1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/LazyCallGraph.h" 10 11 #include "llvm/ADT/ArrayRef.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/Sequence.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/iterator_range.h" 17 #include "llvm/Analysis/TargetLibraryInfo.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/Function.h" 20 #include "llvm/IR/GlobalVariable.h" 21 #include "llvm/IR/InstIterator.h" 22 #include "llvm/IR/Instruction.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/PassManager.h" 25 #include "llvm/Support/Casting.h" 26 #include "llvm/Support/Compiler.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/GraphWriter.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include <algorithm> 31 32 #ifdef EXPENSIVE_CHECKS 33 #include "llvm/ADT/ScopeExit.h" 34 #endif 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "lcg" 39 40 void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN, 41 Edge::Kind EK) { 42 EdgeIndexMap.try_emplace(&TargetN, Edges.size()); 43 Edges.emplace_back(TargetN, EK); 44 } 45 46 void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) { 47 Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK); 48 } 49 50 bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) { 51 auto IndexMapI = EdgeIndexMap.find(&TargetN); 52 if (IndexMapI == EdgeIndexMap.end()) 53 return false; 54 55 Edges[IndexMapI->second] = Edge(); 56 EdgeIndexMap.erase(IndexMapI); 57 return true; 58 } 59 60 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges, 61 DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap, 62 LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) { 63 if (!EdgeIndexMap.try_emplace(&N, Edges.size()).second) 64 return; 65 66 LLVM_DEBUG(dbgs() << " Added callable function: " << N.getName() << "\n"); 67 Edges.emplace_back(LazyCallGraph::Edge(N, EK)); 68 } 69 70 LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() { 71 assert(!Edges && "Must not have already populated the edges for this node!"); 72 73 LLVM_DEBUG(dbgs() << " Adding functions called by '" << getName() 74 << "' to the graph.\n"); 75 76 Edges = EdgeSequence(); 77 78 SmallVector<Constant *, 16> Worklist; 79 SmallPtrSet<Function *, 4> Callees; 80 SmallPtrSet<Constant *, 16> Visited; 81 82 // Find all the potential call graph edges in this function. We track both 83 // actual call edges and indirect references to functions. The direct calls 84 // are trivially added, but to accumulate the latter we walk the instructions 85 // and add every operand which is a constant to the worklist to process 86 // afterward. 87 // 88 // Note that we consider *any* function with a definition to be a viable 89 // edge. Even if the function's definition is subject to replacement by 90 // some other module (say, a weak definition) there may still be 91 // optimizations which essentially speculate based on the definition and 92 // a way to check that the specific definition is in fact the one being 93 // used. For example, this could be done by moving the weak definition to 94 // a strong (internal) definition and making the weak definition be an 95 // alias. Then a test of the address of the weak function against the new 96 // strong definition's address would be an effective way to determine the 97 // safety of optimizing a direct call edge. 98 for (BasicBlock &BB : *F) 99 for (Instruction &I : BB) { 100 if (auto *CB = dyn_cast<CallBase>(&I)) 101 if (Function *Callee = CB->getCalledFunction()) 102 if (!Callee->isDeclaration()) 103 if (Callees.insert(Callee).second) { 104 Visited.insert(Callee); 105 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee), 106 LazyCallGraph::Edge::Call); 107 } 108 109 for (Value *Op : I.operand_values()) 110 if (Constant *C = dyn_cast<Constant>(Op)) 111 if (Visited.insert(C).second) 112 Worklist.push_back(C); 113 } 114 115 // We've collected all the constant (and thus potentially function or 116 // function containing) operands to all the instructions in the function. 117 // Process them (recursively) collecting every function found. 118 visitReferences(Worklist, Visited, [&](Function &F) { 119 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F), 120 LazyCallGraph::Edge::Ref); 121 }); 122 123 // Add implicit reference edges to any defined libcall functions (if we 124 // haven't found an explicit edge). 125 for (auto *F : G->LibFunctions) 126 if (!Visited.count(F)) 127 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F), 128 LazyCallGraph::Edge::Ref); 129 130 return *Edges; 131 } 132 133 void LazyCallGraph::Node::replaceFunction(Function &NewF) { 134 assert(F != &NewF && "Must not replace a function with itself!"); 135 F = &NewF; 136 } 137 138 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 139 LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const { 140 dbgs() << *this << '\n'; 141 } 142 #endif 143 144 static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) { 145 LibFunc LF; 146 147 // Either this is a normal library function or a "vectorizable" 148 // function. Not using the VFDatabase here because this query 149 // is related only to libraries handled via the TLI. 150 return TLI.getLibFunc(F, LF) || 151 TLI.isKnownVectorFunctionInLibrary(F.getName()); 152 } 153 154 LazyCallGraph::LazyCallGraph( 155 Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 156 LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier() 157 << "\n"); 158 for (Function &F : M) { 159 if (F.isDeclaration()) 160 continue; 161 // If this function is a known lib function to LLVM then we want to 162 // synthesize reference edges to it to model the fact that LLVM can turn 163 // arbitrary code into a library function call. 164 if (isKnownLibFunction(F, GetTLI(F))) 165 LibFunctions.insert(&F); 166 167 if (F.hasLocalLinkage()) 168 continue; 169 170 // External linkage defined functions have edges to them from other 171 // modules. 172 LLVM_DEBUG(dbgs() << " Adding '" << F.getName() 173 << "' to entry set of the graph.\n"); 174 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref); 175 } 176 177 // Externally visible aliases of internal functions are also viable entry 178 // edges to the module. 179 for (auto &A : M.aliases()) { 180 if (A.hasLocalLinkage()) 181 continue; 182 if (Function* F = dyn_cast<Function>(A.getAliasee())) { 183 LLVM_DEBUG(dbgs() << " Adding '" << F->getName() 184 << "' with alias '" << A.getName() 185 << "' to entry set of the graph.\n"); 186 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(*F), Edge::Ref); 187 } 188 } 189 190 // Now add entry nodes for functions reachable via initializers to globals. 191 SmallVector<Constant *, 16> Worklist; 192 SmallPtrSet<Constant *, 16> Visited; 193 for (GlobalVariable &GV : M.globals()) 194 if (GV.hasInitializer()) 195 if (Visited.insert(GV.getInitializer()).second) 196 Worklist.push_back(GV.getInitializer()); 197 198 LLVM_DEBUG( 199 dbgs() << " Adding functions referenced by global initializers to the " 200 "entry set.\n"); 201 visitReferences(Worklist, Visited, [&](Function &F) { 202 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), 203 LazyCallGraph::Edge::Ref); 204 }); 205 } 206 207 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G) 208 : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)), 209 EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)), 210 SCCMap(std::move(G.SCCMap)), LibFunctions(std::move(G.LibFunctions)) { 211 updateGraphPtrs(); 212 } 213 214 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 215 void LazyCallGraph::verify() { 216 for (RefSCC &RC : postorder_ref_sccs()) { 217 RC.verify(); 218 } 219 } 220 #endif 221 222 bool LazyCallGraph::invalidate(Module &, const PreservedAnalyses &PA, 223 ModuleAnalysisManager::Invalidator &) { 224 // Check whether the analysis, all analyses on functions, or the function's 225 // CFG have been preserved. 226 auto PAC = PA.getChecker<llvm::LazyCallGraphAnalysis>(); 227 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()); 228 } 229 230 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) { 231 BPA = std::move(G.BPA); 232 NodeMap = std::move(G.NodeMap); 233 EntryEdges = std::move(G.EntryEdges); 234 SCCBPA = std::move(G.SCCBPA); 235 SCCMap = std::move(G.SCCMap); 236 LibFunctions = std::move(G.LibFunctions); 237 updateGraphPtrs(); 238 return *this; 239 } 240 241 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 242 LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const { 243 dbgs() << *this << '\n'; 244 } 245 #endif 246 247 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 248 void LazyCallGraph::SCC::verify() { 249 assert(OuterRefSCC && "Can't have a null RefSCC!"); 250 assert(!Nodes.empty() && "Can't have an empty SCC!"); 251 252 for (Node *N : Nodes) { 253 assert(N && "Can't have a null node!"); 254 assert(OuterRefSCC->G->lookupSCC(*N) == this && 255 "Node does not map to this SCC!"); 256 assert(N->DFSNumber == -1 && 257 "Must set DFS numbers to -1 when adding a node to an SCC!"); 258 assert(N->LowLink == -1 && 259 "Must set low link to -1 when adding a node to an SCC!"); 260 for (Edge &E : **N) 261 assert(E.getNode().isPopulated() && "Can't have an unpopulated node!"); 262 263 #ifdef EXPENSIVE_CHECKS 264 // Verify that all nodes in this SCC can reach all other nodes. 265 SmallVector<Node *, 4> Worklist; 266 SmallPtrSet<Node *, 4> Visited; 267 Worklist.push_back(N); 268 while (!Worklist.empty()) { 269 Node *VisitingNode = Worklist.pop_back_val(); 270 if (!Visited.insert(VisitingNode).second) 271 continue; 272 for (Edge &E : (*VisitingNode)->calls()) 273 Worklist.push_back(&E.getNode()); 274 } 275 for (Node *NodeToVisit : Nodes) { 276 assert(Visited.contains(NodeToVisit) && 277 "Cannot reach all nodes within SCC"); 278 } 279 #endif 280 } 281 } 282 #endif 283 284 bool LazyCallGraph::SCC::isParentOf(const SCC &C) const { 285 if (this == &C) 286 return false; 287 288 for (Node &N : *this) 289 for (Edge &E : N->calls()) 290 if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C) 291 return true; 292 293 // No edges found. 294 return false; 295 } 296 297 bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const { 298 if (this == &TargetC) 299 return false; 300 301 LazyCallGraph &G = *OuterRefSCC->G; 302 303 // Start with this SCC. 304 SmallPtrSet<const SCC *, 16> Visited = {this}; 305 SmallVector<const SCC *, 16> Worklist = {this}; 306 307 // Walk down the graph until we run out of edges or find a path to TargetC. 308 do { 309 const SCC &C = *Worklist.pop_back_val(); 310 for (Node &N : C) 311 for (Edge &E : N->calls()) { 312 SCC *CalleeC = G.lookupSCC(E.getNode()); 313 if (!CalleeC) 314 continue; 315 316 // If the callee's SCC is the TargetC, we're done. 317 if (CalleeC == &TargetC) 318 return true; 319 320 // If this is the first time we've reached this SCC, put it on the 321 // worklist to recurse through. 322 if (Visited.insert(CalleeC).second) 323 Worklist.push_back(CalleeC); 324 } 325 } while (!Worklist.empty()); 326 327 // No paths found. 328 return false; 329 } 330 331 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {} 332 333 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 334 LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const { 335 dbgs() << *this << '\n'; 336 } 337 #endif 338 339 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 340 void LazyCallGraph::RefSCC::verify() { 341 assert(G && "Can't have a null graph!"); 342 assert(!SCCs.empty() && "Can't have an empty SCC!"); 343 344 // Verify basic properties of the SCCs. 345 SmallPtrSet<SCC *, 4> SCCSet; 346 for (SCC *C : SCCs) { 347 assert(C && "Can't have a null SCC!"); 348 C->verify(); 349 assert(&C->getOuterRefSCC() == this && 350 "SCC doesn't think it is inside this RefSCC!"); 351 bool Inserted = SCCSet.insert(C).second; 352 assert(Inserted && "Found a duplicate SCC!"); 353 auto IndexIt = SCCIndices.find(C); 354 assert(IndexIt != SCCIndices.end() && 355 "Found an SCC that doesn't have an index!"); 356 } 357 358 // Check that our indices map correctly. 359 for (auto [C, I] : SCCIndices) { 360 assert(C && "Can't have a null SCC in the indices!"); 361 assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!"); 362 assert(SCCs[I] == C && "Index doesn't point to SCC!"); 363 } 364 365 // Check that the SCCs are in fact in post-order. 366 for (int I = 0, Size = SCCs.size(); I < Size; ++I) { 367 SCC &SourceSCC = *SCCs[I]; 368 for (Node &N : SourceSCC) 369 for (Edge &E : *N) { 370 if (!E.isCall()) 371 continue; 372 SCC &TargetSCC = *G->lookupSCC(E.getNode()); 373 if (&TargetSCC.getOuterRefSCC() == this) { 374 assert(SCCIndices.find(&TargetSCC)->second <= I && 375 "Edge between SCCs violates post-order relationship."); 376 continue; 377 } 378 } 379 } 380 381 #ifdef EXPENSIVE_CHECKS 382 // Verify that all nodes in this RefSCC can reach all other nodes. 383 SmallVector<Node *> Nodes; 384 for (SCC *C : SCCs) { 385 for (Node &N : *C) 386 Nodes.push_back(&N); 387 } 388 for (Node *N : Nodes) { 389 SmallVector<Node *, 4> Worklist; 390 SmallPtrSet<Node *, 4> Visited; 391 Worklist.push_back(N); 392 while (!Worklist.empty()) { 393 Node *VisitingNode = Worklist.pop_back_val(); 394 if (!Visited.insert(VisitingNode).second) 395 continue; 396 for (Edge &E : **VisitingNode) 397 Worklist.push_back(&E.getNode()); 398 } 399 for (Node *NodeToVisit : Nodes) { 400 assert(Visited.contains(NodeToVisit) && 401 "Cannot reach all nodes within RefSCC"); 402 } 403 } 404 #endif 405 } 406 #endif 407 408 bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const { 409 if (&RC == this) 410 return false; 411 412 // Search all edges to see if this is a parent. 413 for (SCC &C : *this) 414 for (Node &N : C) 415 for (Edge &E : *N) 416 if (G->lookupRefSCC(E.getNode()) == &RC) 417 return true; 418 419 return false; 420 } 421 422 bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const { 423 if (&RC == this) 424 return false; 425 426 // For each descendant of this RefSCC, see if one of its children is the 427 // argument. If not, add that descendant to the worklist and continue 428 // searching. 429 SmallVector<const RefSCC *, 4> Worklist; 430 SmallPtrSet<const RefSCC *, 4> Visited; 431 Worklist.push_back(this); 432 Visited.insert(this); 433 do { 434 const RefSCC &DescendantRC = *Worklist.pop_back_val(); 435 for (SCC &C : DescendantRC) 436 for (Node &N : C) 437 for (Edge &E : *N) { 438 auto *ChildRC = G->lookupRefSCC(E.getNode()); 439 if (ChildRC == &RC) 440 return true; 441 if (!ChildRC || !Visited.insert(ChildRC).second) 442 continue; 443 Worklist.push_back(ChildRC); 444 } 445 } while (!Worklist.empty()); 446 447 return false; 448 } 449 450 /// Generic helper that updates a postorder sequence of SCCs for a potentially 451 /// cycle-introducing edge insertion. 452 /// 453 /// A postorder sequence of SCCs of a directed graph has one fundamental 454 /// property: all deges in the DAG of SCCs point "up" the sequence. That is, 455 /// all edges in the SCC DAG point to prior SCCs in the sequence. 456 /// 457 /// This routine both updates a postorder sequence and uses that sequence to 458 /// compute the set of SCCs connected into a cycle. It should only be called to 459 /// insert a "downward" edge which will require changing the sequence to 460 /// restore it to a postorder. 461 /// 462 /// When inserting an edge from an earlier SCC to a later SCC in some postorder 463 /// sequence, all of the SCCs which may be impacted are in the closed range of 464 /// those two within the postorder sequence. The algorithm used here to restore 465 /// the state is as follows: 466 /// 467 /// 1) Starting from the source SCC, construct a set of SCCs which reach the 468 /// source SCC consisting of just the source SCC. Then scan toward the 469 /// target SCC in postorder and for each SCC, if it has an edge to an SCC 470 /// in the set, add it to the set. Otherwise, the source SCC is not 471 /// a successor, move it in the postorder sequence to immediately before 472 /// the source SCC, shifting the source SCC and all SCCs in the set one 473 /// position toward the target SCC. Stop scanning after processing the 474 /// target SCC. 475 /// 2) If the source SCC is now past the target SCC in the postorder sequence, 476 /// and thus the new edge will flow toward the start, we are done. 477 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an 478 /// SCC between the source and the target, and add them to the set of 479 /// connected SCCs, then recurse through them. Once a complete set of the 480 /// SCCs the target connects to is known, hoist the remaining SCCs between 481 /// the source and the target to be above the target. Note that there is no 482 /// need to process the source SCC, it is already known to connect. 483 /// 4) At this point, all of the SCCs in the closed range between the source 484 /// SCC and the target SCC in the postorder sequence are connected, 485 /// including the target SCC and the source SCC. Inserting the edge from 486 /// the source SCC to the target SCC will form a cycle out of precisely 487 /// these SCCs. Thus we can merge all of the SCCs in this closed range into 488 /// a single SCC. 489 /// 490 /// This process has various important properties: 491 /// - Only mutates the SCCs when adding the edge actually changes the SCC 492 /// structure. 493 /// - Never mutates SCCs which are unaffected by the change. 494 /// - Updates the postorder sequence to correctly satisfy the postorder 495 /// constraint after the edge is inserted. 496 /// - Only reorders SCCs in the closed postorder sequence from the source to 497 /// the target, so easy to bound how much has changed even in the ordering. 498 /// - Big-O is the number of edges in the closed postorder range of SCCs from 499 /// source to target. 500 /// 501 /// This helper routine, in addition to updating the postorder sequence itself 502 /// will also update a map from SCCs to indices within that sequence. 503 /// 504 /// The sequence and the map must operate on pointers to the SCC type. 505 /// 506 /// Two callbacks must be provided. The first computes the subset of SCCs in 507 /// the postorder closed range from the source to the target which connect to 508 /// the source SCC via some (transitive) set of edges. The second computes the 509 /// subset of the same range which the target SCC connects to via some 510 /// (transitive) set of edges. Both callbacks should populate the set argument 511 /// provided. 512 template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT, 513 typename ComputeSourceConnectedSetCallableT, 514 typename ComputeTargetConnectedSetCallableT> 515 static iterator_range<typename PostorderSequenceT::iterator> 516 updatePostorderSequenceForEdgeInsertion( 517 SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs, 518 SCCIndexMapT &SCCIndices, 519 ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet, 520 ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) { 521 int SourceIdx = SCCIndices[&SourceSCC]; 522 int TargetIdx = SCCIndices[&TargetSCC]; 523 assert(SourceIdx < TargetIdx && "Cannot have equal indices here!"); 524 525 SmallPtrSet<SCCT *, 4> ConnectedSet; 526 527 // Compute the SCCs which (transitively) reach the source. 528 ComputeSourceConnectedSet(ConnectedSet); 529 530 // Partition the SCCs in this part of the port-order sequence so only SCCs 531 // connecting to the source remain between it and the target. This is 532 // a benign partition as it preserves postorder. 533 auto SourceI = std::stable_partition( 534 SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1, 535 [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); }); 536 for (int I = SourceIdx, E = TargetIdx + 1; I < E; ++I) 537 SCCIndices.find(SCCs[I])->second = I; 538 539 // If the target doesn't connect to the source, then we've corrected the 540 // post-order and there are no cycles formed. 541 if (!ConnectedSet.count(&TargetSCC)) { 542 assert(SourceI > (SCCs.begin() + SourceIdx) && 543 "Must have moved the source to fix the post-order."); 544 assert(*std::prev(SourceI) == &TargetSCC && 545 "Last SCC to move should have bene the target."); 546 547 // Return an empty range at the target SCC indicating there is nothing to 548 // merge. 549 return make_range(std::prev(SourceI), std::prev(SourceI)); 550 } 551 552 assert(SCCs[TargetIdx] == &TargetSCC && 553 "Should not have moved target if connected!"); 554 SourceIdx = SourceI - SCCs.begin(); 555 assert(SCCs[SourceIdx] == &SourceSCC && 556 "Bad updated index computation for the source SCC!"); 557 558 // See whether there are any remaining intervening SCCs between the source 559 // and target. If so we need to make sure they all are reachable form the 560 // target. 561 if (SourceIdx + 1 < TargetIdx) { 562 ConnectedSet.clear(); 563 ComputeTargetConnectedSet(ConnectedSet); 564 565 // Partition SCCs so that only SCCs reached from the target remain between 566 // the source and the target. This preserves postorder. 567 auto TargetI = std::stable_partition( 568 SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1, 569 [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); }); 570 for (int I = SourceIdx + 1, E = TargetIdx + 1; I < E; ++I) 571 SCCIndices.find(SCCs[I])->second = I; 572 TargetIdx = std::prev(TargetI) - SCCs.begin(); 573 assert(SCCs[TargetIdx] == &TargetSCC && 574 "Should always end with the target!"); 575 } 576 577 // At this point, we know that connecting source to target forms a cycle 578 // because target connects back to source, and we know that all the SCCs 579 // between the source and target in the postorder sequence participate in that 580 // cycle. 581 return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx); 582 } 583 584 bool LazyCallGraph::RefSCC::switchInternalEdgeToCall( 585 Node &SourceN, Node &TargetN, 586 function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) { 587 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!"); 588 SmallVector<SCC *, 1> DeletedSCCs; 589 590 #ifdef EXPENSIVE_CHECKS 591 verify(); 592 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 593 #endif 594 595 SCC &SourceSCC = *G->lookupSCC(SourceN); 596 SCC &TargetSCC = *G->lookupSCC(TargetN); 597 598 // If the two nodes are already part of the same SCC, we're also done as 599 // we've just added more connectivity. 600 if (&SourceSCC == &TargetSCC) { 601 SourceN->setEdgeKind(TargetN, Edge::Call); 602 return false; // No new cycle. 603 } 604 605 // At this point we leverage the postorder list of SCCs to detect when the 606 // insertion of an edge changes the SCC structure in any way. 607 // 608 // First and foremost, we can eliminate the need for any changes when the 609 // edge is toward the beginning of the postorder sequence because all edges 610 // flow in that direction already. Thus adding a new one cannot form a cycle. 611 int SourceIdx = SCCIndices[&SourceSCC]; 612 int TargetIdx = SCCIndices[&TargetSCC]; 613 if (TargetIdx < SourceIdx) { 614 SourceN->setEdgeKind(TargetN, Edge::Call); 615 return false; // No new cycle. 616 } 617 618 // Compute the SCCs which (transitively) reach the source. 619 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { 620 #ifdef EXPENSIVE_CHECKS 621 // Check that the RefSCC is still valid before computing this as the 622 // results will be nonsensical of we've broken its invariants. 623 verify(); 624 #endif 625 ConnectedSet.insert(&SourceSCC); 626 auto IsConnected = [&](SCC &C) { 627 for (Node &N : C) 628 for (Edge &E : N->calls()) 629 if (ConnectedSet.count(G->lookupSCC(E.getNode()))) 630 return true; 631 632 return false; 633 }; 634 635 for (SCC *C : 636 make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1)) 637 if (IsConnected(*C)) 638 ConnectedSet.insert(C); 639 }; 640 641 // Use a normal worklist to find which SCCs the target connects to. We still 642 // bound the search based on the range in the postorder list we care about, 643 // but because this is forward connectivity we just "recurse" through the 644 // edges. 645 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { 646 #ifdef EXPENSIVE_CHECKS 647 // Check that the RefSCC is still valid before computing this as the 648 // results will be nonsensical of we've broken its invariants. 649 verify(); 650 #endif 651 ConnectedSet.insert(&TargetSCC); 652 SmallVector<SCC *, 4> Worklist; 653 Worklist.push_back(&TargetSCC); 654 do { 655 SCC &C = *Worklist.pop_back_val(); 656 for (Node &N : C) 657 for (Edge &E : *N) { 658 if (!E.isCall()) 659 continue; 660 SCC &EdgeC = *G->lookupSCC(E.getNode()); 661 if (&EdgeC.getOuterRefSCC() != this) 662 // Not in this RefSCC... 663 continue; 664 if (SCCIndices.find(&EdgeC)->second <= SourceIdx) 665 // Not in the postorder sequence between source and target. 666 continue; 667 668 if (ConnectedSet.insert(&EdgeC).second) 669 Worklist.push_back(&EdgeC); 670 } 671 } while (!Worklist.empty()); 672 }; 673 674 // Use a generic helper to update the postorder sequence of SCCs and return 675 // a range of any SCCs connected into a cycle by inserting this edge. This 676 // routine will also take care of updating the indices into the postorder 677 // sequence. 678 auto MergeRange = updatePostorderSequenceForEdgeInsertion( 679 SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet, 680 ComputeTargetConnectedSet); 681 682 // Run the user's callback on the merged SCCs before we actually merge them. 683 if (MergeCB) 684 MergeCB(ArrayRef(MergeRange.begin(), MergeRange.end())); 685 686 // If the merge range is empty, then adding the edge didn't actually form any 687 // new cycles. We're done. 688 if (MergeRange.empty()) { 689 // Now that the SCC structure is finalized, flip the kind to call. 690 SourceN->setEdgeKind(TargetN, Edge::Call); 691 return false; // No new cycle. 692 } 693 694 #ifdef EXPENSIVE_CHECKS 695 // Before merging, check that the RefSCC remains valid after all the 696 // postorder updates. 697 verify(); 698 #endif 699 700 // Otherwise we need to merge all the SCCs in the cycle into a single result 701 // SCC. 702 // 703 // NB: We merge into the target because all of these functions were already 704 // reachable from the target, meaning any SCC-wide properties deduced about it 705 // other than the set of functions within it will not have changed. 706 for (SCC *C : MergeRange) { 707 assert(C != &TargetSCC && 708 "We merge *into* the target and shouldn't process it here!"); 709 SCCIndices.erase(C); 710 TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end()); 711 for (Node *N : C->Nodes) 712 G->SCCMap[N] = &TargetSCC; 713 C->clear(); 714 DeletedSCCs.push_back(C); 715 } 716 717 // Erase the merged SCCs from the list and update the indices of the 718 // remaining SCCs. 719 int IndexOffset = MergeRange.end() - MergeRange.begin(); 720 auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end()); 721 for (SCC *C : make_range(EraseEnd, SCCs.end())) 722 SCCIndices[C] -= IndexOffset; 723 724 // Now that the SCC structure is finalized, flip the kind to call. 725 SourceN->setEdgeKind(TargetN, Edge::Call); 726 727 // And we're done, but we did form a new cycle. 728 return true; 729 } 730 731 void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN, 732 Node &TargetN) { 733 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); 734 735 #ifdef EXPENSIVE_CHECKS 736 verify(); 737 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 738 #endif 739 740 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 741 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); 742 assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) && 743 "Source and Target must be in separate SCCs for this to be trivial!"); 744 745 // Set the edge kind. 746 SourceN->setEdgeKind(TargetN, Edge::Ref); 747 } 748 749 iterator_range<LazyCallGraph::RefSCC::iterator> 750 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) { 751 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); 752 753 #ifdef EXPENSIVE_CHECKS 754 verify(); 755 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 756 #endif 757 758 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 759 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); 760 761 SCC &TargetSCC = *G->lookupSCC(TargetN); 762 assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in " 763 "the same SCC to require the " 764 "full CG update."); 765 766 // Set the edge kind. 767 SourceN->setEdgeKind(TargetN, Edge::Ref); 768 769 // Otherwise we are removing a call edge from a single SCC. This may break 770 // the cycle. In order to compute the new set of SCCs, we need to do a small 771 // DFS over the nodes within the SCC to form any sub-cycles that remain as 772 // distinct SCCs and compute a postorder over the resulting SCCs. 773 // 774 // However, we specially handle the target node. The target node is known to 775 // reach all other nodes in the original SCC by definition. This means that 776 // we want the old SCC to be replaced with an SCC containing that node as it 777 // will be the root of whatever SCC DAG results from the DFS. Assumptions 778 // about an SCC such as the set of functions called will continue to hold, 779 // etc. 780 781 SCC &OldSCC = TargetSCC; 782 SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack; 783 SmallVector<Node *, 16> PendingSCCStack; 784 SmallVector<SCC *, 4> NewSCCs; 785 786 // Prepare the nodes for a fresh DFS. 787 SmallVector<Node *, 16> Worklist; 788 Worklist.swap(OldSCC.Nodes); 789 for (Node *N : Worklist) { 790 N->DFSNumber = N->LowLink = 0; 791 G->SCCMap.erase(N); 792 } 793 794 // Force the target node to be in the old SCC. This also enables us to take 795 // a very significant short-cut in the standard Tarjan walk to re-form SCCs 796 // below: whenever we build an edge that reaches the target node, we know 797 // that the target node eventually connects back to all other nodes in our 798 // walk. As a consequence, we can detect and handle participants in that 799 // cycle without walking all the edges that form this connection, and instead 800 // by relying on the fundamental guarantee coming into this operation (all 801 // nodes are reachable from the target due to previously forming an SCC). 802 TargetN.DFSNumber = TargetN.LowLink = -1; 803 OldSCC.Nodes.push_back(&TargetN); 804 G->SCCMap[&TargetN] = &OldSCC; 805 806 // Scan down the stack and DFS across the call edges. 807 for (Node *RootN : Worklist) { 808 assert(DFSStack.empty() && 809 "Cannot begin a new root with a non-empty DFS stack!"); 810 assert(PendingSCCStack.empty() && 811 "Cannot begin a new root with pending nodes for an SCC!"); 812 813 // Skip any nodes we've already reached in the DFS. 814 if (RootN->DFSNumber != 0) { 815 assert(RootN->DFSNumber == -1 && 816 "Shouldn't have any mid-DFS root nodes!"); 817 continue; 818 } 819 820 RootN->DFSNumber = RootN->LowLink = 1; 821 int NextDFSNumber = 2; 822 823 DFSStack.emplace_back(RootN, (*RootN)->call_begin()); 824 do { 825 auto [N, I] = DFSStack.pop_back_val(); 826 auto E = (*N)->call_end(); 827 while (I != E) { 828 Node &ChildN = I->getNode(); 829 if (ChildN.DFSNumber == 0) { 830 // We haven't yet visited this child, so descend, pushing the current 831 // node onto the stack. 832 DFSStack.emplace_back(N, I); 833 834 assert(!G->SCCMap.count(&ChildN) && 835 "Found a node with 0 DFS number but already in an SCC!"); 836 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; 837 N = &ChildN; 838 I = (*N)->call_begin(); 839 E = (*N)->call_end(); 840 continue; 841 } 842 843 // Check for the child already being part of some component. 844 if (ChildN.DFSNumber == -1) { 845 if (G->lookupSCC(ChildN) == &OldSCC) { 846 // If the child is part of the old SCC, we know that it can reach 847 // every other node, so we have formed a cycle. Pull the entire DFS 848 // and pending stacks into it. See the comment above about setting 849 // up the old SCC for why we do this. 850 int OldSize = OldSCC.size(); 851 OldSCC.Nodes.push_back(N); 852 OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end()); 853 PendingSCCStack.clear(); 854 while (!DFSStack.empty()) 855 OldSCC.Nodes.push_back(DFSStack.pop_back_val().first); 856 for (Node &N : drop_begin(OldSCC, OldSize)) { 857 N.DFSNumber = N.LowLink = -1; 858 G->SCCMap[&N] = &OldSCC; 859 } 860 N = nullptr; 861 break; 862 } 863 864 // If the child has already been added to some child component, it 865 // couldn't impact the low-link of this parent because it isn't 866 // connected, and thus its low-link isn't relevant so skip it. 867 ++I; 868 continue; 869 } 870 871 // Track the lowest linked child as the lowest link for this node. 872 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 873 if (ChildN.LowLink < N->LowLink) 874 N->LowLink = ChildN.LowLink; 875 876 // Move to the next edge. 877 ++I; 878 } 879 if (!N) 880 // Cleared the DFS early, start another round. 881 break; 882 883 // We've finished processing N and its descendants, put it on our pending 884 // SCC stack to eventually get merged into an SCC of nodes. 885 PendingSCCStack.push_back(N); 886 887 // If this node is linked to some lower entry, continue walking up the 888 // stack. 889 if (N->LowLink != N->DFSNumber) 890 continue; 891 892 // Otherwise, we've completed an SCC. Append it to our post order list of 893 // SCCs. 894 int RootDFSNumber = N->DFSNumber; 895 // Find the range of the node stack by walking down until we pass the 896 // root DFS number. 897 auto SCCNodes = make_range( 898 PendingSCCStack.rbegin(), 899 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { 900 return N->DFSNumber < RootDFSNumber; 901 })); 902 903 // Form a new SCC out of these nodes and then clear them off our pending 904 // stack. 905 NewSCCs.push_back(G->createSCC(*this, SCCNodes)); 906 for (Node &N : *NewSCCs.back()) { 907 N.DFSNumber = N.LowLink = -1; 908 G->SCCMap[&N] = NewSCCs.back(); 909 } 910 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); 911 } while (!DFSStack.empty()); 912 } 913 914 // Insert the remaining SCCs before the old one. The old SCC can reach all 915 // other SCCs we form because it contains the target node of the removed edge 916 // of the old SCC. This means that we will have edges into all the new SCCs, 917 // which means the old one must come last for postorder. 918 int OldIdx = SCCIndices[&OldSCC]; 919 SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end()); 920 921 // Update the mapping from SCC* to index to use the new SCC*s, and remove the 922 // old SCC from the mapping. 923 for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx) 924 SCCIndices[SCCs[Idx]] = Idx; 925 926 return make_range(SCCs.begin() + OldIdx, 927 SCCs.begin() + OldIdx + NewSCCs.size()); 928 } 929 930 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN, 931 Node &TargetN) { 932 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!"); 933 934 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 935 assert(G->lookupRefSCC(TargetN) != this && 936 "Target must not be in this RefSCC."); 937 #ifdef EXPENSIVE_CHECKS 938 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 939 "Target must be a descendant of the Source."); 940 #endif 941 942 // Edges between RefSCCs are the same regardless of call or ref, so we can 943 // just flip the edge here. 944 SourceN->setEdgeKind(TargetN, Edge::Call); 945 946 #ifdef EXPENSIVE_CHECKS 947 verify(); 948 #endif 949 } 950 951 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN, 952 Node &TargetN) { 953 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); 954 955 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 956 assert(G->lookupRefSCC(TargetN) != this && 957 "Target must not be in this RefSCC."); 958 #ifdef EXPENSIVE_CHECKS 959 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 960 "Target must be a descendant of the Source."); 961 #endif 962 963 // Edges between RefSCCs are the same regardless of call or ref, so we can 964 // just flip the edge here. 965 SourceN->setEdgeKind(TargetN, Edge::Ref); 966 967 #ifdef EXPENSIVE_CHECKS 968 verify(); 969 #endif 970 } 971 972 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN, 973 Node &TargetN) { 974 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 975 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); 976 977 SourceN->insertEdgeInternal(TargetN, Edge::Ref); 978 979 #ifdef EXPENSIVE_CHECKS 980 verify(); 981 #endif 982 } 983 984 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN, 985 Edge::Kind EK) { 986 // First insert it into the caller. 987 SourceN->insertEdgeInternal(TargetN, EK); 988 989 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 990 991 assert(G->lookupRefSCC(TargetN) != this && 992 "Target must not be in this RefSCC."); 993 #ifdef EXPENSIVE_CHECKS 994 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 995 "Target must be a descendant of the Source."); 996 #endif 997 998 #ifdef EXPENSIVE_CHECKS 999 verify(); 1000 #endif 1001 } 1002 1003 SmallVector<LazyCallGraph::RefSCC *, 1> 1004 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) { 1005 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); 1006 RefSCC &SourceC = *G->lookupRefSCC(SourceN); 1007 assert(&SourceC != this && "Source must not be in this RefSCC."); 1008 #ifdef EXPENSIVE_CHECKS 1009 assert(SourceC.isDescendantOf(*this) && 1010 "Source must be a descendant of the Target."); 1011 #endif 1012 1013 SmallVector<RefSCC *, 1> DeletedRefSCCs; 1014 1015 #ifdef EXPENSIVE_CHECKS 1016 verify(); 1017 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 1018 #endif 1019 1020 int SourceIdx = G->RefSCCIndices[&SourceC]; 1021 int TargetIdx = G->RefSCCIndices[this]; 1022 assert(SourceIdx < TargetIdx && 1023 "Postorder list doesn't see edge as incoming!"); 1024 1025 // Compute the RefSCCs which (transitively) reach the source. We do this by 1026 // working backwards from the source using the parent set in each RefSCC, 1027 // skipping any RefSCCs that don't fall in the postorder range. This has the 1028 // advantage of walking the sparser parent edge (in high fan-out graphs) but 1029 // more importantly this removes examining all forward edges in all RefSCCs 1030 // within the postorder range which aren't in fact connected. Only connected 1031 // RefSCCs (and their edges) are visited here. 1032 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { 1033 Set.insert(&SourceC); 1034 auto IsConnected = [&](RefSCC &RC) { 1035 for (SCC &C : RC) 1036 for (Node &N : C) 1037 for (Edge &E : *N) 1038 if (Set.count(G->lookupRefSCC(E.getNode()))) 1039 return true; 1040 1041 return false; 1042 }; 1043 1044 for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1, 1045 G->PostOrderRefSCCs.begin() + TargetIdx + 1)) 1046 if (IsConnected(*C)) 1047 Set.insert(C); 1048 }; 1049 1050 // Use a normal worklist to find which SCCs the target connects to. We still 1051 // bound the search based on the range in the postorder list we care about, 1052 // but because this is forward connectivity we just "recurse" through the 1053 // edges. 1054 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { 1055 Set.insert(this); 1056 SmallVector<RefSCC *, 4> Worklist; 1057 Worklist.push_back(this); 1058 do { 1059 RefSCC &RC = *Worklist.pop_back_val(); 1060 for (SCC &C : RC) 1061 for (Node &N : C) 1062 for (Edge &E : *N) { 1063 RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode()); 1064 if (G->getRefSCCIndex(EdgeRC) <= SourceIdx) 1065 // Not in the postorder sequence between source and target. 1066 continue; 1067 1068 if (Set.insert(&EdgeRC).second) 1069 Worklist.push_back(&EdgeRC); 1070 } 1071 } while (!Worklist.empty()); 1072 }; 1073 1074 // Use a generic helper to update the postorder sequence of RefSCCs and return 1075 // a range of any RefSCCs connected into a cycle by inserting this edge. This 1076 // routine will also take care of updating the indices into the postorder 1077 // sequence. 1078 iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange = 1079 updatePostorderSequenceForEdgeInsertion( 1080 SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices, 1081 ComputeSourceConnectedSet, ComputeTargetConnectedSet); 1082 1083 // Build a set, so we can do fast tests for whether a RefSCC will end up as 1084 // part of the merged RefSCC. 1085 SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end()); 1086 1087 // This RefSCC will always be part of that set, so just insert it here. 1088 MergeSet.insert(this); 1089 1090 // Now that we have identified all the SCCs which need to be merged into 1091 // a connected set with the inserted edge, merge all of them into this SCC. 1092 SmallVector<SCC *, 16> MergedSCCs; 1093 int SCCIndex = 0; 1094 for (RefSCC *RC : MergeRange) { 1095 assert(RC != this && "We're merging into the target RefSCC, so it " 1096 "shouldn't be in the range."); 1097 1098 // Walk the inner SCCs to update their up-pointer and walk all the edges to 1099 // update any parent sets. 1100 // FIXME: We should try to find a way to avoid this (rather expensive) edge 1101 // walk by updating the parent sets in some other manner. 1102 for (SCC &InnerC : *RC) { 1103 InnerC.OuterRefSCC = this; 1104 SCCIndices[&InnerC] = SCCIndex++; 1105 for (Node &N : InnerC) 1106 G->SCCMap[&N] = &InnerC; 1107 } 1108 1109 // Now merge in the SCCs. We can actually move here so try to reuse storage 1110 // the first time through. 1111 if (MergedSCCs.empty()) 1112 MergedSCCs = std::move(RC->SCCs); 1113 else 1114 MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end()); 1115 RC->SCCs.clear(); 1116 DeletedRefSCCs.push_back(RC); 1117 } 1118 1119 // Append our original SCCs to the merged list and move it into place. 1120 for (SCC &InnerC : *this) 1121 SCCIndices[&InnerC] = SCCIndex++; 1122 MergedSCCs.append(SCCs.begin(), SCCs.end()); 1123 SCCs = std::move(MergedSCCs); 1124 1125 // Remove the merged away RefSCCs from the post order sequence. 1126 for (RefSCC *RC : MergeRange) 1127 G->RefSCCIndices.erase(RC); 1128 int IndexOffset = MergeRange.end() - MergeRange.begin(); 1129 auto EraseEnd = 1130 G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end()); 1131 for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end())) 1132 G->RefSCCIndices[RC] -= IndexOffset; 1133 1134 // At this point we have a merged RefSCC with a post-order SCCs list, just 1135 // connect the nodes to form the new edge. 1136 SourceN->insertEdgeInternal(TargetN, Edge::Ref); 1137 1138 // We return the list of SCCs which were merged so that callers can 1139 // invalidate any data they have associated with those SCCs. Note that these 1140 // SCCs are no longer in an interesting state (they are totally empty) but 1141 // the pointers will remain stable for the life of the graph itself. 1142 return DeletedRefSCCs; 1143 } 1144 1145 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) { 1146 assert(G->lookupRefSCC(SourceN) == this && 1147 "The source must be a member of this RefSCC."); 1148 assert(G->lookupRefSCC(TargetN) != this && 1149 "The target must not be a member of this RefSCC"); 1150 1151 #ifdef EXPENSIVE_CHECKS 1152 verify(); 1153 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 1154 #endif 1155 1156 // First remove it from the node. 1157 bool Removed = SourceN->removeEdgeInternal(TargetN); 1158 (void)Removed; 1159 assert(Removed && "Target not in the edge set for this caller?"); 1160 } 1161 1162 SmallVector<LazyCallGraph::RefSCC *, 1> 1163 LazyCallGraph::RefSCC::removeInternalRefEdges( 1164 ArrayRef<std::pair<Node *, Node *>> Edges) { 1165 // We return a list of the resulting *new* RefSCCs in post-order. 1166 SmallVector<RefSCC *, 1> Result; 1167 1168 #ifdef EXPENSIVE_CHECKS 1169 // Verify the RefSCC is valid to start with and that either we return an empty 1170 // list of result RefSCCs and this RefSCC remains valid, or we return new 1171 // RefSCCs and this RefSCC is dead. 1172 verify(); 1173 auto VerifyOnExit = make_scope_exit([&]() { 1174 // If we didn't replace our RefSCC with new ones, check that this one 1175 // remains valid. 1176 if (G) 1177 verify(); 1178 }); 1179 #endif 1180 1181 // First remove the actual edges. 1182 for (auto [SourceN, TargetN] : Edges) { 1183 assert(!(**SourceN)[*TargetN].isCall() && 1184 "Cannot remove a call edge, it must first be made a ref edge"); 1185 1186 bool Removed = (*SourceN)->removeEdgeInternal(*TargetN); 1187 (void)Removed; 1188 assert(Removed && "Target not in the edge set for this caller?"); 1189 } 1190 1191 // Direct self references don't impact the ref graph at all. 1192 // If all targets are in the same SCC as the source, because no call edges 1193 // were removed there is no RefSCC structure change. 1194 if (llvm::all_of(Edges, [&](std::pair<Node *, Node *> E) { 1195 return E.first == E.second || 1196 G->lookupSCC(*E.first) == G->lookupSCC(*E.second); 1197 })) 1198 return Result; 1199 1200 // We build somewhat synthetic new RefSCCs by providing a postorder mapping 1201 // for each inner SCC. We store these inside the low-link field of the nodes 1202 // rather than associated with SCCs because this saves a round-trip through 1203 // the node->SCC map and in the common case, SCCs are small. We will verify 1204 // that we always give the same number to every node in the SCC such that 1205 // these are equivalent. 1206 int PostOrderNumber = 0; 1207 1208 // Reset all the other nodes to prepare for a DFS over them, and add them to 1209 // our worklist. 1210 SmallVector<Node *, 8> Worklist; 1211 for (SCC *C : SCCs) { 1212 for (Node &N : *C) 1213 N.DFSNumber = N.LowLink = 0; 1214 1215 Worklist.append(C->Nodes.begin(), C->Nodes.end()); 1216 } 1217 1218 // Track the number of nodes in this RefSCC so that we can quickly recognize 1219 // an important special case of the edge removal not breaking the cycle of 1220 // this RefSCC. 1221 const int NumRefSCCNodes = Worklist.size(); 1222 1223 SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack; 1224 SmallVector<Node *, 4> PendingRefSCCStack; 1225 do { 1226 assert(DFSStack.empty() && 1227 "Cannot begin a new root with a non-empty DFS stack!"); 1228 assert(PendingRefSCCStack.empty() && 1229 "Cannot begin a new root with pending nodes for an SCC!"); 1230 1231 Node *RootN = Worklist.pop_back_val(); 1232 // Skip any nodes we've already reached in the DFS. 1233 if (RootN->DFSNumber != 0) { 1234 assert(RootN->DFSNumber == -1 && 1235 "Shouldn't have any mid-DFS root nodes!"); 1236 continue; 1237 } 1238 1239 RootN->DFSNumber = RootN->LowLink = 1; 1240 int NextDFSNumber = 2; 1241 1242 DFSStack.emplace_back(RootN, (*RootN)->begin()); 1243 do { 1244 auto [N, I] = DFSStack.pop_back_val(); 1245 auto E = (*N)->end(); 1246 1247 assert(N->DFSNumber != 0 && "We should always assign a DFS number " 1248 "before processing a node."); 1249 1250 while (I != E) { 1251 Node &ChildN = I->getNode(); 1252 if (ChildN.DFSNumber == 0) { 1253 // Mark that we should start at this child when next this node is the 1254 // top of the stack. We don't start at the next child to ensure this 1255 // child's lowlink is reflected. 1256 DFSStack.emplace_back(N, I); 1257 1258 // Continue, resetting to the child node. 1259 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; 1260 N = &ChildN; 1261 I = ChildN->begin(); 1262 E = ChildN->end(); 1263 continue; 1264 } 1265 if (ChildN.DFSNumber == -1) { 1266 // If this child isn't currently in this RefSCC, no need to process 1267 // it. 1268 ++I; 1269 continue; 1270 } 1271 1272 // Track the lowest link of the children, if any are still in the stack. 1273 // Any child not on the stack will have a LowLink of -1. 1274 assert(ChildN.LowLink != 0 && 1275 "Low-link must not be zero with a non-zero DFS number."); 1276 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) 1277 N->LowLink = ChildN.LowLink; 1278 ++I; 1279 } 1280 1281 // We've finished processing N and its descendants, put it on our pending 1282 // stack to eventually get merged into a RefSCC. 1283 PendingRefSCCStack.push_back(N); 1284 1285 // If this node is linked to some lower entry, continue walking up the 1286 // stack. 1287 if (N->LowLink != N->DFSNumber) { 1288 assert(!DFSStack.empty() && 1289 "We never found a viable root for a RefSCC to pop off!"); 1290 continue; 1291 } 1292 1293 // Otherwise, form a new RefSCC from the top of the pending node stack. 1294 int RefSCCNumber = PostOrderNumber++; 1295 int RootDFSNumber = N->DFSNumber; 1296 1297 // Find the range of the node stack by walking down until we pass the 1298 // root DFS number. Update the DFS numbers and low link numbers in the 1299 // process to avoid re-walking this list where possible. 1300 auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) { 1301 if (N->DFSNumber < RootDFSNumber) 1302 // We've found the bottom. 1303 return true; 1304 1305 // Update this node and keep scanning. 1306 N->DFSNumber = -1; 1307 // Save the post-order number in the lowlink field so that we can use 1308 // it to map SCCs into new RefSCCs after we finish the DFS. 1309 N->LowLink = RefSCCNumber; 1310 return false; 1311 }); 1312 auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end()); 1313 1314 // If we find a cycle containing all nodes originally in this RefSCC then 1315 // the removal hasn't changed the structure at all. This is an important 1316 // special case, and we can directly exit the entire routine more 1317 // efficiently as soon as we discover it. 1318 if (llvm::size(RefSCCNodes) == NumRefSCCNodes) { 1319 // Clear out the low link field as we won't need it. 1320 for (Node *N : RefSCCNodes) 1321 N->LowLink = -1; 1322 // Return the empty result immediately. 1323 return Result; 1324 } 1325 1326 // We've already marked the nodes internally with the RefSCC number so 1327 // just clear them off the stack and continue. 1328 PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end()); 1329 } while (!DFSStack.empty()); 1330 1331 assert(DFSStack.empty() && "Didn't flush the entire DFS stack!"); 1332 assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!"); 1333 } while (!Worklist.empty()); 1334 1335 assert(PostOrderNumber > 1 && 1336 "Should never finish the DFS when the existing RefSCC remains valid!"); 1337 1338 // Otherwise we create a collection of new RefSCC nodes and build 1339 // a radix-sort style map from postorder number to these new RefSCCs. We then 1340 // append SCCs to each of these RefSCCs in the order they occurred in the 1341 // original SCCs container. 1342 for (int I = 0; I < PostOrderNumber; ++I) 1343 Result.push_back(G->createRefSCC(*G)); 1344 1345 // Insert the resulting postorder sequence into the global graph postorder 1346 // sequence before the current RefSCC in that sequence, and then remove the 1347 // current one. 1348 // 1349 // FIXME: It'd be nice to change the APIs so that we returned an iterator 1350 // range over the global postorder sequence and generally use that sequence 1351 // rather than building a separate result vector here. 1352 int Idx = G->getRefSCCIndex(*this); 1353 G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx); 1354 G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(), 1355 Result.end()); 1356 for (int I : seq<int>(Idx, G->PostOrderRefSCCs.size())) 1357 G->RefSCCIndices[G->PostOrderRefSCCs[I]] = I; 1358 1359 for (SCC *C : SCCs) { 1360 // We store the SCC number in the node's low-link field above. 1361 int SCCNumber = C->begin()->LowLink; 1362 // Clear out all the SCC's node's low-link fields now that we're done 1363 // using them as side-storage. 1364 for (Node &N : *C) { 1365 assert(N.LowLink == SCCNumber && 1366 "Cannot have different numbers for nodes in the same SCC!"); 1367 N.LowLink = -1; 1368 } 1369 1370 RefSCC &RC = *Result[SCCNumber]; 1371 int SCCIndex = RC.SCCs.size(); 1372 RC.SCCs.push_back(C); 1373 RC.SCCIndices[C] = SCCIndex; 1374 C->OuterRefSCC = &RC; 1375 } 1376 1377 // Now that we've moved things into the new RefSCCs, clear out our current 1378 // one. 1379 G = nullptr; 1380 SCCs.clear(); 1381 SCCIndices.clear(); 1382 1383 #ifdef EXPENSIVE_CHECKS 1384 // Verify the new RefSCCs we've built. 1385 for (RefSCC *RC : Result) 1386 RC->verify(); 1387 #endif 1388 1389 // Return the new list of SCCs. 1390 return Result; 1391 } 1392 1393 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN, 1394 Node &TargetN) { 1395 #ifdef EXPENSIVE_CHECKS 1396 auto ExitVerifier = make_scope_exit([this] { verify(); }); 1397 1398 // Check that we aren't breaking some invariants of the SCC graph. Note that 1399 // this is quadratic in the number of edges in the call graph! 1400 SCC &SourceC = *G->lookupSCC(SourceN); 1401 SCC &TargetC = *G->lookupSCC(TargetN); 1402 if (&SourceC != &TargetC) 1403 assert(SourceC.isAncestorOf(TargetC) && 1404 "Call edge is not trivial in the SCC graph!"); 1405 #endif 1406 1407 // First insert it into the source or find the existing edge. 1408 auto [Iterator, Inserted] = 1409 SourceN->EdgeIndexMap.try_emplace(&TargetN, SourceN->Edges.size()); 1410 if (!Inserted) { 1411 // Already an edge, just update it. 1412 Edge &E = SourceN->Edges[Iterator->second]; 1413 if (E.isCall()) 1414 return; // Nothing to do! 1415 E.setKind(Edge::Call); 1416 } else { 1417 // Create the new edge. 1418 SourceN->Edges.emplace_back(TargetN, Edge::Call); 1419 } 1420 } 1421 1422 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) { 1423 #ifdef EXPENSIVE_CHECKS 1424 auto ExitVerifier = make_scope_exit([this] { verify(); }); 1425 1426 // Check that we aren't breaking some invariants of the RefSCC graph. 1427 RefSCC &SourceRC = *G->lookupRefSCC(SourceN); 1428 RefSCC &TargetRC = *G->lookupRefSCC(TargetN); 1429 if (&SourceRC != &TargetRC) 1430 assert(SourceRC.isAncestorOf(TargetRC) && 1431 "Ref edge is not trivial in the RefSCC graph!"); 1432 #endif 1433 1434 // First insert it into the source or find the existing edge. 1435 auto [Iterator, Inserted] = 1436 SourceN->EdgeIndexMap.try_emplace(&TargetN, SourceN->Edges.size()); 1437 (void)Iterator; 1438 if (!Inserted) 1439 // Already an edge, we're done. 1440 return; 1441 1442 // Create the new edge. 1443 SourceN->Edges.emplace_back(TargetN, Edge::Ref); 1444 } 1445 1446 void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) { 1447 Function &OldF = N.getFunction(); 1448 1449 #ifdef EXPENSIVE_CHECKS 1450 auto ExitVerifier = make_scope_exit([this] { verify(); }); 1451 1452 assert(G->lookupRefSCC(N) == this && 1453 "Cannot replace the function of a node outside this RefSCC."); 1454 1455 assert(G->NodeMap.find(&NewF) == G->NodeMap.end() && 1456 "Must not have already walked the new function!'"); 1457 1458 // It is important that this replacement not introduce graph changes so we 1459 // insist that the caller has already removed every use of the original 1460 // function and that all uses of the new function correspond to existing 1461 // edges in the graph. The common and expected way to use this is when 1462 // replacing the function itself in the IR without changing the call graph 1463 // shape and just updating the analysis based on that. 1464 assert(&OldF != &NewF && "Cannot replace a function with itself!"); 1465 assert(OldF.use_empty() && 1466 "Must have moved all uses from the old function to the new!"); 1467 #endif 1468 1469 N.replaceFunction(NewF); 1470 1471 // Update various call graph maps. 1472 G->NodeMap.erase(&OldF); 1473 G->NodeMap[&NewF] = &N; 1474 1475 // Update lib functions. 1476 if (G->isLibFunction(OldF)) { 1477 G->LibFunctions.remove(&OldF); 1478 G->LibFunctions.insert(&NewF); 1479 } 1480 } 1481 1482 void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) { 1483 assert(SCCMap.empty() && 1484 "This method cannot be called after SCCs have been formed!"); 1485 1486 return SourceN->insertEdgeInternal(TargetN, EK); 1487 } 1488 1489 void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) { 1490 assert(SCCMap.empty() && 1491 "This method cannot be called after SCCs have been formed!"); 1492 1493 bool Removed = SourceN->removeEdgeInternal(TargetN); 1494 (void)Removed; 1495 assert(Removed && "Target not in the edge set for this caller?"); 1496 } 1497 1498 void LazyCallGraph::markDeadFunction(Function &F) { 1499 // FIXME: This is unnecessarily restrictive. We should be able to remove 1500 // functions which recursively call themselves. 1501 assert(F.hasZeroLiveUses() && 1502 "This routine should only be called on trivially dead functions!"); 1503 1504 // We shouldn't remove library functions as they are never really dead while 1505 // the call graph is in use -- every function definition refers to them. 1506 assert(!isLibFunction(F) && 1507 "Must not remove lib functions from the call graph!"); 1508 1509 auto NI = NodeMap.find(&F); 1510 assert(NI != NodeMap.end() && "Removed function should be known!"); 1511 1512 Node &N = *NI->second; 1513 1514 // Remove all call edges out of dead function. 1515 for (Edge E : *N) { 1516 if (E.isCall()) 1517 N->setEdgeKind(E.getNode(), Edge::Ref); 1518 } 1519 } 1520 1521 void LazyCallGraph::removeDeadFunctions(ArrayRef<Function *> DeadFs) { 1522 if (DeadFs.empty()) 1523 return; 1524 1525 // Group dead functions by the RefSCC they're in. 1526 DenseMap<RefSCC *, SmallVector<Node *, 1>> RCs; 1527 for (Function *DeadF : DeadFs) { 1528 Node *N = lookup(*DeadF); 1529 #ifndef NDEBUG 1530 for (Edge &E : **N) { 1531 assert(!E.isCall() && 1532 "dead function shouldn't have any outgoing call edges"); 1533 } 1534 #endif 1535 RefSCC *RC = lookupRefSCC(*N); 1536 RCs[RC].push_back(N); 1537 } 1538 // Remove outgoing edges from all dead functions. Dead functions should 1539 // already have had their call edges removed in markDeadFunction(), so we only 1540 // need to worry about spurious ref edges. 1541 for (auto [RC, DeadNs] : RCs) { 1542 SmallVector<std::pair<Node *, Node *>> InternalEdgesToRemove; 1543 for (Node *DeadN : DeadNs) { 1544 for (Edge &E : **DeadN) { 1545 if (lookupRefSCC(E.getNode()) == RC) 1546 InternalEdgesToRemove.push_back({DeadN, &E.getNode()}); 1547 else 1548 RC->removeOutgoingEdge(*DeadN, E.getNode()); 1549 } 1550 } 1551 // We ignore the returned RefSCCs since at this point we're done with CGSCC 1552 // iteration and don't need to add it to any worklists. 1553 (void)RC->removeInternalRefEdges(InternalEdgesToRemove); 1554 for (Node *DeadN : DeadNs) { 1555 RefSCC *DeadRC = lookupRefSCC(*DeadN); 1556 assert(DeadRC->size() == 1); 1557 assert(DeadRC->begin()->size() == 1); 1558 DeadRC->clear(); 1559 DeadRC->G = nullptr; 1560 } 1561 } 1562 // Clean up data structures. 1563 for (Function *DeadF : DeadFs) { 1564 Node &N = *lookup(*DeadF); 1565 1566 EntryEdges.removeEdgeInternal(N); 1567 SCCMap.erase(SCCMap.find(&N)); 1568 NodeMap.erase(NodeMap.find(DeadF)); 1569 1570 N.clear(); 1571 N.G = nullptr; 1572 N.F = nullptr; 1573 } 1574 } 1575 1576 // Gets the Edge::Kind from one function to another by looking at the function's 1577 // instructions. Asserts if there is no edge. 1578 // Useful for determining what type of edge should exist between functions when 1579 // the edge hasn't been created yet. 1580 static LazyCallGraph::Edge::Kind getEdgeKind(Function &OriginalFunction, 1581 Function &NewFunction) { 1582 // In release builds, assume that if there are no direct calls to the new 1583 // function, then there is a ref edge. In debug builds, keep track of 1584 // references to assert that there is actually a ref edge if there is no call 1585 // edge. 1586 #ifndef NDEBUG 1587 SmallVector<Constant *, 16> Worklist; 1588 SmallPtrSet<Constant *, 16> Visited; 1589 #endif 1590 1591 for (Instruction &I : instructions(OriginalFunction)) { 1592 if (auto *CB = dyn_cast<CallBase>(&I)) { 1593 if (Function *Callee = CB->getCalledFunction()) { 1594 if (Callee == &NewFunction) 1595 return LazyCallGraph::Edge::Kind::Call; 1596 } 1597 } 1598 #ifndef NDEBUG 1599 for (Value *Op : I.operand_values()) { 1600 if (Constant *C = dyn_cast<Constant>(Op)) { 1601 if (Visited.insert(C).second) 1602 Worklist.push_back(C); 1603 } 1604 } 1605 #endif 1606 } 1607 1608 #ifndef NDEBUG 1609 bool FoundNewFunction = false; 1610 LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &F) { 1611 if (&F == &NewFunction) 1612 FoundNewFunction = true; 1613 }); 1614 assert(FoundNewFunction && "No edge from original function to new function"); 1615 #endif 1616 1617 return LazyCallGraph::Edge::Kind::Ref; 1618 } 1619 1620 void LazyCallGraph::addSplitFunction(Function &OriginalFunction, 1621 Function &NewFunction) { 1622 assert(lookup(OriginalFunction) && 1623 "Original function's node should already exist"); 1624 Node &OriginalN = get(OriginalFunction); 1625 SCC *OriginalC = lookupSCC(OriginalN); 1626 RefSCC *OriginalRC = lookupRefSCC(OriginalN); 1627 1628 #ifdef EXPENSIVE_CHECKS 1629 OriginalRC->verify(); 1630 auto VerifyOnExit = make_scope_exit([&]() { OriginalRC->verify(); }); 1631 #endif 1632 1633 assert(!lookup(NewFunction) && 1634 "New function's node should not already exist"); 1635 Node &NewN = initNode(NewFunction); 1636 1637 Edge::Kind EK = getEdgeKind(OriginalFunction, NewFunction); 1638 1639 SCC *NewC = nullptr; 1640 for (Edge &E : *NewN) { 1641 Node &EN = E.getNode(); 1642 if (EK == Edge::Kind::Call && E.isCall() && lookupSCC(EN) == OriginalC) { 1643 // If the edge to the new function is a call edge and there is a call edge 1644 // from the new function to any function in the original function's SCC, 1645 // it is in the same SCC (and RefSCC) as the original function. 1646 NewC = OriginalC; 1647 NewC->Nodes.push_back(&NewN); 1648 break; 1649 } 1650 } 1651 1652 if (!NewC) { 1653 for (Edge &E : *NewN) { 1654 Node &EN = E.getNode(); 1655 if (lookupRefSCC(EN) == OriginalRC) { 1656 // If there is any edge from the new function to any function in the 1657 // original function's RefSCC, it is in the same RefSCC as the original 1658 // function but a new SCC. 1659 RefSCC *NewRC = OriginalRC; 1660 NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN})); 1661 1662 // The new function's SCC is not the same as the original function's 1663 // SCC, since that case was handled earlier. If the edge from the 1664 // original function to the new function was a call edge, then we need 1665 // to insert the newly created function's SCC before the original 1666 // function's SCC. Otherwise, either the new SCC comes after the 1667 // original function's SCC, or it doesn't matter, and in both cases we 1668 // can add it to the very end. 1669 int InsertIndex = EK == Edge::Kind::Call ? NewRC->SCCIndices[OriginalC] 1670 : NewRC->SCCIndices.size(); 1671 NewRC->SCCs.insert(NewRC->SCCs.begin() + InsertIndex, NewC); 1672 for (int I = InsertIndex, Size = NewRC->SCCs.size(); I < Size; ++I) 1673 NewRC->SCCIndices[NewRC->SCCs[I]] = I; 1674 1675 break; 1676 } 1677 } 1678 } 1679 1680 if (!NewC) { 1681 // We didn't find any edges back to the original function's RefSCC, so the 1682 // new function belongs in a new RefSCC. The new RefSCC goes before the 1683 // original function's RefSCC. 1684 RefSCC *NewRC = createRefSCC(*this); 1685 NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN})); 1686 NewRC->SCCIndices[NewC] = 0; 1687 NewRC->SCCs.push_back(NewC); 1688 auto OriginalRCIndex = RefSCCIndices.find(OriginalRC)->second; 1689 PostOrderRefSCCs.insert(PostOrderRefSCCs.begin() + OriginalRCIndex, NewRC); 1690 for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I) 1691 RefSCCIndices[PostOrderRefSCCs[I]] = I; 1692 } 1693 1694 SCCMap[&NewN] = NewC; 1695 1696 OriginalN->insertEdgeInternal(NewN, EK); 1697 } 1698 1699 void LazyCallGraph::addSplitRefRecursiveFunctions( 1700 Function &OriginalFunction, ArrayRef<Function *> NewFunctions) { 1701 assert(!NewFunctions.empty() && "Can't add zero functions"); 1702 assert(lookup(OriginalFunction) && 1703 "Original function's node should already exist"); 1704 Node &OriginalN = get(OriginalFunction); 1705 RefSCC *OriginalRC = lookupRefSCC(OriginalN); 1706 1707 #ifdef EXPENSIVE_CHECKS 1708 OriginalRC->verify(); 1709 auto VerifyOnExit = make_scope_exit([&]() { 1710 OriginalRC->verify(); 1711 for (Function *NewFunction : NewFunctions) 1712 lookupRefSCC(get(*NewFunction))->verify(); 1713 }); 1714 #endif 1715 1716 bool ExistsRefToOriginalRefSCC = false; 1717 1718 for (Function *NewFunction : NewFunctions) { 1719 Node &NewN = initNode(*NewFunction); 1720 1721 OriginalN->insertEdgeInternal(NewN, Edge::Kind::Ref); 1722 1723 // Check if there is any edge from any new function back to any function in 1724 // the original function's RefSCC. 1725 for (Edge &E : *NewN) { 1726 if (lookupRefSCC(E.getNode()) == OriginalRC) { 1727 ExistsRefToOriginalRefSCC = true; 1728 break; 1729 } 1730 } 1731 } 1732 1733 RefSCC *NewRC; 1734 if (ExistsRefToOriginalRefSCC) { 1735 // If there is any edge from any new function to any function in the 1736 // original function's RefSCC, all new functions will be in the same RefSCC 1737 // as the original function. 1738 NewRC = OriginalRC; 1739 } else { 1740 // Otherwise the new functions are in their own RefSCC. 1741 NewRC = createRefSCC(*this); 1742 // The new RefSCC goes before the original function's RefSCC in postorder 1743 // since there are only edges from the original function's RefSCC to the new 1744 // RefSCC. 1745 auto OriginalRCIndex = RefSCCIndices.find(OriginalRC)->second; 1746 PostOrderRefSCCs.insert(PostOrderRefSCCs.begin() + OriginalRCIndex, NewRC); 1747 for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I) 1748 RefSCCIndices[PostOrderRefSCCs[I]] = I; 1749 } 1750 1751 for (Function *NewFunction : NewFunctions) { 1752 Node &NewN = get(*NewFunction); 1753 // Each new function is in its own new SCC. The original function can only 1754 // have a ref edge to new functions, and no other existing functions can 1755 // have references to new functions. Each new function only has a ref edge 1756 // to the other new functions. 1757 SCC *NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN})); 1758 // The new SCCs are either sibling SCCs or parent SCCs to all other existing 1759 // SCCs in the RefSCC. Either way, they can go at the back of the postorder 1760 // SCC list. 1761 auto Index = NewRC->SCCIndices.size(); 1762 NewRC->SCCIndices[NewC] = Index; 1763 NewRC->SCCs.push_back(NewC); 1764 SCCMap[&NewN] = NewC; 1765 } 1766 1767 #ifndef NDEBUG 1768 for (Function *F1 : NewFunctions) { 1769 assert(getEdgeKind(OriginalFunction, *F1) == Edge::Kind::Ref && 1770 "Expected ref edges from original function to every new function"); 1771 Node &N1 = get(*F1); 1772 for (Function *F2 : NewFunctions) { 1773 if (F1 == F2) 1774 continue; 1775 Node &N2 = get(*F2); 1776 assert(!N1->lookup(N2)->isCall() && 1777 "Edges between new functions must be ref edges"); 1778 } 1779 } 1780 #endif 1781 } 1782 1783 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) { 1784 return *new (MappedN = BPA.Allocate()) Node(*this, F); 1785 } 1786 1787 void LazyCallGraph::updateGraphPtrs() { 1788 // Walk the node map to update their graph pointers. While this iterates in 1789 // an unstable order, the order has no effect, so it remains correct. 1790 for (auto &FunctionNodePair : NodeMap) 1791 FunctionNodePair.second->G = this; 1792 1793 for (auto *RC : PostOrderRefSCCs) 1794 RC->G = this; 1795 } 1796 1797 LazyCallGraph::Node &LazyCallGraph::initNode(Function &F) { 1798 Node &N = get(F); 1799 N.DFSNumber = N.LowLink = -1; 1800 N.populate(); 1801 NodeMap[&F] = &N; 1802 return N; 1803 } 1804 1805 template <typename RootsT, typename GetBeginT, typename GetEndT, 1806 typename GetNodeT, typename FormSCCCallbackT> 1807 void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin, 1808 GetEndT &&GetEnd, GetNodeT &&GetNode, 1809 FormSCCCallbackT &&FormSCC) { 1810 using EdgeItT = decltype(GetBegin(std::declval<Node &>())); 1811 1812 SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack; 1813 SmallVector<Node *, 16> PendingSCCStack; 1814 1815 // Scan down the stack and DFS across the call edges. 1816 for (Node *RootN : Roots) { 1817 assert(DFSStack.empty() && 1818 "Cannot begin a new root with a non-empty DFS stack!"); 1819 assert(PendingSCCStack.empty() && 1820 "Cannot begin a new root with pending nodes for an SCC!"); 1821 1822 // Skip any nodes we've already reached in the DFS. 1823 if (RootN->DFSNumber != 0) { 1824 assert(RootN->DFSNumber == -1 && 1825 "Shouldn't have any mid-DFS root nodes!"); 1826 continue; 1827 } 1828 1829 RootN->DFSNumber = RootN->LowLink = 1; 1830 int NextDFSNumber = 2; 1831 1832 DFSStack.emplace_back(RootN, GetBegin(*RootN)); 1833 do { 1834 auto [N, I] = DFSStack.pop_back_val(); 1835 auto E = GetEnd(*N); 1836 while (I != E) { 1837 Node &ChildN = GetNode(I); 1838 if (ChildN.DFSNumber == 0) { 1839 // We haven't yet visited this child, so descend, pushing the current 1840 // node onto the stack. 1841 DFSStack.emplace_back(N, I); 1842 1843 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; 1844 N = &ChildN; 1845 I = GetBegin(*N); 1846 E = GetEnd(*N); 1847 continue; 1848 } 1849 1850 // If the child has already been added to some child component, it 1851 // couldn't impact the low-link of this parent because it isn't 1852 // connected, and thus its low-link isn't relevant so skip it. 1853 if (ChildN.DFSNumber == -1) { 1854 ++I; 1855 continue; 1856 } 1857 1858 // Track the lowest linked child as the lowest link for this node. 1859 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 1860 if (ChildN.LowLink < N->LowLink) 1861 N->LowLink = ChildN.LowLink; 1862 1863 // Move to the next edge. 1864 ++I; 1865 } 1866 1867 // We've finished processing N and its descendants, put it on our pending 1868 // SCC stack to eventually get merged into an SCC of nodes. 1869 PendingSCCStack.push_back(N); 1870 1871 // If this node is linked to some lower entry, continue walking up the 1872 // stack. 1873 if (N->LowLink != N->DFSNumber) 1874 continue; 1875 1876 // Otherwise, we've completed an SCC. Append it to our post order list of 1877 // SCCs. 1878 int RootDFSNumber = N->DFSNumber; 1879 // Find the range of the node stack by walking down until we pass the 1880 // root DFS number. 1881 auto SCCNodes = make_range( 1882 PendingSCCStack.rbegin(), 1883 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { 1884 return N->DFSNumber < RootDFSNumber; 1885 })); 1886 // Form a new SCC out of these nodes and then clear them off our pending 1887 // stack. 1888 FormSCC(SCCNodes); 1889 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); 1890 } while (!DFSStack.empty()); 1891 } 1892 } 1893 1894 /// Build the internal SCCs for a RefSCC from a sequence of nodes. 1895 /// 1896 /// Appends the SCCs to the provided vector and updates the map with their 1897 /// indices. Both the vector and map must be empty when passed into this 1898 /// routine. 1899 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) { 1900 assert(RC.SCCs.empty() && "Already built SCCs!"); 1901 assert(RC.SCCIndices.empty() && "Already mapped SCC indices!"); 1902 1903 for (Node *N : Nodes) { 1904 assert(N->LowLink >= (*Nodes.begin())->LowLink && 1905 "We cannot have a low link in an SCC lower than its root on the " 1906 "stack!"); 1907 1908 // This node will go into the next RefSCC, clear out its DFS and low link 1909 // as we scan. 1910 N->DFSNumber = N->LowLink = 0; 1911 } 1912 1913 // Each RefSCC contains a DAG of the call SCCs. To build these, we do 1914 // a direct walk of the call edges using Tarjan's algorithm. We reuse the 1915 // internal storage as we won't need it for the outer graph's DFS any longer. 1916 buildGenericSCCs( 1917 Nodes, [](Node &N) { return N->call_begin(); }, 1918 [](Node &N) { return N->call_end(); }, 1919 [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); }, 1920 [this, &RC](node_stack_range Nodes) { 1921 RC.SCCs.push_back(createSCC(RC, Nodes)); 1922 for (Node &N : *RC.SCCs.back()) { 1923 N.DFSNumber = N.LowLink = -1; 1924 SCCMap[&N] = RC.SCCs.back(); 1925 } 1926 }); 1927 1928 // Wire up the SCC indices. 1929 for (int I = 0, Size = RC.SCCs.size(); I < Size; ++I) 1930 RC.SCCIndices[RC.SCCs[I]] = I; 1931 } 1932 1933 void LazyCallGraph::buildRefSCCs() { 1934 if (EntryEdges.empty() || !PostOrderRefSCCs.empty()) 1935 // RefSCCs are either non-existent or already built! 1936 return; 1937 1938 assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!"); 1939 1940 SmallVector<Node *, 16> Roots; 1941 for (Edge &E : *this) 1942 Roots.push_back(&E.getNode()); 1943 1944 // The roots will be iterated in order. 1945 buildGenericSCCs( 1946 Roots, 1947 [](Node &N) { 1948 // We need to populate each node as we begin to walk its edges. 1949 N.populate(); 1950 return N->begin(); 1951 }, 1952 [](Node &N) { return N->end(); }, 1953 [](EdgeSequence::iterator I) -> Node & { return I->getNode(); }, 1954 [this](node_stack_range Nodes) { 1955 RefSCC *NewRC = createRefSCC(*this); 1956 buildSCCs(*NewRC, Nodes); 1957 1958 // Push the new node into the postorder list and remember its position 1959 // in the index map. 1960 bool Inserted = 1961 RefSCCIndices.try_emplace(NewRC, PostOrderRefSCCs.size()).second; 1962 (void)Inserted; 1963 assert(Inserted && "Cannot already have this RefSCC in the index map!"); 1964 PostOrderRefSCCs.push_back(NewRC); 1965 #ifdef EXPENSIVE_CHECKS 1966 NewRC->verify(); 1967 #endif 1968 }); 1969 } 1970 1971 void LazyCallGraph::visitReferences(SmallVectorImpl<Constant *> &Worklist, 1972 SmallPtrSetImpl<Constant *> &Visited, 1973 function_ref<void(Function &)> Callback) { 1974 while (!Worklist.empty()) { 1975 Constant *C = Worklist.pop_back_val(); 1976 1977 if (Function *F = dyn_cast<Function>(C)) { 1978 if (!F->isDeclaration()) 1979 Callback(*F); 1980 continue; 1981 } 1982 1983 // blockaddresses are weird and don't participate in the call graph anyway, 1984 // skip them. 1985 if (isa<BlockAddress>(C)) 1986 continue; 1987 1988 for (Value *Op : C->operand_values()) 1989 if (Visited.insert(cast<Constant>(Op)).second) 1990 Worklist.push_back(cast<Constant>(Op)); 1991 } 1992 } 1993 1994 AnalysisKey LazyCallGraphAnalysis::Key; 1995 1996 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {} 1997 1998 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) { 1999 OS << " Edges in function: " << N.getFunction().getName() << "\n"; 2000 for (LazyCallGraph::Edge &E : N.populate()) 2001 OS << " " << (E.isCall() ? "call" : "ref ") << " -> " 2002 << E.getFunction().getName() << "\n"; 2003 2004 OS << "\n"; 2005 } 2006 2007 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) { 2008 OS << " SCC with " << C.size() << " functions:\n"; 2009 2010 for (LazyCallGraph::Node &N : C) 2011 OS << " " << N.getFunction().getName() << "\n"; 2012 } 2013 2014 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) { 2015 OS << " RefSCC with " << C.size() << " call SCCs:\n"; 2016 2017 for (LazyCallGraph::SCC &InnerC : C) 2018 printSCC(OS, InnerC); 2019 2020 OS << "\n"; 2021 } 2022 2023 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M, 2024 ModuleAnalysisManager &AM) { 2025 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); 2026 2027 OS << "Printing the call graph for module: " << M.getModuleIdentifier() 2028 << "\n\n"; 2029 2030 for (Function &F : M) 2031 printNode(OS, G.get(F)); 2032 2033 G.buildRefSCCs(); 2034 for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs()) 2035 printRefSCC(OS, C); 2036 2037 return PreservedAnalyses::all(); 2038 } 2039 2040 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS) 2041 : OS(OS) {} 2042 2043 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) { 2044 std::string Name = 2045 "\"" + DOT::EscapeString(std::string(N.getFunction().getName())) + "\""; 2046 2047 for (LazyCallGraph::Edge &E : N.populate()) { 2048 OS << " " << Name << " -> \"" 2049 << DOT::EscapeString(std::string(E.getFunction().getName())) << "\""; 2050 if (!E.isCall()) // It is a ref edge. 2051 OS << " [style=dashed,label=\"ref\"]"; 2052 OS << ";\n"; 2053 } 2054 2055 OS << "\n"; 2056 } 2057 2058 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M, 2059 ModuleAnalysisManager &AM) { 2060 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); 2061 2062 OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n"; 2063 2064 for (Function &F : M) 2065 printNodeDOT(OS, G.get(F)); 2066 2067 OS << "}\n"; 2068 2069 return PreservedAnalyses::all(); 2070 } 2071