1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interface for lazy computation of value constraint 10 // information. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LazyValueInfo.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/ValueLattice.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/AssemblyAnnotationWriter.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/ValueHandle.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/FormattedStream.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <map> 42 using namespace llvm; 43 using namespace PatternMatch; 44 45 #define DEBUG_TYPE "lazy-value-info" 46 47 // This is the number of worklist items we will process to try to discover an 48 // answer for a given value. 49 static const unsigned MaxProcessedPerValue = 500; 50 51 char LazyValueInfoWrapperPass::ID = 0; 52 LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) { 53 initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry()); 54 } 55 INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info", 56 "Lazy Value Information Analysis", false, true) 57 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 58 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 59 INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info", 60 "Lazy Value Information Analysis", false, true) 61 62 namespace llvm { 63 FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); } 64 } 65 66 AnalysisKey LazyValueAnalysis::Key; 67 68 /// Returns true if this lattice value represents at most one possible value. 69 /// This is as precise as any lattice value can get while still representing 70 /// reachable code. 71 static bool hasSingleValue(const ValueLatticeElement &Val) { 72 if (Val.isConstantRange() && 73 Val.getConstantRange().isSingleElement()) 74 // Integer constants are single element ranges 75 return true; 76 if (Val.isConstant()) 77 // Non integer constants 78 return true; 79 return false; 80 } 81 82 /// Combine two sets of facts about the same value into a single set of 83 /// facts. Note that this method is not suitable for merging facts along 84 /// different paths in a CFG; that's what the mergeIn function is for. This 85 /// is for merging facts gathered about the same value at the same location 86 /// through two independent means. 87 /// Notes: 88 /// * This method does not promise to return the most precise possible lattice 89 /// value implied by A and B. It is allowed to return any lattice element 90 /// which is at least as strong as *either* A or B (unless our facts 91 /// conflict, see below). 92 /// * Due to unreachable code, the intersection of two lattice values could be 93 /// contradictory. If this happens, we return some valid lattice value so as 94 /// not confuse the rest of LVI. Ideally, we'd always return Undefined, but 95 /// we do not make this guarantee. TODO: This would be a useful enhancement. 96 static ValueLatticeElement intersect(const ValueLatticeElement &A, 97 const ValueLatticeElement &B) { 98 // Undefined is the strongest state. It means the value is known to be along 99 // an unreachable path. 100 if (A.isUnknown()) 101 return A; 102 if (B.isUnknown()) 103 return B; 104 105 // If we gave up for one, but got a useable fact from the other, use it. 106 if (A.isOverdefined()) 107 return B; 108 if (B.isOverdefined()) 109 return A; 110 111 // Can't get any more precise than constants. 112 if (hasSingleValue(A)) 113 return A; 114 if (hasSingleValue(B)) 115 return B; 116 117 // Could be either constant range or not constant here. 118 if (!A.isConstantRange() || !B.isConstantRange()) { 119 // TODO: Arbitrary choice, could be improved 120 return A; 121 } 122 123 // Intersect two constant ranges 124 ConstantRange Range = 125 A.getConstantRange().intersectWith(B.getConstantRange()); 126 // Note: An empty range is implicitly converted to unknown or undef depending 127 // on MayIncludeUndef internally. 128 return ValueLatticeElement::getRange( 129 std::move(Range), /*MayIncludeUndef=*/A.isConstantRangeIncludingUndef() || 130 B.isConstantRangeIncludingUndef()); 131 } 132 133 //===----------------------------------------------------------------------===// 134 // LazyValueInfoCache Decl 135 //===----------------------------------------------------------------------===// 136 137 namespace { 138 /// A callback value handle updates the cache when values are erased. 139 class LazyValueInfoCache; 140 struct LVIValueHandle final : public CallbackVH { 141 LazyValueInfoCache *Parent; 142 143 LVIValueHandle(Value *V, LazyValueInfoCache *P = nullptr) 144 : CallbackVH(V), Parent(P) { } 145 146 void deleted() override; 147 void allUsesReplacedWith(Value *V) override { 148 deleted(); 149 } 150 }; 151 } // end anonymous namespace 152 153 namespace { 154 using NonNullPointerSet = SmallDenseSet<AssertingVH<Value>, 2>; 155 156 /// This is the cache kept by LazyValueInfo which 157 /// maintains information about queries across the clients' queries. 158 class LazyValueInfoCache { 159 /// This is all of the cached information for one basic block. It contains 160 /// the per-value lattice elements, as well as a separate set for 161 /// overdefined values to reduce memory usage. Additionally pointers 162 /// dereferenced in the block are cached for nullability queries. 163 struct BlockCacheEntry { 164 SmallDenseMap<AssertingVH<Value>, ValueLatticeElement, 4> LatticeElements; 165 SmallDenseSet<AssertingVH<Value>, 4> OverDefined; 166 // None indicates that the nonnull pointers for this basic block 167 // block have not been computed yet. 168 Optional<NonNullPointerSet> NonNullPointers; 169 }; 170 171 /// Cached information per basic block. 172 DenseMap<PoisoningVH<BasicBlock>, std::unique_ptr<BlockCacheEntry>> 173 BlockCache; 174 /// Set of value handles used to erase values from the cache on deletion. 175 DenseSet<LVIValueHandle, DenseMapInfo<Value *>> ValueHandles; 176 177 const BlockCacheEntry *getBlockEntry(BasicBlock *BB) const { 178 auto It = BlockCache.find_as(BB); 179 if (It == BlockCache.end()) 180 return nullptr; 181 return It->second.get(); 182 } 183 184 BlockCacheEntry *getOrCreateBlockEntry(BasicBlock *BB) { 185 auto It = BlockCache.find_as(BB); 186 if (It == BlockCache.end()) 187 It = BlockCache.insert({ BB, std::make_unique<BlockCacheEntry>() }) 188 .first; 189 190 return It->second.get(); 191 } 192 193 void addValueHandle(Value *Val) { 194 auto HandleIt = ValueHandles.find_as(Val); 195 if (HandleIt == ValueHandles.end()) 196 ValueHandles.insert({ Val, this }); 197 } 198 199 public: 200 void insertResult(Value *Val, BasicBlock *BB, 201 const ValueLatticeElement &Result) { 202 BlockCacheEntry *Entry = getOrCreateBlockEntry(BB); 203 204 // Insert over-defined values into their own cache to reduce memory 205 // overhead. 206 if (Result.isOverdefined()) 207 Entry->OverDefined.insert(Val); 208 else 209 Entry->LatticeElements.insert({ Val, Result }); 210 211 addValueHandle(Val); 212 } 213 214 Optional<ValueLatticeElement> getCachedValueInfo(Value *V, 215 BasicBlock *BB) const { 216 const BlockCacheEntry *Entry = getBlockEntry(BB); 217 if (!Entry) 218 return None; 219 220 if (Entry->OverDefined.count(V)) 221 return ValueLatticeElement::getOverdefined(); 222 223 auto LatticeIt = Entry->LatticeElements.find_as(V); 224 if (LatticeIt == Entry->LatticeElements.end()) 225 return None; 226 227 return LatticeIt->second; 228 } 229 230 bool isNonNullAtEndOfBlock( 231 Value *V, BasicBlock *BB, 232 function_ref<NonNullPointerSet(BasicBlock *)> InitFn) { 233 BlockCacheEntry *Entry = getOrCreateBlockEntry(BB); 234 if (!Entry->NonNullPointers) { 235 Entry->NonNullPointers = InitFn(BB); 236 for (Value *V : *Entry->NonNullPointers) 237 addValueHandle(V); 238 } 239 240 return Entry->NonNullPointers->count(V); 241 } 242 243 /// clear - Empty the cache. 244 void clear() { 245 BlockCache.clear(); 246 ValueHandles.clear(); 247 } 248 249 /// Inform the cache that a given value has been deleted. 250 void eraseValue(Value *V); 251 252 /// This is part of the update interface to inform the cache 253 /// that a block has been deleted. 254 void eraseBlock(BasicBlock *BB); 255 256 /// Updates the cache to remove any influence an overdefined value in 257 /// OldSucc might have (unless also overdefined in NewSucc). This just 258 /// flushes elements from the cache and does not add any. 259 void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc); 260 }; 261 } 262 263 void LazyValueInfoCache::eraseValue(Value *V) { 264 for (auto &Pair : BlockCache) { 265 Pair.second->LatticeElements.erase(V); 266 Pair.second->OverDefined.erase(V); 267 if (Pair.second->NonNullPointers) 268 Pair.second->NonNullPointers->erase(V); 269 } 270 271 auto HandleIt = ValueHandles.find_as(V); 272 if (HandleIt != ValueHandles.end()) 273 ValueHandles.erase(HandleIt); 274 } 275 276 void LVIValueHandle::deleted() { 277 // This erasure deallocates *this, so it MUST happen after we're done 278 // using any and all members of *this. 279 Parent->eraseValue(*this); 280 } 281 282 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { 283 BlockCache.erase(BB); 284 } 285 286 void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc, 287 BasicBlock *NewSucc) { 288 // When an edge in the graph has been threaded, values that we could not 289 // determine a value for before (i.e. were marked overdefined) may be 290 // possible to solve now. We do NOT try to proactively update these values. 291 // Instead, we clear their entries from the cache, and allow lazy updating to 292 // recompute them when needed. 293 294 // The updating process is fairly simple: we need to drop cached info 295 // for all values that were marked overdefined in OldSucc, and for those same 296 // values in any successor of OldSucc (except NewSucc) in which they were 297 // also marked overdefined. 298 std::vector<BasicBlock*> worklist; 299 worklist.push_back(OldSucc); 300 301 const BlockCacheEntry *Entry = getBlockEntry(OldSucc); 302 if (!Entry || Entry->OverDefined.empty()) 303 return; // Nothing to process here. 304 SmallVector<Value *, 4> ValsToClear(Entry->OverDefined.begin(), 305 Entry->OverDefined.end()); 306 307 // Use a worklist to perform a depth-first search of OldSucc's successors. 308 // NOTE: We do not need a visited list since any blocks we have already 309 // visited will have had their overdefined markers cleared already, and we 310 // thus won't loop to their successors. 311 while (!worklist.empty()) { 312 BasicBlock *ToUpdate = worklist.back(); 313 worklist.pop_back(); 314 315 // Skip blocks only accessible through NewSucc. 316 if (ToUpdate == NewSucc) continue; 317 318 // If a value was marked overdefined in OldSucc, and is here too... 319 auto OI = BlockCache.find_as(ToUpdate); 320 if (OI == BlockCache.end() || OI->second->OverDefined.empty()) 321 continue; 322 auto &ValueSet = OI->second->OverDefined; 323 324 bool changed = false; 325 for (Value *V : ValsToClear) { 326 if (!ValueSet.erase(V)) 327 continue; 328 329 // If we removed anything, then we potentially need to update 330 // blocks successors too. 331 changed = true; 332 } 333 334 if (!changed) continue; 335 336 llvm::append_range(worklist, successors(ToUpdate)); 337 } 338 } 339 340 341 namespace { 342 /// An assembly annotator class to print LazyValueCache information in 343 /// comments. 344 class LazyValueInfoImpl; 345 class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter { 346 LazyValueInfoImpl *LVIImpl; 347 // While analyzing which blocks we can solve values for, we need the dominator 348 // information. 349 DominatorTree &DT; 350 351 public: 352 LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree) 353 : LVIImpl(L), DT(DTree) {} 354 355 void emitBasicBlockStartAnnot(const BasicBlock *BB, 356 formatted_raw_ostream &OS) override; 357 358 void emitInstructionAnnot(const Instruction *I, 359 formatted_raw_ostream &OS) override; 360 }; 361 } 362 namespace { 363 // The actual implementation of the lazy analysis and update. Note that the 364 // inheritance from LazyValueInfoCache is intended to be temporary while 365 // splitting the code and then transitioning to a has-a relationship. 366 class LazyValueInfoImpl { 367 368 /// Cached results from previous queries 369 LazyValueInfoCache TheCache; 370 371 /// This stack holds the state of the value solver during a query. 372 /// It basically emulates the callstack of the naive 373 /// recursive value lookup process. 374 SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack; 375 376 /// Keeps track of which block-value pairs are in BlockValueStack. 377 DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet; 378 379 /// Push BV onto BlockValueStack unless it's already in there. 380 /// Returns true on success. 381 bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) { 382 if (!BlockValueSet.insert(BV).second) 383 return false; // It's already in the stack. 384 385 LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in " 386 << BV.first->getName() << "\n"); 387 BlockValueStack.push_back(BV); 388 return true; 389 } 390 391 AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls. 392 const DataLayout &DL; ///< A mandatory DataLayout 393 394 /// Declaration of the llvm.experimental.guard() intrinsic, 395 /// if it exists in the module. 396 Function *GuardDecl; 397 398 Optional<ValueLatticeElement> getBlockValue(Value *Val, BasicBlock *BB); 399 Optional<ValueLatticeElement> getEdgeValue(Value *V, BasicBlock *F, 400 BasicBlock *T, Instruction *CxtI = nullptr); 401 402 // These methods process one work item and may add more. A false value 403 // returned means that the work item was not completely processed and must 404 // be revisited after going through the new items. 405 bool solveBlockValue(Value *Val, BasicBlock *BB); 406 Optional<ValueLatticeElement> solveBlockValueImpl(Value *Val, BasicBlock *BB); 407 Optional<ValueLatticeElement> solveBlockValueNonLocal(Value *Val, 408 BasicBlock *BB); 409 Optional<ValueLatticeElement> solveBlockValuePHINode(PHINode *PN, 410 BasicBlock *BB); 411 Optional<ValueLatticeElement> solveBlockValueSelect(SelectInst *S, 412 BasicBlock *BB); 413 Optional<ConstantRange> getRangeFor(Value *V, Instruction *CxtI, 414 BasicBlock *BB); 415 Optional<ValueLatticeElement> solveBlockValueBinaryOpImpl( 416 Instruction *I, BasicBlock *BB, 417 std::function<ConstantRange(const ConstantRange &, 418 const ConstantRange &)> OpFn); 419 Optional<ValueLatticeElement> solveBlockValueBinaryOp(BinaryOperator *BBI, 420 BasicBlock *BB); 421 Optional<ValueLatticeElement> solveBlockValueCast(CastInst *CI, 422 BasicBlock *BB); 423 Optional<ValueLatticeElement> solveBlockValueOverflowIntrinsic( 424 WithOverflowInst *WO, BasicBlock *BB); 425 Optional<ValueLatticeElement> solveBlockValueIntrinsic(IntrinsicInst *II, 426 BasicBlock *BB); 427 Optional<ValueLatticeElement> solveBlockValueExtractValue( 428 ExtractValueInst *EVI, BasicBlock *BB); 429 bool isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB); 430 void intersectAssumeOrGuardBlockValueConstantRange(Value *Val, 431 ValueLatticeElement &BBLV, 432 Instruction *BBI); 433 434 void solve(); 435 436 public: 437 /// This is the query interface to determine the lattice value for the 438 /// specified Value* at the context instruction (if specified) or at the 439 /// start of the block. 440 ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB, 441 Instruction *CxtI = nullptr); 442 443 /// This is the query interface to determine the lattice value for the 444 /// specified Value* at the specified instruction using only information 445 /// from assumes/guards and range metadata. Unlike getValueInBlock(), no 446 /// recursive query is performed. 447 ValueLatticeElement getValueAt(Value *V, Instruction *CxtI); 448 449 /// This is the query interface to determine the lattice 450 /// value for the specified Value* that is true on the specified edge. 451 ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB, 452 BasicBlock *ToBB, 453 Instruction *CxtI = nullptr); 454 455 /// Complete flush all previously computed values 456 void clear() { 457 TheCache.clear(); 458 } 459 460 /// Printing the LazyValueInfo Analysis. 461 void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { 462 LazyValueInfoAnnotatedWriter Writer(this, DTree); 463 F.print(OS, &Writer); 464 } 465 466 /// This is part of the update interface to inform the cache 467 /// that a block has been deleted. 468 void eraseBlock(BasicBlock *BB) { 469 TheCache.eraseBlock(BB); 470 } 471 472 /// This is the update interface to inform the cache that an edge from 473 /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc. 474 void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); 475 476 LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL, 477 Function *GuardDecl) 478 : AC(AC), DL(DL), GuardDecl(GuardDecl) {} 479 }; 480 } // end anonymous namespace 481 482 483 void LazyValueInfoImpl::solve() { 484 SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack( 485 BlockValueStack.begin(), BlockValueStack.end()); 486 487 unsigned processedCount = 0; 488 while (!BlockValueStack.empty()) { 489 processedCount++; 490 // Abort if we have to process too many values to get a result for this one. 491 // Because of the design of the overdefined cache currently being per-block 492 // to avoid naming-related issues (IE it wants to try to give different 493 // results for the same name in different blocks), overdefined results don't 494 // get cached globally, which in turn means we will often try to rediscover 495 // the same overdefined result again and again. Once something like 496 // PredicateInfo is used in LVI or CVP, we should be able to make the 497 // overdefined cache global, and remove this throttle. 498 if (processedCount > MaxProcessedPerValue) { 499 LLVM_DEBUG( 500 dbgs() << "Giving up on stack because we are getting too deep\n"); 501 // Fill in the original values 502 while (!StartingStack.empty()) { 503 std::pair<BasicBlock *, Value *> &e = StartingStack.back(); 504 TheCache.insertResult(e.second, e.first, 505 ValueLatticeElement::getOverdefined()); 506 StartingStack.pop_back(); 507 } 508 BlockValueSet.clear(); 509 BlockValueStack.clear(); 510 return; 511 } 512 std::pair<BasicBlock *, Value *> e = BlockValueStack.back(); 513 assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!"); 514 515 if (solveBlockValue(e.second, e.first)) { 516 // The work item was completely processed. 517 assert(BlockValueStack.back() == e && "Nothing should have been pushed!"); 518 #ifndef NDEBUG 519 Optional<ValueLatticeElement> BBLV = 520 TheCache.getCachedValueInfo(e.second, e.first); 521 assert(BBLV && "Result should be in cache!"); 522 LLVM_DEBUG( 523 dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = " 524 << *BBLV << "\n"); 525 #endif 526 527 BlockValueStack.pop_back(); 528 BlockValueSet.erase(e); 529 } else { 530 // More work needs to be done before revisiting. 531 assert(BlockValueStack.back() != e && "Stack should have been pushed!"); 532 } 533 } 534 } 535 536 Optional<ValueLatticeElement> LazyValueInfoImpl::getBlockValue(Value *Val, 537 BasicBlock *BB) { 538 // If already a constant, there is nothing to compute. 539 if (Constant *VC = dyn_cast<Constant>(Val)) 540 return ValueLatticeElement::get(VC); 541 542 if (Optional<ValueLatticeElement> OptLatticeVal = 543 TheCache.getCachedValueInfo(Val, BB)) 544 return OptLatticeVal; 545 546 // We have hit a cycle, assume overdefined. 547 if (!pushBlockValue({ BB, Val })) 548 return ValueLatticeElement::getOverdefined(); 549 550 // Yet to be resolved. 551 return None; 552 } 553 554 static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) { 555 switch (BBI->getOpcode()) { 556 default: break; 557 case Instruction::Load: 558 case Instruction::Call: 559 case Instruction::Invoke: 560 if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range)) 561 if (isa<IntegerType>(BBI->getType())) { 562 return ValueLatticeElement::getRange( 563 getConstantRangeFromMetadata(*Ranges)); 564 } 565 break; 566 }; 567 // Nothing known - will be intersected with other facts 568 return ValueLatticeElement::getOverdefined(); 569 } 570 571 bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) { 572 assert(!isa<Constant>(Val) && "Value should not be constant"); 573 assert(!TheCache.getCachedValueInfo(Val, BB) && 574 "Value should not be in cache"); 575 576 // Hold off inserting this value into the Cache in case we have to return 577 // false and come back later. 578 Optional<ValueLatticeElement> Res = solveBlockValueImpl(Val, BB); 579 if (!Res) 580 // Work pushed, will revisit 581 return false; 582 583 TheCache.insertResult(Val, BB, *Res); 584 return true; 585 } 586 587 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueImpl( 588 Value *Val, BasicBlock *BB) { 589 Instruction *BBI = dyn_cast<Instruction>(Val); 590 if (!BBI || BBI->getParent() != BB) 591 return solveBlockValueNonLocal(Val, BB); 592 593 if (PHINode *PN = dyn_cast<PHINode>(BBI)) 594 return solveBlockValuePHINode(PN, BB); 595 596 if (auto *SI = dyn_cast<SelectInst>(BBI)) 597 return solveBlockValueSelect(SI, BB); 598 599 // If this value is a nonnull pointer, record it's range and bailout. Note 600 // that for all other pointer typed values, we terminate the search at the 601 // definition. We could easily extend this to look through geps, bitcasts, 602 // and the like to prove non-nullness, but it's not clear that's worth it 603 // compile time wise. The context-insensitive value walk done inside 604 // isKnownNonZero gets most of the profitable cases at much less expense. 605 // This does mean that we have a sensitivity to where the defining 606 // instruction is placed, even if it could legally be hoisted much higher. 607 // That is unfortunate. 608 PointerType *PT = dyn_cast<PointerType>(BBI->getType()); 609 if (PT && isKnownNonZero(BBI, DL)) 610 return ValueLatticeElement::getNot(ConstantPointerNull::get(PT)); 611 612 if (BBI->getType()->isIntegerTy()) { 613 if (auto *CI = dyn_cast<CastInst>(BBI)) 614 return solveBlockValueCast(CI, BB); 615 616 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI)) 617 return solveBlockValueBinaryOp(BO, BB); 618 619 if (auto *EVI = dyn_cast<ExtractValueInst>(BBI)) 620 return solveBlockValueExtractValue(EVI, BB); 621 622 if (auto *II = dyn_cast<IntrinsicInst>(BBI)) 623 return solveBlockValueIntrinsic(II, BB); 624 } 625 626 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 627 << "' - unknown inst def found.\n"); 628 return getFromRangeMetadata(BBI); 629 } 630 631 static void AddNonNullPointer(Value *Ptr, NonNullPointerSet &PtrSet) { 632 // TODO: Use NullPointerIsDefined instead. 633 if (Ptr->getType()->getPointerAddressSpace() == 0) 634 PtrSet.insert(getUnderlyingObject(Ptr)); 635 } 636 637 static void AddNonNullPointersByInstruction( 638 Instruction *I, NonNullPointerSet &PtrSet) { 639 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 640 AddNonNullPointer(L->getPointerOperand(), PtrSet); 641 } else if (StoreInst *S = dyn_cast<StoreInst>(I)) { 642 AddNonNullPointer(S->getPointerOperand(), PtrSet); 643 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 644 if (MI->isVolatile()) return; 645 646 // FIXME: check whether it has a valuerange that excludes zero? 647 ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength()); 648 if (!Len || Len->isZero()) return; 649 650 AddNonNullPointer(MI->getRawDest(), PtrSet); 651 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 652 AddNonNullPointer(MTI->getRawSource(), PtrSet); 653 } 654 } 655 656 bool LazyValueInfoImpl::isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB) { 657 if (NullPointerIsDefined(BB->getParent(), 658 Val->getType()->getPointerAddressSpace())) 659 return false; 660 661 Val = Val->stripInBoundsOffsets(); 662 return TheCache.isNonNullAtEndOfBlock(Val, BB, [](BasicBlock *BB) { 663 NonNullPointerSet NonNullPointers; 664 for (Instruction &I : *BB) 665 AddNonNullPointersByInstruction(&I, NonNullPointers); 666 return NonNullPointers; 667 }); 668 } 669 670 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueNonLocal( 671 Value *Val, BasicBlock *BB) { 672 ValueLatticeElement Result; // Start Undefined. 673 674 // If this is the entry block, we must be asking about an argument. The 675 // value is overdefined. 676 if (BB->isEntryBlock()) { 677 assert(isa<Argument>(Val) && "Unknown live-in to the entry block"); 678 return ValueLatticeElement::getOverdefined(); 679 } 680 681 // Loop over all of our predecessors, merging what we know from them into 682 // result. If we encounter an unexplored predecessor, we eagerly explore it 683 // in a depth first manner. In practice, this has the effect of discovering 684 // paths we can't analyze eagerly without spending compile times analyzing 685 // other paths. This heuristic benefits from the fact that predecessors are 686 // frequently arranged such that dominating ones come first and we quickly 687 // find a path to function entry. TODO: We should consider explicitly 688 // canonicalizing to make this true rather than relying on this happy 689 // accident. 690 for (BasicBlock *Pred : predecessors(BB)) { 691 Optional<ValueLatticeElement> EdgeResult = getEdgeValue(Val, Pred, BB); 692 if (!EdgeResult) 693 // Explore that input, then return here 694 return None; 695 696 Result.mergeIn(*EdgeResult); 697 698 // If we hit overdefined, exit early. The BlockVals entry is already set 699 // to overdefined. 700 if (Result.isOverdefined()) { 701 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 702 << "' - overdefined because of pred (non local).\n"); 703 return Result; 704 } 705 } 706 707 // Return the merged value, which is more precise than 'overdefined'. 708 assert(!Result.isOverdefined()); 709 return Result; 710 } 711 712 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValuePHINode( 713 PHINode *PN, BasicBlock *BB) { 714 ValueLatticeElement Result; // Start Undefined. 715 716 // Loop over all of our predecessors, merging what we know from them into 717 // result. See the comment about the chosen traversal order in 718 // solveBlockValueNonLocal; the same reasoning applies here. 719 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 720 BasicBlock *PhiBB = PN->getIncomingBlock(i); 721 Value *PhiVal = PN->getIncomingValue(i); 722 // Note that we can provide PN as the context value to getEdgeValue, even 723 // though the results will be cached, because PN is the value being used as 724 // the cache key in the caller. 725 Optional<ValueLatticeElement> EdgeResult = 726 getEdgeValue(PhiVal, PhiBB, BB, PN); 727 if (!EdgeResult) 728 // Explore that input, then return here 729 return None; 730 731 Result.mergeIn(*EdgeResult); 732 733 // If we hit overdefined, exit early. The BlockVals entry is already set 734 // to overdefined. 735 if (Result.isOverdefined()) { 736 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 737 << "' - overdefined because of pred (local).\n"); 738 739 return Result; 740 } 741 } 742 743 // Return the merged value, which is more precise than 'overdefined'. 744 assert(!Result.isOverdefined() && "Possible PHI in entry block?"); 745 return Result; 746 } 747 748 static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, 749 bool isTrueDest = true); 750 751 // If we can determine a constraint on the value given conditions assumed by 752 // the program, intersect those constraints with BBLV 753 void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange( 754 Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) { 755 BBI = BBI ? BBI : dyn_cast<Instruction>(Val); 756 if (!BBI) 757 return; 758 759 BasicBlock *BB = BBI->getParent(); 760 for (auto &AssumeVH : AC->assumptionsFor(Val)) { 761 if (!AssumeVH) 762 continue; 763 764 // Only check assumes in the block of the context instruction. Other 765 // assumes will have already been taken into account when the value was 766 // propagated from predecessor blocks. 767 auto *I = cast<CallInst>(AssumeVH); 768 if (I->getParent() != BB || !isValidAssumeForContext(I, BBI)) 769 continue; 770 771 BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0))); 772 } 773 774 // If guards are not used in the module, don't spend time looking for them 775 if (GuardDecl && !GuardDecl->use_empty() && 776 BBI->getIterator() != BB->begin()) { 777 for (Instruction &I : make_range(std::next(BBI->getIterator().getReverse()), 778 BB->rend())) { 779 Value *Cond = nullptr; 780 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond)))) 781 BBLV = intersect(BBLV, getValueFromCondition(Val, Cond)); 782 } 783 } 784 785 if (BBLV.isOverdefined()) { 786 // Check whether we're checking at the terminator, and the pointer has 787 // been dereferenced in this block. 788 PointerType *PTy = dyn_cast<PointerType>(Val->getType()); 789 if (PTy && BB->getTerminator() == BBI && 790 isNonNullAtEndOfBlock(Val, BB)) 791 BBLV = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); 792 } 793 } 794 795 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueSelect( 796 SelectInst *SI, BasicBlock *BB) { 797 // Recurse on our inputs if needed 798 Optional<ValueLatticeElement> OptTrueVal = 799 getBlockValue(SI->getTrueValue(), BB); 800 if (!OptTrueVal) 801 return None; 802 ValueLatticeElement &TrueVal = *OptTrueVal; 803 804 Optional<ValueLatticeElement> OptFalseVal = 805 getBlockValue(SI->getFalseValue(), BB); 806 if (!OptFalseVal) 807 return None; 808 ValueLatticeElement &FalseVal = *OptFalseVal; 809 810 if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) { 811 const ConstantRange &TrueCR = TrueVal.getConstantRange(); 812 const ConstantRange &FalseCR = FalseVal.getConstantRange(); 813 Value *LHS = nullptr; 814 Value *RHS = nullptr; 815 SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS); 816 // Is this a min specifically of our two inputs? (Avoid the risk of 817 // ValueTracking getting smarter looking back past our immediate inputs.) 818 if (SelectPatternResult::isMinOrMax(SPR.Flavor) && 819 LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) { 820 ConstantRange ResultCR = [&]() { 821 switch (SPR.Flavor) { 822 default: 823 llvm_unreachable("unexpected minmax type!"); 824 case SPF_SMIN: /// Signed minimum 825 return TrueCR.smin(FalseCR); 826 case SPF_UMIN: /// Unsigned minimum 827 return TrueCR.umin(FalseCR); 828 case SPF_SMAX: /// Signed maximum 829 return TrueCR.smax(FalseCR); 830 case SPF_UMAX: /// Unsigned maximum 831 return TrueCR.umax(FalseCR); 832 }; 833 }(); 834 return ValueLatticeElement::getRange( 835 ResultCR, TrueVal.isConstantRangeIncludingUndef() || 836 FalseVal.isConstantRangeIncludingUndef()); 837 } 838 839 if (SPR.Flavor == SPF_ABS) { 840 if (LHS == SI->getTrueValue()) 841 return ValueLatticeElement::getRange( 842 TrueCR.abs(), TrueVal.isConstantRangeIncludingUndef()); 843 if (LHS == SI->getFalseValue()) 844 return ValueLatticeElement::getRange( 845 FalseCR.abs(), FalseVal.isConstantRangeIncludingUndef()); 846 } 847 848 if (SPR.Flavor == SPF_NABS) { 849 ConstantRange Zero(APInt::getZero(TrueCR.getBitWidth())); 850 if (LHS == SI->getTrueValue()) 851 return ValueLatticeElement::getRange( 852 Zero.sub(TrueCR.abs()), FalseVal.isConstantRangeIncludingUndef()); 853 if (LHS == SI->getFalseValue()) 854 return ValueLatticeElement::getRange( 855 Zero.sub(FalseCR.abs()), FalseVal.isConstantRangeIncludingUndef()); 856 } 857 } 858 859 // Can we constrain the facts about the true and false values by using the 860 // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5). 861 // TODO: We could potentially refine an overdefined true value above. 862 Value *Cond = SI->getCondition(); 863 TrueVal = intersect(TrueVal, 864 getValueFromCondition(SI->getTrueValue(), Cond, true)); 865 FalseVal = intersect(FalseVal, 866 getValueFromCondition(SI->getFalseValue(), Cond, false)); 867 868 ValueLatticeElement Result = TrueVal; 869 Result.mergeIn(FalseVal); 870 return Result; 871 } 872 873 Optional<ConstantRange> LazyValueInfoImpl::getRangeFor(Value *V, 874 Instruction *CxtI, 875 BasicBlock *BB) { 876 Optional<ValueLatticeElement> OptVal = getBlockValue(V, BB); 877 if (!OptVal) 878 return None; 879 880 ValueLatticeElement &Val = *OptVal; 881 intersectAssumeOrGuardBlockValueConstantRange(V, Val, CxtI); 882 if (Val.isConstantRange()) 883 return Val.getConstantRange(); 884 885 const unsigned OperandBitWidth = DL.getTypeSizeInBits(V->getType()); 886 return ConstantRange::getFull(OperandBitWidth); 887 } 888 889 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueCast( 890 CastInst *CI, BasicBlock *BB) { 891 // Without knowing how wide the input is, we can't analyze it in any useful 892 // way. 893 if (!CI->getOperand(0)->getType()->isSized()) 894 return ValueLatticeElement::getOverdefined(); 895 896 // Filter out casts we don't know how to reason about before attempting to 897 // recurse on our operand. This can cut a long search short if we know we're 898 // not going to be able to get any useful information anways. 899 switch (CI->getOpcode()) { 900 case Instruction::Trunc: 901 case Instruction::SExt: 902 case Instruction::ZExt: 903 case Instruction::BitCast: 904 break; 905 default: 906 // Unhandled instructions are overdefined. 907 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 908 << "' - overdefined (unknown cast).\n"); 909 return ValueLatticeElement::getOverdefined(); 910 } 911 912 // Figure out the range of the LHS. If that fails, we still apply the 913 // transfer rule on the full set since we may be able to locally infer 914 // interesting facts. 915 Optional<ConstantRange> LHSRes = getRangeFor(CI->getOperand(0), CI, BB); 916 if (!LHSRes.hasValue()) 917 // More work to do before applying this transfer rule. 918 return None; 919 const ConstantRange &LHSRange = LHSRes.getValue(); 920 921 const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth(); 922 923 // NOTE: We're currently limited by the set of operations that ConstantRange 924 // can evaluate symbolically. Enhancing that set will allows us to analyze 925 // more definitions. 926 return ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(), 927 ResultBitWidth)); 928 } 929 930 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueBinaryOpImpl( 931 Instruction *I, BasicBlock *BB, 932 std::function<ConstantRange(const ConstantRange &, 933 const ConstantRange &)> OpFn) { 934 // Figure out the ranges of the operands. If that fails, use a 935 // conservative range, but apply the transfer rule anyways. This 936 // lets us pick up facts from expressions like "and i32 (call i32 937 // @foo()), 32" 938 Optional<ConstantRange> LHSRes = getRangeFor(I->getOperand(0), I, BB); 939 Optional<ConstantRange> RHSRes = getRangeFor(I->getOperand(1), I, BB); 940 if (!LHSRes.hasValue() || !RHSRes.hasValue()) 941 // More work to do before applying this transfer rule. 942 return None; 943 944 const ConstantRange &LHSRange = LHSRes.getValue(); 945 const ConstantRange &RHSRange = RHSRes.getValue(); 946 return ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange)); 947 } 948 949 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueBinaryOp( 950 BinaryOperator *BO, BasicBlock *BB) { 951 assert(BO->getOperand(0)->getType()->isSized() && 952 "all operands to binary operators are sized"); 953 if (BO->getOpcode() == Instruction::Xor) { 954 // Xor is the only operation not supported by ConstantRange::binaryOp(). 955 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 956 << "' - overdefined (unknown binary operator).\n"); 957 return ValueLatticeElement::getOverdefined(); 958 } 959 960 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) { 961 unsigned NoWrapKind = 0; 962 if (OBO->hasNoUnsignedWrap()) 963 NoWrapKind |= OverflowingBinaryOperator::NoUnsignedWrap; 964 if (OBO->hasNoSignedWrap()) 965 NoWrapKind |= OverflowingBinaryOperator::NoSignedWrap; 966 967 return solveBlockValueBinaryOpImpl( 968 BO, BB, 969 [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) { 970 return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind); 971 }); 972 } 973 974 return solveBlockValueBinaryOpImpl( 975 BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) { 976 return CR1.binaryOp(BO->getOpcode(), CR2); 977 }); 978 } 979 980 Optional<ValueLatticeElement> 981 LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(WithOverflowInst *WO, 982 BasicBlock *BB) { 983 return solveBlockValueBinaryOpImpl( 984 WO, BB, [WO](const ConstantRange &CR1, const ConstantRange &CR2) { 985 return CR1.binaryOp(WO->getBinaryOp(), CR2); 986 }); 987 } 988 989 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueIntrinsic( 990 IntrinsicInst *II, BasicBlock *BB) { 991 if (!ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) { 992 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 993 << "' - unknown intrinsic.\n"); 994 return getFromRangeMetadata(II); 995 } 996 997 SmallVector<ConstantRange, 2> OpRanges; 998 for (Value *Op : II->args()) { 999 Optional<ConstantRange> Range = getRangeFor(Op, II, BB); 1000 if (!Range) 1001 return None; 1002 OpRanges.push_back(*Range); 1003 } 1004 1005 return ValueLatticeElement::getRange( 1006 ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges)); 1007 } 1008 1009 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueExtractValue( 1010 ExtractValueInst *EVI, BasicBlock *BB) { 1011 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) 1012 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0) 1013 return solveBlockValueOverflowIntrinsic(WO, BB); 1014 1015 // Handle extractvalue of insertvalue to allow further simplification 1016 // based on replaced with.overflow intrinsics. 1017 if (Value *V = SimplifyExtractValueInst( 1018 EVI->getAggregateOperand(), EVI->getIndices(), 1019 EVI->getModule()->getDataLayout())) 1020 return getBlockValue(V, BB); 1021 1022 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 1023 << "' - overdefined (unknown extractvalue).\n"); 1024 return ValueLatticeElement::getOverdefined(); 1025 } 1026 1027 static bool matchICmpOperand(APInt &Offset, Value *LHS, Value *Val, 1028 ICmpInst::Predicate Pred) { 1029 if (LHS == Val) 1030 return true; 1031 1032 // Handle range checking idiom produced by InstCombine. We will subtract the 1033 // offset from the allowed range for RHS in this case. 1034 const APInt *C; 1035 if (match(LHS, m_Add(m_Specific(Val), m_APInt(C)))) { 1036 Offset = *C; 1037 return true; 1038 } 1039 1040 // Handle the symmetric case. This appears in saturation patterns like 1041 // (x == 16) ? 16 : (x + 1). 1042 if (match(Val, m_Add(m_Specific(LHS), m_APInt(C)))) { 1043 Offset = -*C; 1044 return true; 1045 } 1046 1047 // If (x | y) < C, then (x < C) && (y < C). 1048 if (match(LHS, m_c_Or(m_Specific(Val), m_Value())) && 1049 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)) 1050 return true; 1051 1052 // If (x & y) > C, then (x > C) && (y > C). 1053 if (match(LHS, m_c_And(m_Specific(Val), m_Value())) && 1054 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)) 1055 return true; 1056 1057 return false; 1058 } 1059 1060 /// Get value range for a "(Val + Offset) Pred RHS" condition. 1061 static ValueLatticeElement getValueFromSimpleICmpCondition( 1062 CmpInst::Predicate Pred, Value *RHS, const APInt &Offset) { 1063 ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(), 1064 /*isFullSet=*/true); 1065 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) 1066 RHSRange = ConstantRange(CI->getValue()); 1067 else if (Instruction *I = dyn_cast<Instruction>(RHS)) 1068 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 1069 RHSRange = getConstantRangeFromMetadata(*Ranges); 1070 1071 ConstantRange TrueValues = 1072 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 1073 return ValueLatticeElement::getRange(TrueValues.subtract(Offset)); 1074 } 1075 1076 static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI, 1077 bool isTrueDest) { 1078 Value *LHS = ICI->getOperand(0); 1079 Value *RHS = ICI->getOperand(1); 1080 1081 // Get the predicate that must hold along the considered edge. 1082 CmpInst::Predicate EdgePred = 1083 isTrueDest ? ICI->getPredicate() : ICI->getInversePredicate(); 1084 1085 if (isa<Constant>(RHS)) { 1086 if (ICI->isEquality() && LHS == Val) { 1087 if (EdgePred == ICmpInst::ICMP_EQ) 1088 return ValueLatticeElement::get(cast<Constant>(RHS)); 1089 else if (!isa<UndefValue>(RHS)) 1090 return ValueLatticeElement::getNot(cast<Constant>(RHS)); 1091 } 1092 } 1093 1094 Type *Ty = Val->getType(); 1095 if (!Ty->isIntegerTy()) 1096 return ValueLatticeElement::getOverdefined(); 1097 1098 unsigned BitWidth = Ty->getScalarSizeInBits(); 1099 APInt Offset(BitWidth, 0); 1100 if (matchICmpOperand(Offset, LHS, Val, EdgePred)) 1101 return getValueFromSimpleICmpCondition(EdgePred, RHS, Offset); 1102 1103 CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(EdgePred); 1104 if (matchICmpOperand(Offset, RHS, Val, SwappedPred)) 1105 return getValueFromSimpleICmpCondition(SwappedPred, LHS, Offset); 1106 1107 const APInt *Mask, *C; 1108 if (match(LHS, m_And(m_Specific(Val), m_APInt(Mask))) && 1109 match(RHS, m_APInt(C))) { 1110 // If (Val & Mask) == C then all the masked bits are known and we can 1111 // compute a value range based on that. 1112 if (EdgePred == ICmpInst::ICMP_EQ) { 1113 KnownBits Known; 1114 Known.Zero = ~*C & *Mask; 1115 Known.One = *C & *Mask; 1116 return ValueLatticeElement::getRange( 1117 ConstantRange::fromKnownBits(Known, /*IsSigned*/ false)); 1118 } 1119 // If (Val & Mask) != 0 then the value must be larger than the lowest set 1120 // bit of Mask. 1121 if (EdgePred == ICmpInst::ICMP_NE && !Mask->isZero() && C->isZero()) { 1122 return ValueLatticeElement::getRange(ConstantRange::getNonEmpty( 1123 APInt::getOneBitSet(BitWidth, Mask->countTrailingZeros()), 1124 APInt::getZero(BitWidth))); 1125 } 1126 } 1127 1128 // If (X urem Modulus) >= C, then X >= C. 1129 // TODO: An upper bound could be computed as well. 1130 if (match(LHS, m_URem(m_Specific(Val), m_Value())) && 1131 match(RHS, m_APInt(C))) { 1132 // Use the icmp region so we don't have to deal with different predicates. 1133 ConstantRange CR = ConstantRange::makeExactICmpRegion(EdgePred, *C); 1134 if (!CR.isEmptySet()) 1135 return ValueLatticeElement::getRange(ConstantRange::getNonEmpty( 1136 CR.getUnsignedMin(), APInt(BitWidth, 0))); 1137 } 1138 1139 return ValueLatticeElement::getOverdefined(); 1140 } 1141 1142 // Handle conditions of the form 1143 // extractvalue(op.with.overflow(%x, C), 1). 1144 static ValueLatticeElement getValueFromOverflowCondition( 1145 Value *Val, WithOverflowInst *WO, bool IsTrueDest) { 1146 // TODO: This only works with a constant RHS for now. We could also compute 1147 // the range of the RHS, but this doesn't fit into the current structure of 1148 // the edge value calculation. 1149 const APInt *C; 1150 if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C))) 1151 return ValueLatticeElement::getOverdefined(); 1152 1153 // Calculate the possible values of %x for which no overflow occurs. 1154 ConstantRange NWR = ConstantRange::makeExactNoWrapRegion( 1155 WO->getBinaryOp(), *C, WO->getNoWrapKind()); 1156 1157 // If overflow is false, %x is constrained to NWR. If overflow is true, %x is 1158 // constrained to it's inverse (all values that might cause overflow). 1159 if (IsTrueDest) 1160 NWR = NWR.inverse(); 1161 return ValueLatticeElement::getRange(NWR); 1162 } 1163 1164 static Optional<ValueLatticeElement> 1165 getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest, 1166 bool isRevisit, 1167 SmallDenseMap<Value *, ValueLatticeElement> &Visited, 1168 SmallVectorImpl<Value *> &Worklist) { 1169 if (!isRevisit) { 1170 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond)) 1171 return getValueFromICmpCondition(Val, ICI, isTrueDest); 1172 1173 if (auto *EVI = dyn_cast<ExtractValueInst>(Cond)) 1174 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) 1175 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1) 1176 return getValueFromOverflowCondition(Val, WO, isTrueDest); 1177 } 1178 1179 Value *L, *R; 1180 bool IsAnd; 1181 if (match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))) 1182 IsAnd = true; 1183 else if (match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) 1184 IsAnd = false; 1185 else 1186 return ValueLatticeElement::getOverdefined(); 1187 1188 auto LV = Visited.find(L); 1189 auto RV = Visited.find(R); 1190 1191 // if (L && R) -> intersect L and R 1192 // if (!(L || R)) -> intersect L and R 1193 // if (L || R) -> union L and R 1194 // if (!(L && R)) -> union L and R 1195 if ((isTrueDest ^ IsAnd) && (LV != Visited.end())) { 1196 ValueLatticeElement V = LV->second; 1197 if (V.isOverdefined()) 1198 return V; 1199 if (RV != Visited.end()) { 1200 V.mergeIn(RV->second); 1201 return V; 1202 } 1203 } 1204 1205 if (LV == Visited.end() || RV == Visited.end()) { 1206 assert(!isRevisit); 1207 if (LV == Visited.end()) 1208 Worklist.push_back(L); 1209 if (RV == Visited.end()) 1210 Worklist.push_back(R); 1211 return None; 1212 } 1213 1214 return intersect(LV->second, RV->second); 1215 } 1216 1217 ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, 1218 bool isTrueDest) { 1219 assert(Cond && "precondition"); 1220 SmallDenseMap<Value*, ValueLatticeElement> Visited; 1221 SmallVector<Value *> Worklist; 1222 1223 Worklist.push_back(Cond); 1224 do { 1225 Value *CurrentCond = Worklist.back(); 1226 // Insert an Overdefined placeholder into the set to prevent 1227 // infinite recursion if there exists IRs that use not 1228 // dominated by its def as in this example: 1229 // "%tmp3 = or i1 undef, %tmp4" 1230 // "%tmp4 = or i1 undef, %tmp3" 1231 auto Iter = 1232 Visited.try_emplace(CurrentCond, ValueLatticeElement::getOverdefined()); 1233 bool isRevisit = !Iter.second; 1234 Optional<ValueLatticeElement> Result = getValueFromConditionImpl( 1235 Val, CurrentCond, isTrueDest, isRevisit, Visited, Worklist); 1236 if (Result) { 1237 Visited[CurrentCond] = *Result; 1238 Worklist.pop_back(); 1239 } 1240 } while (!Worklist.empty()); 1241 1242 auto Result = Visited.find(Cond); 1243 assert(Result != Visited.end()); 1244 return Result->second; 1245 } 1246 1247 // Return true if Usr has Op as an operand, otherwise false. 1248 static bool usesOperand(User *Usr, Value *Op) { 1249 return is_contained(Usr->operands(), Op); 1250 } 1251 1252 // Return true if the instruction type of Val is supported by 1253 // constantFoldUser(). Currently CastInst, BinaryOperator and FreezeInst only. 1254 // Call this before calling constantFoldUser() to find out if it's even worth 1255 // attempting to call it. 1256 static bool isOperationFoldable(User *Usr) { 1257 return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr) || isa<FreezeInst>(Usr); 1258 } 1259 1260 // Check if Usr can be simplified to an integer constant when the value of one 1261 // of its operands Op is an integer constant OpConstVal. If so, return it as an 1262 // lattice value range with a single element or otherwise return an overdefined 1263 // lattice value. 1264 static ValueLatticeElement constantFoldUser(User *Usr, Value *Op, 1265 const APInt &OpConstVal, 1266 const DataLayout &DL) { 1267 assert(isOperationFoldable(Usr) && "Precondition"); 1268 Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal); 1269 // Check if Usr can be simplified to a constant. 1270 if (auto *CI = dyn_cast<CastInst>(Usr)) { 1271 assert(CI->getOperand(0) == Op && "Operand 0 isn't Op"); 1272 if (auto *C = dyn_cast_or_null<ConstantInt>( 1273 SimplifyCastInst(CI->getOpcode(), OpConst, 1274 CI->getDestTy(), DL))) { 1275 return ValueLatticeElement::getRange(ConstantRange(C->getValue())); 1276 } 1277 } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) { 1278 bool Op0Match = BO->getOperand(0) == Op; 1279 bool Op1Match = BO->getOperand(1) == Op; 1280 assert((Op0Match || Op1Match) && 1281 "Operand 0 nor Operand 1 isn't a match"); 1282 Value *LHS = Op0Match ? OpConst : BO->getOperand(0); 1283 Value *RHS = Op1Match ? OpConst : BO->getOperand(1); 1284 if (auto *C = dyn_cast_or_null<ConstantInt>( 1285 SimplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) { 1286 return ValueLatticeElement::getRange(ConstantRange(C->getValue())); 1287 } 1288 } else if (isa<FreezeInst>(Usr)) { 1289 assert(cast<FreezeInst>(Usr)->getOperand(0) == Op && "Operand 0 isn't Op"); 1290 return ValueLatticeElement::getRange(ConstantRange(OpConstVal)); 1291 } 1292 return ValueLatticeElement::getOverdefined(); 1293 } 1294 1295 /// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if 1296 /// Val is not constrained on the edge. Result is unspecified if return value 1297 /// is false. 1298 static Optional<ValueLatticeElement> getEdgeValueLocal(Value *Val, 1299 BasicBlock *BBFrom, 1300 BasicBlock *BBTo) { 1301 // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we 1302 // know that v != 0. 1303 if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) { 1304 // If this is a conditional branch and only one successor goes to BBTo, then 1305 // we may be able to infer something from the condition. 1306 if (BI->isConditional() && 1307 BI->getSuccessor(0) != BI->getSuccessor(1)) { 1308 bool isTrueDest = BI->getSuccessor(0) == BBTo; 1309 assert(BI->getSuccessor(!isTrueDest) == BBTo && 1310 "BBTo isn't a successor of BBFrom"); 1311 Value *Condition = BI->getCondition(); 1312 1313 // If V is the condition of the branch itself, then we know exactly what 1314 // it is. 1315 if (Condition == Val) 1316 return ValueLatticeElement::get(ConstantInt::get( 1317 Type::getInt1Ty(Val->getContext()), isTrueDest)); 1318 1319 // If the condition of the branch is an equality comparison, we may be 1320 // able to infer the value. 1321 ValueLatticeElement Result = getValueFromCondition(Val, Condition, 1322 isTrueDest); 1323 if (!Result.isOverdefined()) 1324 return Result; 1325 1326 if (User *Usr = dyn_cast<User>(Val)) { 1327 assert(Result.isOverdefined() && "Result isn't overdefined"); 1328 // Check with isOperationFoldable() first to avoid linearly iterating 1329 // over the operands unnecessarily which can be expensive for 1330 // instructions with many operands. 1331 if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) { 1332 const DataLayout &DL = BBTo->getModule()->getDataLayout(); 1333 if (usesOperand(Usr, Condition)) { 1334 // If Val has Condition as an operand and Val can be folded into a 1335 // constant with either Condition == true or Condition == false, 1336 // propagate the constant. 1337 // eg. 1338 // ; %Val is true on the edge to %then. 1339 // %Val = and i1 %Condition, true. 1340 // br %Condition, label %then, label %else 1341 APInt ConditionVal(1, isTrueDest ? 1 : 0); 1342 Result = constantFoldUser(Usr, Condition, ConditionVal, DL); 1343 } else { 1344 // If one of Val's operand has an inferred value, we may be able to 1345 // infer the value of Val. 1346 // eg. 1347 // ; %Val is 94 on the edge to %then. 1348 // %Val = add i8 %Op, 1 1349 // %Condition = icmp eq i8 %Op, 93 1350 // br i1 %Condition, label %then, label %else 1351 for (unsigned i = 0; i < Usr->getNumOperands(); ++i) { 1352 Value *Op = Usr->getOperand(i); 1353 ValueLatticeElement OpLatticeVal = 1354 getValueFromCondition(Op, Condition, isTrueDest); 1355 if (Optional<APInt> OpConst = OpLatticeVal.asConstantInteger()) { 1356 Result = constantFoldUser(Usr, Op, OpConst.getValue(), DL); 1357 break; 1358 } 1359 } 1360 } 1361 } 1362 } 1363 if (!Result.isOverdefined()) 1364 return Result; 1365 } 1366 } 1367 1368 // If the edge was formed by a switch on the value, then we may know exactly 1369 // what it is. 1370 if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) { 1371 Value *Condition = SI->getCondition(); 1372 if (!isa<IntegerType>(Val->getType())) 1373 return None; 1374 bool ValUsesConditionAndMayBeFoldable = false; 1375 if (Condition != Val) { 1376 // Check if Val has Condition as an operand. 1377 if (User *Usr = dyn_cast<User>(Val)) 1378 ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) && 1379 usesOperand(Usr, Condition); 1380 if (!ValUsesConditionAndMayBeFoldable) 1381 return None; 1382 } 1383 assert((Condition == Val || ValUsesConditionAndMayBeFoldable) && 1384 "Condition != Val nor Val doesn't use Condition"); 1385 1386 bool DefaultCase = SI->getDefaultDest() == BBTo; 1387 unsigned BitWidth = Val->getType()->getIntegerBitWidth(); 1388 ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/); 1389 1390 for (auto Case : SI->cases()) { 1391 APInt CaseValue = Case.getCaseValue()->getValue(); 1392 ConstantRange EdgeVal(CaseValue); 1393 if (ValUsesConditionAndMayBeFoldable) { 1394 User *Usr = cast<User>(Val); 1395 const DataLayout &DL = BBTo->getModule()->getDataLayout(); 1396 ValueLatticeElement EdgeLatticeVal = 1397 constantFoldUser(Usr, Condition, CaseValue, DL); 1398 if (EdgeLatticeVal.isOverdefined()) 1399 return None; 1400 EdgeVal = EdgeLatticeVal.getConstantRange(); 1401 } 1402 if (DefaultCase) { 1403 // It is possible that the default destination is the destination of 1404 // some cases. We cannot perform difference for those cases. 1405 // We know Condition != CaseValue in BBTo. In some cases we can use 1406 // this to infer Val == f(Condition) is != f(CaseValue). For now, we 1407 // only do this when f is identity (i.e. Val == Condition), but we 1408 // should be able to do this for any injective f. 1409 if (Case.getCaseSuccessor() != BBTo && Condition == Val) 1410 EdgesVals = EdgesVals.difference(EdgeVal); 1411 } else if (Case.getCaseSuccessor() == BBTo) 1412 EdgesVals = EdgesVals.unionWith(EdgeVal); 1413 } 1414 return ValueLatticeElement::getRange(std::move(EdgesVals)); 1415 } 1416 return None; 1417 } 1418 1419 /// Compute the value of Val on the edge BBFrom -> BBTo or the value at 1420 /// the basic block if the edge does not constrain Val. 1421 Optional<ValueLatticeElement> LazyValueInfoImpl::getEdgeValue( 1422 Value *Val, BasicBlock *BBFrom, BasicBlock *BBTo, Instruction *CxtI) { 1423 // If already a constant, there is nothing to compute. 1424 if (Constant *VC = dyn_cast<Constant>(Val)) 1425 return ValueLatticeElement::get(VC); 1426 1427 ValueLatticeElement LocalResult = getEdgeValueLocal(Val, BBFrom, BBTo) 1428 .getValueOr(ValueLatticeElement::getOverdefined()); 1429 if (hasSingleValue(LocalResult)) 1430 // Can't get any more precise here 1431 return LocalResult; 1432 1433 Optional<ValueLatticeElement> OptInBlock = getBlockValue(Val, BBFrom); 1434 if (!OptInBlock) 1435 return None; 1436 ValueLatticeElement &InBlock = *OptInBlock; 1437 1438 // Try to intersect ranges of the BB and the constraint on the edge. 1439 intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, 1440 BBFrom->getTerminator()); 1441 // We can use the context instruction (generically the ultimate instruction 1442 // the calling pass is trying to simplify) here, even though the result of 1443 // this function is generally cached when called from the solve* functions 1444 // (and that cached result might be used with queries using a different 1445 // context instruction), because when this function is called from the solve* 1446 // functions, the context instruction is not provided. When called from 1447 // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided, 1448 // but then the result is not cached. 1449 intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI); 1450 1451 return intersect(LocalResult, InBlock); 1452 } 1453 1454 ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB, 1455 Instruction *CxtI) { 1456 LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" 1457 << BB->getName() << "'\n"); 1458 1459 assert(BlockValueStack.empty() && BlockValueSet.empty()); 1460 Optional<ValueLatticeElement> OptResult = getBlockValue(V, BB); 1461 if (!OptResult) { 1462 solve(); 1463 OptResult = getBlockValue(V, BB); 1464 assert(OptResult && "Value not available after solving"); 1465 } 1466 ValueLatticeElement Result = *OptResult; 1467 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); 1468 1469 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); 1470 return Result; 1471 } 1472 1473 ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) { 1474 LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName() 1475 << "'\n"); 1476 1477 if (auto *C = dyn_cast<Constant>(V)) 1478 return ValueLatticeElement::get(C); 1479 1480 ValueLatticeElement Result = ValueLatticeElement::getOverdefined(); 1481 if (auto *I = dyn_cast<Instruction>(V)) 1482 Result = getFromRangeMetadata(I); 1483 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); 1484 1485 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); 1486 return Result; 1487 } 1488 1489 ValueLatticeElement LazyValueInfoImpl:: 1490 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, 1491 Instruction *CxtI) { 1492 LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" 1493 << FromBB->getName() << "' to '" << ToBB->getName() 1494 << "'\n"); 1495 1496 Optional<ValueLatticeElement> Result = getEdgeValue(V, FromBB, ToBB, CxtI); 1497 if (!Result) { 1498 solve(); 1499 Result = getEdgeValue(V, FromBB, ToBB, CxtI); 1500 assert(Result && "More work to do after problem solved?"); 1501 } 1502 1503 LLVM_DEBUG(dbgs() << " Result = " << *Result << "\n"); 1504 return *Result; 1505 } 1506 1507 void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, 1508 BasicBlock *NewSucc) { 1509 TheCache.threadEdgeImpl(OldSucc, NewSucc); 1510 } 1511 1512 //===----------------------------------------------------------------------===// 1513 // LazyValueInfo Impl 1514 //===----------------------------------------------------------------------===// 1515 1516 /// This lazily constructs the LazyValueInfoImpl. 1517 static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC, 1518 const Module *M) { 1519 if (!PImpl) { 1520 assert(M && "getCache() called with a null Module"); 1521 const DataLayout &DL = M->getDataLayout(); 1522 Function *GuardDecl = M->getFunction( 1523 Intrinsic::getName(Intrinsic::experimental_guard)); 1524 PImpl = new LazyValueInfoImpl(AC, DL, GuardDecl); 1525 } 1526 return *static_cast<LazyValueInfoImpl*>(PImpl); 1527 } 1528 1529 bool LazyValueInfoWrapperPass::runOnFunction(Function &F) { 1530 Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1531 Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1532 1533 if (Info.PImpl) 1534 getImpl(Info.PImpl, Info.AC, F.getParent()).clear(); 1535 1536 // Fully lazy. 1537 return false; 1538 } 1539 1540 void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1541 AU.setPreservesAll(); 1542 AU.addRequired<AssumptionCacheTracker>(); 1543 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1544 } 1545 1546 LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; } 1547 1548 LazyValueInfo::~LazyValueInfo() { releaseMemory(); } 1549 1550 void LazyValueInfo::releaseMemory() { 1551 // If the cache was allocated, free it. 1552 if (PImpl) { 1553 delete &getImpl(PImpl, AC, nullptr); 1554 PImpl = nullptr; 1555 } 1556 } 1557 1558 bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA, 1559 FunctionAnalysisManager::Invalidator &Inv) { 1560 // We need to invalidate if we have either failed to preserve this analyses 1561 // result directly or if any of its dependencies have been invalidated. 1562 auto PAC = PA.getChecker<LazyValueAnalysis>(); 1563 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>())) 1564 return true; 1565 1566 return false; 1567 } 1568 1569 void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); } 1570 1571 LazyValueInfo LazyValueAnalysis::run(Function &F, 1572 FunctionAnalysisManager &FAM) { 1573 auto &AC = FAM.getResult<AssumptionAnalysis>(F); 1574 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 1575 1576 return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI); 1577 } 1578 1579 /// Returns true if we can statically tell that this value will never be a 1580 /// "useful" constant. In practice, this means we've got something like an 1581 /// alloca or a malloc call for which a comparison against a constant can 1582 /// only be guarding dead code. Note that we are potentially giving up some 1583 /// precision in dead code (a constant result) in favour of avoiding a 1584 /// expensive search for a easily answered common query. 1585 static bool isKnownNonConstant(Value *V) { 1586 V = V->stripPointerCasts(); 1587 // The return val of alloc cannot be a Constant. 1588 if (isa<AllocaInst>(V)) 1589 return true; 1590 return false; 1591 } 1592 1593 Constant *LazyValueInfo::getConstant(Value *V, Instruction *CxtI) { 1594 // Bail out early if V is known not to be a Constant. 1595 if (isKnownNonConstant(V)) 1596 return nullptr; 1597 1598 BasicBlock *BB = CxtI->getParent(); 1599 ValueLatticeElement Result = 1600 getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI); 1601 1602 if (Result.isConstant()) 1603 return Result.getConstant(); 1604 if (Result.isConstantRange()) { 1605 const ConstantRange &CR = Result.getConstantRange(); 1606 if (const APInt *SingleVal = CR.getSingleElement()) 1607 return ConstantInt::get(V->getContext(), *SingleVal); 1608 } 1609 return nullptr; 1610 } 1611 1612 ConstantRange LazyValueInfo::getConstantRange(Value *V, Instruction *CxtI, 1613 bool UndefAllowed) { 1614 assert(V->getType()->isIntegerTy()); 1615 unsigned Width = V->getType()->getIntegerBitWidth(); 1616 BasicBlock *BB = CxtI->getParent(); 1617 ValueLatticeElement Result = 1618 getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI); 1619 if (Result.isUnknown()) 1620 return ConstantRange::getEmpty(Width); 1621 if (Result.isConstantRange(UndefAllowed)) 1622 return Result.getConstantRange(UndefAllowed); 1623 // We represent ConstantInt constants as constant ranges but other kinds 1624 // of integer constants, i.e. ConstantExpr will be tagged as constants 1625 assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && 1626 "ConstantInt value must be represented as constantrange"); 1627 return ConstantRange::getFull(Width); 1628 } 1629 1630 /// Determine whether the specified value is known to be a 1631 /// constant on the specified edge. Return null if not. 1632 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, 1633 BasicBlock *ToBB, 1634 Instruction *CxtI) { 1635 Module *M = FromBB->getModule(); 1636 ValueLatticeElement Result = 1637 getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI); 1638 1639 if (Result.isConstant()) 1640 return Result.getConstant(); 1641 if (Result.isConstantRange()) { 1642 const ConstantRange &CR = Result.getConstantRange(); 1643 if (const APInt *SingleVal = CR.getSingleElement()) 1644 return ConstantInt::get(V->getContext(), *SingleVal); 1645 } 1646 return nullptr; 1647 } 1648 1649 ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V, 1650 BasicBlock *FromBB, 1651 BasicBlock *ToBB, 1652 Instruction *CxtI) { 1653 unsigned Width = V->getType()->getIntegerBitWidth(); 1654 Module *M = FromBB->getModule(); 1655 ValueLatticeElement Result = 1656 getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI); 1657 1658 if (Result.isUnknown()) 1659 return ConstantRange::getEmpty(Width); 1660 if (Result.isConstantRange()) 1661 return Result.getConstantRange(); 1662 // We represent ConstantInt constants as constant ranges but other kinds 1663 // of integer constants, i.e. ConstantExpr will be tagged as constants 1664 assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && 1665 "ConstantInt value must be represented as constantrange"); 1666 return ConstantRange::getFull(Width); 1667 } 1668 1669 static LazyValueInfo::Tristate 1670 getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val, 1671 const DataLayout &DL, TargetLibraryInfo *TLI) { 1672 // If we know the value is a constant, evaluate the conditional. 1673 Constant *Res = nullptr; 1674 if (Val.isConstant()) { 1675 Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI); 1676 if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res)) 1677 return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True; 1678 return LazyValueInfo::Unknown; 1679 } 1680 1681 if (Val.isConstantRange()) { 1682 ConstantInt *CI = dyn_cast<ConstantInt>(C); 1683 if (!CI) return LazyValueInfo::Unknown; 1684 1685 const ConstantRange &CR = Val.getConstantRange(); 1686 if (Pred == ICmpInst::ICMP_EQ) { 1687 if (!CR.contains(CI->getValue())) 1688 return LazyValueInfo::False; 1689 1690 if (CR.isSingleElement()) 1691 return LazyValueInfo::True; 1692 } else if (Pred == ICmpInst::ICMP_NE) { 1693 if (!CR.contains(CI->getValue())) 1694 return LazyValueInfo::True; 1695 1696 if (CR.isSingleElement()) 1697 return LazyValueInfo::False; 1698 } else { 1699 // Handle more complex predicates. 1700 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion( 1701 (ICmpInst::Predicate)Pred, CI->getValue()); 1702 if (TrueValues.contains(CR)) 1703 return LazyValueInfo::True; 1704 if (TrueValues.inverse().contains(CR)) 1705 return LazyValueInfo::False; 1706 } 1707 return LazyValueInfo::Unknown; 1708 } 1709 1710 if (Val.isNotConstant()) { 1711 // If this is an equality comparison, we can try to fold it knowing that 1712 // "V != C1". 1713 if (Pred == ICmpInst::ICMP_EQ) { 1714 // !C1 == C -> false iff C1 == C. 1715 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, 1716 Val.getNotConstant(), C, DL, 1717 TLI); 1718 if (Res->isNullValue()) 1719 return LazyValueInfo::False; 1720 } else if (Pred == ICmpInst::ICMP_NE) { 1721 // !C1 != C -> true iff C1 == C. 1722 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, 1723 Val.getNotConstant(), C, DL, 1724 TLI); 1725 if (Res->isNullValue()) 1726 return LazyValueInfo::True; 1727 } 1728 return LazyValueInfo::Unknown; 1729 } 1730 1731 return LazyValueInfo::Unknown; 1732 } 1733 1734 /// Determine whether the specified value comparison with a constant is known to 1735 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate. 1736 LazyValueInfo::Tristate 1737 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, 1738 BasicBlock *FromBB, BasicBlock *ToBB, 1739 Instruction *CxtI) { 1740 Module *M = FromBB->getModule(); 1741 ValueLatticeElement Result = 1742 getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI); 1743 1744 return getPredicateResult(Pred, C, Result, M->getDataLayout(), TLI); 1745 } 1746 1747 LazyValueInfo::Tristate 1748 LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C, 1749 Instruction *CxtI, bool UseBlockValue) { 1750 // Is or is not NonNull are common predicates being queried. If 1751 // isKnownNonZero can tell us the result of the predicate, we can 1752 // return it quickly. But this is only a fastpath, and falling 1753 // through would still be correct. 1754 Module *M = CxtI->getModule(); 1755 const DataLayout &DL = M->getDataLayout(); 1756 if (V->getType()->isPointerTy() && C->isNullValue() && 1757 isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) { 1758 if (Pred == ICmpInst::ICMP_EQ) 1759 return LazyValueInfo::False; 1760 else if (Pred == ICmpInst::ICMP_NE) 1761 return LazyValueInfo::True; 1762 } 1763 1764 ValueLatticeElement Result = UseBlockValue 1765 ? getImpl(PImpl, AC, M).getValueInBlock(V, CxtI->getParent(), CxtI) 1766 : getImpl(PImpl, AC, M).getValueAt(V, CxtI); 1767 Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI); 1768 if (Ret != Unknown) 1769 return Ret; 1770 1771 // Note: The following bit of code is somewhat distinct from the rest of LVI; 1772 // LVI as a whole tries to compute a lattice value which is conservatively 1773 // correct at a given location. In this case, we have a predicate which we 1774 // weren't able to prove about the merged result, and we're pushing that 1775 // predicate back along each incoming edge to see if we can prove it 1776 // separately for each input. As a motivating example, consider: 1777 // bb1: 1778 // %v1 = ... ; constantrange<1, 5> 1779 // br label %merge 1780 // bb2: 1781 // %v2 = ... ; constantrange<10, 20> 1782 // br label %merge 1783 // merge: 1784 // %phi = phi [%v1, %v2] ; constantrange<1,20> 1785 // %pred = icmp eq i32 %phi, 8 1786 // We can't tell from the lattice value for '%phi' that '%pred' is false 1787 // along each path, but by checking the predicate over each input separately, 1788 // we can. 1789 // We limit the search to one step backwards from the current BB and value. 1790 // We could consider extending this to search further backwards through the 1791 // CFG and/or value graph, but there are non-obvious compile time vs quality 1792 // tradeoffs. 1793 BasicBlock *BB = CxtI->getParent(); 1794 1795 // Function entry or an unreachable block. Bail to avoid confusing 1796 // analysis below. 1797 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1798 if (PI == PE) 1799 return Unknown; 1800 1801 // If V is a PHI node in the same block as the context, we need to ask 1802 // questions about the predicate as applied to the incoming value along 1803 // each edge. This is useful for eliminating cases where the predicate is 1804 // known along all incoming edges. 1805 if (auto *PHI = dyn_cast<PHINode>(V)) 1806 if (PHI->getParent() == BB) { 1807 Tristate Baseline = Unknown; 1808 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) { 1809 Value *Incoming = PHI->getIncomingValue(i); 1810 BasicBlock *PredBB = PHI->getIncomingBlock(i); 1811 // Note that PredBB may be BB itself. 1812 Tristate Result = 1813 getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, CxtI); 1814 1815 // Keep going as long as we've seen a consistent known result for 1816 // all inputs. 1817 Baseline = (i == 0) ? Result /* First iteration */ 1818 : (Baseline == Result ? Baseline 1819 : Unknown); /* All others */ 1820 if (Baseline == Unknown) 1821 break; 1822 } 1823 if (Baseline != Unknown) 1824 return Baseline; 1825 } 1826 1827 // For a comparison where the V is outside this block, it's possible 1828 // that we've branched on it before. Look to see if the value is known 1829 // on all incoming edges. 1830 if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB) { 1831 // For predecessor edge, determine if the comparison is true or false 1832 // on that edge. If they're all true or all false, we can conclude 1833 // the value of the comparison in this block. 1834 Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); 1835 if (Baseline != Unknown) { 1836 // Check that all remaining incoming values match the first one. 1837 while (++PI != PE) { 1838 Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); 1839 if (Ret != Baseline) 1840 break; 1841 } 1842 // If we terminated early, then one of the values didn't match. 1843 if (PI == PE) { 1844 return Baseline; 1845 } 1846 } 1847 } 1848 1849 return Unknown; 1850 } 1851 1852 LazyValueInfo::Tristate LazyValueInfo::getPredicateAt(unsigned P, Value *LHS, 1853 Value *RHS, 1854 Instruction *CxtI, 1855 bool UseBlockValue) { 1856 CmpInst::Predicate Pred = (CmpInst::Predicate)P; 1857 1858 if (auto *C = dyn_cast<Constant>(RHS)) 1859 return getPredicateAt(P, LHS, C, CxtI, UseBlockValue); 1860 if (auto *C = dyn_cast<Constant>(LHS)) 1861 return getPredicateAt(CmpInst::getSwappedPredicate(Pred), RHS, C, CxtI, 1862 UseBlockValue); 1863 1864 // Got two non-Constant values. While we could handle them somewhat, 1865 // by getting their constant ranges, and applying ConstantRange::icmp(), 1866 // so far it did not appear to be profitable. 1867 return LazyValueInfo::Unknown; 1868 } 1869 1870 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, 1871 BasicBlock *NewSucc) { 1872 if (PImpl) { 1873 getImpl(PImpl, AC, PredBB->getModule()) 1874 .threadEdge(PredBB, OldSucc, NewSucc); 1875 } 1876 } 1877 1878 void LazyValueInfo::eraseBlock(BasicBlock *BB) { 1879 if (PImpl) { 1880 getImpl(PImpl, AC, BB->getModule()).eraseBlock(BB); 1881 } 1882 } 1883 1884 1885 void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { 1886 if (PImpl) { 1887 getImpl(PImpl, AC, F.getParent()).printLVI(F, DTree, OS); 1888 } 1889 } 1890 1891 // Print the LVI for the function arguments at the start of each basic block. 1892 void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot( 1893 const BasicBlock *BB, formatted_raw_ostream &OS) { 1894 // Find if there are latticevalues defined for arguments of the function. 1895 auto *F = BB->getParent(); 1896 for (auto &Arg : F->args()) { 1897 ValueLatticeElement Result = LVIImpl->getValueInBlock( 1898 const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB)); 1899 if (Result.isUnknown()) 1900 continue; 1901 OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n"; 1902 } 1903 } 1904 1905 // This function prints the LVI analysis for the instruction I at the beginning 1906 // of various basic blocks. It relies on calculated values that are stored in 1907 // the LazyValueInfoCache, and in the absence of cached values, recalculate the 1908 // LazyValueInfo for `I`, and print that info. 1909 void LazyValueInfoAnnotatedWriter::emitInstructionAnnot( 1910 const Instruction *I, formatted_raw_ostream &OS) { 1911 1912 auto *ParentBB = I->getParent(); 1913 SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI; 1914 // We can generate (solve) LVI values only for blocks that are dominated by 1915 // the I's parent. However, to avoid generating LVI for all dominating blocks, 1916 // that contain redundant/uninteresting information, we print LVI for 1917 // blocks that may use this LVI information (such as immediate successor 1918 // blocks, and blocks that contain uses of `I`). 1919 auto printResult = [&](const BasicBlock *BB) { 1920 if (!BlocksContainingLVI.insert(BB).second) 1921 return; 1922 ValueLatticeElement Result = LVIImpl->getValueInBlock( 1923 const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB)); 1924 OS << "; LatticeVal for: '" << *I << "' in BB: '"; 1925 BB->printAsOperand(OS, false); 1926 OS << "' is: " << Result << "\n"; 1927 }; 1928 1929 printResult(ParentBB); 1930 // Print the LVI analysis results for the immediate successor blocks, that 1931 // are dominated by `ParentBB`. 1932 for (auto *BBSucc : successors(ParentBB)) 1933 if (DT.dominates(ParentBB, BBSucc)) 1934 printResult(BBSucc); 1935 1936 // Print LVI in blocks where `I` is used. 1937 for (auto *U : I->users()) 1938 if (auto *UseI = dyn_cast<Instruction>(U)) 1939 if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent())) 1940 printResult(UseI->getParent()); 1941 1942 } 1943 1944 namespace { 1945 // Printer class for LazyValueInfo results. 1946 class LazyValueInfoPrinter : public FunctionPass { 1947 public: 1948 static char ID; // Pass identification, replacement for typeid 1949 LazyValueInfoPrinter() : FunctionPass(ID) { 1950 initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry()); 1951 } 1952 1953 void getAnalysisUsage(AnalysisUsage &AU) const override { 1954 AU.setPreservesAll(); 1955 AU.addRequired<LazyValueInfoWrapperPass>(); 1956 AU.addRequired<DominatorTreeWrapperPass>(); 1957 } 1958 1959 // Get the mandatory dominator tree analysis and pass this in to the 1960 // LVIPrinter. We cannot rely on the LVI's DT, since it's optional. 1961 bool runOnFunction(Function &F) override { 1962 dbgs() << "LVI for function '" << F.getName() << "':\n"; 1963 auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 1964 auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1965 LVI.printLVI(F, DTree, dbgs()); 1966 return false; 1967 } 1968 }; 1969 } 1970 1971 char LazyValueInfoPrinter::ID = 0; 1972 INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info", 1973 "Lazy Value Info Printer Pass", false, false) 1974 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 1975 INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info", 1976 "Lazy Value Info Printer Pass", false, false) 1977