xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/LazyValueInfo.cpp (revision 78cd75393ec79565c63927bf200f06f839a1dc05)
1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interface for lazy computation of value constraint
10 // information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/LazyValueInfo.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/Analysis/ValueLattice.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/AssemblyAnnotationWriter.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/ValueHandle.h"
35 #include "llvm/InitializePasses.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/FormattedStream.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <optional>
41 using namespace llvm;
42 using namespace PatternMatch;
43 
44 #define DEBUG_TYPE "lazy-value-info"
45 
46 // This is the number of worklist items we will process to try to discover an
47 // answer for a given value.
48 static const unsigned MaxProcessedPerValue = 500;
49 
50 char LazyValueInfoWrapperPass::ID = 0;
51 LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) {
52   initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry());
53 }
54 INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info",
55                 "Lazy Value Information Analysis", false, true)
56 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
57 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
58 INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info",
59                 "Lazy Value Information Analysis", false, true)
60 
61 namespace llvm {
62   FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); }
63 }
64 
65 AnalysisKey LazyValueAnalysis::Key;
66 
67 /// Returns true if this lattice value represents at most one possible value.
68 /// This is as precise as any lattice value can get while still representing
69 /// reachable code.
70 static bool hasSingleValue(const ValueLatticeElement &Val) {
71   if (Val.isConstantRange() &&
72       Val.getConstantRange().isSingleElement())
73     // Integer constants are single element ranges
74     return true;
75   if (Val.isConstant())
76     // Non integer constants
77     return true;
78   return false;
79 }
80 
81 /// Combine two sets of facts about the same value into a single set of
82 /// facts.  Note that this method is not suitable for merging facts along
83 /// different paths in a CFG; that's what the mergeIn function is for.  This
84 /// is for merging facts gathered about the same value at the same location
85 /// through two independent means.
86 /// Notes:
87 /// * This method does not promise to return the most precise possible lattice
88 ///   value implied by A and B.  It is allowed to return any lattice element
89 ///   which is at least as strong as *either* A or B (unless our facts
90 ///   conflict, see below).
91 /// * Due to unreachable code, the intersection of two lattice values could be
92 ///   contradictory.  If this happens, we return some valid lattice value so as
93 ///   not confuse the rest of LVI.  Ideally, we'd always return Undefined, but
94 ///   we do not make this guarantee.  TODO: This would be a useful enhancement.
95 static ValueLatticeElement intersect(const ValueLatticeElement &A,
96                                      const ValueLatticeElement &B) {
97   // Undefined is the strongest state.  It means the value is known to be along
98   // an unreachable path.
99   if (A.isUnknown())
100     return A;
101   if (B.isUnknown())
102     return B;
103 
104   // If we gave up for one, but got a useable fact from the other, use it.
105   if (A.isOverdefined())
106     return B;
107   if (B.isOverdefined())
108     return A;
109 
110   // Can't get any more precise than constants.
111   if (hasSingleValue(A))
112     return A;
113   if (hasSingleValue(B))
114     return B;
115 
116   // Could be either constant range or not constant here.
117   if (!A.isConstantRange() || !B.isConstantRange()) {
118     // TODO: Arbitrary choice, could be improved
119     return A;
120   }
121 
122   // Intersect two constant ranges
123   ConstantRange Range =
124       A.getConstantRange().intersectWith(B.getConstantRange());
125   // Note: An empty range is implicitly converted to unknown or undef depending
126   // on MayIncludeUndef internally.
127   return ValueLatticeElement::getRange(
128       std::move(Range), /*MayIncludeUndef=*/A.isConstantRangeIncludingUndef() ||
129                             B.isConstantRangeIncludingUndef());
130 }
131 
132 //===----------------------------------------------------------------------===//
133 //                          LazyValueInfoCache Decl
134 //===----------------------------------------------------------------------===//
135 
136 namespace {
137   /// A callback value handle updates the cache when values are erased.
138   class LazyValueInfoCache;
139   struct LVIValueHandle final : public CallbackVH {
140     LazyValueInfoCache *Parent;
141 
142     LVIValueHandle(Value *V, LazyValueInfoCache *P = nullptr)
143       : CallbackVH(V), Parent(P) { }
144 
145     void deleted() override;
146     void allUsesReplacedWith(Value *V) override {
147       deleted();
148     }
149   };
150 } // end anonymous namespace
151 
152 namespace {
153   using NonNullPointerSet = SmallDenseSet<AssertingVH<Value>, 2>;
154 
155   /// This is the cache kept by LazyValueInfo which
156   /// maintains information about queries across the clients' queries.
157   class LazyValueInfoCache {
158     /// This is all of the cached information for one basic block. It contains
159     /// the per-value lattice elements, as well as a separate set for
160     /// overdefined values to reduce memory usage. Additionally pointers
161     /// dereferenced in the block are cached for nullability queries.
162     struct BlockCacheEntry {
163       SmallDenseMap<AssertingVH<Value>, ValueLatticeElement, 4> LatticeElements;
164       SmallDenseSet<AssertingVH<Value>, 4> OverDefined;
165       // std::nullopt indicates that the nonnull pointers for this basic block
166       // block have not been computed yet.
167       std::optional<NonNullPointerSet> NonNullPointers;
168     };
169 
170     /// Cached information per basic block.
171     DenseMap<PoisoningVH<BasicBlock>, std::unique_ptr<BlockCacheEntry>>
172         BlockCache;
173     /// Set of value handles used to erase values from the cache on deletion.
174     DenseSet<LVIValueHandle, DenseMapInfo<Value *>> ValueHandles;
175 
176     const BlockCacheEntry *getBlockEntry(BasicBlock *BB) const {
177       auto It = BlockCache.find_as(BB);
178       if (It == BlockCache.end())
179         return nullptr;
180       return It->second.get();
181     }
182 
183     BlockCacheEntry *getOrCreateBlockEntry(BasicBlock *BB) {
184       auto It = BlockCache.find_as(BB);
185       if (It == BlockCache.end())
186         It = BlockCache.insert({ BB, std::make_unique<BlockCacheEntry>() })
187                        .first;
188 
189       return It->second.get();
190     }
191 
192     void addValueHandle(Value *Val) {
193       auto HandleIt = ValueHandles.find_as(Val);
194       if (HandleIt == ValueHandles.end())
195         ValueHandles.insert({ Val, this });
196     }
197 
198   public:
199     void insertResult(Value *Val, BasicBlock *BB,
200                       const ValueLatticeElement &Result) {
201       BlockCacheEntry *Entry = getOrCreateBlockEntry(BB);
202 
203       // Insert over-defined values into their own cache to reduce memory
204       // overhead.
205       if (Result.isOverdefined())
206         Entry->OverDefined.insert(Val);
207       else
208         Entry->LatticeElements.insert({ Val, Result });
209 
210       addValueHandle(Val);
211     }
212 
213     std::optional<ValueLatticeElement>
214     getCachedValueInfo(Value *V, BasicBlock *BB) const {
215       const BlockCacheEntry *Entry = getBlockEntry(BB);
216       if (!Entry)
217         return std::nullopt;
218 
219       if (Entry->OverDefined.count(V))
220         return ValueLatticeElement::getOverdefined();
221 
222       auto LatticeIt = Entry->LatticeElements.find_as(V);
223       if (LatticeIt == Entry->LatticeElements.end())
224         return std::nullopt;
225 
226       return LatticeIt->second;
227     }
228 
229     bool isNonNullAtEndOfBlock(
230         Value *V, BasicBlock *BB,
231         function_ref<NonNullPointerSet(BasicBlock *)> InitFn) {
232       BlockCacheEntry *Entry = getOrCreateBlockEntry(BB);
233       if (!Entry->NonNullPointers) {
234         Entry->NonNullPointers = InitFn(BB);
235         for (Value *V : *Entry->NonNullPointers)
236           addValueHandle(V);
237       }
238 
239       return Entry->NonNullPointers->count(V);
240     }
241 
242     /// clear - Empty the cache.
243     void clear() {
244       BlockCache.clear();
245       ValueHandles.clear();
246     }
247 
248     /// Inform the cache that a given value has been deleted.
249     void eraseValue(Value *V);
250 
251     /// This is part of the update interface to inform the cache
252     /// that a block has been deleted.
253     void eraseBlock(BasicBlock *BB);
254 
255     /// Updates the cache to remove any influence an overdefined value in
256     /// OldSucc might have (unless also overdefined in NewSucc).  This just
257     /// flushes elements from the cache and does not add any.
258     void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc);
259   };
260 }
261 
262 void LazyValueInfoCache::eraseValue(Value *V) {
263   for (auto &Pair : BlockCache) {
264     Pair.second->LatticeElements.erase(V);
265     Pair.second->OverDefined.erase(V);
266     if (Pair.second->NonNullPointers)
267       Pair.second->NonNullPointers->erase(V);
268   }
269 
270   auto HandleIt = ValueHandles.find_as(V);
271   if (HandleIt != ValueHandles.end())
272     ValueHandles.erase(HandleIt);
273 }
274 
275 void LVIValueHandle::deleted() {
276   // This erasure deallocates *this, so it MUST happen after we're done
277   // using any and all members of *this.
278   Parent->eraseValue(*this);
279 }
280 
281 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
282   BlockCache.erase(BB);
283 }
284 
285 void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc,
286                                         BasicBlock *NewSucc) {
287   // When an edge in the graph has been threaded, values that we could not
288   // determine a value for before (i.e. were marked overdefined) may be
289   // possible to solve now. We do NOT try to proactively update these values.
290   // Instead, we clear their entries from the cache, and allow lazy updating to
291   // recompute them when needed.
292 
293   // The updating process is fairly simple: we need to drop cached info
294   // for all values that were marked overdefined in OldSucc, and for those same
295   // values in any successor of OldSucc (except NewSucc) in which they were
296   // also marked overdefined.
297   std::vector<BasicBlock*> worklist;
298   worklist.push_back(OldSucc);
299 
300   const BlockCacheEntry *Entry = getBlockEntry(OldSucc);
301   if (!Entry || Entry->OverDefined.empty())
302     return; // Nothing to process here.
303   SmallVector<Value *, 4> ValsToClear(Entry->OverDefined.begin(),
304                                       Entry->OverDefined.end());
305 
306   // Use a worklist to perform a depth-first search of OldSucc's successors.
307   // NOTE: We do not need a visited list since any blocks we have already
308   // visited will have had their overdefined markers cleared already, and we
309   // thus won't loop to their successors.
310   while (!worklist.empty()) {
311     BasicBlock *ToUpdate = worklist.back();
312     worklist.pop_back();
313 
314     // Skip blocks only accessible through NewSucc.
315     if (ToUpdate == NewSucc) continue;
316 
317     // If a value was marked overdefined in OldSucc, and is here too...
318     auto OI = BlockCache.find_as(ToUpdate);
319     if (OI == BlockCache.end() || OI->second->OverDefined.empty())
320       continue;
321     auto &ValueSet = OI->second->OverDefined;
322 
323     bool changed = false;
324     for (Value *V : ValsToClear) {
325       if (!ValueSet.erase(V))
326         continue;
327 
328       // If we removed anything, then we potentially need to update
329       // blocks successors too.
330       changed = true;
331     }
332 
333     if (!changed) continue;
334 
335     llvm::append_range(worklist, successors(ToUpdate));
336   }
337 }
338 
339 
340 namespace {
341 /// An assembly annotator class to print LazyValueCache information in
342 /// comments.
343 class LazyValueInfoImpl;
344 class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter {
345   LazyValueInfoImpl *LVIImpl;
346   // While analyzing which blocks we can solve values for, we need the dominator
347   // information.
348   DominatorTree &DT;
349 
350 public:
351   LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree)
352       : LVIImpl(L), DT(DTree) {}
353 
354   void emitBasicBlockStartAnnot(const BasicBlock *BB,
355                                 formatted_raw_ostream &OS) override;
356 
357   void emitInstructionAnnot(const Instruction *I,
358                             formatted_raw_ostream &OS) override;
359 };
360 }
361 namespace {
362 // The actual implementation of the lazy analysis and update.  Note that the
363 // inheritance from LazyValueInfoCache is intended to be temporary while
364 // splitting the code and then transitioning to a has-a relationship.
365 class LazyValueInfoImpl {
366 
367   /// Cached results from previous queries
368   LazyValueInfoCache TheCache;
369 
370   /// This stack holds the state of the value solver during a query.
371   /// It basically emulates the callstack of the naive
372   /// recursive value lookup process.
373   SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack;
374 
375   /// Keeps track of which block-value pairs are in BlockValueStack.
376   DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
377 
378   /// Push BV onto BlockValueStack unless it's already in there.
379   /// Returns true on success.
380   bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
381     if (!BlockValueSet.insert(BV).second)
382       return false;  // It's already in the stack.
383 
384     LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in "
385                       << BV.first->getName() << "\n");
386     BlockValueStack.push_back(BV);
387     return true;
388   }
389 
390   AssumptionCache *AC;  ///< A pointer to the cache of @llvm.assume calls.
391   const DataLayout &DL; ///< A mandatory DataLayout
392 
393   /// Declaration of the llvm.experimental.guard() intrinsic,
394   /// if it exists in the module.
395   Function *GuardDecl;
396 
397   std::optional<ValueLatticeElement> getBlockValue(Value *Val, BasicBlock *BB,
398                                                    Instruction *CxtI);
399   std::optional<ValueLatticeElement> getEdgeValue(Value *V, BasicBlock *F,
400                                                   BasicBlock *T,
401                                                   Instruction *CxtI = nullptr);
402 
403   // These methods process one work item and may add more. A false value
404   // returned means that the work item was not completely processed and must
405   // be revisited after going through the new items.
406   bool solveBlockValue(Value *Val, BasicBlock *BB);
407   std::optional<ValueLatticeElement> solveBlockValueImpl(Value *Val,
408                                                          BasicBlock *BB);
409   std::optional<ValueLatticeElement> solveBlockValueNonLocal(Value *Val,
410                                                              BasicBlock *BB);
411   std::optional<ValueLatticeElement> solveBlockValuePHINode(PHINode *PN,
412                                                             BasicBlock *BB);
413   std::optional<ValueLatticeElement> solveBlockValueSelect(SelectInst *S,
414                                                            BasicBlock *BB);
415   std::optional<ConstantRange> getRangeFor(Value *V, Instruction *CxtI,
416                                            BasicBlock *BB);
417   std::optional<ValueLatticeElement> solveBlockValueBinaryOpImpl(
418       Instruction *I, BasicBlock *BB,
419       std::function<ConstantRange(const ConstantRange &, const ConstantRange &)>
420           OpFn);
421   std::optional<ValueLatticeElement>
422   solveBlockValueBinaryOp(BinaryOperator *BBI, BasicBlock *BB);
423   std::optional<ValueLatticeElement> solveBlockValueCast(CastInst *CI,
424                                                          BasicBlock *BB);
425   std::optional<ValueLatticeElement>
426   solveBlockValueOverflowIntrinsic(WithOverflowInst *WO, BasicBlock *BB);
427   std::optional<ValueLatticeElement> solveBlockValueIntrinsic(IntrinsicInst *II,
428                                                               BasicBlock *BB);
429   std::optional<ValueLatticeElement>
430   solveBlockValueExtractValue(ExtractValueInst *EVI, BasicBlock *BB);
431   bool isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB);
432   void intersectAssumeOrGuardBlockValueConstantRange(Value *Val,
433                                                      ValueLatticeElement &BBLV,
434                                                      Instruction *BBI);
435 
436   void solve();
437 
438 public:
439   /// This is the query interface to determine the lattice value for the
440   /// specified Value* at the context instruction (if specified) or at the
441   /// start of the block.
442   ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB,
443                                       Instruction *CxtI = nullptr);
444 
445   /// This is the query interface to determine the lattice value for the
446   /// specified Value* at the specified instruction using only information
447   /// from assumes/guards and range metadata. Unlike getValueInBlock(), no
448   /// recursive query is performed.
449   ValueLatticeElement getValueAt(Value *V, Instruction *CxtI);
450 
451   /// This is the query interface to determine the lattice
452   /// value for the specified Value* that is true on the specified edge.
453   ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB,
454                                      BasicBlock *ToBB,
455                                      Instruction *CxtI = nullptr);
456 
457   /// Complete flush all previously computed values
458   void clear() {
459     TheCache.clear();
460   }
461 
462   /// Printing the LazyValueInfo Analysis.
463   void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
464     LazyValueInfoAnnotatedWriter Writer(this, DTree);
465     F.print(OS, &Writer);
466   }
467 
468   /// This is part of the update interface to remove information related to this
469   /// value from the cache.
470   void forgetValue(Value *V) { TheCache.eraseValue(V); }
471 
472   /// This is part of the update interface to inform the cache
473   /// that a block has been deleted.
474   void eraseBlock(BasicBlock *BB) {
475     TheCache.eraseBlock(BB);
476   }
477 
478   /// This is the update interface to inform the cache that an edge from
479   /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
480   void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
481 
482   LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL,
483                     Function *GuardDecl)
484       : AC(AC), DL(DL), GuardDecl(GuardDecl) {}
485 };
486 } // end anonymous namespace
487 
488 
489 void LazyValueInfoImpl::solve() {
490   SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack(
491       BlockValueStack.begin(), BlockValueStack.end());
492 
493   unsigned processedCount = 0;
494   while (!BlockValueStack.empty()) {
495     processedCount++;
496     // Abort if we have to process too many values to get a result for this one.
497     // Because of the design of the overdefined cache currently being per-block
498     // to avoid naming-related issues (IE it wants to try to give different
499     // results for the same name in different blocks), overdefined results don't
500     // get cached globally, which in turn means we will often try to rediscover
501     // the same overdefined result again and again.  Once something like
502     // PredicateInfo is used in LVI or CVP, we should be able to make the
503     // overdefined cache global, and remove this throttle.
504     if (processedCount > MaxProcessedPerValue) {
505       LLVM_DEBUG(
506           dbgs() << "Giving up on stack because we are getting too deep\n");
507       // Fill in the original values
508       while (!StartingStack.empty()) {
509         std::pair<BasicBlock *, Value *> &e = StartingStack.back();
510         TheCache.insertResult(e.second, e.first,
511                               ValueLatticeElement::getOverdefined());
512         StartingStack.pop_back();
513       }
514       BlockValueSet.clear();
515       BlockValueStack.clear();
516       return;
517     }
518     std::pair<BasicBlock *, Value *> e = BlockValueStack.back();
519     assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");
520 
521     if (solveBlockValue(e.second, e.first)) {
522       // The work item was completely processed.
523       assert(BlockValueStack.back() == e && "Nothing should have been pushed!");
524 #ifndef NDEBUG
525       std::optional<ValueLatticeElement> BBLV =
526           TheCache.getCachedValueInfo(e.second, e.first);
527       assert(BBLV && "Result should be in cache!");
528       LLVM_DEBUG(
529           dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = "
530                  << *BBLV << "\n");
531 #endif
532 
533       BlockValueStack.pop_back();
534       BlockValueSet.erase(e);
535     } else {
536       // More work needs to be done before revisiting.
537       assert(BlockValueStack.back() != e && "Stack should have been pushed!");
538     }
539   }
540 }
541 
542 std::optional<ValueLatticeElement>
543 LazyValueInfoImpl::getBlockValue(Value *Val, BasicBlock *BB,
544                                  Instruction *CxtI) {
545   // If already a constant, there is nothing to compute.
546   if (Constant *VC = dyn_cast<Constant>(Val))
547     return ValueLatticeElement::get(VC);
548 
549   if (std::optional<ValueLatticeElement> OptLatticeVal =
550           TheCache.getCachedValueInfo(Val, BB)) {
551     intersectAssumeOrGuardBlockValueConstantRange(Val, *OptLatticeVal, CxtI);
552     return OptLatticeVal;
553   }
554 
555   // We have hit a cycle, assume overdefined.
556   if (!pushBlockValue({ BB, Val }))
557     return ValueLatticeElement::getOverdefined();
558 
559   // Yet to be resolved.
560   return std::nullopt;
561 }
562 
563 static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) {
564   switch (BBI->getOpcode()) {
565   default: break;
566   case Instruction::Load:
567   case Instruction::Call:
568   case Instruction::Invoke:
569     if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range))
570       if (isa<IntegerType>(BBI->getType())) {
571         return ValueLatticeElement::getRange(
572             getConstantRangeFromMetadata(*Ranges));
573       }
574     break;
575   };
576   // Nothing known - will be intersected with other facts
577   return ValueLatticeElement::getOverdefined();
578 }
579 
580 bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) {
581   assert(!isa<Constant>(Val) && "Value should not be constant");
582   assert(!TheCache.getCachedValueInfo(Val, BB) &&
583          "Value should not be in cache");
584 
585   // Hold off inserting this value into the Cache in case we have to return
586   // false and come back later.
587   std::optional<ValueLatticeElement> Res = solveBlockValueImpl(Val, BB);
588   if (!Res)
589     // Work pushed, will revisit
590     return false;
591 
592   TheCache.insertResult(Val, BB, *Res);
593   return true;
594 }
595 
596 std::optional<ValueLatticeElement>
597 LazyValueInfoImpl::solveBlockValueImpl(Value *Val, BasicBlock *BB) {
598   Instruction *BBI = dyn_cast<Instruction>(Val);
599   if (!BBI || BBI->getParent() != BB)
600     return solveBlockValueNonLocal(Val, BB);
601 
602   if (PHINode *PN = dyn_cast<PHINode>(BBI))
603     return solveBlockValuePHINode(PN, BB);
604 
605   if (auto *SI = dyn_cast<SelectInst>(BBI))
606     return solveBlockValueSelect(SI, BB);
607 
608   // If this value is a nonnull pointer, record it's range and bailout.  Note
609   // that for all other pointer typed values, we terminate the search at the
610   // definition.  We could easily extend this to look through geps, bitcasts,
611   // and the like to prove non-nullness, but it's not clear that's worth it
612   // compile time wise.  The context-insensitive value walk done inside
613   // isKnownNonZero gets most of the profitable cases at much less expense.
614   // This does mean that we have a sensitivity to where the defining
615   // instruction is placed, even if it could legally be hoisted much higher.
616   // That is unfortunate.
617   PointerType *PT = dyn_cast<PointerType>(BBI->getType());
618   if (PT && isKnownNonZero(BBI, DL))
619     return ValueLatticeElement::getNot(ConstantPointerNull::get(PT));
620 
621   if (BBI->getType()->isIntegerTy()) {
622     if (auto *CI = dyn_cast<CastInst>(BBI))
623       return solveBlockValueCast(CI, BB);
624 
625     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI))
626       return solveBlockValueBinaryOp(BO, BB);
627 
628     if (auto *EVI = dyn_cast<ExtractValueInst>(BBI))
629       return solveBlockValueExtractValue(EVI, BB);
630 
631     if (auto *II = dyn_cast<IntrinsicInst>(BBI))
632       return solveBlockValueIntrinsic(II, BB);
633   }
634 
635   LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
636                     << "' - unknown inst def found.\n");
637   return getFromRangeMetadata(BBI);
638 }
639 
640 static void AddNonNullPointer(Value *Ptr, NonNullPointerSet &PtrSet) {
641   // TODO: Use NullPointerIsDefined instead.
642   if (Ptr->getType()->getPointerAddressSpace() == 0)
643     PtrSet.insert(getUnderlyingObject(Ptr));
644 }
645 
646 static void AddNonNullPointersByInstruction(
647     Instruction *I, NonNullPointerSet &PtrSet) {
648   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
649     AddNonNullPointer(L->getPointerOperand(), PtrSet);
650   } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
651     AddNonNullPointer(S->getPointerOperand(), PtrSet);
652   } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
653     if (MI->isVolatile()) return;
654 
655     // FIXME: check whether it has a valuerange that excludes zero?
656     ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
657     if (!Len || Len->isZero()) return;
658 
659     AddNonNullPointer(MI->getRawDest(), PtrSet);
660     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
661       AddNonNullPointer(MTI->getRawSource(), PtrSet);
662   }
663 }
664 
665 bool LazyValueInfoImpl::isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB) {
666   if (NullPointerIsDefined(BB->getParent(),
667                            Val->getType()->getPointerAddressSpace()))
668     return false;
669 
670   Val = Val->stripInBoundsOffsets();
671   return TheCache.isNonNullAtEndOfBlock(Val, BB, [](BasicBlock *BB) {
672     NonNullPointerSet NonNullPointers;
673     for (Instruction &I : *BB)
674       AddNonNullPointersByInstruction(&I, NonNullPointers);
675     return NonNullPointers;
676   });
677 }
678 
679 std::optional<ValueLatticeElement>
680 LazyValueInfoImpl::solveBlockValueNonLocal(Value *Val, BasicBlock *BB) {
681   ValueLatticeElement Result;  // Start Undefined.
682 
683   // If this is the entry block, we must be asking about an argument.  The
684   // value is overdefined.
685   if (BB->isEntryBlock()) {
686     assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
687     return ValueLatticeElement::getOverdefined();
688   }
689 
690   // Loop over all of our predecessors, merging what we know from them into
691   // result.  If we encounter an unexplored predecessor, we eagerly explore it
692   // in a depth first manner.  In practice, this has the effect of discovering
693   // paths we can't analyze eagerly without spending compile times analyzing
694   // other paths.  This heuristic benefits from the fact that predecessors are
695   // frequently arranged such that dominating ones come first and we quickly
696   // find a path to function entry.  TODO: We should consider explicitly
697   // canonicalizing to make this true rather than relying on this happy
698   // accident.
699   for (BasicBlock *Pred : predecessors(BB)) {
700     std::optional<ValueLatticeElement> EdgeResult = getEdgeValue(Val, Pred, BB);
701     if (!EdgeResult)
702       // Explore that input, then return here
703       return std::nullopt;
704 
705     Result.mergeIn(*EdgeResult);
706 
707     // If we hit overdefined, exit early.  The BlockVals entry is already set
708     // to overdefined.
709     if (Result.isOverdefined()) {
710       LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
711                         << "' - overdefined because of pred '"
712                         << Pred->getName() << "' (non local).\n");
713       return Result;
714     }
715   }
716 
717   // Return the merged value, which is more precise than 'overdefined'.
718   assert(!Result.isOverdefined());
719   return Result;
720 }
721 
722 std::optional<ValueLatticeElement>
723 LazyValueInfoImpl::solveBlockValuePHINode(PHINode *PN, BasicBlock *BB) {
724   ValueLatticeElement Result;  // Start Undefined.
725 
726   // Loop over all of our predecessors, merging what we know from them into
727   // result.  See the comment about the chosen traversal order in
728   // solveBlockValueNonLocal; the same reasoning applies here.
729   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
730     BasicBlock *PhiBB = PN->getIncomingBlock(i);
731     Value *PhiVal = PN->getIncomingValue(i);
732     // Note that we can provide PN as the context value to getEdgeValue, even
733     // though the results will be cached, because PN is the value being used as
734     // the cache key in the caller.
735     std::optional<ValueLatticeElement> EdgeResult =
736         getEdgeValue(PhiVal, PhiBB, BB, PN);
737     if (!EdgeResult)
738       // Explore that input, then return here
739       return std::nullopt;
740 
741     Result.mergeIn(*EdgeResult);
742 
743     // If we hit overdefined, exit early.  The BlockVals entry is already set
744     // to overdefined.
745     if (Result.isOverdefined()) {
746       LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
747                         << "' - overdefined because of pred (local).\n");
748 
749       return Result;
750     }
751   }
752 
753   // Return the merged value, which is more precise than 'overdefined'.
754   assert(!Result.isOverdefined() && "Possible PHI in entry block?");
755   return Result;
756 }
757 
758 static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
759                                                  bool isTrueDest = true);
760 
761 // If we can determine a constraint on the value given conditions assumed by
762 // the program, intersect those constraints with BBLV
763 void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
764         Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) {
765   BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
766   if (!BBI)
767     return;
768 
769   BasicBlock *BB = BBI->getParent();
770   for (auto &AssumeVH : AC->assumptionsFor(Val)) {
771     if (!AssumeVH)
772       continue;
773 
774     // Only check assumes in the block of the context instruction. Other
775     // assumes will have already been taken into account when the value was
776     // propagated from predecessor blocks.
777     auto *I = cast<CallInst>(AssumeVH);
778     if (I->getParent() != BB || !isValidAssumeForContext(I, BBI))
779       continue;
780 
781     BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0)));
782   }
783 
784   // If guards are not used in the module, don't spend time looking for them
785   if (GuardDecl && !GuardDecl->use_empty() &&
786       BBI->getIterator() != BB->begin()) {
787     for (Instruction &I : make_range(std::next(BBI->getIterator().getReverse()),
788                                      BB->rend())) {
789       Value *Cond = nullptr;
790       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond))))
791         BBLV = intersect(BBLV, getValueFromCondition(Val, Cond));
792     }
793   }
794 
795   if (BBLV.isOverdefined()) {
796     // Check whether we're checking at the terminator, and the pointer has
797     // been dereferenced in this block.
798     PointerType *PTy = dyn_cast<PointerType>(Val->getType());
799     if (PTy && BB->getTerminator() == BBI &&
800         isNonNullAtEndOfBlock(Val, BB))
801       BBLV = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
802   }
803 }
804 
805 static ConstantRange getConstantRangeOrFull(const ValueLatticeElement &Val,
806                                             Type *Ty, const DataLayout &DL) {
807   if (Val.isConstantRange(/*UndefAllowed*/ false))
808     return Val.getConstantRange();
809   return ConstantRange::getFull(DL.getTypeSizeInBits(Ty));
810 }
811 
812 std::optional<ValueLatticeElement>
813 LazyValueInfoImpl::solveBlockValueSelect(SelectInst *SI, BasicBlock *BB) {
814   // Recurse on our inputs if needed
815   std::optional<ValueLatticeElement> OptTrueVal =
816       getBlockValue(SI->getTrueValue(), BB, SI);
817   if (!OptTrueVal)
818     return std::nullopt;
819   ValueLatticeElement &TrueVal = *OptTrueVal;
820 
821   std::optional<ValueLatticeElement> OptFalseVal =
822       getBlockValue(SI->getFalseValue(), BB, SI);
823   if (!OptFalseVal)
824     return std::nullopt;
825   ValueLatticeElement &FalseVal = *OptFalseVal;
826 
827   if (TrueVal.isConstantRange() || FalseVal.isConstantRange()) {
828     const ConstantRange &TrueCR =
829         getConstantRangeOrFull(TrueVal, SI->getType(), DL);
830     const ConstantRange &FalseCR =
831         getConstantRangeOrFull(FalseVal, SI->getType(), DL);
832     Value *LHS = nullptr;
833     Value *RHS = nullptr;
834     SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS);
835     // Is this a min specifically of our two inputs?  (Avoid the risk of
836     // ValueTracking getting smarter looking back past our immediate inputs.)
837     if (SelectPatternResult::isMinOrMax(SPR.Flavor) &&
838         ((LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) ||
839          (RHS == SI->getTrueValue() && LHS == SI->getFalseValue()))) {
840       ConstantRange ResultCR = [&]() {
841         switch (SPR.Flavor) {
842         default:
843           llvm_unreachable("unexpected minmax type!");
844         case SPF_SMIN:                   /// Signed minimum
845           return TrueCR.smin(FalseCR);
846         case SPF_UMIN:                   /// Unsigned minimum
847           return TrueCR.umin(FalseCR);
848         case SPF_SMAX:                   /// Signed maximum
849           return TrueCR.smax(FalseCR);
850         case SPF_UMAX:                   /// Unsigned maximum
851           return TrueCR.umax(FalseCR);
852         };
853       }();
854       return ValueLatticeElement::getRange(
855           ResultCR, TrueVal.isConstantRangeIncludingUndef() ||
856                         FalseVal.isConstantRangeIncludingUndef());
857     }
858 
859     if (SPR.Flavor == SPF_ABS) {
860       if (LHS == SI->getTrueValue())
861         return ValueLatticeElement::getRange(
862             TrueCR.abs(), TrueVal.isConstantRangeIncludingUndef());
863       if (LHS == SI->getFalseValue())
864         return ValueLatticeElement::getRange(
865             FalseCR.abs(), FalseVal.isConstantRangeIncludingUndef());
866     }
867 
868     if (SPR.Flavor == SPF_NABS) {
869       ConstantRange Zero(APInt::getZero(TrueCR.getBitWidth()));
870       if (LHS == SI->getTrueValue())
871         return ValueLatticeElement::getRange(
872             Zero.sub(TrueCR.abs()), FalseVal.isConstantRangeIncludingUndef());
873       if (LHS == SI->getFalseValue())
874         return ValueLatticeElement::getRange(
875             Zero.sub(FalseCR.abs()), FalseVal.isConstantRangeIncludingUndef());
876     }
877   }
878 
879   // Can we constrain the facts about the true and false values by using the
880   // condition itself?  This shows up with idioms like e.g. select(a > 5, a, 5).
881   // TODO: We could potentially refine an overdefined true value above.
882   Value *Cond = SI->getCondition();
883   // If the value is undef, a different value may be chosen in
884   // the select condition.
885   if (isGuaranteedNotToBeUndefOrPoison(Cond, AC)) {
886     TrueVal = intersect(TrueVal,
887                         getValueFromCondition(SI->getTrueValue(), Cond, true));
888     FalseVal = intersect(
889         FalseVal, getValueFromCondition(SI->getFalseValue(), Cond, false));
890   }
891 
892   ValueLatticeElement Result = TrueVal;
893   Result.mergeIn(FalseVal);
894   return Result;
895 }
896 
897 std::optional<ConstantRange>
898 LazyValueInfoImpl::getRangeFor(Value *V, Instruction *CxtI, BasicBlock *BB) {
899   std::optional<ValueLatticeElement> OptVal = getBlockValue(V, BB, CxtI);
900   if (!OptVal)
901     return std::nullopt;
902   return getConstantRangeOrFull(*OptVal, V->getType(), DL);
903 }
904 
905 std::optional<ValueLatticeElement>
906 LazyValueInfoImpl::solveBlockValueCast(CastInst *CI, BasicBlock *BB) {
907   // Without knowing how wide the input is, we can't analyze it in any useful
908   // way.
909   if (!CI->getOperand(0)->getType()->isSized())
910     return ValueLatticeElement::getOverdefined();
911 
912   // Filter out casts we don't know how to reason about before attempting to
913   // recurse on our operand.  This can cut a long search short if we know we're
914   // not going to be able to get any useful information anways.
915   switch (CI->getOpcode()) {
916   case Instruction::Trunc:
917   case Instruction::SExt:
918   case Instruction::ZExt:
919   case Instruction::BitCast:
920     break;
921   default:
922     // Unhandled instructions are overdefined.
923     LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
924                       << "' - overdefined (unknown cast).\n");
925     return ValueLatticeElement::getOverdefined();
926   }
927 
928   // Figure out the range of the LHS.  If that fails, we still apply the
929   // transfer rule on the full set since we may be able to locally infer
930   // interesting facts.
931   std::optional<ConstantRange> LHSRes = getRangeFor(CI->getOperand(0), CI, BB);
932   if (!LHSRes)
933     // More work to do before applying this transfer rule.
934     return std::nullopt;
935   const ConstantRange &LHSRange = *LHSRes;
936 
937   const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth();
938 
939   // NOTE: We're currently limited by the set of operations that ConstantRange
940   // can evaluate symbolically.  Enhancing that set will allows us to analyze
941   // more definitions.
942   return ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(),
943                                                        ResultBitWidth));
944 }
945 
946 std::optional<ValueLatticeElement>
947 LazyValueInfoImpl::solveBlockValueBinaryOpImpl(
948     Instruction *I, BasicBlock *BB,
949     std::function<ConstantRange(const ConstantRange &, const ConstantRange &)>
950         OpFn) {
951   // Figure out the ranges of the operands.  If that fails, use a
952   // conservative range, but apply the transfer rule anyways.  This
953   // lets us pick up facts from expressions like "and i32 (call i32
954   // @foo()), 32"
955   std::optional<ConstantRange> LHSRes = getRangeFor(I->getOperand(0), I, BB);
956   std::optional<ConstantRange> RHSRes = getRangeFor(I->getOperand(1), I, BB);
957   if (!LHSRes || !RHSRes)
958     // More work to do before applying this transfer rule.
959     return std::nullopt;
960 
961   const ConstantRange &LHSRange = *LHSRes;
962   const ConstantRange &RHSRange = *RHSRes;
963   return ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange));
964 }
965 
966 std::optional<ValueLatticeElement>
967 LazyValueInfoImpl::solveBlockValueBinaryOp(BinaryOperator *BO, BasicBlock *BB) {
968   assert(BO->getOperand(0)->getType()->isSized() &&
969          "all operands to binary operators are sized");
970   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) {
971     unsigned NoWrapKind = 0;
972     if (OBO->hasNoUnsignedWrap())
973       NoWrapKind |= OverflowingBinaryOperator::NoUnsignedWrap;
974     if (OBO->hasNoSignedWrap())
975       NoWrapKind |= OverflowingBinaryOperator::NoSignedWrap;
976 
977     return solveBlockValueBinaryOpImpl(
978         BO, BB,
979         [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) {
980           return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind);
981         });
982   }
983 
984   return solveBlockValueBinaryOpImpl(
985       BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) {
986         return CR1.binaryOp(BO->getOpcode(), CR2);
987       });
988 }
989 
990 std::optional<ValueLatticeElement>
991 LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(WithOverflowInst *WO,
992                                                     BasicBlock *BB) {
993   return solveBlockValueBinaryOpImpl(
994       WO, BB, [WO](const ConstantRange &CR1, const ConstantRange &CR2) {
995         return CR1.binaryOp(WO->getBinaryOp(), CR2);
996       });
997 }
998 
999 std::optional<ValueLatticeElement>
1000 LazyValueInfoImpl::solveBlockValueIntrinsic(IntrinsicInst *II, BasicBlock *BB) {
1001   ValueLatticeElement MetadataVal = getFromRangeMetadata(II);
1002   if (!ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
1003     LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
1004                       << "' - unknown intrinsic.\n");
1005     return MetadataVal;
1006   }
1007 
1008   SmallVector<ConstantRange, 2> OpRanges;
1009   for (Value *Op : II->args()) {
1010     std::optional<ConstantRange> Range = getRangeFor(Op, II, BB);
1011     if (!Range)
1012       return std::nullopt;
1013     OpRanges.push_back(*Range);
1014   }
1015 
1016   return intersect(ValueLatticeElement::getRange(ConstantRange::intrinsic(
1017                        II->getIntrinsicID(), OpRanges)),
1018                    MetadataVal);
1019 }
1020 
1021 std::optional<ValueLatticeElement>
1022 LazyValueInfoImpl::solveBlockValueExtractValue(ExtractValueInst *EVI,
1023                                                BasicBlock *BB) {
1024   if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
1025     if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0)
1026       return solveBlockValueOverflowIntrinsic(WO, BB);
1027 
1028   // Handle extractvalue of insertvalue to allow further simplification
1029   // based on replaced with.overflow intrinsics.
1030   if (Value *V = simplifyExtractValueInst(
1031           EVI->getAggregateOperand(), EVI->getIndices(),
1032           EVI->getModule()->getDataLayout()))
1033     return getBlockValue(V, BB, EVI);
1034 
1035   LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
1036                     << "' - overdefined (unknown extractvalue).\n");
1037   return ValueLatticeElement::getOverdefined();
1038 }
1039 
1040 static bool matchICmpOperand(APInt &Offset, Value *LHS, Value *Val,
1041                              ICmpInst::Predicate Pred) {
1042   if (LHS == Val)
1043     return true;
1044 
1045   // Handle range checking idiom produced by InstCombine. We will subtract the
1046   // offset from the allowed range for RHS in this case.
1047   const APInt *C;
1048   if (match(LHS, m_Add(m_Specific(Val), m_APInt(C)))) {
1049     Offset = *C;
1050     return true;
1051   }
1052 
1053   // Handle the symmetric case. This appears in saturation patterns like
1054   // (x == 16) ? 16 : (x + 1).
1055   if (match(Val, m_Add(m_Specific(LHS), m_APInt(C)))) {
1056     Offset = -*C;
1057     return true;
1058   }
1059 
1060   // If (x | y) < C, then (x < C) && (y < C).
1061   if (match(LHS, m_c_Or(m_Specific(Val), m_Value())) &&
1062       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE))
1063     return true;
1064 
1065   // If (x & y) > C, then (x > C) && (y > C).
1066   if (match(LHS, m_c_And(m_Specific(Val), m_Value())) &&
1067       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE))
1068     return true;
1069 
1070   return false;
1071 }
1072 
1073 /// Get value range for a "(Val + Offset) Pred RHS" condition.
1074 static ValueLatticeElement getValueFromSimpleICmpCondition(
1075     CmpInst::Predicate Pred, Value *RHS, const APInt &Offset) {
1076   ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(),
1077                          /*isFullSet=*/true);
1078   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS))
1079     RHSRange = ConstantRange(CI->getValue());
1080   else if (Instruction *I = dyn_cast<Instruction>(RHS))
1081     if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
1082       RHSRange = getConstantRangeFromMetadata(*Ranges);
1083 
1084   ConstantRange TrueValues =
1085       ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
1086   return ValueLatticeElement::getRange(TrueValues.subtract(Offset));
1087 }
1088 
1089 static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI,
1090                                                      bool isTrueDest) {
1091   Value *LHS = ICI->getOperand(0);
1092   Value *RHS = ICI->getOperand(1);
1093 
1094   // Get the predicate that must hold along the considered edge.
1095   CmpInst::Predicate EdgePred =
1096       isTrueDest ? ICI->getPredicate() : ICI->getInversePredicate();
1097 
1098   if (isa<Constant>(RHS)) {
1099     if (ICI->isEquality() && LHS == Val) {
1100       if (EdgePred == ICmpInst::ICMP_EQ)
1101         return ValueLatticeElement::get(cast<Constant>(RHS));
1102       else if (!isa<UndefValue>(RHS))
1103         return ValueLatticeElement::getNot(cast<Constant>(RHS));
1104     }
1105   }
1106 
1107   Type *Ty = Val->getType();
1108   if (!Ty->isIntegerTy())
1109     return ValueLatticeElement::getOverdefined();
1110 
1111   unsigned BitWidth = Ty->getScalarSizeInBits();
1112   APInt Offset(BitWidth, 0);
1113   if (matchICmpOperand(Offset, LHS, Val, EdgePred))
1114     return getValueFromSimpleICmpCondition(EdgePred, RHS, Offset);
1115 
1116   CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(EdgePred);
1117   if (matchICmpOperand(Offset, RHS, Val, SwappedPred))
1118     return getValueFromSimpleICmpCondition(SwappedPred, LHS, Offset);
1119 
1120   const APInt *Mask, *C;
1121   if (match(LHS, m_And(m_Specific(Val), m_APInt(Mask))) &&
1122       match(RHS, m_APInt(C))) {
1123     // If (Val & Mask) == C then all the masked bits are known and we can
1124     // compute a value range based on that.
1125     if (EdgePred == ICmpInst::ICMP_EQ) {
1126       KnownBits Known;
1127       Known.Zero = ~*C & *Mask;
1128       Known.One = *C & *Mask;
1129       return ValueLatticeElement::getRange(
1130           ConstantRange::fromKnownBits(Known, /*IsSigned*/ false));
1131     }
1132     // If (Val & Mask) != 0 then the value must be larger than the lowest set
1133     // bit of Mask.
1134     if (EdgePred == ICmpInst::ICMP_NE && !Mask->isZero() && C->isZero()) {
1135       return ValueLatticeElement::getRange(ConstantRange::getNonEmpty(
1136           APInt::getOneBitSet(BitWidth, Mask->countr_zero()),
1137           APInt::getZero(BitWidth)));
1138     }
1139   }
1140 
1141   // If (X urem Modulus) >= C, then X >= C.
1142   // If trunc X >= C, then X >= C.
1143   // TODO: An upper bound could be computed as well.
1144   if (match(LHS, m_CombineOr(m_URem(m_Specific(Val), m_Value()),
1145                              m_Trunc(m_Specific(Val)))) &&
1146       match(RHS, m_APInt(C))) {
1147     // Use the icmp region so we don't have to deal with different predicates.
1148     ConstantRange CR = ConstantRange::makeExactICmpRegion(EdgePred, *C);
1149     if (!CR.isEmptySet())
1150       return ValueLatticeElement::getRange(ConstantRange::getNonEmpty(
1151           CR.getUnsignedMin().zext(BitWidth), APInt(BitWidth, 0)));
1152   }
1153 
1154   return ValueLatticeElement::getOverdefined();
1155 }
1156 
1157 // Handle conditions of the form
1158 // extractvalue(op.with.overflow(%x, C), 1).
1159 static ValueLatticeElement getValueFromOverflowCondition(
1160     Value *Val, WithOverflowInst *WO, bool IsTrueDest) {
1161   // TODO: This only works with a constant RHS for now. We could also compute
1162   // the range of the RHS, but this doesn't fit into the current structure of
1163   // the edge value calculation.
1164   const APInt *C;
1165   if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C)))
1166     return ValueLatticeElement::getOverdefined();
1167 
1168   // Calculate the possible values of %x for which no overflow occurs.
1169   ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
1170       WO->getBinaryOp(), *C, WO->getNoWrapKind());
1171 
1172   // If overflow is false, %x is constrained to NWR. If overflow is true, %x is
1173   // constrained to it's inverse (all values that might cause overflow).
1174   if (IsTrueDest)
1175     NWR = NWR.inverse();
1176   return ValueLatticeElement::getRange(NWR);
1177 }
1178 
1179 // Tracks a Value * condition and whether we're interested in it or its inverse
1180 typedef PointerIntPair<Value *, 1, bool> CondValue;
1181 
1182 static std::optional<ValueLatticeElement> getValueFromConditionImpl(
1183     Value *Val, CondValue CondVal, bool isRevisit,
1184     SmallDenseMap<CondValue, ValueLatticeElement> &Visited,
1185     SmallVectorImpl<CondValue> &Worklist) {
1186 
1187   Value *Cond = CondVal.getPointer();
1188   bool isTrueDest = CondVal.getInt();
1189   if (!isRevisit) {
1190     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond))
1191       return getValueFromICmpCondition(Val, ICI, isTrueDest);
1192 
1193     if (auto *EVI = dyn_cast<ExtractValueInst>(Cond))
1194       if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
1195         if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1)
1196           return getValueFromOverflowCondition(Val, WO, isTrueDest);
1197   }
1198 
1199   Value *N;
1200   if (match(Cond, m_Not(m_Value(N)))) {
1201     CondValue NKey(N, !isTrueDest);
1202     auto NV = Visited.find(NKey);
1203     if (NV == Visited.end()) {
1204       Worklist.push_back(NKey);
1205       return std::nullopt;
1206     }
1207     return NV->second;
1208   }
1209 
1210   Value *L, *R;
1211   bool IsAnd;
1212   if (match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))))
1213     IsAnd = true;
1214   else if (match(Cond, m_LogicalOr(m_Value(L), m_Value(R))))
1215     IsAnd = false;
1216   else
1217     return ValueLatticeElement::getOverdefined();
1218 
1219   auto LV = Visited.find(CondValue(L, isTrueDest));
1220   auto RV = Visited.find(CondValue(R, isTrueDest));
1221 
1222   // if (L && R) -> intersect L and R
1223   // if (!(L || R)) -> intersect !L and !R
1224   // if (L || R) -> union L and R
1225   // if (!(L && R)) -> union !L and !R
1226   if ((isTrueDest ^ IsAnd) && (LV != Visited.end())) {
1227     ValueLatticeElement V = LV->second;
1228     if (V.isOverdefined())
1229       return V;
1230     if (RV != Visited.end()) {
1231       V.mergeIn(RV->second);
1232       return V;
1233     }
1234   }
1235 
1236   if (LV == Visited.end() || RV == Visited.end()) {
1237     assert(!isRevisit);
1238     if (LV == Visited.end())
1239       Worklist.push_back(CondValue(L, isTrueDest));
1240     if (RV == Visited.end())
1241       Worklist.push_back(CondValue(R, isTrueDest));
1242     return std::nullopt;
1243   }
1244 
1245   return intersect(LV->second, RV->second);
1246 }
1247 
1248 ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
1249                                           bool isTrueDest) {
1250   assert(Cond && "precondition");
1251   SmallDenseMap<CondValue, ValueLatticeElement> Visited;
1252   SmallVector<CondValue> Worklist;
1253 
1254   CondValue CondKey(Cond, isTrueDest);
1255   Worklist.push_back(CondKey);
1256   do {
1257     CondValue CurrentCond = Worklist.back();
1258     // Insert an Overdefined placeholder into the set to prevent
1259     // infinite recursion if there exists IRs that use not
1260     // dominated by its def as in this example:
1261     //   "%tmp3 = or i1 undef, %tmp4"
1262     //   "%tmp4 = or i1 undef, %tmp3"
1263     auto Iter =
1264         Visited.try_emplace(CurrentCond, ValueLatticeElement::getOverdefined());
1265     bool isRevisit = !Iter.second;
1266     std::optional<ValueLatticeElement> Result = getValueFromConditionImpl(
1267         Val, CurrentCond, isRevisit, Visited, Worklist);
1268     if (Result) {
1269       Visited[CurrentCond] = *Result;
1270       Worklist.pop_back();
1271     }
1272   } while (!Worklist.empty());
1273 
1274   auto Result = Visited.find(CondKey);
1275   assert(Result != Visited.end());
1276   return Result->second;
1277 }
1278 
1279 // Return true if Usr has Op as an operand, otherwise false.
1280 static bool usesOperand(User *Usr, Value *Op) {
1281   return is_contained(Usr->operands(), Op);
1282 }
1283 
1284 // Return true if the instruction type of Val is supported by
1285 // constantFoldUser(). Currently CastInst, BinaryOperator and FreezeInst only.
1286 // Call this before calling constantFoldUser() to find out if it's even worth
1287 // attempting to call it.
1288 static bool isOperationFoldable(User *Usr) {
1289   return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr) || isa<FreezeInst>(Usr);
1290 }
1291 
1292 // Check if Usr can be simplified to an integer constant when the value of one
1293 // of its operands Op is an integer constant OpConstVal. If so, return it as an
1294 // lattice value range with a single element or otherwise return an overdefined
1295 // lattice value.
1296 static ValueLatticeElement constantFoldUser(User *Usr, Value *Op,
1297                                             const APInt &OpConstVal,
1298                                             const DataLayout &DL) {
1299   assert(isOperationFoldable(Usr) && "Precondition");
1300   Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal);
1301   // Check if Usr can be simplified to a constant.
1302   if (auto *CI = dyn_cast<CastInst>(Usr)) {
1303     assert(CI->getOperand(0) == Op && "Operand 0 isn't Op");
1304     if (auto *C = dyn_cast_or_null<ConstantInt>(
1305             simplifyCastInst(CI->getOpcode(), OpConst,
1306                              CI->getDestTy(), DL))) {
1307       return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
1308     }
1309   } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) {
1310     bool Op0Match = BO->getOperand(0) == Op;
1311     bool Op1Match = BO->getOperand(1) == Op;
1312     assert((Op0Match || Op1Match) &&
1313            "Operand 0 nor Operand 1 isn't a match");
1314     Value *LHS = Op0Match ? OpConst : BO->getOperand(0);
1315     Value *RHS = Op1Match ? OpConst : BO->getOperand(1);
1316     if (auto *C = dyn_cast_or_null<ConstantInt>(
1317             simplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) {
1318       return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
1319     }
1320   } else if (isa<FreezeInst>(Usr)) {
1321     assert(cast<FreezeInst>(Usr)->getOperand(0) == Op && "Operand 0 isn't Op");
1322     return ValueLatticeElement::getRange(ConstantRange(OpConstVal));
1323   }
1324   return ValueLatticeElement::getOverdefined();
1325 }
1326 
1327 /// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
1328 /// Val is not constrained on the edge.  Result is unspecified if return value
1329 /// is false.
1330 static std::optional<ValueLatticeElement> getEdgeValueLocal(Value *Val,
1331                                                        BasicBlock *BBFrom,
1332                                                        BasicBlock *BBTo) {
1333   // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
1334   // know that v != 0.
1335   if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
1336     // If this is a conditional branch and only one successor goes to BBTo, then
1337     // we may be able to infer something from the condition.
1338     if (BI->isConditional() &&
1339         BI->getSuccessor(0) != BI->getSuccessor(1)) {
1340       bool isTrueDest = BI->getSuccessor(0) == BBTo;
1341       assert(BI->getSuccessor(!isTrueDest) == BBTo &&
1342              "BBTo isn't a successor of BBFrom");
1343       Value *Condition = BI->getCondition();
1344 
1345       // If V is the condition of the branch itself, then we know exactly what
1346       // it is.
1347       if (Condition == Val)
1348         return ValueLatticeElement::get(ConstantInt::get(
1349                               Type::getInt1Ty(Val->getContext()), isTrueDest));
1350 
1351       // If the condition of the branch is an equality comparison, we may be
1352       // able to infer the value.
1353       ValueLatticeElement Result = getValueFromCondition(Val, Condition,
1354                                                          isTrueDest);
1355       if (!Result.isOverdefined())
1356         return Result;
1357 
1358       if (User *Usr = dyn_cast<User>(Val)) {
1359         assert(Result.isOverdefined() && "Result isn't overdefined");
1360         // Check with isOperationFoldable() first to avoid linearly iterating
1361         // over the operands unnecessarily which can be expensive for
1362         // instructions with many operands.
1363         if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) {
1364           const DataLayout &DL = BBTo->getModule()->getDataLayout();
1365           if (usesOperand(Usr, Condition)) {
1366             // If Val has Condition as an operand and Val can be folded into a
1367             // constant with either Condition == true or Condition == false,
1368             // propagate the constant.
1369             // eg.
1370             //   ; %Val is true on the edge to %then.
1371             //   %Val = and i1 %Condition, true.
1372             //   br %Condition, label %then, label %else
1373             APInt ConditionVal(1, isTrueDest ? 1 : 0);
1374             Result = constantFoldUser(Usr, Condition, ConditionVal, DL);
1375           } else {
1376             // If one of Val's operand has an inferred value, we may be able to
1377             // infer the value of Val.
1378             // eg.
1379             //    ; %Val is 94 on the edge to %then.
1380             //    %Val = add i8 %Op, 1
1381             //    %Condition = icmp eq i8 %Op, 93
1382             //    br i1 %Condition, label %then, label %else
1383             for (unsigned i = 0; i < Usr->getNumOperands(); ++i) {
1384               Value *Op = Usr->getOperand(i);
1385               ValueLatticeElement OpLatticeVal =
1386                   getValueFromCondition(Op, Condition, isTrueDest);
1387               if (std::optional<APInt> OpConst =
1388                       OpLatticeVal.asConstantInteger()) {
1389                 Result = constantFoldUser(Usr, Op, *OpConst, DL);
1390                 break;
1391               }
1392             }
1393           }
1394         }
1395       }
1396       if (!Result.isOverdefined())
1397         return Result;
1398     }
1399   }
1400 
1401   // If the edge was formed by a switch on the value, then we may know exactly
1402   // what it is.
1403   if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
1404     Value *Condition = SI->getCondition();
1405     if (!isa<IntegerType>(Val->getType()))
1406       return std::nullopt;
1407     bool ValUsesConditionAndMayBeFoldable = false;
1408     if (Condition != Val) {
1409       // Check if Val has Condition as an operand.
1410       if (User *Usr = dyn_cast<User>(Val))
1411         ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) &&
1412             usesOperand(Usr, Condition);
1413       if (!ValUsesConditionAndMayBeFoldable)
1414         return std::nullopt;
1415     }
1416     assert((Condition == Val || ValUsesConditionAndMayBeFoldable) &&
1417            "Condition != Val nor Val doesn't use Condition");
1418 
1419     bool DefaultCase = SI->getDefaultDest() == BBTo;
1420     unsigned BitWidth = Val->getType()->getIntegerBitWidth();
1421     ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
1422 
1423     for (auto Case : SI->cases()) {
1424       APInt CaseValue = Case.getCaseValue()->getValue();
1425       ConstantRange EdgeVal(CaseValue);
1426       if (ValUsesConditionAndMayBeFoldable) {
1427         User *Usr = cast<User>(Val);
1428         const DataLayout &DL = BBTo->getModule()->getDataLayout();
1429         ValueLatticeElement EdgeLatticeVal =
1430             constantFoldUser(Usr, Condition, CaseValue, DL);
1431         if (EdgeLatticeVal.isOverdefined())
1432           return std::nullopt;
1433         EdgeVal = EdgeLatticeVal.getConstantRange();
1434       }
1435       if (DefaultCase) {
1436         // It is possible that the default destination is the destination of
1437         // some cases. We cannot perform difference for those cases.
1438         // We know Condition != CaseValue in BBTo.  In some cases we can use
1439         // this to infer Val == f(Condition) is != f(CaseValue).  For now, we
1440         // only do this when f is identity (i.e. Val == Condition), but we
1441         // should be able to do this for any injective f.
1442         if (Case.getCaseSuccessor() != BBTo && Condition == Val)
1443           EdgesVals = EdgesVals.difference(EdgeVal);
1444       } else if (Case.getCaseSuccessor() == BBTo)
1445         EdgesVals = EdgesVals.unionWith(EdgeVal);
1446     }
1447     return ValueLatticeElement::getRange(std::move(EdgesVals));
1448   }
1449   return std::nullopt;
1450 }
1451 
1452 /// Compute the value of Val on the edge BBFrom -> BBTo or the value at
1453 /// the basic block if the edge does not constrain Val.
1454 std::optional<ValueLatticeElement>
1455 LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom,
1456                                 BasicBlock *BBTo, Instruction *CxtI) {
1457   // If already a constant, there is nothing to compute.
1458   if (Constant *VC = dyn_cast<Constant>(Val))
1459     return ValueLatticeElement::get(VC);
1460 
1461   ValueLatticeElement LocalResult =
1462       getEdgeValueLocal(Val, BBFrom, BBTo)
1463           .value_or(ValueLatticeElement::getOverdefined());
1464   if (hasSingleValue(LocalResult))
1465     // Can't get any more precise here
1466     return LocalResult;
1467 
1468   std::optional<ValueLatticeElement> OptInBlock =
1469       getBlockValue(Val, BBFrom, BBFrom->getTerminator());
1470   if (!OptInBlock)
1471     return std::nullopt;
1472   ValueLatticeElement &InBlock = *OptInBlock;
1473 
1474   // We can use the context instruction (generically the ultimate instruction
1475   // the calling pass is trying to simplify) here, even though the result of
1476   // this function is generally cached when called from the solve* functions
1477   // (and that cached result might be used with queries using a different
1478   // context instruction), because when this function is called from the solve*
1479   // functions, the context instruction is not provided. When called from
1480   // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided,
1481   // but then the result is not cached.
1482   intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI);
1483 
1484   return intersect(LocalResult, InBlock);
1485 }
1486 
1487 ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB,
1488                                                        Instruction *CxtI) {
1489   LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
1490                     << BB->getName() << "'\n");
1491 
1492   assert(BlockValueStack.empty() && BlockValueSet.empty());
1493   std::optional<ValueLatticeElement> OptResult = getBlockValue(V, BB, CxtI);
1494   if (!OptResult) {
1495     solve();
1496     OptResult = getBlockValue(V, BB, CxtI);
1497     assert(OptResult && "Value not available after solving");
1498   }
1499 
1500   ValueLatticeElement Result = *OptResult;
1501   LLVM_DEBUG(dbgs() << "  Result = " << Result << "\n");
1502   return Result;
1503 }
1504 
1505 ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) {
1506   LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName()
1507                     << "'\n");
1508 
1509   if (auto *C = dyn_cast<Constant>(V))
1510     return ValueLatticeElement::get(C);
1511 
1512   ValueLatticeElement Result = ValueLatticeElement::getOverdefined();
1513   if (auto *I = dyn_cast<Instruction>(V))
1514     Result = getFromRangeMetadata(I);
1515   intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
1516 
1517   LLVM_DEBUG(dbgs() << "  Result = " << Result << "\n");
1518   return Result;
1519 }
1520 
1521 ValueLatticeElement LazyValueInfoImpl::
1522 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
1523                Instruction *CxtI) {
1524   LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
1525                     << FromBB->getName() << "' to '" << ToBB->getName()
1526                     << "'\n");
1527 
1528   std::optional<ValueLatticeElement> Result =
1529       getEdgeValue(V, FromBB, ToBB, CxtI);
1530   if (!Result) {
1531     solve();
1532     Result = getEdgeValue(V, FromBB, ToBB, CxtI);
1533     assert(Result && "More work to do after problem solved?");
1534   }
1535 
1536   LLVM_DEBUG(dbgs() << "  Result = " << *Result << "\n");
1537   return *Result;
1538 }
1539 
1540 void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1541                                    BasicBlock *NewSucc) {
1542   TheCache.threadEdgeImpl(OldSucc, NewSucc);
1543 }
1544 
1545 //===----------------------------------------------------------------------===//
1546 //                            LazyValueInfo Impl
1547 //===----------------------------------------------------------------------===//
1548 
1549 /// This lazily constructs the LazyValueInfoImpl.
1550 static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC,
1551                                   const Module *M) {
1552   if (!PImpl) {
1553     assert(M && "getCache() called with a null Module");
1554     const DataLayout &DL = M->getDataLayout();
1555     Function *GuardDecl = M->getFunction(
1556         Intrinsic::getName(Intrinsic::experimental_guard));
1557     PImpl = new LazyValueInfoImpl(AC, DL, GuardDecl);
1558   }
1559   return *static_cast<LazyValueInfoImpl*>(PImpl);
1560 }
1561 
1562 bool LazyValueInfoWrapperPass::runOnFunction(Function &F) {
1563   Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1564   Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1565 
1566   if (Info.PImpl)
1567     getImpl(Info.PImpl, Info.AC, F.getParent()).clear();
1568 
1569   // Fully lazy.
1570   return false;
1571 }
1572 
1573 void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1574   AU.setPreservesAll();
1575   AU.addRequired<AssumptionCacheTracker>();
1576   AU.addRequired<TargetLibraryInfoWrapperPass>();
1577 }
1578 
1579 LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; }
1580 
1581 LazyValueInfo::~LazyValueInfo() { releaseMemory(); }
1582 
1583 void LazyValueInfo::releaseMemory() {
1584   // If the cache was allocated, free it.
1585   if (PImpl) {
1586     delete &getImpl(PImpl, AC, nullptr);
1587     PImpl = nullptr;
1588   }
1589 }
1590 
1591 bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA,
1592                                FunctionAnalysisManager::Invalidator &Inv) {
1593   // We need to invalidate if we have either failed to preserve this analyses
1594   // result directly or if any of its dependencies have been invalidated.
1595   auto PAC = PA.getChecker<LazyValueAnalysis>();
1596   if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()))
1597     return true;
1598 
1599   return false;
1600 }
1601 
1602 void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); }
1603 
1604 LazyValueInfo LazyValueAnalysis::run(Function &F,
1605                                      FunctionAnalysisManager &FAM) {
1606   auto &AC = FAM.getResult<AssumptionAnalysis>(F);
1607   auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
1608 
1609   return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI);
1610 }
1611 
1612 /// Returns true if we can statically tell that this value will never be a
1613 /// "useful" constant.  In practice, this means we've got something like an
1614 /// alloca or a malloc call for which a comparison against a constant can
1615 /// only be guarding dead code.  Note that we are potentially giving up some
1616 /// precision in dead code (a constant result) in favour of avoiding a
1617 /// expensive search for a easily answered common query.
1618 static bool isKnownNonConstant(Value *V) {
1619   V = V->stripPointerCasts();
1620   // The return val of alloc cannot be a Constant.
1621   if (isa<AllocaInst>(V))
1622     return true;
1623   return false;
1624 }
1625 
1626 Constant *LazyValueInfo::getConstant(Value *V, Instruction *CxtI) {
1627   // Bail out early if V is known not to be a Constant.
1628   if (isKnownNonConstant(V))
1629     return nullptr;
1630 
1631   BasicBlock *BB = CxtI->getParent();
1632   ValueLatticeElement Result =
1633       getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI);
1634 
1635   if (Result.isConstant())
1636     return Result.getConstant();
1637   if (Result.isConstantRange()) {
1638     const ConstantRange &CR = Result.getConstantRange();
1639     if (const APInt *SingleVal = CR.getSingleElement())
1640       return ConstantInt::get(V->getContext(), *SingleVal);
1641   }
1642   return nullptr;
1643 }
1644 
1645 ConstantRange LazyValueInfo::getConstantRange(Value *V, Instruction *CxtI,
1646                                               bool UndefAllowed) {
1647   assert(V->getType()->isIntegerTy());
1648   unsigned Width = V->getType()->getIntegerBitWidth();
1649   BasicBlock *BB = CxtI->getParent();
1650   ValueLatticeElement Result =
1651       getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI);
1652   if (Result.isUnknown())
1653     return ConstantRange::getEmpty(Width);
1654   if (Result.isConstantRange(UndefAllowed))
1655     return Result.getConstantRange(UndefAllowed);
1656   // We represent ConstantInt constants as constant ranges but other kinds
1657   // of integer constants, i.e. ConstantExpr will be tagged as constants
1658   assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
1659          "ConstantInt value must be represented as constantrange");
1660   return ConstantRange::getFull(Width);
1661 }
1662 
1663 ConstantRange LazyValueInfo::getConstantRangeAtUse(const Use &U,
1664                                                    bool UndefAllowed) {
1665   Value *V = U.get();
1666   ConstantRange CR =
1667       getConstantRange(V, cast<Instruction>(U.getUser()), UndefAllowed);
1668 
1669   // Check whether the only (possibly transitive) use of the value is in a
1670   // position where V can be constrained by a select or branch condition.
1671   const Use *CurrU = &U;
1672   // TODO: Increase limit?
1673   const unsigned MaxUsesToInspect = 3;
1674   for (unsigned I = 0; I < MaxUsesToInspect; ++I) {
1675     std::optional<ValueLatticeElement> CondVal;
1676     auto *CurrI = cast<Instruction>(CurrU->getUser());
1677     if (auto *SI = dyn_cast<SelectInst>(CurrI)) {
1678       // If the value is undef, a different value may be chosen in
1679       // the select condition and at use.
1680       if (!isGuaranteedNotToBeUndefOrPoison(SI->getCondition(), AC))
1681         break;
1682       if (CurrU->getOperandNo() == 1)
1683         CondVal = getValueFromCondition(V, SI->getCondition(), true);
1684       else if (CurrU->getOperandNo() == 2)
1685         CondVal = getValueFromCondition(V, SI->getCondition(), false);
1686     } else if (auto *PHI = dyn_cast<PHINode>(CurrI)) {
1687       // TODO: Use non-local query?
1688       CondVal =
1689           getEdgeValueLocal(V, PHI->getIncomingBlock(*CurrU), PHI->getParent());
1690     }
1691     if (CondVal && CondVal->isConstantRange())
1692       CR = CR.intersectWith(CondVal->getConstantRange());
1693 
1694     // Only follow one-use chain, to allow direct intersection of conditions.
1695     // If there are multiple uses, we would have to intersect with the union of
1696     // all conditions at different uses.
1697     // Stop walking if we hit a non-speculatable instruction. Even if the
1698     // result is only used under a specific condition, executing the
1699     // instruction itself may cause side effects or UB already.
1700     // This also disallows looking through phi nodes: If the phi node is part
1701     // of a cycle, we might end up reasoning about values from different cycle
1702     // iterations (PR60629).
1703     if (!CurrI->hasOneUse() || !isSafeToSpeculativelyExecute(CurrI))
1704       break;
1705     CurrU = &*CurrI->use_begin();
1706   }
1707   return CR;
1708 }
1709 
1710 /// Determine whether the specified value is known to be a
1711 /// constant on the specified edge. Return null if not.
1712 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
1713                                            BasicBlock *ToBB,
1714                                            Instruction *CxtI) {
1715   Module *M = FromBB->getModule();
1716   ValueLatticeElement Result =
1717       getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);
1718 
1719   if (Result.isConstant())
1720     return Result.getConstant();
1721   if (Result.isConstantRange()) {
1722     const ConstantRange &CR = Result.getConstantRange();
1723     if (const APInt *SingleVal = CR.getSingleElement())
1724       return ConstantInt::get(V->getContext(), *SingleVal);
1725   }
1726   return nullptr;
1727 }
1728 
1729 ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V,
1730                                                     BasicBlock *FromBB,
1731                                                     BasicBlock *ToBB,
1732                                                     Instruction *CxtI) {
1733   unsigned Width = V->getType()->getIntegerBitWidth();
1734   Module *M = FromBB->getModule();
1735   ValueLatticeElement Result =
1736       getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);
1737 
1738   if (Result.isUnknown())
1739     return ConstantRange::getEmpty(Width);
1740   if (Result.isConstantRange())
1741     return Result.getConstantRange();
1742   // We represent ConstantInt constants as constant ranges but other kinds
1743   // of integer constants, i.e. ConstantExpr will be tagged as constants
1744   assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
1745          "ConstantInt value must be represented as constantrange");
1746   return ConstantRange::getFull(Width);
1747 }
1748 
1749 static LazyValueInfo::Tristate
1750 getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val,
1751                    const DataLayout &DL, TargetLibraryInfo *TLI) {
1752   // If we know the value is a constant, evaluate the conditional.
1753   Constant *Res = nullptr;
1754   if (Val.isConstant()) {
1755     Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI);
1756     if (ConstantInt *ResCI = dyn_cast_or_null<ConstantInt>(Res))
1757       return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
1758     return LazyValueInfo::Unknown;
1759   }
1760 
1761   if (Val.isConstantRange()) {
1762     ConstantInt *CI = dyn_cast<ConstantInt>(C);
1763     if (!CI) return LazyValueInfo::Unknown;
1764 
1765     const ConstantRange &CR = Val.getConstantRange();
1766     if (Pred == ICmpInst::ICMP_EQ) {
1767       if (!CR.contains(CI->getValue()))
1768         return LazyValueInfo::False;
1769 
1770       if (CR.isSingleElement())
1771         return LazyValueInfo::True;
1772     } else if (Pred == ICmpInst::ICMP_NE) {
1773       if (!CR.contains(CI->getValue()))
1774         return LazyValueInfo::True;
1775 
1776       if (CR.isSingleElement())
1777         return LazyValueInfo::False;
1778     } else {
1779       // Handle more complex predicates.
1780       ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(
1781           (ICmpInst::Predicate)Pred, CI->getValue());
1782       if (TrueValues.contains(CR))
1783         return LazyValueInfo::True;
1784       if (TrueValues.inverse().contains(CR))
1785         return LazyValueInfo::False;
1786     }
1787     return LazyValueInfo::Unknown;
1788   }
1789 
1790   if (Val.isNotConstant()) {
1791     // If this is an equality comparison, we can try to fold it knowing that
1792     // "V != C1".
1793     if (Pred == ICmpInst::ICMP_EQ) {
1794       // !C1 == C -> false iff C1 == C.
1795       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1796                                             Val.getNotConstant(), C, DL,
1797                                             TLI);
1798       if (Res && Res->isNullValue())
1799         return LazyValueInfo::False;
1800     } else if (Pred == ICmpInst::ICMP_NE) {
1801       // !C1 != C -> true iff C1 == C.
1802       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1803                                             Val.getNotConstant(), C, DL,
1804                                             TLI);
1805       if (Res && Res->isNullValue())
1806         return LazyValueInfo::True;
1807     }
1808     return LazyValueInfo::Unknown;
1809   }
1810 
1811   return LazyValueInfo::Unknown;
1812 }
1813 
1814 /// Determine whether the specified value comparison with a constant is known to
1815 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
1816 LazyValueInfo::Tristate
1817 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
1818                                   BasicBlock *FromBB, BasicBlock *ToBB,
1819                                   Instruction *CxtI) {
1820   Module *M = FromBB->getModule();
1821   ValueLatticeElement Result =
1822       getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);
1823 
1824   return getPredicateResult(Pred, C, Result, M->getDataLayout(), TLI);
1825 }
1826 
1827 LazyValueInfo::Tristate
1828 LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
1829                               Instruction *CxtI, bool UseBlockValue) {
1830   // Is or is not NonNull are common predicates being queried. If
1831   // isKnownNonZero can tell us the result of the predicate, we can
1832   // return it quickly. But this is only a fastpath, and falling
1833   // through would still be correct.
1834   Module *M = CxtI->getModule();
1835   const DataLayout &DL = M->getDataLayout();
1836   if (V->getType()->isPointerTy() && C->isNullValue() &&
1837       isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) {
1838     if (Pred == ICmpInst::ICMP_EQ)
1839       return LazyValueInfo::False;
1840     else if (Pred == ICmpInst::ICMP_NE)
1841       return LazyValueInfo::True;
1842   }
1843 
1844   ValueLatticeElement Result = UseBlockValue
1845       ? getImpl(PImpl, AC, M).getValueInBlock(V, CxtI->getParent(), CxtI)
1846       : getImpl(PImpl, AC, M).getValueAt(V, CxtI);
1847   Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI);
1848   if (Ret != Unknown)
1849     return Ret;
1850 
1851   // Note: The following bit of code is somewhat distinct from the rest of LVI;
1852   // LVI as a whole tries to compute a lattice value which is conservatively
1853   // correct at a given location.  In this case, we have a predicate which we
1854   // weren't able to prove about the merged result, and we're pushing that
1855   // predicate back along each incoming edge to see if we can prove it
1856   // separately for each input.  As a motivating example, consider:
1857   // bb1:
1858   //   %v1 = ... ; constantrange<1, 5>
1859   //   br label %merge
1860   // bb2:
1861   //   %v2 = ... ; constantrange<10, 20>
1862   //   br label %merge
1863   // merge:
1864   //   %phi = phi [%v1, %v2] ; constantrange<1,20>
1865   //   %pred = icmp eq i32 %phi, 8
1866   // We can't tell from the lattice value for '%phi' that '%pred' is false
1867   // along each path, but by checking the predicate over each input separately,
1868   // we can.
1869   // We limit the search to one step backwards from the current BB and value.
1870   // We could consider extending this to search further backwards through the
1871   // CFG and/or value graph, but there are non-obvious compile time vs quality
1872   // tradeoffs.
1873   BasicBlock *BB = CxtI->getParent();
1874 
1875   // Function entry or an unreachable block.  Bail to avoid confusing
1876   // analysis below.
1877   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1878   if (PI == PE)
1879     return Unknown;
1880 
1881   // If V is a PHI node in the same block as the context, we need to ask
1882   // questions about the predicate as applied to the incoming value along
1883   // each edge. This is useful for eliminating cases where the predicate is
1884   // known along all incoming edges.
1885   if (auto *PHI = dyn_cast<PHINode>(V))
1886     if (PHI->getParent() == BB) {
1887       Tristate Baseline = Unknown;
1888       for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) {
1889         Value *Incoming = PHI->getIncomingValue(i);
1890         BasicBlock *PredBB = PHI->getIncomingBlock(i);
1891         // Note that PredBB may be BB itself.
1892         Tristate Result =
1893             getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, CxtI);
1894 
1895         // Keep going as long as we've seen a consistent known result for
1896         // all inputs.
1897         Baseline = (i == 0) ? Result /* First iteration */
1898                             : (Baseline == Result ? Baseline
1899                                                   : Unknown); /* All others */
1900         if (Baseline == Unknown)
1901           break;
1902       }
1903       if (Baseline != Unknown)
1904         return Baseline;
1905     }
1906 
1907   // For a comparison where the V is outside this block, it's possible
1908   // that we've branched on it before. Look to see if the value is known
1909   // on all incoming edges.
1910   if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB) {
1911     // For predecessor edge, determine if the comparison is true or false
1912     // on that edge. If they're all true or all false, we can conclude
1913     // the value of the comparison in this block.
1914     Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1915     if (Baseline != Unknown) {
1916       // Check that all remaining incoming values match the first one.
1917       while (++PI != PE) {
1918         Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1919         if (Ret != Baseline)
1920           break;
1921       }
1922       // If we terminated early, then one of the values didn't match.
1923       if (PI == PE) {
1924         return Baseline;
1925       }
1926     }
1927   }
1928 
1929   return Unknown;
1930 }
1931 
1932 LazyValueInfo::Tristate LazyValueInfo::getPredicateAt(unsigned P, Value *LHS,
1933                                                       Value *RHS,
1934                                                       Instruction *CxtI,
1935                                                       bool UseBlockValue) {
1936   CmpInst::Predicate Pred = (CmpInst::Predicate)P;
1937 
1938   if (auto *C = dyn_cast<Constant>(RHS))
1939     return getPredicateAt(P, LHS, C, CxtI, UseBlockValue);
1940   if (auto *C = dyn_cast<Constant>(LHS))
1941     return getPredicateAt(CmpInst::getSwappedPredicate(Pred), RHS, C, CxtI,
1942                           UseBlockValue);
1943 
1944   // Got two non-Constant values. Try to determine the comparison results based
1945   // on the block values of the two operands, e.g. because they have
1946   // non-overlapping ranges.
1947   if (UseBlockValue) {
1948     Module *M = CxtI->getModule();
1949     ValueLatticeElement L =
1950         getImpl(PImpl, AC, M).getValueInBlock(LHS, CxtI->getParent(), CxtI);
1951     if (L.isOverdefined())
1952       return LazyValueInfo::Unknown;
1953 
1954     ValueLatticeElement R =
1955         getImpl(PImpl, AC, M).getValueInBlock(RHS, CxtI->getParent(), CxtI);
1956     Type *Ty = CmpInst::makeCmpResultType(LHS->getType());
1957     if (Constant *Res = L.getCompare((CmpInst::Predicate)P, Ty, R,
1958                                      M->getDataLayout())) {
1959       if (Res->isNullValue())
1960         return LazyValueInfo::False;
1961       if (Res->isOneValue())
1962         return LazyValueInfo::True;
1963     }
1964   }
1965   return LazyValueInfo::Unknown;
1966 }
1967 
1968 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1969                                BasicBlock *NewSucc) {
1970   if (PImpl) {
1971     getImpl(PImpl, AC, PredBB->getModule())
1972         .threadEdge(PredBB, OldSucc, NewSucc);
1973   }
1974 }
1975 
1976 void LazyValueInfo::forgetValue(Value *V) {
1977   if (PImpl)
1978     getImpl(PImpl, AC, nullptr).forgetValue(V);
1979 }
1980 
1981 void LazyValueInfo::eraseBlock(BasicBlock *BB) {
1982   if (PImpl) {
1983     getImpl(PImpl, AC, BB->getModule()).eraseBlock(BB);
1984   }
1985 }
1986 
1987 void LazyValueInfo::clear(const Module *M) {
1988   if (PImpl) {
1989     getImpl(PImpl, AC, M).clear();
1990   }
1991 }
1992 
1993 void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
1994   if (PImpl) {
1995     getImpl(PImpl, AC, F.getParent()).printLVI(F, DTree, OS);
1996   }
1997 }
1998 
1999 // Print the LVI for the function arguments at the start of each basic block.
2000 void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot(
2001     const BasicBlock *BB, formatted_raw_ostream &OS) {
2002   // Find if there are latticevalues defined for arguments of the function.
2003   auto *F = BB->getParent();
2004   for (const auto &Arg : F->args()) {
2005     ValueLatticeElement Result = LVIImpl->getValueInBlock(
2006         const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB));
2007     if (Result.isUnknown())
2008       continue;
2009     OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n";
2010   }
2011 }
2012 
2013 // This function prints the LVI analysis for the instruction I at the beginning
2014 // of various basic blocks. It relies on calculated values that are stored in
2015 // the LazyValueInfoCache, and in the absence of cached values, recalculate the
2016 // LazyValueInfo for `I`, and print that info.
2017 void LazyValueInfoAnnotatedWriter::emitInstructionAnnot(
2018     const Instruction *I, formatted_raw_ostream &OS) {
2019 
2020   auto *ParentBB = I->getParent();
2021   SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI;
2022   // We can generate (solve) LVI values only for blocks that are dominated by
2023   // the I's parent. However, to avoid generating LVI for all dominating blocks,
2024   // that contain redundant/uninteresting information, we print LVI for
2025   // blocks that may use this LVI information (such as immediate successor
2026   // blocks, and blocks that contain uses of `I`).
2027   auto printResult = [&](const BasicBlock *BB) {
2028     if (!BlocksContainingLVI.insert(BB).second)
2029       return;
2030     ValueLatticeElement Result = LVIImpl->getValueInBlock(
2031         const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB));
2032       OS << "; LatticeVal for: '" << *I << "' in BB: '";
2033       BB->printAsOperand(OS, false);
2034       OS << "' is: " << Result << "\n";
2035   };
2036 
2037   printResult(ParentBB);
2038   // Print the LVI analysis results for the immediate successor blocks, that
2039   // are dominated by `ParentBB`.
2040   for (const auto *BBSucc : successors(ParentBB))
2041     if (DT.dominates(ParentBB, BBSucc))
2042       printResult(BBSucc);
2043 
2044   // Print LVI in blocks where `I` is used.
2045   for (const auto *U : I->users())
2046     if (auto *UseI = dyn_cast<Instruction>(U))
2047       if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent()))
2048         printResult(UseI->getParent());
2049 
2050 }
2051 
2052 namespace {
2053 // Printer class for LazyValueInfo results.
2054 class LazyValueInfoPrinter : public FunctionPass {
2055 public:
2056   static char ID; // Pass identification, replacement for typeid
2057   LazyValueInfoPrinter() : FunctionPass(ID) {
2058     initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry());
2059   }
2060 
2061   void getAnalysisUsage(AnalysisUsage &AU) const override {
2062     AU.setPreservesAll();
2063     AU.addRequired<LazyValueInfoWrapperPass>();
2064     AU.addRequired<DominatorTreeWrapperPass>();
2065   }
2066 
2067   // Get the mandatory dominator tree analysis and pass this in to the
2068   // LVIPrinter. We cannot rely on the LVI's DT, since it's optional.
2069   bool runOnFunction(Function &F) override {
2070     dbgs() << "LVI for function '" << F.getName() << "':\n";
2071     auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI();
2072     auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2073     LVI.printLVI(F, DTree, dbgs());
2074     return false;
2075   }
2076 };
2077 }
2078 
2079 char LazyValueInfoPrinter::ID = 0;
2080 INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info",
2081                 "Lazy Value Info Printer Pass", false, false)
2082 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
2083 INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info",
2084                 "Lazy Value Info Printer Pass", false, false)
2085