1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/LazyCallGraph.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/ScopeExit.h" 13 #include "llvm/ADT/Sequence.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/iterator_range.h" 17 #include "llvm/Analysis/TargetLibraryInfo.h" 18 #include "llvm/Analysis/VectorUtils.h" 19 #include "llvm/Config/llvm-config.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/GlobalVariable.h" 22 #include "llvm/IR/Instruction.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/PassManager.h" 25 #include "llvm/Support/Casting.h" 26 #include "llvm/Support/Compiler.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/GraphWriter.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include <algorithm> 31 #include <cassert> 32 #include <cstddef> 33 #include <iterator> 34 #include <string> 35 #include <tuple> 36 #include <utility> 37 38 using namespace llvm; 39 40 #define DEBUG_TYPE "lcg" 41 42 void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN, 43 Edge::Kind EK) { 44 EdgeIndexMap.insert({&TargetN, Edges.size()}); 45 Edges.emplace_back(TargetN, EK); 46 } 47 48 void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) { 49 Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK); 50 } 51 52 bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) { 53 auto IndexMapI = EdgeIndexMap.find(&TargetN); 54 if (IndexMapI == EdgeIndexMap.end()) 55 return false; 56 57 Edges[IndexMapI->second] = Edge(); 58 EdgeIndexMap.erase(IndexMapI); 59 return true; 60 } 61 62 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges, 63 DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap, 64 LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) { 65 if (!EdgeIndexMap.insert({&N, Edges.size()}).second) 66 return; 67 68 LLVM_DEBUG(dbgs() << " Added callable function: " << N.getName() << "\n"); 69 Edges.emplace_back(LazyCallGraph::Edge(N, EK)); 70 } 71 72 LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() { 73 assert(!Edges && "Must not have already populated the edges for this node!"); 74 75 LLVM_DEBUG(dbgs() << " Adding functions called by '" << getName() 76 << "' to the graph.\n"); 77 78 Edges = EdgeSequence(); 79 80 SmallVector<Constant *, 16> Worklist; 81 SmallPtrSet<Function *, 4> Callees; 82 SmallPtrSet<Constant *, 16> Visited; 83 84 // Find all the potential call graph edges in this function. We track both 85 // actual call edges and indirect references to functions. The direct calls 86 // are trivially added, but to accumulate the latter we walk the instructions 87 // and add every operand which is a constant to the worklist to process 88 // afterward. 89 // 90 // Note that we consider *any* function with a definition to be a viable 91 // edge. Even if the function's definition is subject to replacement by 92 // some other module (say, a weak definition) there may still be 93 // optimizations which essentially speculate based on the definition and 94 // a way to check that the specific definition is in fact the one being 95 // used. For example, this could be done by moving the weak definition to 96 // a strong (internal) definition and making the weak definition be an 97 // alias. Then a test of the address of the weak function against the new 98 // strong definition's address would be an effective way to determine the 99 // safety of optimizing a direct call edge. 100 for (BasicBlock &BB : *F) 101 for (Instruction &I : BB) { 102 if (auto *CB = dyn_cast<CallBase>(&I)) 103 if (Function *Callee = CB->getCalledFunction()) 104 if (!Callee->isDeclaration()) 105 if (Callees.insert(Callee).second) { 106 Visited.insert(Callee); 107 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee), 108 LazyCallGraph::Edge::Call); 109 } 110 111 for (Value *Op : I.operand_values()) 112 if (Constant *C = dyn_cast<Constant>(Op)) 113 if (Visited.insert(C).second) 114 Worklist.push_back(C); 115 } 116 117 // We've collected all the constant (and thus potentially function or 118 // function containing) operands to all of the instructions in the function. 119 // Process them (recursively) collecting every function found. 120 visitReferences(Worklist, Visited, [&](Function &F) { 121 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F), 122 LazyCallGraph::Edge::Ref); 123 }); 124 125 // Add implicit reference edges to any defined libcall functions (if we 126 // haven't found an explicit edge). 127 for (auto *F : G->LibFunctions) 128 if (!Visited.count(F)) 129 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F), 130 LazyCallGraph::Edge::Ref); 131 132 return *Edges; 133 } 134 135 void LazyCallGraph::Node::replaceFunction(Function &NewF) { 136 assert(F != &NewF && "Must not replace a function with itself!"); 137 F = &NewF; 138 } 139 140 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 141 LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const { 142 dbgs() << *this << '\n'; 143 } 144 #endif 145 146 static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) { 147 LibFunc LF; 148 149 // Either this is a normal library function or a "vectorizable" 150 // function. Not using the VFDatabase here because this query 151 // is related only to libraries handled via the TLI. 152 return TLI.getLibFunc(F, LF) || 153 TLI.isKnownVectorFunctionInLibrary(F.getName()); 154 } 155 156 LazyCallGraph::LazyCallGraph( 157 Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 158 LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier() 159 << "\n"); 160 for (Function &F : M) { 161 if (F.isDeclaration()) 162 continue; 163 // If this function is a known lib function to LLVM then we want to 164 // synthesize reference edges to it to model the fact that LLVM can turn 165 // arbitrary code into a library function call. 166 if (isKnownLibFunction(F, GetTLI(F))) 167 LibFunctions.insert(&F); 168 169 if (F.hasLocalLinkage()) 170 continue; 171 172 // External linkage defined functions have edges to them from other 173 // modules. 174 LLVM_DEBUG(dbgs() << " Adding '" << F.getName() 175 << "' to entry set of the graph.\n"); 176 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref); 177 } 178 179 // Externally visible aliases of internal functions are also viable entry 180 // edges to the module. 181 for (auto &A : M.aliases()) { 182 if (A.hasLocalLinkage()) 183 continue; 184 if (Function* F = dyn_cast<Function>(A.getAliasee())) { 185 LLVM_DEBUG(dbgs() << " Adding '" << F->getName() 186 << "' with alias '" << A.getName() 187 << "' to entry set of the graph.\n"); 188 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(*F), Edge::Ref); 189 } 190 } 191 192 // Now add entry nodes for functions reachable via initializers to globals. 193 SmallVector<Constant *, 16> Worklist; 194 SmallPtrSet<Constant *, 16> Visited; 195 for (GlobalVariable &GV : M.globals()) 196 if (GV.hasInitializer()) 197 if (Visited.insert(GV.getInitializer()).second) 198 Worklist.push_back(GV.getInitializer()); 199 200 LLVM_DEBUG( 201 dbgs() << " Adding functions referenced by global initializers to the " 202 "entry set.\n"); 203 visitReferences(Worklist, Visited, [&](Function &F) { 204 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), 205 LazyCallGraph::Edge::Ref); 206 }); 207 } 208 209 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G) 210 : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)), 211 EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)), 212 SCCMap(std::move(G.SCCMap)), 213 LibFunctions(std::move(G.LibFunctions)) { 214 updateGraphPtrs(); 215 } 216 217 bool LazyCallGraph::invalidate(Module &, const PreservedAnalyses &PA, 218 ModuleAnalysisManager::Invalidator &) { 219 // Check whether the analysis, all analyses on functions, or the function's 220 // CFG have been preserved. 221 auto PAC = PA.getChecker<llvm::LazyCallGraphAnalysis>(); 222 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>() || 223 PAC.preservedSet<CFGAnalyses>()); 224 } 225 226 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) { 227 BPA = std::move(G.BPA); 228 NodeMap = std::move(G.NodeMap); 229 EntryEdges = std::move(G.EntryEdges); 230 SCCBPA = std::move(G.SCCBPA); 231 SCCMap = std::move(G.SCCMap); 232 LibFunctions = std::move(G.LibFunctions); 233 updateGraphPtrs(); 234 return *this; 235 } 236 237 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 238 LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const { 239 dbgs() << *this << '\n'; 240 } 241 #endif 242 243 #ifndef NDEBUG 244 void LazyCallGraph::SCC::verify() { 245 assert(OuterRefSCC && "Can't have a null RefSCC!"); 246 assert(!Nodes.empty() && "Can't have an empty SCC!"); 247 248 for (Node *N : Nodes) { 249 assert(N && "Can't have a null node!"); 250 assert(OuterRefSCC->G->lookupSCC(*N) == this && 251 "Node does not map to this SCC!"); 252 assert(N->DFSNumber == -1 && 253 "Must set DFS numbers to -1 when adding a node to an SCC!"); 254 assert(N->LowLink == -1 && 255 "Must set low link to -1 when adding a node to an SCC!"); 256 for (Edge &E : **N) 257 assert(E.getNode().isPopulated() && "Can't have an unpopulated node!"); 258 } 259 } 260 #endif 261 262 bool LazyCallGraph::SCC::isParentOf(const SCC &C) const { 263 if (this == &C) 264 return false; 265 266 for (Node &N : *this) 267 for (Edge &E : N->calls()) 268 if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C) 269 return true; 270 271 // No edges found. 272 return false; 273 } 274 275 bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const { 276 if (this == &TargetC) 277 return false; 278 279 LazyCallGraph &G = *OuterRefSCC->G; 280 281 // Start with this SCC. 282 SmallPtrSet<const SCC *, 16> Visited = {this}; 283 SmallVector<const SCC *, 16> Worklist = {this}; 284 285 // Walk down the graph until we run out of edges or find a path to TargetC. 286 do { 287 const SCC &C = *Worklist.pop_back_val(); 288 for (Node &N : C) 289 for (Edge &E : N->calls()) { 290 SCC *CalleeC = G.lookupSCC(E.getNode()); 291 if (!CalleeC) 292 continue; 293 294 // If the callee's SCC is the TargetC, we're done. 295 if (CalleeC == &TargetC) 296 return true; 297 298 // If this is the first time we've reached this SCC, put it on the 299 // worklist to recurse through. 300 if (Visited.insert(CalleeC).second) 301 Worklist.push_back(CalleeC); 302 } 303 } while (!Worklist.empty()); 304 305 // No paths found. 306 return false; 307 } 308 309 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {} 310 311 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 312 LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const { 313 dbgs() << *this << '\n'; 314 } 315 #endif 316 317 #ifndef NDEBUG 318 void LazyCallGraph::RefSCC::verify() { 319 assert(G && "Can't have a null graph!"); 320 assert(!SCCs.empty() && "Can't have an empty SCC!"); 321 322 // Verify basic properties of the SCCs. 323 SmallPtrSet<SCC *, 4> SCCSet; 324 for (SCC *C : SCCs) { 325 assert(C && "Can't have a null SCC!"); 326 C->verify(); 327 assert(&C->getOuterRefSCC() == this && 328 "SCC doesn't think it is inside this RefSCC!"); 329 bool Inserted = SCCSet.insert(C).second; 330 assert(Inserted && "Found a duplicate SCC!"); 331 auto IndexIt = SCCIndices.find(C); 332 assert(IndexIt != SCCIndices.end() && 333 "Found an SCC that doesn't have an index!"); 334 } 335 336 // Check that our indices map correctly. 337 for (auto &SCCIndexPair : SCCIndices) { 338 SCC *C = SCCIndexPair.first; 339 int i = SCCIndexPair.second; 340 assert(C && "Can't have a null SCC in the indices!"); 341 assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!"); 342 assert(SCCs[i] == C && "Index doesn't point to SCC!"); 343 } 344 345 // Check that the SCCs are in fact in post-order. 346 for (int i = 0, Size = SCCs.size(); i < Size; ++i) { 347 SCC &SourceSCC = *SCCs[i]; 348 for (Node &N : SourceSCC) 349 for (Edge &E : *N) { 350 if (!E.isCall()) 351 continue; 352 SCC &TargetSCC = *G->lookupSCC(E.getNode()); 353 if (&TargetSCC.getOuterRefSCC() == this) { 354 assert(SCCIndices.find(&TargetSCC)->second <= i && 355 "Edge between SCCs violates post-order relationship."); 356 continue; 357 } 358 } 359 } 360 } 361 #endif 362 363 bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const { 364 if (&RC == this) 365 return false; 366 367 // Search all edges to see if this is a parent. 368 for (SCC &C : *this) 369 for (Node &N : C) 370 for (Edge &E : *N) 371 if (G->lookupRefSCC(E.getNode()) == &RC) 372 return true; 373 374 return false; 375 } 376 377 bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const { 378 if (&RC == this) 379 return false; 380 381 // For each descendant of this RefSCC, see if one of its children is the 382 // argument. If not, add that descendant to the worklist and continue 383 // searching. 384 SmallVector<const RefSCC *, 4> Worklist; 385 SmallPtrSet<const RefSCC *, 4> Visited; 386 Worklist.push_back(this); 387 Visited.insert(this); 388 do { 389 const RefSCC &DescendantRC = *Worklist.pop_back_val(); 390 for (SCC &C : DescendantRC) 391 for (Node &N : C) 392 for (Edge &E : *N) { 393 auto *ChildRC = G->lookupRefSCC(E.getNode()); 394 if (ChildRC == &RC) 395 return true; 396 if (!ChildRC || !Visited.insert(ChildRC).second) 397 continue; 398 Worklist.push_back(ChildRC); 399 } 400 } while (!Worklist.empty()); 401 402 return false; 403 } 404 405 /// Generic helper that updates a postorder sequence of SCCs for a potentially 406 /// cycle-introducing edge insertion. 407 /// 408 /// A postorder sequence of SCCs of a directed graph has one fundamental 409 /// property: all deges in the DAG of SCCs point "up" the sequence. That is, 410 /// all edges in the SCC DAG point to prior SCCs in the sequence. 411 /// 412 /// This routine both updates a postorder sequence and uses that sequence to 413 /// compute the set of SCCs connected into a cycle. It should only be called to 414 /// insert a "downward" edge which will require changing the sequence to 415 /// restore it to a postorder. 416 /// 417 /// When inserting an edge from an earlier SCC to a later SCC in some postorder 418 /// sequence, all of the SCCs which may be impacted are in the closed range of 419 /// those two within the postorder sequence. The algorithm used here to restore 420 /// the state is as follows: 421 /// 422 /// 1) Starting from the source SCC, construct a set of SCCs which reach the 423 /// source SCC consisting of just the source SCC. Then scan toward the 424 /// target SCC in postorder and for each SCC, if it has an edge to an SCC 425 /// in the set, add it to the set. Otherwise, the source SCC is not 426 /// a successor, move it in the postorder sequence to immediately before 427 /// the source SCC, shifting the source SCC and all SCCs in the set one 428 /// position toward the target SCC. Stop scanning after processing the 429 /// target SCC. 430 /// 2) If the source SCC is now past the target SCC in the postorder sequence, 431 /// and thus the new edge will flow toward the start, we are done. 432 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an 433 /// SCC between the source and the target, and add them to the set of 434 /// connected SCCs, then recurse through them. Once a complete set of the 435 /// SCCs the target connects to is known, hoist the remaining SCCs between 436 /// the source and the target to be above the target. Note that there is no 437 /// need to process the source SCC, it is already known to connect. 438 /// 4) At this point, all of the SCCs in the closed range between the source 439 /// SCC and the target SCC in the postorder sequence are connected, 440 /// including the target SCC and the source SCC. Inserting the edge from 441 /// the source SCC to the target SCC will form a cycle out of precisely 442 /// these SCCs. Thus we can merge all of the SCCs in this closed range into 443 /// a single SCC. 444 /// 445 /// This process has various important properties: 446 /// - Only mutates the SCCs when adding the edge actually changes the SCC 447 /// structure. 448 /// - Never mutates SCCs which are unaffected by the change. 449 /// - Updates the postorder sequence to correctly satisfy the postorder 450 /// constraint after the edge is inserted. 451 /// - Only reorders SCCs in the closed postorder sequence from the source to 452 /// the target, so easy to bound how much has changed even in the ordering. 453 /// - Big-O is the number of edges in the closed postorder range of SCCs from 454 /// source to target. 455 /// 456 /// This helper routine, in addition to updating the postorder sequence itself 457 /// will also update a map from SCCs to indices within that sequence. 458 /// 459 /// The sequence and the map must operate on pointers to the SCC type. 460 /// 461 /// Two callbacks must be provided. The first computes the subset of SCCs in 462 /// the postorder closed range from the source to the target which connect to 463 /// the source SCC via some (transitive) set of edges. The second computes the 464 /// subset of the same range which the target SCC connects to via some 465 /// (transitive) set of edges. Both callbacks should populate the set argument 466 /// provided. 467 template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT, 468 typename ComputeSourceConnectedSetCallableT, 469 typename ComputeTargetConnectedSetCallableT> 470 static iterator_range<typename PostorderSequenceT::iterator> 471 updatePostorderSequenceForEdgeInsertion( 472 SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs, 473 SCCIndexMapT &SCCIndices, 474 ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet, 475 ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) { 476 int SourceIdx = SCCIndices[&SourceSCC]; 477 int TargetIdx = SCCIndices[&TargetSCC]; 478 assert(SourceIdx < TargetIdx && "Cannot have equal indices here!"); 479 480 SmallPtrSet<SCCT *, 4> ConnectedSet; 481 482 // Compute the SCCs which (transitively) reach the source. 483 ComputeSourceConnectedSet(ConnectedSet); 484 485 // Partition the SCCs in this part of the port-order sequence so only SCCs 486 // connecting to the source remain between it and the target. This is 487 // a benign partition as it preserves postorder. 488 auto SourceI = std::stable_partition( 489 SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1, 490 [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); }); 491 for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i) 492 SCCIndices.find(SCCs[i])->second = i; 493 494 // If the target doesn't connect to the source, then we've corrected the 495 // post-order and there are no cycles formed. 496 if (!ConnectedSet.count(&TargetSCC)) { 497 assert(SourceI > (SCCs.begin() + SourceIdx) && 498 "Must have moved the source to fix the post-order."); 499 assert(*std::prev(SourceI) == &TargetSCC && 500 "Last SCC to move should have bene the target."); 501 502 // Return an empty range at the target SCC indicating there is nothing to 503 // merge. 504 return make_range(std::prev(SourceI), std::prev(SourceI)); 505 } 506 507 assert(SCCs[TargetIdx] == &TargetSCC && 508 "Should not have moved target if connected!"); 509 SourceIdx = SourceI - SCCs.begin(); 510 assert(SCCs[SourceIdx] == &SourceSCC && 511 "Bad updated index computation for the source SCC!"); 512 513 514 // See whether there are any remaining intervening SCCs between the source 515 // and target. If so we need to make sure they all are reachable form the 516 // target. 517 if (SourceIdx + 1 < TargetIdx) { 518 ConnectedSet.clear(); 519 ComputeTargetConnectedSet(ConnectedSet); 520 521 // Partition SCCs so that only SCCs reached from the target remain between 522 // the source and the target. This preserves postorder. 523 auto TargetI = std::stable_partition( 524 SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1, 525 [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); }); 526 for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i) 527 SCCIndices.find(SCCs[i])->second = i; 528 TargetIdx = std::prev(TargetI) - SCCs.begin(); 529 assert(SCCs[TargetIdx] == &TargetSCC && 530 "Should always end with the target!"); 531 } 532 533 // At this point, we know that connecting source to target forms a cycle 534 // because target connects back to source, and we know that all of the SCCs 535 // between the source and target in the postorder sequence participate in that 536 // cycle. 537 return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx); 538 } 539 540 bool 541 LazyCallGraph::RefSCC::switchInternalEdgeToCall( 542 Node &SourceN, Node &TargetN, 543 function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) { 544 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!"); 545 SmallVector<SCC *, 1> DeletedSCCs; 546 547 #ifndef NDEBUG 548 // In a debug build, verify the RefSCC is valid to start with and when this 549 // routine finishes. 550 verify(); 551 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 552 #endif 553 554 SCC &SourceSCC = *G->lookupSCC(SourceN); 555 SCC &TargetSCC = *G->lookupSCC(TargetN); 556 557 // If the two nodes are already part of the same SCC, we're also done as 558 // we've just added more connectivity. 559 if (&SourceSCC == &TargetSCC) { 560 SourceN->setEdgeKind(TargetN, Edge::Call); 561 return false; // No new cycle. 562 } 563 564 // At this point we leverage the postorder list of SCCs to detect when the 565 // insertion of an edge changes the SCC structure in any way. 566 // 567 // First and foremost, we can eliminate the need for any changes when the 568 // edge is toward the beginning of the postorder sequence because all edges 569 // flow in that direction already. Thus adding a new one cannot form a cycle. 570 int SourceIdx = SCCIndices[&SourceSCC]; 571 int TargetIdx = SCCIndices[&TargetSCC]; 572 if (TargetIdx < SourceIdx) { 573 SourceN->setEdgeKind(TargetN, Edge::Call); 574 return false; // No new cycle. 575 } 576 577 // Compute the SCCs which (transitively) reach the source. 578 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { 579 #ifndef NDEBUG 580 // Check that the RefSCC is still valid before computing this as the 581 // results will be nonsensical of we've broken its invariants. 582 verify(); 583 #endif 584 ConnectedSet.insert(&SourceSCC); 585 auto IsConnected = [&](SCC &C) { 586 for (Node &N : C) 587 for (Edge &E : N->calls()) 588 if (ConnectedSet.count(G->lookupSCC(E.getNode()))) 589 return true; 590 591 return false; 592 }; 593 594 for (SCC *C : 595 make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1)) 596 if (IsConnected(*C)) 597 ConnectedSet.insert(C); 598 }; 599 600 // Use a normal worklist to find which SCCs the target connects to. We still 601 // bound the search based on the range in the postorder list we care about, 602 // but because this is forward connectivity we just "recurse" through the 603 // edges. 604 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { 605 #ifndef NDEBUG 606 // Check that the RefSCC is still valid before computing this as the 607 // results will be nonsensical of we've broken its invariants. 608 verify(); 609 #endif 610 ConnectedSet.insert(&TargetSCC); 611 SmallVector<SCC *, 4> Worklist; 612 Worklist.push_back(&TargetSCC); 613 do { 614 SCC &C = *Worklist.pop_back_val(); 615 for (Node &N : C) 616 for (Edge &E : *N) { 617 if (!E.isCall()) 618 continue; 619 SCC &EdgeC = *G->lookupSCC(E.getNode()); 620 if (&EdgeC.getOuterRefSCC() != this) 621 // Not in this RefSCC... 622 continue; 623 if (SCCIndices.find(&EdgeC)->second <= SourceIdx) 624 // Not in the postorder sequence between source and target. 625 continue; 626 627 if (ConnectedSet.insert(&EdgeC).second) 628 Worklist.push_back(&EdgeC); 629 } 630 } while (!Worklist.empty()); 631 }; 632 633 // Use a generic helper to update the postorder sequence of SCCs and return 634 // a range of any SCCs connected into a cycle by inserting this edge. This 635 // routine will also take care of updating the indices into the postorder 636 // sequence. 637 auto MergeRange = updatePostorderSequenceForEdgeInsertion( 638 SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet, 639 ComputeTargetConnectedSet); 640 641 // Run the user's callback on the merged SCCs before we actually merge them. 642 if (MergeCB) 643 MergeCB(makeArrayRef(MergeRange.begin(), MergeRange.end())); 644 645 // If the merge range is empty, then adding the edge didn't actually form any 646 // new cycles. We're done. 647 if (MergeRange.empty()) { 648 // Now that the SCC structure is finalized, flip the kind to call. 649 SourceN->setEdgeKind(TargetN, Edge::Call); 650 return false; // No new cycle. 651 } 652 653 #ifndef NDEBUG 654 // Before merging, check that the RefSCC remains valid after all the 655 // postorder updates. 656 verify(); 657 #endif 658 659 // Otherwise we need to merge all of the SCCs in the cycle into a single 660 // result SCC. 661 // 662 // NB: We merge into the target because all of these functions were already 663 // reachable from the target, meaning any SCC-wide properties deduced about it 664 // other than the set of functions within it will not have changed. 665 for (SCC *C : MergeRange) { 666 assert(C != &TargetSCC && 667 "We merge *into* the target and shouldn't process it here!"); 668 SCCIndices.erase(C); 669 TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end()); 670 for (Node *N : C->Nodes) 671 G->SCCMap[N] = &TargetSCC; 672 C->clear(); 673 DeletedSCCs.push_back(C); 674 } 675 676 // Erase the merged SCCs from the list and update the indices of the 677 // remaining SCCs. 678 int IndexOffset = MergeRange.end() - MergeRange.begin(); 679 auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end()); 680 for (SCC *C : make_range(EraseEnd, SCCs.end())) 681 SCCIndices[C] -= IndexOffset; 682 683 // Now that the SCC structure is finalized, flip the kind to call. 684 SourceN->setEdgeKind(TargetN, Edge::Call); 685 686 // And we're done, but we did form a new cycle. 687 return true; 688 } 689 690 void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN, 691 Node &TargetN) { 692 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); 693 694 #ifndef NDEBUG 695 // In a debug build, verify the RefSCC is valid to start with and when this 696 // routine finishes. 697 verify(); 698 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 699 #endif 700 701 assert(G->lookupRefSCC(SourceN) == this && 702 "Source must be in this RefSCC."); 703 assert(G->lookupRefSCC(TargetN) == this && 704 "Target must be in this RefSCC."); 705 assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) && 706 "Source and Target must be in separate SCCs for this to be trivial!"); 707 708 // Set the edge kind. 709 SourceN->setEdgeKind(TargetN, Edge::Ref); 710 } 711 712 iterator_range<LazyCallGraph::RefSCC::iterator> 713 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) { 714 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); 715 716 #ifndef NDEBUG 717 // In a debug build, verify the RefSCC is valid to start with and when this 718 // routine finishes. 719 verify(); 720 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 721 #endif 722 723 assert(G->lookupRefSCC(SourceN) == this && 724 "Source must be in this RefSCC."); 725 assert(G->lookupRefSCC(TargetN) == this && 726 "Target must be in this RefSCC."); 727 728 SCC &TargetSCC = *G->lookupSCC(TargetN); 729 assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in " 730 "the same SCC to require the " 731 "full CG update."); 732 733 // Set the edge kind. 734 SourceN->setEdgeKind(TargetN, Edge::Ref); 735 736 // Otherwise we are removing a call edge from a single SCC. This may break 737 // the cycle. In order to compute the new set of SCCs, we need to do a small 738 // DFS over the nodes within the SCC to form any sub-cycles that remain as 739 // distinct SCCs and compute a postorder over the resulting SCCs. 740 // 741 // However, we specially handle the target node. The target node is known to 742 // reach all other nodes in the original SCC by definition. This means that 743 // we want the old SCC to be replaced with an SCC containing that node as it 744 // will be the root of whatever SCC DAG results from the DFS. Assumptions 745 // about an SCC such as the set of functions called will continue to hold, 746 // etc. 747 748 SCC &OldSCC = TargetSCC; 749 SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack; 750 SmallVector<Node *, 16> PendingSCCStack; 751 SmallVector<SCC *, 4> NewSCCs; 752 753 // Prepare the nodes for a fresh DFS. 754 SmallVector<Node *, 16> Worklist; 755 Worklist.swap(OldSCC.Nodes); 756 for (Node *N : Worklist) { 757 N->DFSNumber = N->LowLink = 0; 758 G->SCCMap.erase(N); 759 } 760 761 // Force the target node to be in the old SCC. This also enables us to take 762 // a very significant short-cut in the standard Tarjan walk to re-form SCCs 763 // below: whenever we build an edge that reaches the target node, we know 764 // that the target node eventually connects back to all other nodes in our 765 // walk. As a consequence, we can detect and handle participants in that 766 // cycle without walking all the edges that form this connection, and instead 767 // by relying on the fundamental guarantee coming into this operation (all 768 // nodes are reachable from the target due to previously forming an SCC). 769 TargetN.DFSNumber = TargetN.LowLink = -1; 770 OldSCC.Nodes.push_back(&TargetN); 771 G->SCCMap[&TargetN] = &OldSCC; 772 773 // Scan down the stack and DFS across the call edges. 774 for (Node *RootN : Worklist) { 775 assert(DFSStack.empty() && 776 "Cannot begin a new root with a non-empty DFS stack!"); 777 assert(PendingSCCStack.empty() && 778 "Cannot begin a new root with pending nodes for an SCC!"); 779 780 // Skip any nodes we've already reached in the DFS. 781 if (RootN->DFSNumber != 0) { 782 assert(RootN->DFSNumber == -1 && 783 "Shouldn't have any mid-DFS root nodes!"); 784 continue; 785 } 786 787 RootN->DFSNumber = RootN->LowLink = 1; 788 int NextDFSNumber = 2; 789 790 DFSStack.push_back({RootN, (*RootN)->call_begin()}); 791 do { 792 Node *N; 793 EdgeSequence::call_iterator I; 794 std::tie(N, I) = DFSStack.pop_back_val(); 795 auto E = (*N)->call_end(); 796 while (I != E) { 797 Node &ChildN = I->getNode(); 798 if (ChildN.DFSNumber == 0) { 799 // We haven't yet visited this child, so descend, pushing the current 800 // node onto the stack. 801 DFSStack.push_back({N, I}); 802 803 assert(!G->SCCMap.count(&ChildN) && 804 "Found a node with 0 DFS number but already in an SCC!"); 805 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; 806 N = &ChildN; 807 I = (*N)->call_begin(); 808 E = (*N)->call_end(); 809 continue; 810 } 811 812 // Check for the child already being part of some component. 813 if (ChildN.DFSNumber == -1) { 814 if (G->lookupSCC(ChildN) == &OldSCC) { 815 // If the child is part of the old SCC, we know that it can reach 816 // every other node, so we have formed a cycle. Pull the entire DFS 817 // and pending stacks into it. See the comment above about setting 818 // up the old SCC for why we do this. 819 int OldSize = OldSCC.size(); 820 OldSCC.Nodes.push_back(N); 821 OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end()); 822 PendingSCCStack.clear(); 823 while (!DFSStack.empty()) 824 OldSCC.Nodes.push_back(DFSStack.pop_back_val().first); 825 for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) { 826 N.DFSNumber = N.LowLink = -1; 827 G->SCCMap[&N] = &OldSCC; 828 } 829 N = nullptr; 830 break; 831 } 832 833 // If the child has already been added to some child component, it 834 // couldn't impact the low-link of this parent because it isn't 835 // connected, and thus its low-link isn't relevant so skip it. 836 ++I; 837 continue; 838 } 839 840 // Track the lowest linked child as the lowest link for this node. 841 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 842 if (ChildN.LowLink < N->LowLink) 843 N->LowLink = ChildN.LowLink; 844 845 // Move to the next edge. 846 ++I; 847 } 848 if (!N) 849 // Cleared the DFS early, start another round. 850 break; 851 852 // We've finished processing N and its descendants, put it on our pending 853 // SCC stack to eventually get merged into an SCC of nodes. 854 PendingSCCStack.push_back(N); 855 856 // If this node is linked to some lower entry, continue walking up the 857 // stack. 858 if (N->LowLink != N->DFSNumber) 859 continue; 860 861 // Otherwise, we've completed an SCC. Append it to our post order list of 862 // SCCs. 863 int RootDFSNumber = N->DFSNumber; 864 // Find the range of the node stack by walking down until we pass the 865 // root DFS number. 866 auto SCCNodes = make_range( 867 PendingSCCStack.rbegin(), 868 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { 869 return N->DFSNumber < RootDFSNumber; 870 })); 871 872 // Form a new SCC out of these nodes and then clear them off our pending 873 // stack. 874 NewSCCs.push_back(G->createSCC(*this, SCCNodes)); 875 for (Node &N : *NewSCCs.back()) { 876 N.DFSNumber = N.LowLink = -1; 877 G->SCCMap[&N] = NewSCCs.back(); 878 } 879 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); 880 } while (!DFSStack.empty()); 881 } 882 883 // Insert the remaining SCCs before the old one. The old SCC can reach all 884 // other SCCs we form because it contains the target node of the removed edge 885 // of the old SCC. This means that we will have edges into all of the new 886 // SCCs, which means the old one must come last for postorder. 887 int OldIdx = SCCIndices[&OldSCC]; 888 SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end()); 889 890 // Update the mapping from SCC* to index to use the new SCC*s, and remove the 891 // old SCC from the mapping. 892 for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx) 893 SCCIndices[SCCs[Idx]] = Idx; 894 895 return make_range(SCCs.begin() + OldIdx, 896 SCCs.begin() + OldIdx + NewSCCs.size()); 897 } 898 899 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN, 900 Node &TargetN) { 901 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!"); 902 903 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 904 assert(G->lookupRefSCC(TargetN) != this && 905 "Target must not be in this RefSCC."); 906 #ifdef EXPENSIVE_CHECKS 907 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 908 "Target must be a descendant of the Source."); 909 #endif 910 911 // Edges between RefSCCs are the same regardless of call or ref, so we can 912 // just flip the edge here. 913 SourceN->setEdgeKind(TargetN, Edge::Call); 914 915 #ifndef NDEBUG 916 // Check that the RefSCC is still valid. 917 verify(); 918 #endif 919 } 920 921 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN, 922 Node &TargetN) { 923 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); 924 925 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 926 assert(G->lookupRefSCC(TargetN) != this && 927 "Target must not be in this RefSCC."); 928 #ifdef EXPENSIVE_CHECKS 929 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 930 "Target must be a descendant of the Source."); 931 #endif 932 933 // Edges between RefSCCs are the same regardless of call or ref, so we can 934 // just flip the edge here. 935 SourceN->setEdgeKind(TargetN, Edge::Ref); 936 937 #ifndef NDEBUG 938 // Check that the RefSCC is still valid. 939 verify(); 940 #endif 941 } 942 943 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN, 944 Node &TargetN) { 945 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 946 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); 947 948 SourceN->insertEdgeInternal(TargetN, Edge::Ref); 949 950 #ifndef NDEBUG 951 // Check that the RefSCC is still valid. 952 verify(); 953 #endif 954 } 955 956 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN, 957 Edge::Kind EK) { 958 // First insert it into the caller. 959 SourceN->insertEdgeInternal(TargetN, EK); 960 961 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 962 963 assert(G->lookupRefSCC(TargetN) != this && 964 "Target must not be in this RefSCC."); 965 #ifdef EXPENSIVE_CHECKS 966 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 967 "Target must be a descendant of the Source."); 968 #endif 969 970 #ifndef NDEBUG 971 // Check that the RefSCC is still valid. 972 verify(); 973 #endif 974 } 975 976 SmallVector<LazyCallGraph::RefSCC *, 1> 977 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) { 978 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); 979 RefSCC &SourceC = *G->lookupRefSCC(SourceN); 980 assert(&SourceC != this && "Source must not be in this RefSCC."); 981 #ifdef EXPENSIVE_CHECKS 982 assert(SourceC.isDescendantOf(*this) && 983 "Source must be a descendant of the Target."); 984 #endif 985 986 SmallVector<RefSCC *, 1> DeletedRefSCCs; 987 988 #ifndef NDEBUG 989 // In a debug build, verify the RefSCC is valid to start with and when this 990 // routine finishes. 991 verify(); 992 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 993 #endif 994 995 int SourceIdx = G->RefSCCIndices[&SourceC]; 996 int TargetIdx = G->RefSCCIndices[this]; 997 assert(SourceIdx < TargetIdx && 998 "Postorder list doesn't see edge as incoming!"); 999 1000 // Compute the RefSCCs which (transitively) reach the source. We do this by 1001 // working backwards from the source using the parent set in each RefSCC, 1002 // skipping any RefSCCs that don't fall in the postorder range. This has the 1003 // advantage of walking the sparser parent edge (in high fan-out graphs) but 1004 // more importantly this removes examining all forward edges in all RefSCCs 1005 // within the postorder range which aren't in fact connected. Only connected 1006 // RefSCCs (and their edges) are visited here. 1007 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { 1008 Set.insert(&SourceC); 1009 auto IsConnected = [&](RefSCC &RC) { 1010 for (SCC &C : RC) 1011 for (Node &N : C) 1012 for (Edge &E : *N) 1013 if (Set.count(G->lookupRefSCC(E.getNode()))) 1014 return true; 1015 1016 return false; 1017 }; 1018 1019 for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1, 1020 G->PostOrderRefSCCs.begin() + TargetIdx + 1)) 1021 if (IsConnected(*C)) 1022 Set.insert(C); 1023 }; 1024 1025 // Use a normal worklist to find which SCCs the target connects to. We still 1026 // bound the search based on the range in the postorder list we care about, 1027 // but because this is forward connectivity we just "recurse" through the 1028 // edges. 1029 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { 1030 Set.insert(this); 1031 SmallVector<RefSCC *, 4> Worklist; 1032 Worklist.push_back(this); 1033 do { 1034 RefSCC &RC = *Worklist.pop_back_val(); 1035 for (SCC &C : RC) 1036 for (Node &N : C) 1037 for (Edge &E : *N) { 1038 RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode()); 1039 if (G->getRefSCCIndex(EdgeRC) <= SourceIdx) 1040 // Not in the postorder sequence between source and target. 1041 continue; 1042 1043 if (Set.insert(&EdgeRC).second) 1044 Worklist.push_back(&EdgeRC); 1045 } 1046 } while (!Worklist.empty()); 1047 }; 1048 1049 // Use a generic helper to update the postorder sequence of RefSCCs and return 1050 // a range of any RefSCCs connected into a cycle by inserting this edge. This 1051 // routine will also take care of updating the indices into the postorder 1052 // sequence. 1053 iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange = 1054 updatePostorderSequenceForEdgeInsertion( 1055 SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices, 1056 ComputeSourceConnectedSet, ComputeTargetConnectedSet); 1057 1058 // Build a set so we can do fast tests for whether a RefSCC will end up as 1059 // part of the merged RefSCC. 1060 SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end()); 1061 1062 // This RefSCC will always be part of that set, so just insert it here. 1063 MergeSet.insert(this); 1064 1065 // Now that we have identified all of the SCCs which need to be merged into 1066 // a connected set with the inserted edge, merge all of them into this SCC. 1067 SmallVector<SCC *, 16> MergedSCCs; 1068 int SCCIndex = 0; 1069 for (RefSCC *RC : MergeRange) { 1070 assert(RC != this && "We're merging into the target RefSCC, so it " 1071 "shouldn't be in the range."); 1072 1073 // Walk the inner SCCs to update their up-pointer and walk all the edges to 1074 // update any parent sets. 1075 // FIXME: We should try to find a way to avoid this (rather expensive) edge 1076 // walk by updating the parent sets in some other manner. 1077 for (SCC &InnerC : *RC) { 1078 InnerC.OuterRefSCC = this; 1079 SCCIndices[&InnerC] = SCCIndex++; 1080 for (Node &N : InnerC) 1081 G->SCCMap[&N] = &InnerC; 1082 } 1083 1084 // Now merge in the SCCs. We can actually move here so try to reuse storage 1085 // the first time through. 1086 if (MergedSCCs.empty()) 1087 MergedSCCs = std::move(RC->SCCs); 1088 else 1089 MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end()); 1090 RC->SCCs.clear(); 1091 DeletedRefSCCs.push_back(RC); 1092 } 1093 1094 // Append our original SCCs to the merged list and move it into place. 1095 for (SCC &InnerC : *this) 1096 SCCIndices[&InnerC] = SCCIndex++; 1097 MergedSCCs.append(SCCs.begin(), SCCs.end()); 1098 SCCs = std::move(MergedSCCs); 1099 1100 // Remove the merged away RefSCCs from the post order sequence. 1101 for (RefSCC *RC : MergeRange) 1102 G->RefSCCIndices.erase(RC); 1103 int IndexOffset = MergeRange.end() - MergeRange.begin(); 1104 auto EraseEnd = 1105 G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end()); 1106 for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end())) 1107 G->RefSCCIndices[RC] -= IndexOffset; 1108 1109 // At this point we have a merged RefSCC with a post-order SCCs list, just 1110 // connect the nodes to form the new edge. 1111 SourceN->insertEdgeInternal(TargetN, Edge::Ref); 1112 1113 // We return the list of SCCs which were merged so that callers can 1114 // invalidate any data they have associated with those SCCs. Note that these 1115 // SCCs are no longer in an interesting state (they are totally empty) but 1116 // the pointers will remain stable for the life of the graph itself. 1117 return DeletedRefSCCs; 1118 } 1119 1120 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) { 1121 assert(G->lookupRefSCC(SourceN) == this && 1122 "The source must be a member of this RefSCC."); 1123 assert(G->lookupRefSCC(TargetN) != this && 1124 "The target must not be a member of this RefSCC"); 1125 1126 #ifndef NDEBUG 1127 // In a debug build, verify the RefSCC is valid to start with and when this 1128 // routine finishes. 1129 verify(); 1130 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 1131 #endif 1132 1133 // First remove it from the node. 1134 bool Removed = SourceN->removeEdgeInternal(TargetN); 1135 (void)Removed; 1136 assert(Removed && "Target not in the edge set for this caller?"); 1137 } 1138 1139 SmallVector<LazyCallGraph::RefSCC *, 1> 1140 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, 1141 ArrayRef<Node *> TargetNs) { 1142 // We return a list of the resulting *new* RefSCCs in post-order. 1143 SmallVector<RefSCC *, 1> Result; 1144 1145 #ifndef NDEBUG 1146 // In a debug build, verify the RefSCC is valid to start with and that either 1147 // we return an empty list of result RefSCCs and this RefSCC remains valid, 1148 // or we return new RefSCCs and this RefSCC is dead. 1149 verify(); 1150 auto VerifyOnExit = make_scope_exit([&]() { 1151 // If we didn't replace our RefSCC with new ones, check that this one 1152 // remains valid. 1153 if (G) 1154 verify(); 1155 }); 1156 #endif 1157 1158 // First remove the actual edges. 1159 for (Node *TargetN : TargetNs) { 1160 assert(!(*SourceN)[*TargetN].isCall() && 1161 "Cannot remove a call edge, it must first be made a ref edge"); 1162 1163 bool Removed = SourceN->removeEdgeInternal(*TargetN); 1164 (void)Removed; 1165 assert(Removed && "Target not in the edge set for this caller?"); 1166 } 1167 1168 // Direct self references don't impact the ref graph at all. 1169 if (llvm::all_of(TargetNs, 1170 [&](Node *TargetN) { return &SourceN == TargetN; })) 1171 return Result; 1172 1173 // If all targets are in the same SCC as the source, because no call edges 1174 // were removed there is no RefSCC structure change. 1175 SCC &SourceC = *G->lookupSCC(SourceN); 1176 if (llvm::all_of(TargetNs, [&](Node *TargetN) { 1177 return G->lookupSCC(*TargetN) == &SourceC; 1178 })) 1179 return Result; 1180 1181 // We build somewhat synthetic new RefSCCs by providing a postorder mapping 1182 // for each inner SCC. We store these inside the low-link field of the nodes 1183 // rather than associated with SCCs because this saves a round-trip through 1184 // the node->SCC map and in the common case, SCCs are small. We will verify 1185 // that we always give the same number to every node in the SCC such that 1186 // these are equivalent. 1187 int PostOrderNumber = 0; 1188 1189 // Reset all the other nodes to prepare for a DFS over them, and add them to 1190 // our worklist. 1191 SmallVector<Node *, 8> Worklist; 1192 for (SCC *C : SCCs) { 1193 for (Node &N : *C) 1194 N.DFSNumber = N.LowLink = 0; 1195 1196 Worklist.append(C->Nodes.begin(), C->Nodes.end()); 1197 } 1198 1199 // Track the number of nodes in this RefSCC so that we can quickly recognize 1200 // an important special case of the edge removal not breaking the cycle of 1201 // this RefSCC. 1202 const int NumRefSCCNodes = Worklist.size(); 1203 1204 SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack; 1205 SmallVector<Node *, 4> PendingRefSCCStack; 1206 do { 1207 assert(DFSStack.empty() && 1208 "Cannot begin a new root with a non-empty DFS stack!"); 1209 assert(PendingRefSCCStack.empty() && 1210 "Cannot begin a new root with pending nodes for an SCC!"); 1211 1212 Node *RootN = Worklist.pop_back_val(); 1213 // Skip any nodes we've already reached in the DFS. 1214 if (RootN->DFSNumber != 0) { 1215 assert(RootN->DFSNumber == -1 && 1216 "Shouldn't have any mid-DFS root nodes!"); 1217 continue; 1218 } 1219 1220 RootN->DFSNumber = RootN->LowLink = 1; 1221 int NextDFSNumber = 2; 1222 1223 DFSStack.push_back({RootN, (*RootN)->begin()}); 1224 do { 1225 Node *N; 1226 EdgeSequence::iterator I; 1227 std::tie(N, I) = DFSStack.pop_back_val(); 1228 auto E = (*N)->end(); 1229 1230 assert(N->DFSNumber != 0 && "We should always assign a DFS number " 1231 "before processing a node."); 1232 1233 while (I != E) { 1234 Node &ChildN = I->getNode(); 1235 if (ChildN.DFSNumber == 0) { 1236 // Mark that we should start at this child when next this node is the 1237 // top of the stack. We don't start at the next child to ensure this 1238 // child's lowlink is reflected. 1239 DFSStack.push_back({N, I}); 1240 1241 // Continue, resetting to the child node. 1242 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; 1243 N = &ChildN; 1244 I = ChildN->begin(); 1245 E = ChildN->end(); 1246 continue; 1247 } 1248 if (ChildN.DFSNumber == -1) { 1249 // If this child isn't currently in this RefSCC, no need to process 1250 // it. 1251 ++I; 1252 continue; 1253 } 1254 1255 // Track the lowest link of the children, if any are still in the stack. 1256 // Any child not on the stack will have a LowLink of -1. 1257 assert(ChildN.LowLink != 0 && 1258 "Low-link must not be zero with a non-zero DFS number."); 1259 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) 1260 N->LowLink = ChildN.LowLink; 1261 ++I; 1262 } 1263 1264 // We've finished processing N and its descendants, put it on our pending 1265 // stack to eventually get merged into a RefSCC. 1266 PendingRefSCCStack.push_back(N); 1267 1268 // If this node is linked to some lower entry, continue walking up the 1269 // stack. 1270 if (N->LowLink != N->DFSNumber) { 1271 assert(!DFSStack.empty() && 1272 "We never found a viable root for a RefSCC to pop off!"); 1273 continue; 1274 } 1275 1276 // Otherwise, form a new RefSCC from the top of the pending node stack. 1277 int RefSCCNumber = PostOrderNumber++; 1278 int RootDFSNumber = N->DFSNumber; 1279 1280 // Find the range of the node stack by walking down until we pass the 1281 // root DFS number. Update the DFS numbers and low link numbers in the 1282 // process to avoid re-walking this list where possible. 1283 auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) { 1284 if (N->DFSNumber < RootDFSNumber) 1285 // We've found the bottom. 1286 return true; 1287 1288 // Update this node and keep scanning. 1289 N->DFSNumber = -1; 1290 // Save the post-order number in the lowlink field so that we can use 1291 // it to map SCCs into new RefSCCs after we finish the DFS. 1292 N->LowLink = RefSCCNumber; 1293 return false; 1294 }); 1295 auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end()); 1296 1297 // If we find a cycle containing all nodes originally in this RefSCC then 1298 // the removal hasn't changed the structure at all. This is an important 1299 // special case and we can directly exit the entire routine more 1300 // efficiently as soon as we discover it. 1301 if (llvm::size(RefSCCNodes) == NumRefSCCNodes) { 1302 // Clear out the low link field as we won't need it. 1303 for (Node *N : RefSCCNodes) 1304 N->LowLink = -1; 1305 // Return the empty result immediately. 1306 return Result; 1307 } 1308 1309 // We've already marked the nodes internally with the RefSCC number so 1310 // just clear them off the stack and continue. 1311 PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end()); 1312 } while (!DFSStack.empty()); 1313 1314 assert(DFSStack.empty() && "Didn't flush the entire DFS stack!"); 1315 assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!"); 1316 } while (!Worklist.empty()); 1317 1318 assert(PostOrderNumber > 1 && 1319 "Should never finish the DFS when the existing RefSCC remains valid!"); 1320 1321 // Otherwise we create a collection of new RefSCC nodes and build 1322 // a radix-sort style map from postorder number to these new RefSCCs. We then 1323 // append SCCs to each of these RefSCCs in the order they occurred in the 1324 // original SCCs container. 1325 for (int i = 0; i < PostOrderNumber; ++i) 1326 Result.push_back(G->createRefSCC(*G)); 1327 1328 // Insert the resulting postorder sequence into the global graph postorder 1329 // sequence before the current RefSCC in that sequence, and then remove the 1330 // current one. 1331 // 1332 // FIXME: It'd be nice to change the APIs so that we returned an iterator 1333 // range over the global postorder sequence and generally use that sequence 1334 // rather than building a separate result vector here. 1335 int Idx = G->getRefSCCIndex(*this); 1336 G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx); 1337 G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(), 1338 Result.end()); 1339 for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size())) 1340 G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i; 1341 1342 for (SCC *C : SCCs) { 1343 // We store the SCC number in the node's low-link field above. 1344 int SCCNumber = C->begin()->LowLink; 1345 // Clear out all of the SCC's node's low-link fields now that we're done 1346 // using them as side-storage. 1347 for (Node &N : *C) { 1348 assert(N.LowLink == SCCNumber && 1349 "Cannot have different numbers for nodes in the same SCC!"); 1350 N.LowLink = -1; 1351 } 1352 1353 RefSCC &RC = *Result[SCCNumber]; 1354 int SCCIndex = RC.SCCs.size(); 1355 RC.SCCs.push_back(C); 1356 RC.SCCIndices[C] = SCCIndex; 1357 C->OuterRefSCC = &RC; 1358 } 1359 1360 // Now that we've moved things into the new RefSCCs, clear out our current 1361 // one. 1362 G = nullptr; 1363 SCCs.clear(); 1364 SCCIndices.clear(); 1365 1366 #ifndef NDEBUG 1367 // Verify the new RefSCCs we've built. 1368 for (RefSCC *RC : Result) 1369 RC->verify(); 1370 #endif 1371 1372 // Return the new list of SCCs. 1373 return Result; 1374 } 1375 1376 void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN, 1377 Node &TargetN) { 1378 // The only trivial case that requires any graph updates is when we add new 1379 // ref edge and may connect different RefSCCs along that path. This is only 1380 // because of the parents set. Every other part of the graph remains constant 1381 // after this edge insertion. 1382 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 1383 RefSCC &TargetRC = *G->lookupRefSCC(TargetN); 1384 if (&TargetRC == this) 1385 return; 1386 1387 #ifdef EXPENSIVE_CHECKS 1388 assert(TargetRC.isDescendantOf(*this) && 1389 "Target must be a descendant of the Source."); 1390 #endif 1391 } 1392 1393 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN, 1394 Node &TargetN) { 1395 #ifndef NDEBUG 1396 // Check that the RefSCC is still valid when we finish. 1397 auto ExitVerifier = make_scope_exit([this] { verify(); }); 1398 1399 #ifdef EXPENSIVE_CHECKS 1400 // Check that we aren't breaking some invariants of the SCC graph. Note that 1401 // this is quadratic in the number of edges in the call graph! 1402 SCC &SourceC = *G->lookupSCC(SourceN); 1403 SCC &TargetC = *G->lookupSCC(TargetN); 1404 if (&SourceC != &TargetC) 1405 assert(SourceC.isAncestorOf(TargetC) && 1406 "Call edge is not trivial in the SCC graph!"); 1407 #endif // EXPENSIVE_CHECKS 1408 #endif // NDEBUG 1409 1410 // First insert it into the source or find the existing edge. 1411 auto InsertResult = 1412 SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()}); 1413 if (!InsertResult.second) { 1414 // Already an edge, just update it. 1415 Edge &E = SourceN->Edges[InsertResult.first->second]; 1416 if (E.isCall()) 1417 return; // Nothing to do! 1418 E.setKind(Edge::Call); 1419 } else { 1420 // Create the new edge. 1421 SourceN->Edges.emplace_back(TargetN, Edge::Call); 1422 } 1423 1424 // Now that we have the edge, handle the graph fallout. 1425 handleTrivialEdgeInsertion(SourceN, TargetN); 1426 } 1427 1428 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) { 1429 #ifndef NDEBUG 1430 // Check that the RefSCC is still valid when we finish. 1431 auto ExitVerifier = make_scope_exit([this] { verify(); }); 1432 1433 #ifdef EXPENSIVE_CHECKS 1434 // Check that we aren't breaking some invariants of the RefSCC graph. 1435 RefSCC &SourceRC = *G->lookupRefSCC(SourceN); 1436 RefSCC &TargetRC = *G->lookupRefSCC(TargetN); 1437 if (&SourceRC != &TargetRC) 1438 assert(SourceRC.isAncestorOf(TargetRC) && 1439 "Ref edge is not trivial in the RefSCC graph!"); 1440 #endif // EXPENSIVE_CHECKS 1441 #endif // NDEBUG 1442 1443 // First insert it into the source or find the existing edge. 1444 auto InsertResult = 1445 SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()}); 1446 if (!InsertResult.second) 1447 // Already an edge, we're done. 1448 return; 1449 1450 // Create the new edge. 1451 SourceN->Edges.emplace_back(TargetN, Edge::Ref); 1452 1453 // Now that we have the edge, handle the graph fallout. 1454 handleTrivialEdgeInsertion(SourceN, TargetN); 1455 } 1456 1457 void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) { 1458 Function &OldF = N.getFunction(); 1459 1460 #ifndef NDEBUG 1461 // Check that the RefSCC is still valid when we finish. 1462 auto ExitVerifier = make_scope_exit([this] { verify(); }); 1463 1464 assert(G->lookupRefSCC(N) == this && 1465 "Cannot replace the function of a node outside this RefSCC."); 1466 1467 assert(G->NodeMap.find(&NewF) == G->NodeMap.end() && 1468 "Must not have already walked the new function!'"); 1469 1470 // It is important that this replacement not introduce graph changes so we 1471 // insist that the caller has already removed every use of the original 1472 // function and that all uses of the new function correspond to existing 1473 // edges in the graph. The common and expected way to use this is when 1474 // replacing the function itself in the IR without changing the call graph 1475 // shape and just updating the analysis based on that. 1476 assert(&OldF != &NewF && "Cannot replace a function with itself!"); 1477 assert(OldF.use_empty() && 1478 "Must have moved all uses from the old function to the new!"); 1479 #endif 1480 1481 N.replaceFunction(NewF); 1482 1483 // Update various call graph maps. 1484 G->NodeMap.erase(&OldF); 1485 G->NodeMap[&NewF] = &N; 1486 } 1487 1488 void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) { 1489 assert(SCCMap.empty() && 1490 "This method cannot be called after SCCs have been formed!"); 1491 1492 return SourceN->insertEdgeInternal(TargetN, EK); 1493 } 1494 1495 void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) { 1496 assert(SCCMap.empty() && 1497 "This method cannot be called after SCCs have been formed!"); 1498 1499 bool Removed = SourceN->removeEdgeInternal(TargetN); 1500 (void)Removed; 1501 assert(Removed && "Target not in the edge set for this caller?"); 1502 } 1503 1504 void LazyCallGraph::removeDeadFunction(Function &F) { 1505 // FIXME: This is unnecessarily restrictive. We should be able to remove 1506 // functions which recursively call themselves. 1507 assert(F.use_empty() && 1508 "This routine should only be called on trivially dead functions!"); 1509 1510 // We shouldn't remove library functions as they are never really dead while 1511 // the call graph is in use -- every function definition refers to them. 1512 assert(!isLibFunction(F) && 1513 "Must not remove lib functions from the call graph!"); 1514 1515 auto NI = NodeMap.find(&F); 1516 if (NI == NodeMap.end()) 1517 // Not in the graph at all! 1518 return; 1519 1520 Node &N = *NI->second; 1521 NodeMap.erase(NI); 1522 1523 // Remove this from the entry edges if present. 1524 EntryEdges.removeEdgeInternal(N); 1525 1526 if (SCCMap.empty()) { 1527 // No SCCs have been formed, so removing this is fine and there is nothing 1528 // else necessary at this point but clearing out the node. 1529 N.clear(); 1530 return; 1531 } 1532 1533 // Cannot remove a function which has yet to be visited in the DFS walk, so 1534 // if we have a node at all then we must have an SCC and RefSCC. 1535 auto CI = SCCMap.find(&N); 1536 assert(CI != SCCMap.end() && 1537 "Tried to remove a node without an SCC after DFS walk started!"); 1538 SCC &C = *CI->second; 1539 SCCMap.erase(CI); 1540 RefSCC &RC = C.getOuterRefSCC(); 1541 1542 // This node must be the only member of its SCC as it has no callers, and 1543 // that SCC must be the only member of a RefSCC as it has no references. 1544 // Validate these properties first. 1545 assert(C.size() == 1 && "Dead functions must be in a singular SCC"); 1546 assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC"); 1547 1548 auto RCIndexI = RefSCCIndices.find(&RC); 1549 int RCIndex = RCIndexI->second; 1550 PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex); 1551 RefSCCIndices.erase(RCIndexI); 1552 for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i) 1553 RefSCCIndices[PostOrderRefSCCs[i]] = i; 1554 1555 // Finally clear out all the data structures from the node down through the 1556 // components. 1557 N.clear(); 1558 N.G = nullptr; 1559 N.F = nullptr; 1560 C.clear(); 1561 RC.clear(); 1562 RC.G = nullptr; 1563 1564 // Nothing to delete as all the objects are allocated in stable bump pointer 1565 // allocators. 1566 } 1567 1568 void LazyCallGraph::addNewFunctionIntoSCC(Function &NewF, SCC &C) { 1569 addNodeToSCC(C, createNode(NewF)); 1570 } 1571 1572 void LazyCallGraph::addNewFunctionIntoRefSCC(Function &NewF, RefSCC &RC) { 1573 Node &N = createNode(NewF); 1574 1575 auto *C = createSCC(RC, SmallVector<Node *, 1>()); 1576 addNodeToSCC(*C, N); 1577 1578 auto Index = RC.SCCIndices.size(); 1579 RC.SCCIndices[C] = Index; 1580 RC.SCCs.push_back(C); 1581 } 1582 1583 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) { 1584 return *new (MappedN = BPA.Allocate()) Node(*this, F); 1585 } 1586 1587 void LazyCallGraph::updateGraphPtrs() { 1588 // Walk the node map to update their graph pointers. While this iterates in 1589 // an unstable order, the order has no effect so it remains correct. 1590 for (auto &FunctionNodePair : NodeMap) 1591 FunctionNodePair.second->G = this; 1592 1593 for (auto *RC : PostOrderRefSCCs) 1594 RC->G = this; 1595 } 1596 1597 LazyCallGraph::Node &LazyCallGraph::createNode(Function &F) { 1598 assert(!lookup(F) && "node already exists"); 1599 1600 Node &N = get(F); 1601 NodeMap[&F] = &N; 1602 N.DFSNumber = N.LowLink = -1; 1603 N.populate(); 1604 return N; 1605 } 1606 1607 void LazyCallGraph::addNodeToSCC(LazyCallGraph::SCC &C, Node &N) { 1608 C.Nodes.push_back(&N); 1609 SCCMap[&N] = &C; 1610 } 1611 1612 template <typename RootsT, typename GetBeginT, typename GetEndT, 1613 typename GetNodeT, typename FormSCCCallbackT> 1614 void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin, 1615 GetEndT &&GetEnd, GetNodeT &&GetNode, 1616 FormSCCCallbackT &&FormSCC) { 1617 using EdgeItT = decltype(GetBegin(std::declval<Node &>())); 1618 1619 SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack; 1620 SmallVector<Node *, 16> PendingSCCStack; 1621 1622 // Scan down the stack and DFS across the call edges. 1623 for (Node *RootN : Roots) { 1624 assert(DFSStack.empty() && 1625 "Cannot begin a new root with a non-empty DFS stack!"); 1626 assert(PendingSCCStack.empty() && 1627 "Cannot begin a new root with pending nodes for an SCC!"); 1628 1629 // Skip any nodes we've already reached in the DFS. 1630 if (RootN->DFSNumber != 0) { 1631 assert(RootN->DFSNumber == -1 && 1632 "Shouldn't have any mid-DFS root nodes!"); 1633 continue; 1634 } 1635 1636 RootN->DFSNumber = RootN->LowLink = 1; 1637 int NextDFSNumber = 2; 1638 1639 DFSStack.push_back({RootN, GetBegin(*RootN)}); 1640 do { 1641 Node *N; 1642 EdgeItT I; 1643 std::tie(N, I) = DFSStack.pop_back_val(); 1644 auto E = GetEnd(*N); 1645 while (I != E) { 1646 Node &ChildN = GetNode(I); 1647 if (ChildN.DFSNumber == 0) { 1648 // We haven't yet visited this child, so descend, pushing the current 1649 // node onto the stack. 1650 DFSStack.push_back({N, I}); 1651 1652 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; 1653 N = &ChildN; 1654 I = GetBegin(*N); 1655 E = GetEnd(*N); 1656 continue; 1657 } 1658 1659 // If the child has already been added to some child component, it 1660 // couldn't impact the low-link of this parent because it isn't 1661 // connected, and thus its low-link isn't relevant so skip it. 1662 if (ChildN.DFSNumber == -1) { 1663 ++I; 1664 continue; 1665 } 1666 1667 // Track the lowest linked child as the lowest link for this node. 1668 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 1669 if (ChildN.LowLink < N->LowLink) 1670 N->LowLink = ChildN.LowLink; 1671 1672 // Move to the next edge. 1673 ++I; 1674 } 1675 1676 // We've finished processing N and its descendants, put it on our pending 1677 // SCC stack to eventually get merged into an SCC of nodes. 1678 PendingSCCStack.push_back(N); 1679 1680 // If this node is linked to some lower entry, continue walking up the 1681 // stack. 1682 if (N->LowLink != N->DFSNumber) 1683 continue; 1684 1685 // Otherwise, we've completed an SCC. Append it to our post order list of 1686 // SCCs. 1687 int RootDFSNumber = N->DFSNumber; 1688 // Find the range of the node stack by walking down until we pass the 1689 // root DFS number. 1690 auto SCCNodes = make_range( 1691 PendingSCCStack.rbegin(), 1692 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { 1693 return N->DFSNumber < RootDFSNumber; 1694 })); 1695 // Form a new SCC out of these nodes and then clear them off our pending 1696 // stack. 1697 FormSCC(SCCNodes); 1698 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); 1699 } while (!DFSStack.empty()); 1700 } 1701 } 1702 1703 /// Build the internal SCCs for a RefSCC from a sequence of nodes. 1704 /// 1705 /// Appends the SCCs to the provided vector and updates the map with their 1706 /// indices. Both the vector and map must be empty when passed into this 1707 /// routine. 1708 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) { 1709 assert(RC.SCCs.empty() && "Already built SCCs!"); 1710 assert(RC.SCCIndices.empty() && "Already mapped SCC indices!"); 1711 1712 for (Node *N : Nodes) { 1713 assert(N->LowLink >= (*Nodes.begin())->LowLink && 1714 "We cannot have a low link in an SCC lower than its root on the " 1715 "stack!"); 1716 1717 // This node will go into the next RefSCC, clear out its DFS and low link 1718 // as we scan. 1719 N->DFSNumber = N->LowLink = 0; 1720 } 1721 1722 // Each RefSCC contains a DAG of the call SCCs. To build these, we do 1723 // a direct walk of the call edges using Tarjan's algorithm. We reuse the 1724 // internal storage as we won't need it for the outer graph's DFS any longer. 1725 buildGenericSCCs( 1726 Nodes, [](Node &N) { return N->call_begin(); }, 1727 [](Node &N) { return N->call_end(); }, 1728 [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); }, 1729 [this, &RC](node_stack_range Nodes) { 1730 RC.SCCs.push_back(createSCC(RC, Nodes)); 1731 for (Node &N : *RC.SCCs.back()) { 1732 N.DFSNumber = N.LowLink = -1; 1733 SCCMap[&N] = RC.SCCs.back(); 1734 } 1735 }); 1736 1737 // Wire up the SCC indices. 1738 for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i) 1739 RC.SCCIndices[RC.SCCs[i]] = i; 1740 } 1741 1742 void LazyCallGraph::buildRefSCCs() { 1743 if (EntryEdges.empty() || !PostOrderRefSCCs.empty()) 1744 // RefSCCs are either non-existent or already built! 1745 return; 1746 1747 assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!"); 1748 1749 SmallVector<Node *, 16> Roots; 1750 for (Edge &E : *this) 1751 Roots.push_back(&E.getNode()); 1752 1753 // The roots will be popped of a stack, so use reverse to get a less 1754 // surprising order. This doesn't change any of the semantics anywhere. 1755 std::reverse(Roots.begin(), Roots.end()); 1756 1757 buildGenericSCCs( 1758 Roots, 1759 [](Node &N) { 1760 // We need to populate each node as we begin to walk its edges. 1761 N.populate(); 1762 return N->begin(); 1763 }, 1764 [](Node &N) { return N->end(); }, 1765 [](EdgeSequence::iterator I) -> Node & { return I->getNode(); }, 1766 [this](node_stack_range Nodes) { 1767 RefSCC *NewRC = createRefSCC(*this); 1768 buildSCCs(*NewRC, Nodes); 1769 1770 // Push the new node into the postorder list and remember its position 1771 // in the index map. 1772 bool Inserted = 1773 RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second; 1774 (void)Inserted; 1775 assert(Inserted && "Cannot already have this RefSCC in the index map!"); 1776 PostOrderRefSCCs.push_back(NewRC); 1777 #ifndef NDEBUG 1778 NewRC->verify(); 1779 #endif 1780 }); 1781 } 1782 1783 AnalysisKey LazyCallGraphAnalysis::Key; 1784 1785 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {} 1786 1787 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) { 1788 OS << " Edges in function: " << N.getFunction().getName() << "\n"; 1789 for (LazyCallGraph::Edge &E : N.populate()) 1790 OS << " " << (E.isCall() ? "call" : "ref ") << " -> " 1791 << E.getFunction().getName() << "\n"; 1792 1793 OS << "\n"; 1794 } 1795 1796 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) { 1797 OS << " SCC with " << C.size() << " functions:\n"; 1798 1799 for (LazyCallGraph::Node &N : C) 1800 OS << " " << N.getFunction().getName() << "\n"; 1801 } 1802 1803 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) { 1804 OS << " RefSCC with " << C.size() << " call SCCs:\n"; 1805 1806 for (LazyCallGraph::SCC &InnerC : C) 1807 printSCC(OS, InnerC); 1808 1809 OS << "\n"; 1810 } 1811 1812 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M, 1813 ModuleAnalysisManager &AM) { 1814 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); 1815 1816 OS << "Printing the call graph for module: " << M.getModuleIdentifier() 1817 << "\n\n"; 1818 1819 for (Function &F : M) 1820 printNode(OS, G.get(F)); 1821 1822 G.buildRefSCCs(); 1823 for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs()) 1824 printRefSCC(OS, C); 1825 1826 return PreservedAnalyses::all(); 1827 } 1828 1829 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS) 1830 : OS(OS) {} 1831 1832 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) { 1833 std::string Name = 1834 "\"" + DOT::EscapeString(std::string(N.getFunction().getName())) + "\""; 1835 1836 for (LazyCallGraph::Edge &E : N.populate()) { 1837 OS << " " << Name << " -> \"" 1838 << DOT::EscapeString(std::string(E.getFunction().getName())) << "\""; 1839 if (!E.isCall()) // It is a ref edge. 1840 OS << " [style=dashed,label=\"ref\"]"; 1841 OS << ";\n"; 1842 } 1843 1844 OS << "\n"; 1845 } 1846 1847 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M, 1848 ModuleAnalysisManager &AM) { 1849 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); 1850 1851 OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n"; 1852 1853 for (Function &F : M) 1854 printNodeDOT(OS, G.get(F)); 1855 1856 OS << "}\n"; 1857 1858 return PreservedAnalyses::all(); 1859 } 1860