1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interface for lazy computation of value constraint 10 // information. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LazyValueInfo.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/Analysis/ValueLattice.h" 24 #include "llvm/IR/AssemblyAnnotationWriter.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/ValueHandle.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/FormattedStream.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <map> 40 using namespace llvm; 41 using namespace PatternMatch; 42 43 #define DEBUG_TYPE "lazy-value-info" 44 45 // This is the number of worklist items we will process to try to discover an 46 // answer for a given value. 47 static const unsigned MaxProcessedPerValue = 500; 48 49 char LazyValueInfoWrapperPass::ID = 0; 50 INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info", 51 "Lazy Value Information Analysis", false, true) 52 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 53 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 54 INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info", 55 "Lazy Value Information Analysis", false, true) 56 57 namespace llvm { 58 FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); } 59 } 60 61 AnalysisKey LazyValueAnalysis::Key; 62 63 /// Returns true if this lattice value represents at most one possible value. 64 /// This is as precise as any lattice value can get while still representing 65 /// reachable code. 66 static bool hasSingleValue(const ValueLatticeElement &Val) { 67 if (Val.isConstantRange() && 68 Val.getConstantRange().isSingleElement()) 69 // Integer constants are single element ranges 70 return true; 71 if (Val.isConstant()) 72 // Non integer constants 73 return true; 74 return false; 75 } 76 77 /// Combine two sets of facts about the same value into a single set of 78 /// facts. Note that this method is not suitable for merging facts along 79 /// different paths in a CFG; that's what the mergeIn function is for. This 80 /// is for merging facts gathered about the same value at the same location 81 /// through two independent means. 82 /// Notes: 83 /// * This method does not promise to return the most precise possible lattice 84 /// value implied by A and B. It is allowed to return any lattice element 85 /// which is at least as strong as *either* A or B (unless our facts 86 /// conflict, see below). 87 /// * Due to unreachable code, the intersection of two lattice values could be 88 /// contradictory. If this happens, we return some valid lattice value so as 89 /// not confuse the rest of LVI. Ideally, we'd always return Undefined, but 90 /// we do not make this guarantee. TODO: This would be a useful enhancement. 91 static ValueLatticeElement intersect(const ValueLatticeElement &A, 92 const ValueLatticeElement &B) { 93 // Undefined is the strongest state. It means the value is known to be along 94 // an unreachable path. 95 if (A.isUndefined()) 96 return A; 97 if (B.isUndefined()) 98 return B; 99 100 // If we gave up for one, but got a useable fact from the other, use it. 101 if (A.isOverdefined()) 102 return B; 103 if (B.isOverdefined()) 104 return A; 105 106 // Can't get any more precise than constants. 107 if (hasSingleValue(A)) 108 return A; 109 if (hasSingleValue(B)) 110 return B; 111 112 // Could be either constant range or not constant here. 113 if (!A.isConstantRange() || !B.isConstantRange()) { 114 // TODO: Arbitrary choice, could be improved 115 return A; 116 } 117 118 // Intersect two constant ranges 119 ConstantRange Range = 120 A.getConstantRange().intersectWith(B.getConstantRange()); 121 // Note: An empty range is implicitly converted to overdefined internally. 122 // TODO: We could instead use Undefined here since we've proven a conflict 123 // and thus know this path must be unreachable. 124 return ValueLatticeElement::getRange(std::move(Range)); 125 } 126 127 //===----------------------------------------------------------------------===// 128 // LazyValueInfoCache Decl 129 //===----------------------------------------------------------------------===// 130 131 namespace { 132 /// A callback value handle updates the cache when values are erased. 133 class LazyValueInfoCache; 134 struct LVIValueHandle final : public CallbackVH { 135 // Needs to access getValPtr(), which is protected. 136 friend struct DenseMapInfo<LVIValueHandle>; 137 138 LazyValueInfoCache *Parent; 139 140 LVIValueHandle(Value *V, LazyValueInfoCache *P) 141 : CallbackVH(V), Parent(P) { } 142 143 void deleted() override; 144 void allUsesReplacedWith(Value *V) override { 145 deleted(); 146 } 147 }; 148 } // end anonymous namespace 149 150 namespace { 151 /// This is the cache kept by LazyValueInfo which 152 /// maintains information about queries across the clients' queries. 153 class LazyValueInfoCache { 154 /// This is all of the cached block information for exactly one Value*. 155 /// The entries are sorted by the BasicBlock* of the 156 /// entries, allowing us to do a lookup with a binary search. 157 /// Over-defined lattice values are recorded in OverDefinedCache to reduce 158 /// memory overhead. 159 struct ValueCacheEntryTy { 160 ValueCacheEntryTy(Value *V, LazyValueInfoCache *P) : Handle(V, P) {} 161 LVIValueHandle Handle; 162 SmallDenseMap<PoisoningVH<BasicBlock>, ValueLatticeElement, 4> BlockVals; 163 }; 164 165 /// This tracks, on a per-block basis, the set of values that are 166 /// over-defined at the end of that block. 167 typedef DenseMap<PoisoningVH<BasicBlock>, SmallPtrSet<Value *, 4>> 168 OverDefinedCacheTy; 169 /// Keep track of all blocks that we have ever seen, so we 170 /// don't spend time removing unused blocks from our caches. 171 DenseSet<PoisoningVH<BasicBlock> > SeenBlocks; 172 173 /// This is all of the cached information for all values, 174 /// mapped from Value* to key information. 175 DenseMap<Value *, std::unique_ptr<ValueCacheEntryTy>> ValueCache; 176 OverDefinedCacheTy OverDefinedCache; 177 178 179 public: 180 void insertResult(Value *Val, BasicBlock *BB, 181 const ValueLatticeElement &Result) { 182 SeenBlocks.insert(BB); 183 184 // Insert over-defined values into their own cache to reduce memory 185 // overhead. 186 if (Result.isOverdefined()) 187 OverDefinedCache[BB].insert(Val); 188 else { 189 auto It = ValueCache.find_as(Val); 190 if (It == ValueCache.end()) { 191 ValueCache[Val] = make_unique<ValueCacheEntryTy>(Val, this); 192 It = ValueCache.find_as(Val); 193 assert(It != ValueCache.end() && "Val was just added to the map!"); 194 } 195 It->second->BlockVals[BB] = Result; 196 } 197 } 198 199 bool isOverdefined(Value *V, BasicBlock *BB) const { 200 auto ODI = OverDefinedCache.find(BB); 201 202 if (ODI == OverDefinedCache.end()) 203 return false; 204 205 return ODI->second.count(V); 206 } 207 208 bool hasCachedValueInfo(Value *V, BasicBlock *BB) const { 209 if (isOverdefined(V, BB)) 210 return true; 211 212 auto I = ValueCache.find_as(V); 213 if (I == ValueCache.end()) 214 return false; 215 216 return I->second->BlockVals.count(BB); 217 } 218 219 ValueLatticeElement getCachedValueInfo(Value *V, BasicBlock *BB) const { 220 if (isOverdefined(V, BB)) 221 return ValueLatticeElement::getOverdefined(); 222 223 auto I = ValueCache.find_as(V); 224 if (I == ValueCache.end()) 225 return ValueLatticeElement(); 226 auto BBI = I->second->BlockVals.find(BB); 227 if (BBI == I->second->BlockVals.end()) 228 return ValueLatticeElement(); 229 return BBI->second; 230 } 231 232 /// clear - Empty the cache. 233 void clear() { 234 SeenBlocks.clear(); 235 ValueCache.clear(); 236 OverDefinedCache.clear(); 237 } 238 239 /// Inform the cache that a given value has been deleted. 240 void eraseValue(Value *V); 241 242 /// This is part of the update interface to inform the cache 243 /// that a block has been deleted. 244 void eraseBlock(BasicBlock *BB); 245 246 /// Updates the cache to remove any influence an overdefined value in 247 /// OldSucc might have (unless also overdefined in NewSucc). This just 248 /// flushes elements from the cache and does not add any. 249 void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc); 250 251 friend struct LVIValueHandle; 252 }; 253 } 254 255 void LazyValueInfoCache::eraseValue(Value *V) { 256 for (auto I = OverDefinedCache.begin(), E = OverDefinedCache.end(); I != E;) { 257 // Copy and increment the iterator immediately so we can erase behind 258 // ourselves. 259 auto Iter = I++; 260 SmallPtrSetImpl<Value *> &ValueSet = Iter->second; 261 ValueSet.erase(V); 262 if (ValueSet.empty()) 263 OverDefinedCache.erase(Iter); 264 } 265 266 ValueCache.erase(V); 267 } 268 269 void LVIValueHandle::deleted() { 270 // This erasure deallocates *this, so it MUST happen after we're done 271 // using any and all members of *this. 272 Parent->eraseValue(*this); 273 } 274 275 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { 276 // Shortcut if we have never seen this block. 277 DenseSet<PoisoningVH<BasicBlock> >::iterator I = SeenBlocks.find(BB); 278 if (I == SeenBlocks.end()) 279 return; 280 SeenBlocks.erase(I); 281 282 auto ODI = OverDefinedCache.find(BB); 283 if (ODI != OverDefinedCache.end()) 284 OverDefinedCache.erase(ODI); 285 286 for (auto &I : ValueCache) 287 I.second->BlockVals.erase(BB); 288 } 289 290 void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc, 291 BasicBlock *NewSucc) { 292 // When an edge in the graph has been threaded, values that we could not 293 // determine a value for before (i.e. were marked overdefined) may be 294 // possible to solve now. We do NOT try to proactively update these values. 295 // Instead, we clear their entries from the cache, and allow lazy updating to 296 // recompute them when needed. 297 298 // The updating process is fairly simple: we need to drop cached info 299 // for all values that were marked overdefined in OldSucc, and for those same 300 // values in any successor of OldSucc (except NewSucc) in which they were 301 // also marked overdefined. 302 std::vector<BasicBlock*> worklist; 303 worklist.push_back(OldSucc); 304 305 auto I = OverDefinedCache.find(OldSucc); 306 if (I == OverDefinedCache.end()) 307 return; // Nothing to process here. 308 SmallVector<Value *, 4> ValsToClear(I->second.begin(), I->second.end()); 309 310 // Use a worklist to perform a depth-first search of OldSucc's successors. 311 // NOTE: We do not need a visited list since any blocks we have already 312 // visited will have had their overdefined markers cleared already, and we 313 // thus won't loop to their successors. 314 while (!worklist.empty()) { 315 BasicBlock *ToUpdate = worklist.back(); 316 worklist.pop_back(); 317 318 // Skip blocks only accessible through NewSucc. 319 if (ToUpdate == NewSucc) continue; 320 321 // If a value was marked overdefined in OldSucc, and is here too... 322 auto OI = OverDefinedCache.find(ToUpdate); 323 if (OI == OverDefinedCache.end()) 324 continue; 325 SmallPtrSetImpl<Value *> &ValueSet = OI->second; 326 327 bool changed = false; 328 for (Value *V : ValsToClear) { 329 if (!ValueSet.erase(V)) 330 continue; 331 332 // If we removed anything, then we potentially need to update 333 // blocks successors too. 334 changed = true; 335 336 if (ValueSet.empty()) { 337 OverDefinedCache.erase(OI); 338 break; 339 } 340 } 341 342 if (!changed) continue; 343 344 worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate)); 345 } 346 } 347 348 349 namespace { 350 /// An assembly annotator class to print LazyValueCache information in 351 /// comments. 352 class LazyValueInfoImpl; 353 class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter { 354 LazyValueInfoImpl *LVIImpl; 355 // While analyzing which blocks we can solve values for, we need the dominator 356 // information. Since this is an optional parameter in LVI, we require this 357 // DomTreeAnalysis pass in the printer pass, and pass the dominator 358 // tree to the LazyValueInfoAnnotatedWriter. 359 DominatorTree &DT; 360 361 public: 362 LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree) 363 : LVIImpl(L), DT(DTree) {} 364 365 virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, 366 formatted_raw_ostream &OS); 367 368 virtual void emitInstructionAnnot(const Instruction *I, 369 formatted_raw_ostream &OS); 370 }; 371 } 372 namespace { 373 // The actual implementation of the lazy analysis and update. Note that the 374 // inheritance from LazyValueInfoCache is intended to be temporary while 375 // splitting the code and then transitioning to a has-a relationship. 376 class LazyValueInfoImpl { 377 378 /// Cached results from previous queries 379 LazyValueInfoCache TheCache; 380 381 /// This stack holds the state of the value solver during a query. 382 /// It basically emulates the callstack of the naive 383 /// recursive value lookup process. 384 SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack; 385 386 /// Keeps track of which block-value pairs are in BlockValueStack. 387 DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet; 388 389 /// Push BV onto BlockValueStack unless it's already in there. 390 /// Returns true on success. 391 bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) { 392 if (!BlockValueSet.insert(BV).second) 393 return false; // It's already in the stack. 394 395 LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in " 396 << BV.first->getName() << "\n"); 397 BlockValueStack.push_back(BV); 398 return true; 399 } 400 401 AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls. 402 const DataLayout &DL; ///< A mandatory DataLayout 403 DominatorTree *DT; ///< An optional DT pointer. 404 DominatorTree *DisabledDT; ///< Stores DT if it's disabled. 405 406 ValueLatticeElement getBlockValue(Value *Val, BasicBlock *BB); 407 bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T, 408 ValueLatticeElement &Result, Instruction *CxtI = nullptr); 409 bool hasBlockValue(Value *Val, BasicBlock *BB); 410 411 // These methods process one work item and may add more. A false value 412 // returned means that the work item was not completely processed and must 413 // be revisited after going through the new items. 414 bool solveBlockValue(Value *Val, BasicBlock *BB); 415 bool solveBlockValueImpl(ValueLatticeElement &Res, Value *Val, 416 BasicBlock *BB); 417 bool solveBlockValueNonLocal(ValueLatticeElement &BBLV, Value *Val, 418 BasicBlock *BB); 419 bool solveBlockValuePHINode(ValueLatticeElement &BBLV, PHINode *PN, 420 BasicBlock *BB); 421 bool solveBlockValueSelect(ValueLatticeElement &BBLV, SelectInst *S, 422 BasicBlock *BB); 423 Optional<ConstantRange> getRangeForOperand(unsigned Op, Instruction *I, 424 BasicBlock *BB); 425 bool solveBlockValueBinaryOpImpl( 426 ValueLatticeElement &BBLV, Instruction *I, BasicBlock *BB, 427 std::function<ConstantRange(const ConstantRange &, 428 const ConstantRange &)> OpFn); 429 bool solveBlockValueBinaryOp(ValueLatticeElement &BBLV, BinaryOperator *BBI, 430 BasicBlock *BB); 431 bool solveBlockValueCast(ValueLatticeElement &BBLV, CastInst *CI, 432 BasicBlock *BB); 433 bool solveBlockValueOverflowIntrinsic( 434 ValueLatticeElement &BBLV, WithOverflowInst *WO, BasicBlock *BB); 435 bool solveBlockValueIntrinsic(ValueLatticeElement &BBLV, IntrinsicInst *II, 436 BasicBlock *BB); 437 void intersectAssumeOrGuardBlockValueConstantRange(Value *Val, 438 ValueLatticeElement &BBLV, 439 Instruction *BBI); 440 441 void solve(); 442 443 public: 444 /// This is the query interface to determine the lattice 445 /// value for the specified Value* at the end of the specified block. 446 ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB, 447 Instruction *CxtI = nullptr); 448 449 /// This is the query interface to determine the lattice 450 /// value for the specified Value* at the specified instruction (generally 451 /// from an assume intrinsic). 452 ValueLatticeElement getValueAt(Value *V, Instruction *CxtI); 453 454 /// This is the query interface to determine the lattice 455 /// value for the specified Value* that is true on the specified edge. 456 ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB, 457 BasicBlock *ToBB, 458 Instruction *CxtI = nullptr); 459 460 /// Complete flush all previously computed values 461 void clear() { 462 TheCache.clear(); 463 } 464 465 /// Printing the LazyValueInfo Analysis. 466 void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { 467 LazyValueInfoAnnotatedWriter Writer(this, DTree); 468 F.print(OS, &Writer); 469 } 470 471 /// This is part of the update interface to inform the cache 472 /// that a block has been deleted. 473 void eraseBlock(BasicBlock *BB) { 474 TheCache.eraseBlock(BB); 475 } 476 477 /// Disables use of the DominatorTree within LVI. 478 void disableDT() { 479 if (DT) { 480 assert(!DisabledDT && "Both DT and DisabledDT are not nullptr!"); 481 std::swap(DT, DisabledDT); 482 } 483 } 484 485 /// Enables use of the DominatorTree within LVI. Does nothing if the class 486 /// instance was initialized without a DT pointer. 487 void enableDT() { 488 if (DisabledDT) { 489 assert(!DT && "Both DT and DisabledDT are not nullptr!"); 490 std::swap(DT, DisabledDT); 491 } 492 } 493 494 /// This is the update interface to inform the cache that an edge from 495 /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc. 496 void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); 497 498 LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL, 499 DominatorTree *DT = nullptr) 500 : AC(AC), DL(DL), DT(DT), DisabledDT(nullptr) {} 501 }; 502 } // end anonymous namespace 503 504 505 void LazyValueInfoImpl::solve() { 506 SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack( 507 BlockValueStack.begin(), BlockValueStack.end()); 508 509 unsigned processedCount = 0; 510 while (!BlockValueStack.empty()) { 511 processedCount++; 512 // Abort if we have to process too many values to get a result for this one. 513 // Because of the design of the overdefined cache currently being per-block 514 // to avoid naming-related issues (IE it wants to try to give different 515 // results for the same name in different blocks), overdefined results don't 516 // get cached globally, which in turn means we will often try to rediscover 517 // the same overdefined result again and again. Once something like 518 // PredicateInfo is used in LVI or CVP, we should be able to make the 519 // overdefined cache global, and remove this throttle. 520 if (processedCount > MaxProcessedPerValue) { 521 LLVM_DEBUG( 522 dbgs() << "Giving up on stack because we are getting too deep\n"); 523 // Fill in the original values 524 while (!StartingStack.empty()) { 525 std::pair<BasicBlock *, Value *> &e = StartingStack.back(); 526 TheCache.insertResult(e.second, e.first, 527 ValueLatticeElement::getOverdefined()); 528 StartingStack.pop_back(); 529 } 530 BlockValueSet.clear(); 531 BlockValueStack.clear(); 532 return; 533 } 534 std::pair<BasicBlock *, Value *> e = BlockValueStack.back(); 535 assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!"); 536 537 if (solveBlockValue(e.second, e.first)) { 538 // The work item was completely processed. 539 assert(BlockValueStack.back() == e && "Nothing should have been pushed!"); 540 assert(TheCache.hasCachedValueInfo(e.second, e.first) && 541 "Result should be in cache!"); 542 543 LLVM_DEBUG( 544 dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = " 545 << TheCache.getCachedValueInfo(e.second, e.first) << "\n"); 546 547 BlockValueStack.pop_back(); 548 BlockValueSet.erase(e); 549 } else { 550 // More work needs to be done before revisiting. 551 assert(BlockValueStack.back() != e && "Stack should have been pushed!"); 552 } 553 } 554 } 555 556 bool LazyValueInfoImpl::hasBlockValue(Value *Val, BasicBlock *BB) { 557 // If already a constant, there is nothing to compute. 558 if (isa<Constant>(Val)) 559 return true; 560 561 return TheCache.hasCachedValueInfo(Val, BB); 562 } 563 564 ValueLatticeElement LazyValueInfoImpl::getBlockValue(Value *Val, 565 BasicBlock *BB) { 566 // If already a constant, there is nothing to compute. 567 if (Constant *VC = dyn_cast<Constant>(Val)) 568 return ValueLatticeElement::get(VC); 569 570 return TheCache.getCachedValueInfo(Val, BB); 571 } 572 573 static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) { 574 switch (BBI->getOpcode()) { 575 default: break; 576 case Instruction::Load: 577 case Instruction::Call: 578 case Instruction::Invoke: 579 if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range)) 580 if (isa<IntegerType>(BBI->getType())) { 581 return ValueLatticeElement::getRange( 582 getConstantRangeFromMetadata(*Ranges)); 583 } 584 break; 585 }; 586 // Nothing known - will be intersected with other facts 587 return ValueLatticeElement::getOverdefined(); 588 } 589 590 bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) { 591 if (isa<Constant>(Val)) 592 return true; 593 594 if (TheCache.hasCachedValueInfo(Val, BB)) { 595 // If we have a cached value, use that. 596 LLVM_DEBUG(dbgs() << " reuse BB '" << BB->getName() << "' val=" 597 << TheCache.getCachedValueInfo(Val, BB) << '\n'); 598 599 // Since we're reusing a cached value, we don't need to update the 600 // OverDefinedCache. The cache will have been properly updated whenever the 601 // cached value was inserted. 602 return true; 603 } 604 605 // Hold off inserting this value into the Cache in case we have to return 606 // false and come back later. 607 ValueLatticeElement Res; 608 if (!solveBlockValueImpl(Res, Val, BB)) 609 // Work pushed, will revisit 610 return false; 611 612 TheCache.insertResult(Val, BB, Res); 613 return true; 614 } 615 616 bool LazyValueInfoImpl::solveBlockValueImpl(ValueLatticeElement &Res, 617 Value *Val, BasicBlock *BB) { 618 619 Instruction *BBI = dyn_cast<Instruction>(Val); 620 if (!BBI || BBI->getParent() != BB) 621 return solveBlockValueNonLocal(Res, Val, BB); 622 623 if (PHINode *PN = dyn_cast<PHINode>(BBI)) 624 return solveBlockValuePHINode(Res, PN, BB); 625 626 if (auto *SI = dyn_cast<SelectInst>(BBI)) 627 return solveBlockValueSelect(Res, SI, BB); 628 629 // If this value is a nonnull pointer, record it's range and bailout. Note 630 // that for all other pointer typed values, we terminate the search at the 631 // definition. We could easily extend this to look through geps, bitcasts, 632 // and the like to prove non-nullness, but it's not clear that's worth it 633 // compile time wise. The context-insensitive value walk done inside 634 // isKnownNonZero gets most of the profitable cases at much less expense. 635 // This does mean that we have a sensitivity to where the defining 636 // instruction is placed, even if it could legally be hoisted much higher. 637 // That is unfortunate. 638 PointerType *PT = dyn_cast<PointerType>(BBI->getType()); 639 if (PT && isKnownNonZero(BBI, DL)) { 640 Res = ValueLatticeElement::getNot(ConstantPointerNull::get(PT)); 641 return true; 642 } 643 if (BBI->getType()->isIntegerTy()) { 644 if (auto *CI = dyn_cast<CastInst>(BBI)) 645 return solveBlockValueCast(Res, CI, BB); 646 647 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI)) 648 return solveBlockValueBinaryOp(Res, BO, BB); 649 650 if (auto *EVI = dyn_cast<ExtractValueInst>(BBI)) 651 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) 652 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0) 653 return solveBlockValueOverflowIntrinsic(Res, WO, BB); 654 655 if (auto *II = dyn_cast<IntrinsicInst>(BBI)) 656 return solveBlockValueIntrinsic(Res, II, BB); 657 } 658 659 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 660 << "' - unknown inst def found.\n"); 661 Res = getFromRangeMetadata(BBI); 662 return true; 663 } 664 665 static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) { 666 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 667 return L->getPointerAddressSpace() == 0 && 668 GetUnderlyingObject(L->getPointerOperand(), 669 L->getModule()->getDataLayout()) == Ptr; 670 } 671 if (StoreInst *S = dyn_cast<StoreInst>(I)) { 672 return S->getPointerAddressSpace() == 0 && 673 GetUnderlyingObject(S->getPointerOperand(), 674 S->getModule()->getDataLayout()) == Ptr; 675 } 676 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 677 if (MI->isVolatile()) return false; 678 679 // FIXME: check whether it has a valuerange that excludes zero? 680 ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength()); 681 if (!Len || Len->isZero()) return false; 682 683 if (MI->getDestAddressSpace() == 0) 684 if (GetUnderlyingObject(MI->getRawDest(), 685 MI->getModule()->getDataLayout()) == Ptr) 686 return true; 687 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 688 if (MTI->getSourceAddressSpace() == 0) 689 if (GetUnderlyingObject(MTI->getRawSource(), 690 MTI->getModule()->getDataLayout()) == Ptr) 691 return true; 692 } 693 return false; 694 } 695 696 /// Return true if the allocation associated with Val is ever dereferenced 697 /// within the given basic block. This establishes the fact Val is not null, 698 /// but does not imply that the memory at Val is dereferenceable. (Val may 699 /// point off the end of the dereferenceable part of the object.) 700 static bool isObjectDereferencedInBlock(Value *Val, BasicBlock *BB) { 701 assert(Val->getType()->isPointerTy()); 702 703 const DataLayout &DL = BB->getModule()->getDataLayout(); 704 Value *UnderlyingVal = GetUnderlyingObject(Val, DL); 705 // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge 706 // inside InstructionDereferencesPointer either. 707 if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1)) 708 for (Instruction &I : *BB) 709 if (InstructionDereferencesPointer(&I, UnderlyingVal)) 710 return true; 711 return false; 712 } 713 714 bool LazyValueInfoImpl::solveBlockValueNonLocal(ValueLatticeElement &BBLV, 715 Value *Val, BasicBlock *BB) { 716 ValueLatticeElement Result; // Start Undefined. 717 718 // If this is the entry block, we must be asking about an argument. The 719 // value is overdefined. 720 if (BB == &BB->getParent()->getEntryBlock()) { 721 assert(isa<Argument>(Val) && "Unknown live-in to the entry block"); 722 // Before giving up, see if we can prove the pointer non-null local to 723 // this particular block. 724 PointerType *PTy = dyn_cast<PointerType>(Val->getType()); 725 if (PTy && 726 (isKnownNonZero(Val, DL) || 727 (isObjectDereferencedInBlock(Val, BB) && 728 !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())))) { 729 Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); 730 } else { 731 Result = ValueLatticeElement::getOverdefined(); 732 } 733 BBLV = Result; 734 return true; 735 } 736 737 // Loop over all of our predecessors, merging what we know from them into 738 // result. If we encounter an unexplored predecessor, we eagerly explore it 739 // in a depth first manner. In practice, this has the effect of discovering 740 // paths we can't analyze eagerly without spending compile times analyzing 741 // other paths. This heuristic benefits from the fact that predecessors are 742 // frequently arranged such that dominating ones come first and we quickly 743 // find a path to function entry. TODO: We should consider explicitly 744 // canonicalizing to make this true rather than relying on this happy 745 // accident. 746 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 747 ValueLatticeElement EdgeResult; 748 if (!getEdgeValue(Val, *PI, BB, EdgeResult)) 749 // Explore that input, then return here 750 return false; 751 752 Result.mergeIn(EdgeResult, DL); 753 754 // If we hit overdefined, exit early. The BlockVals entry is already set 755 // to overdefined. 756 if (Result.isOverdefined()) { 757 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 758 << "' - overdefined because of pred (non local).\n"); 759 // Before giving up, see if we can prove the pointer non-null local to 760 // this particular block. 761 PointerType *PTy = dyn_cast<PointerType>(Val->getType()); 762 if (PTy && isObjectDereferencedInBlock(Val, BB) && 763 !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())) { 764 Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); 765 } 766 767 BBLV = Result; 768 return true; 769 } 770 } 771 772 // Return the merged value, which is more precise than 'overdefined'. 773 assert(!Result.isOverdefined()); 774 BBLV = Result; 775 return true; 776 } 777 778 bool LazyValueInfoImpl::solveBlockValuePHINode(ValueLatticeElement &BBLV, 779 PHINode *PN, BasicBlock *BB) { 780 ValueLatticeElement Result; // Start Undefined. 781 782 // Loop over all of our predecessors, merging what we know from them into 783 // result. See the comment about the chosen traversal order in 784 // solveBlockValueNonLocal; the same reasoning applies here. 785 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 786 BasicBlock *PhiBB = PN->getIncomingBlock(i); 787 Value *PhiVal = PN->getIncomingValue(i); 788 ValueLatticeElement EdgeResult; 789 // Note that we can provide PN as the context value to getEdgeValue, even 790 // though the results will be cached, because PN is the value being used as 791 // the cache key in the caller. 792 if (!getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN)) 793 // Explore that input, then return here 794 return false; 795 796 Result.mergeIn(EdgeResult, DL); 797 798 // If we hit overdefined, exit early. The BlockVals entry is already set 799 // to overdefined. 800 if (Result.isOverdefined()) { 801 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 802 << "' - overdefined because of pred (local).\n"); 803 804 BBLV = Result; 805 return true; 806 } 807 } 808 809 // Return the merged value, which is more precise than 'overdefined'. 810 assert(!Result.isOverdefined() && "Possible PHI in entry block?"); 811 BBLV = Result; 812 return true; 813 } 814 815 static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, 816 bool isTrueDest = true); 817 818 // If we can determine a constraint on the value given conditions assumed by 819 // the program, intersect those constraints with BBLV 820 void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange( 821 Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) { 822 BBI = BBI ? BBI : dyn_cast<Instruction>(Val); 823 if (!BBI) 824 return; 825 826 for (auto &AssumeVH : AC->assumptionsFor(Val)) { 827 if (!AssumeVH) 828 continue; 829 auto *I = cast<CallInst>(AssumeVH); 830 if (!isValidAssumeForContext(I, BBI, DT)) 831 continue; 832 833 BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0))); 834 } 835 836 // If guards are not used in the module, don't spend time looking for them 837 auto *GuardDecl = BBI->getModule()->getFunction( 838 Intrinsic::getName(Intrinsic::experimental_guard)); 839 if (!GuardDecl || GuardDecl->use_empty()) 840 return; 841 842 if (BBI->getIterator() == BBI->getParent()->begin()) 843 return; 844 for (Instruction &I : make_range(std::next(BBI->getIterator().getReverse()), 845 BBI->getParent()->rend())) { 846 Value *Cond = nullptr; 847 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond)))) 848 BBLV = intersect(BBLV, getValueFromCondition(Val, Cond)); 849 } 850 } 851 852 bool LazyValueInfoImpl::solveBlockValueSelect(ValueLatticeElement &BBLV, 853 SelectInst *SI, BasicBlock *BB) { 854 855 // Recurse on our inputs if needed 856 if (!hasBlockValue(SI->getTrueValue(), BB)) { 857 if (pushBlockValue(std::make_pair(BB, SI->getTrueValue()))) 858 return false; 859 BBLV = ValueLatticeElement::getOverdefined(); 860 return true; 861 } 862 ValueLatticeElement TrueVal = getBlockValue(SI->getTrueValue(), BB); 863 // If we hit overdefined, don't ask more queries. We want to avoid poisoning 864 // extra slots in the table if we can. 865 if (TrueVal.isOverdefined()) { 866 BBLV = ValueLatticeElement::getOverdefined(); 867 return true; 868 } 869 870 if (!hasBlockValue(SI->getFalseValue(), BB)) { 871 if (pushBlockValue(std::make_pair(BB, SI->getFalseValue()))) 872 return false; 873 BBLV = ValueLatticeElement::getOverdefined(); 874 return true; 875 } 876 ValueLatticeElement FalseVal = getBlockValue(SI->getFalseValue(), BB); 877 // If we hit overdefined, don't ask more queries. We want to avoid poisoning 878 // extra slots in the table if we can. 879 if (FalseVal.isOverdefined()) { 880 BBLV = ValueLatticeElement::getOverdefined(); 881 return true; 882 } 883 884 if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) { 885 const ConstantRange &TrueCR = TrueVal.getConstantRange(); 886 const ConstantRange &FalseCR = FalseVal.getConstantRange(); 887 Value *LHS = nullptr; 888 Value *RHS = nullptr; 889 SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS); 890 // Is this a min specifically of our two inputs? (Avoid the risk of 891 // ValueTracking getting smarter looking back past our immediate inputs.) 892 if (SelectPatternResult::isMinOrMax(SPR.Flavor) && 893 LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) { 894 ConstantRange ResultCR = [&]() { 895 switch (SPR.Flavor) { 896 default: 897 llvm_unreachable("unexpected minmax type!"); 898 case SPF_SMIN: /// Signed minimum 899 return TrueCR.smin(FalseCR); 900 case SPF_UMIN: /// Unsigned minimum 901 return TrueCR.umin(FalseCR); 902 case SPF_SMAX: /// Signed maximum 903 return TrueCR.smax(FalseCR); 904 case SPF_UMAX: /// Unsigned maximum 905 return TrueCR.umax(FalseCR); 906 }; 907 }(); 908 BBLV = ValueLatticeElement::getRange(ResultCR); 909 return true; 910 } 911 912 if (SPR.Flavor == SPF_ABS) { 913 if (LHS == SI->getTrueValue()) { 914 BBLV = ValueLatticeElement::getRange(TrueCR.abs()); 915 return true; 916 } 917 if (LHS == SI->getFalseValue()) { 918 BBLV = ValueLatticeElement::getRange(FalseCR.abs()); 919 return true; 920 } 921 } 922 923 if (SPR.Flavor == SPF_NABS) { 924 ConstantRange Zero(APInt::getNullValue(TrueCR.getBitWidth())); 925 if (LHS == SI->getTrueValue()) { 926 BBLV = ValueLatticeElement::getRange(Zero.sub(TrueCR.abs())); 927 return true; 928 } 929 if (LHS == SI->getFalseValue()) { 930 BBLV = ValueLatticeElement::getRange(Zero.sub(FalseCR.abs())); 931 return true; 932 } 933 } 934 } 935 936 // Can we constrain the facts about the true and false values by using the 937 // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5). 938 // TODO: We could potentially refine an overdefined true value above. 939 Value *Cond = SI->getCondition(); 940 TrueVal = intersect(TrueVal, 941 getValueFromCondition(SI->getTrueValue(), Cond, true)); 942 FalseVal = intersect(FalseVal, 943 getValueFromCondition(SI->getFalseValue(), Cond, false)); 944 945 // Handle clamp idioms such as: 946 // %24 = constantrange<0, 17> 947 // %39 = icmp eq i32 %24, 0 948 // %40 = add i32 %24, -1 949 // %siv.next = select i1 %39, i32 16, i32 %40 950 // %siv.next = constantrange<0, 17> not <-1, 17> 951 // In general, this can handle any clamp idiom which tests the edge 952 // condition via an equality or inequality. 953 if (auto *ICI = dyn_cast<ICmpInst>(Cond)) { 954 ICmpInst::Predicate Pred = ICI->getPredicate(); 955 Value *A = ICI->getOperand(0); 956 if (ConstantInt *CIBase = dyn_cast<ConstantInt>(ICI->getOperand(1))) { 957 auto addConstants = [](ConstantInt *A, ConstantInt *B) { 958 assert(A->getType() == B->getType()); 959 return ConstantInt::get(A->getType(), A->getValue() + B->getValue()); 960 }; 961 // See if either input is A + C2, subject to the constraint from the 962 // condition that A != C when that input is used. We can assume that 963 // that input doesn't include C + C2. 964 ConstantInt *CIAdded; 965 switch (Pred) { 966 default: break; 967 case ICmpInst::ICMP_EQ: 968 if (match(SI->getFalseValue(), m_Add(m_Specific(A), 969 m_ConstantInt(CIAdded)))) { 970 auto ResNot = addConstants(CIBase, CIAdded); 971 FalseVal = intersect(FalseVal, 972 ValueLatticeElement::getNot(ResNot)); 973 } 974 break; 975 case ICmpInst::ICMP_NE: 976 if (match(SI->getTrueValue(), m_Add(m_Specific(A), 977 m_ConstantInt(CIAdded)))) { 978 auto ResNot = addConstants(CIBase, CIAdded); 979 TrueVal = intersect(TrueVal, 980 ValueLatticeElement::getNot(ResNot)); 981 } 982 break; 983 }; 984 } 985 } 986 987 ValueLatticeElement Result; // Start Undefined. 988 Result.mergeIn(TrueVal, DL); 989 Result.mergeIn(FalseVal, DL); 990 BBLV = Result; 991 return true; 992 } 993 994 Optional<ConstantRange> LazyValueInfoImpl::getRangeForOperand(unsigned Op, 995 Instruction *I, 996 BasicBlock *BB) { 997 if (!hasBlockValue(I->getOperand(Op), BB)) 998 if (pushBlockValue(std::make_pair(BB, I->getOperand(Op)))) 999 return None; 1000 1001 const unsigned OperandBitWidth = 1002 DL.getTypeSizeInBits(I->getOperand(Op)->getType()); 1003 ConstantRange Range = ConstantRange::getFull(OperandBitWidth); 1004 if (hasBlockValue(I->getOperand(Op), BB)) { 1005 ValueLatticeElement Val = getBlockValue(I->getOperand(Op), BB); 1006 intersectAssumeOrGuardBlockValueConstantRange(I->getOperand(Op), Val, I); 1007 if (Val.isConstantRange()) 1008 Range = Val.getConstantRange(); 1009 } 1010 return Range; 1011 } 1012 1013 bool LazyValueInfoImpl::solveBlockValueCast(ValueLatticeElement &BBLV, 1014 CastInst *CI, 1015 BasicBlock *BB) { 1016 if (!CI->getOperand(0)->getType()->isSized()) { 1017 // Without knowing how wide the input is, we can't analyze it in any useful 1018 // way. 1019 BBLV = ValueLatticeElement::getOverdefined(); 1020 return true; 1021 } 1022 1023 // Filter out casts we don't know how to reason about before attempting to 1024 // recurse on our operand. This can cut a long search short if we know we're 1025 // not going to be able to get any useful information anways. 1026 switch (CI->getOpcode()) { 1027 case Instruction::Trunc: 1028 case Instruction::SExt: 1029 case Instruction::ZExt: 1030 case Instruction::BitCast: 1031 break; 1032 default: 1033 // Unhandled instructions are overdefined. 1034 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 1035 << "' - overdefined (unknown cast).\n"); 1036 BBLV = ValueLatticeElement::getOverdefined(); 1037 return true; 1038 } 1039 1040 // Figure out the range of the LHS. If that fails, we still apply the 1041 // transfer rule on the full set since we may be able to locally infer 1042 // interesting facts. 1043 Optional<ConstantRange> LHSRes = getRangeForOperand(0, CI, BB); 1044 if (!LHSRes.hasValue()) 1045 // More work to do before applying this transfer rule. 1046 return false; 1047 ConstantRange LHSRange = LHSRes.getValue(); 1048 1049 const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth(); 1050 1051 // NOTE: We're currently limited by the set of operations that ConstantRange 1052 // can evaluate symbolically. Enhancing that set will allows us to analyze 1053 // more definitions. 1054 BBLV = ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(), 1055 ResultBitWidth)); 1056 return true; 1057 } 1058 1059 bool LazyValueInfoImpl::solveBlockValueBinaryOpImpl( 1060 ValueLatticeElement &BBLV, Instruction *I, BasicBlock *BB, 1061 std::function<ConstantRange(const ConstantRange &, 1062 const ConstantRange &)> OpFn) { 1063 // Figure out the ranges of the operands. If that fails, use a 1064 // conservative range, but apply the transfer rule anyways. This 1065 // lets us pick up facts from expressions like "and i32 (call i32 1066 // @foo()), 32" 1067 Optional<ConstantRange> LHSRes = getRangeForOperand(0, I, BB); 1068 Optional<ConstantRange> RHSRes = getRangeForOperand(1, I, BB); 1069 if (!LHSRes.hasValue() || !RHSRes.hasValue()) 1070 // More work to do before applying this transfer rule. 1071 return false; 1072 1073 ConstantRange LHSRange = LHSRes.getValue(); 1074 ConstantRange RHSRange = RHSRes.getValue(); 1075 BBLV = ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange)); 1076 return true; 1077 } 1078 1079 bool LazyValueInfoImpl::solveBlockValueBinaryOp(ValueLatticeElement &BBLV, 1080 BinaryOperator *BO, 1081 BasicBlock *BB) { 1082 1083 assert(BO->getOperand(0)->getType()->isSized() && 1084 "all operands to binary operators are sized"); 1085 if (BO->getOpcode() == Instruction::Xor) { 1086 // Xor is the only operation not supported by ConstantRange::binaryOp(). 1087 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 1088 << "' - overdefined (unknown binary operator).\n"); 1089 BBLV = ValueLatticeElement::getOverdefined(); 1090 return true; 1091 } 1092 1093 return solveBlockValueBinaryOpImpl(BBLV, BO, BB, 1094 [BO](const ConstantRange &CR1, const ConstantRange &CR2) { 1095 return CR1.binaryOp(BO->getOpcode(), CR2); 1096 }); 1097 } 1098 1099 bool LazyValueInfoImpl::solveBlockValueOverflowIntrinsic( 1100 ValueLatticeElement &BBLV, WithOverflowInst *WO, BasicBlock *BB) { 1101 return solveBlockValueBinaryOpImpl(BBLV, WO, BB, 1102 [WO](const ConstantRange &CR1, const ConstantRange &CR2) { 1103 return CR1.binaryOp(WO->getBinaryOp(), CR2); 1104 }); 1105 } 1106 1107 bool LazyValueInfoImpl::solveBlockValueIntrinsic( 1108 ValueLatticeElement &BBLV, IntrinsicInst *II, BasicBlock *BB) { 1109 switch (II->getIntrinsicID()) { 1110 case Intrinsic::uadd_sat: 1111 return solveBlockValueBinaryOpImpl(BBLV, II, BB, 1112 [](const ConstantRange &CR1, const ConstantRange &CR2) { 1113 return CR1.uadd_sat(CR2); 1114 }); 1115 case Intrinsic::usub_sat: 1116 return solveBlockValueBinaryOpImpl(BBLV, II, BB, 1117 [](const ConstantRange &CR1, const ConstantRange &CR2) { 1118 return CR1.usub_sat(CR2); 1119 }); 1120 case Intrinsic::sadd_sat: 1121 return solveBlockValueBinaryOpImpl(BBLV, II, BB, 1122 [](const ConstantRange &CR1, const ConstantRange &CR2) { 1123 return CR1.sadd_sat(CR2); 1124 }); 1125 case Intrinsic::ssub_sat: 1126 return solveBlockValueBinaryOpImpl(BBLV, II, BB, 1127 [](const ConstantRange &CR1, const ConstantRange &CR2) { 1128 return CR1.ssub_sat(CR2); 1129 }); 1130 default: 1131 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 1132 << "' - overdefined (unknown intrinsic).\n"); 1133 BBLV = ValueLatticeElement::getOverdefined(); 1134 return true; 1135 } 1136 } 1137 1138 static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI, 1139 bool isTrueDest) { 1140 Value *LHS = ICI->getOperand(0); 1141 Value *RHS = ICI->getOperand(1); 1142 CmpInst::Predicate Predicate = ICI->getPredicate(); 1143 1144 if (isa<Constant>(RHS)) { 1145 if (ICI->isEquality() && LHS == Val) { 1146 // We know that V has the RHS constant if this is a true SETEQ or 1147 // false SETNE. 1148 if (isTrueDest == (Predicate == ICmpInst::ICMP_EQ)) 1149 return ValueLatticeElement::get(cast<Constant>(RHS)); 1150 else 1151 return ValueLatticeElement::getNot(cast<Constant>(RHS)); 1152 } 1153 } 1154 1155 if (!Val->getType()->isIntegerTy()) 1156 return ValueLatticeElement::getOverdefined(); 1157 1158 // Use ConstantRange::makeAllowedICmpRegion in order to determine the possible 1159 // range of Val guaranteed by the condition. Recognize comparisons in the from 1160 // of: 1161 // icmp <pred> Val, ... 1162 // icmp <pred> (add Val, Offset), ... 1163 // The latter is the range checking idiom that InstCombine produces. Subtract 1164 // the offset from the allowed range for RHS in this case. 1165 1166 // Val or (add Val, Offset) can be on either hand of the comparison 1167 if (LHS != Val && !match(LHS, m_Add(m_Specific(Val), m_ConstantInt()))) { 1168 std::swap(LHS, RHS); 1169 Predicate = CmpInst::getSwappedPredicate(Predicate); 1170 } 1171 1172 ConstantInt *Offset = nullptr; 1173 if (LHS != Val) 1174 match(LHS, m_Add(m_Specific(Val), m_ConstantInt(Offset))); 1175 1176 if (LHS == Val || Offset) { 1177 // Calculate the range of values that are allowed by the comparison 1178 ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(), 1179 /*isFullSet=*/true); 1180 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) 1181 RHSRange = ConstantRange(CI->getValue()); 1182 else if (Instruction *I = dyn_cast<Instruction>(RHS)) 1183 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 1184 RHSRange = getConstantRangeFromMetadata(*Ranges); 1185 1186 // If we're interested in the false dest, invert the condition 1187 CmpInst::Predicate Pred = 1188 isTrueDest ? Predicate : CmpInst::getInversePredicate(Predicate); 1189 ConstantRange TrueValues = 1190 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 1191 1192 if (Offset) // Apply the offset from above. 1193 TrueValues = TrueValues.subtract(Offset->getValue()); 1194 1195 return ValueLatticeElement::getRange(std::move(TrueValues)); 1196 } 1197 1198 return ValueLatticeElement::getOverdefined(); 1199 } 1200 1201 // Handle conditions of the form 1202 // extractvalue(op.with.overflow(%x, C), 1). 1203 static ValueLatticeElement getValueFromOverflowCondition( 1204 Value *Val, WithOverflowInst *WO, bool IsTrueDest) { 1205 // TODO: This only works with a constant RHS for now. We could also compute 1206 // the range of the RHS, but this doesn't fit into the current structure of 1207 // the edge value calculation. 1208 const APInt *C; 1209 if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C))) 1210 return ValueLatticeElement::getOverdefined(); 1211 1212 // Calculate the possible values of %x for which no overflow occurs. 1213 ConstantRange NWR = ConstantRange::makeExactNoWrapRegion( 1214 WO->getBinaryOp(), *C, WO->getNoWrapKind()); 1215 1216 // If overflow is false, %x is constrained to NWR. If overflow is true, %x is 1217 // constrained to it's inverse (all values that might cause overflow). 1218 if (IsTrueDest) 1219 NWR = NWR.inverse(); 1220 return ValueLatticeElement::getRange(NWR); 1221 } 1222 1223 static ValueLatticeElement 1224 getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest, 1225 DenseMap<Value*, ValueLatticeElement> &Visited); 1226 1227 static ValueLatticeElement 1228 getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest, 1229 DenseMap<Value*, ValueLatticeElement> &Visited) { 1230 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond)) 1231 return getValueFromICmpCondition(Val, ICI, isTrueDest); 1232 1233 if (auto *EVI = dyn_cast<ExtractValueInst>(Cond)) 1234 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) 1235 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1) 1236 return getValueFromOverflowCondition(Val, WO, isTrueDest); 1237 1238 // Handle conditions in the form of (cond1 && cond2), we know that on the 1239 // true dest path both of the conditions hold. Similarly for conditions of 1240 // the form (cond1 || cond2), we know that on the false dest path neither 1241 // condition holds. 1242 BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond); 1243 if (!BO || (isTrueDest && BO->getOpcode() != BinaryOperator::And) || 1244 (!isTrueDest && BO->getOpcode() != BinaryOperator::Or)) 1245 return ValueLatticeElement::getOverdefined(); 1246 1247 // Prevent infinite recursion if Cond references itself as in this example: 1248 // Cond: "%tmp4 = and i1 %tmp4, undef" 1249 // BL: "%tmp4 = and i1 %tmp4, undef" 1250 // BR: "i1 undef" 1251 Value *BL = BO->getOperand(0); 1252 Value *BR = BO->getOperand(1); 1253 if (BL == Cond || BR == Cond) 1254 return ValueLatticeElement::getOverdefined(); 1255 1256 return intersect(getValueFromCondition(Val, BL, isTrueDest, Visited), 1257 getValueFromCondition(Val, BR, isTrueDest, Visited)); 1258 } 1259 1260 static ValueLatticeElement 1261 getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest, 1262 DenseMap<Value*, ValueLatticeElement> &Visited) { 1263 auto I = Visited.find(Cond); 1264 if (I != Visited.end()) 1265 return I->second; 1266 1267 auto Result = getValueFromConditionImpl(Val, Cond, isTrueDest, Visited); 1268 Visited[Cond] = Result; 1269 return Result; 1270 } 1271 1272 ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, 1273 bool isTrueDest) { 1274 assert(Cond && "precondition"); 1275 DenseMap<Value*, ValueLatticeElement> Visited; 1276 return getValueFromCondition(Val, Cond, isTrueDest, Visited); 1277 } 1278 1279 // Return true if Usr has Op as an operand, otherwise false. 1280 static bool usesOperand(User *Usr, Value *Op) { 1281 return find(Usr->operands(), Op) != Usr->op_end(); 1282 } 1283 1284 // Return true if the instruction type of Val is supported by 1285 // constantFoldUser(). Currently CastInst and BinaryOperator only. Call this 1286 // before calling constantFoldUser() to find out if it's even worth attempting 1287 // to call it. 1288 static bool isOperationFoldable(User *Usr) { 1289 return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr); 1290 } 1291 1292 // Check if Usr can be simplified to an integer constant when the value of one 1293 // of its operands Op is an integer constant OpConstVal. If so, return it as an 1294 // lattice value range with a single element or otherwise return an overdefined 1295 // lattice value. 1296 static ValueLatticeElement constantFoldUser(User *Usr, Value *Op, 1297 const APInt &OpConstVal, 1298 const DataLayout &DL) { 1299 assert(isOperationFoldable(Usr) && "Precondition"); 1300 Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal); 1301 // Check if Usr can be simplified to a constant. 1302 if (auto *CI = dyn_cast<CastInst>(Usr)) { 1303 assert(CI->getOperand(0) == Op && "Operand 0 isn't Op"); 1304 if (auto *C = dyn_cast_or_null<ConstantInt>( 1305 SimplifyCastInst(CI->getOpcode(), OpConst, 1306 CI->getDestTy(), DL))) { 1307 return ValueLatticeElement::getRange(ConstantRange(C->getValue())); 1308 } 1309 } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) { 1310 bool Op0Match = BO->getOperand(0) == Op; 1311 bool Op1Match = BO->getOperand(1) == Op; 1312 assert((Op0Match || Op1Match) && 1313 "Operand 0 nor Operand 1 isn't a match"); 1314 Value *LHS = Op0Match ? OpConst : BO->getOperand(0); 1315 Value *RHS = Op1Match ? OpConst : BO->getOperand(1); 1316 if (auto *C = dyn_cast_or_null<ConstantInt>( 1317 SimplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) { 1318 return ValueLatticeElement::getRange(ConstantRange(C->getValue())); 1319 } 1320 } 1321 return ValueLatticeElement::getOverdefined(); 1322 } 1323 1324 /// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if 1325 /// Val is not constrained on the edge. Result is unspecified if return value 1326 /// is false. 1327 static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom, 1328 BasicBlock *BBTo, ValueLatticeElement &Result) { 1329 // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we 1330 // know that v != 0. 1331 if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) { 1332 // If this is a conditional branch and only one successor goes to BBTo, then 1333 // we may be able to infer something from the condition. 1334 if (BI->isConditional() && 1335 BI->getSuccessor(0) != BI->getSuccessor(1)) { 1336 bool isTrueDest = BI->getSuccessor(0) == BBTo; 1337 assert(BI->getSuccessor(!isTrueDest) == BBTo && 1338 "BBTo isn't a successor of BBFrom"); 1339 Value *Condition = BI->getCondition(); 1340 1341 // If V is the condition of the branch itself, then we know exactly what 1342 // it is. 1343 if (Condition == Val) { 1344 Result = ValueLatticeElement::get(ConstantInt::get( 1345 Type::getInt1Ty(Val->getContext()), isTrueDest)); 1346 return true; 1347 } 1348 1349 // If the condition of the branch is an equality comparison, we may be 1350 // able to infer the value. 1351 Result = getValueFromCondition(Val, Condition, isTrueDest); 1352 if (!Result.isOverdefined()) 1353 return true; 1354 1355 if (User *Usr = dyn_cast<User>(Val)) { 1356 assert(Result.isOverdefined() && "Result isn't overdefined"); 1357 // Check with isOperationFoldable() first to avoid linearly iterating 1358 // over the operands unnecessarily which can be expensive for 1359 // instructions with many operands. 1360 if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) { 1361 const DataLayout &DL = BBTo->getModule()->getDataLayout(); 1362 if (usesOperand(Usr, Condition)) { 1363 // If Val has Condition as an operand and Val can be folded into a 1364 // constant with either Condition == true or Condition == false, 1365 // propagate the constant. 1366 // eg. 1367 // ; %Val is true on the edge to %then. 1368 // %Val = and i1 %Condition, true. 1369 // br %Condition, label %then, label %else 1370 APInt ConditionVal(1, isTrueDest ? 1 : 0); 1371 Result = constantFoldUser(Usr, Condition, ConditionVal, DL); 1372 } else { 1373 // If one of Val's operand has an inferred value, we may be able to 1374 // infer the value of Val. 1375 // eg. 1376 // ; %Val is 94 on the edge to %then. 1377 // %Val = add i8 %Op, 1 1378 // %Condition = icmp eq i8 %Op, 93 1379 // br i1 %Condition, label %then, label %else 1380 for (unsigned i = 0; i < Usr->getNumOperands(); ++i) { 1381 Value *Op = Usr->getOperand(i); 1382 ValueLatticeElement OpLatticeVal = 1383 getValueFromCondition(Op, Condition, isTrueDest); 1384 if (Optional<APInt> OpConst = OpLatticeVal.asConstantInteger()) { 1385 Result = constantFoldUser(Usr, Op, OpConst.getValue(), DL); 1386 break; 1387 } 1388 } 1389 } 1390 } 1391 } 1392 if (!Result.isOverdefined()) 1393 return true; 1394 } 1395 } 1396 1397 // If the edge was formed by a switch on the value, then we may know exactly 1398 // what it is. 1399 if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) { 1400 Value *Condition = SI->getCondition(); 1401 if (!isa<IntegerType>(Val->getType())) 1402 return false; 1403 bool ValUsesConditionAndMayBeFoldable = false; 1404 if (Condition != Val) { 1405 // Check if Val has Condition as an operand. 1406 if (User *Usr = dyn_cast<User>(Val)) 1407 ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) && 1408 usesOperand(Usr, Condition); 1409 if (!ValUsesConditionAndMayBeFoldable) 1410 return false; 1411 } 1412 assert((Condition == Val || ValUsesConditionAndMayBeFoldable) && 1413 "Condition != Val nor Val doesn't use Condition"); 1414 1415 bool DefaultCase = SI->getDefaultDest() == BBTo; 1416 unsigned BitWidth = Val->getType()->getIntegerBitWidth(); 1417 ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/); 1418 1419 for (auto Case : SI->cases()) { 1420 APInt CaseValue = Case.getCaseValue()->getValue(); 1421 ConstantRange EdgeVal(CaseValue); 1422 if (ValUsesConditionAndMayBeFoldable) { 1423 User *Usr = cast<User>(Val); 1424 const DataLayout &DL = BBTo->getModule()->getDataLayout(); 1425 ValueLatticeElement EdgeLatticeVal = 1426 constantFoldUser(Usr, Condition, CaseValue, DL); 1427 if (EdgeLatticeVal.isOverdefined()) 1428 return false; 1429 EdgeVal = EdgeLatticeVal.getConstantRange(); 1430 } 1431 if (DefaultCase) { 1432 // It is possible that the default destination is the destination of 1433 // some cases. We cannot perform difference for those cases. 1434 // We know Condition != CaseValue in BBTo. In some cases we can use 1435 // this to infer Val == f(Condition) is != f(CaseValue). For now, we 1436 // only do this when f is identity (i.e. Val == Condition), but we 1437 // should be able to do this for any injective f. 1438 if (Case.getCaseSuccessor() != BBTo && Condition == Val) 1439 EdgesVals = EdgesVals.difference(EdgeVal); 1440 } else if (Case.getCaseSuccessor() == BBTo) 1441 EdgesVals = EdgesVals.unionWith(EdgeVal); 1442 } 1443 Result = ValueLatticeElement::getRange(std::move(EdgesVals)); 1444 return true; 1445 } 1446 return false; 1447 } 1448 1449 /// Compute the value of Val on the edge BBFrom -> BBTo or the value at 1450 /// the basic block if the edge does not constrain Val. 1451 bool LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom, 1452 BasicBlock *BBTo, 1453 ValueLatticeElement &Result, 1454 Instruction *CxtI) { 1455 // If already a constant, there is nothing to compute. 1456 if (Constant *VC = dyn_cast<Constant>(Val)) { 1457 Result = ValueLatticeElement::get(VC); 1458 return true; 1459 } 1460 1461 ValueLatticeElement LocalResult; 1462 if (!getEdgeValueLocal(Val, BBFrom, BBTo, LocalResult)) 1463 // If we couldn't constrain the value on the edge, LocalResult doesn't 1464 // provide any information. 1465 LocalResult = ValueLatticeElement::getOverdefined(); 1466 1467 if (hasSingleValue(LocalResult)) { 1468 // Can't get any more precise here 1469 Result = LocalResult; 1470 return true; 1471 } 1472 1473 if (!hasBlockValue(Val, BBFrom)) { 1474 if (pushBlockValue(std::make_pair(BBFrom, Val))) 1475 return false; 1476 // No new information. 1477 Result = LocalResult; 1478 return true; 1479 } 1480 1481 // Try to intersect ranges of the BB and the constraint on the edge. 1482 ValueLatticeElement InBlock = getBlockValue(Val, BBFrom); 1483 intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, 1484 BBFrom->getTerminator()); 1485 // We can use the context instruction (generically the ultimate instruction 1486 // the calling pass is trying to simplify) here, even though the result of 1487 // this function is generally cached when called from the solve* functions 1488 // (and that cached result might be used with queries using a different 1489 // context instruction), because when this function is called from the solve* 1490 // functions, the context instruction is not provided. When called from 1491 // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided, 1492 // but then the result is not cached. 1493 intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI); 1494 1495 Result = intersect(LocalResult, InBlock); 1496 return true; 1497 } 1498 1499 ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB, 1500 Instruction *CxtI) { 1501 LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" 1502 << BB->getName() << "'\n"); 1503 1504 assert(BlockValueStack.empty() && BlockValueSet.empty()); 1505 if (!hasBlockValue(V, BB)) { 1506 pushBlockValue(std::make_pair(BB, V)); 1507 solve(); 1508 } 1509 ValueLatticeElement Result = getBlockValue(V, BB); 1510 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); 1511 1512 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); 1513 return Result; 1514 } 1515 1516 ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) { 1517 LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName() 1518 << "'\n"); 1519 1520 if (auto *C = dyn_cast<Constant>(V)) 1521 return ValueLatticeElement::get(C); 1522 1523 ValueLatticeElement Result = ValueLatticeElement::getOverdefined(); 1524 if (auto *I = dyn_cast<Instruction>(V)) 1525 Result = getFromRangeMetadata(I); 1526 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); 1527 1528 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); 1529 return Result; 1530 } 1531 1532 ValueLatticeElement LazyValueInfoImpl:: 1533 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, 1534 Instruction *CxtI) { 1535 LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" 1536 << FromBB->getName() << "' to '" << ToBB->getName() 1537 << "'\n"); 1538 1539 ValueLatticeElement Result; 1540 if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) { 1541 solve(); 1542 bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI); 1543 (void)WasFastQuery; 1544 assert(WasFastQuery && "More work to do after problem solved?"); 1545 } 1546 1547 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); 1548 return Result; 1549 } 1550 1551 void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, 1552 BasicBlock *NewSucc) { 1553 TheCache.threadEdgeImpl(OldSucc, NewSucc); 1554 } 1555 1556 //===----------------------------------------------------------------------===// 1557 // LazyValueInfo Impl 1558 //===----------------------------------------------------------------------===// 1559 1560 /// This lazily constructs the LazyValueInfoImpl. 1561 static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC, 1562 const DataLayout *DL, 1563 DominatorTree *DT = nullptr) { 1564 if (!PImpl) { 1565 assert(DL && "getCache() called with a null DataLayout"); 1566 PImpl = new LazyValueInfoImpl(AC, *DL, DT); 1567 } 1568 return *static_cast<LazyValueInfoImpl*>(PImpl); 1569 } 1570 1571 bool LazyValueInfoWrapperPass::runOnFunction(Function &F) { 1572 Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1573 const DataLayout &DL = F.getParent()->getDataLayout(); 1574 1575 DominatorTreeWrapperPass *DTWP = 1576 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1577 Info.DT = DTWP ? &DTWP->getDomTree() : nullptr; 1578 Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1579 1580 if (Info.PImpl) 1581 getImpl(Info.PImpl, Info.AC, &DL, Info.DT).clear(); 1582 1583 // Fully lazy. 1584 return false; 1585 } 1586 1587 void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1588 AU.setPreservesAll(); 1589 AU.addRequired<AssumptionCacheTracker>(); 1590 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1591 } 1592 1593 LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; } 1594 1595 LazyValueInfo::~LazyValueInfo() { releaseMemory(); } 1596 1597 void LazyValueInfo::releaseMemory() { 1598 // If the cache was allocated, free it. 1599 if (PImpl) { 1600 delete &getImpl(PImpl, AC, nullptr); 1601 PImpl = nullptr; 1602 } 1603 } 1604 1605 bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA, 1606 FunctionAnalysisManager::Invalidator &Inv) { 1607 // We need to invalidate if we have either failed to preserve this analyses 1608 // result directly or if any of its dependencies have been invalidated. 1609 auto PAC = PA.getChecker<LazyValueAnalysis>(); 1610 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 1611 (DT && Inv.invalidate<DominatorTreeAnalysis>(F, PA))) 1612 return true; 1613 1614 return false; 1615 } 1616 1617 void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); } 1618 1619 LazyValueInfo LazyValueAnalysis::run(Function &F, 1620 FunctionAnalysisManager &FAM) { 1621 auto &AC = FAM.getResult<AssumptionAnalysis>(F); 1622 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 1623 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); 1624 1625 return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI, DT); 1626 } 1627 1628 /// Returns true if we can statically tell that this value will never be a 1629 /// "useful" constant. In practice, this means we've got something like an 1630 /// alloca or a malloc call for which a comparison against a constant can 1631 /// only be guarding dead code. Note that we are potentially giving up some 1632 /// precision in dead code (a constant result) in favour of avoiding a 1633 /// expensive search for a easily answered common query. 1634 static bool isKnownNonConstant(Value *V) { 1635 V = V->stripPointerCasts(); 1636 // The return val of alloc cannot be a Constant. 1637 if (isa<AllocaInst>(V)) 1638 return true; 1639 return false; 1640 } 1641 1642 Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB, 1643 Instruction *CxtI) { 1644 // Bail out early if V is known not to be a Constant. 1645 if (isKnownNonConstant(V)) 1646 return nullptr; 1647 1648 const DataLayout &DL = BB->getModule()->getDataLayout(); 1649 ValueLatticeElement Result = 1650 getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI); 1651 1652 if (Result.isConstant()) 1653 return Result.getConstant(); 1654 if (Result.isConstantRange()) { 1655 const ConstantRange &CR = Result.getConstantRange(); 1656 if (const APInt *SingleVal = CR.getSingleElement()) 1657 return ConstantInt::get(V->getContext(), *SingleVal); 1658 } 1659 return nullptr; 1660 } 1661 1662 ConstantRange LazyValueInfo::getConstantRange(Value *V, BasicBlock *BB, 1663 Instruction *CxtI) { 1664 assert(V->getType()->isIntegerTy()); 1665 unsigned Width = V->getType()->getIntegerBitWidth(); 1666 const DataLayout &DL = BB->getModule()->getDataLayout(); 1667 ValueLatticeElement Result = 1668 getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI); 1669 if (Result.isUndefined()) 1670 return ConstantRange::getEmpty(Width); 1671 if (Result.isConstantRange()) 1672 return Result.getConstantRange(); 1673 // We represent ConstantInt constants as constant ranges but other kinds 1674 // of integer constants, i.e. ConstantExpr will be tagged as constants 1675 assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && 1676 "ConstantInt value must be represented as constantrange"); 1677 return ConstantRange::getFull(Width); 1678 } 1679 1680 /// Determine whether the specified value is known to be a 1681 /// constant on the specified edge. Return null if not. 1682 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, 1683 BasicBlock *ToBB, 1684 Instruction *CxtI) { 1685 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 1686 ValueLatticeElement Result = 1687 getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); 1688 1689 if (Result.isConstant()) 1690 return Result.getConstant(); 1691 if (Result.isConstantRange()) { 1692 const ConstantRange &CR = Result.getConstantRange(); 1693 if (const APInt *SingleVal = CR.getSingleElement()) 1694 return ConstantInt::get(V->getContext(), *SingleVal); 1695 } 1696 return nullptr; 1697 } 1698 1699 ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V, 1700 BasicBlock *FromBB, 1701 BasicBlock *ToBB, 1702 Instruction *CxtI) { 1703 unsigned Width = V->getType()->getIntegerBitWidth(); 1704 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 1705 ValueLatticeElement Result = 1706 getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); 1707 1708 if (Result.isUndefined()) 1709 return ConstantRange::getEmpty(Width); 1710 if (Result.isConstantRange()) 1711 return Result.getConstantRange(); 1712 // We represent ConstantInt constants as constant ranges but other kinds 1713 // of integer constants, i.e. ConstantExpr will be tagged as constants 1714 assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && 1715 "ConstantInt value must be represented as constantrange"); 1716 return ConstantRange::getFull(Width); 1717 } 1718 1719 static LazyValueInfo::Tristate 1720 getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val, 1721 const DataLayout &DL, TargetLibraryInfo *TLI) { 1722 // If we know the value is a constant, evaluate the conditional. 1723 Constant *Res = nullptr; 1724 if (Val.isConstant()) { 1725 Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI); 1726 if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res)) 1727 return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True; 1728 return LazyValueInfo::Unknown; 1729 } 1730 1731 if (Val.isConstantRange()) { 1732 ConstantInt *CI = dyn_cast<ConstantInt>(C); 1733 if (!CI) return LazyValueInfo::Unknown; 1734 1735 const ConstantRange &CR = Val.getConstantRange(); 1736 if (Pred == ICmpInst::ICMP_EQ) { 1737 if (!CR.contains(CI->getValue())) 1738 return LazyValueInfo::False; 1739 1740 if (CR.isSingleElement()) 1741 return LazyValueInfo::True; 1742 } else if (Pred == ICmpInst::ICMP_NE) { 1743 if (!CR.contains(CI->getValue())) 1744 return LazyValueInfo::True; 1745 1746 if (CR.isSingleElement()) 1747 return LazyValueInfo::False; 1748 } else { 1749 // Handle more complex predicates. 1750 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion( 1751 (ICmpInst::Predicate)Pred, CI->getValue()); 1752 if (TrueValues.contains(CR)) 1753 return LazyValueInfo::True; 1754 if (TrueValues.inverse().contains(CR)) 1755 return LazyValueInfo::False; 1756 } 1757 return LazyValueInfo::Unknown; 1758 } 1759 1760 if (Val.isNotConstant()) { 1761 // If this is an equality comparison, we can try to fold it knowing that 1762 // "V != C1". 1763 if (Pred == ICmpInst::ICMP_EQ) { 1764 // !C1 == C -> false iff C1 == C. 1765 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, 1766 Val.getNotConstant(), C, DL, 1767 TLI); 1768 if (Res->isNullValue()) 1769 return LazyValueInfo::False; 1770 } else if (Pred == ICmpInst::ICMP_NE) { 1771 // !C1 != C -> true iff C1 == C. 1772 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, 1773 Val.getNotConstant(), C, DL, 1774 TLI); 1775 if (Res->isNullValue()) 1776 return LazyValueInfo::True; 1777 } 1778 return LazyValueInfo::Unknown; 1779 } 1780 1781 return LazyValueInfo::Unknown; 1782 } 1783 1784 /// Determine whether the specified value comparison with a constant is known to 1785 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate. 1786 LazyValueInfo::Tristate 1787 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, 1788 BasicBlock *FromBB, BasicBlock *ToBB, 1789 Instruction *CxtI) { 1790 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 1791 ValueLatticeElement Result = 1792 getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); 1793 1794 return getPredicateResult(Pred, C, Result, DL, TLI); 1795 } 1796 1797 LazyValueInfo::Tristate 1798 LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C, 1799 Instruction *CxtI) { 1800 // Is or is not NonNull are common predicates being queried. If 1801 // isKnownNonZero can tell us the result of the predicate, we can 1802 // return it quickly. But this is only a fastpath, and falling 1803 // through would still be correct. 1804 const DataLayout &DL = CxtI->getModule()->getDataLayout(); 1805 if (V->getType()->isPointerTy() && C->isNullValue() && 1806 isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) { 1807 if (Pred == ICmpInst::ICMP_EQ) 1808 return LazyValueInfo::False; 1809 else if (Pred == ICmpInst::ICMP_NE) 1810 return LazyValueInfo::True; 1811 } 1812 ValueLatticeElement Result = getImpl(PImpl, AC, &DL, DT).getValueAt(V, CxtI); 1813 Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI); 1814 if (Ret != Unknown) 1815 return Ret; 1816 1817 // Note: The following bit of code is somewhat distinct from the rest of LVI; 1818 // LVI as a whole tries to compute a lattice value which is conservatively 1819 // correct at a given location. In this case, we have a predicate which we 1820 // weren't able to prove about the merged result, and we're pushing that 1821 // predicate back along each incoming edge to see if we can prove it 1822 // separately for each input. As a motivating example, consider: 1823 // bb1: 1824 // %v1 = ... ; constantrange<1, 5> 1825 // br label %merge 1826 // bb2: 1827 // %v2 = ... ; constantrange<10, 20> 1828 // br label %merge 1829 // merge: 1830 // %phi = phi [%v1, %v2] ; constantrange<1,20> 1831 // %pred = icmp eq i32 %phi, 8 1832 // We can't tell from the lattice value for '%phi' that '%pred' is false 1833 // along each path, but by checking the predicate over each input separately, 1834 // we can. 1835 // We limit the search to one step backwards from the current BB and value. 1836 // We could consider extending this to search further backwards through the 1837 // CFG and/or value graph, but there are non-obvious compile time vs quality 1838 // tradeoffs. 1839 if (CxtI) { 1840 BasicBlock *BB = CxtI->getParent(); 1841 1842 // Function entry or an unreachable block. Bail to avoid confusing 1843 // analysis below. 1844 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1845 if (PI == PE) 1846 return Unknown; 1847 1848 // If V is a PHI node in the same block as the context, we need to ask 1849 // questions about the predicate as applied to the incoming value along 1850 // each edge. This is useful for eliminating cases where the predicate is 1851 // known along all incoming edges. 1852 if (auto *PHI = dyn_cast<PHINode>(V)) 1853 if (PHI->getParent() == BB) { 1854 Tristate Baseline = Unknown; 1855 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) { 1856 Value *Incoming = PHI->getIncomingValue(i); 1857 BasicBlock *PredBB = PHI->getIncomingBlock(i); 1858 // Note that PredBB may be BB itself. 1859 Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, 1860 CxtI); 1861 1862 // Keep going as long as we've seen a consistent known result for 1863 // all inputs. 1864 Baseline = (i == 0) ? Result /* First iteration */ 1865 : (Baseline == Result ? Baseline : Unknown); /* All others */ 1866 if (Baseline == Unknown) 1867 break; 1868 } 1869 if (Baseline != Unknown) 1870 return Baseline; 1871 } 1872 1873 // For a comparison where the V is outside this block, it's possible 1874 // that we've branched on it before. Look to see if the value is known 1875 // on all incoming edges. 1876 if (!isa<Instruction>(V) || 1877 cast<Instruction>(V)->getParent() != BB) { 1878 // For predecessor edge, determine if the comparison is true or false 1879 // on that edge. If they're all true or all false, we can conclude 1880 // the value of the comparison in this block. 1881 Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); 1882 if (Baseline != Unknown) { 1883 // Check that all remaining incoming values match the first one. 1884 while (++PI != PE) { 1885 Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); 1886 if (Ret != Baseline) break; 1887 } 1888 // If we terminated early, then one of the values didn't match. 1889 if (PI == PE) { 1890 return Baseline; 1891 } 1892 } 1893 } 1894 } 1895 return Unknown; 1896 } 1897 1898 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, 1899 BasicBlock *NewSucc) { 1900 if (PImpl) { 1901 const DataLayout &DL = PredBB->getModule()->getDataLayout(); 1902 getImpl(PImpl, AC, &DL, DT).threadEdge(PredBB, OldSucc, NewSucc); 1903 } 1904 } 1905 1906 void LazyValueInfo::eraseBlock(BasicBlock *BB) { 1907 if (PImpl) { 1908 const DataLayout &DL = BB->getModule()->getDataLayout(); 1909 getImpl(PImpl, AC, &DL, DT).eraseBlock(BB); 1910 } 1911 } 1912 1913 1914 void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { 1915 if (PImpl) { 1916 getImpl(PImpl, AC, DL, DT).printLVI(F, DTree, OS); 1917 } 1918 } 1919 1920 void LazyValueInfo::disableDT() { 1921 if (PImpl) 1922 getImpl(PImpl, AC, DL, DT).disableDT(); 1923 } 1924 1925 void LazyValueInfo::enableDT() { 1926 if (PImpl) 1927 getImpl(PImpl, AC, DL, DT).enableDT(); 1928 } 1929 1930 // Print the LVI for the function arguments at the start of each basic block. 1931 void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot( 1932 const BasicBlock *BB, formatted_raw_ostream &OS) { 1933 // Find if there are latticevalues defined for arguments of the function. 1934 auto *F = BB->getParent(); 1935 for (auto &Arg : F->args()) { 1936 ValueLatticeElement Result = LVIImpl->getValueInBlock( 1937 const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB)); 1938 if (Result.isUndefined()) 1939 continue; 1940 OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n"; 1941 } 1942 } 1943 1944 // This function prints the LVI analysis for the instruction I at the beginning 1945 // of various basic blocks. It relies on calculated values that are stored in 1946 // the LazyValueInfoCache, and in the absence of cached values, recalculate the 1947 // LazyValueInfo for `I`, and print that info. 1948 void LazyValueInfoAnnotatedWriter::emitInstructionAnnot( 1949 const Instruction *I, formatted_raw_ostream &OS) { 1950 1951 auto *ParentBB = I->getParent(); 1952 SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI; 1953 // We can generate (solve) LVI values only for blocks that are dominated by 1954 // the I's parent. However, to avoid generating LVI for all dominating blocks, 1955 // that contain redundant/uninteresting information, we print LVI for 1956 // blocks that may use this LVI information (such as immediate successor 1957 // blocks, and blocks that contain uses of `I`). 1958 auto printResult = [&](const BasicBlock *BB) { 1959 if (!BlocksContainingLVI.insert(BB).second) 1960 return; 1961 ValueLatticeElement Result = LVIImpl->getValueInBlock( 1962 const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB)); 1963 OS << "; LatticeVal for: '" << *I << "' in BB: '"; 1964 BB->printAsOperand(OS, false); 1965 OS << "' is: " << Result << "\n"; 1966 }; 1967 1968 printResult(ParentBB); 1969 // Print the LVI analysis results for the immediate successor blocks, that 1970 // are dominated by `ParentBB`. 1971 for (auto *BBSucc : successors(ParentBB)) 1972 if (DT.dominates(ParentBB, BBSucc)) 1973 printResult(BBSucc); 1974 1975 // Print LVI in blocks where `I` is used. 1976 for (auto *U : I->users()) 1977 if (auto *UseI = dyn_cast<Instruction>(U)) 1978 if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent())) 1979 printResult(UseI->getParent()); 1980 1981 } 1982 1983 namespace { 1984 // Printer class for LazyValueInfo results. 1985 class LazyValueInfoPrinter : public FunctionPass { 1986 public: 1987 static char ID; // Pass identification, replacement for typeid 1988 LazyValueInfoPrinter() : FunctionPass(ID) { 1989 initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry()); 1990 } 1991 1992 void getAnalysisUsage(AnalysisUsage &AU) const override { 1993 AU.setPreservesAll(); 1994 AU.addRequired<LazyValueInfoWrapperPass>(); 1995 AU.addRequired<DominatorTreeWrapperPass>(); 1996 } 1997 1998 // Get the mandatory dominator tree analysis and pass this in to the 1999 // LVIPrinter. We cannot rely on the LVI's DT, since it's optional. 2000 bool runOnFunction(Function &F) override { 2001 dbgs() << "LVI for function '" << F.getName() << "':\n"; 2002 auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 2003 auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2004 LVI.printLVI(F, DTree, dbgs()); 2005 return false; 2006 } 2007 }; 2008 } 2009 2010 char LazyValueInfoPrinter::ID = 0; 2011 INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info", 2012 "Lazy Value Info Printer Pass", false, false) 2013 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 2014 INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info", 2015 "Lazy Value Info Printer Pass", false, false) 2016