xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/LazyValueInfo.cpp (revision 4824e7fd18a1223177218d4aec1b3c6c5c4a444e)
1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interface for lazy computation of value constraint
10 // information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/LazyValueInfo.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueLattice.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/AssemblyAnnotationWriter.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/ValueHandle.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/FormattedStream.h"
39 #include "llvm/Support/KnownBits.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <map>
42 using namespace llvm;
43 using namespace PatternMatch;
44 
45 #define DEBUG_TYPE "lazy-value-info"
46 
47 // This is the number of worklist items we will process to try to discover an
48 // answer for a given value.
49 static const unsigned MaxProcessedPerValue = 500;
50 
51 char LazyValueInfoWrapperPass::ID = 0;
52 LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) {
53   initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry());
54 }
55 INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info",
56                 "Lazy Value Information Analysis", false, true)
57 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
58 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
59 INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info",
60                 "Lazy Value Information Analysis", false, true)
61 
62 namespace llvm {
63   FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); }
64 }
65 
66 AnalysisKey LazyValueAnalysis::Key;
67 
68 /// Returns true if this lattice value represents at most one possible value.
69 /// This is as precise as any lattice value can get while still representing
70 /// reachable code.
71 static bool hasSingleValue(const ValueLatticeElement &Val) {
72   if (Val.isConstantRange() &&
73       Val.getConstantRange().isSingleElement())
74     // Integer constants are single element ranges
75     return true;
76   if (Val.isConstant())
77     // Non integer constants
78     return true;
79   return false;
80 }
81 
82 /// Combine two sets of facts about the same value into a single set of
83 /// facts.  Note that this method is not suitable for merging facts along
84 /// different paths in a CFG; that's what the mergeIn function is for.  This
85 /// is for merging facts gathered about the same value at the same location
86 /// through two independent means.
87 /// Notes:
88 /// * This method does not promise to return the most precise possible lattice
89 ///   value implied by A and B.  It is allowed to return any lattice element
90 ///   which is at least as strong as *either* A or B (unless our facts
91 ///   conflict, see below).
92 /// * Due to unreachable code, the intersection of two lattice values could be
93 ///   contradictory.  If this happens, we return some valid lattice value so as
94 ///   not confuse the rest of LVI.  Ideally, we'd always return Undefined, but
95 ///   we do not make this guarantee.  TODO: This would be a useful enhancement.
96 static ValueLatticeElement intersect(const ValueLatticeElement &A,
97                                      const ValueLatticeElement &B) {
98   // Undefined is the strongest state.  It means the value is known to be along
99   // an unreachable path.
100   if (A.isUnknown())
101     return A;
102   if (B.isUnknown())
103     return B;
104 
105   // If we gave up for one, but got a useable fact from the other, use it.
106   if (A.isOverdefined())
107     return B;
108   if (B.isOverdefined())
109     return A;
110 
111   // Can't get any more precise than constants.
112   if (hasSingleValue(A))
113     return A;
114   if (hasSingleValue(B))
115     return B;
116 
117   // Could be either constant range or not constant here.
118   if (!A.isConstantRange() || !B.isConstantRange()) {
119     // TODO: Arbitrary choice, could be improved
120     return A;
121   }
122 
123   // Intersect two constant ranges
124   ConstantRange Range =
125       A.getConstantRange().intersectWith(B.getConstantRange());
126   // Note: An empty range is implicitly converted to unknown or undef depending
127   // on MayIncludeUndef internally.
128   return ValueLatticeElement::getRange(
129       std::move(Range), /*MayIncludeUndef=*/A.isConstantRangeIncludingUndef() ||
130                             B.isConstantRangeIncludingUndef());
131 }
132 
133 //===----------------------------------------------------------------------===//
134 //                          LazyValueInfoCache Decl
135 //===----------------------------------------------------------------------===//
136 
137 namespace {
138   /// A callback value handle updates the cache when values are erased.
139   class LazyValueInfoCache;
140   struct LVIValueHandle final : public CallbackVH {
141     LazyValueInfoCache *Parent;
142 
143     LVIValueHandle(Value *V, LazyValueInfoCache *P = nullptr)
144       : CallbackVH(V), Parent(P) { }
145 
146     void deleted() override;
147     void allUsesReplacedWith(Value *V) override {
148       deleted();
149     }
150   };
151 } // end anonymous namespace
152 
153 namespace {
154   using NonNullPointerSet = SmallDenseSet<AssertingVH<Value>, 2>;
155 
156   /// This is the cache kept by LazyValueInfo which
157   /// maintains information about queries across the clients' queries.
158   class LazyValueInfoCache {
159     /// This is all of the cached information for one basic block. It contains
160     /// the per-value lattice elements, as well as a separate set for
161     /// overdefined values to reduce memory usage. Additionally pointers
162     /// dereferenced in the block are cached for nullability queries.
163     struct BlockCacheEntry {
164       SmallDenseMap<AssertingVH<Value>, ValueLatticeElement, 4> LatticeElements;
165       SmallDenseSet<AssertingVH<Value>, 4> OverDefined;
166       // None indicates that the nonnull pointers for this basic block
167       // block have not been computed yet.
168       Optional<NonNullPointerSet> NonNullPointers;
169     };
170 
171     /// Cached information per basic block.
172     DenseMap<PoisoningVH<BasicBlock>, std::unique_ptr<BlockCacheEntry>>
173         BlockCache;
174     /// Set of value handles used to erase values from the cache on deletion.
175     DenseSet<LVIValueHandle, DenseMapInfo<Value *>> ValueHandles;
176 
177     const BlockCacheEntry *getBlockEntry(BasicBlock *BB) const {
178       auto It = BlockCache.find_as(BB);
179       if (It == BlockCache.end())
180         return nullptr;
181       return It->second.get();
182     }
183 
184     BlockCacheEntry *getOrCreateBlockEntry(BasicBlock *BB) {
185       auto It = BlockCache.find_as(BB);
186       if (It == BlockCache.end())
187         It = BlockCache.insert({ BB, std::make_unique<BlockCacheEntry>() })
188                        .first;
189 
190       return It->second.get();
191     }
192 
193     void addValueHandle(Value *Val) {
194       auto HandleIt = ValueHandles.find_as(Val);
195       if (HandleIt == ValueHandles.end())
196         ValueHandles.insert({ Val, this });
197     }
198 
199   public:
200     void insertResult(Value *Val, BasicBlock *BB,
201                       const ValueLatticeElement &Result) {
202       BlockCacheEntry *Entry = getOrCreateBlockEntry(BB);
203 
204       // Insert over-defined values into their own cache to reduce memory
205       // overhead.
206       if (Result.isOverdefined())
207         Entry->OverDefined.insert(Val);
208       else
209         Entry->LatticeElements.insert({ Val, Result });
210 
211       addValueHandle(Val);
212     }
213 
214     Optional<ValueLatticeElement> getCachedValueInfo(Value *V,
215                                                      BasicBlock *BB) const {
216       const BlockCacheEntry *Entry = getBlockEntry(BB);
217       if (!Entry)
218         return None;
219 
220       if (Entry->OverDefined.count(V))
221         return ValueLatticeElement::getOverdefined();
222 
223       auto LatticeIt = Entry->LatticeElements.find_as(V);
224       if (LatticeIt == Entry->LatticeElements.end())
225         return None;
226 
227       return LatticeIt->second;
228     }
229 
230     bool isNonNullAtEndOfBlock(
231         Value *V, BasicBlock *BB,
232         function_ref<NonNullPointerSet(BasicBlock *)> InitFn) {
233       BlockCacheEntry *Entry = getOrCreateBlockEntry(BB);
234       if (!Entry->NonNullPointers) {
235         Entry->NonNullPointers = InitFn(BB);
236         for (Value *V : *Entry->NonNullPointers)
237           addValueHandle(V);
238       }
239 
240       return Entry->NonNullPointers->count(V);
241     }
242 
243     /// clear - Empty the cache.
244     void clear() {
245       BlockCache.clear();
246       ValueHandles.clear();
247     }
248 
249     /// Inform the cache that a given value has been deleted.
250     void eraseValue(Value *V);
251 
252     /// This is part of the update interface to inform the cache
253     /// that a block has been deleted.
254     void eraseBlock(BasicBlock *BB);
255 
256     /// Updates the cache to remove any influence an overdefined value in
257     /// OldSucc might have (unless also overdefined in NewSucc).  This just
258     /// flushes elements from the cache and does not add any.
259     void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc);
260   };
261 }
262 
263 void LazyValueInfoCache::eraseValue(Value *V) {
264   for (auto &Pair : BlockCache) {
265     Pair.second->LatticeElements.erase(V);
266     Pair.second->OverDefined.erase(V);
267     if (Pair.second->NonNullPointers)
268       Pair.second->NonNullPointers->erase(V);
269   }
270 
271   auto HandleIt = ValueHandles.find_as(V);
272   if (HandleIt != ValueHandles.end())
273     ValueHandles.erase(HandleIt);
274 }
275 
276 void LVIValueHandle::deleted() {
277   // This erasure deallocates *this, so it MUST happen after we're done
278   // using any and all members of *this.
279   Parent->eraseValue(*this);
280 }
281 
282 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
283   BlockCache.erase(BB);
284 }
285 
286 void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc,
287                                         BasicBlock *NewSucc) {
288   // When an edge in the graph has been threaded, values that we could not
289   // determine a value for before (i.e. were marked overdefined) may be
290   // possible to solve now. We do NOT try to proactively update these values.
291   // Instead, we clear their entries from the cache, and allow lazy updating to
292   // recompute them when needed.
293 
294   // The updating process is fairly simple: we need to drop cached info
295   // for all values that were marked overdefined in OldSucc, and for those same
296   // values in any successor of OldSucc (except NewSucc) in which they were
297   // also marked overdefined.
298   std::vector<BasicBlock*> worklist;
299   worklist.push_back(OldSucc);
300 
301   const BlockCacheEntry *Entry = getBlockEntry(OldSucc);
302   if (!Entry || Entry->OverDefined.empty())
303     return; // Nothing to process here.
304   SmallVector<Value *, 4> ValsToClear(Entry->OverDefined.begin(),
305                                       Entry->OverDefined.end());
306 
307   // Use a worklist to perform a depth-first search of OldSucc's successors.
308   // NOTE: We do not need a visited list since any blocks we have already
309   // visited will have had their overdefined markers cleared already, and we
310   // thus won't loop to their successors.
311   while (!worklist.empty()) {
312     BasicBlock *ToUpdate = worklist.back();
313     worklist.pop_back();
314 
315     // Skip blocks only accessible through NewSucc.
316     if (ToUpdate == NewSucc) continue;
317 
318     // If a value was marked overdefined in OldSucc, and is here too...
319     auto OI = BlockCache.find_as(ToUpdate);
320     if (OI == BlockCache.end() || OI->second->OverDefined.empty())
321       continue;
322     auto &ValueSet = OI->second->OverDefined;
323 
324     bool changed = false;
325     for (Value *V : ValsToClear) {
326       if (!ValueSet.erase(V))
327         continue;
328 
329       // If we removed anything, then we potentially need to update
330       // blocks successors too.
331       changed = true;
332     }
333 
334     if (!changed) continue;
335 
336     llvm::append_range(worklist, successors(ToUpdate));
337   }
338 }
339 
340 
341 namespace {
342 /// An assembly annotator class to print LazyValueCache information in
343 /// comments.
344 class LazyValueInfoImpl;
345 class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter {
346   LazyValueInfoImpl *LVIImpl;
347   // While analyzing which blocks we can solve values for, we need the dominator
348   // information.
349   DominatorTree &DT;
350 
351 public:
352   LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree)
353       : LVIImpl(L), DT(DTree) {}
354 
355   void emitBasicBlockStartAnnot(const BasicBlock *BB,
356                                 formatted_raw_ostream &OS) override;
357 
358   void emitInstructionAnnot(const Instruction *I,
359                             formatted_raw_ostream &OS) override;
360 };
361 }
362 namespace {
363 // The actual implementation of the lazy analysis and update.  Note that the
364 // inheritance from LazyValueInfoCache is intended to be temporary while
365 // splitting the code and then transitioning to a has-a relationship.
366 class LazyValueInfoImpl {
367 
368   /// Cached results from previous queries
369   LazyValueInfoCache TheCache;
370 
371   /// This stack holds the state of the value solver during a query.
372   /// It basically emulates the callstack of the naive
373   /// recursive value lookup process.
374   SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack;
375 
376   /// Keeps track of which block-value pairs are in BlockValueStack.
377   DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
378 
379   /// Push BV onto BlockValueStack unless it's already in there.
380   /// Returns true on success.
381   bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
382     if (!BlockValueSet.insert(BV).second)
383       return false;  // It's already in the stack.
384 
385     LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in "
386                       << BV.first->getName() << "\n");
387     BlockValueStack.push_back(BV);
388     return true;
389   }
390 
391   AssumptionCache *AC;  ///< A pointer to the cache of @llvm.assume calls.
392   const DataLayout &DL; ///< A mandatory DataLayout
393 
394   /// Declaration of the llvm.experimental.guard() intrinsic,
395   /// if it exists in the module.
396   Function *GuardDecl;
397 
398   Optional<ValueLatticeElement> getBlockValue(Value *Val, BasicBlock *BB);
399   Optional<ValueLatticeElement> getEdgeValue(Value *V, BasicBlock *F,
400                                 BasicBlock *T, Instruction *CxtI = nullptr);
401 
402   // These methods process one work item and may add more. A false value
403   // returned means that the work item was not completely processed and must
404   // be revisited after going through the new items.
405   bool solveBlockValue(Value *Val, BasicBlock *BB);
406   Optional<ValueLatticeElement> solveBlockValueImpl(Value *Val, BasicBlock *BB);
407   Optional<ValueLatticeElement> solveBlockValueNonLocal(Value *Val,
408                                                         BasicBlock *BB);
409   Optional<ValueLatticeElement> solveBlockValuePHINode(PHINode *PN,
410                                                        BasicBlock *BB);
411   Optional<ValueLatticeElement> solveBlockValueSelect(SelectInst *S,
412                                                       BasicBlock *BB);
413   Optional<ConstantRange> getRangeFor(Value *V, Instruction *CxtI,
414                                       BasicBlock *BB);
415   Optional<ValueLatticeElement> solveBlockValueBinaryOpImpl(
416       Instruction *I, BasicBlock *BB,
417       std::function<ConstantRange(const ConstantRange &,
418                                   const ConstantRange &)> OpFn);
419   Optional<ValueLatticeElement> solveBlockValueBinaryOp(BinaryOperator *BBI,
420                                                         BasicBlock *BB);
421   Optional<ValueLatticeElement> solveBlockValueCast(CastInst *CI,
422                                                     BasicBlock *BB);
423   Optional<ValueLatticeElement> solveBlockValueOverflowIntrinsic(
424       WithOverflowInst *WO, BasicBlock *BB);
425   Optional<ValueLatticeElement> solveBlockValueIntrinsic(IntrinsicInst *II,
426                                                          BasicBlock *BB);
427   Optional<ValueLatticeElement> solveBlockValueExtractValue(
428       ExtractValueInst *EVI, BasicBlock *BB);
429   bool isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB);
430   void intersectAssumeOrGuardBlockValueConstantRange(Value *Val,
431                                                      ValueLatticeElement &BBLV,
432                                                      Instruction *BBI);
433 
434   void solve();
435 
436 public:
437   /// This is the query interface to determine the lattice value for the
438   /// specified Value* at the context instruction (if specified) or at the
439   /// start of the block.
440   ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB,
441                                       Instruction *CxtI = nullptr);
442 
443   /// This is the query interface to determine the lattice value for the
444   /// specified Value* at the specified instruction using only information
445   /// from assumes/guards and range metadata. Unlike getValueInBlock(), no
446   /// recursive query is performed.
447   ValueLatticeElement getValueAt(Value *V, Instruction *CxtI);
448 
449   /// This is the query interface to determine the lattice
450   /// value for the specified Value* that is true on the specified edge.
451   ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB,
452                                      BasicBlock *ToBB,
453                                      Instruction *CxtI = nullptr);
454 
455   /// Complete flush all previously computed values
456   void clear() {
457     TheCache.clear();
458   }
459 
460   /// Printing the LazyValueInfo Analysis.
461   void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
462     LazyValueInfoAnnotatedWriter Writer(this, DTree);
463     F.print(OS, &Writer);
464   }
465 
466   /// This is part of the update interface to inform the cache
467   /// that a block has been deleted.
468   void eraseBlock(BasicBlock *BB) {
469     TheCache.eraseBlock(BB);
470   }
471 
472   /// This is the update interface to inform the cache that an edge from
473   /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
474   void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
475 
476   LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL,
477                     Function *GuardDecl)
478       : AC(AC), DL(DL), GuardDecl(GuardDecl) {}
479 };
480 } // end anonymous namespace
481 
482 
483 void LazyValueInfoImpl::solve() {
484   SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack(
485       BlockValueStack.begin(), BlockValueStack.end());
486 
487   unsigned processedCount = 0;
488   while (!BlockValueStack.empty()) {
489     processedCount++;
490     // Abort if we have to process too many values to get a result for this one.
491     // Because of the design of the overdefined cache currently being per-block
492     // to avoid naming-related issues (IE it wants to try to give different
493     // results for the same name in different blocks), overdefined results don't
494     // get cached globally, which in turn means we will often try to rediscover
495     // the same overdefined result again and again.  Once something like
496     // PredicateInfo is used in LVI or CVP, we should be able to make the
497     // overdefined cache global, and remove this throttle.
498     if (processedCount > MaxProcessedPerValue) {
499       LLVM_DEBUG(
500           dbgs() << "Giving up on stack because we are getting too deep\n");
501       // Fill in the original values
502       while (!StartingStack.empty()) {
503         std::pair<BasicBlock *, Value *> &e = StartingStack.back();
504         TheCache.insertResult(e.second, e.first,
505                               ValueLatticeElement::getOverdefined());
506         StartingStack.pop_back();
507       }
508       BlockValueSet.clear();
509       BlockValueStack.clear();
510       return;
511     }
512     std::pair<BasicBlock *, Value *> e = BlockValueStack.back();
513     assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");
514 
515     if (solveBlockValue(e.second, e.first)) {
516       // The work item was completely processed.
517       assert(BlockValueStack.back() == e && "Nothing should have been pushed!");
518 #ifndef NDEBUG
519       Optional<ValueLatticeElement> BBLV =
520           TheCache.getCachedValueInfo(e.second, e.first);
521       assert(BBLV && "Result should be in cache!");
522       LLVM_DEBUG(
523           dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = "
524                  << *BBLV << "\n");
525 #endif
526 
527       BlockValueStack.pop_back();
528       BlockValueSet.erase(e);
529     } else {
530       // More work needs to be done before revisiting.
531       assert(BlockValueStack.back() != e && "Stack should have been pushed!");
532     }
533   }
534 }
535 
536 Optional<ValueLatticeElement> LazyValueInfoImpl::getBlockValue(Value *Val,
537                                                                BasicBlock *BB) {
538   // If already a constant, there is nothing to compute.
539   if (Constant *VC = dyn_cast<Constant>(Val))
540     return ValueLatticeElement::get(VC);
541 
542   if (Optional<ValueLatticeElement> OptLatticeVal =
543           TheCache.getCachedValueInfo(Val, BB))
544     return OptLatticeVal;
545 
546   // We have hit a cycle, assume overdefined.
547   if (!pushBlockValue({ BB, Val }))
548     return ValueLatticeElement::getOverdefined();
549 
550   // Yet to be resolved.
551   return None;
552 }
553 
554 static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) {
555   switch (BBI->getOpcode()) {
556   default: break;
557   case Instruction::Load:
558   case Instruction::Call:
559   case Instruction::Invoke:
560     if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range))
561       if (isa<IntegerType>(BBI->getType())) {
562         return ValueLatticeElement::getRange(
563             getConstantRangeFromMetadata(*Ranges));
564       }
565     break;
566   };
567   // Nothing known - will be intersected with other facts
568   return ValueLatticeElement::getOverdefined();
569 }
570 
571 bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) {
572   assert(!isa<Constant>(Val) && "Value should not be constant");
573   assert(!TheCache.getCachedValueInfo(Val, BB) &&
574          "Value should not be in cache");
575 
576   // Hold off inserting this value into the Cache in case we have to return
577   // false and come back later.
578   Optional<ValueLatticeElement> Res = solveBlockValueImpl(Val, BB);
579   if (!Res)
580     // Work pushed, will revisit
581     return false;
582 
583   TheCache.insertResult(Val, BB, *Res);
584   return true;
585 }
586 
587 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueImpl(
588     Value *Val, BasicBlock *BB) {
589   Instruction *BBI = dyn_cast<Instruction>(Val);
590   if (!BBI || BBI->getParent() != BB)
591     return solveBlockValueNonLocal(Val, BB);
592 
593   if (PHINode *PN = dyn_cast<PHINode>(BBI))
594     return solveBlockValuePHINode(PN, BB);
595 
596   if (auto *SI = dyn_cast<SelectInst>(BBI))
597     return solveBlockValueSelect(SI, BB);
598 
599   // If this value is a nonnull pointer, record it's range and bailout.  Note
600   // that for all other pointer typed values, we terminate the search at the
601   // definition.  We could easily extend this to look through geps, bitcasts,
602   // and the like to prove non-nullness, but it's not clear that's worth it
603   // compile time wise.  The context-insensitive value walk done inside
604   // isKnownNonZero gets most of the profitable cases at much less expense.
605   // This does mean that we have a sensitivity to where the defining
606   // instruction is placed, even if it could legally be hoisted much higher.
607   // That is unfortunate.
608   PointerType *PT = dyn_cast<PointerType>(BBI->getType());
609   if (PT && isKnownNonZero(BBI, DL))
610     return ValueLatticeElement::getNot(ConstantPointerNull::get(PT));
611 
612   if (BBI->getType()->isIntegerTy()) {
613     if (auto *CI = dyn_cast<CastInst>(BBI))
614       return solveBlockValueCast(CI, BB);
615 
616     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI))
617       return solveBlockValueBinaryOp(BO, BB);
618 
619     if (auto *EVI = dyn_cast<ExtractValueInst>(BBI))
620       return solveBlockValueExtractValue(EVI, BB);
621 
622     if (auto *II = dyn_cast<IntrinsicInst>(BBI))
623       return solveBlockValueIntrinsic(II, BB);
624   }
625 
626   LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
627                     << "' - unknown inst def found.\n");
628   return getFromRangeMetadata(BBI);
629 }
630 
631 static void AddNonNullPointer(Value *Ptr, NonNullPointerSet &PtrSet) {
632   // TODO: Use NullPointerIsDefined instead.
633   if (Ptr->getType()->getPointerAddressSpace() == 0)
634     PtrSet.insert(getUnderlyingObject(Ptr));
635 }
636 
637 static void AddNonNullPointersByInstruction(
638     Instruction *I, NonNullPointerSet &PtrSet) {
639   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
640     AddNonNullPointer(L->getPointerOperand(), PtrSet);
641   } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
642     AddNonNullPointer(S->getPointerOperand(), PtrSet);
643   } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
644     if (MI->isVolatile()) return;
645 
646     // FIXME: check whether it has a valuerange that excludes zero?
647     ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
648     if (!Len || Len->isZero()) return;
649 
650     AddNonNullPointer(MI->getRawDest(), PtrSet);
651     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
652       AddNonNullPointer(MTI->getRawSource(), PtrSet);
653   }
654 }
655 
656 bool LazyValueInfoImpl::isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB) {
657   if (NullPointerIsDefined(BB->getParent(),
658                            Val->getType()->getPointerAddressSpace()))
659     return false;
660 
661   Val = Val->stripInBoundsOffsets();
662   return TheCache.isNonNullAtEndOfBlock(Val, BB, [](BasicBlock *BB) {
663     NonNullPointerSet NonNullPointers;
664     for (Instruction &I : *BB)
665       AddNonNullPointersByInstruction(&I, NonNullPointers);
666     return NonNullPointers;
667   });
668 }
669 
670 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueNonLocal(
671     Value *Val, BasicBlock *BB) {
672   ValueLatticeElement Result;  // Start Undefined.
673 
674   // If this is the entry block, we must be asking about an argument.  The
675   // value is overdefined.
676   if (BB->isEntryBlock()) {
677     assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
678     return ValueLatticeElement::getOverdefined();
679   }
680 
681   // Loop over all of our predecessors, merging what we know from them into
682   // result.  If we encounter an unexplored predecessor, we eagerly explore it
683   // in a depth first manner.  In practice, this has the effect of discovering
684   // paths we can't analyze eagerly without spending compile times analyzing
685   // other paths.  This heuristic benefits from the fact that predecessors are
686   // frequently arranged such that dominating ones come first and we quickly
687   // find a path to function entry.  TODO: We should consider explicitly
688   // canonicalizing to make this true rather than relying on this happy
689   // accident.
690   for (BasicBlock *Pred : predecessors(BB)) {
691     Optional<ValueLatticeElement> EdgeResult = getEdgeValue(Val, Pred, BB);
692     if (!EdgeResult)
693       // Explore that input, then return here
694       return None;
695 
696     Result.mergeIn(*EdgeResult);
697 
698     // If we hit overdefined, exit early.  The BlockVals entry is already set
699     // to overdefined.
700     if (Result.isOverdefined()) {
701       LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
702                         << "' - overdefined because of pred (non local).\n");
703       return Result;
704     }
705   }
706 
707   // Return the merged value, which is more precise than 'overdefined'.
708   assert(!Result.isOverdefined());
709   return Result;
710 }
711 
712 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValuePHINode(
713     PHINode *PN, BasicBlock *BB) {
714   ValueLatticeElement Result;  // Start Undefined.
715 
716   // Loop over all of our predecessors, merging what we know from them into
717   // result.  See the comment about the chosen traversal order in
718   // solveBlockValueNonLocal; the same reasoning applies here.
719   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
720     BasicBlock *PhiBB = PN->getIncomingBlock(i);
721     Value *PhiVal = PN->getIncomingValue(i);
722     // Note that we can provide PN as the context value to getEdgeValue, even
723     // though the results will be cached, because PN is the value being used as
724     // the cache key in the caller.
725     Optional<ValueLatticeElement> EdgeResult =
726         getEdgeValue(PhiVal, PhiBB, BB, PN);
727     if (!EdgeResult)
728       // Explore that input, then return here
729       return None;
730 
731     Result.mergeIn(*EdgeResult);
732 
733     // If we hit overdefined, exit early.  The BlockVals entry is already set
734     // to overdefined.
735     if (Result.isOverdefined()) {
736       LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
737                         << "' - overdefined because of pred (local).\n");
738 
739       return Result;
740     }
741   }
742 
743   // Return the merged value, which is more precise than 'overdefined'.
744   assert(!Result.isOverdefined() && "Possible PHI in entry block?");
745   return Result;
746 }
747 
748 static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
749                                                  bool isTrueDest = true);
750 
751 // If we can determine a constraint on the value given conditions assumed by
752 // the program, intersect those constraints with BBLV
753 void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
754         Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) {
755   BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
756   if (!BBI)
757     return;
758 
759   BasicBlock *BB = BBI->getParent();
760   for (auto &AssumeVH : AC->assumptionsFor(Val)) {
761     if (!AssumeVH)
762       continue;
763 
764     // Only check assumes in the block of the context instruction. Other
765     // assumes will have already been taken into account when the value was
766     // propagated from predecessor blocks.
767     auto *I = cast<CallInst>(AssumeVH);
768     if (I->getParent() != BB || !isValidAssumeForContext(I, BBI))
769       continue;
770 
771     BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0)));
772   }
773 
774   // If guards are not used in the module, don't spend time looking for them
775   if (GuardDecl && !GuardDecl->use_empty() &&
776       BBI->getIterator() != BB->begin()) {
777     for (Instruction &I : make_range(std::next(BBI->getIterator().getReverse()),
778                                      BB->rend())) {
779       Value *Cond = nullptr;
780       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond))))
781         BBLV = intersect(BBLV, getValueFromCondition(Val, Cond));
782     }
783   }
784 
785   if (BBLV.isOverdefined()) {
786     // Check whether we're checking at the terminator, and the pointer has
787     // been dereferenced in this block.
788     PointerType *PTy = dyn_cast<PointerType>(Val->getType());
789     if (PTy && BB->getTerminator() == BBI &&
790         isNonNullAtEndOfBlock(Val, BB))
791       BBLV = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
792   }
793 }
794 
795 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueSelect(
796     SelectInst *SI, BasicBlock *BB) {
797   // Recurse on our inputs if needed
798   Optional<ValueLatticeElement> OptTrueVal =
799       getBlockValue(SI->getTrueValue(), BB);
800   if (!OptTrueVal)
801     return None;
802   ValueLatticeElement &TrueVal = *OptTrueVal;
803 
804   Optional<ValueLatticeElement> OptFalseVal =
805       getBlockValue(SI->getFalseValue(), BB);
806   if (!OptFalseVal)
807     return None;
808   ValueLatticeElement &FalseVal = *OptFalseVal;
809 
810   if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) {
811     const ConstantRange &TrueCR = TrueVal.getConstantRange();
812     const ConstantRange &FalseCR = FalseVal.getConstantRange();
813     Value *LHS = nullptr;
814     Value *RHS = nullptr;
815     SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS);
816     // Is this a min specifically of our two inputs?  (Avoid the risk of
817     // ValueTracking getting smarter looking back past our immediate inputs.)
818     if (SelectPatternResult::isMinOrMax(SPR.Flavor) &&
819         LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) {
820       ConstantRange ResultCR = [&]() {
821         switch (SPR.Flavor) {
822         default:
823           llvm_unreachable("unexpected minmax type!");
824         case SPF_SMIN:                   /// Signed minimum
825           return TrueCR.smin(FalseCR);
826         case SPF_UMIN:                   /// Unsigned minimum
827           return TrueCR.umin(FalseCR);
828         case SPF_SMAX:                   /// Signed maximum
829           return TrueCR.smax(FalseCR);
830         case SPF_UMAX:                   /// Unsigned maximum
831           return TrueCR.umax(FalseCR);
832         };
833       }();
834       return ValueLatticeElement::getRange(
835           ResultCR, TrueVal.isConstantRangeIncludingUndef() ||
836                         FalseVal.isConstantRangeIncludingUndef());
837     }
838 
839     if (SPR.Flavor == SPF_ABS) {
840       if (LHS == SI->getTrueValue())
841         return ValueLatticeElement::getRange(
842             TrueCR.abs(), TrueVal.isConstantRangeIncludingUndef());
843       if (LHS == SI->getFalseValue())
844         return ValueLatticeElement::getRange(
845             FalseCR.abs(), FalseVal.isConstantRangeIncludingUndef());
846     }
847 
848     if (SPR.Flavor == SPF_NABS) {
849       ConstantRange Zero(APInt::getZero(TrueCR.getBitWidth()));
850       if (LHS == SI->getTrueValue())
851         return ValueLatticeElement::getRange(
852             Zero.sub(TrueCR.abs()), FalseVal.isConstantRangeIncludingUndef());
853       if (LHS == SI->getFalseValue())
854         return ValueLatticeElement::getRange(
855             Zero.sub(FalseCR.abs()), FalseVal.isConstantRangeIncludingUndef());
856     }
857   }
858 
859   // Can we constrain the facts about the true and false values by using the
860   // condition itself?  This shows up with idioms like e.g. select(a > 5, a, 5).
861   // TODO: We could potentially refine an overdefined true value above.
862   Value *Cond = SI->getCondition();
863   TrueVal = intersect(TrueVal,
864                       getValueFromCondition(SI->getTrueValue(), Cond, true));
865   FalseVal = intersect(FalseVal,
866                        getValueFromCondition(SI->getFalseValue(), Cond, false));
867 
868   ValueLatticeElement Result = TrueVal;
869   Result.mergeIn(FalseVal);
870   return Result;
871 }
872 
873 Optional<ConstantRange> LazyValueInfoImpl::getRangeFor(Value *V,
874                                                        Instruction *CxtI,
875                                                        BasicBlock *BB) {
876   Optional<ValueLatticeElement> OptVal = getBlockValue(V, BB);
877   if (!OptVal)
878     return None;
879 
880   ValueLatticeElement &Val = *OptVal;
881   intersectAssumeOrGuardBlockValueConstantRange(V, Val, CxtI);
882   if (Val.isConstantRange())
883     return Val.getConstantRange();
884 
885   const unsigned OperandBitWidth = DL.getTypeSizeInBits(V->getType());
886   return ConstantRange::getFull(OperandBitWidth);
887 }
888 
889 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueCast(
890     CastInst *CI, BasicBlock *BB) {
891   // Without knowing how wide the input is, we can't analyze it in any useful
892   // way.
893   if (!CI->getOperand(0)->getType()->isSized())
894     return ValueLatticeElement::getOverdefined();
895 
896   // Filter out casts we don't know how to reason about before attempting to
897   // recurse on our operand.  This can cut a long search short if we know we're
898   // not going to be able to get any useful information anways.
899   switch (CI->getOpcode()) {
900   case Instruction::Trunc:
901   case Instruction::SExt:
902   case Instruction::ZExt:
903   case Instruction::BitCast:
904     break;
905   default:
906     // Unhandled instructions are overdefined.
907     LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
908                       << "' - overdefined (unknown cast).\n");
909     return ValueLatticeElement::getOverdefined();
910   }
911 
912   // Figure out the range of the LHS.  If that fails, we still apply the
913   // transfer rule on the full set since we may be able to locally infer
914   // interesting facts.
915   Optional<ConstantRange> LHSRes = getRangeFor(CI->getOperand(0), CI, BB);
916   if (!LHSRes.hasValue())
917     // More work to do before applying this transfer rule.
918     return None;
919   const ConstantRange &LHSRange = LHSRes.getValue();
920 
921   const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth();
922 
923   // NOTE: We're currently limited by the set of operations that ConstantRange
924   // can evaluate symbolically.  Enhancing that set will allows us to analyze
925   // more definitions.
926   return ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(),
927                                                        ResultBitWidth));
928 }
929 
930 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueBinaryOpImpl(
931     Instruction *I, BasicBlock *BB,
932     std::function<ConstantRange(const ConstantRange &,
933                                 const ConstantRange &)> OpFn) {
934   // Figure out the ranges of the operands.  If that fails, use a
935   // conservative range, but apply the transfer rule anyways.  This
936   // lets us pick up facts from expressions like "and i32 (call i32
937   // @foo()), 32"
938   Optional<ConstantRange> LHSRes = getRangeFor(I->getOperand(0), I, BB);
939   Optional<ConstantRange> RHSRes = getRangeFor(I->getOperand(1), I, BB);
940   if (!LHSRes.hasValue() || !RHSRes.hasValue())
941     // More work to do before applying this transfer rule.
942     return None;
943 
944   const ConstantRange &LHSRange = LHSRes.getValue();
945   const ConstantRange &RHSRange = RHSRes.getValue();
946   return ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange));
947 }
948 
949 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueBinaryOp(
950     BinaryOperator *BO, BasicBlock *BB) {
951   assert(BO->getOperand(0)->getType()->isSized() &&
952          "all operands to binary operators are sized");
953   if (BO->getOpcode() == Instruction::Xor) {
954     // Xor is the only operation not supported by ConstantRange::binaryOp().
955     LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
956                       << "' - overdefined (unknown binary operator).\n");
957     return ValueLatticeElement::getOverdefined();
958   }
959 
960   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) {
961     unsigned NoWrapKind = 0;
962     if (OBO->hasNoUnsignedWrap())
963       NoWrapKind |= OverflowingBinaryOperator::NoUnsignedWrap;
964     if (OBO->hasNoSignedWrap())
965       NoWrapKind |= OverflowingBinaryOperator::NoSignedWrap;
966 
967     return solveBlockValueBinaryOpImpl(
968         BO, BB,
969         [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) {
970           return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind);
971         });
972   }
973 
974   return solveBlockValueBinaryOpImpl(
975       BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) {
976         return CR1.binaryOp(BO->getOpcode(), CR2);
977       });
978 }
979 
980 Optional<ValueLatticeElement>
981 LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(WithOverflowInst *WO,
982                                                     BasicBlock *BB) {
983   return solveBlockValueBinaryOpImpl(
984       WO, BB, [WO](const ConstantRange &CR1, const ConstantRange &CR2) {
985         return CR1.binaryOp(WO->getBinaryOp(), CR2);
986       });
987 }
988 
989 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueIntrinsic(
990     IntrinsicInst *II, BasicBlock *BB) {
991   if (!ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
992     LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
993                       << "' - unknown intrinsic.\n");
994     return getFromRangeMetadata(II);
995   }
996 
997   SmallVector<ConstantRange, 2> OpRanges;
998   for (Value *Op : II->args()) {
999     Optional<ConstantRange> Range = getRangeFor(Op, II, BB);
1000     if (!Range)
1001       return None;
1002     OpRanges.push_back(*Range);
1003   }
1004 
1005   return ValueLatticeElement::getRange(
1006       ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges));
1007 }
1008 
1009 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueExtractValue(
1010     ExtractValueInst *EVI, BasicBlock *BB) {
1011   if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
1012     if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0)
1013       return solveBlockValueOverflowIntrinsic(WO, BB);
1014 
1015   // Handle extractvalue of insertvalue to allow further simplification
1016   // based on replaced with.overflow intrinsics.
1017   if (Value *V = SimplifyExtractValueInst(
1018           EVI->getAggregateOperand(), EVI->getIndices(),
1019           EVI->getModule()->getDataLayout()))
1020     return getBlockValue(V, BB);
1021 
1022   LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
1023                     << "' - overdefined (unknown extractvalue).\n");
1024   return ValueLatticeElement::getOverdefined();
1025 }
1026 
1027 static bool matchICmpOperand(APInt &Offset, Value *LHS, Value *Val,
1028                              ICmpInst::Predicate Pred) {
1029   if (LHS == Val)
1030     return true;
1031 
1032   // Handle range checking idiom produced by InstCombine. We will subtract the
1033   // offset from the allowed range for RHS in this case.
1034   const APInt *C;
1035   if (match(LHS, m_Add(m_Specific(Val), m_APInt(C)))) {
1036     Offset = *C;
1037     return true;
1038   }
1039 
1040   // Handle the symmetric case. This appears in saturation patterns like
1041   // (x == 16) ? 16 : (x + 1).
1042   if (match(Val, m_Add(m_Specific(LHS), m_APInt(C)))) {
1043     Offset = -*C;
1044     return true;
1045   }
1046 
1047   // If (x | y) < C, then (x < C) && (y < C).
1048   if (match(LHS, m_c_Or(m_Specific(Val), m_Value())) &&
1049       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE))
1050     return true;
1051 
1052   // If (x & y) > C, then (x > C) && (y > C).
1053   if (match(LHS, m_c_And(m_Specific(Val), m_Value())) &&
1054       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE))
1055     return true;
1056 
1057   return false;
1058 }
1059 
1060 /// Get value range for a "(Val + Offset) Pred RHS" condition.
1061 static ValueLatticeElement getValueFromSimpleICmpCondition(
1062     CmpInst::Predicate Pred, Value *RHS, const APInt &Offset) {
1063   ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(),
1064                          /*isFullSet=*/true);
1065   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS))
1066     RHSRange = ConstantRange(CI->getValue());
1067   else if (Instruction *I = dyn_cast<Instruction>(RHS))
1068     if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
1069       RHSRange = getConstantRangeFromMetadata(*Ranges);
1070 
1071   ConstantRange TrueValues =
1072       ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
1073   return ValueLatticeElement::getRange(TrueValues.subtract(Offset));
1074 }
1075 
1076 static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI,
1077                                                      bool isTrueDest) {
1078   Value *LHS = ICI->getOperand(0);
1079   Value *RHS = ICI->getOperand(1);
1080 
1081   // Get the predicate that must hold along the considered edge.
1082   CmpInst::Predicate EdgePred =
1083       isTrueDest ? ICI->getPredicate() : ICI->getInversePredicate();
1084 
1085   if (isa<Constant>(RHS)) {
1086     if (ICI->isEquality() && LHS == Val) {
1087       if (EdgePred == ICmpInst::ICMP_EQ)
1088         return ValueLatticeElement::get(cast<Constant>(RHS));
1089       else if (!isa<UndefValue>(RHS))
1090         return ValueLatticeElement::getNot(cast<Constant>(RHS));
1091     }
1092   }
1093 
1094   Type *Ty = Val->getType();
1095   if (!Ty->isIntegerTy())
1096     return ValueLatticeElement::getOverdefined();
1097 
1098   unsigned BitWidth = Ty->getScalarSizeInBits();
1099   APInt Offset(BitWidth, 0);
1100   if (matchICmpOperand(Offset, LHS, Val, EdgePred))
1101     return getValueFromSimpleICmpCondition(EdgePred, RHS, Offset);
1102 
1103   CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(EdgePred);
1104   if (matchICmpOperand(Offset, RHS, Val, SwappedPred))
1105     return getValueFromSimpleICmpCondition(SwappedPred, LHS, Offset);
1106 
1107   const APInt *Mask, *C;
1108   if (match(LHS, m_And(m_Specific(Val), m_APInt(Mask))) &&
1109       match(RHS, m_APInt(C))) {
1110     // If (Val & Mask) == C then all the masked bits are known and we can
1111     // compute a value range based on that.
1112     if (EdgePred == ICmpInst::ICMP_EQ) {
1113       KnownBits Known;
1114       Known.Zero = ~*C & *Mask;
1115       Known.One = *C & *Mask;
1116       return ValueLatticeElement::getRange(
1117           ConstantRange::fromKnownBits(Known, /*IsSigned*/ false));
1118     }
1119     // If (Val & Mask) != 0 then the value must be larger than the lowest set
1120     // bit of Mask.
1121     if (EdgePred == ICmpInst::ICMP_NE && !Mask->isZero() && C->isZero()) {
1122       return ValueLatticeElement::getRange(ConstantRange::getNonEmpty(
1123           APInt::getOneBitSet(BitWidth, Mask->countTrailingZeros()),
1124           APInt::getZero(BitWidth)));
1125     }
1126   }
1127 
1128   // If (X urem Modulus) >= C, then X >= C.
1129   // TODO: An upper bound could be computed as well.
1130   if (match(LHS, m_URem(m_Specific(Val), m_Value())) &&
1131       match(RHS, m_APInt(C))) {
1132     // Use the icmp region so we don't have to deal with different predicates.
1133     ConstantRange CR = ConstantRange::makeExactICmpRegion(EdgePred, *C);
1134     if (!CR.isEmptySet())
1135       return ValueLatticeElement::getRange(ConstantRange::getNonEmpty(
1136           CR.getUnsignedMin(), APInt(BitWidth, 0)));
1137   }
1138 
1139   return ValueLatticeElement::getOverdefined();
1140 }
1141 
1142 // Handle conditions of the form
1143 // extractvalue(op.with.overflow(%x, C), 1).
1144 static ValueLatticeElement getValueFromOverflowCondition(
1145     Value *Val, WithOverflowInst *WO, bool IsTrueDest) {
1146   // TODO: This only works with a constant RHS for now. We could also compute
1147   // the range of the RHS, but this doesn't fit into the current structure of
1148   // the edge value calculation.
1149   const APInt *C;
1150   if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C)))
1151     return ValueLatticeElement::getOverdefined();
1152 
1153   // Calculate the possible values of %x for which no overflow occurs.
1154   ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
1155       WO->getBinaryOp(), *C, WO->getNoWrapKind());
1156 
1157   // If overflow is false, %x is constrained to NWR. If overflow is true, %x is
1158   // constrained to it's inverse (all values that might cause overflow).
1159   if (IsTrueDest)
1160     NWR = NWR.inverse();
1161   return ValueLatticeElement::getRange(NWR);
1162 }
1163 
1164 static Optional<ValueLatticeElement>
1165 getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest,
1166                           bool isRevisit,
1167                           SmallDenseMap<Value *, ValueLatticeElement> &Visited,
1168                           SmallVectorImpl<Value *> &Worklist) {
1169   if (!isRevisit) {
1170     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond))
1171       return getValueFromICmpCondition(Val, ICI, isTrueDest);
1172 
1173     if (auto *EVI = dyn_cast<ExtractValueInst>(Cond))
1174       if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
1175         if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1)
1176           return getValueFromOverflowCondition(Val, WO, isTrueDest);
1177   }
1178 
1179   Value *L, *R;
1180   bool IsAnd;
1181   if (match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))))
1182     IsAnd = true;
1183   else if (match(Cond, m_LogicalOr(m_Value(L), m_Value(R))))
1184     IsAnd = false;
1185   else
1186     return ValueLatticeElement::getOverdefined();
1187 
1188   auto LV = Visited.find(L);
1189   auto RV = Visited.find(R);
1190 
1191   // if (L && R) -> intersect L and R
1192   // if (!(L || R)) -> intersect L and R
1193   // if (L || R) -> union L and R
1194   // if (!(L && R)) -> union L and R
1195   if ((isTrueDest ^ IsAnd) && (LV != Visited.end())) {
1196     ValueLatticeElement V = LV->second;
1197     if (V.isOverdefined())
1198       return V;
1199     if (RV != Visited.end()) {
1200       V.mergeIn(RV->second);
1201       return V;
1202     }
1203   }
1204 
1205   if (LV == Visited.end() || RV == Visited.end()) {
1206     assert(!isRevisit);
1207     if (LV == Visited.end())
1208       Worklist.push_back(L);
1209     if (RV == Visited.end())
1210       Worklist.push_back(R);
1211     return None;
1212   }
1213 
1214   return intersect(LV->second, RV->second);
1215 }
1216 
1217 ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
1218                                           bool isTrueDest) {
1219   assert(Cond && "precondition");
1220   SmallDenseMap<Value*, ValueLatticeElement> Visited;
1221   SmallVector<Value *> Worklist;
1222 
1223   Worklist.push_back(Cond);
1224   do {
1225     Value *CurrentCond = Worklist.back();
1226     // Insert an Overdefined placeholder into the set to prevent
1227     // infinite recursion if there exists IRs that use not
1228     // dominated by its def as in this example:
1229     //   "%tmp3 = or i1 undef, %tmp4"
1230     //   "%tmp4 = or i1 undef, %tmp3"
1231     auto Iter =
1232         Visited.try_emplace(CurrentCond, ValueLatticeElement::getOverdefined());
1233     bool isRevisit = !Iter.second;
1234     Optional<ValueLatticeElement> Result = getValueFromConditionImpl(
1235         Val, CurrentCond, isTrueDest, isRevisit, Visited, Worklist);
1236     if (Result) {
1237       Visited[CurrentCond] = *Result;
1238       Worklist.pop_back();
1239     }
1240   } while (!Worklist.empty());
1241 
1242   auto Result = Visited.find(Cond);
1243   assert(Result != Visited.end());
1244   return Result->second;
1245 }
1246 
1247 // Return true if Usr has Op as an operand, otherwise false.
1248 static bool usesOperand(User *Usr, Value *Op) {
1249   return is_contained(Usr->operands(), Op);
1250 }
1251 
1252 // Return true if the instruction type of Val is supported by
1253 // constantFoldUser(). Currently CastInst, BinaryOperator and FreezeInst only.
1254 // Call this before calling constantFoldUser() to find out if it's even worth
1255 // attempting to call it.
1256 static bool isOperationFoldable(User *Usr) {
1257   return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr) || isa<FreezeInst>(Usr);
1258 }
1259 
1260 // Check if Usr can be simplified to an integer constant when the value of one
1261 // of its operands Op is an integer constant OpConstVal. If so, return it as an
1262 // lattice value range with a single element or otherwise return an overdefined
1263 // lattice value.
1264 static ValueLatticeElement constantFoldUser(User *Usr, Value *Op,
1265                                             const APInt &OpConstVal,
1266                                             const DataLayout &DL) {
1267   assert(isOperationFoldable(Usr) && "Precondition");
1268   Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal);
1269   // Check if Usr can be simplified to a constant.
1270   if (auto *CI = dyn_cast<CastInst>(Usr)) {
1271     assert(CI->getOperand(0) == Op && "Operand 0 isn't Op");
1272     if (auto *C = dyn_cast_or_null<ConstantInt>(
1273             SimplifyCastInst(CI->getOpcode(), OpConst,
1274                              CI->getDestTy(), DL))) {
1275       return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
1276     }
1277   } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) {
1278     bool Op0Match = BO->getOperand(0) == Op;
1279     bool Op1Match = BO->getOperand(1) == Op;
1280     assert((Op0Match || Op1Match) &&
1281            "Operand 0 nor Operand 1 isn't a match");
1282     Value *LHS = Op0Match ? OpConst : BO->getOperand(0);
1283     Value *RHS = Op1Match ? OpConst : BO->getOperand(1);
1284     if (auto *C = dyn_cast_or_null<ConstantInt>(
1285             SimplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) {
1286       return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
1287     }
1288   } else if (isa<FreezeInst>(Usr)) {
1289     assert(cast<FreezeInst>(Usr)->getOperand(0) == Op && "Operand 0 isn't Op");
1290     return ValueLatticeElement::getRange(ConstantRange(OpConstVal));
1291   }
1292   return ValueLatticeElement::getOverdefined();
1293 }
1294 
1295 /// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
1296 /// Val is not constrained on the edge.  Result is unspecified if return value
1297 /// is false.
1298 static Optional<ValueLatticeElement> getEdgeValueLocal(Value *Val,
1299                                                        BasicBlock *BBFrom,
1300                                                        BasicBlock *BBTo) {
1301   // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
1302   // know that v != 0.
1303   if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
1304     // If this is a conditional branch and only one successor goes to BBTo, then
1305     // we may be able to infer something from the condition.
1306     if (BI->isConditional() &&
1307         BI->getSuccessor(0) != BI->getSuccessor(1)) {
1308       bool isTrueDest = BI->getSuccessor(0) == BBTo;
1309       assert(BI->getSuccessor(!isTrueDest) == BBTo &&
1310              "BBTo isn't a successor of BBFrom");
1311       Value *Condition = BI->getCondition();
1312 
1313       // If V is the condition of the branch itself, then we know exactly what
1314       // it is.
1315       if (Condition == Val)
1316         return ValueLatticeElement::get(ConstantInt::get(
1317                               Type::getInt1Ty(Val->getContext()), isTrueDest));
1318 
1319       // If the condition of the branch is an equality comparison, we may be
1320       // able to infer the value.
1321       ValueLatticeElement Result = getValueFromCondition(Val, Condition,
1322                                                          isTrueDest);
1323       if (!Result.isOverdefined())
1324         return Result;
1325 
1326       if (User *Usr = dyn_cast<User>(Val)) {
1327         assert(Result.isOverdefined() && "Result isn't overdefined");
1328         // Check with isOperationFoldable() first to avoid linearly iterating
1329         // over the operands unnecessarily which can be expensive for
1330         // instructions with many operands.
1331         if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) {
1332           const DataLayout &DL = BBTo->getModule()->getDataLayout();
1333           if (usesOperand(Usr, Condition)) {
1334             // If Val has Condition as an operand and Val can be folded into a
1335             // constant with either Condition == true or Condition == false,
1336             // propagate the constant.
1337             // eg.
1338             //   ; %Val is true on the edge to %then.
1339             //   %Val = and i1 %Condition, true.
1340             //   br %Condition, label %then, label %else
1341             APInt ConditionVal(1, isTrueDest ? 1 : 0);
1342             Result = constantFoldUser(Usr, Condition, ConditionVal, DL);
1343           } else {
1344             // If one of Val's operand has an inferred value, we may be able to
1345             // infer the value of Val.
1346             // eg.
1347             //    ; %Val is 94 on the edge to %then.
1348             //    %Val = add i8 %Op, 1
1349             //    %Condition = icmp eq i8 %Op, 93
1350             //    br i1 %Condition, label %then, label %else
1351             for (unsigned i = 0; i < Usr->getNumOperands(); ++i) {
1352               Value *Op = Usr->getOperand(i);
1353               ValueLatticeElement OpLatticeVal =
1354                   getValueFromCondition(Op, Condition, isTrueDest);
1355               if (Optional<APInt> OpConst = OpLatticeVal.asConstantInteger()) {
1356                 Result = constantFoldUser(Usr, Op, OpConst.getValue(), DL);
1357                 break;
1358               }
1359             }
1360           }
1361         }
1362       }
1363       if (!Result.isOverdefined())
1364         return Result;
1365     }
1366   }
1367 
1368   // If the edge was formed by a switch on the value, then we may know exactly
1369   // what it is.
1370   if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
1371     Value *Condition = SI->getCondition();
1372     if (!isa<IntegerType>(Val->getType()))
1373       return None;
1374     bool ValUsesConditionAndMayBeFoldable = false;
1375     if (Condition != Val) {
1376       // Check if Val has Condition as an operand.
1377       if (User *Usr = dyn_cast<User>(Val))
1378         ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) &&
1379             usesOperand(Usr, Condition);
1380       if (!ValUsesConditionAndMayBeFoldable)
1381         return None;
1382     }
1383     assert((Condition == Val || ValUsesConditionAndMayBeFoldable) &&
1384            "Condition != Val nor Val doesn't use Condition");
1385 
1386     bool DefaultCase = SI->getDefaultDest() == BBTo;
1387     unsigned BitWidth = Val->getType()->getIntegerBitWidth();
1388     ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
1389 
1390     for (auto Case : SI->cases()) {
1391       APInt CaseValue = Case.getCaseValue()->getValue();
1392       ConstantRange EdgeVal(CaseValue);
1393       if (ValUsesConditionAndMayBeFoldable) {
1394         User *Usr = cast<User>(Val);
1395         const DataLayout &DL = BBTo->getModule()->getDataLayout();
1396         ValueLatticeElement EdgeLatticeVal =
1397             constantFoldUser(Usr, Condition, CaseValue, DL);
1398         if (EdgeLatticeVal.isOverdefined())
1399           return None;
1400         EdgeVal = EdgeLatticeVal.getConstantRange();
1401       }
1402       if (DefaultCase) {
1403         // It is possible that the default destination is the destination of
1404         // some cases. We cannot perform difference for those cases.
1405         // We know Condition != CaseValue in BBTo.  In some cases we can use
1406         // this to infer Val == f(Condition) is != f(CaseValue).  For now, we
1407         // only do this when f is identity (i.e. Val == Condition), but we
1408         // should be able to do this for any injective f.
1409         if (Case.getCaseSuccessor() != BBTo && Condition == Val)
1410           EdgesVals = EdgesVals.difference(EdgeVal);
1411       } else if (Case.getCaseSuccessor() == BBTo)
1412         EdgesVals = EdgesVals.unionWith(EdgeVal);
1413     }
1414     return ValueLatticeElement::getRange(std::move(EdgesVals));
1415   }
1416   return None;
1417 }
1418 
1419 /// Compute the value of Val on the edge BBFrom -> BBTo or the value at
1420 /// the basic block if the edge does not constrain Val.
1421 Optional<ValueLatticeElement> LazyValueInfoImpl::getEdgeValue(
1422     Value *Val, BasicBlock *BBFrom, BasicBlock *BBTo, Instruction *CxtI) {
1423   // If already a constant, there is nothing to compute.
1424   if (Constant *VC = dyn_cast<Constant>(Val))
1425     return ValueLatticeElement::get(VC);
1426 
1427   ValueLatticeElement LocalResult = getEdgeValueLocal(Val, BBFrom, BBTo)
1428       .getValueOr(ValueLatticeElement::getOverdefined());
1429   if (hasSingleValue(LocalResult))
1430     // Can't get any more precise here
1431     return LocalResult;
1432 
1433   Optional<ValueLatticeElement> OptInBlock = getBlockValue(Val, BBFrom);
1434   if (!OptInBlock)
1435     return None;
1436   ValueLatticeElement &InBlock = *OptInBlock;
1437 
1438   // Try to intersect ranges of the BB and the constraint on the edge.
1439   intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock,
1440                                                 BBFrom->getTerminator());
1441   // We can use the context instruction (generically the ultimate instruction
1442   // the calling pass is trying to simplify) here, even though the result of
1443   // this function is generally cached when called from the solve* functions
1444   // (and that cached result might be used with queries using a different
1445   // context instruction), because when this function is called from the solve*
1446   // functions, the context instruction is not provided. When called from
1447   // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided,
1448   // but then the result is not cached.
1449   intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI);
1450 
1451   return intersect(LocalResult, InBlock);
1452 }
1453 
1454 ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB,
1455                                                        Instruction *CxtI) {
1456   LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
1457                     << BB->getName() << "'\n");
1458 
1459   assert(BlockValueStack.empty() && BlockValueSet.empty());
1460   Optional<ValueLatticeElement> OptResult = getBlockValue(V, BB);
1461   if (!OptResult) {
1462     solve();
1463     OptResult = getBlockValue(V, BB);
1464     assert(OptResult && "Value not available after solving");
1465   }
1466   ValueLatticeElement Result = *OptResult;
1467   intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
1468 
1469   LLVM_DEBUG(dbgs() << "  Result = " << Result << "\n");
1470   return Result;
1471 }
1472 
1473 ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) {
1474   LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName()
1475                     << "'\n");
1476 
1477   if (auto *C = dyn_cast<Constant>(V))
1478     return ValueLatticeElement::get(C);
1479 
1480   ValueLatticeElement Result = ValueLatticeElement::getOverdefined();
1481   if (auto *I = dyn_cast<Instruction>(V))
1482     Result = getFromRangeMetadata(I);
1483   intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
1484 
1485   LLVM_DEBUG(dbgs() << "  Result = " << Result << "\n");
1486   return Result;
1487 }
1488 
1489 ValueLatticeElement LazyValueInfoImpl::
1490 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
1491                Instruction *CxtI) {
1492   LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
1493                     << FromBB->getName() << "' to '" << ToBB->getName()
1494                     << "'\n");
1495 
1496   Optional<ValueLatticeElement> Result = getEdgeValue(V, FromBB, ToBB, CxtI);
1497   if (!Result) {
1498     solve();
1499     Result = getEdgeValue(V, FromBB, ToBB, CxtI);
1500     assert(Result && "More work to do after problem solved?");
1501   }
1502 
1503   LLVM_DEBUG(dbgs() << "  Result = " << *Result << "\n");
1504   return *Result;
1505 }
1506 
1507 void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1508                                    BasicBlock *NewSucc) {
1509   TheCache.threadEdgeImpl(OldSucc, NewSucc);
1510 }
1511 
1512 //===----------------------------------------------------------------------===//
1513 //                            LazyValueInfo Impl
1514 //===----------------------------------------------------------------------===//
1515 
1516 /// This lazily constructs the LazyValueInfoImpl.
1517 static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC,
1518                                   const Module *M) {
1519   if (!PImpl) {
1520     assert(M && "getCache() called with a null Module");
1521     const DataLayout &DL = M->getDataLayout();
1522     Function *GuardDecl = M->getFunction(
1523         Intrinsic::getName(Intrinsic::experimental_guard));
1524     PImpl = new LazyValueInfoImpl(AC, DL, GuardDecl);
1525   }
1526   return *static_cast<LazyValueInfoImpl*>(PImpl);
1527 }
1528 
1529 bool LazyValueInfoWrapperPass::runOnFunction(Function &F) {
1530   Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1531   Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1532 
1533   if (Info.PImpl)
1534     getImpl(Info.PImpl, Info.AC, F.getParent()).clear();
1535 
1536   // Fully lazy.
1537   return false;
1538 }
1539 
1540 void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1541   AU.setPreservesAll();
1542   AU.addRequired<AssumptionCacheTracker>();
1543   AU.addRequired<TargetLibraryInfoWrapperPass>();
1544 }
1545 
1546 LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; }
1547 
1548 LazyValueInfo::~LazyValueInfo() { releaseMemory(); }
1549 
1550 void LazyValueInfo::releaseMemory() {
1551   // If the cache was allocated, free it.
1552   if (PImpl) {
1553     delete &getImpl(PImpl, AC, nullptr);
1554     PImpl = nullptr;
1555   }
1556 }
1557 
1558 bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA,
1559                                FunctionAnalysisManager::Invalidator &Inv) {
1560   // We need to invalidate if we have either failed to preserve this analyses
1561   // result directly or if any of its dependencies have been invalidated.
1562   auto PAC = PA.getChecker<LazyValueAnalysis>();
1563   if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()))
1564     return true;
1565 
1566   return false;
1567 }
1568 
1569 void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); }
1570 
1571 LazyValueInfo LazyValueAnalysis::run(Function &F,
1572                                      FunctionAnalysisManager &FAM) {
1573   auto &AC = FAM.getResult<AssumptionAnalysis>(F);
1574   auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
1575 
1576   return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI);
1577 }
1578 
1579 /// Returns true if we can statically tell that this value will never be a
1580 /// "useful" constant.  In practice, this means we've got something like an
1581 /// alloca or a malloc call for which a comparison against a constant can
1582 /// only be guarding dead code.  Note that we are potentially giving up some
1583 /// precision in dead code (a constant result) in favour of avoiding a
1584 /// expensive search for a easily answered common query.
1585 static bool isKnownNonConstant(Value *V) {
1586   V = V->stripPointerCasts();
1587   // The return val of alloc cannot be a Constant.
1588   if (isa<AllocaInst>(V))
1589     return true;
1590   return false;
1591 }
1592 
1593 Constant *LazyValueInfo::getConstant(Value *V, Instruction *CxtI) {
1594   // Bail out early if V is known not to be a Constant.
1595   if (isKnownNonConstant(V))
1596     return nullptr;
1597 
1598   BasicBlock *BB = CxtI->getParent();
1599   ValueLatticeElement Result =
1600       getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI);
1601 
1602   if (Result.isConstant())
1603     return Result.getConstant();
1604   if (Result.isConstantRange()) {
1605     const ConstantRange &CR = Result.getConstantRange();
1606     if (const APInt *SingleVal = CR.getSingleElement())
1607       return ConstantInt::get(V->getContext(), *SingleVal);
1608   }
1609   return nullptr;
1610 }
1611 
1612 ConstantRange LazyValueInfo::getConstantRange(Value *V, Instruction *CxtI,
1613                                               bool UndefAllowed) {
1614   assert(V->getType()->isIntegerTy());
1615   unsigned Width = V->getType()->getIntegerBitWidth();
1616   BasicBlock *BB = CxtI->getParent();
1617   ValueLatticeElement Result =
1618       getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI);
1619   if (Result.isUnknown())
1620     return ConstantRange::getEmpty(Width);
1621   if (Result.isConstantRange(UndefAllowed))
1622     return Result.getConstantRange(UndefAllowed);
1623   // We represent ConstantInt constants as constant ranges but other kinds
1624   // of integer constants, i.e. ConstantExpr will be tagged as constants
1625   assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
1626          "ConstantInt value must be represented as constantrange");
1627   return ConstantRange::getFull(Width);
1628 }
1629 
1630 /// Determine whether the specified value is known to be a
1631 /// constant on the specified edge. Return null if not.
1632 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
1633                                            BasicBlock *ToBB,
1634                                            Instruction *CxtI) {
1635   Module *M = FromBB->getModule();
1636   ValueLatticeElement Result =
1637       getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);
1638 
1639   if (Result.isConstant())
1640     return Result.getConstant();
1641   if (Result.isConstantRange()) {
1642     const ConstantRange &CR = Result.getConstantRange();
1643     if (const APInt *SingleVal = CR.getSingleElement())
1644       return ConstantInt::get(V->getContext(), *SingleVal);
1645   }
1646   return nullptr;
1647 }
1648 
1649 ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V,
1650                                                     BasicBlock *FromBB,
1651                                                     BasicBlock *ToBB,
1652                                                     Instruction *CxtI) {
1653   unsigned Width = V->getType()->getIntegerBitWidth();
1654   Module *M = FromBB->getModule();
1655   ValueLatticeElement Result =
1656       getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);
1657 
1658   if (Result.isUnknown())
1659     return ConstantRange::getEmpty(Width);
1660   if (Result.isConstantRange())
1661     return Result.getConstantRange();
1662   // We represent ConstantInt constants as constant ranges but other kinds
1663   // of integer constants, i.e. ConstantExpr will be tagged as constants
1664   assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
1665          "ConstantInt value must be represented as constantrange");
1666   return ConstantRange::getFull(Width);
1667 }
1668 
1669 static LazyValueInfo::Tristate
1670 getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val,
1671                    const DataLayout &DL, TargetLibraryInfo *TLI) {
1672   // If we know the value is a constant, evaluate the conditional.
1673   Constant *Res = nullptr;
1674   if (Val.isConstant()) {
1675     Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI);
1676     if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
1677       return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
1678     return LazyValueInfo::Unknown;
1679   }
1680 
1681   if (Val.isConstantRange()) {
1682     ConstantInt *CI = dyn_cast<ConstantInt>(C);
1683     if (!CI) return LazyValueInfo::Unknown;
1684 
1685     const ConstantRange &CR = Val.getConstantRange();
1686     if (Pred == ICmpInst::ICMP_EQ) {
1687       if (!CR.contains(CI->getValue()))
1688         return LazyValueInfo::False;
1689 
1690       if (CR.isSingleElement())
1691         return LazyValueInfo::True;
1692     } else if (Pred == ICmpInst::ICMP_NE) {
1693       if (!CR.contains(CI->getValue()))
1694         return LazyValueInfo::True;
1695 
1696       if (CR.isSingleElement())
1697         return LazyValueInfo::False;
1698     } else {
1699       // Handle more complex predicates.
1700       ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(
1701           (ICmpInst::Predicate)Pred, CI->getValue());
1702       if (TrueValues.contains(CR))
1703         return LazyValueInfo::True;
1704       if (TrueValues.inverse().contains(CR))
1705         return LazyValueInfo::False;
1706     }
1707     return LazyValueInfo::Unknown;
1708   }
1709 
1710   if (Val.isNotConstant()) {
1711     // If this is an equality comparison, we can try to fold it knowing that
1712     // "V != C1".
1713     if (Pred == ICmpInst::ICMP_EQ) {
1714       // !C1 == C -> false iff C1 == C.
1715       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1716                                             Val.getNotConstant(), C, DL,
1717                                             TLI);
1718       if (Res->isNullValue())
1719         return LazyValueInfo::False;
1720     } else if (Pred == ICmpInst::ICMP_NE) {
1721       // !C1 != C -> true iff C1 == C.
1722       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1723                                             Val.getNotConstant(), C, DL,
1724                                             TLI);
1725       if (Res->isNullValue())
1726         return LazyValueInfo::True;
1727     }
1728     return LazyValueInfo::Unknown;
1729   }
1730 
1731   return LazyValueInfo::Unknown;
1732 }
1733 
1734 /// Determine whether the specified value comparison with a constant is known to
1735 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
1736 LazyValueInfo::Tristate
1737 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
1738                                   BasicBlock *FromBB, BasicBlock *ToBB,
1739                                   Instruction *CxtI) {
1740   Module *M = FromBB->getModule();
1741   ValueLatticeElement Result =
1742       getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);
1743 
1744   return getPredicateResult(Pred, C, Result, M->getDataLayout(), TLI);
1745 }
1746 
1747 LazyValueInfo::Tristate
1748 LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
1749                               Instruction *CxtI, bool UseBlockValue) {
1750   // Is or is not NonNull are common predicates being queried. If
1751   // isKnownNonZero can tell us the result of the predicate, we can
1752   // return it quickly. But this is only a fastpath, and falling
1753   // through would still be correct.
1754   Module *M = CxtI->getModule();
1755   const DataLayout &DL = M->getDataLayout();
1756   if (V->getType()->isPointerTy() && C->isNullValue() &&
1757       isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) {
1758     if (Pred == ICmpInst::ICMP_EQ)
1759       return LazyValueInfo::False;
1760     else if (Pred == ICmpInst::ICMP_NE)
1761       return LazyValueInfo::True;
1762   }
1763 
1764   ValueLatticeElement Result = UseBlockValue
1765       ? getImpl(PImpl, AC, M).getValueInBlock(V, CxtI->getParent(), CxtI)
1766       : getImpl(PImpl, AC, M).getValueAt(V, CxtI);
1767   Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI);
1768   if (Ret != Unknown)
1769     return Ret;
1770 
1771   // Note: The following bit of code is somewhat distinct from the rest of LVI;
1772   // LVI as a whole tries to compute a lattice value which is conservatively
1773   // correct at a given location.  In this case, we have a predicate which we
1774   // weren't able to prove about the merged result, and we're pushing that
1775   // predicate back along each incoming edge to see if we can prove it
1776   // separately for each input.  As a motivating example, consider:
1777   // bb1:
1778   //   %v1 = ... ; constantrange<1, 5>
1779   //   br label %merge
1780   // bb2:
1781   //   %v2 = ... ; constantrange<10, 20>
1782   //   br label %merge
1783   // merge:
1784   //   %phi = phi [%v1, %v2] ; constantrange<1,20>
1785   //   %pred = icmp eq i32 %phi, 8
1786   // We can't tell from the lattice value for '%phi' that '%pred' is false
1787   // along each path, but by checking the predicate over each input separately,
1788   // we can.
1789   // We limit the search to one step backwards from the current BB and value.
1790   // We could consider extending this to search further backwards through the
1791   // CFG and/or value graph, but there are non-obvious compile time vs quality
1792   // tradeoffs.
1793   BasicBlock *BB = CxtI->getParent();
1794 
1795   // Function entry or an unreachable block.  Bail to avoid confusing
1796   // analysis below.
1797   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1798   if (PI == PE)
1799     return Unknown;
1800 
1801   // If V is a PHI node in the same block as the context, we need to ask
1802   // questions about the predicate as applied to the incoming value along
1803   // each edge. This is useful for eliminating cases where the predicate is
1804   // known along all incoming edges.
1805   if (auto *PHI = dyn_cast<PHINode>(V))
1806     if (PHI->getParent() == BB) {
1807       Tristate Baseline = Unknown;
1808       for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) {
1809         Value *Incoming = PHI->getIncomingValue(i);
1810         BasicBlock *PredBB = PHI->getIncomingBlock(i);
1811         // Note that PredBB may be BB itself.
1812         Tristate Result =
1813             getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, CxtI);
1814 
1815         // Keep going as long as we've seen a consistent known result for
1816         // all inputs.
1817         Baseline = (i == 0) ? Result /* First iteration */
1818                             : (Baseline == Result ? Baseline
1819                                                   : Unknown); /* All others */
1820         if (Baseline == Unknown)
1821           break;
1822       }
1823       if (Baseline != Unknown)
1824         return Baseline;
1825     }
1826 
1827   // For a comparison where the V is outside this block, it's possible
1828   // that we've branched on it before. Look to see if the value is known
1829   // on all incoming edges.
1830   if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB) {
1831     // For predecessor edge, determine if the comparison is true or false
1832     // on that edge. If they're all true or all false, we can conclude
1833     // the value of the comparison in this block.
1834     Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1835     if (Baseline != Unknown) {
1836       // Check that all remaining incoming values match the first one.
1837       while (++PI != PE) {
1838         Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1839         if (Ret != Baseline)
1840           break;
1841       }
1842       // If we terminated early, then one of the values didn't match.
1843       if (PI == PE) {
1844         return Baseline;
1845       }
1846     }
1847   }
1848 
1849   return Unknown;
1850 }
1851 
1852 LazyValueInfo::Tristate LazyValueInfo::getPredicateAt(unsigned P, Value *LHS,
1853                                                       Value *RHS,
1854                                                       Instruction *CxtI,
1855                                                       bool UseBlockValue) {
1856   CmpInst::Predicate Pred = (CmpInst::Predicate)P;
1857 
1858   if (auto *C = dyn_cast<Constant>(RHS))
1859     return getPredicateAt(P, LHS, C, CxtI, UseBlockValue);
1860   if (auto *C = dyn_cast<Constant>(LHS))
1861     return getPredicateAt(CmpInst::getSwappedPredicate(Pred), RHS, C, CxtI,
1862                           UseBlockValue);
1863 
1864   // Got two non-Constant values. While we could handle them somewhat,
1865   // by getting their constant ranges, and applying ConstantRange::icmp(),
1866   // so far it did not appear to be profitable.
1867   return LazyValueInfo::Unknown;
1868 }
1869 
1870 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1871                                BasicBlock *NewSucc) {
1872   if (PImpl) {
1873     getImpl(PImpl, AC, PredBB->getModule())
1874         .threadEdge(PredBB, OldSucc, NewSucc);
1875   }
1876 }
1877 
1878 void LazyValueInfo::eraseBlock(BasicBlock *BB) {
1879   if (PImpl) {
1880     getImpl(PImpl, AC, BB->getModule()).eraseBlock(BB);
1881   }
1882 }
1883 
1884 
1885 void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
1886   if (PImpl) {
1887     getImpl(PImpl, AC, F.getParent()).printLVI(F, DTree, OS);
1888   }
1889 }
1890 
1891 // Print the LVI for the function arguments at the start of each basic block.
1892 void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot(
1893     const BasicBlock *BB, formatted_raw_ostream &OS) {
1894   // Find if there are latticevalues defined for arguments of the function.
1895   auto *F = BB->getParent();
1896   for (auto &Arg : F->args()) {
1897     ValueLatticeElement Result = LVIImpl->getValueInBlock(
1898         const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB));
1899     if (Result.isUnknown())
1900       continue;
1901     OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n";
1902   }
1903 }
1904 
1905 // This function prints the LVI analysis for the instruction I at the beginning
1906 // of various basic blocks. It relies on calculated values that are stored in
1907 // the LazyValueInfoCache, and in the absence of cached values, recalculate the
1908 // LazyValueInfo for `I`, and print that info.
1909 void LazyValueInfoAnnotatedWriter::emitInstructionAnnot(
1910     const Instruction *I, formatted_raw_ostream &OS) {
1911 
1912   auto *ParentBB = I->getParent();
1913   SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI;
1914   // We can generate (solve) LVI values only for blocks that are dominated by
1915   // the I's parent. However, to avoid generating LVI for all dominating blocks,
1916   // that contain redundant/uninteresting information, we print LVI for
1917   // blocks that may use this LVI information (such as immediate successor
1918   // blocks, and blocks that contain uses of `I`).
1919   auto printResult = [&](const BasicBlock *BB) {
1920     if (!BlocksContainingLVI.insert(BB).second)
1921       return;
1922     ValueLatticeElement Result = LVIImpl->getValueInBlock(
1923         const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB));
1924       OS << "; LatticeVal for: '" << *I << "' in BB: '";
1925       BB->printAsOperand(OS, false);
1926       OS << "' is: " << Result << "\n";
1927   };
1928 
1929   printResult(ParentBB);
1930   // Print the LVI analysis results for the immediate successor blocks, that
1931   // are dominated by `ParentBB`.
1932   for (auto *BBSucc : successors(ParentBB))
1933     if (DT.dominates(ParentBB, BBSucc))
1934       printResult(BBSucc);
1935 
1936   // Print LVI in blocks where `I` is used.
1937   for (auto *U : I->users())
1938     if (auto *UseI = dyn_cast<Instruction>(U))
1939       if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent()))
1940         printResult(UseI->getParent());
1941 
1942 }
1943 
1944 namespace {
1945 // Printer class for LazyValueInfo results.
1946 class LazyValueInfoPrinter : public FunctionPass {
1947 public:
1948   static char ID; // Pass identification, replacement for typeid
1949   LazyValueInfoPrinter() : FunctionPass(ID) {
1950     initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry());
1951   }
1952 
1953   void getAnalysisUsage(AnalysisUsage &AU) const override {
1954     AU.setPreservesAll();
1955     AU.addRequired<LazyValueInfoWrapperPass>();
1956     AU.addRequired<DominatorTreeWrapperPass>();
1957   }
1958 
1959   // Get the mandatory dominator tree analysis and pass this in to the
1960   // LVIPrinter. We cannot rely on the LVI's DT, since it's optional.
1961   bool runOnFunction(Function &F) override {
1962     dbgs() << "LVI for function '" << F.getName() << "':\n";
1963     auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI();
1964     auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1965     LVI.printLVI(F, DTree, dbgs());
1966     return false;
1967   }
1968 };
1969 }
1970 
1971 char LazyValueInfoPrinter::ID = 0;
1972 INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info",
1973                 "Lazy Value Info Printer Pass", false, false)
1974 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
1975 INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info",
1976                 "Lazy Value Info Printer Pass", false, false)
1977