xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/LazyCallGraph.cpp (revision 66fd12cf4896eb08ad8e7a2627537f84ead84dd3)
1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/LazyCallGraph.h"
10 
11 #include "llvm/ADT/ArrayRef.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/Sequence.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/GlobalVariable.h"
21 #include "llvm/IR/InstIterator.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/GraphWriter.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <algorithm>
31 
32 #ifdef EXPENSIVE_CHECKS
33 #include "llvm/ADT/ScopeExit.h"
34 #endif
35 
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "lcg"
39 
40 void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN,
41                                                      Edge::Kind EK) {
42   EdgeIndexMap.try_emplace(&TargetN, Edges.size());
43   Edges.emplace_back(TargetN, EK);
44 }
45 
46 void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) {
47   Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK);
48 }
49 
50 bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) {
51   auto IndexMapI = EdgeIndexMap.find(&TargetN);
52   if (IndexMapI == EdgeIndexMap.end())
53     return false;
54 
55   Edges[IndexMapI->second] = Edge();
56   EdgeIndexMap.erase(IndexMapI);
57   return true;
58 }
59 
60 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
61                     DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap,
62                     LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) {
63   if (!EdgeIndexMap.try_emplace(&N, Edges.size()).second)
64     return;
65 
66   LLVM_DEBUG(dbgs() << "    Added callable function: " << N.getName() << "\n");
67   Edges.emplace_back(LazyCallGraph::Edge(N, EK));
68 }
69 
70 LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() {
71   assert(!Edges && "Must not have already populated the edges for this node!");
72 
73   LLVM_DEBUG(dbgs() << "  Adding functions called by '" << getName()
74                     << "' to the graph.\n");
75 
76   Edges = EdgeSequence();
77 
78   SmallVector<Constant *, 16> Worklist;
79   SmallPtrSet<Function *, 4> Callees;
80   SmallPtrSet<Constant *, 16> Visited;
81 
82   // Find all the potential call graph edges in this function. We track both
83   // actual call edges and indirect references to functions. The direct calls
84   // are trivially added, but to accumulate the latter we walk the instructions
85   // and add every operand which is a constant to the worklist to process
86   // afterward.
87   //
88   // Note that we consider *any* function with a definition to be a viable
89   // edge. Even if the function's definition is subject to replacement by
90   // some other module (say, a weak definition) there may still be
91   // optimizations which essentially speculate based on the definition and
92   // a way to check that the specific definition is in fact the one being
93   // used. For example, this could be done by moving the weak definition to
94   // a strong (internal) definition and making the weak definition be an
95   // alias. Then a test of the address of the weak function against the new
96   // strong definition's address would be an effective way to determine the
97   // safety of optimizing a direct call edge.
98   for (BasicBlock &BB : *F)
99     for (Instruction &I : BB) {
100       if (auto *CB = dyn_cast<CallBase>(&I))
101         if (Function *Callee = CB->getCalledFunction())
102           if (!Callee->isDeclaration())
103             if (Callees.insert(Callee).second) {
104               Visited.insert(Callee);
105               addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee),
106                       LazyCallGraph::Edge::Call);
107             }
108 
109       for (Value *Op : I.operand_values())
110         if (Constant *C = dyn_cast<Constant>(Op))
111           if (Visited.insert(C).second)
112             Worklist.push_back(C);
113     }
114 
115   // We've collected all the constant (and thus potentially function or
116   // function containing) operands to all the instructions in the function.
117   // Process them (recursively) collecting every function found.
118   visitReferences(Worklist, Visited, [&](Function &F) {
119     addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F),
120             LazyCallGraph::Edge::Ref);
121   });
122 
123   // Add implicit reference edges to any defined libcall functions (if we
124   // haven't found an explicit edge).
125   for (auto *F : G->LibFunctions)
126     if (!Visited.count(F))
127       addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F),
128               LazyCallGraph::Edge::Ref);
129 
130   return *Edges;
131 }
132 
133 void LazyCallGraph::Node::replaceFunction(Function &NewF) {
134   assert(F != &NewF && "Must not replace a function with itself!");
135   F = &NewF;
136 }
137 
138 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
139 LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const {
140   dbgs() << *this << '\n';
141 }
142 #endif
143 
144 static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) {
145   LibFunc LF;
146 
147   // Either this is a normal library function or a "vectorizable"
148   // function.  Not using the VFDatabase here because this query
149   // is related only to libraries handled via the TLI.
150   return TLI.getLibFunc(F, LF) ||
151          TLI.isKnownVectorFunctionInLibrary(F.getName());
152 }
153 
154 LazyCallGraph::LazyCallGraph(
155     Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
156   LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
157                     << "\n");
158   for (Function &F : M) {
159     if (F.isDeclaration())
160       continue;
161     // If this function is a known lib function to LLVM then we want to
162     // synthesize reference edges to it to model the fact that LLVM can turn
163     // arbitrary code into a library function call.
164     if (isKnownLibFunction(F, GetTLI(F)))
165       LibFunctions.insert(&F);
166 
167     if (F.hasLocalLinkage())
168       continue;
169 
170     // External linkage defined functions have edges to them from other
171     // modules.
172     LLVM_DEBUG(dbgs() << "  Adding '" << F.getName()
173                       << "' to entry set of the graph.\n");
174     addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref);
175   }
176 
177   // Externally visible aliases of internal functions are also viable entry
178   // edges to the module.
179   for (auto &A : M.aliases()) {
180     if (A.hasLocalLinkage())
181       continue;
182     if (Function* F = dyn_cast<Function>(A.getAliasee())) {
183       LLVM_DEBUG(dbgs() << "  Adding '" << F->getName()
184                         << "' with alias '" << A.getName()
185                         << "' to entry set of the graph.\n");
186       addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(*F), Edge::Ref);
187     }
188   }
189 
190   // Now add entry nodes for functions reachable via initializers to globals.
191   SmallVector<Constant *, 16> Worklist;
192   SmallPtrSet<Constant *, 16> Visited;
193   for (GlobalVariable &GV : M.globals())
194     if (GV.hasInitializer())
195       if (Visited.insert(GV.getInitializer()).second)
196         Worklist.push_back(GV.getInitializer());
197 
198   LLVM_DEBUG(
199       dbgs() << "  Adding functions referenced by global initializers to the "
200                 "entry set.\n");
201   visitReferences(Worklist, Visited, [&](Function &F) {
202     addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F),
203             LazyCallGraph::Edge::Ref);
204   });
205 }
206 
207 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
208     : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
209       EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)),
210       SCCMap(std::move(G.SCCMap)), LibFunctions(std::move(G.LibFunctions)) {
211   updateGraphPtrs();
212 }
213 
214 bool LazyCallGraph::invalidate(Module &, const PreservedAnalyses &PA,
215                                ModuleAnalysisManager::Invalidator &) {
216   // Check whether the analysis, all analyses on functions, or the function's
217   // CFG have been preserved.
218   auto PAC = PA.getChecker<llvm::LazyCallGraphAnalysis>();
219   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>());
220 }
221 
222 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
223   BPA = std::move(G.BPA);
224   NodeMap = std::move(G.NodeMap);
225   EntryEdges = std::move(G.EntryEdges);
226   SCCBPA = std::move(G.SCCBPA);
227   SCCMap = std::move(G.SCCMap);
228   LibFunctions = std::move(G.LibFunctions);
229   updateGraphPtrs();
230   return *this;
231 }
232 
233 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
234 LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const {
235   dbgs() << *this << '\n';
236 }
237 #endif
238 
239 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
240 void LazyCallGraph::SCC::verify() {
241   assert(OuterRefSCC && "Can't have a null RefSCC!");
242   assert(!Nodes.empty() && "Can't have an empty SCC!");
243 
244   for (Node *N : Nodes) {
245     assert(N && "Can't have a null node!");
246     assert(OuterRefSCC->G->lookupSCC(*N) == this &&
247            "Node does not map to this SCC!");
248     assert(N->DFSNumber == -1 &&
249            "Must set DFS numbers to -1 when adding a node to an SCC!");
250     assert(N->LowLink == -1 &&
251            "Must set low link to -1 when adding a node to an SCC!");
252     for (Edge &E : **N)
253       assert(E.getNode().isPopulated() && "Can't have an unpopulated node!");
254 
255 #ifdef EXPENSIVE_CHECKS
256     // Verify that all nodes in this SCC can reach all other nodes.
257     SmallVector<Node *, 4> Worklist;
258     SmallPtrSet<Node *, 4> Visited;
259     Worklist.push_back(N);
260     while (!Worklist.empty()) {
261       Node *VisitingNode = Worklist.pop_back_val();
262       if (!Visited.insert(VisitingNode).second)
263         continue;
264       for (Edge &E : (*VisitingNode)->calls())
265         Worklist.push_back(&E.getNode());
266     }
267     for (Node *NodeToVisit : Nodes) {
268       assert(Visited.contains(NodeToVisit) &&
269              "Cannot reach all nodes within SCC");
270     }
271 #endif
272   }
273 }
274 #endif
275 
276 bool LazyCallGraph::SCC::isParentOf(const SCC &C) const {
277   if (this == &C)
278     return false;
279 
280   for (Node &N : *this)
281     for (Edge &E : N->calls())
282       if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C)
283         return true;
284 
285   // No edges found.
286   return false;
287 }
288 
289 bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const {
290   if (this == &TargetC)
291     return false;
292 
293   LazyCallGraph &G = *OuterRefSCC->G;
294 
295   // Start with this SCC.
296   SmallPtrSet<const SCC *, 16> Visited = {this};
297   SmallVector<const SCC *, 16> Worklist = {this};
298 
299   // Walk down the graph until we run out of edges or find a path to TargetC.
300   do {
301     const SCC &C = *Worklist.pop_back_val();
302     for (Node &N : C)
303       for (Edge &E : N->calls()) {
304         SCC *CalleeC = G.lookupSCC(E.getNode());
305         if (!CalleeC)
306           continue;
307 
308         // If the callee's SCC is the TargetC, we're done.
309         if (CalleeC == &TargetC)
310           return true;
311 
312         // If this is the first time we've reached this SCC, put it on the
313         // worklist to recurse through.
314         if (Visited.insert(CalleeC).second)
315           Worklist.push_back(CalleeC);
316       }
317   } while (!Worklist.empty());
318 
319   // No paths found.
320   return false;
321 }
322 
323 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
324 
325 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
326 LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const {
327   dbgs() << *this << '\n';
328 }
329 #endif
330 
331 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
332 void LazyCallGraph::RefSCC::verify() {
333   assert(G && "Can't have a null graph!");
334   assert(!SCCs.empty() && "Can't have an empty SCC!");
335 
336   // Verify basic properties of the SCCs.
337   SmallPtrSet<SCC *, 4> SCCSet;
338   for (SCC *C : SCCs) {
339     assert(C && "Can't have a null SCC!");
340     C->verify();
341     assert(&C->getOuterRefSCC() == this &&
342            "SCC doesn't think it is inside this RefSCC!");
343     bool Inserted = SCCSet.insert(C).second;
344     assert(Inserted && "Found a duplicate SCC!");
345     auto IndexIt = SCCIndices.find(C);
346     assert(IndexIt != SCCIndices.end() &&
347            "Found an SCC that doesn't have an index!");
348   }
349 
350   // Check that our indices map correctly.
351   for (auto [C, I] : SCCIndices) {
352     assert(C && "Can't have a null SCC in the indices!");
353     assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
354     assert(SCCs[I] == C && "Index doesn't point to SCC!");
355   }
356 
357   // Check that the SCCs are in fact in post-order.
358   for (int I = 0, Size = SCCs.size(); I < Size; ++I) {
359     SCC &SourceSCC = *SCCs[I];
360     for (Node &N : SourceSCC)
361       for (Edge &E : *N) {
362         if (!E.isCall())
363           continue;
364         SCC &TargetSCC = *G->lookupSCC(E.getNode());
365         if (&TargetSCC.getOuterRefSCC() == this) {
366           assert(SCCIndices.find(&TargetSCC)->second <= I &&
367                  "Edge between SCCs violates post-order relationship.");
368           continue;
369         }
370       }
371   }
372 
373 #ifdef EXPENSIVE_CHECKS
374   // Verify that all nodes in this RefSCC can reach all other nodes.
375   SmallVector<Node *> Nodes;
376   for (SCC *C : SCCs) {
377     for (Node &N : *C)
378       Nodes.push_back(&N);
379   }
380   for (Node *N : Nodes) {
381     SmallVector<Node *, 4> Worklist;
382     SmallPtrSet<Node *, 4> Visited;
383     Worklist.push_back(N);
384     while (!Worklist.empty()) {
385       Node *VisitingNode = Worklist.pop_back_val();
386       if (!Visited.insert(VisitingNode).second)
387         continue;
388       for (Edge &E : **VisitingNode)
389         Worklist.push_back(&E.getNode());
390     }
391     for (Node *NodeToVisit : Nodes) {
392       assert(Visited.contains(NodeToVisit) &&
393              "Cannot reach all nodes within RefSCC");
394     }
395   }
396 #endif
397 }
398 #endif
399 
400 bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const {
401   if (&RC == this)
402     return false;
403 
404   // Search all edges to see if this is a parent.
405   for (SCC &C : *this)
406     for (Node &N : C)
407       for (Edge &E : *N)
408         if (G->lookupRefSCC(E.getNode()) == &RC)
409           return true;
410 
411   return false;
412 }
413 
414 bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const {
415   if (&RC == this)
416     return false;
417 
418   // For each descendant of this RefSCC, see if one of its children is the
419   // argument. If not, add that descendant to the worklist and continue
420   // searching.
421   SmallVector<const RefSCC *, 4> Worklist;
422   SmallPtrSet<const RefSCC *, 4> Visited;
423   Worklist.push_back(this);
424   Visited.insert(this);
425   do {
426     const RefSCC &DescendantRC = *Worklist.pop_back_val();
427     for (SCC &C : DescendantRC)
428       for (Node &N : C)
429         for (Edge &E : *N) {
430           auto *ChildRC = G->lookupRefSCC(E.getNode());
431           if (ChildRC == &RC)
432             return true;
433           if (!ChildRC || !Visited.insert(ChildRC).second)
434             continue;
435           Worklist.push_back(ChildRC);
436         }
437   } while (!Worklist.empty());
438 
439   return false;
440 }
441 
442 /// Generic helper that updates a postorder sequence of SCCs for a potentially
443 /// cycle-introducing edge insertion.
444 ///
445 /// A postorder sequence of SCCs of a directed graph has one fundamental
446 /// property: all deges in the DAG of SCCs point "up" the sequence. That is,
447 /// all edges in the SCC DAG point to prior SCCs in the sequence.
448 ///
449 /// This routine both updates a postorder sequence and uses that sequence to
450 /// compute the set of SCCs connected into a cycle. It should only be called to
451 /// insert a "downward" edge which will require changing the sequence to
452 /// restore it to a postorder.
453 ///
454 /// When inserting an edge from an earlier SCC to a later SCC in some postorder
455 /// sequence, all of the SCCs which may be impacted are in the closed range of
456 /// those two within the postorder sequence. The algorithm used here to restore
457 /// the state is as follows:
458 ///
459 /// 1) Starting from the source SCC, construct a set of SCCs which reach the
460 ///    source SCC consisting of just the source SCC. Then scan toward the
461 ///    target SCC in postorder and for each SCC, if it has an edge to an SCC
462 ///    in the set, add it to the set. Otherwise, the source SCC is not
463 ///    a successor, move it in the postorder sequence to immediately before
464 ///    the source SCC, shifting the source SCC and all SCCs in the set one
465 ///    position toward the target SCC. Stop scanning after processing the
466 ///    target SCC.
467 /// 2) If the source SCC is now past the target SCC in the postorder sequence,
468 ///    and thus the new edge will flow toward the start, we are done.
469 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an
470 ///    SCC between the source and the target, and add them to the set of
471 ///    connected SCCs, then recurse through them. Once a complete set of the
472 ///    SCCs the target connects to is known, hoist the remaining SCCs between
473 ///    the source and the target to be above the target. Note that there is no
474 ///    need to process the source SCC, it is already known to connect.
475 /// 4) At this point, all of the SCCs in the closed range between the source
476 ///    SCC and the target SCC in the postorder sequence are connected,
477 ///    including the target SCC and the source SCC. Inserting the edge from
478 ///    the source SCC to the target SCC will form a cycle out of precisely
479 ///    these SCCs. Thus we can merge all of the SCCs in this closed range into
480 ///    a single SCC.
481 ///
482 /// This process has various important properties:
483 /// - Only mutates the SCCs when adding the edge actually changes the SCC
484 ///   structure.
485 /// - Never mutates SCCs which are unaffected by the change.
486 /// - Updates the postorder sequence to correctly satisfy the postorder
487 ///   constraint after the edge is inserted.
488 /// - Only reorders SCCs in the closed postorder sequence from the source to
489 ///   the target, so easy to bound how much has changed even in the ordering.
490 /// - Big-O is the number of edges in the closed postorder range of SCCs from
491 ///   source to target.
492 ///
493 /// This helper routine, in addition to updating the postorder sequence itself
494 /// will also update a map from SCCs to indices within that sequence.
495 ///
496 /// The sequence and the map must operate on pointers to the SCC type.
497 ///
498 /// Two callbacks must be provided. The first computes the subset of SCCs in
499 /// the postorder closed range from the source to the target which connect to
500 /// the source SCC via some (transitive) set of edges. The second computes the
501 /// subset of the same range which the target SCC connects to via some
502 /// (transitive) set of edges. Both callbacks should populate the set argument
503 /// provided.
504 template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
505           typename ComputeSourceConnectedSetCallableT,
506           typename ComputeTargetConnectedSetCallableT>
507 static iterator_range<typename PostorderSequenceT::iterator>
508 updatePostorderSequenceForEdgeInsertion(
509     SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
510     SCCIndexMapT &SCCIndices,
511     ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
512     ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
513   int SourceIdx = SCCIndices[&SourceSCC];
514   int TargetIdx = SCCIndices[&TargetSCC];
515   assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
516 
517   SmallPtrSet<SCCT *, 4> ConnectedSet;
518 
519   // Compute the SCCs which (transitively) reach the source.
520   ComputeSourceConnectedSet(ConnectedSet);
521 
522   // Partition the SCCs in this part of the port-order sequence so only SCCs
523   // connecting to the source remain between it and the target. This is
524   // a benign partition as it preserves postorder.
525   auto SourceI = std::stable_partition(
526       SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
527       [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
528   for (int I = SourceIdx, E = TargetIdx + 1; I < E; ++I)
529     SCCIndices.find(SCCs[I])->second = I;
530 
531   // If the target doesn't connect to the source, then we've corrected the
532   // post-order and there are no cycles formed.
533   if (!ConnectedSet.count(&TargetSCC)) {
534     assert(SourceI > (SCCs.begin() + SourceIdx) &&
535            "Must have moved the source to fix the post-order.");
536     assert(*std::prev(SourceI) == &TargetSCC &&
537            "Last SCC to move should have bene the target.");
538 
539     // Return an empty range at the target SCC indicating there is nothing to
540     // merge.
541     return make_range(std::prev(SourceI), std::prev(SourceI));
542   }
543 
544   assert(SCCs[TargetIdx] == &TargetSCC &&
545          "Should not have moved target if connected!");
546   SourceIdx = SourceI - SCCs.begin();
547   assert(SCCs[SourceIdx] == &SourceSCC &&
548          "Bad updated index computation for the source SCC!");
549 
550   // See whether there are any remaining intervening SCCs between the source
551   // and target. If so we need to make sure they all are reachable form the
552   // target.
553   if (SourceIdx + 1 < TargetIdx) {
554     ConnectedSet.clear();
555     ComputeTargetConnectedSet(ConnectedSet);
556 
557     // Partition SCCs so that only SCCs reached from the target remain between
558     // the source and the target. This preserves postorder.
559     auto TargetI = std::stable_partition(
560         SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
561         [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
562     for (int I = SourceIdx + 1, E = TargetIdx + 1; I < E; ++I)
563       SCCIndices.find(SCCs[I])->second = I;
564     TargetIdx = std::prev(TargetI) - SCCs.begin();
565     assert(SCCs[TargetIdx] == &TargetSCC &&
566            "Should always end with the target!");
567   }
568 
569   // At this point, we know that connecting source to target forms a cycle
570   // because target connects back to source, and we know that all the SCCs
571   // between the source and target in the postorder sequence participate in that
572   // cycle.
573   return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
574 }
575 
576 bool LazyCallGraph::RefSCC::switchInternalEdgeToCall(
577     Node &SourceN, Node &TargetN,
578     function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) {
579   assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
580   SmallVector<SCC *, 1> DeletedSCCs;
581 
582 #ifdef EXPENSIVE_CHECKS
583   verify();
584   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
585 #endif
586 
587   SCC &SourceSCC = *G->lookupSCC(SourceN);
588   SCC &TargetSCC = *G->lookupSCC(TargetN);
589 
590   // If the two nodes are already part of the same SCC, we're also done as
591   // we've just added more connectivity.
592   if (&SourceSCC == &TargetSCC) {
593     SourceN->setEdgeKind(TargetN, Edge::Call);
594     return false; // No new cycle.
595   }
596 
597   // At this point we leverage the postorder list of SCCs to detect when the
598   // insertion of an edge changes the SCC structure in any way.
599   //
600   // First and foremost, we can eliminate the need for any changes when the
601   // edge is toward the beginning of the postorder sequence because all edges
602   // flow in that direction already. Thus adding a new one cannot form a cycle.
603   int SourceIdx = SCCIndices[&SourceSCC];
604   int TargetIdx = SCCIndices[&TargetSCC];
605   if (TargetIdx < SourceIdx) {
606     SourceN->setEdgeKind(TargetN, Edge::Call);
607     return false; // No new cycle.
608   }
609 
610   // Compute the SCCs which (transitively) reach the source.
611   auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
612 #ifdef EXPENSIVE_CHECKS
613     // Check that the RefSCC is still valid before computing this as the
614     // results will be nonsensical of we've broken its invariants.
615     verify();
616 #endif
617     ConnectedSet.insert(&SourceSCC);
618     auto IsConnected = [&](SCC &C) {
619       for (Node &N : C)
620         for (Edge &E : N->calls())
621           if (ConnectedSet.count(G->lookupSCC(E.getNode())))
622             return true;
623 
624       return false;
625     };
626 
627     for (SCC *C :
628          make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
629       if (IsConnected(*C))
630         ConnectedSet.insert(C);
631   };
632 
633   // Use a normal worklist to find which SCCs the target connects to. We still
634   // bound the search based on the range in the postorder list we care about,
635   // but because this is forward connectivity we just "recurse" through the
636   // edges.
637   auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
638 #ifdef EXPENSIVE_CHECKS
639     // Check that the RefSCC is still valid before computing this as the
640     // results will be nonsensical of we've broken its invariants.
641     verify();
642 #endif
643     ConnectedSet.insert(&TargetSCC);
644     SmallVector<SCC *, 4> Worklist;
645     Worklist.push_back(&TargetSCC);
646     do {
647       SCC &C = *Worklist.pop_back_val();
648       for (Node &N : C)
649         for (Edge &E : *N) {
650           if (!E.isCall())
651             continue;
652           SCC &EdgeC = *G->lookupSCC(E.getNode());
653           if (&EdgeC.getOuterRefSCC() != this)
654             // Not in this RefSCC...
655             continue;
656           if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
657             // Not in the postorder sequence between source and target.
658             continue;
659 
660           if (ConnectedSet.insert(&EdgeC).second)
661             Worklist.push_back(&EdgeC);
662         }
663     } while (!Worklist.empty());
664   };
665 
666   // Use a generic helper to update the postorder sequence of SCCs and return
667   // a range of any SCCs connected into a cycle by inserting this edge. This
668   // routine will also take care of updating the indices into the postorder
669   // sequence.
670   auto MergeRange = updatePostorderSequenceForEdgeInsertion(
671       SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
672       ComputeTargetConnectedSet);
673 
674   // Run the user's callback on the merged SCCs before we actually merge them.
675   if (MergeCB)
676     MergeCB(ArrayRef(MergeRange.begin(), MergeRange.end()));
677 
678   // If the merge range is empty, then adding the edge didn't actually form any
679   // new cycles. We're done.
680   if (MergeRange.empty()) {
681     // Now that the SCC structure is finalized, flip the kind to call.
682     SourceN->setEdgeKind(TargetN, Edge::Call);
683     return false; // No new cycle.
684   }
685 
686 #ifdef EXPENSIVE_CHECKS
687   // Before merging, check that the RefSCC remains valid after all the
688   // postorder updates.
689   verify();
690 #endif
691 
692   // Otherwise we need to merge all the SCCs in the cycle into a single result
693   // SCC.
694   //
695   // NB: We merge into the target because all of these functions were already
696   // reachable from the target, meaning any SCC-wide properties deduced about it
697   // other than the set of functions within it will not have changed.
698   for (SCC *C : MergeRange) {
699     assert(C != &TargetSCC &&
700            "We merge *into* the target and shouldn't process it here!");
701     SCCIndices.erase(C);
702     TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
703     for (Node *N : C->Nodes)
704       G->SCCMap[N] = &TargetSCC;
705     C->clear();
706     DeletedSCCs.push_back(C);
707   }
708 
709   // Erase the merged SCCs from the list and update the indices of the
710   // remaining SCCs.
711   int IndexOffset = MergeRange.end() - MergeRange.begin();
712   auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
713   for (SCC *C : make_range(EraseEnd, SCCs.end()))
714     SCCIndices[C] -= IndexOffset;
715 
716   // Now that the SCC structure is finalized, flip the kind to call.
717   SourceN->setEdgeKind(TargetN, Edge::Call);
718 
719   // And we're done, but we did form a new cycle.
720   return true;
721 }
722 
723 void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN,
724                                                            Node &TargetN) {
725   assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
726 
727 #ifdef EXPENSIVE_CHECKS
728   verify();
729   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
730 #endif
731 
732   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
733   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
734   assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) &&
735          "Source and Target must be in separate SCCs for this to be trivial!");
736 
737   // Set the edge kind.
738   SourceN->setEdgeKind(TargetN, Edge::Ref);
739 }
740 
741 iterator_range<LazyCallGraph::RefSCC::iterator>
742 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
743   assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
744 
745 #ifdef EXPENSIVE_CHECKS
746   verify();
747   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
748 #endif
749 
750   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
751   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
752 
753   SCC &TargetSCC = *G->lookupSCC(TargetN);
754   assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in "
755                                                 "the same SCC to require the "
756                                                 "full CG update.");
757 
758   // Set the edge kind.
759   SourceN->setEdgeKind(TargetN, Edge::Ref);
760 
761   // Otherwise we are removing a call edge from a single SCC. This may break
762   // the cycle. In order to compute the new set of SCCs, we need to do a small
763   // DFS over the nodes within the SCC to form any sub-cycles that remain as
764   // distinct SCCs and compute a postorder over the resulting SCCs.
765   //
766   // However, we specially handle the target node. The target node is known to
767   // reach all other nodes in the original SCC by definition. This means that
768   // we want the old SCC to be replaced with an SCC containing that node as it
769   // will be the root of whatever SCC DAG results from the DFS. Assumptions
770   // about an SCC such as the set of functions called will continue to hold,
771   // etc.
772 
773   SCC &OldSCC = TargetSCC;
774   SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack;
775   SmallVector<Node *, 16> PendingSCCStack;
776   SmallVector<SCC *, 4> NewSCCs;
777 
778   // Prepare the nodes for a fresh DFS.
779   SmallVector<Node *, 16> Worklist;
780   Worklist.swap(OldSCC.Nodes);
781   for (Node *N : Worklist) {
782     N->DFSNumber = N->LowLink = 0;
783     G->SCCMap.erase(N);
784   }
785 
786   // Force the target node to be in the old SCC. This also enables us to take
787   // a very significant short-cut in the standard Tarjan walk to re-form SCCs
788   // below: whenever we build an edge that reaches the target node, we know
789   // that the target node eventually connects back to all other nodes in our
790   // walk. As a consequence, we can detect and handle participants in that
791   // cycle without walking all the edges that form this connection, and instead
792   // by relying on the fundamental guarantee coming into this operation (all
793   // nodes are reachable from the target due to previously forming an SCC).
794   TargetN.DFSNumber = TargetN.LowLink = -1;
795   OldSCC.Nodes.push_back(&TargetN);
796   G->SCCMap[&TargetN] = &OldSCC;
797 
798   // Scan down the stack and DFS across the call edges.
799   for (Node *RootN : Worklist) {
800     assert(DFSStack.empty() &&
801            "Cannot begin a new root with a non-empty DFS stack!");
802     assert(PendingSCCStack.empty() &&
803            "Cannot begin a new root with pending nodes for an SCC!");
804 
805     // Skip any nodes we've already reached in the DFS.
806     if (RootN->DFSNumber != 0) {
807       assert(RootN->DFSNumber == -1 &&
808              "Shouldn't have any mid-DFS root nodes!");
809       continue;
810     }
811 
812     RootN->DFSNumber = RootN->LowLink = 1;
813     int NextDFSNumber = 2;
814 
815     DFSStack.emplace_back(RootN, (*RootN)->call_begin());
816     do {
817       auto [N, I] = DFSStack.pop_back_val();
818       auto E = (*N)->call_end();
819       while (I != E) {
820         Node &ChildN = I->getNode();
821         if (ChildN.DFSNumber == 0) {
822           // We haven't yet visited this child, so descend, pushing the current
823           // node onto the stack.
824           DFSStack.emplace_back(N, I);
825 
826           assert(!G->SCCMap.count(&ChildN) &&
827                  "Found a node with 0 DFS number but already in an SCC!");
828           ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
829           N = &ChildN;
830           I = (*N)->call_begin();
831           E = (*N)->call_end();
832           continue;
833         }
834 
835         // Check for the child already being part of some component.
836         if (ChildN.DFSNumber == -1) {
837           if (G->lookupSCC(ChildN) == &OldSCC) {
838             // If the child is part of the old SCC, we know that it can reach
839             // every other node, so we have formed a cycle. Pull the entire DFS
840             // and pending stacks into it. See the comment above about setting
841             // up the old SCC for why we do this.
842             int OldSize = OldSCC.size();
843             OldSCC.Nodes.push_back(N);
844             OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
845             PendingSCCStack.clear();
846             while (!DFSStack.empty())
847               OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
848             for (Node &N : drop_begin(OldSCC, OldSize)) {
849               N.DFSNumber = N.LowLink = -1;
850               G->SCCMap[&N] = &OldSCC;
851             }
852             N = nullptr;
853             break;
854           }
855 
856           // If the child has already been added to some child component, it
857           // couldn't impact the low-link of this parent because it isn't
858           // connected, and thus its low-link isn't relevant so skip it.
859           ++I;
860           continue;
861         }
862 
863         // Track the lowest linked child as the lowest link for this node.
864         assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
865         if (ChildN.LowLink < N->LowLink)
866           N->LowLink = ChildN.LowLink;
867 
868         // Move to the next edge.
869         ++I;
870       }
871       if (!N)
872         // Cleared the DFS early, start another round.
873         break;
874 
875       // We've finished processing N and its descendants, put it on our pending
876       // SCC stack to eventually get merged into an SCC of nodes.
877       PendingSCCStack.push_back(N);
878 
879       // If this node is linked to some lower entry, continue walking up the
880       // stack.
881       if (N->LowLink != N->DFSNumber)
882         continue;
883 
884       // Otherwise, we've completed an SCC. Append it to our post order list of
885       // SCCs.
886       int RootDFSNumber = N->DFSNumber;
887       // Find the range of the node stack by walking down until we pass the
888       // root DFS number.
889       auto SCCNodes = make_range(
890           PendingSCCStack.rbegin(),
891           find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
892             return N->DFSNumber < RootDFSNumber;
893           }));
894 
895       // Form a new SCC out of these nodes and then clear them off our pending
896       // stack.
897       NewSCCs.push_back(G->createSCC(*this, SCCNodes));
898       for (Node &N : *NewSCCs.back()) {
899         N.DFSNumber = N.LowLink = -1;
900         G->SCCMap[&N] = NewSCCs.back();
901       }
902       PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
903     } while (!DFSStack.empty());
904   }
905 
906   // Insert the remaining SCCs before the old one. The old SCC can reach all
907   // other SCCs we form because it contains the target node of the removed edge
908   // of the old SCC. This means that we will have edges into all the new SCCs,
909   // which means the old one must come last for postorder.
910   int OldIdx = SCCIndices[&OldSCC];
911   SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
912 
913   // Update the mapping from SCC* to index to use the new SCC*s, and remove the
914   // old SCC from the mapping.
915   for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
916     SCCIndices[SCCs[Idx]] = Idx;
917 
918   return make_range(SCCs.begin() + OldIdx,
919                     SCCs.begin() + OldIdx + NewSCCs.size());
920 }
921 
922 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
923                                                      Node &TargetN) {
924   assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
925 
926   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
927   assert(G->lookupRefSCC(TargetN) != this &&
928          "Target must not be in this RefSCC.");
929 #ifdef EXPENSIVE_CHECKS
930   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
931          "Target must be a descendant of the Source.");
932 #endif
933 
934   // Edges between RefSCCs are the same regardless of call or ref, so we can
935   // just flip the edge here.
936   SourceN->setEdgeKind(TargetN, Edge::Call);
937 
938 #ifdef EXPENSIVE_CHECKS
939   verify();
940 #endif
941 }
942 
943 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
944                                                     Node &TargetN) {
945   assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
946 
947   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
948   assert(G->lookupRefSCC(TargetN) != this &&
949          "Target must not be in this RefSCC.");
950 #ifdef EXPENSIVE_CHECKS
951   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
952          "Target must be a descendant of the Source.");
953 #endif
954 
955   // Edges between RefSCCs are the same regardless of call or ref, so we can
956   // just flip the edge here.
957   SourceN->setEdgeKind(TargetN, Edge::Ref);
958 
959 #ifdef EXPENSIVE_CHECKS
960   verify();
961 #endif
962 }
963 
964 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
965                                                   Node &TargetN) {
966   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
967   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
968 
969   SourceN->insertEdgeInternal(TargetN, Edge::Ref);
970 
971 #ifdef EXPENSIVE_CHECKS
972   verify();
973 #endif
974 }
975 
976 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
977                                                Edge::Kind EK) {
978   // First insert it into the caller.
979   SourceN->insertEdgeInternal(TargetN, EK);
980 
981   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
982 
983   assert(G->lookupRefSCC(TargetN) != this &&
984          "Target must not be in this RefSCC.");
985 #ifdef EXPENSIVE_CHECKS
986   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
987          "Target must be a descendant of the Source.");
988 #endif
989 
990 #ifdef EXPENSIVE_CHECKS
991   verify();
992 #endif
993 }
994 
995 SmallVector<LazyCallGraph::RefSCC *, 1>
996 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
997   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
998   RefSCC &SourceC = *G->lookupRefSCC(SourceN);
999   assert(&SourceC != this && "Source must not be in this RefSCC.");
1000 #ifdef EXPENSIVE_CHECKS
1001   assert(SourceC.isDescendantOf(*this) &&
1002          "Source must be a descendant of the Target.");
1003 #endif
1004 
1005   SmallVector<RefSCC *, 1> DeletedRefSCCs;
1006 
1007 #ifdef EXPENSIVE_CHECKS
1008   verify();
1009   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1010 #endif
1011 
1012   int SourceIdx = G->RefSCCIndices[&SourceC];
1013   int TargetIdx = G->RefSCCIndices[this];
1014   assert(SourceIdx < TargetIdx &&
1015          "Postorder list doesn't see edge as incoming!");
1016 
1017   // Compute the RefSCCs which (transitively) reach the source. We do this by
1018   // working backwards from the source using the parent set in each RefSCC,
1019   // skipping any RefSCCs that don't fall in the postorder range. This has the
1020   // advantage of walking the sparser parent edge (in high fan-out graphs) but
1021   // more importantly this removes examining all forward edges in all RefSCCs
1022   // within the postorder range which aren't in fact connected. Only connected
1023   // RefSCCs (and their edges) are visited here.
1024   auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
1025     Set.insert(&SourceC);
1026     auto IsConnected = [&](RefSCC &RC) {
1027       for (SCC &C : RC)
1028         for (Node &N : C)
1029           for (Edge &E : *N)
1030             if (Set.count(G->lookupRefSCC(E.getNode())))
1031               return true;
1032 
1033       return false;
1034     };
1035 
1036     for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1,
1037                                 G->PostOrderRefSCCs.begin() + TargetIdx + 1))
1038       if (IsConnected(*C))
1039         Set.insert(C);
1040   };
1041 
1042   // Use a normal worklist to find which SCCs the target connects to. We still
1043   // bound the search based on the range in the postorder list we care about,
1044   // but because this is forward connectivity we just "recurse" through the
1045   // edges.
1046   auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
1047     Set.insert(this);
1048     SmallVector<RefSCC *, 4> Worklist;
1049     Worklist.push_back(this);
1050     do {
1051       RefSCC &RC = *Worklist.pop_back_val();
1052       for (SCC &C : RC)
1053         for (Node &N : C)
1054           for (Edge &E : *N) {
1055             RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode());
1056             if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
1057               // Not in the postorder sequence between source and target.
1058               continue;
1059 
1060             if (Set.insert(&EdgeRC).second)
1061               Worklist.push_back(&EdgeRC);
1062           }
1063     } while (!Worklist.empty());
1064   };
1065 
1066   // Use a generic helper to update the postorder sequence of RefSCCs and return
1067   // a range of any RefSCCs connected into a cycle by inserting this edge. This
1068   // routine will also take care of updating the indices into the postorder
1069   // sequence.
1070   iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange =
1071       updatePostorderSequenceForEdgeInsertion(
1072           SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
1073           ComputeSourceConnectedSet, ComputeTargetConnectedSet);
1074 
1075   // Build a set, so we can do fast tests for whether a RefSCC will end up as
1076   // part of the merged RefSCC.
1077   SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end());
1078 
1079   // This RefSCC will always be part of that set, so just insert it here.
1080   MergeSet.insert(this);
1081 
1082   // Now that we have identified all the SCCs which need to be merged into
1083   // a connected set with the inserted edge, merge all of them into this SCC.
1084   SmallVector<SCC *, 16> MergedSCCs;
1085   int SCCIndex = 0;
1086   for (RefSCC *RC : MergeRange) {
1087     assert(RC != this && "We're merging into the target RefSCC, so it "
1088                          "shouldn't be in the range.");
1089 
1090     // Walk the inner SCCs to update their up-pointer and walk all the edges to
1091     // update any parent sets.
1092     // FIXME: We should try to find a way to avoid this (rather expensive) edge
1093     // walk by updating the parent sets in some other manner.
1094     for (SCC &InnerC : *RC) {
1095       InnerC.OuterRefSCC = this;
1096       SCCIndices[&InnerC] = SCCIndex++;
1097       for (Node &N : InnerC)
1098         G->SCCMap[&N] = &InnerC;
1099     }
1100 
1101     // Now merge in the SCCs. We can actually move here so try to reuse storage
1102     // the first time through.
1103     if (MergedSCCs.empty())
1104       MergedSCCs = std::move(RC->SCCs);
1105     else
1106       MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
1107     RC->SCCs.clear();
1108     DeletedRefSCCs.push_back(RC);
1109   }
1110 
1111   // Append our original SCCs to the merged list and move it into place.
1112   for (SCC &InnerC : *this)
1113     SCCIndices[&InnerC] = SCCIndex++;
1114   MergedSCCs.append(SCCs.begin(), SCCs.end());
1115   SCCs = std::move(MergedSCCs);
1116 
1117   // Remove the merged away RefSCCs from the post order sequence.
1118   for (RefSCC *RC : MergeRange)
1119     G->RefSCCIndices.erase(RC);
1120   int IndexOffset = MergeRange.end() - MergeRange.begin();
1121   auto EraseEnd =
1122       G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
1123   for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
1124     G->RefSCCIndices[RC] -= IndexOffset;
1125 
1126   // At this point we have a merged RefSCC with a post-order SCCs list, just
1127   // connect the nodes to form the new edge.
1128   SourceN->insertEdgeInternal(TargetN, Edge::Ref);
1129 
1130   // We return the list of SCCs which were merged so that callers can
1131   // invalidate any data they have associated with those SCCs. Note that these
1132   // SCCs are no longer in an interesting state (they are totally empty) but
1133   // the pointers will remain stable for the life of the graph itself.
1134   return DeletedRefSCCs;
1135 }
1136 
1137 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
1138   assert(G->lookupRefSCC(SourceN) == this &&
1139          "The source must be a member of this RefSCC.");
1140   assert(G->lookupRefSCC(TargetN) != this &&
1141          "The target must not be a member of this RefSCC");
1142 
1143 #ifdef EXPENSIVE_CHECKS
1144   verify();
1145   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1146 #endif
1147 
1148   // First remove it from the node.
1149   bool Removed = SourceN->removeEdgeInternal(TargetN);
1150   (void)Removed;
1151   assert(Removed && "Target not in the edge set for this caller?");
1152 }
1153 
1154 SmallVector<LazyCallGraph::RefSCC *, 1>
1155 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN,
1156                                              ArrayRef<Node *> TargetNs) {
1157   // We return a list of the resulting *new* RefSCCs in post-order.
1158   SmallVector<RefSCC *, 1> Result;
1159 
1160 #ifdef EXPENSIVE_CHECKS
1161   // Verify the RefSCC is valid to start with and that either we return an empty
1162   // list of result RefSCCs and this RefSCC remains valid, or we return new
1163   // RefSCCs and this RefSCC is dead.
1164   verify();
1165   auto VerifyOnExit = make_scope_exit([&]() {
1166     // If we didn't replace our RefSCC with new ones, check that this one
1167     // remains valid.
1168     if (G)
1169       verify();
1170   });
1171 #endif
1172 
1173   // First remove the actual edges.
1174   for (Node *TargetN : TargetNs) {
1175     assert(!(*SourceN)[*TargetN].isCall() &&
1176            "Cannot remove a call edge, it must first be made a ref edge");
1177 
1178     bool Removed = SourceN->removeEdgeInternal(*TargetN);
1179     (void)Removed;
1180     assert(Removed && "Target not in the edge set for this caller?");
1181   }
1182 
1183   // Direct self references don't impact the ref graph at all.
1184   if (llvm::all_of(TargetNs,
1185                    [&](Node *TargetN) { return &SourceN == TargetN; }))
1186     return Result;
1187 
1188   // If all targets are in the same SCC as the source, because no call edges
1189   // were removed there is no RefSCC structure change.
1190   SCC &SourceC = *G->lookupSCC(SourceN);
1191   if (llvm::all_of(TargetNs, [&](Node *TargetN) {
1192         return G->lookupSCC(*TargetN) == &SourceC;
1193       }))
1194     return Result;
1195 
1196   // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1197   // for each inner SCC. We store these inside the low-link field of the nodes
1198   // rather than associated with SCCs because this saves a round-trip through
1199   // the node->SCC map and in the common case, SCCs are small. We will verify
1200   // that we always give the same number to every node in the SCC such that
1201   // these are equivalent.
1202   int PostOrderNumber = 0;
1203 
1204   // Reset all the other nodes to prepare for a DFS over them, and add them to
1205   // our worklist.
1206   SmallVector<Node *, 8> Worklist;
1207   for (SCC *C : SCCs) {
1208     for (Node &N : *C)
1209       N.DFSNumber = N.LowLink = 0;
1210 
1211     Worklist.append(C->Nodes.begin(), C->Nodes.end());
1212   }
1213 
1214   // Track the number of nodes in this RefSCC so that we can quickly recognize
1215   // an important special case of the edge removal not breaking the cycle of
1216   // this RefSCC.
1217   const int NumRefSCCNodes = Worklist.size();
1218 
1219   SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack;
1220   SmallVector<Node *, 4> PendingRefSCCStack;
1221   do {
1222     assert(DFSStack.empty() &&
1223            "Cannot begin a new root with a non-empty DFS stack!");
1224     assert(PendingRefSCCStack.empty() &&
1225            "Cannot begin a new root with pending nodes for an SCC!");
1226 
1227     Node *RootN = Worklist.pop_back_val();
1228     // Skip any nodes we've already reached in the DFS.
1229     if (RootN->DFSNumber != 0) {
1230       assert(RootN->DFSNumber == -1 &&
1231              "Shouldn't have any mid-DFS root nodes!");
1232       continue;
1233     }
1234 
1235     RootN->DFSNumber = RootN->LowLink = 1;
1236     int NextDFSNumber = 2;
1237 
1238     DFSStack.emplace_back(RootN, (*RootN)->begin());
1239     do {
1240       auto [N, I] = DFSStack.pop_back_val();
1241       auto E = (*N)->end();
1242 
1243       assert(N->DFSNumber != 0 && "We should always assign a DFS number "
1244                                   "before processing a node.");
1245 
1246       while (I != E) {
1247         Node &ChildN = I->getNode();
1248         if (ChildN.DFSNumber == 0) {
1249           // Mark that we should start at this child when next this node is the
1250           // top of the stack. We don't start at the next child to ensure this
1251           // child's lowlink is reflected.
1252           DFSStack.emplace_back(N, I);
1253 
1254           // Continue, resetting to the child node.
1255           ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1256           N = &ChildN;
1257           I = ChildN->begin();
1258           E = ChildN->end();
1259           continue;
1260         }
1261         if (ChildN.DFSNumber == -1) {
1262           // If this child isn't currently in this RefSCC, no need to process
1263           // it.
1264           ++I;
1265           continue;
1266         }
1267 
1268         // Track the lowest link of the children, if any are still in the stack.
1269         // Any child not on the stack will have a LowLink of -1.
1270         assert(ChildN.LowLink != 0 &&
1271                "Low-link must not be zero with a non-zero DFS number.");
1272         if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
1273           N->LowLink = ChildN.LowLink;
1274         ++I;
1275       }
1276 
1277       // We've finished processing N and its descendants, put it on our pending
1278       // stack to eventually get merged into a RefSCC.
1279       PendingRefSCCStack.push_back(N);
1280 
1281       // If this node is linked to some lower entry, continue walking up the
1282       // stack.
1283       if (N->LowLink != N->DFSNumber) {
1284         assert(!DFSStack.empty() &&
1285                "We never found a viable root for a RefSCC to pop off!");
1286         continue;
1287       }
1288 
1289       // Otherwise, form a new RefSCC from the top of the pending node stack.
1290       int RefSCCNumber = PostOrderNumber++;
1291       int RootDFSNumber = N->DFSNumber;
1292 
1293       // Find the range of the node stack by walking down until we pass the
1294       // root DFS number. Update the DFS numbers and low link numbers in the
1295       // process to avoid re-walking this list where possible.
1296       auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) {
1297         if (N->DFSNumber < RootDFSNumber)
1298           // We've found the bottom.
1299           return true;
1300 
1301         // Update this node and keep scanning.
1302         N->DFSNumber = -1;
1303         // Save the post-order number in the lowlink field so that we can use
1304         // it to map SCCs into new RefSCCs after we finish the DFS.
1305         N->LowLink = RefSCCNumber;
1306         return false;
1307       });
1308       auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end());
1309 
1310       // If we find a cycle containing all nodes originally in this RefSCC then
1311       // the removal hasn't changed the structure at all. This is an important
1312       // special case, and we can directly exit the entire routine more
1313       // efficiently as soon as we discover it.
1314       if (llvm::size(RefSCCNodes) == NumRefSCCNodes) {
1315         // Clear out the low link field as we won't need it.
1316         for (Node *N : RefSCCNodes)
1317           N->LowLink = -1;
1318         // Return the empty result immediately.
1319         return Result;
1320       }
1321 
1322       // We've already marked the nodes internally with the RefSCC number so
1323       // just clear them off the stack and continue.
1324       PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end());
1325     } while (!DFSStack.empty());
1326 
1327     assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
1328     assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
1329   } while (!Worklist.empty());
1330 
1331   assert(PostOrderNumber > 1 &&
1332          "Should never finish the DFS when the existing RefSCC remains valid!");
1333 
1334   // Otherwise we create a collection of new RefSCC nodes and build
1335   // a radix-sort style map from postorder number to these new RefSCCs. We then
1336   // append SCCs to each of these RefSCCs in the order they occurred in the
1337   // original SCCs container.
1338   for (int I = 0; I < PostOrderNumber; ++I)
1339     Result.push_back(G->createRefSCC(*G));
1340 
1341   // Insert the resulting postorder sequence into the global graph postorder
1342   // sequence before the current RefSCC in that sequence, and then remove the
1343   // current one.
1344   //
1345   // FIXME: It'd be nice to change the APIs so that we returned an iterator
1346   // range over the global postorder sequence and generally use that sequence
1347   // rather than building a separate result vector here.
1348   int Idx = G->getRefSCCIndex(*this);
1349   G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx);
1350   G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(),
1351                              Result.end());
1352   for (int I : seq<int>(Idx, G->PostOrderRefSCCs.size()))
1353     G->RefSCCIndices[G->PostOrderRefSCCs[I]] = I;
1354 
1355   for (SCC *C : SCCs) {
1356     // We store the SCC number in the node's low-link field above.
1357     int SCCNumber = C->begin()->LowLink;
1358     // Clear out all the SCC's node's low-link fields now that we're done
1359     // using them as side-storage.
1360     for (Node &N : *C) {
1361       assert(N.LowLink == SCCNumber &&
1362              "Cannot have different numbers for nodes in the same SCC!");
1363       N.LowLink = -1;
1364     }
1365 
1366     RefSCC &RC = *Result[SCCNumber];
1367     int SCCIndex = RC.SCCs.size();
1368     RC.SCCs.push_back(C);
1369     RC.SCCIndices[C] = SCCIndex;
1370     C->OuterRefSCC = &RC;
1371   }
1372 
1373   // Now that we've moved things into the new RefSCCs, clear out our current
1374   // one.
1375   G = nullptr;
1376   SCCs.clear();
1377   SCCIndices.clear();
1378 
1379 #ifdef EXPENSIVE_CHECKS
1380   // Verify the new RefSCCs we've built.
1381   for (RefSCC *RC : Result)
1382     RC->verify();
1383 #endif
1384 
1385   // Return the new list of SCCs.
1386   return Result;
1387 }
1388 
1389 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
1390                                                   Node &TargetN) {
1391 #ifdef EXPENSIVE_CHECKS
1392   auto ExitVerifier = make_scope_exit([this] { verify(); });
1393 
1394   // Check that we aren't breaking some invariants of the SCC graph. Note that
1395   // this is quadratic in the number of edges in the call graph!
1396   SCC &SourceC = *G->lookupSCC(SourceN);
1397   SCC &TargetC = *G->lookupSCC(TargetN);
1398   if (&SourceC != &TargetC)
1399     assert(SourceC.isAncestorOf(TargetC) &&
1400            "Call edge is not trivial in the SCC graph!");
1401 #endif
1402 
1403   // First insert it into the source or find the existing edge.
1404   auto [Iterator, Inserted] =
1405       SourceN->EdgeIndexMap.try_emplace(&TargetN, SourceN->Edges.size());
1406   if (!Inserted) {
1407     // Already an edge, just update it.
1408     Edge &E = SourceN->Edges[Iterator->second];
1409     if (E.isCall())
1410       return; // Nothing to do!
1411     E.setKind(Edge::Call);
1412   } else {
1413     // Create the new edge.
1414     SourceN->Edges.emplace_back(TargetN, Edge::Call);
1415   }
1416 }
1417 
1418 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
1419 #ifdef EXPENSIVE_CHECKS
1420   auto ExitVerifier = make_scope_exit([this] { verify(); });
1421 
1422   // Check that we aren't breaking some invariants of the RefSCC graph.
1423   RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
1424   RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1425   if (&SourceRC != &TargetRC)
1426     assert(SourceRC.isAncestorOf(TargetRC) &&
1427            "Ref edge is not trivial in the RefSCC graph!");
1428 #endif
1429 
1430   // First insert it into the source or find the existing edge.
1431   auto [Iterator, Inserted] =
1432       SourceN->EdgeIndexMap.try_emplace(&TargetN, SourceN->Edges.size());
1433   (void)Iterator;
1434   if (!Inserted)
1435     // Already an edge, we're done.
1436     return;
1437 
1438   // Create the new edge.
1439   SourceN->Edges.emplace_back(TargetN, Edge::Ref);
1440 }
1441 
1442 void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) {
1443   Function &OldF = N.getFunction();
1444 
1445 #ifdef EXPENSIVE_CHECKS
1446   auto ExitVerifier = make_scope_exit([this] { verify(); });
1447 
1448   assert(G->lookupRefSCC(N) == this &&
1449          "Cannot replace the function of a node outside this RefSCC.");
1450 
1451   assert(G->NodeMap.find(&NewF) == G->NodeMap.end() &&
1452          "Must not have already walked the new function!'");
1453 
1454   // It is important that this replacement not introduce graph changes so we
1455   // insist that the caller has already removed every use of the original
1456   // function and that all uses of the new function correspond to existing
1457   // edges in the graph. The common and expected way to use this is when
1458   // replacing the function itself in the IR without changing the call graph
1459   // shape and just updating the analysis based on that.
1460   assert(&OldF != &NewF && "Cannot replace a function with itself!");
1461   assert(OldF.use_empty() &&
1462          "Must have moved all uses from the old function to the new!");
1463 #endif
1464 
1465   N.replaceFunction(NewF);
1466 
1467   // Update various call graph maps.
1468   G->NodeMap.erase(&OldF);
1469   G->NodeMap[&NewF] = &N;
1470 
1471   // Update lib functions.
1472   if (G->isLibFunction(OldF)) {
1473     G->LibFunctions.remove(&OldF);
1474     G->LibFunctions.insert(&NewF);
1475   }
1476 }
1477 
1478 void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) {
1479   assert(SCCMap.empty() &&
1480          "This method cannot be called after SCCs have been formed!");
1481 
1482   return SourceN->insertEdgeInternal(TargetN, EK);
1483 }
1484 
1485 void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) {
1486   assert(SCCMap.empty() &&
1487          "This method cannot be called after SCCs have been formed!");
1488 
1489   bool Removed = SourceN->removeEdgeInternal(TargetN);
1490   (void)Removed;
1491   assert(Removed && "Target not in the edge set for this caller?");
1492 }
1493 
1494 void LazyCallGraph::removeDeadFunction(Function &F) {
1495   // FIXME: This is unnecessarily restrictive. We should be able to remove
1496   // functions which recursively call themselves.
1497   assert(F.hasZeroLiveUses() &&
1498          "This routine should only be called on trivially dead functions!");
1499 
1500   // We shouldn't remove library functions as they are never really dead while
1501   // the call graph is in use -- every function definition refers to them.
1502   assert(!isLibFunction(F) &&
1503          "Must not remove lib functions from the call graph!");
1504 
1505   auto NI = NodeMap.find(&F);
1506   if (NI == NodeMap.end())
1507     // Not in the graph at all!
1508     return;
1509 
1510   Node &N = *NI->second;
1511 
1512   // Cannot remove a function which has yet to be visited in the DFS walk, so
1513   // if we have a node at all then we must have an SCC and RefSCC.
1514   auto CI = SCCMap.find(&N);
1515   assert(CI != SCCMap.end() &&
1516          "Tried to remove a node without an SCC after DFS walk started!");
1517   SCC &C = *CI->second;
1518   RefSCC *RC = &C.getOuterRefSCC();
1519 
1520   // In extremely rare cases, we can delete a dead function which is still in a
1521   // non-trivial RefSCC. This can happen due to spurious ref edges sticking
1522   // around after an IR function reference is removed.
1523   if (RC->size() != 1) {
1524     SmallVector<Node *, 0> NodesInRC;
1525     for (SCC &OtherC : *RC) {
1526       for (Node &OtherN : OtherC)
1527         NodesInRC.push_back(&OtherN);
1528     }
1529     for (Node *OtherN : NodesInRC) {
1530       if ((*OtherN)->lookup(N)) {
1531         auto NewRefSCCs =
1532             RC->removeInternalRefEdge(*OtherN, ArrayRef<Node *>(&N));
1533         // If we've split into multiple RefSCCs, RC is now invalid and the
1534         // RefSCC containing C will be different.
1535         if (!NewRefSCCs.empty())
1536           RC = &C.getOuterRefSCC();
1537       }
1538     }
1539   }
1540 
1541   NodeMap.erase(NI);
1542   EntryEdges.removeEdgeInternal(N);
1543   SCCMap.erase(CI);
1544 
1545   // This node must be the only member of its SCC as it has no callers, and
1546   // that SCC must be the only member of a RefSCC as it has no references.
1547   // Validate these properties first.
1548   assert(C.size() == 1 && "Dead functions must be in a singular SCC");
1549   assert(RC->size() == 1 && "Dead functions must be in a singular RefSCC");
1550 
1551   // Finally clear out all the data structures from the node down through the
1552   // components. postorder_ref_scc_iterator will skip empty RefSCCs, so no need
1553   // to adjust LazyCallGraph data structures.
1554   N.clear();
1555   N.G = nullptr;
1556   N.F = nullptr;
1557   C.clear();
1558   RC->clear();
1559   RC->G = nullptr;
1560 
1561   // Nothing to delete as all the objects are allocated in stable bump pointer
1562   // allocators.
1563 }
1564 
1565 // Gets the Edge::Kind from one function to another by looking at the function's
1566 // instructions. Asserts if there is no edge.
1567 // Useful for determining what type of edge should exist between functions when
1568 // the edge hasn't been created yet.
1569 static LazyCallGraph::Edge::Kind getEdgeKind(Function &OriginalFunction,
1570                                              Function &NewFunction) {
1571   // In release builds, assume that if there are no direct calls to the new
1572   // function, then there is a ref edge. In debug builds, keep track of
1573   // references to assert that there is actually a ref edge if there is no call
1574   // edge.
1575 #ifndef NDEBUG
1576   SmallVector<Constant *, 16> Worklist;
1577   SmallPtrSet<Constant *, 16> Visited;
1578 #endif
1579 
1580   for (Instruction &I : instructions(OriginalFunction)) {
1581     if (auto *CB = dyn_cast<CallBase>(&I)) {
1582       if (Function *Callee = CB->getCalledFunction()) {
1583         if (Callee == &NewFunction)
1584           return LazyCallGraph::Edge::Kind::Call;
1585       }
1586     }
1587 #ifndef NDEBUG
1588     for (Value *Op : I.operand_values()) {
1589       if (Constant *C = dyn_cast<Constant>(Op)) {
1590         if (Visited.insert(C).second)
1591           Worklist.push_back(C);
1592       }
1593     }
1594 #endif
1595   }
1596 
1597 #ifndef NDEBUG
1598   bool FoundNewFunction = false;
1599   LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &F) {
1600     if (&F == &NewFunction)
1601       FoundNewFunction = true;
1602   });
1603   assert(FoundNewFunction && "No edge from original function to new function");
1604 #endif
1605 
1606   return LazyCallGraph::Edge::Kind::Ref;
1607 }
1608 
1609 void LazyCallGraph::addSplitFunction(Function &OriginalFunction,
1610                                      Function &NewFunction) {
1611   assert(lookup(OriginalFunction) &&
1612          "Original function's node should already exist");
1613   Node &OriginalN = get(OriginalFunction);
1614   SCC *OriginalC = lookupSCC(OriginalN);
1615   RefSCC *OriginalRC = lookupRefSCC(OriginalN);
1616 
1617 #ifdef EXPENSIVE_CHECKS
1618   OriginalRC->verify();
1619   auto VerifyOnExit = make_scope_exit([&]() { OriginalRC->verify(); });
1620 #endif
1621 
1622   assert(!lookup(NewFunction) &&
1623          "New function's node should not already exist");
1624   Node &NewN = initNode(NewFunction);
1625 
1626   Edge::Kind EK = getEdgeKind(OriginalFunction, NewFunction);
1627 
1628   SCC *NewC = nullptr;
1629   for (Edge &E : *NewN) {
1630     Node &EN = E.getNode();
1631     if (EK == Edge::Kind::Call && E.isCall() && lookupSCC(EN) == OriginalC) {
1632       // If the edge to the new function is a call edge and there is a call edge
1633       // from the new function to any function in the original function's SCC,
1634       // it is in the same SCC (and RefSCC) as the original function.
1635       NewC = OriginalC;
1636       NewC->Nodes.push_back(&NewN);
1637       break;
1638     }
1639   }
1640 
1641   if (!NewC) {
1642     for (Edge &E : *NewN) {
1643       Node &EN = E.getNode();
1644       if (lookupRefSCC(EN) == OriginalRC) {
1645         // If there is any edge from the new function to any function in the
1646         // original function's RefSCC, it is in the same RefSCC as the original
1647         // function but a new SCC.
1648         RefSCC *NewRC = OriginalRC;
1649         NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1650 
1651         // The new function's SCC is not the same as the original function's
1652         // SCC, since that case was handled earlier. If the edge from the
1653         // original function to the new function was a call edge, then we need
1654         // to insert the newly created function's SCC before the original
1655         // function's SCC. Otherwise, either the new SCC comes after the
1656         // original function's SCC, or it doesn't matter, and in both cases we
1657         // can add it to the very end.
1658         int InsertIndex = EK == Edge::Kind::Call ? NewRC->SCCIndices[OriginalC]
1659                                                  : NewRC->SCCIndices.size();
1660         NewRC->SCCs.insert(NewRC->SCCs.begin() + InsertIndex, NewC);
1661         for (int I = InsertIndex, Size = NewRC->SCCs.size(); I < Size; ++I)
1662           NewRC->SCCIndices[NewRC->SCCs[I]] = I;
1663 
1664         break;
1665       }
1666     }
1667   }
1668 
1669   if (!NewC) {
1670     // We didn't find any edges back to the original function's RefSCC, so the
1671     // new function belongs in a new RefSCC. The new RefSCC goes before the
1672     // original function's RefSCC.
1673     RefSCC *NewRC = createRefSCC(*this);
1674     NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1675     NewRC->SCCIndices[NewC] = 0;
1676     NewRC->SCCs.push_back(NewC);
1677     auto OriginalRCIndex = RefSCCIndices.find(OriginalRC)->second;
1678     PostOrderRefSCCs.insert(PostOrderRefSCCs.begin() + OriginalRCIndex, NewRC);
1679     for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I)
1680       RefSCCIndices[PostOrderRefSCCs[I]] = I;
1681   }
1682 
1683   SCCMap[&NewN] = NewC;
1684 
1685   OriginalN->insertEdgeInternal(NewN, EK);
1686 }
1687 
1688 void LazyCallGraph::addSplitRefRecursiveFunctions(
1689     Function &OriginalFunction, ArrayRef<Function *> NewFunctions) {
1690   assert(!NewFunctions.empty() && "Can't add zero functions");
1691   assert(lookup(OriginalFunction) &&
1692          "Original function's node should already exist");
1693   Node &OriginalN = get(OriginalFunction);
1694   RefSCC *OriginalRC = lookupRefSCC(OriginalN);
1695 
1696 #ifdef EXPENSIVE_CHECKS
1697   OriginalRC->verify();
1698   auto VerifyOnExit = make_scope_exit([&]() {
1699     OriginalRC->verify();
1700     for (Function *NewFunction : NewFunctions)
1701       lookupRefSCC(get(*NewFunction))->verify();
1702   });
1703 #endif
1704 
1705   bool ExistsRefToOriginalRefSCC = false;
1706 
1707   for (Function *NewFunction : NewFunctions) {
1708     Node &NewN = initNode(*NewFunction);
1709 
1710     OriginalN->insertEdgeInternal(NewN, Edge::Kind::Ref);
1711 
1712     // Check if there is any edge from any new function back to any function in
1713     // the original function's RefSCC.
1714     for (Edge &E : *NewN) {
1715       if (lookupRefSCC(E.getNode()) == OriginalRC) {
1716         ExistsRefToOriginalRefSCC = true;
1717         break;
1718       }
1719     }
1720   }
1721 
1722   RefSCC *NewRC;
1723   if (ExistsRefToOriginalRefSCC) {
1724     // If there is any edge from any new function to any function in the
1725     // original function's RefSCC, all new functions will be in the same RefSCC
1726     // as the original function.
1727     NewRC = OriginalRC;
1728   } else {
1729     // Otherwise the new functions are in their own RefSCC.
1730     NewRC = createRefSCC(*this);
1731     // The new RefSCC goes before the original function's RefSCC in postorder
1732     // since there are only edges from the original function's RefSCC to the new
1733     // RefSCC.
1734     auto OriginalRCIndex = RefSCCIndices.find(OriginalRC)->second;
1735     PostOrderRefSCCs.insert(PostOrderRefSCCs.begin() + OriginalRCIndex, NewRC);
1736     for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I)
1737       RefSCCIndices[PostOrderRefSCCs[I]] = I;
1738   }
1739 
1740   for (Function *NewFunction : NewFunctions) {
1741     Node &NewN = get(*NewFunction);
1742     // Each new function is in its own new SCC. The original function can only
1743     // have a ref edge to new functions, and no other existing functions can
1744     // have references to new functions. Each new function only has a ref edge
1745     // to the other new functions.
1746     SCC *NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1747     // The new SCCs are either sibling SCCs or parent SCCs to all other existing
1748     // SCCs in the RefSCC. Either way, they can go at the back of the postorder
1749     // SCC list.
1750     auto Index = NewRC->SCCIndices.size();
1751     NewRC->SCCIndices[NewC] = Index;
1752     NewRC->SCCs.push_back(NewC);
1753     SCCMap[&NewN] = NewC;
1754   }
1755 
1756 #ifndef NDEBUG
1757   for (Function *F1 : NewFunctions) {
1758     assert(getEdgeKind(OriginalFunction, *F1) == Edge::Kind::Ref &&
1759            "Expected ref edges from original function to every new function");
1760     Node &N1 = get(*F1);
1761     for (Function *F2 : NewFunctions) {
1762       if (F1 == F2)
1763         continue;
1764       Node &N2 = get(*F2);
1765       assert(!N1->lookup(N2)->isCall() &&
1766              "Edges between new functions must be ref edges");
1767     }
1768   }
1769 #endif
1770 }
1771 
1772 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
1773   return *new (MappedN = BPA.Allocate()) Node(*this, F);
1774 }
1775 
1776 void LazyCallGraph::updateGraphPtrs() {
1777   // Walk the node map to update their graph pointers. While this iterates in
1778   // an unstable order, the order has no effect, so it remains correct.
1779   for (auto &FunctionNodePair : NodeMap)
1780     FunctionNodePair.second->G = this;
1781 
1782   for (auto *RC : PostOrderRefSCCs)
1783     RC->G = this;
1784 }
1785 
1786 LazyCallGraph::Node &LazyCallGraph::initNode(Function &F) {
1787   Node &N = get(F);
1788   N.DFSNumber = N.LowLink = -1;
1789   N.populate();
1790   NodeMap[&F] = &N;
1791   return N;
1792 }
1793 
1794 template <typename RootsT, typename GetBeginT, typename GetEndT,
1795           typename GetNodeT, typename FormSCCCallbackT>
1796 void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
1797                                      GetEndT &&GetEnd, GetNodeT &&GetNode,
1798                                      FormSCCCallbackT &&FormSCC) {
1799   using EdgeItT = decltype(GetBegin(std::declval<Node &>()));
1800 
1801   SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack;
1802   SmallVector<Node *, 16> PendingSCCStack;
1803 
1804   // Scan down the stack and DFS across the call edges.
1805   for (Node *RootN : Roots) {
1806     assert(DFSStack.empty() &&
1807            "Cannot begin a new root with a non-empty DFS stack!");
1808     assert(PendingSCCStack.empty() &&
1809            "Cannot begin a new root with pending nodes for an SCC!");
1810 
1811     // Skip any nodes we've already reached in the DFS.
1812     if (RootN->DFSNumber != 0) {
1813       assert(RootN->DFSNumber == -1 &&
1814              "Shouldn't have any mid-DFS root nodes!");
1815       continue;
1816     }
1817 
1818     RootN->DFSNumber = RootN->LowLink = 1;
1819     int NextDFSNumber = 2;
1820 
1821     DFSStack.emplace_back(RootN, GetBegin(*RootN));
1822     do {
1823       auto [N, I] = DFSStack.pop_back_val();
1824       auto E = GetEnd(*N);
1825       while (I != E) {
1826         Node &ChildN = GetNode(I);
1827         if (ChildN.DFSNumber == 0) {
1828           // We haven't yet visited this child, so descend, pushing the current
1829           // node onto the stack.
1830           DFSStack.emplace_back(N, I);
1831 
1832           ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
1833           N = &ChildN;
1834           I = GetBegin(*N);
1835           E = GetEnd(*N);
1836           continue;
1837         }
1838 
1839         // If the child has already been added to some child component, it
1840         // couldn't impact the low-link of this parent because it isn't
1841         // connected, and thus its low-link isn't relevant so skip it.
1842         if (ChildN.DFSNumber == -1) {
1843           ++I;
1844           continue;
1845         }
1846 
1847         // Track the lowest linked child as the lowest link for this node.
1848         assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1849         if (ChildN.LowLink < N->LowLink)
1850           N->LowLink = ChildN.LowLink;
1851 
1852         // Move to the next edge.
1853         ++I;
1854       }
1855 
1856       // We've finished processing N and its descendants, put it on our pending
1857       // SCC stack to eventually get merged into an SCC of nodes.
1858       PendingSCCStack.push_back(N);
1859 
1860       // If this node is linked to some lower entry, continue walking up the
1861       // stack.
1862       if (N->LowLink != N->DFSNumber)
1863         continue;
1864 
1865       // Otherwise, we've completed an SCC. Append it to our post order list of
1866       // SCCs.
1867       int RootDFSNumber = N->DFSNumber;
1868       // Find the range of the node stack by walking down until we pass the
1869       // root DFS number.
1870       auto SCCNodes = make_range(
1871           PendingSCCStack.rbegin(),
1872           find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
1873             return N->DFSNumber < RootDFSNumber;
1874           }));
1875       // Form a new SCC out of these nodes and then clear them off our pending
1876       // stack.
1877       FormSCC(SCCNodes);
1878       PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
1879     } while (!DFSStack.empty());
1880   }
1881 }
1882 
1883 /// Build the internal SCCs for a RefSCC from a sequence of nodes.
1884 ///
1885 /// Appends the SCCs to the provided vector and updates the map with their
1886 /// indices. Both the vector and map must be empty when passed into this
1887 /// routine.
1888 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
1889   assert(RC.SCCs.empty() && "Already built SCCs!");
1890   assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
1891 
1892   for (Node *N : Nodes) {
1893     assert(N->LowLink >= (*Nodes.begin())->LowLink &&
1894            "We cannot have a low link in an SCC lower than its root on the "
1895            "stack!");
1896 
1897     // This node will go into the next RefSCC, clear out its DFS and low link
1898     // as we scan.
1899     N->DFSNumber = N->LowLink = 0;
1900   }
1901 
1902   // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1903   // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1904   // internal storage as we won't need it for the outer graph's DFS any longer.
1905   buildGenericSCCs(
1906       Nodes, [](Node &N) { return N->call_begin(); },
1907       [](Node &N) { return N->call_end(); },
1908       [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); },
1909       [this, &RC](node_stack_range Nodes) {
1910         RC.SCCs.push_back(createSCC(RC, Nodes));
1911         for (Node &N : *RC.SCCs.back()) {
1912           N.DFSNumber = N.LowLink = -1;
1913           SCCMap[&N] = RC.SCCs.back();
1914         }
1915       });
1916 
1917   // Wire up the SCC indices.
1918   for (int I = 0, Size = RC.SCCs.size(); I < Size; ++I)
1919     RC.SCCIndices[RC.SCCs[I]] = I;
1920 }
1921 
1922 void LazyCallGraph::buildRefSCCs() {
1923   if (EntryEdges.empty() || !PostOrderRefSCCs.empty())
1924     // RefSCCs are either non-existent or already built!
1925     return;
1926 
1927   assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!");
1928 
1929   SmallVector<Node *, 16> Roots;
1930   for (Edge &E : *this)
1931     Roots.push_back(&E.getNode());
1932 
1933   // The roots will be iterated in order.
1934   buildGenericSCCs(
1935       Roots,
1936       [](Node &N) {
1937         // We need to populate each node as we begin to walk its edges.
1938         N.populate();
1939         return N->begin();
1940       },
1941       [](Node &N) { return N->end(); },
1942       [](EdgeSequence::iterator I) -> Node & { return I->getNode(); },
1943       [this](node_stack_range Nodes) {
1944         RefSCC *NewRC = createRefSCC(*this);
1945         buildSCCs(*NewRC, Nodes);
1946 
1947         // Push the new node into the postorder list and remember its position
1948         // in the index map.
1949         bool Inserted =
1950             RefSCCIndices.try_emplace(NewRC, PostOrderRefSCCs.size()).second;
1951         (void)Inserted;
1952         assert(Inserted && "Cannot already have this RefSCC in the index map!");
1953         PostOrderRefSCCs.push_back(NewRC);
1954 #ifdef EXPENSIVE_CHECKS
1955         NewRC->verify();
1956 #endif
1957       });
1958 }
1959 
1960 void LazyCallGraph::visitReferences(SmallVectorImpl<Constant *> &Worklist,
1961                                     SmallPtrSetImpl<Constant *> &Visited,
1962                                     function_ref<void(Function &)> Callback) {
1963   while (!Worklist.empty()) {
1964     Constant *C = Worklist.pop_back_val();
1965 
1966     if (Function *F = dyn_cast<Function>(C)) {
1967       if (!F->isDeclaration())
1968         Callback(*F);
1969       continue;
1970     }
1971 
1972     // blockaddresses are weird and don't participate in the call graph anyway,
1973     // skip them.
1974     if (isa<BlockAddress>(C))
1975       continue;
1976 
1977     for (Value *Op : C->operand_values())
1978       if (Visited.insert(cast<Constant>(Op)).second)
1979         Worklist.push_back(cast<Constant>(Op));
1980   }
1981 }
1982 
1983 AnalysisKey LazyCallGraphAnalysis::Key;
1984 
1985 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
1986 
1987 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
1988   OS << "  Edges in function: " << N.getFunction().getName() << "\n";
1989   for (LazyCallGraph::Edge &E : N.populate())
1990     OS << "    " << (E.isCall() ? "call" : "ref ") << " -> "
1991        << E.getFunction().getName() << "\n";
1992 
1993   OS << "\n";
1994 }
1995 
1996 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
1997   OS << "    SCC with " << C.size() << " functions:\n";
1998 
1999   for (LazyCallGraph::Node &N : C)
2000     OS << "      " << N.getFunction().getName() << "\n";
2001 }
2002 
2003 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
2004   OS << "  RefSCC with " << C.size() << " call SCCs:\n";
2005 
2006   for (LazyCallGraph::SCC &InnerC : C)
2007     printSCC(OS, InnerC);
2008 
2009   OS << "\n";
2010 }
2011 
2012 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
2013                                                 ModuleAnalysisManager &AM) {
2014   LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
2015 
2016   OS << "Printing the call graph for module: " << M.getModuleIdentifier()
2017      << "\n\n";
2018 
2019   for (Function &F : M)
2020     printNode(OS, G.get(F));
2021 
2022   G.buildRefSCCs();
2023   for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
2024     printRefSCC(OS, C);
2025 
2026   return PreservedAnalyses::all();
2027 }
2028 
2029 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
2030     : OS(OS) {}
2031 
2032 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
2033   std::string Name =
2034       "\"" + DOT::EscapeString(std::string(N.getFunction().getName())) + "\"";
2035 
2036   for (LazyCallGraph::Edge &E : N.populate()) {
2037     OS << "  " << Name << " -> \""
2038        << DOT::EscapeString(std::string(E.getFunction().getName())) << "\"";
2039     if (!E.isCall()) // It is a ref edge.
2040       OS << " [style=dashed,label=\"ref\"]";
2041     OS << ";\n";
2042   }
2043 
2044   OS << "\n";
2045 }
2046 
2047 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
2048                                                    ModuleAnalysisManager &AM) {
2049   LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
2050 
2051   OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
2052 
2053   for (Function &F : M)
2054     printNodeDOT(OS, G.get(F));
2055 
2056   OS << "}\n";
2057 
2058   return PreservedAnalyses::all();
2059 }
2060