazyValueInfo::True; 1693 1694 if (CR.isSingleElement()) 1695 return LazyValueInfo::False; 1696 } else { 1697 // Handle more complex predicates. 1698 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion( 1699 (ICmpInst::Predicate)Pred, CI->getValue()); 1700 if (TrueValues.contains(CR)) 1701 return LazyValueInfo::True; 1702 if (TrueValues.inverse().contains(CR)) 1703 return LazyValueInfo::False; 1704 } 1705 return LazyValueInfo::Unknown; 1706 } 1707 1708 if (Val.isNotConstant()) { 1709 // If this is an equality comparison, we can try to fold it knowing that 1710 // "V != C1". 1711 if (Pred == ICmpInst::ICMP_EQ) { 1712 // !C1 == C -> false iff C1 == C. 1713 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, 1714 Val.getNotConstant(), C, DL, 1715 TLI); 1716 if (Res->isNullValue()) 1717 return LazyValueInfo::False; 1718 } else if (Pred == ICmpInst::ICMP_NE) { 1719 // !C1 != C -> true iff C1 == C. 1720 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, 1721 Val.getNotConstant(), C, DL, 1722 TLI); 1723 if (Res->isNullValue()) 1724 return LazyValueInfo::True; 1725 } 1726 return LazyValueInfo::Unknown; 1727 } 1728 1729 return LazyValueInfo::Unknown; 1730 } 1731 1732 /// Determine whether the specified value comparison with a constant is known to 1733 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate. 1734 LazyValueInfo::Tristate 1735 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, 1736 BasicBlock *FromBB, BasicBlock *ToBB, 1737 Instruction *CxtI) { 1738 Module *M = FromBB->getModule(); 1739 ValueLatticeElement Result = 1740 getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI); 1741 1742 return getPredicateResult(Pred, C, Result, M->getDataLayout(), TLI); 1743 } 1744 1745 LazyValueInfo::Tristate 1746 LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C, 1747 Instruction *CxtI, bool UseBlockValue) { 1748 // Is or is not NonNull are common predicates being queried. If 1749 // isKnownNonZero can tell us the result of the predicate, we can 1750 // return it quickly. But this is only a fastpath, and falling 1751 // through would still be correct. 1752 Module *M = CxtI->getModule(); 1753 const DataLayout &DL = M->getDataLayout(); 1754 if (V->getType()->isPointerTy() && C->isNullValue() && 1755 isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) { 1756 if (Pred == ICmpInst::ICMP_EQ) 1757 return LazyValueInfo::False; 1758 else if (Pred == ICmpInst::ICMP_NE) 1759 return LazyValueInfo::True; 1760 } 1761 1762 ValueLatticeElement Result = UseBlockValue 1763 ? getImpl(PImpl, AC, M).getValueInBlock(V, CxtI->getParent(), CxtI) 1764 : getImpl(PImpl, AC, M).getValueAt(V, CxtI); 1765 Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI); 1766 if (Ret != Unknown) 1767 return Ret; 1768 1769 // Note: The following bit of code is somewhat distinct from the rest of LVI; 1770 // LVI as a whole tries to compute a lattice value which is conservatively 1771 // correct at a given location. In this case, we have a predicate which we 1772 // weren't able to prove about the merged result, and we're pushing that 1773 // predicate back along each incoming edge to see if we can prove it 1774 // separately for each input. As a motivating example, consider: 1775 // bb1: 1776 // %v1 = ... ; constantrange<1, 5> 1777 // br label %merge 1778 // bb2: 1779 // %v2 = ... ; constantrange<10, 20> 1780 // br label %merge 1781 // merge: 1782 // %phi = phi [%v1, %v2] ; constantrange<1,20> 1783 // %pred = icmp eq i32 %phi, 8 1784 // We can't tell from the lattice value for '%phi' that '%pred' is false 1785 // along each path, but by checking the predicate over each input separately, 1786 // we can. 1787 // We limit the search to one step backwards from the current BB and value. 1788 // We could consider extending this to search further backwards through the 1789 // CFG and/or value graph, but there are non-obvious compile time vs quality 1790 // tradeoffs. 1791 BasicBlock *BB = CxtI->getParent(); 1792 1793 // Function entry or an unreachable block. Bail to avoid confusing 1794 // analysis below. 1795 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1796 if (PI == PE) 1797 return Unknown; 1798 1799 // If V is a PHI node in the same block as the context, we need to ask 1800 // questions about the predicate as applied to the incoming value along 1801 // each edge. This is useful for eliminating cases where the predicate is 1802 // known along all incoming edges. 1803 if (auto *PHI = dyn_cast<PHINode>(V)) 1804 if (PHI->getParent() == BB) { 1805 Tristate Baseline = Unknown; 1806 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) { 1807 Value *Incoming = PHI->getIncomingValue(i); 1808 BasicBlock *PredBB = PHI->getIncomingBlock(i); 1809 // Note that PredBB may be BB itself. 1810 Tristate Result = 1811 getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, CxtI); 1812 1813 // Keep going as long as we've seen a consistent known result for 1814 // all inputs. 1815 Baseline = (i == 0) ? Result /* First iteration */ 1816 : (Baseline == Result ? Baseline 1817 : Unknown); /* All others */ 1818 if (Baseline == Unknown) 1819 break; 1820 } 1821 if (Baseline != Unknown) 1822 return Baseline; 1823 } 1824 1825 // For a comparison where the V is outside this block, it's possible 1826 // that we've branched on it before. Look to see if the value is known 1827 // on all incoming edges. 1828 if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB) { 1829 // For predecessor edge, determine if the comparison is true or false 1830 // on that edge. If they're all true or all false, we can conclude 1831 // the value of the comparison in this block. 1832 Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); 1833 if (Baseline != Unknown) { 1834 // Check that all remaining incoming values match the first one. 1835 while (++PI != PE) { 1836 Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); 1837 if (Ret != Baseline) 1838 break; 1839 } 1840 // If we terminated early, then one of the values didn't match. 1841 if (PI == PE) { 1842 return Baseline; 1843 } 1844 } 1845 } 1846 1847 return Unknown; 1848 } 1849 1850 LazyValueInfo::Tristate LazyValueInfo::getPredicateAt(unsigned P, Value *LHS, 1851 Value *RHS, 1852 Instruction *CxtI, 1853 bool UseBlockValue) { 1854 CmpInst::Predicate Pred = (CmpInst::Predicate)P; 1855 1856 if (auto *C = dyn_cast<Constant>(RHS)) 1857 return getPredicateAt(P, LHS, C, CxtI, UseBlockValue); 1858 if (auto *C = dyn_cast<Constant>(LHS)) 1859 return getPredicateAt(CmpInst::getSwappedPredicate(Pred), RHS, C, CxtI, 1860 UseBlockValue); 1861 1862 // Got two non-Constant values. While we could handle them somewhat, 1863 // by getting their constant ranges, and applying ConstantRange::icmp(), 1864 // so far it did not appear to be profitable. 1865 return LazyValueInfo::Unknown; 1866 } 1867 1868 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, 1869 BasicBlock *NewSucc) { 1870 if (PImpl) { 1871 getImpl(PImpl, AC, PredBB->getModule()) 1872 .threadEdge(PredBB, OldSucc, NewSucc); 1873 } 1874 } 1875 1876 void LazyValueInfo::eraseBlock(BasicBlock *BB) { 1877 if (PImpl) { 1878 getImpl(PImpl, AC, BB->getModule()).eraseBlock(BB); 1879 } 1880 } 1881 1882 void LazyValueInfo::clear(const Module *M) { 1883 if (PImpl) { 1884 getImpl(PImpl, AC, M).clear(); 1885 } 1886 } 1887 1888 void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { 1889 if (PImpl) { 1890 getImpl(PImpl, AC, F.getParent()).printLVI(F, DTree, OS); 1891 } 1892 } 1893 1894 // Print the LVI for the function arguments at the start of each basic block. 1895 void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot( 1896 const BasicBlock *BB, formatted_raw_ostream &OS) { 1897 // Find if there are latticevalues defined for arguments of the function. 1898 auto *F = BB->getParent(); 1899 for (const auto &Arg : F->args()) { 1900 ValueLatticeElement Result = LVIImpl->getValueInBlock( 1901 const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB)); 1902 if (Result.isUnknown()) 1903 continue; 1904 OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n"; 1905 } 1906 } 1907 1908 // This function prints the LVI analysis for the instruction I at the beginning 1909 // of various basic blocks. It relies on calculated values that are stored in 1910 // the LazyValueInfoCache, and in the absence of cached values, recalculate the 1911 // LazyValueInfo for `I`, and print that info. 1912 void LazyValueInfoAnnotatedWriter::emitInstructionAnnot( 1913 const Instruction *I, formatted_raw_ostream &OS) { 1914 1915 auto *ParentBB = I->getParent(); 1916 SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI; 1917 // We can generate (solve) LVI values only for blocks that are dominated by 1918 // the I's parent. However, to avoid generating LVI for all dominating blocks, 1919 // that contain redundant/uninteresting information, we print LVI for 1920 // blocks that may use this LVI information (such as immediate successor 1921 // blocks, and blocks that contain uses of `I`). 1922 auto printResult = [&](const BasicBlock *BB) { 1923 if (!BlocksContainingLVI.insert(BB).second) 1924 return; 1925 ValueLatticeElement Result = LVIImpl->getValueInBlock( 1926 const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB)); 1927 OS << "; LatticeVal for: '" << *I << "' in BB: '"; 1928 BB->printAsOperand(OS, false); 1929 OS << "' is: " << Result << "\n"; 1930 }; 1931 1932 printResult(ParentBB); 1933 // Print the LVI analysis results for the immediate successor blocks, that 1934 // are dominated by `ParentBB`. 1935 for (const auto *BBSucc : successors(ParentBB)) 1936 if (DT.dominates(ParentBB, BBSucc)) 1937 printResult(BBSucc); 1938 1939 // Print LVI in blocks where `I` is used. 1940 for (const auto *U : I->users()) 1941 if (auto *UseI = dyn_cast<Instruction>(U)) 1942 if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent())) 1943 printResult(UseI->getParent()); 1944 1945 } 1946 1947 namespace { 1948 // Printer class for LazyValueInfo results. 1949 class LazyValueInfoPrinter : public FunctionPass { 1950 public: 1951 static char ID; // Pass identification, replacement for typeid 1952 LazyValueInfoPrinter() : FunctionPass(ID) { 1953 initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry()); 1954 } 1955 1956 void getAnalysisUsage(AnalysisUsage &AU) const override { 1957 AU.setPreservesAll(); 1958 AU.addRequired<LazyValueInfoWrapperPass>(); 1959 AU.addRequired<DominatorTreeWrapperPass>(); 1960 } 1961 1962 // Get the mandatory dominator tree analysis and pass this in to the 1963 // LVIPrinter. We cannot rely on the LVI's DT, since it's optional. 1964 bool runOnFunction(Function &F) override { 1965 dbgs() << "LVI for function '" << F.getName() << "':\n"; 1966 auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 1967 auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1968 LVI.printLVI(F, DTree, dbgs()); 1969 return false; 1970 } 1971 }; 1972 } 1973 1974 char LazyValueInfoPrinter::ID = 0; 1975 INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info", 1976 "Lazy Value Info Printer Pass", false, false) 1977 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 1978 INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info", 1979 "Lazy Value Info Printer Pass", false, false) 1980