xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/LazyValueInfo.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interface for lazy computation of value constraint
10 // information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/LazyValueInfo.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/Analysis/ValueLattice.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/AssemblyAnnotationWriter.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include "llvm/InitializePasses.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/FormattedStream.h"
40 #include "llvm/Support/KnownBits.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <optional>
43 using namespace llvm;
44 using namespace PatternMatch;
45 
46 #define DEBUG_TYPE "lazy-value-info"
47 
48 // This is the number of worklist items we will process to try to discover an
49 // answer for a given value.
50 static const unsigned MaxProcessedPerValue = 500;
51 
52 char LazyValueInfoWrapperPass::ID = 0;
53 LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) {
54   initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry());
55 }
56 INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info",
57                 "Lazy Value Information Analysis", false, true)
58 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
59 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
60 INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info",
61                 "Lazy Value Information Analysis", false, true)
62 
63 namespace llvm {
64 FunctionPass *createLazyValueInfoPass() {
65   return new LazyValueInfoWrapperPass();
66 }
67 } // namespace llvm
68 
69 AnalysisKey LazyValueAnalysis::Key;
70 
71 /// Returns true if this lattice value represents at most one possible value.
72 /// This is as precise as any lattice value can get while still representing
73 /// reachable code.
74 static bool hasSingleValue(const ValueLatticeElement &Val) {
75   if (Val.isConstantRange() &&
76       Val.getConstantRange().isSingleElement())
77     // Integer constants are single element ranges
78     return true;
79   if (Val.isConstant())
80     // Non integer constants
81     return true;
82   return false;
83 }
84 
85 /// Combine two sets of facts about the same value into a single set of
86 /// facts.  Note that this method is not suitable for merging facts along
87 /// different paths in a CFG; that's what the mergeIn function is for.  This
88 /// is for merging facts gathered about the same value at the same location
89 /// through two independent means.
90 /// Notes:
91 /// * This method does not promise to return the most precise possible lattice
92 ///   value implied by A and B.  It is allowed to return any lattice element
93 ///   which is at least as strong as *either* A or B (unless our facts
94 ///   conflict, see below).
95 /// * Due to unreachable code, the intersection of two lattice values could be
96 ///   contradictory.  If this happens, we return some valid lattice value so as
97 ///   not confuse the rest of LVI.  Ideally, we'd always return Undefined, but
98 ///   we do not make this guarantee.  TODO: This would be a useful enhancement.
99 static ValueLatticeElement intersect(const ValueLatticeElement &A,
100                                      const ValueLatticeElement &B) {
101   // Undefined is the strongest state.  It means the value is known to be along
102   // an unreachable path.
103   if (A.isUnknown())
104     return A;
105   if (B.isUnknown())
106     return B;
107 
108   // If we gave up for one, but got a useable fact from the other, use it.
109   if (A.isOverdefined())
110     return B;
111   if (B.isOverdefined())
112     return A;
113 
114   // Can't get any more precise than constants.
115   if (hasSingleValue(A))
116     return A;
117   if (hasSingleValue(B))
118     return B;
119 
120   // Could be either constant range or not constant here.
121   if (!A.isConstantRange() || !B.isConstantRange()) {
122     // TODO: Arbitrary choice, could be improved
123     return A;
124   }
125 
126   // Intersect two constant ranges
127   ConstantRange Range =
128       A.getConstantRange().intersectWith(B.getConstantRange());
129   // Note: An empty range is implicitly converted to unknown or undef depending
130   // on MayIncludeUndef internally.
131   return ValueLatticeElement::getRange(
132       std::move(Range), /*MayIncludeUndef=*/A.isConstantRangeIncludingUndef() ||
133                             B.isConstantRangeIncludingUndef());
134 }
135 
136 //===----------------------------------------------------------------------===//
137 //                          LazyValueInfoCache Decl
138 //===----------------------------------------------------------------------===//
139 
140 namespace {
141   /// A callback value handle updates the cache when values are erased.
142   class LazyValueInfoCache;
143   struct LVIValueHandle final : public CallbackVH {
144     LazyValueInfoCache *Parent;
145 
146     LVIValueHandle(Value *V, LazyValueInfoCache *P = nullptr)
147       : CallbackVH(V), Parent(P) { }
148 
149     void deleted() override;
150     void allUsesReplacedWith(Value *V) override {
151       deleted();
152     }
153   };
154 } // end anonymous namespace
155 
156 namespace {
157 using NonNullPointerSet = SmallDenseSet<AssertingVH<Value>, 2>;
158 
159 /// This is the cache kept by LazyValueInfo which
160 /// maintains information about queries across the clients' queries.
161 class LazyValueInfoCache {
162   /// This is all of the cached information for one basic block. It contains
163   /// the per-value lattice elements, as well as a separate set for
164   /// overdefined values to reduce memory usage. Additionally pointers
165   /// dereferenced in the block are cached for nullability queries.
166   struct BlockCacheEntry {
167     SmallDenseMap<AssertingVH<Value>, ValueLatticeElement, 4> LatticeElements;
168     SmallDenseSet<AssertingVH<Value>, 4> OverDefined;
169     // std::nullopt indicates that the nonnull pointers for this basic block
170     // block have not been computed yet.
171     std::optional<NonNullPointerSet> NonNullPointers;
172   };
173 
174   /// Cached information per basic block.
175   DenseMap<PoisoningVH<BasicBlock>, std::unique_ptr<BlockCacheEntry>>
176       BlockCache;
177   /// Set of value handles used to erase values from the cache on deletion.
178   DenseSet<LVIValueHandle, DenseMapInfo<Value *>> ValueHandles;
179 
180   const BlockCacheEntry *getBlockEntry(BasicBlock *BB) const {
181     auto It = BlockCache.find_as(BB);
182     if (It == BlockCache.end())
183       return nullptr;
184     return It->second.get();
185   }
186 
187   BlockCacheEntry *getOrCreateBlockEntry(BasicBlock *BB) {
188     auto It = BlockCache.find_as(BB);
189     if (It == BlockCache.end())
190       It = BlockCache.insert({BB, std::make_unique<BlockCacheEntry>()}).first;
191 
192     return It->second.get();
193   }
194 
195   void addValueHandle(Value *Val) {
196     auto HandleIt = ValueHandles.find_as(Val);
197     if (HandleIt == ValueHandles.end())
198       ValueHandles.insert({Val, this});
199   }
200 
201 public:
202   void insertResult(Value *Val, BasicBlock *BB,
203                     const ValueLatticeElement &Result) {
204     BlockCacheEntry *Entry = getOrCreateBlockEntry(BB);
205 
206     // Insert over-defined values into their own cache to reduce memory
207     // overhead.
208     if (Result.isOverdefined())
209       Entry->OverDefined.insert(Val);
210     else
211       Entry->LatticeElements.insert({Val, Result});
212 
213     addValueHandle(Val);
214   }
215 
216   std::optional<ValueLatticeElement> getCachedValueInfo(Value *V,
217                                                         BasicBlock *BB) const {
218     const BlockCacheEntry *Entry = getBlockEntry(BB);
219     if (!Entry)
220       return std::nullopt;
221 
222     if (Entry->OverDefined.count(V))
223       return ValueLatticeElement::getOverdefined();
224 
225     auto LatticeIt = Entry->LatticeElements.find_as(V);
226     if (LatticeIt == Entry->LatticeElements.end())
227       return std::nullopt;
228 
229     return LatticeIt->second;
230   }
231 
232   bool
233   isNonNullAtEndOfBlock(Value *V, BasicBlock *BB,
234                         function_ref<NonNullPointerSet(BasicBlock *)> InitFn) {
235     BlockCacheEntry *Entry = getOrCreateBlockEntry(BB);
236     if (!Entry->NonNullPointers) {
237       Entry->NonNullPointers = InitFn(BB);
238       for (Value *V : *Entry->NonNullPointers)
239         addValueHandle(V);
240     }
241 
242     return Entry->NonNullPointers->count(V);
243   }
244 
245   /// clear - Empty the cache.
246   void clear() {
247     BlockCache.clear();
248     ValueHandles.clear();
249   }
250 
251   /// Inform the cache that a given value has been deleted.
252   void eraseValue(Value *V);
253 
254   /// This is part of the update interface to inform the cache
255   /// that a block has been deleted.
256   void eraseBlock(BasicBlock *BB);
257 
258   /// Updates the cache to remove any influence an overdefined value in
259   /// OldSucc might have (unless also overdefined in NewSucc).  This just
260   /// flushes elements from the cache and does not add any.
261   void threadEdgeImpl(BasicBlock *OldSucc, BasicBlock *NewSucc);
262 };
263 } // namespace
264 
265 void LazyValueInfoCache::eraseValue(Value *V) {
266   for (auto &Pair : BlockCache) {
267     Pair.second->LatticeElements.erase(V);
268     Pair.second->OverDefined.erase(V);
269     if (Pair.second->NonNullPointers)
270       Pair.second->NonNullPointers->erase(V);
271   }
272 
273   auto HandleIt = ValueHandles.find_as(V);
274   if (HandleIt != ValueHandles.end())
275     ValueHandles.erase(HandleIt);
276 }
277 
278 void LVIValueHandle::deleted() {
279   // This erasure deallocates *this, so it MUST happen after we're done
280   // using any and all members of *this.
281   Parent->eraseValue(*this);
282 }
283 
284 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
285   BlockCache.erase(BB);
286 }
287 
288 void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc,
289                                         BasicBlock *NewSucc) {
290   // When an edge in the graph has been threaded, values that we could not
291   // determine a value for before (i.e. were marked overdefined) may be
292   // possible to solve now. We do NOT try to proactively update these values.
293   // Instead, we clear their entries from the cache, and allow lazy updating to
294   // recompute them when needed.
295 
296   // The updating process is fairly simple: we need to drop cached info
297   // for all values that were marked overdefined in OldSucc, and for those same
298   // values in any successor of OldSucc (except NewSucc) in which they were
299   // also marked overdefined.
300   std::vector<BasicBlock*> worklist;
301   worklist.push_back(OldSucc);
302 
303   const BlockCacheEntry *Entry = getBlockEntry(OldSucc);
304   if (!Entry || Entry->OverDefined.empty())
305     return; // Nothing to process here.
306   SmallVector<Value *, 4> ValsToClear(Entry->OverDefined.begin(),
307                                       Entry->OverDefined.end());
308 
309   // Use a worklist to perform a depth-first search of OldSucc's successors.
310   // NOTE: We do not need a visited list since any blocks we have already
311   // visited will have had their overdefined markers cleared already, and we
312   // thus won't loop to their successors.
313   while (!worklist.empty()) {
314     BasicBlock *ToUpdate = worklist.back();
315     worklist.pop_back();
316 
317     // Skip blocks only accessible through NewSucc.
318     if (ToUpdate == NewSucc) continue;
319 
320     // If a value was marked overdefined in OldSucc, and is here too...
321     auto OI = BlockCache.find_as(ToUpdate);
322     if (OI == BlockCache.end() || OI->second->OverDefined.empty())
323       continue;
324     auto &ValueSet = OI->second->OverDefined;
325 
326     bool changed = false;
327     for (Value *V : ValsToClear) {
328       if (!ValueSet.erase(V))
329         continue;
330 
331       // If we removed anything, then we potentially need to update
332       // blocks successors too.
333       changed = true;
334     }
335 
336     if (!changed) continue;
337 
338     llvm::append_range(worklist, successors(ToUpdate));
339   }
340 }
341 
342 namespace llvm {
343 namespace {
344 /// An assembly annotator class to print LazyValueCache information in
345 /// comments.
346 class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter {
347   LazyValueInfoImpl *LVIImpl;
348   // While analyzing which blocks we can solve values for, we need the dominator
349   // information.
350   DominatorTree &DT;
351 
352 public:
353   LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree)
354       : LVIImpl(L), DT(DTree) {}
355 
356   void emitBasicBlockStartAnnot(const BasicBlock *BB,
357                                 formatted_raw_ostream &OS) override;
358 
359   void emitInstructionAnnot(const Instruction *I,
360                             formatted_raw_ostream &OS) override;
361 };
362 } // namespace
363 // The actual implementation of the lazy analysis and update.  Note that the
364 // inheritance from LazyValueInfoCache is intended to be temporary while
365 // splitting the code and then transitioning to a has-a relationship.
366 class LazyValueInfoImpl {
367 
368   /// Cached results from previous queries
369   LazyValueInfoCache TheCache;
370 
371   /// This stack holds the state of the value solver during a query.
372   /// It basically emulates the callstack of the naive
373   /// recursive value lookup process.
374   SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack;
375 
376   /// Keeps track of which block-value pairs are in BlockValueStack.
377   DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
378 
379   /// Push BV onto BlockValueStack unless it's already in there.
380   /// Returns true on success.
381   bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
382     if (!BlockValueSet.insert(BV).second)
383       return false;  // It's already in the stack.
384 
385     LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in "
386                       << BV.first->getName() << "\n");
387     BlockValueStack.push_back(BV);
388     return true;
389   }
390 
391   AssumptionCache *AC;  ///< A pointer to the cache of @llvm.assume calls.
392   const DataLayout &DL; ///< A mandatory DataLayout
393 
394   /// Declaration of the llvm.experimental.guard() intrinsic,
395   /// if it exists in the module.
396   Function *GuardDecl;
397 
398   std::optional<ValueLatticeElement> getBlockValue(Value *Val, BasicBlock *BB,
399                                                    Instruction *CxtI);
400   std::optional<ValueLatticeElement> getEdgeValue(Value *V, BasicBlock *F,
401                                                   BasicBlock *T,
402                                                   Instruction *CxtI = nullptr);
403 
404   // These methods process one work item and may add more. A false value
405   // returned means that the work item was not completely processed and must
406   // be revisited after going through the new items.
407   bool solveBlockValue(Value *Val, BasicBlock *BB);
408   std::optional<ValueLatticeElement> solveBlockValueImpl(Value *Val,
409                                                          BasicBlock *BB);
410   std::optional<ValueLatticeElement> solveBlockValueNonLocal(Value *Val,
411                                                              BasicBlock *BB);
412   std::optional<ValueLatticeElement> solveBlockValuePHINode(PHINode *PN,
413                                                             BasicBlock *BB);
414   std::optional<ValueLatticeElement> solveBlockValueSelect(SelectInst *S,
415                                                            BasicBlock *BB);
416   std::optional<ConstantRange> getRangeFor(Value *V, Instruction *CxtI,
417                                            BasicBlock *BB);
418   std::optional<ValueLatticeElement> solveBlockValueBinaryOpImpl(
419       Instruction *I, BasicBlock *BB,
420       std::function<ConstantRange(const ConstantRange &, const ConstantRange &)>
421           OpFn);
422   std::optional<ValueLatticeElement>
423   solveBlockValueBinaryOp(BinaryOperator *BBI, BasicBlock *BB);
424   std::optional<ValueLatticeElement> solveBlockValueCast(CastInst *CI,
425                                                          BasicBlock *BB);
426   std::optional<ValueLatticeElement>
427   solveBlockValueOverflowIntrinsic(WithOverflowInst *WO, BasicBlock *BB);
428   std::optional<ValueLatticeElement> solveBlockValueIntrinsic(IntrinsicInst *II,
429                                                               BasicBlock *BB);
430   std::optional<ValueLatticeElement>
431   solveBlockValueInsertElement(InsertElementInst *IEI, BasicBlock *BB);
432   std::optional<ValueLatticeElement>
433   solveBlockValueExtractValue(ExtractValueInst *EVI, BasicBlock *BB);
434   bool isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB);
435   void intersectAssumeOrGuardBlockValueConstantRange(Value *Val,
436                                                      ValueLatticeElement &BBLV,
437                                                      Instruction *BBI);
438 
439   void solve();
440 
441   // For the following methods, if UseBlockValue is true, the function may
442   // push additional values to the worklist and return nullopt. If
443   // UseBlockValue is false, it will never return nullopt.
444 
445   std::optional<ValueLatticeElement>
446   getValueFromSimpleICmpCondition(CmpInst::Predicate Pred, Value *RHS,
447                                   const APInt &Offset, Instruction *CxtI,
448                                   bool UseBlockValue);
449 
450   std::optional<ValueLatticeElement>
451   getValueFromICmpCondition(Value *Val, ICmpInst *ICI, bool isTrueDest,
452                             bool UseBlockValue);
453 
454   std::optional<ValueLatticeElement>
455   getValueFromCondition(Value *Val, Value *Cond, bool IsTrueDest,
456                         bool UseBlockValue, unsigned Depth = 0);
457 
458   std::optional<ValueLatticeElement> getEdgeValueLocal(Value *Val,
459                                                        BasicBlock *BBFrom,
460                                                        BasicBlock *BBTo,
461                                                        bool UseBlockValue);
462 
463 public:
464   /// This is the query interface to determine the lattice value for the
465   /// specified Value* at the context instruction (if specified) or at the
466   /// start of the block.
467   ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB,
468                                       Instruction *CxtI = nullptr);
469 
470   /// This is the query interface to determine the lattice value for the
471   /// specified Value* at the specified instruction using only information
472   /// from assumes/guards and range metadata. Unlike getValueInBlock(), no
473   /// recursive query is performed.
474   ValueLatticeElement getValueAt(Value *V, Instruction *CxtI);
475 
476   /// This is the query interface to determine the lattice
477   /// value for the specified Value* that is true on the specified edge.
478   ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB,
479                                      BasicBlock *ToBB,
480                                      Instruction *CxtI = nullptr);
481 
482   ValueLatticeElement getValueAtUse(const Use &U);
483 
484   /// Complete flush all previously computed values
485   void clear() {
486     TheCache.clear();
487   }
488 
489   /// Printing the LazyValueInfo Analysis.
490   void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
491     LazyValueInfoAnnotatedWriter Writer(this, DTree);
492     F.print(OS, &Writer);
493   }
494 
495   /// This is part of the update interface to remove information related to this
496   /// value from the cache.
497   void forgetValue(Value *V) { TheCache.eraseValue(V); }
498 
499   /// This is part of the update interface to inform the cache
500   /// that a block has been deleted.
501   void eraseBlock(BasicBlock *BB) {
502     TheCache.eraseBlock(BB);
503   }
504 
505   /// This is the update interface to inform the cache that an edge from
506   /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
507   void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
508 
509   LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL,
510                     Function *GuardDecl)
511       : AC(AC), DL(DL), GuardDecl(GuardDecl) {}
512 };
513 } // namespace llvm
514 
515 void LazyValueInfoImpl::solve() {
516   SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack(
517       BlockValueStack.begin(), BlockValueStack.end());
518 
519   unsigned processedCount = 0;
520   while (!BlockValueStack.empty()) {
521     processedCount++;
522     // Abort if we have to process too many values to get a result for this one.
523     // Because of the design of the overdefined cache currently being per-block
524     // to avoid naming-related issues (IE it wants to try to give different
525     // results for the same name in different blocks), overdefined results don't
526     // get cached globally, which in turn means we will often try to rediscover
527     // the same overdefined result again and again.  Once something like
528     // PredicateInfo is used in LVI or CVP, we should be able to make the
529     // overdefined cache global, and remove this throttle.
530     if (processedCount > MaxProcessedPerValue) {
531       LLVM_DEBUG(
532           dbgs() << "Giving up on stack because we are getting too deep\n");
533       // Fill in the original values
534       while (!StartingStack.empty()) {
535         std::pair<BasicBlock *, Value *> &e = StartingStack.back();
536         TheCache.insertResult(e.second, e.first,
537                               ValueLatticeElement::getOverdefined());
538         StartingStack.pop_back();
539       }
540       BlockValueSet.clear();
541       BlockValueStack.clear();
542       return;
543     }
544     std::pair<BasicBlock *, Value *> e = BlockValueStack.back();
545     assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");
546     unsigned StackSize = BlockValueStack.size();
547     (void) StackSize;
548 
549     if (solveBlockValue(e.second, e.first)) {
550       // The work item was completely processed.
551       assert(BlockValueStack.size() == StackSize &&
552              BlockValueStack.back() == e && "Nothing should have been pushed!");
553 #ifndef NDEBUG
554       std::optional<ValueLatticeElement> BBLV =
555           TheCache.getCachedValueInfo(e.second, e.first);
556       assert(BBLV && "Result should be in cache!");
557       LLVM_DEBUG(
558           dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = "
559                  << *BBLV << "\n");
560 #endif
561 
562       BlockValueStack.pop_back();
563       BlockValueSet.erase(e);
564     } else {
565       // More work needs to be done before revisiting.
566       assert(BlockValueStack.size() == StackSize + 1 &&
567              "Exactly one element should have been pushed!");
568     }
569   }
570 }
571 
572 std::optional<ValueLatticeElement>
573 LazyValueInfoImpl::getBlockValue(Value *Val, BasicBlock *BB,
574                                  Instruction *CxtI) {
575   // If already a constant, there is nothing to compute.
576   if (Constant *VC = dyn_cast<Constant>(Val))
577     return ValueLatticeElement::get(VC);
578 
579   if (std::optional<ValueLatticeElement> OptLatticeVal =
580           TheCache.getCachedValueInfo(Val, BB)) {
581     intersectAssumeOrGuardBlockValueConstantRange(Val, *OptLatticeVal, CxtI);
582     return OptLatticeVal;
583   }
584 
585   // We have hit a cycle, assume overdefined.
586   if (!pushBlockValue({ BB, Val }))
587     return ValueLatticeElement::getOverdefined();
588 
589   // Yet to be resolved.
590   return std::nullopt;
591 }
592 
593 static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) {
594   switch (BBI->getOpcode()) {
595   default:
596     break;
597   case Instruction::Call:
598   case Instruction::Invoke:
599     if (std::optional<ConstantRange> Range = cast<CallBase>(BBI)->getRange())
600       return ValueLatticeElement::getRange(*Range);
601     [[fallthrough]];
602   case Instruction::Load:
603     if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range))
604       if (isa<IntegerType>(BBI->getType())) {
605         return ValueLatticeElement::getRange(
606             getConstantRangeFromMetadata(*Ranges));
607       }
608     break;
609   };
610   // Nothing known - will be intersected with other facts
611   return ValueLatticeElement::getOverdefined();
612 }
613 
614 bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) {
615   assert(!isa<Constant>(Val) && "Value should not be constant");
616   assert(!TheCache.getCachedValueInfo(Val, BB) &&
617          "Value should not be in cache");
618 
619   // Hold off inserting this value into the Cache in case we have to return
620   // false and come back later.
621   std::optional<ValueLatticeElement> Res = solveBlockValueImpl(Val, BB);
622   if (!Res)
623     // Work pushed, will revisit
624     return false;
625 
626   TheCache.insertResult(Val, BB, *Res);
627   return true;
628 }
629 
630 std::optional<ValueLatticeElement>
631 LazyValueInfoImpl::solveBlockValueImpl(Value *Val, BasicBlock *BB) {
632   Instruction *BBI = dyn_cast<Instruction>(Val);
633   if (!BBI || BBI->getParent() != BB)
634     return solveBlockValueNonLocal(Val, BB);
635 
636   if (PHINode *PN = dyn_cast<PHINode>(BBI))
637     return solveBlockValuePHINode(PN, BB);
638 
639   if (auto *SI = dyn_cast<SelectInst>(BBI))
640     return solveBlockValueSelect(SI, BB);
641 
642   // If this value is a nonnull pointer, record it's range and bailout.  Note
643   // that for all other pointer typed values, we terminate the search at the
644   // definition.  We could easily extend this to look through geps, bitcasts,
645   // and the like to prove non-nullness, but it's not clear that's worth it
646   // compile time wise.  The context-insensitive value walk done inside
647   // isKnownNonZero gets most of the profitable cases at much less expense.
648   // This does mean that we have a sensitivity to where the defining
649   // instruction is placed, even if it could legally be hoisted much higher.
650   // That is unfortunate.
651   PointerType *PT = dyn_cast<PointerType>(BBI->getType());
652   if (PT && isKnownNonZero(BBI, DL))
653     return ValueLatticeElement::getNot(ConstantPointerNull::get(PT));
654 
655   if (BBI->getType()->isIntOrIntVectorTy()) {
656     if (auto *CI = dyn_cast<CastInst>(BBI))
657       return solveBlockValueCast(CI, BB);
658 
659     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI))
660       return solveBlockValueBinaryOp(BO, BB);
661 
662     if (auto *IEI = dyn_cast<InsertElementInst>(BBI))
663       return solveBlockValueInsertElement(IEI, BB);
664 
665     if (auto *EVI = dyn_cast<ExtractValueInst>(BBI))
666       return solveBlockValueExtractValue(EVI, BB);
667 
668     if (auto *II = dyn_cast<IntrinsicInst>(BBI))
669       return solveBlockValueIntrinsic(II, BB);
670   }
671 
672   LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
673                     << "' - unknown inst def found.\n");
674   return getFromRangeMetadata(BBI);
675 }
676 
677 static void AddNonNullPointer(Value *Ptr, NonNullPointerSet &PtrSet) {
678   // TODO: Use NullPointerIsDefined instead.
679   if (Ptr->getType()->getPointerAddressSpace() == 0)
680     PtrSet.insert(getUnderlyingObject(Ptr));
681 }
682 
683 static void AddNonNullPointersByInstruction(
684     Instruction *I, NonNullPointerSet &PtrSet) {
685   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
686     AddNonNullPointer(L->getPointerOperand(), PtrSet);
687   } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
688     AddNonNullPointer(S->getPointerOperand(), PtrSet);
689   } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
690     if (MI->isVolatile()) return;
691 
692     // FIXME: check whether it has a valuerange that excludes zero?
693     ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
694     if (!Len || Len->isZero()) return;
695 
696     AddNonNullPointer(MI->getRawDest(), PtrSet);
697     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
698       AddNonNullPointer(MTI->getRawSource(), PtrSet);
699   }
700 }
701 
702 bool LazyValueInfoImpl::isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB) {
703   if (NullPointerIsDefined(BB->getParent(),
704                            Val->getType()->getPointerAddressSpace()))
705     return false;
706 
707   Val = Val->stripInBoundsOffsets();
708   return TheCache.isNonNullAtEndOfBlock(Val, BB, [](BasicBlock *BB) {
709     NonNullPointerSet NonNullPointers;
710     for (Instruction &I : *BB)
711       AddNonNullPointersByInstruction(&I, NonNullPointers);
712     return NonNullPointers;
713   });
714 }
715 
716 std::optional<ValueLatticeElement>
717 LazyValueInfoImpl::solveBlockValueNonLocal(Value *Val, BasicBlock *BB) {
718   ValueLatticeElement Result;  // Start Undefined.
719 
720   // If this is the entry block, we must be asking about an argument.
721   if (BB->isEntryBlock()) {
722     assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
723     if (std::optional<ConstantRange> Range = cast<Argument>(Val)->getRange())
724       return ValueLatticeElement::getRange(*Range);
725     return ValueLatticeElement::getOverdefined();
726   }
727 
728   // Loop over all of our predecessors, merging what we know from them into
729   // result.  If we encounter an unexplored predecessor, we eagerly explore it
730   // in a depth first manner.  In practice, this has the effect of discovering
731   // paths we can't analyze eagerly without spending compile times analyzing
732   // other paths.  This heuristic benefits from the fact that predecessors are
733   // frequently arranged such that dominating ones come first and we quickly
734   // find a path to function entry.  TODO: We should consider explicitly
735   // canonicalizing to make this true rather than relying on this happy
736   // accident.
737   for (BasicBlock *Pred : predecessors(BB)) {
738     std::optional<ValueLatticeElement> EdgeResult = getEdgeValue(Val, Pred, BB);
739     if (!EdgeResult)
740       // Explore that input, then return here
741       return std::nullopt;
742 
743     Result.mergeIn(*EdgeResult);
744 
745     // If we hit overdefined, exit early.  The BlockVals entry is already set
746     // to overdefined.
747     if (Result.isOverdefined()) {
748       LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
749                         << "' - overdefined because of pred '"
750                         << Pred->getName() << "' (non local).\n");
751       return Result;
752     }
753   }
754 
755   // Return the merged value, which is more precise than 'overdefined'.
756   assert(!Result.isOverdefined());
757   return Result;
758 }
759 
760 std::optional<ValueLatticeElement>
761 LazyValueInfoImpl::solveBlockValuePHINode(PHINode *PN, BasicBlock *BB) {
762   ValueLatticeElement Result;  // Start Undefined.
763 
764   // Loop over all of our predecessors, merging what we know from them into
765   // result.  See the comment about the chosen traversal order in
766   // solveBlockValueNonLocal; the same reasoning applies here.
767   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
768     BasicBlock *PhiBB = PN->getIncomingBlock(i);
769     Value *PhiVal = PN->getIncomingValue(i);
770     // Note that we can provide PN as the context value to getEdgeValue, even
771     // though the results will be cached, because PN is the value being used as
772     // the cache key in the caller.
773     std::optional<ValueLatticeElement> EdgeResult =
774         getEdgeValue(PhiVal, PhiBB, BB, PN);
775     if (!EdgeResult)
776       // Explore that input, then return here
777       return std::nullopt;
778 
779     Result.mergeIn(*EdgeResult);
780 
781     // If we hit overdefined, exit early.  The BlockVals entry is already set
782     // to overdefined.
783     if (Result.isOverdefined()) {
784       LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
785                         << "' - overdefined because of pred (local).\n");
786 
787       return Result;
788     }
789   }
790 
791   // Return the merged value, which is more precise than 'overdefined'.
792   assert(!Result.isOverdefined() && "Possible PHI in entry block?");
793   return Result;
794 }
795 
796 // If we can determine a constraint on the value given conditions assumed by
797 // the program, intersect those constraints with BBLV
798 void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
799     Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) {
800   BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
801   if (!BBI)
802     return;
803 
804   BasicBlock *BB = BBI->getParent();
805   for (auto &AssumeVH : AC->assumptionsFor(Val)) {
806     if (!AssumeVH)
807       continue;
808 
809     // Only check assumes in the block of the context instruction. Other
810     // assumes will have already been taken into account when the value was
811     // propagated from predecessor blocks.
812     auto *I = cast<CallInst>(AssumeVH);
813     if (I->getParent() != BB || !isValidAssumeForContext(I, BBI))
814       continue;
815 
816     BBLV = intersect(BBLV, *getValueFromCondition(Val, I->getArgOperand(0),
817                                                   /*IsTrueDest*/ true,
818                                                   /*UseBlockValue*/ false));
819   }
820 
821   // If guards are not used in the module, don't spend time looking for them
822   if (GuardDecl && !GuardDecl->use_empty() &&
823       BBI->getIterator() != BB->begin()) {
824     for (Instruction &I :
825          make_range(std::next(BBI->getIterator().getReverse()), BB->rend())) {
826       Value *Cond = nullptr;
827       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond))))
828         BBLV = intersect(BBLV,
829                          *getValueFromCondition(Val, Cond, /*IsTrueDest*/ true,
830                                                 /*UseBlockValue*/ false));
831     }
832   }
833 
834   if (BBLV.isOverdefined()) {
835     // Check whether we're checking at the terminator, and the pointer has
836     // been dereferenced in this block.
837     PointerType *PTy = dyn_cast<PointerType>(Val->getType());
838     if (PTy && BB->getTerminator() == BBI &&
839         isNonNullAtEndOfBlock(Val, BB))
840       BBLV = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
841   }
842 }
843 
844 std::optional<ValueLatticeElement>
845 LazyValueInfoImpl::solveBlockValueSelect(SelectInst *SI, BasicBlock *BB) {
846   // Recurse on our inputs if needed
847   std::optional<ValueLatticeElement> OptTrueVal =
848       getBlockValue(SI->getTrueValue(), BB, SI);
849   if (!OptTrueVal)
850     return std::nullopt;
851   ValueLatticeElement &TrueVal = *OptTrueVal;
852 
853   std::optional<ValueLatticeElement> OptFalseVal =
854       getBlockValue(SI->getFalseValue(), BB, SI);
855   if (!OptFalseVal)
856     return std::nullopt;
857   ValueLatticeElement &FalseVal = *OptFalseVal;
858 
859   if (TrueVal.isConstantRange() || FalseVal.isConstantRange()) {
860     const ConstantRange &TrueCR = TrueVal.asConstantRange(SI->getType());
861     const ConstantRange &FalseCR = FalseVal.asConstantRange(SI->getType());
862     Value *LHS = nullptr;
863     Value *RHS = nullptr;
864     SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS);
865     // Is this a min specifically of our two inputs?  (Avoid the risk of
866     // ValueTracking getting smarter looking back past our immediate inputs.)
867     if (SelectPatternResult::isMinOrMax(SPR.Flavor) &&
868         ((LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) ||
869          (RHS == SI->getTrueValue() && LHS == SI->getFalseValue()))) {
870       ConstantRange ResultCR = [&]() {
871         switch (SPR.Flavor) {
872         default:
873           llvm_unreachable("unexpected minmax type!");
874         case SPF_SMIN:                   /// Signed minimum
875           return TrueCR.smin(FalseCR);
876         case SPF_UMIN:                   /// Unsigned minimum
877           return TrueCR.umin(FalseCR);
878         case SPF_SMAX:                   /// Signed maximum
879           return TrueCR.smax(FalseCR);
880         case SPF_UMAX:                   /// Unsigned maximum
881           return TrueCR.umax(FalseCR);
882         };
883       }();
884       return ValueLatticeElement::getRange(
885           ResultCR, TrueVal.isConstantRangeIncludingUndef() ||
886                         FalseVal.isConstantRangeIncludingUndef());
887     }
888 
889     if (SPR.Flavor == SPF_ABS) {
890       if (LHS == SI->getTrueValue())
891         return ValueLatticeElement::getRange(
892             TrueCR.abs(), TrueVal.isConstantRangeIncludingUndef());
893       if (LHS == SI->getFalseValue())
894         return ValueLatticeElement::getRange(
895             FalseCR.abs(), FalseVal.isConstantRangeIncludingUndef());
896     }
897 
898     if (SPR.Flavor == SPF_NABS) {
899       ConstantRange Zero(APInt::getZero(TrueCR.getBitWidth()));
900       if (LHS == SI->getTrueValue())
901         return ValueLatticeElement::getRange(
902             Zero.sub(TrueCR.abs()), FalseVal.isConstantRangeIncludingUndef());
903       if (LHS == SI->getFalseValue())
904         return ValueLatticeElement::getRange(
905             Zero.sub(FalseCR.abs()), FalseVal.isConstantRangeIncludingUndef());
906     }
907   }
908 
909   // Can we constrain the facts about the true and false values by using the
910   // condition itself?  This shows up with idioms like e.g. select(a > 5, a, 5).
911   // TODO: We could potentially refine an overdefined true value above.
912   Value *Cond = SI->getCondition();
913   // If the value is undef, a different value may be chosen in
914   // the select condition.
915   if (isGuaranteedNotToBeUndef(Cond, AC)) {
916     TrueVal =
917         intersect(TrueVal, *getValueFromCondition(SI->getTrueValue(), Cond,
918                                                   /*IsTrueDest*/ true,
919                                                   /*UseBlockValue*/ false));
920     FalseVal =
921         intersect(FalseVal, *getValueFromCondition(SI->getFalseValue(), Cond,
922                                                    /*IsTrueDest*/ false,
923                                                    /*UseBlockValue*/ false));
924   }
925 
926   ValueLatticeElement Result = TrueVal;
927   Result.mergeIn(FalseVal);
928   return Result;
929 }
930 
931 std::optional<ConstantRange>
932 LazyValueInfoImpl::getRangeFor(Value *V, Instruction *CxtI, BasicBlock *BB) {
933   std::optional<ValueLatticeElement> OptVal = getBlockValue(V, BB, CxtI);
934   if (!OptVal)
935     return std::nullopt;
936   return OptVal->asConstantRange(V->getType());
937 }
938 
939 std::optional<ValueLatticeElement>
940 LazyValueInfoImpl::solveBlockValueCast(CastInst *CI, BasicBlock *BB) {
941   // Filter out casts we don't know how to reason about before attempting to
942   // recurse on our operand.  This can cut a long search short if we know we're
943   // not going to be able to get any useful information anways.
944   switch (CI->getOpcode()) {
945   case Instruction::Trunc:
946   case Instruction::SExt:
947   case Instruction::ZExt:
948     break;
949   default:
950     // Unhandled instructions are overdefined.
951     LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
952                       << "' - overdefined (unknown cast).\n");
953     return ValueLatticeElement::getOverdefined();
954   }
955 
956   // Figure out the range of the LHS.  If that fails, we still apply the
957   // transfer rule on the full set since we may be able to locally infer
958   // interesting facts.
959   std::optional<ConstantRange> LHSRes = getRangeFor(CI->getOperand(0), CI, BB);
960   if (!LHSRes)
961     // More work to do before applying this transfer rule.
962     return std::nullopt;
963   const ConstantRange &LHSRange = *LHSRes;
964 
965   const unsigned ResultBitWidth = CI->getType()->getScalarSizeInBits();
966 
967   // NOTE: We're currently limited by the set of operations that ConstantRange
968   // can evaluate symbolically.  Enhancing that set will allows us to analyze
969   // more definitions.
970   return ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(),
971                                                        ResultBitWidth));
972 }
973 
974 std::optional<ValueLatticeElement>
975 LazyValueInfoImpl::solveBlockValueBinaryOpImpl(
976     Instruction *I, BasicBlock *BB,
977     std::function<ConstantRange(const ConstantRange &, const ConstantRange &)>
978         OpFn) {
979   // Figure out the ranges of the operands.  If that fails, use a
980   // conservative range, but apply the transfer rule anyways.  This
981   // lets us pick up facts from expressions like "and i32 (call i32
982   // @foo()), 32"
983   std::optional<ConstantRange> LHSRes = getRangeFor(I->getOperand(0), I, BB);
984   if (!LHSRes)
985     return std::nullopt;
986 
987   std::optional<ConstantRange> RHSRes = getRangeFor(I->getOperand(1), I, BB);
988   if (!RHSRes)
989     return std::nullopt;
990 
991   const ConstantRange &LHSRange = *LHSRes;
992   const ConstantRange &RHSRange = *RHSRes;
993   return ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange));
994 }
995 
996 std::optional<ValueLatticeElement>
997 LazyValueInfoImpl::solveBlockValueBinaryOp(BinaryOperator *BO, BasicBlock *BB) {
998   assert(BO->getOperand(0)->getType()->isSized() &&
999          "all operands to binary operators are sized");
1000   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) {
1001     unsigned NoWrapKind = OBO->getNoWrapKind();
1002     return solveBlockValueBinaryOpImpl(
1003         BO, BB,
1004         [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) {
1005           return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind);
1006         });
1007   }
1008 
1009   return solveBlockValueBinaryOpImpl(
1010       BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) {
1011         return CR1.binaryOp(BO->getOpcode(), CR2);
1012       });
1013 }
1014 
1015 std::optional<ValueLatticeElement>
1016 LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(WithOverflowInst *WO,
1017                                                     BasicBlock *BB) {
1018   return solveBlockValueBinaryOpImpl(
1019       WO, BB, [WO](const ConstantRange &CR1, const ConstantRange &CR2) {
1020         return CR1.binaryOp(WO->getBinaryOp(), CR2);
1021       });
1022 }
1023 
1024 std::optional<ValueLatticeElement>
1025 LazyValueInfoImpl::solveBlockValueIntrinsic(IntrinsicInst *II, BasicBlock *BB) {
1026   ValueLatticeElement MetadataVal = getFromRangeMetadata(II);
1027   if (!ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
1028     LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
1029                       << "' - unknown intrinsic.\n");
1030     return MetadataVal;
1031   }
1032 
1033   SmallVector<ConstantRange, 2> OpRanges;
1034   for (Value *Op : II->args()) {
1035     std::optional<ConstantRange> Range = getRangeFor(Op, II, BB);
1036     if (!Range)
1037       return std::nullopt;
1038     OpRanges.push_back(*Range);
1039   }
1040 
1041   return intersect(ValueLatticeElement::getRange(ConstantRange::intrinsic(
1042                        II->getIntrinsicID(), OpRanges)),
1043                    MetadataVal);
1044 }
1045 
1046 std::optional<ValueLatticeElement>
1047 LazyValueInfoImpl::solveBlockValueInsertElement(InsertElementInst *IEI,
1048                                                 BasicBlock *BB) {
1049   std::optional<ValueLatticeElement> OptEltVal =
1050       getBlockValue(IEI->getOperand(1), BB, IEI);
1051   if (!OptEltVal)
1052     return std::nullopt;
1053   ValueLatticeElement &Res = *OptEltVal;
1054 
1055   std::optional<ValueLatticeElement> OptVecVal =
1056       getBlockValue(IEI->getOperand(0), BB, IEI);
1057   if (!OptVecVal)
1058     return std::nullopt;
1059 
1060   Res.mergeIn(*OptVecVal);
1061   return Res;
1062 }
1063 
1064 std::optional<ValueLatticeElement>
1065 LazyValueInfoImpl::solveBlockValueExtractValue(ExtractValueInst *EVI,
1066                                                BasicBlock *BB) {
1067   if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
1068     if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0)
1069       return solveBlockValueOverflowIntrinsic(WO, BB);
1070 
1071   // Handle extractvalue of insertvalue to allow further simplification
1072   // based on replaced with.overflow intrinsics.
1073   if (Value *V = simplifyExtractValueInst(
1074           EVI->getAggregateOperand(), EVI->getIndices(),
1075           EVI->getDataLayout()))
1076     return getBlockValue(V, BB, EVI);
1077 
1078   LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
1079                     << "' - overdefined (unknown extractvalue).\n");
1080   return ValueLatticeElement::getOverdefined();
1081 }
1082 
1083 static bool matchICmpOperand(APInt &Offset, Value *LHS, Value *Val,
1084                              ICmpInst::Predicate Pred) {
1085   if (LHS == Val)
1086     return true;
1087 
1088   // Handle range checking idiom produced by InstCombine. We will subtract the
1089   // offset from the allowed range for RHS in this case.
1090   const APInt *C;
1091   if (match(LHS, m_AddLike(m_Specific(Val), m_APInt(C)))) {
1092     Offset = *C;
1093     return true;
1094   }
1095 
1096   // Handle the symmetric case. This appears in saturation patterns like
1097   // (x == 16) ? 16 : (x + 1).
1098   if (match(Val, m_AddLike(m_Specific(LHS), m_APInt(C)))) {
1099     Offset = -*C;
1100     return true;
1101   }
1102 
1103   // If (x | y) < C, then (x < C) && (y < C).
1104   if (match(LHS, m_c_Or(m_Specific(Val), m_Value())) &&
1105       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE))
1106     return true;
1107 
1108   // If (x & y) > C, then (x > C) && (y > C).
1109   if (match(LHS, m_c_And(m_Specific(Val), m_Value())) &&
1110       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE))
1111     return true;
1112 
1113   return false;
1114 }
1115 
1116 /// Get value range for a "(Val + Offset) Pred RHS" condition.
1117 std::optional<ValueLatticeElement>
1118 LazyValueInfoImpl::getValueFromSimpleICmpCondition(CmpInst::Predicate Pred,
1119                                                    Value *RHS,
1120                                                    const APInt &Offset,
1121                                                    Instruction *CxtI,
1122                                                    bool UseBlockValue) {
1123   ConstantRange RHSRange(RHS->getType()->getScalarSizeInBits(),
1124                          /*isFullSet=*/true);
1125   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1126     RHSRange = ConstantRange(CI->getValue());
1127   } else if (UseBlockValue) {
1128     std::optional<ValueLatticeElement> R =
1129         getBlockValue(RHS, CxtI->getParent(), CxtI);
1130     if (!R)
1131       return std::nullopt;
1132     RHSRange = R->asConstantRange(RHS->getType());
1133   }
1134 
1135   ConstantRange TrueValues =
1136       ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
1137   return ValueLatticeElement::getRange(TrueValues.subtract(Offset));
1138 }
1139 
1140 static std::optional<ConstantRange>
1141 getRangeViaSLT(CmpInst::Predicate Pred, APInt RHS,
1142                function_ref<std::optional<ConstantRange>(const APInt &)> Fn) {
1143   bool Invert = false;
1144   if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
1145     Pred = ICmpInst::getInversePredicate(Pred);
1146     Invert = true;
1147   }
1148   if (Pred == ICmpInst::ICMP_SLE) {
1149     Pred = ICmpInst::ICMP_SLT;
1150     if (RHS.isMaxSignedValue())
1151       return std::nullopt; // Could also return full/empty here, if we wanted.
1152     ++RHS;
1153   }
1154   assert(Pred == ICmpInst::ICMP_SLT && "Must be signed predicate");
1155   if (auto CR = Fn(RHS))
1156     return Invert ? CR->inverse() : CR;
1157   return std::nullopt;
1158 }
1159 
1160 std::optional<ValueLatticeElement> LazyValueInfoImpl::getValueFromICmpCondition(
1161     Value *Val, ICmpInst *ICI, bool isTrueDest, bool UseBlockValue) {
1162   Value *LHS = ICI->getOperand(0);
1163   Value *RHS = ICI->getOperand(1);
1164 
1165   // Get the predicate that must hold along the considered edge.
1166   CmpInst::Predicate EdgePred =
1167       isTrueDest ? ICI->getPredicate() : ICI->getInversePredicate();
1168 
1169   if (isa<Constant>(RHS)) {
1170     if (ICI->isEquality() && LHS == Val) {
1171       if (EdgePred == ICmpInst::ICMP_EQ)
1172         return ValueLatticeElement::get(cast<Constant>(RHS));
1173       else if (!isa<UndefValue>(RHS))
1174         return ValueLatticeElement::getNot(cast<Constant>(RHS));
1175     }
1176   }
1177 
1178   Type *Ty = Val->getType();
1179   if (!Ty->isIntegerTy())
1180     return ValueLatticeElement::getOverdefined();
1181 
1182   unsigned BitWidth = Ty->getScalarSizeInBits();
1183   APInt Offset(BitWidth, 0);
1184   if (matchICmpOperand(Offset, LHS, Val, EdgePred))
1185     return getValueFromSimpleICmpCondition(EdgePred, RHS, Offset, ICI,
1186                                            UseBlockValue);
1187 
1188   CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(EdgePred);
1189   if (matchICmpOperand(Offset, RHS, Val, SwappedPred))
1190     return getValueFromSimpleICmpCondition(SwappedPred, LHS, Offset, ICI,
1191                                            UseBlockValue);
1192 
1193   const APInt *Mask, *C;
1194   if (match(LHS, m_And(m_Specific(Val), m_APInt(Mask))) &&
1195       match(RHS, m_APInt(C))) {
1196     // If (Val & Mask) == C then all the masked bits are known and we can
1197     // compute a value range based on that.
1198     if (EdgePred == ICmpInst::ICMP_EQ) {
1199       KnownBits Known;
1200       Known.Zero = ~*C & *Mask;
1201       Known.One = *C & *Mask;
1202       return ValueLatticeElement::getRange(
1203           ConstantRange::fromKnownBits(Known, /*IsSigned*/ false));
1204     }
1205 
1206     if (EdgePred == ICmpInst::ICMP_NE)
1207       return ValueLatticeElement::getRange(
1208           ConstantRange::makeMaskNotEqualRange(*Mask, *C));
1209   }
1210 
1211   // If (X urem Modulus) >= C, then X >= C.
1212   // If trunc X >= C, then X >= C.
1213   // TODO: An upper bound could be computed as well.
1214   if (match(LHS, m_CombineOr(m_URem(m_Specific(Val), m_Value()),
1215                              m_Trunc(m_Specific(Val)))) &&
1216       match(RHS, m_APInt(C))) {
1217     // Use the icmp region so we don't have to deal with different predicates.
1218     ConstantRange CR = ConstantRange::makeExactICmpRegion(EdgePred, *C);
1219     if (!CR.isEmptySet())
1220       return ValueLatticeElement::getRange(ConstantRange::getNonEmpty(
1221           CR.getUnsignedMin().zext(BitWidth), APInt(BitWidth, 0)));
1222   }
1223 
1224   // Recognize:
1225   // icmp slt (ashr X, ShAmtC), C --> icmp slt X, C << ShAmtC
1226   // Preconditions: (C << ShAmtC) >> ShAmtC == C
1227   const APInt *ShAmtC;
1228   if (CmpInst::isSigned(EdgePred) &&
1229       match(LHS, m_AShr(m_Specific(Val), m_APInt(ShAmtC))) &&
1230       match(RHS, m_APInt(C))) {
1231     auto CR = getRangeViaSLT(
1232         EdgePred, *C, [&](const APInt &RHS) -> std::optional<ConstantRange> {
1233           APInt New = RHS << *ShAmtC;
1234           if ((New.ashr(*ShAmtC)) != RHS)
1235             return std::nullopt;
1236           return ConstantRange::getNonEmpty(
1237               APInt::getSignedMinValue(New.getBitWidth()), New);
1238         });
1239     if (CR)
1240       return ValueLatticeElement::getRange(*CR);
1241   }
1242 
1243   return ValueLatticeElement::getOverdefined();
1244 }
1245 
1246 // Handle conditions of the form
1247 // extractvalue(op.with.overflow(%x, C), 1).
1248 static ValueLatticeElement getValueFromOverflowCondition(
1249     Value *Val, WithOverflowInst *WO, bool IsTrueDest) {
1250   // TODO: This only works with a constant RHS for now. We could also compute
1251   // the range of the RHS, but this doesn't fit into the current structure of
1252   // the edge value calculation.
1253   const APInt *C;
1254   if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C)))
1255     return ValueLatticeElement::getOverdefined();
1256 
1257   // Calculate the possible values of %x for which no overflow occurs.
1258   ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
1259       WO->getBinaryOp(), *C, WO->getNoWrapKind());
1260 
1261   // If overflow is false, %x is constrained to NWR. If overflow is true, %x is
1262   // constrained to it's inverse (all values that might cause overflow).
1263   if (IsTrueDest)
1264     NWR = NWR.inverse();
1265   return ValueLatticeElement::getRange(NWR);
1266 }
1267 
1268 std::optional<ValueLatticeElement>
1269 LazyValueInfoImpl::getValueFromCondition(Value *Val, Value *Cond,
1270                                          bool IsTrueDest, bool UseBlockValue,
1271                                          unsigned Depth) {
1272   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond))
1273     return getValueFromICmpCondition(Val, ICI, IsTrueDest, UseBlockValue);
1274 
1275   if (auto *EVI = dyn_cast<ExtractValueInst>(Cond))
1276     if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
1277       if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1)
1278         return getValueFromOverflowCondition(Val, WO, IsTrueDest);
1279 
1280   if (++Depth == MaxAnalysisRecursionDepth)
1281     return ValueLatticeElement::getOverdefined();
1282 
1283   Value *N;
1284   if (match(Cond, m_Not(m_Value(N))))
1285     return getValueFromCondition(Val, N, !IsTrueDest, UseBlockValue, Depth);
1286 
1287   Value *L, *R;
1288   bool IsAnd;
1289   if (match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))))
1290     IsAnd = true;
1291   else if (match(Cond, m_LogicalOr(m_Value(L), m_Value(R))))
1292     IsAnd = false;
1293   else
1294     return ValueLatticeElement::getOverdefined();
1295 
1296   std::optional<ValueLatticeElement> LV =
1297       getValueFromCondition(Val, L, IsTrueDest, UseBlockValue, Depth);
1298   if (!LV)
1299     return std::nullopt;
1300   std::optional<ValueLatticeElement> RV =
1301       getValueFromCondition(Val, R, IsTrueDest, UseBlockValue, Depth);
1302   if (!RV)
1303     return std::nullopt;
1304 
1305   // if (L && R) -> intersect L and R
1306   // if (!(L || R)) -> intersect !L and !R
1307   // if (L || R) -> union L and R
1308   // if (!(L && R)) -> union !L and !R
1309   if (IsTrueDest ^ IsAnd) {
1310     LV->mergeIn(*RV);
1311     return *LV;
1312   }
1313 
1314   return intersect(*LV, *RV);
1315 }
1316 
1317 // Return true if Usr has Op as an operand, otherwise false.
1318 static bool usesOperand(User *Usr, Value *Op) {
1319   return is_contained(Usr->operands(), Op);
1320 }
1321 
1322 // Return true if the instruction type of Val is supported by
1323 // constantFoldUser(). Currently CastInst, BinaryOperator and FreezeInst only.
1324 // Call this before calling constantFoldUser() to find out if it's even worth
1325 // attempting to call it.
1326 static bool isOperationFoldable(User *Usr) {
1327   return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr) || isa<FreezeInst>(Usr);
1328 }
1329 
1330 // Check if Usr can be simplified to an integer constant when the value of one
1331 // of its operands Op is an integer constant OpConstVal. If so, return it as an
1332 // lattice value range with a single element or otherwise return an overdefined
1333 // lattice value.
1334 static ValueLatticeElement constantFoldUser(User *Usr, Value *Op,
1335                                             const APInt &OpConstVal,
1336                                             const DataLayout &DL) {
1337   assert(isOperationFoldable(Usr) && "Precondition");
1338   Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal);
1339   // Check if Usr can be simplified to a constant.
1340   if (auto *CI = dyn_cast<CastInst>(Usr)) {
1341     assert(CI->getOperand(0) == Op && "Operand 0 isn't Op");
1342     if (auto *C = dyn_cast_or_null<ConstantInt>(
1343             simplifyCastInst(CI->getOpcode(), OpConst,
1344                              CI->getDestTy(), DL))) {
1345       return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
1346     }
1347   } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) {
1348     bool Op0Match = BO->getOperand(0) == Op;
1349     bool Op1Match = BO->getOperand(1) == Op;
1350     assert((Op0Match || Op1Match) &&
1351            "Operand 0 nor Operand 1 isn't a match");
1352     Value *LHS = Op0Match ? OpConst : BO->getOperand(0);
1353     Value *RHS = Op1Match ? OpConst : BO->getOperand(1);
1354     if (auto *C = dyn_cast_or_null<ConstantInt>(
1355             simplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) {
1356       return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
1357     }
1358   } else if (isa<FreezeInst>(Usr)) {
1359     assert(cast<FreezeInst>(Usr)->getOperand(0) == Op && "Operand 0 isn't Op");
1360     return ValueLatticeElement::getRange(ConstantRange(OpConstVal));
1361   }
1362   return ValueLatticeElement::getOverdefined();
1363 }
1364 
1365 /// Compute the value of Val on the edge BBFrom -> BBTo.
1366 std::optional<ValueLatticeElement>
1367 LazyValueInfoImpl::getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
1368                                      BasicBlock *BBTo, bool UseBlockValue) {
1369   // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
1370   // know that v != 0.
1371   if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
1372     // If this is a conditional branch and only one successor goes to BBTo, then
1373     // we may be able to infer something from the condition.
1374     if (BI->isConditional() &&
1375         BI->getSuccessor(0) != BI->getSuccessor(1)) {
1376       bool isTrueDest = BI->getSuccessor(0) == BBTo;
1377       assert(BI->getSuccessor(!isTrueDest) == BBTo &&
1378              "BBTo isn't a successor of BBFrom");
1379       Value *Condition = BI->getCondition();
1380 
1381       // If V is the condition of the branch itself, then we know exactly what
1382       // it is.
1383       // NB: The condition on a `br` can't be a vector type.
1384       if (Condition == Val)
1385         return ValueLatticeElement::get(ConstantInt::get(
1386                               Type::getInt1Ty(Val->getContext()), isTrueDest));
1387 
1388       // If the condition of the branch is an equality comparison, we may be
1389       // able to infer the value.
1390       std::optional<ValueLatticeElement> Result =
1391           getValueFromCondition(Val, Condition, isTrueDest, UseBlockValue);
1392       if (!Result)
1393         return std::nullopt;
1394 
1395       if (!Result->isOverdefined())
1396         return Result;
1397 
1398       if (User *Usr = dyn_cast<User>(Val)) {
1399         assert(Result->isOverdefined() && "Result isn't overdefined");
1400         // Check with isOperationFoldable() first to avoid linearly iterating
1401         // over the operands unnecessarily which can be expensive for
1402         // instructions with many operands.
1403         if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) {
1404           const DataLayout &DL = BBTo->getDataLayout();
1405           if (usesOperand(Usr, Condition)) {
1406             // If Val has Condition as an operand and Val can be folded into a
1407             // constant with either Condition == true or Condition == false,
1408             // propagate the constant.
1409             // eg.
1410             //   ; %Val is true on the edge to %then.
1411             //   %Val = and i1 %Condition, true.
1412             //   br %Condition, label %then, label %else
1413             APInt ConditionVal(1, isTrueDest ? 1 : 0);
1414             Result = constantFoldUser(Usr, Condition, ConditionVal, DL);
1415           } else {
1416             // If one of Val's operand has an inferred value, we may be able to
1417             // infer the value of Val.
1418             // eg.
1419             //    ; %Val is 94 on the edge to %then.
1420             //    %Val = add i8 %Op, 1
1421             //    %Condition = icmp eq i8 %Op, 93
1422             //    br i1 %Condition, label %then, label %else
1423             for (unsigned i = 0; i < Usr->getNumOperands(); ++i) {
1424               Value *Op = Usr->getOperand(i);
1425               ValueLatticeElement OpLatticeVal = *getValueFromCondition(
1426                   Op, Condition, isTrueDest, /*UseBlockValue*/ false);
1427               if (std::optional<APInt> OpConst =
1428                       OpLatticeVal.asConstantInteger()) {
1429                 Result = constantFoldUser(Usr, Op, *OpConst, DL);
1430                 break;
1431               }
1432             }
1433           }
1434         }
1435       }
1436       if (!Result->isOverdefined())
1437         return Result;
1438     }
1439   }
1440 
1441   // If the edge was formed by a switch on the value, then we may know exactly
1442   // what it is.
1443   if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
1444     Value *Condition = SI->getCondition();
1445     if (!isa<IntegerType>(Val->getType()))
1446       return ValueLatticeElement::getOverdefined();
1447     bool ValUsesConditionAndMayBeFoldable = false;
1448     if (Condition != Val) {
1449       // Check if Val has Condition as an operand.
1450       if (User *Usr = dyn_cast<User>(Val))
1451         ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) &&
1452             usesOperand(Usr, Condition);
1453       if (!ValUsesConditionAndMayBeFoldable)
1454         return ValueLatticeElement::getOverdefined();
1455     }
1456     assert((Condition == Val || ValUsesConditionAndMayBeFoldable) &&
1457            "Condition != Val nor Val doesn't use Condition");
1458 
1459     bool DefaultCase = SI->getDefaultDest() == BBTo;
1460     unsigned BitWidth = Val->getType()->getIntegerBitWidth();
1461     ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
1462 
1463     for (auto Case : SI->cases()) {
1464       APInt CaseValue = Case.getCaseValue()->getValue();
1465       ConstantRange EdgeVal(CaseValue);
1466       if (ValUsesConditionAndMayBeFoldable) {
1467         User *Usr = cast<User>(Val);
1468         const DataLayout &DL = BBTo->getDataLayout();
1469         ValueLatticeElement EdgeLatticeVal =
1470             constantFoldUser(Usr, Condition, CaseValue, DL);
1471         if (EdgeLatticeVal.isOverdefined())
1472           return ValueLatticeElement::getOverdefined();
1473         EdgeVal = EdgeLatticeVal.getConstantRange();
1474       }
1475       if (DefaultCase) {
1476         // It is possible that the default destination is the destination of
1477         // some cases. We cannot perform difference for those cases.
1478         // We know Condition != CaseValue in BBTo.  In some cases we can use
1479         // this to infer Val == f(Condition) is != f(CaseValue).  For now, we
1480         // only do this when f is identity (i.e. Val == Condition), but we
1481         // should be able to do this for any injective f.
1482         if (Case.getCaseSuccessor() != BBTo && Condition == Val)
1483           EdgesVals = EdgesVals.difference(EdgeVal);
1484       } else if (Case.getCaseSuccessor() == BBTo)
1485         EdgesVals = EdgesVals.unionWith(EdgeVal);
1486     }
1487     return ValueLatticeElement::getRange(std::move(EdgesVals));
1488   }
1489   return ValueLatticeElement::getOverdefined();
1490 }
1491 
1492 /// Compute the value of Val on the edge BBFrom -> BBTo or the value at
1493 /// the basic block if the edge does not constrain Val.
1494 std::optional<ValueLatticeElement>
1495 LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom,
1496                                 BasicBlock *BBTo, Instruction *CxtI) {
1497   // If already a constant, there is nothing to compute.
1498   if (Constant *VC = dyn_cast<Constant>(Val))
1499     return ValueLatticeElement::get(VC);
1500 
1501   std::optional<ValueLatticeElement> LocalResult =
1502       getEdgeValueLocal(Val, BBFrom, BBTo, /*UseBlockValue*/ true);
1503   if (!LocalResult)
1504     return std::nullopt;
1505 
1506   if (hasSingleValue(*LocalResult))
1507     // Can't get any more precise here
1508     return LocalResult;
1509 
1510   std::optional<ValueLatticeElement> OptInBlock =
1511       getBlockValue(Val, BBFrom, BBFrom->getTerminator());
1512   if (!OptInBlock)
1513     return std::nullopt;
1514   ValueLatticeElement &InBlock = *OptInBlock;
1515 
1516   // We can use the context instruction (generically the ultimate instruction
1517   // the calling pass is trying to simplify) here, even though the result of
1518   // this function is generally cached when called from the solve* functions
1519   // (and that cached result might be used with queries using a different
1520   // context instruction), because when this function is called from the solve*
1521   // functions, the context instruction is not provided. When called from
1522   // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided,
1523   // but then the result is not cached.
1524   intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI);
1525 
1526   return intersect(*LocalResult, InBlock);
1527 }
1528 
1529 ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB,
1530                                                        Instruction *CxtI) {
1531   LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
1532                     << BB->getName() << "'\n");
1533 
1534   assert(BlockValueStack.empty() && BlockValueSet.empty());
1535   std::optional<ValueLatticeElement> OptResult = getBlockValue(V, BB, CxtI);
1536   if (!OptResult) {
1537     solve();
1538     OptResult = getBlockValue(V, BB, CxtI);
1539     assert(OptResult && "Value not available after solving");
1540   }
1541 
1542   ValueLatticeElement Result = *OptResult;
1543   LLVM_DEBUG(dbgs() << "  Result = " << Result << "\n");
1544   return Result;
1545 }
1546 
1547 ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) {
1548   LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName()
1549                     << "'\n");
1550 
1551   if (auto *C = dyn_cast<Constant>(V))
1552     return ValueLatticeElement::get(C);
1553 
1554   ValueLatticeElement Result = ValueLatticeElement::getOverdefined();
1555   if (auto *I = dyn_cast<Instruction>(V))
1556     Result = getFromRangeMetadata(I);
1557   intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
1558 
1559   LLVM_DEBUG(dbgs() << "  Result = " << Result << "\n");
1560   return Result;
1561 }
1562 
1563 ValueLatticeElement LazyValueInfoImpl::
1564 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
1565                Instruction *CxtI) {
1566   LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
1567                     << FromBB->getName() << "' to '" << ToBB->getName()
1568                     << "'\n");
1569 
1570   std::optional<ValueLatticeElement> Result =
1571       getEdgeValue(V, FromBB, ToBB, CxtI);
1572   while (!Result) {
1573     // As the worklist only explicitly tracks block values (but not edge values)
1574     // we may have to call solve() multiple times, as the edge value calculation
1575     // may request additional block values.
1576     solve();
1577     Result = getEdgeValue(V, FromBB, ToBB, CxtI);
1578   }
1579 
1580   LLVM_DEBUG(dbgs() << "  Result = " << *Result << "\n");
1581   return *Result;
1582 }
1583 
1584 ValueLatticeElement LazyValueInfoImpl::getValueAtUse(const Use &U) {
1585   Value *V = U.get();
1586   auto *CxtI = cast<Instruction>(U.getUser());
1587   ValueLatticeElement VL = getValueInBlock(V, CxtI->getParent(), CxtI);
1588 
1589   // Check whether the only (possibly transitive) use of the value is in a
1590   // position where V can be constrained by a select or branch condition.
1591   const Use *CurrU = &U;
1592   // TODO: Increase limit?
1593   const unsigned MaxUsesToInspect = 3;
1594   for (unsigned I = 0; I < MaxUsesToInspect; ++I) {
1595     std::optional<ValueLatticeElement> CondVal;
1596     auto *CurrI = cast<Instruction>(CurrU->getUser());
1597     if (auto *SI = dyn_cast<SelectInst>(CurrI)) {
1598       // If the value is undef, a different value may be chosen in
1599       // the select condition and at use.
1600       if (!isGuaranteedNotToBeUndef(SI->getCondition(), AC))
1601         break;
1602       if (CurrU->getOperandNo() == 1)
1603         CondVal =
1604             *getValueFromCondition(V, SI->getCondition(), /*IsTrueDest*/ true,
1605                                    /*UseBlockValue*/ false);
1606       else if (CurrU->getOperandNo() == 2)
1607         CondVal =
1608             *getValueFromCondition(V, SI->getCondition(), /*IsTrueDest*/ false,
1609                                    /*UseBlockValue*/ false);
1610     } else if (auto *PHI = dyn_cast<PHINode>(CurrI)) {
1611       // TODO: Use non-local query?
1612       CondVal = *getEdgeValueLocal(V, PHI->getIncomingBlock(*CurrU),
1613                                    PHI->getParent(), /*UseBlockValue*/ false);
1614     }
1615     if (CondVal)
1616       VL = intersect(VL, *CondVal);
1617 
1618     // Only follow one-use chain, to allow direct intersection of conditions.
1619     // If there are multiple uses, we would have to intersect with the union of
1620     // all conditions at different uses.
1621     // Stop walking if we hit a non-speculatable instruction. Even if the
1622     // result is only used under a specific condition, executing the
1623     // instruction itself may cause side effects or UB already.
1624     // This also disallows looking through phi nodes: If the phi node is part
1625     // of a cycle, we might end up reasoning about values from different cycle
1626     // iterations (PR60629).
1627     if (!CurrI->hasOneUse() || !isSafeToSpeculativelyExecute(CurrI))
1628       break;
1629     CurrU = &*CurrI->use_begin();
1630   }
1631   return VL;
1632 }
1633 
1634 void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1635                                    BasicBlock *NewSucc) {
1636   TheCache.threadEdgeImpl(OldSucc, NewSucc);
1637 }
1638 
1639 //===----------------------------------------------------------------------===//
1640 //                            LazyValueInfo Impl
1641 //===----------------------------------------------------------------------===//
1642 
1643 bool LazyValueInfoWrapperPass::runOnFunction(Function &F) {
1644   Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1645 
1646   if (auto *Impl = Info.getImpl())
1647     Impl->clear();
1648 
1649   // Fully lazy.
1650   return false;
1651 }
1652 
1653 void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1654   AU.setPreservesAll();
1655   AU.addRequired<AssumptionCacheTracker>();
1656   AU.addRequired<TargetLibraryInfoWrapperPass>();
1657 }
1658 
1659 LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; }
1660 
1661 /// This lazily constructs the LazyValueInfoImpl.
1662 LazyValueInfoImpl &LazyValueInfo::getOrCreateImpl(const Module *M) {
1663   if (!PImpl) {
1664     assert(M && "getCache() called with a null Module");
1665     const DataLayout &DL = M->getDataLayout();
1666     Function *GuardDecl =
1667         M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
1668     PImpl = new LazyValueInfoImpl(AC, DL, GuardDecl);
1669   }
1670   return *static_cast<LazyValueInfoImpl *>(PImpl);
1671 }
1672 
1673 LazyValueInfoImpl *LazyValueInfo::getImpl() {
1674   if (!PImpl)
1675     return nullptr;
1676   return static_cast<LazyValueInfoImpl *>(PImpl);
1677 }
1678 
1679 LazyValueInfo::~LazyValueInfo() { releaseMemory(); }
1680 
1681 void LazyValueInfo::releaseMemory() {
1682   // If the cache was allocated, free it.
1683   if (auto *Impl = getImpl()) {
1684     delete &*Impl;
1685     PImpl = nullptr;
1686   }
1687 }
1688 
1689 bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA,
1690                                FunctionAnalysisManager::Invalidator &Inv) {
1691   // We need to invalidate if we have either failed to preserve this analyses
1692   // result directly or if any of its dependencies have been invalidated.
1693   auto PAC = PA.getChecker<LazyValueAnalysis>();
1694   if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()))
1695     return true;
1696 
1697   return false;
1698 }
1699 
1700 void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); }
1701 
1702 LazyValueInfo LazyValueAnalysis::run(Function &F,
1703                                      FunctionAnalysisManager &FAM) {
1704   auto &AC = FAM.getResult<AssumptionAnalysis>(F);
1705 
1706   return LazyValueInfo(&AC, &F.getDataLayout());
1707 }
1708 
1709 /// Returns true if we can statically tell that this value will never be a
1710 /// "useful" constant.  In practice, this means we've got something like an
1711 /// alloca or a malloc call for which a comparison against a constant can
1712 /// only be guarding dead code.  Note that we are potentially giving up some
1713 /// precision in dead code (a constant result) in favour of avoiding a
1714 /// expensive search for a easily answered common query.
1715 static bool isKnownNonConstant(Value *V) {
1716   V = V->stripPointerCasts();
1717   // The return val of alloc cannot be a Constant.
1718   if (isa<AllocaInst>(V))
1719     return true;
1720   return false;
1721 }
1722 
1723 Constant *LazyValueInfo::getConstant(Value *V, Instruction *CxtI) {
1724   // Bail out early if V is known not to be a Constant.
1725   if (isKnownNonConstant(V))
1726     return nullptr;
1727 
1728   BasicBlock *BB = CxtI->getParent();
1729   ValueLatticeElement Result =
1730       getOrCreateImpl(BB->getModule()).getValueInBlock(V, BB, CxtI);
1731 
1732   if (Result.isConstant())
1733     return Result.getConstant();
1734   if (Result.isConstantRange()) {
1735     const ConstantRange &CR = Result.getConstantRange();
1736     if (const APInt *SingleVal = CR.getSingleElement())
1737       return ConstantInt::get(V->getType(), *SingleVal);
1738   }
1739   return nullptr;
1740 }
1741 
1742 ConstantRange LazyValueInfo::getConstantRange(Value *V, Instruction *CxtI,
1743                                               bool UndefAllowed) {
1744   BasicBlock *BB = CxtI->getParent();
1745   ValueLatticeElement Result =
1746       getOrCreateImpl(BB->getModule()).getValueInBlock(V, BB, CxtI);
1747   return Result.asConstantRange(V->getType(), UndefAllowed);
1748 }
1749 
1750 ConstantRange LazyValueInfo::getConstantRangeAtUse(const Use &U,
1751                                                    bool UndefAllowed) {
1752   auto *Inst = cast<Instruction>(U.getUser());
1753   ValueLatticeElement Result =
1754       getOrCreateImpl(Inst->getModule()).getValueAtUse(U);
1755   return Result.asConstantRange(U->getType(), UndefAllowed);
1756 }
1757 
1758 /// Determine whether the specified value is known to be a
1759 /// constant on the specified edge. Return null if not.
1760 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
1761                                            BasicBlock *ToBB,
1762                                            Instruction *CxtI) {
1763   Module *M = FromBB->getModule();
1764   ValueLatticeElement Result =
1765       getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI);
1766 
1767   if (Result.isConstant())
1768     return Result.getConstant();
1769   if (Result.isConstantRange()) {
1770     const ConstantRange &CR = Result.getConstantRange();
1771     if (const APInt *SingleVal = CR.getSingleElement())
1772       return ConstantInt::get(V->getType(), *SingleVal);
1773   }
1774   return nullptr;
1775 }
1776 
1777 ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V,
1778                                                     BasicBlock *FromBB,
1779                                                     BasicBlock *ToBB,
1780                                                     Instruction *CxtI) {
1781   Module *M = FromBB->getModule();
1782   ValueLatticeElement Result =
1783       getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI);
1784   // TODO: Should undef be allowed here?
1785   return Result.asConstantRange(V->getType(), /*UndefAllowed*/ true);
1786 }
1787 
1788 static Constant *getPredicateResult(CmpInst::Predicate Pred, Constant *C,
1789                                     const ValueLatticeElement &Val,
1790                                     const DataLayout &DL) {
1791   // If we know the value is a constant, evaluate the conditional.
1792   if (Val.isConstant())
1793     return ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL);
1794 
1795   Type *ResTy = CmpInst::makeCmpResultType(C->getType());
1796   if (Val.isConstantRange()) {
1797     const ConstantRange &CR = Val.getConstantRange();
1798     ConstantRange RHS = C->toConstantRange();
1799     if (CR.icmp(Pred, RHS))
1800       return ConstantInt::getTrue(ResTy);
1801     if (CR.icmp(CmpInst::getInversePredicate(Pred), RHS))
1802       return ConstantInt::getFalse(ResTy);
1803     return nullptr;
1804   }
1805 
1806   if (Val.isNotConstant()) {
1807     // If this is an equality comparison, we can try to fold it knowing that
1808     // "V != C1".
1809     if (Pred == ICmpInst::ICMP_EQ) {
1810       // !C1 == C -> false iff C1 == C.
1811       Constant *Res = ConstantFoldCompareInstOperands(
1812           ICmpInst::ICMP_NE, Val.getNotConstant(), C, DL);
1813       if (Res && Res->isNullValue())
1814         return ConstantInt::getFalse(ResTy);
1815     } else if (Pred == ICmpInst::ICMP_NE) {
1816       // !C1 != C -> true iff C1 == C.
1817       Constant *Res = ConstantFoldCompareInstOperands(
1818           ICmpInst::ICMP_NE, Val.getNotConstant(), C, DL);
1819       if (Res && Res->isNullValue())
1820         return ConstantInt::getTrue(ResTy);
1821     }
1822     return nullptr;
1823   }
1824 
1825   return nullptr;
1826 }
1827 
1828 /// Determine whether the specified value comparison with a constant is known to
1829 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
1830 Constant *LazyValueInfo::getPredicateOnEdge(CmpInst::Predicate Pred, Value *V,
1831                                             Constant *C, BasicBlock *FromBB,
1832                                             BasicBlock *ToBB,
1833                                             Instruction *CxtI) {
1834   Module *M = FromBB->getModule();
1835   ValueLatticeElement Result =
1836       getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI);
1837 
1838   return getPredicateResult(Pred, C, Result, M->getDataLayout());
1839 }
1840 
1841 Constant *LazyValueInfo::getPredicateAt(CmpInst::Predicate Pred, Value *V,
1842                                         Constant *C, Instruction *CxtI,
1843                                         bool UseBlockValue) {
1844   // Is or is not NonNull are common predicates being queried. If
1845   // isKnownNonZero can tell us the result of the predicate, we can
1846   // return it quickly. But this is only a fastpath, and falling
1847   // through would still be correct.
1848   Module *M = CxtI->getModule();
1849   const DataLayout &DL = M->getDataLayout();
1850   if (V->getType()->isPointerTy() && C->isNullValue() &&
1851       isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) {
1852     Type *ResTy = CmpInst::makeCmpResultType(C->getType());
1853     if (Pred == ICmpInst::ICMP_EQ)
1854       return ConstantInt::getFalse(ResTy);
1855     else if (Pred == ICmpInst::ICMP_NE)
1856       return ConstantInt::getTrue(ResTy);
1857   }
1858 
1859   auto &Impl = getOrCreateImpl(M);
1860   ValueLatticeElement Result =
1861       UseBlockValue ? Impl.getValueInBlock(V, CxtI->getParent(), CxtI)
1862                     : Impl.getValueAt(V, CxtI);
1863   Constant *Ret = getPredicateResult(Pred, C, Result, DL);
1864   if (Ret)
1865     return Ret;
1866 
1867   // Note: The following bit of code is somewhat distinct from the rest of LVI;
1868   // LVI as a whole tries to compute a lattice value which is conservatively
1869   // correct at a given location.  In this case, we have a predicate which we
1870   // weren't able to prove about the merged result, and we're pushing that
1871   // predicate back along each incoming edge to see if we can prove it
1872   // separately for each input.  As a motivating example, consider:
1873   // bb1:
1874   //   %v1 = ... ; constantrange<1, 5>
1875   //   br label %merge
1876   // bb2:
1877   //   %v2 = ... ; constantrange<10, 20>
1878   //   br label %merge
1879   // merge:
1880   //   %phi = phi [%v1, %v2] ; constantrange<1,20>
1881   //   %pred = icmp eq i32 %phi, 8
1882   // We can't tell from the lattice value for '%phi' that '%pred' is false
1883   // along each path, but by checking the predicate over each input separately,
1884   // we can.
1885   // We limit the search to one step backwards from the current BB and value.
1886   // We could consider extending this to search further backwards through the
1887   // CFG and/or value graph, but there are non-obvious compile time vs quality
1888   // tradeoffs.
1889   BasicBlock *BB = CxtI->getParent();
1890 
1891   // Function entry or an unreachable block.  Bail to avoid confusing
1892   // analysis below.
1893   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1894   if (PI == PE)
1895     return nullptr;
1896 
1897   // If V is a PHI node in the same block as the context, we need to ask
1898   // questions about the predicate as applied to the incoming value along
1899   // each edge. This is useful for eliminating cases where the predicate is
1900   // known along all incoming edges.
1901   if (auto *PHI = dyn_cast<PHINode>(V))
1902     if (PHI->getParent() == BB) {
1903       Constant *Baseline = nullptr;
1904       for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) {
1905         Value *Incoming = PHI->getIncomingValue(i);
1906         BasicBlock *PredBB = PHI->getIncomingBlock(i);
1907         // Note that PredBB may be BB itself.
1908         Constant *Result =
1909             getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, CxtI);
1910 
1911         // Keep going as long as we've seen a consistent known result for
1912         // all inputs.
1913         Baseline = (i == 0) ? Result /* First iteration */
1914                             : (Baseline == Result ? Baseline
1915                                                   : nullptr); /* All others */
1916         if (!Baseline)
1917           break;
1918       }
1919       if (Baseline)
1920         return Baseline;
1921     }
1922 
1923   // For a comparison where the V is outside this block, it's possible
1924   // that we've branched on it before. Look to see if the value is known
1925   // on all incoming edges.
1926   if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB) {
1927     // For predecessor edge, determine if the comparison is true or false
1928     // on that edge. If they're all true or all false, we can conclude
1929     // the value of the comparison in this block.
1930     Constant *Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1931     if (Baseline) {
1932       // Check that all remaining incoming values match the first one.
1933       while (++PI != PE) {
1934         Constant *Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1935         if (Ret != Baseline)
1936           break;
1937       }
1938       // If we terminated early, then one of the values didn't match.
1939       if (PI == PE) {
1940         return Baseline;
1941       }
1942     }
1943   }
1944 
1945   return nullptr;
1946 }
1947 
1948 Constant *LazyValueInfo::getPredicateAt(CmpInst::Predicate Pred, Value *LHS,
1949                                         Value *RHS, Instruction *CxtI,
1950                                         bool UseBlockValue) {
1951   if (auto *C = dyn_cast<Constant>(RHS))
1952     return getPredicateAt(Pred, LHS, C, CxtI, UseBlockValue);
1953   if (auto *C = dyn_cast<Constant>(LHS))
1954     return getPredicateAt(CmpInst::getSwappedPredicate(Pred), RHS, C, CxtI,
1955                           UseBlockValue);
1956 
1957   // Got two non-Constant values. Try to determine the comparison results based
1958   // on the block values of the two operands, e.g. because they have
1959   // non-overlapping ranges.
1960   if (UseBlockValue) {
1961     Module *M = CxtI->getModule();
1962     ValueLatticeElement L =
1963         getOrCreateImpl(M).getValueInBlock(LHS, CxtI->getParent(), CxtI);
1964     if (L.isOverdefined())
1965       return nullptr;
1966 
1967     ValueLatticeElement R =
1968         getOrCreateImpl(M).getValueInBlock(RHS, CxtI->getParent(), CxtI);
1969     Type *Ty = CmpInst::makeCmpResultType(LHS->getType());
1970     return L.getCompare(Pred, Ty, R, M->getDataLayout());
1971   }
1972   return nullptr;
1973 }
1974 
1975 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1976                                BasicBlock *NewSucc) {
1977   if (auto *Impl = getImpl())
1978     Impl->threadEdge(PredBB, OldSucc, NewSucc);
1979 }
1980 
1981 void LazyValueInfo::forgetValue(Value *V) {
1982   if (auto *Impl = getImpl())
1983     Impl->forgetValue(V);
1984 }
1985 
1986 void LazyValueInfo::eraseBlock(BasicBlock *BB) {
1987   if (auto *Impl = getImpl())
1988     Impl->eraseBlock(BB);
1989 }
1990 
1991 void LazyValueInfo::clear() {
1992   if (auto *Impl = getImpl())
1993     Impl->clear();
1994 }
1995 
1996 void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
1997   if (auto *Impl = getImpl())
1998     Impl->printLVI(F, DTree, OS);
1999 }
2000 
2001 // Print the LVI for the function arguments at the start of each basic block.
2002 void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot(
2003     const BasicBlock *BB, formatted_raw_ostream &OS) {
2004   // Find if there are latticevalues defined for arguments of the function.
2005   auto *F = BB->getParent();
2006   for (const auto &Arg : F->args()) {
2007     ValueLatticeElement Result = LVIImpl->getValueInBlock(
2008         const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB));
2009     if (Result.isUnknown())
2010       continue;
2011     OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n";
2012   }
2013 }
2014 
2015 // This function prints the LVI analysis for the instruction I at the beginning
2016 // of various basic blocks. It relies on calculated values that are stored in
2017 // the LazyValueInfoCache, and in the absence of cached values, recalculate the
2018 // LazyValueInfo for `I`, and print that info.
2019 void LazyValueInfoAnnotatedWriter::emitInstructionAnnot(
2020     const Instruction *I, formatted_raw_ostream &OS) {
2021 
2022   auto *ParentBB = I->getParent();
2023   SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI;
2024   // We can generate (solve) LVI values only for blocks that are dominated by
2025   // the I's parent. However, to avoid generating LVI for all dominating blocks,
2026   // that contain redundant/uninteresting information, we print LVI for
2027   // blocks that may use this LVI information (such as immediate successor
2028   // blocks, and blocks that contain uses of `I`).
2029   auto printResult = [&](const BasicBlock *BB) {
2030     if (!BlocksContainingLVI.insert(BB).second)
2031       return;
2032     ValueLatticeElement Result = LVIImpl->getValueInBlock(
2033         const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB));
2034       OS << "; LatticeVal for: '" << *I << "' in BB: '";
2035       BB->printAsOperand(OS, false);
2036       OS << "' is: " << Result << "\n";
2037   };
2038 
2039   printResult(ParentBB);
2040   // Print the LVI analysis results for the immediate successor blocks, that
2041   // are dominated by `ParentBB`.
2042   for (const auto *BBSucc : successors(ParentBB))
2043     if (DT.dominates(ParentBB, BBSucc))
2044       printResult(BBSucc);
2045 
2046   // Print LVI in blocks where `I` is used.
2047   for (const auto *U : I->users())
2048     if (auto *UseI = dyn_cast<Instruction>(U))
2049       if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent()))
2050         printResult(UseI->getParent());
2051 
2052 }
2053 
2054 PreservedAnalyses LazyValueInfoPrinterPass::run(Function &F,
2055                                                 FunctionAnalysisManager &AM) {
2056   OS << "LVI for function '" << F.getName() << "':\n";
2057   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
2058   auto &DTree = AM.getResult<DominatorTreeAnalysis>(F);
2059   LVI.printLVI(F, DTree, OS);
2060   return PreservedAnalyses::all();
2061 }
2062