xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/LazyCallGraph.cpp (revision 25ecdc7d52770caf1c9b44b5ec11f468f6b636f3)
1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/LazyCallGraph.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/ScopeExit.h"
13 #include "llvm/ADT/Sequence.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/Analysis/VectorUtils.h"
19 #include "llvm/Config/llvm-config.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalVariable.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/GraphWriter.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstddef>
33 #include <iterator>
34 #include <string>
35 #include <tuple>
36 #include <utility>
37 
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "lcg"
41 
42 void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN,
43                                                      Edge::Kind EK) {
44   EdgeIndexMap.insert({&TargetN, Edges.size()});
45   Edges.emplace_back(TargetN, EK);
46 }
47 
48 void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) {
49   Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK);
50 }
51 
52 bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) {
53   auto IndexMapI = EdgeIndexMap.find(&TargetN);
54   if (IndexMapI == EdgeIndexMap.end())
55     return false;
56 
57   Edges[IndexMapI->second] = Edge();
58   EdgeIndexMap.erase(IndexMapI);
59   return true;
60 }
61 
62 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
63                     DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap,
64                     LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) {
65   if (!EdgeIndexMap.insert({&N, Edges.size()}).second)
66     return;
67 
68   LLVM_DEBUG(dbgs() << "    Added callable function: " << N.getName() << "\n");
69   Edges.emplace_back(LazyCallGraph::Edge(N, EK));
70 }
71 
72 LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() {
73   assert(!Edges && "Must not have already populated the edges for this node!");
74 
75   LLVM_DEBUG(dbgs() << "  Adding functions called by '" << getName()
76                     << "' to the graph.\n");
77 
78   Edges = EdgeSequence();
79 
80   SmallVector<Constant *, 16> Worklist;
81   SmallPtrSet<Function *, 4> Callees;
82   SmallPtrSet<Constant *, 16> Visited;
83 
84   // Find all the potential call graph edges in this function. We track both
85   // actual call edges and indirect references to functions. The direct calls
86   // are trivially added, but to accumulate the latter we walk the instructions
87   // and add every operand which is a constant to the worklist to process
88   // afterward.
89   //
90   // Note that we consider *any* function with a definition to be a viable
91   // edge. Even if the function's definition is subject to replacement by
92   // some other module (say, a weak definition) there may still be
93   // optimizations which essentially speculate based on the definition and
94   // a way to check that the specific definition is in fact the one being
95   // used. For example, this could be done by moving the weak definition to
96   // a strong (internal) definition and making the weak definition be an
97   // alias. Then a test of the address of the weak function against the new
98   // strong definition's address would be an effective way to determine the
99   // safety of optimizing a direct call edge.
100   for (BasicBlock &BB : *F)
101     for (Instruction &I : BB) {
102       if (auto *CB = dyn_cast<CallBase>(&I))
103         if (Function *Callee = CB->getCalledFunction())
104           if (!Callee->isDeclaration())
105             if (Callees.insert(Callee).second) {
106               Visited.insert(Callee);
107               addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee),
108                       LazyCallGraph::Edge::Call);
109             }
110 
111       for (Value *Op : I.operand_values())
112         if (Constant *C = dyn_cast<Constant>(Op))
113           if (Visited.insert(C).second)
114             Worklist.push_back(C);
115     }
116 
117   // We've collected all the constant (and thus potentially function or
118   // function containing) operands to all of the instructions in the function.
119   // Process them (recursively) collecting every function found.
120   visitReferences(Worklist, Visited, [&](Function &F) {
121     addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F),
122             LazyCallGraph::Edge::Ref);
123   });
124 
125   // Add implicit reference edges to any defined libcall functions (if we
126   // haven't found an explicit edge).
127   for (auto *F : G->LibFunctions)
128     if (!Visited.count(F))
129       addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F),
130               LazyCallGraph::Edge::Ref);
131 
132   return *Edges;
133 }
134 
135 void LazyCallGraph::Node::replaceFunction(Function &NewF) {
136   assert(F != &NewF && "Must not replace a function with itself!");
137   F = &NewF;
138 }
139 
140 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
141 LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const {
142   dbgs() << *this << '\n';
143 }
144 #endif
145 
146 static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) {
147   LibFunc LF;
148 
149   // Either this is a normal library function or a "vectorizable"
150   // function.  Not using the VFDatabase here because this query
151   // is related only to libraries handled via the TLI.
152   return TLI.getLibFunc(F, LF) ||
153          TLI.isKnownVectorFunctionInLibrary(F.getName());
154 }
155 
156 LazyCallGraph::LazyCallGraph(
157     Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
158   LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
159                     << "\n");
160   for (Function &F : M) {
161     if (F.isDeclaration())
162       continue;
163     // If this function is a known lib function to LLVM then we want to
164     // synthesize reference edges to it to model the fact that LLVM can turn
165     // arbitrary code into a library function call.
166     if (isKnownLibFunction(F, GetTLI(F)))
167       LibFunctions.insert(&F);
168 
169     if (F.hasLocalLinkage())
170       continue;
171 
172     // External linkage defined functions have edges to them from other
173     // modules.
174     LLVM_DEBUG(dbgs() << "  Adding '" << F.getName()
175                       << "' to entry set of the graph.\n");
176     addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref);
177   }
178 
179   // Externally visible aliases of internal functions are also viable entry
180   // edges to the module.
181   for (auto &A : M.aliases()) {
182     if (A.hasLocalLinkage())
183       continue;
184     if (Function* F = dyn_cast<Function>(A.getAliasee())) {
185       LLVM_DEBUG(dbgs() << "  Adding '" << F->getName()
186                         << "' with alias '" << A.getName()
187                         << "' to entry set of the graph.\n");
188       addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(*F), Edge::Ref);
189     }
190   }
191 
192   // Now add entry nodes for functions reachable via initializers to globals.
193   SmallVector<Constant *, 16> Worklist;
194   SmallPtrSet<Constant *, 16> Visited;
195   for (GlobalVariable &GV : M.globals())
196     if (GV.hasInitializer())
197       if (Visited.insert(GV.getInitializer()).second)
198         Worklist.push_back(GV.getInitializer());
199 
200   LLVM_DEBUG(
201       dbgs() << "  Adding functions referenced by global initializers to the "
202                 "entry set.\n");
203   visitReferences(Worklist, Visited, [&](Function &F) {
204     addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F),
205             LazyCallGraph::Edge::Ref);
206   });
207 }
208 
209 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
210     : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
211       EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)),
212       SCCMap(std::move(G.SCCMap)),
213       LibFunctions(std::move(G.LibFunctions)) {
214   updateGraphPtrs();
215 }
216 
217 bool LazyCallGraph::invalidate(Module &, const PreservedAnalyses &PA,
218                                ModuleAnalysisManager::Invalidator &) {
219   // Check whether the analysis, all analyses on functions, or the function's
220   // CFG have been preserved.
221   auto PAC = PA.getChecker<llvm::LazyCallGraphAnalysis>();
222   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>() ||
223            PAC.preservedSet<CFGAnalyses>());
224 }
225 
226 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
227   BPA = std::move(G.BPA);
228   NodeMap = std::move(G.NodeMap);
229   EntryEdges = std::move(G.EntryEdges);
230   SCCBPA = std::move(G.SCCBPA);
231   SCCMap = std::move(G.SCCMap);
232   LibFunctions = std::move(G.LibFunctions);
233   updateGraphPtrs();
234   return *this;
235 }
236 
237 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
238 LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const {
239   dbgs() << *this << '\n';
240 }
241 #endif
242 
243 #ifndef NDEBUG
244 void LazyCallGraph::SCC::verify() {
245   assert(OuterRefSCC && "Can't have a null RefSCC!");
246   assert(!Nodes.empty() && "Can't have an empty SCC!");
247 
248   for (Node *N : Nodes) {
249     assert(N && "Can't have a null node!");
250     assert(OuterRefSCC->G->lookupSCC(*N) == this &&
251            "Node does not map to this SCC!");
252     assert(N->DFSNumber == -1 &&
253            "Must set DFS numbers to -1 when adding a node to an SCC!");
254     assert(N->LowLink == -1 &&
255            "Must set low link to -1 when adding a node to an SCC!");
256     for (Edge &E : **N)
257       assert(E.getNode().isPopulated() && "Can't have an unpopulated node!");
258   }
259 }
260 #endif
261 
262 bool LazyCallGraph::SCC::isParentOf(const SCC &C) const {
263   if (this == &C)
264     return false;
265 
266   for (Node &N : *this)
267     for (Edge &E : N->calls())
268       if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C)
269         return true;
270 
271   // No edges found.
272   return false;
273 }
274 
275 bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const {
276   if (this == &TargetC)
277     return false;
278 
279   LazyCallGraph &G = *OuterRefSCC->G;
280 
281   // Start with this SCC.
282   SmallPtrSet<const SCC *, 16> Visited = {this};
283   SmallVector<const SCC *, 16> Worklist = {this};
284 
285   // Walk down the graph until we run out of edges or find a path to TargetC.
286   do {
287     const SCC &C = *Worklist.pop_back_val();
288     for (Node &N : C)
289       for (Edge &E : N->calls()) {
290         SCC *CalleeC = G.lookupSCC(E.getNode());
291         if (!CalleeC)
292           continue;
293 
294         // If the callee's SCC is the TargetC, we're done.
295         if (CalleeC == &TargetC)
296           return true;
297 
298         // If this is the first time we've reached this SCC, put it on the
299         // worklist to recurse through.
300         if (Visited.insert(CalleeC).second)
301           Worklist.push_back(CalleeC);
302       }
303   } while (!Worklist.empty());
304 
305   // No paths found.
306   return false;
307 }
308 
309 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
310 
311 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
312 LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const {
313   dbgs() << *this << '\n';
314 }
315 #endif
316 
317 #ifndef NDEBUG
318 void LazyCallGraph::RefSCC::verify() {
319   assert(G && "Can't have a null graph!");
320   assert(!SCCs.empty() && "Can't have an empty SCC!");
321 
322   // Verify basic properties of the SCCs.
323   SmallPtrSet<SCC *, 4> SCCSet;
324   for (SCC *C : SCCs) {
325     assert(C && "Can't have a null SCC!");
326     C->verify();
327     assert(&C->getOuterRefSCC() == this &&
328            "SCC doesn't think it is inside this RefSCC!");
329     bool Inserted = SCCSet.insert(C).second;
330     assert(Inserted && "Found a duplicate SCC!");
331     auto IndexIt = SCCIndices.find(C);
332     assert(IndexIt != SCCIndices.end() &&
333            "Found an SCC that doesn't have an index!");
334   }
335 
336   // Check that our indices map correctly.
337   for (auto &SCCIndexPair : SCCIndices) {
338     SCC *C = SCCIndexPair.first;
339     int i = SCCIndexPair.second;
340     assert(C && "Can't have a null SCC in the indices!");
341     assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
342     assert(SCCs[i] == C && "Index doesn't point to SCC!");
343   }
344 
345   // Check that the SCCs are in fact in post-order.
346   for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
347     SCC &SourceSCC = *SCCs[i];
348     for (Node &N : SourceSCC)
349       for (Edge &E : *N) {
350         if (!E.isCall())
351           continue;
352         SCC &TargetSCC = *G->lookupSCC(E.getNode());
353         if (&TargetSCC.getOuterRefSCC() == this) {
354           assert(SCCIndices.find(&TargetSCC)->second <= i &&
355                  "Edge between SCCs violates post-order relationship.");
356           continue;
357         }
358       }
359   }
360 }
361 #endif
362 
363 bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const {
364   if (&RC == this)
365     return false;
366 
367   // Search all edges to see if this is a parent.
368   for (SCC &C : *this)
369     for (Node &N : C)
370       for (Edge &E : *N)
371         if (G->lookupRefSCC(E.getNode()) == &RC)
372           return true;
373 
374   return false;
375 }
376 
377 bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const {
378   if (&RC == this)
379     return false;
380 
381   // For each descendant of this RefSCC, see if one of its children is the
382   // argument. If not, add that descendant to the worklist and continue
383   // searching.
384   SmallVector<const RefSCC *, 4> Worklist;
385   SmallPtrSet<const RefSCC *, 4> Visited;
386   Worklist.push_back(this);
387   Visited.insert(this);
388   do {
389     const RefSCC &DescendantRC = *Worklist.pop_back_val();
390     for (SCC &C : DescendantRC)
391       for (Node &N : C)
392         for (Edge &E : *N) {
393           auto *ChildRC = G->lookupRefSCC(E.getNode());
394           if (ChildRC == &RC)
395             return true;
396           if (!ChildRC || !Visited.insert(ChildRC).second)
397             continue;
398           Worklist.push_back(ChildRC);
399         }
400   } while (!Worklist.empty());
401 
402   return false;
403 }
404 
405 /// Generic helper that updates a postorder sequence of SCCs for a potentially
406 /// cycle-introducing edge insertion.
407 ///
408 /// A postorder sequence of SCCs of a directed graph has one fundamental
409 /// property: all deges in the DAG of SCCs point "up" the sequence. That is,
410 /// all edges in the SCC DAG point to prior SCCs in the sequence.
411 ///
412 /// This routine both updates a postorder sequence and uses that sequence to
413 /// compute the set of SCCs connected into a cycle. It should only be called to
414 /// insert a "downward" edge which will require changing the sequence to
415 /// restore it to a postorder.
416 ///
417 /// When inserting an edge from an earlier SCC to a later SCC in some postorder
418 /// sequence, all of the SCCs which may be impacted are in the closed range of
419 /// those two within the postorder sequence. The algorithm used here to restore
420 /// the state is as follows:
421 ///
422 /// 1) Starting from the source SCC, construct a set of SCCs which reach the
423 ///    source SCC consisting of just the source SCC. Then scan toward the
424 ///    target SCC in postorder and for each SCC, if it has an edge to an SCC
425 ///    in the set, add it to the set. Otherwise, the source SCC is not
426 ///    a successor, move it in the postorder sequence to immediately before
427 ///    the source SCC, shifting the source SCC and all SCCs in the set one
428 ///    position toward the target SCC. Stop scanning after processing the
429 ///    target SCC.
430 /// 2) If the source SCC is now past the target SCC in the postorder sequence,
431 ///    and thus the new edge will flow toward the start, we are done.
432 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an
433 ///    SCC between the source and the target, and add them to the set of
434 ///    connected SCCs, then recurse through them. Once a complete set of the
435 ///    SCCs the target connects to is known, hoist the remaining SCCs between
436 ///    the source and the target to be above the target. Note that there is no
437 ///    need to process the source SCC, it is already known to connect.
438 /// 4) At this point, all of the SCCs in the closed range between the source
439 ///    SCC and the target SCC in the postorder sequence are connected,
440 ///    including the target SCC and the source SCC. Inserting the edge from
441 ///    the source SCC to the target SCC will form a cycle out of precisely
442 ///    these SCCs. Thus we can merge all of the SCCs in this closed range into
443 ///    a single SCC.
444 ///
445 /// This process has various important properties:
446 /// - Only mutates the SCCs when adding the edge actually changes the SCC
447 ///   structure.
448 /// - Never mutates SCCs which are unaffected by the change.
449 /// - Updates the postorder sequence to correctly satisfy the postorder
450 ///   constraint after the edge is inserted.
451 /// - Only reorders SCCs in the closed postorder sequence from the source to
452 ///   the target, so easy to bound how much has changed even in the ordering.
453 /// - Big-O is the number of edges in the closed postorder range of SCCs from
454 ///   source to target.
455 ///
456 /// This helper routine, in addition to updating the postorder sequence itself
457 /// will also update a map from SCCs to indices within that sequence.
458 ///
459 /// The sequence and the map must operate on pointers to the SCC type.
460 ///
461 /// Two callbacks must be provided. The first computes the subset of SCCs in
462 /// the postorder closed range from the source to the target which connect to
463 /// the source SCC via some (transitive) set of edges. The second computes the
464 /// subset of the same range which the target SCC connects to via some
465 /// (transitive) set of edges. Both callbacks should populate the set argument
466 /// provided.
467 template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
468           typename ComputeSourceConnectedSetCallableT,
469           typename ComputeTargetConnectedSetCallableT>
470 static iterator_range<typename PostorderSequenceT::iterator>
471 updatePostorderSequenceForEdgeInsertion(
472     SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
473     SCCIndexMapT &SCCIndices,
474     ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
475     ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
476   int SourceIdx = SCCIndices[&SourceSCC];
477   int TargetIdx = SCCIndices[&TargetSCC];
478   assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
479 
480   SmallPtrSet<SCCT *, 4> ConnectedSet;
481 
482   // Compute the SCCs which (transitively) reach the source.
483   ComputeSourceConnectedSet(ConnectedSet);
484 
485   // Partition the SCCs in this part of the port-order sequence so only SCCs
486   // connecting to the source remain between it and the target. This is
487   // a benign partition as it preserves postorder.
488   auto SourceI = std::stable_partition(
489       SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
490       [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
491   for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
492     SCCIndices.find(SCCs[i])->second = i;
493 
494   // If the target doesn't connect to the source, then we've corrected the
495   // post-order and there are no cycles formed.
496   if (!ConnectedSet.count(&TargetSCC)) {
497     assert(SourceI > (SCCs.begin() + SourceIdx) &&
498            "Must have moved the source to fix the post-order.");
499     assert(*std::prev(SourceI) == &TargetSCC &&
500            "Last SCC to move should have bene the target.");
501 
502     // Return an empty range at the target SCC indicating there is nothing to
503     // merge.
504     return make_range(std::prev(SourceI), std::prev(SourceI));
505   }
506 
507   assert(SCCs[TargetIdx] == &TargetSCC &&
508          "Should not have moved target if connected!");
509   SourceIdx = SourceI - SCCs.begin();
510   assert(SCCs[SourceIdx] == &SourceSCC &&
511          "Bad updated index computation for the source SCC!");
512 
513 
514   // See whether there are any remaining intervening SCCs between the source
515   // and target. If so we need to make sure they all are reachable form the
516   // target.
517   if (SourceIdx + 1 < TargetIdx) {
518     ConnectedSet.clear();
519     ComputeTargetConnectedSet(ConnectedSet);
520 
521     // Partition SCCs so that only SCCs reached from the target remain between
522     // the source and the target. This preserves postorder.
523     auto TargetI = std::stable_partition(
524         SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
525         [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
526     for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
527       SCCIndices.find(SCCs[i])->second = i;
528     TargetIdx = std::prev(TargetI) - SCCs.begin();
529     assert(SCCs[TargetIdx] == &TargetSCC &&
530            "Should always end with the target!");
531   }
532 
533   // At this point, we know that connecting source to target forms a cycle
534   // because target connects back to source, and we know that all of the SCCs
535   // between the source and target in the postorder sequence participate in that
536   // cycle.
537   return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
538 }
539 
540 bool
541 LazyCallGraph::RefSCC::switchInternalEdgeToCall(
542     Node &SourceN, Node &TargetN,
543     function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) {
544   assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
545   SmallVector<SCC *, 1> DeletedSCCs;
546 
547 #ifndef NDEBUG
548   // In a debug build, verify the RefSCC is valid to start with and when this
549   // routine finishes.
550   verify();
551   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
552 #endif
553 
554   SCC &SourceSCC = *G->lookupSCC(SourceN);
555   SCC &TargetSCC = *G->lookupSCC(TargetN);
556 
557   // If the two nodes are already part of the same SCC, we're also done as
558   // we've just added more connectivity.
559   if (&SourceSCC == &TargetSCC) {
560     SourceN->setEdgeKind(TargetN, Edge::Call);
561     return false; // No new cycle.
562   }
563 
564   // At this point we leverage the postorder list of SCCs to detect when the
565   // insertion of an edge changes the SCC structure in any way.
566   //
567   // First and foremost, we can eliminate the need for any changes when the
568   // edge is toward the beginning of the postorder sequence because all edges
569   // flow in that direction already. Thus adding a new one cannot form a cycle.
570   int SourceIdx = SCCIndices[&SourceSCC];
571   int TargetIdx = SCCIndices[&TargetSCC];
572   if (TargetIdx < SourceIdx) {
573     SourceN->setEdgeKind(TargetN, Edge::Call);
574     return false; // No new cycle.
575   }
576 
577   // Compute the SCCs which (transitively) reach the source.
578   auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
579 #ifndef NDEBUG
580     // Check that the RefSCC is still valid before computing this as the
581     // results will be nonsensical of we've broken its invariants.
582     verify();
583 #endif
584     ConnectedSet.insert(&SourceSCC);
585     auto IsConnected = [&](SCC &C) {
586       for (Node &N : C)
587         for (Edge &E : N->calls())
588           if (ConnectedSet.count(G->lookupSCC(E.getNode())))
589             return true;
590 
591       return false;
592     };
593 
594     for (SCC *C :
595          make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
596       if (IsConnected(*C))
597         ConnectedSet.insert(C);
598   };
599 
600   // Use a normal worklist to find which SCCs the target connects to. We still
601   // bound the search based on the range in the postorder list we care about,
602   // but because this is forward connectivity we just "recurse" through the
603   // edges.
604   auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
605 #ifndef NDEBUG
606     // Check that the RefSCC is still valid before computing this as the
607     // results will be nonsensical of we've broken its invariants.
608     verify();
609 #endif
610     ConnectedSet.insert(&TargetSCC);
611     SmallVector<SCC *, 4> Worklist;
612     Worklist.push_back(&TargetSCC);
613     do {
614       SCC &C = *Worklist.pop_back_val();
615       for (Node &N : C)
616         for (Edge &E : *N) {
617           if (!E.isCall())
618             continue;
619           SCC &EdgeC = *G->lookupSCC(E.getNode());
620           if (&EdgeC.getOuterRefSCC() != this)
621             // Not in this RefSCC...
622             continue;
623           if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
624             // Not in the postorder sequence between source and target.
625             continue;
626 
627           if (ConnectedSet.insert(&EdgeC).second)
628             Worklist.push_back(&EdgeC);
629         }
630     } while (!Worklist.empty());
631   };
632 
633   // Use a generic helper to update the postorder sequence of SCCs and return
634   // a range of any SCCs connected into a cycle by inserting this edge. This
635   // routine will also take care of updating the indices into the postorder
636   // sequence.
637   auto MergeRange = updatePostorderSequenceForEdgeInsertion(
638       SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
639       ComputeTargetConnectedSet);
640 
641   // Run the user's callback on the merged SCCs before we actually merge them.
642   if (MergeCB)
643     MergeCB(makeArrayRef(MergeRange.begin(), MergeRange.end()));
644 
645   // If the merge range is empty, then adding the edge didn't actually form any
646   // new cycles. We're done.
647   if (MergeRange.empty()) {
648     // Now that the SCC structure is finalized, flip the kind to call.
649     SourceN->setEdgeKind(TargetN, Edge::Call);
650     return false; // No new cycle.
651   }
652 
653 #ifndef NDEBUG
654   // Before merging, check that the RefSCC remains valid after all the
655   // postorder updates.
656   verify();
657 #endif
658 
659   // Otherwise we need to merge all of the SCCs in the cycle into a single
660   // result SCC.
661   //
662   // NB: We merge into the target because all of these functions were already
663   // reachable from the target, meaning any SCC-wide properties deduced about it
664   // other than the set of functions within it will not have changed.
665   for (SCC *C : MergeRange) {
666     assert(C != &TargetSCC &&
667            "We merge *into* the target and shouldn't process it here!");
668     SCCIndices.erase(C);
669     TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
670     for (Node *N : C->Nodes)
671       G->SCCMap[N] = &TargetSCC;
672     C->clear();
673     DeletedSCCs.push_back(C);
674   }
675 
676   // Erase the merged SCCs from the list and update the indices of the
677   // remaining SCCs.
678   int IndexOffset = MergeRange.end() - MergeRange.begin();
679   auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
680   for (SCC *C : make_range(EraseEnd, SCCs.end()))
681     SCCIndices[C] -= IndexOffset;
682 
683   // Now that the SCC structure is finalized, flip the kind to call.
684   SourceN->setEdgeKind(TargetN, Edge::Call);
685 
686   // And we're done, but we did form a new cycle.
687   return true;
688 }
689 
690 void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN,
691                                                            Node &TargetN) {
692   assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
693 
694 #ifndef NDEBUG
695   // In a debug build, verify the RefSCC is valid to start with and when this
696   // routine finishes.
697   verify();
698   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
699 #endif
700 
701   assert(G->lookupRefSCC(SourceN) == this &&
702          "Source must be in this RefSCC.");
703   assert(G->lookupRefSCC(TargetN) == this &&
704          "Target must be in this RefSCC.");
705   assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) &&
706          "Source and Target must be in separate SCCs for this to be trivial!");
707 
708   // Set the edge kind.
709   SourceN->setEdgeKind(TargetN, Edge::Ref);
710 }
711 
712 iterator_range<LazyCallGraph::RefSCC::iterator>
713 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
714   assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
715 
716 #ifndef NDEBUG
717   // In a debug build, verify the RefSCC is valid to start with and when this
718   // routine finishes.
719   verify();
720   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
721 #endif
722 
723   assert(G->lookupRefSCC(SourceN) == this &&
724          "Source must be in this RefSCC.");
725   assert(G->lookupRefSCC(TargetN) == this &&
726          "Target must be in this RefSCC.");
727 
728   SCC &TargetSCC = *G->lookupSCC(TargetN);
729   assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in "
730                                                 "the same SCC to require the "
731                                                 "full CG update.");
732 
733   // Set the edge kind.
734   SourceN->setEdgeKind(TargetN, Edge::Ref);
735 
736   // Otherwise we are removing a call edge from a single SCC. This may break
737   // the cycle. In order to compute the new set of SCCs, we need to do a small
738   // DFS over the nodes within the SCC to form any sub-cycles that remain as
739   // distinct SCCs and compute a postorder over the resulting SCCs.
740   //
741   // However, we specially handle the target node. The target node is known to
742   // reach all other nodes in the original SCC by definition. This means that
743   // we want the old SCC to be replaced with an SCC containing that node as it
744   // will be the root of whatever SCC DAG results from the DFS. Assumptions
745   // about an SCC such as the set of functions called will continue to hold,
746   // etc.
747 
748   SCC &OldSCC = TargetSCC;
749   SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack;
750   SmallVector<Node *, 16> PendingSCCStack;
751   SmallVector<SCC *, 4> NewSCCs;
752 
753   // Prepare the nodes for a fresh DFS.
754   SmallVector<Node *, 16> Worklist;
755   Worklist.swap(OldSCC.Nodes);
756   for (Node *N : Worklist) {
757     N->DFSNumber = N->LowLink = 0;
758     G->SCCMap.erase(N);
759   }
760 
761   // Force the target node to be in the old SCC. This also enables us to take
762   // a very significant short-cut in the standard Tarjan walk to re-form SCCs
763   // below: whenever we build an edge that reaches the target node, we know
764   // that the target node eventually connects back to all other nodes in our
765   // walk. As a consequence, we can detect and handle participants in that
766   // cycle without walking all the edges that form this connection, and instead
767   // by relying on the fundamental guarantee coming into this operation (all
768   // nodes are reachable from the target due to previously forming an SCC).
769   TargetN.DFSNumber = TargetN.LowLink = -1;
770   OldSCC.Nodes.push_back(&TargetN);
771   G->SCCMap[&TargetN] = &OldSCC;
772 
773   // Scan down the stack and DFS across the call edges.
774   for (Node *RootN : Worklist) {
775     assert(DFSStack.empty() &&
776            "Cannot begin a new root with a non-empty DFS stack!");
777     assert(PendingSCCStack.empty() &&
778            "Cannot begin a new root with pending nodes for an SCC!");
779 
780     // Skip any nodes we've already reached in the DFS.
781     if (RootN->DFSNumber != 0) {
782       assert(RootN->DFSNumber == -1 &&
783              "Shouldn't have any mid-DFS root nodes!");
784       continue;
785     }
786 
787     RootN->DFSNumber = RootN->LowLink = 1;
788     int NextDFSNumber = 2;
789 
790     DFSStack.push_back({RootN, (*RootN)->call_begin()});
791     do {
792       Node *N;
793       EdgeSequence::call_iterator I;
794       std::tie(N, I) = DFSStack.pop_back_val();
795       auto E = (*N)->call_end();
796       while (I != E) {
797         Node &ChildN = I->getNode();
798         if (ChildN.DFSNumber == 0) {
799           // We haven't yet visited this child, so descend, pushing the current
800           // node onto the stack.
801           DFSStack.push_back({N, I});
802 
803           assert(!G->SCCMap.count(&ChildN) &&
804                  "Found a node with 0 DFS number but already in an SCC!");
805           ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
806           N = &ChildN;
807           I = (*N)->call_begin();
808           E = (*N)->call_end();
809           continue;
810         }
811 
812         // Check for the child already being part of some component.
813         if (ChildN.DFSNumber == -1) {
814           if (G->lookupSCC(ChildN) == &OldSCC) {
815             // If the child is part of the old SCC, we know that it can reach
816             // every other node, so we have formed a cycle. Pull the entire DFS
817             // and pending stacks into it. See the comment above about setting
818             // up the old SCC for why we do this.
819             int OldSize = OldSCC.size();
820             OldSCC.Nodes.push_back(N);
821             OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
822             PendingSCCStack.clear();
823             while (!DFSStack.empty())
824               OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
825             for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) {
826               N.DFSNumber = N.LowLink = -1;
827               G->SCCMap[&N] = &OldSCC;
828             }
829             N = nullptr;
830             break;
831           }
832 
833           // If the child has already been added to some child component, it
834           // couldn't impact the low-link of this parent because it isn't
835           // connected, and thus its low-link isn't relevant so skip it.
836           ++I;
837           continue;
838         }
839 
840         // Track the lowest linked child as the lowest link for this node.
841         assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
842         if (ChildN.LowLink < N->LowLink)
843           N->LowLink = ChildN.LowLink;
844 
845         // Move to the next edge.
846         ++I;
847       }
848       if (!N)
849         // Cleared the DFS early, start another round.
850         break;
851 
852       // We've finished processing N and its descendants, put it on our pending
853       // SCC stack to eventually get merged into an SCC of nodes.
854       PendingSCCStack.push_back(N);
855 
856       // If this node is linked to some lower entry, continue walking up the
857       // stack.
858       if (N->LowLink != N->DFSNumber)
859         continue;
860 
861       // Otherwise, we've completed an SCC. Append it to our post order list of
862       // SCCs.
863       int RootDFSNumber = N->DFSNumber;
864       // Find the range of the node stack by walking down until we pass the
865       // root DFS number.
866       auto SCCNodes = make_range(
867           PendingSCCStack.rbegin(),
868           find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
869             return N->DFSNumber < RootDFSNumber;
870           }));
871 
872       // Form a new SCC out of these nodes and then clear them off our pending
873       // stack.
874       NewSCCs.push_back(G->createSCC(*this, SCCNodes));
875       for (Node &N : *NewSCCs.back()) {
876         N.DFSNumber = N.LowLink = -1;
877         G->SCCMap[&N] = NewSCCs.back();
878       }
879       PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
880     } while (!DFSStack.empty());
881   }
882 
883   // Insert the remaining SCCs before the old one. The old SCC can reach all
884   // other SCCs we form because it contains the target node of the removed edge
885   // of the old SCC. This means that we will have edges into all of the new
886   // SCCs, which means the old one must come last for postorder.
887   int OldIdx = SCCIndices[&OldSCC];
888   SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
889 
890   // Update the mapping from SCC* to index to use the new SCC*s, and remove the
891   // old SCC from the mapping.
892   for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
893     SCCIndices[SCCs[Idx]] = Idx;
894 
895   return make_range(SCCs.begin() + OldIdx,
896                     SCCs.begin() + OldIdx + NewSCCs.size());
897 }
898 
899 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
900                                                      Node &TargetN) {
901   assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
902 
903   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
904   assert(G->lookupRefSCC(TargetN) != this &&
905          "Target must not be in this RefSCC.");
906 #ifdef EXPENSIVE_CHECKS
907   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
908          "Target must be a descendant of the Source.");
909 #endif
910 
911   // Edges between RefSCCs are the same regardless of call or ref, so we can
912   // just flip the edge here.
913   SourceN->setEdgeKind(TargetN, Edge::Call);
914 
915 #ifndef NDEBUG
916   // Check that the RefSCC is still valid.
917   verify();
918 #endif
919 }
920 
921 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
922                                                     Node &TargetN) {
923   assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
924 
925   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
926   assert(G->lookupRefSCC(TargetN) != this &&
927          "Target must not be in this RefSCC.");
928 #ifdef EXPENSIVE_CHECKS
929   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
930          "Target must be a descendant of the Source.");
931 #endif
932 
933   // Edges between RefSCCs are the same regardless of call or ref, so we can
934   // just flip the edge here.
935   SourceN->setEdgeKind(TargetN, Edge::Ref);
936 
937 #ifndef NDEBUG
938   // Check that the RefSCC is still valid.
939   verify();
940 #endif
941 }
942 
943 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
944                                                   Node &TargetN) {
945   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
946   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
947 
948   SourceN->insertEdgeInternal(TargetN, Edge::Ref);
949 
950 #ifndef NDEBUG
951   // Check that the RefSCC is still valid.
952   verify();
953 #endif
954 }
955 
956 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
957                                                Edge::Kind EK) {
958   // First insert it into the caller.
959   SourceN->insertEdgeInternal(TargetN, EK);
960 
961   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
962 
963   assert(G->lookupRefSCC(TargetN) != this &&
964          "Target must not be in this RefSCC.");
965 #ifdef EXPENSIVE_CHECKS
966   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
967          "Target must be a descendant of the Source.");
968 #endif
969 
970 #ifndef NDEBUG
971   // Check that the RefSCC is still valid.
972   verify();
973 #endif
974 }
975 
976 SmallVector<LazyCallGraph::RefSCC *, 1>
977 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
978   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
979   RefSCC &SourceC = *G->lookupRefSCC(SourceN);
980   assert(&SourceC != this && "Source must not be in this RefSCC.");
981 #ifdef EXPENSIVE_CHECKS
982   assert(SourceC.isDescendantOf(*this) &&
983          "Source must be a descendant of the Target.");
984 #endif
985 
986   SmallVector<RefSCC *, 1> DeletedRefSCCs;
987 
988 #ifndef NDEBUG
989   // In a debug build, verify the RefSCC is valid to start with and when this
990   // routine finishes.
991   verify();
992   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
993 #endif
994 
995   int SourceIdx = G->RefSCCIndices[&SourceC];
996   int TargetIdx = G->RefSCCIndices[this];
997   assert(SourceIdx < TargetIdx &&
998          "Postorder list doesn't see edge as incoming!");
999 
1000   // Compute the RefSCCs which (transitively) reach the source. We do this by
1001   // working backwards from the source using the parent set in each RefSCC,
1002   // skipping any RefSCCs that don't fall in the postorder range. This has the
1003   // advantage of walking the sparser parent edge (in high fan-out graphs) but
1004   // more importantly this removes examining all forward edges in all RefSCCs
1005   // within the postorder range which aren't in fact connected. Only connected
1006   // RefSCCs (and their edges) are visited here.
1007   auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
1008     Set.insert(&SourceC);
1009     auto IsConnected = [&](RefSCC &RC) {
1010       for (SCC &C : RC)
1011         for (Node &N : C)
1012           for (Edge &E : *N)
1013             if (Set.count(G->lookupRefSCC(E.getNode())))
1014               return true;
1015 
1016       return false;
1017     };
1018 
1019     for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1,
1020                                 G->PostOrderRefSCCs.begin() + TargetIdx + 1))
1021       if (IsConnected(*C))
1022         Set.insert(C);
1023   };
1024 
1025   // Use a normal worklist to find which SCCs the target connects to. We still
1026   // bound the search based on the range in the postorder list we care about,
1027   // but because this is forward connectivity we just "recurse" through the
1028   // edges.
1029   auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
1030     Set.insert(this);
1031     SmallVector<RefSCC *, 4> Worklist;
1032     Worklist.push_back(this);
1033     do {
1034       RefSCC &RC = *Worklist.pop_back_val();
1035       for (SCC &C : RC)
1036         for (Node &N : C)
1037           for (Edge &E : *N) {
1038             RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode());
1039             if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
1040               // Not in the postorder sequence between source and target.
1041               continue;
1042 
1043             if (Set.insert(&EdgeRC).second)
1044               Worklist.push_back(&EdgeRC);
1045           }
1046     } while (!Worklist.empty());
1047   };
1048 
1049   // Use a generic helper to update the postorder sequence of RefSCCs and return
1050   // a range of any RefSCCs connected into a cycle by inserting this edge. This
1051   // routine will also take care of updating the indices into the postorder
1052   // sequence.
1053   iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange =
1054       updatePostorderSequenceForEdgeInsertion(
1055           SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
1056           ComputeSourceConnectedSet, ComputeTargetConnectedSet);
1057 
1058   // Build a set so we can do fast tests for whether a RefSCC will end up as
1059   // part of the merged RefSCC.
1060   SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end());
1061 
1062   // This RefSCC will always be part of that set, so just insert it here.
1063   MergeSet.insert(this);
1064 
1065   // Now that we have identified all of the SCCs which need to be merged into
1066   // a connected set with the inserted edge, merge all of them into this SCC.
1067   SmallVector<SCC *, 16> MergedSCCs;
1068   int SCCIndex = 0;
1069   for (RefSCC *RC : MergeRange) {
1070     assert(RC != this && "We're merging into the target RefSCC, so it "
1071                          "shouldn't be in the range.");
1072 
1073     // Walk the inner SCCs to update their up-pointer and walk all the edges to
1074     // update any parent sets.
1075     // FIXME: We should try to find a way to avoid this (rather expensive) edge
1076     // walk by updating the parent sets in some other manner.
1077     for (SCC &InnerC : *RC) {
1078       InnerC.OuterRefSCC = this;
1079       SCCIndices[&InnerC] = SCCIndex++;
1080       for (Node &N : InnerC)
1081         G->SCCMap[&N] = &InnerC;
1082     }
1083 
1084     // Now merge in the SCCs. We can actually move here so try to reuse storage
1085     // the first time through.
1086     if (MergedSCCs.empty())
1087       MergedSCCs = std::move(RC->SCCs);
1088     else
1089       MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
1090     RC->SCCs.clear();
1091     DeletedRefSCCs.push_back(RC);
1092   }
1093 
1094   // Append our original SCCs to the merged list and move it into place.
1095   for (SCC &InnerC : *this)
1096     SCCIndices[&InnerC] = SCCIndex++;
1097   MergedSCCs.append(SCCs.begin(), SCCs.end());
1098   SCCs = std::move(MergedSCCs);
1099 
1100   // Remove the merged away RefSCCs from the post order sequence.
1101   for (RefSCC *RC : MergeRange)
1102     G->RefSCCIndices.erase(RC);
1103   int IndexOffset = MergeRange.end() - MergeRange.begin();
1104   auto EraseEnd =
1105       G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
1106   for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
1107     G->RefSCCIndices[RC] -= IndexOffset;
1108 
1109   // At this point we have a merged RefSCC with a post-order SCCs list, just
1110   // connect the nodes to form the new edge.
1111   SourceN->insertEdgeInternal(TargetN, Edge::Ref);
1112 
1113   // We return the list of SCCs which were merged so that callers can
1114   // invalidate any data they have associated with those SCCs. Note that these
1115   // SCCs are no longer in an interesting state (they are totally empty) but
1116   // the pointers will remain stable for the life of the graph itself.
1117   return DeletedRefSCCs;
1118 }
1119 
1120 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
1121   assert(G->lookupRefSCC(SourceN) == this &&
1122          "The source must be a member of this RefSCC.");
1123   assert(G->lookupRefSCC(TargetN) != this &&
1124          "The target must not be a member of this RefSCC");
1125 
1126 #ifndef NDEBUG
1127   // In a debug build, verify the RefSCC is valid to start with and when this
1128   // routine finishes.
1129   verify();
1130   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1131 #endif
1132 
1133   // First remove it from the node.
1134   bool Removed = SourceN->removeEdgeInternal(TargetN);
1135   (void)Removed;
1136   assert(Removed && "Target not in the edge set for this caller?");
1137 }
1138 
1139 SmallVector<LazyCallGraph::RefSCC *, 1>
1140 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN,
1141                                              ArrayRef<Node *> TargetNs) {
1142   // We return a list of the resulting *new* RefSCCs in post-order.
1143   SmallVector<RefSCC *, 1> Result;
1144 
1145 #ifndef NDEBUG
1146   // In a debug build, verify the RefSCC is valid to start with and that either
1147   // we return an empty list of result RefSCCs and this RefSCC remains valid,
1148   // or we return new RefSCCs and this RefSCC is dead.
1149   verify();
1150   auto VerifyOnExit = make_scope_exit([&]() {
1151     // If we didn't replace our RefSCC with new ones, check that this one
1152     // remains valid.
1153     if (G)
1154       verify();
1155   });
1156 #endif
1157 
1158   // First remove the actual edges.
1159   for (Node *TargetN : TargetNs) {
1160     assert(!(*SourceN)[*TargetN].isCall() &&
1161            "Cannot remove a call edge, it must first be made a ref edge");
1162 
1163     bool Removed = SourceN->removeEdgeInternal(*TargetN);
1164     (void)Removed;
1165     assert(Removed && "Target not in the edge set for this caller?");
1166   }
1167 
1168   // Direct self references don't impact the ref graph at all.
1169   if (llvm::all_of(TargetNs,
1170                    [&](Node *TargetN) { return &SourceN == TargetN; }))
1171     return Result;
1172 
1173   // If all targets are in the same SCC as the source, because no call edges
1174   // were removed there is no RefSCC structure change.
1175   SCC &SourceC = *G->lookupSCC(SourceN);
1176   if (llvm::all_of(TargetNs, [&](Node *TargetN) {
1177         return G->lookupSCC(*TargetN) == &SourceC;
1178       }))
1179     return Result;
1180 
1181   // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1182   // for each inner SCC. We store these inside the low-link field of the nodes
1183   // rather than associated with SCCs because this saves a round-trip through
1184   // the node->SCC map and in the common case, SCCs are small. We will verify
1185   // that we always give the same number to every node in the SCC such that
1186   // these are equivalent.
1187   int PostOrderNumber = 0;
1188 
1189   // Reset all the other nodes to prepare for a DFS over them, and add them to
1190   // our worklist.
1191   SmallVector<Node *, 8> Worklist;
1192   for (SCC *C : SCCs) {
1193     for (Node &N : *C)
1194       N.DFSNumber = N.LowLink = 0;
1195 
1196     Worklist.append(C->Nodes.begin(), C->Nodes.end());
1197   }
1198 
1199   // Track the number of nodes in this RefSCC so that we can quickly recognize
1200   // an important special case of the edge removal not breaking the cycle of
1201   // this RefSCC.
1202   const int NumRefSCCNodes = Worklist.size();
1203 
1204   SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack;
1205   SmallVector<Node *, 4> PendingRefSCCStack;
1206   do {
1207     assert(DFSStack.empty() &&
1208            "Cannot begin a new root with a non-empty DFS stack!");
1209     assert(PendingRefSCCStack.empty() &&
1210            "Cannot begin a new root with pending nodes for an SCC!");
1211 
1212     Node *RootN = Worklist.pop_back_val();
1213     // Skip any nodes we've already reached in the DFS.
1214     if (RootN->DFSNumber != 0) {
1215       assert(RootN->DFSNumber == -1 &&
1216              "Shouldn't have any mid-DFS root nodes!");
1217       continue;
1218     }
1219 
1220     RootN->DFSNumber = RootN->LowLink = 1;
1221     int NextDFSNumber = 2;
1222 
1223     DFSStack.push_back({RootN, (*RootN)->begin()});
1224     do {
1225       Node *N;
1226       EdgeSequence::iterator I;
1227       std::tie(N, I) = DFSStack.pop_back_val();
1228       auto E = (*N)->end();
1229 
1230       assert(N->DFSNumber != 0 && "We should always assign a DFS number "
1231                                   "before processing a node.");
1232 
1233       while (I != E) {
1234         Node &ChildN = I->getNode();
1235         if (ChildN.DFSNumber == 0) {
1236           // Mark that we should start at this child when next this node is the
1237           // top of the stack. We don't start at the next child to ensure this
1238           // child's lowlink is reflected.
1239           DFSStack.push_back({N, I});
1240 
1241           // Continue, resetting to the child node.
1242           ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1243           N = &ChildN;
1244           I = ChildN->begin();
1245           E = ChildN->end();
1246           continue;
1247         }
1248         if (ChildN.DFSNumber == -1) {
1249           // If this child isn't currently in this RefSCC, no need to process
1250           // it.
1251           ++I;
1252           continue;
1253         }
1254 
1255         // Track the lowest link of the children, if any are still in the stack.
1256         // Any child not on the stack will have a LowLink of -1.
1257         assert(ChildN.LowLink != 0 &&
1258                "Low-link must not be zero with a non-zero DFS number.");
1259         if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
1260           N->LowLink = ChildN.LowLink;
1261         ++I;
1262       }
1263 
1264       // We've finished processing N and its descendants, put it on our pending
1265       // stack to eventually get merged into a RefSCC.
1266       PendingRefSCCStack.push_back(N);
1267 
1268       // If this node is linked to some lower entry, continue walking up the
1269       // stack.
1270       if (N->LowLink != N->DFSNumber) {
1271         assert(!DFSStack.empty() &&
1272                "We never found a viable root for a RefSCC to pop off!");
1273         continue;
1274       }
1275 
1276       // Otherwise, form a new RefSCC from the top of the pending node stack.
1277       int RefSCCNumber = PostOrderNumber++;
1278       int RootDFSNumber = N->DFSNumber;
1279 
1280       // Find the range of the node stack by walking down until we pass the
1281       // root DFS number. Update the DFS numbers and low link numbers in the
1282       // process to avoid re-walking this list where possible.
1283       auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) {
1284         if (N->DFSNumber < RootDFSNumber)
1285           // We've found the bottom.
1286           return true;
1287 
1288         // Update this node and keep scanning.
1289         N->DFSNumber = -1;
1290         // Save the post-order number in the lowlink field so that we can use
1291         // it to map SCCs into new RefSCCs after we finish the DFS.
1292         N->LowLink = RefSCCNumber;
1293         return false;
1294       });
1295       auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end());
1296 
1297       // If we find a cycle containing all nodes originally in this RefSCC then
1298       // the removal hasn't changed the structure at all. This is an important
1299       // special case and we can directly exit the entire routine more
1300       // efficiently as soon as we discover it.
1301       if (llvm::size(RefSCCNodes) == NumRefSCCNodes) {
1302         // Clear out the low link field as we won't need it.
1303         for (Node *N : RefSCCNodes)
1304           N->LowLink = -1;
1305         // Return the empty result immediately.
1306         return Result;
1307       }
1308 
1309       // We've already marked the nodes internally with the RefSCC number so
1310       // just clear them off the stack and continue.
1311       PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end());
1312     } while (!DFSStack.empty());
1313 
1314     assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
1315     assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
1316   } while (!Worklist.empty());
1317 
1318   assert(PostOrderNumber > 1 &&
1319          "Should never finish the DFS when the existing RefSCC remains valid!");
1320 
1321   // Otherwise we create a collection of new RefSCC nodes and build
1322   // a radix-sort style map from postorder number to these new RefSCCs. We then
1323   // append SCCs to each of these RefSCCs in the order they occurred in the
1324   // original SCCs container.
1325   for (int i = 0; i < PostOrderNumber; ++i)
1326     Result.push_back(G->createRefSCC(*G));
1327 
1328   // Insert the resulting postorder sequence into the global graph postorder
1329   // sequence before the current RefSCC in that sequence, and then remove the
1330   // current one.
1331   //
1332   // FIXME: It'd be nice to change the APIs so that we returned an iterator
1333   // range over the global postorder sequence and generally use that sequence
1334   // rather than building a separate result vector here.
1335   int Idx = G->getRefSCCIndex(*this);
1336   G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx);
1337   G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(),
1338                              Result.end());
1339   for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size()))
1340     G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i;
1341 
1342   for (SCC *C : SCCs) {
1343     // We store the SCC number in the node's low-link field above.
1344     int SCCNumber = C->begin()->LowLink;
1345     // Clear out all of the SCC's node's low-link fields now that we're done
1346     // using them as side-storage.
1347     for (Node &N : *C) {
1348       assert(N.LowLink == SCCNumber &&
1349              "Cannot have different numbers for nodes in the same SCC!");
1350       N.LowLink = -1;
1351     }
1352 
1353     RefSCC &RC = *Result[SCCNumber];
1354     int SCCIndex = RC.SCCs.size();
1355     RC.SCCs.push_back(C);
1356     RC.SCCIndices[C] = SCCIndex;
1357     C->OuterRefSCC = &RC;
1358   }
1359 
1360   // Now that we've moved things into the new RefSCCs, clear out our current
1361   // one.
1362   G = nullptr;
1363   SCCs.clear();
1364   SCCIndices.clear();
1365 
1366 #ifndef NDEBUG
1367   // Verify the new RefSCCs we've built.
1368   for (RefSCC *RC : Result)
1369     RC->verify();
1370 #endif
1371 
1372   // Return the new list of SCCs.
1373   return Result;
1374 }
1375 
1376 void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN,
1377                                                        Node &TargetN) {
1378   // The only trivial case that requires any graph updates is when we add new
1379   // ref edge and may connect different RefSCCs along that path. This is only
1380   // because of the parents set. Every other part of the graph remains constant
1381   // after this edge insertion.
1382   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
1383   RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1384   if (&TargetRC == this)
1385     return;
1386 
1387 #ifdef EXPENSIVE_CHECKS
1388   assert(TargetRC.isDescendantOf(*this) &&
1389          "Target must be a descendant of the Source.");
1390 #endif
1391 }
1392 
1393 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
1394                                                   Node &TargetN) {
1395 #ifndef NDEBUG
1396   // Check that the RefSCC is still valid when we finish.
1397   auto ExitVerifier = make_scope_exit([this] { verify(); });
1398 
1399 #ifdef EXPENSIVE_CHECKS
1400   // Check that we aren't breaking some invariants of the SCC graph. Note that
1401   // this is quadratic in the number of edges in the call graph!
1402   SCC &SourceC = *G->lookupSCC(SourceN);
1403   SCC &TargetC = *G->lookupSCC(TargetN);
1404   if (&SourceC != &TargetC)
1405     assert(SourceC.isAncestorOf(TargetC) &&
1406            "Call edge is not trivial in the SCC graph!");
1407 #endif // EXPENSIVE_CHECKS
1408 #endif // NDEBUG
1409 
1410   // First insert it into the source or find the existing edge.
1411   auto InsertResult =
1412       SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
1413   if (!InsertResult.second) {
1414     // Already an edge, just update it.
1415     Edge &E = SourceN->Edges[InsertResult.first->second];
1416     if (E.isCall())
1417       return; // Nothing to do!
1418     E.setKind(Edge::Call);
1419   } else {
1420     // Create the new edge.
1421     SourceN->Edges.emplace_back(TargetN, Edge::Call);
1422   }
1423 
1424   // Now that we have the edge, handle the graph fallout.
1425   handleTrivialEdgeInsertion(SourceN, TargetN);
1426 }
1427 
1428 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
1429 #ifndef NDEBUG
1430   // Check that the RefSCC is still valid when we finish.
1431   auto ExitVerifier = make_scope_exit([this] { verify(); });
1432 
1433 #ifdef EXPENSIVE_CHECKS
1434   // Check that we aren't breaking some invariants of the RefSCC graph.
1435   RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
1436   RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1437   if (&SourceRC != &TargetRC)
1438     assert(SourceRC.isAncestorOf(TargetRC) &&
1439            "Ref edge is not trivial in the RefSCC graph!");
1440 #endif // EXPENSIVE_CHECKS
1441 #endif // NDEBUG
1442 
1443   // First insert it into the source or find the existing edge.
1444   auto InsertResult =
1445       SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
1446   if (!InsertResult.second)
1447     // Already an edge, we're done.
1448     return;
1449 
1450   // Create the new edge.
1451   SourceN->Edges.emplace_back(TargetN, Edge::Ref);
1452 
1453   // Now that we have the edge, handle the graph fallout.
1454   handleTrivialEdgeInsertion(SourceN, TargetN);
1455 }
1456 
1457 void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) {
1458   Function &OldF = N.getFunction();
1459 
1460 #ifndef NDEBUG
1461   // Check that the RefSCC is still valid when we finish.
1462   auto ExitVerifier = make_scope_exit([this] { verify(); });
1463 
1464   assert(G->lookupRefSCC(N) == this &&
1465          "Cannot replace the function of a node outside this RefSCC.");
1466 
1467   assert(G->NodeMap.find(&NewF) == G->NodeMap.end() &&
1468          "Must not have already walked the new function!'");
1469 
1470   // It is important that this replacement not introduce graph changes so we
1471   // insist that the caller has already removed every use of the original
1472   // function and that all uses of the new function correspond to existing
1473   // edges in the graph. The common and expected way to use this is when
1474   // replacing the function itself in the IR without changing the call graph
1475   // shape and just updating the analysis based on that.
1476   assert(&OldF != &NewF && "Cannot replace a function with itself!");
1477   assert(OldF.use_empty() &&
1478          "Must have moved all uses from the old function to the new!");
1479 #endif
1480 
1481   N.replaceFunction(NewF);
1482 
1483   // Update various call graph maps.
1484   G->NodeMap.erase(&OldF);
1485   G->NodeMap[&NewF] = &N;
1486 }
1487 
1488 void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) {
1489   assert(SCCMap.empty() &&
1490          "This method cannot be called after SCCs have been formed!");
1491 
1492   return SourceN->insertEdgeInternal(TargetN, EK);
1493 }
1494 
1495 void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) {
1496   assert(SCCMap.empty() &&
1497          "This method cannot be called after SCCs have been formed!");
1498 
1499   bool Removed = SourceN->removeEdgeInternal(TargetN);
1500   (void)Removed;
1501   assert(Removed && "Target not in the edge set for this caller?");
1502 }
1503 
1504 void LazyCallGraph::removeDeadFunction(Function &F) {
1505   // FIXME: This is unnecessarily restrictive. We should be able to remove
1506   // functions which recursively call themselves.
1507   assert(F.use_empty() &&
1508          "This routine should only be called on trivially dead functions!");
1509 
1510   // We shouldn't remove library functions as they are never really dead while
1511   // the call graph is in use -- every function definition refers to them.
1512   assert(!isLibFunction(F) &&
1513          "Must not remove lib functions from the call graph!");
1514 
1515   auto NI = NodeMap.find(&F);
1516   if (NI == NodeMap.end())
1517     // Not in the graph at all!
1518     return;
1519 
1520   Node &N = *NI->second;
1521   NodeMap.erase(NI);
1522 
1523   // Remove this from the entry edges if present.
1524   EntryEdges.removeEdgeInternal(N);
1525 
1526   if (SCCMap.empty()) {
1527     // No SCCs have been formed, so removing this is fine and there is nothing
1528     // else necessary at this point but clearing out the node.
1529     N.clear();
1530     return;
1531   }
1532 
1533   // Cannot remove a function which has yet to be visited in the DFS walk, so
1534   // if we have a node at all then we must have an SCC and RefSCC.
1535   auto CI = SCCMap.find(&N);
1536   assert(CI != SCCMap.end() &&
1537          "Tried to remove a node without an SCC after DFS walk started!");
1538   SCC &C = *CI->second;
1539   SCCMap.erase(CI);
1540   RefSCC &RC = C.getOuterRefSCC();
1541 
1542   // This node must be the only member of its SCC as it has no callers, and
1543   // that SCC must be the only member of a RefSCC as it has no references.
1544   // Validate these properties first.
1545   assert(C.size() == 1 && "Dead functions must be in a singular SCC");
1546   assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC");
1547 
1548   auto RCIndexI = RefSCCIndices.find(&RC);
1549   int RCIndex = RCIndexI->second;
1550   PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex);
1551   RefSCCIndices.erase(RCIndexI);
1552   for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i)
1553     RefSCCIndices[PostOrderRefSCCs[i]] = i;
1554 
1555   // Finally clear out all the data structures from the node down through the
1556   // components.
1557   N.clear();
1558   N.G = nullptr;
1559   N.F = nullptr;
1560   C.clear();
1561   RC.clear();
1562   RC.G = nullptr;
1563 
1564   // Nothing to delete as all the objects are allocated in stable bump pointer
1565   // allocators.
1566 }
1567 
1568 void LazyCallGraph::addNewFunctionIntoSCC(Function &NewF, SCC &C) {
1569   addNodeToSCC(C, createNode(NewF));
1570 }
1571 
1572 void LazyCallGraph::addNewFunctionIntoRefSCC(Function &NewF, RefSCC &RC) {
1573   Node &N = createNode(NewF);
1574 
1575   auto *C = createSCC(RC, SmallVector<Node *, 1>());
1576   addNodeToSCC(*C, N);
1577 
1578   auto Index = RC.SCCIndices.size();
1579   RC.SCCIndices[C] = Index;
1580   RC.SCCs.push_back(C);
1581 }
1582 
1583 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
1584   return *new (MappedN = BPA.Allocate()) Node(*this, F);
1585 }
1586 
1587 void LazyCallGraph::updateGraphPtrs() {
1588   // Walk the node map to update their graph pointers. While this iterates in
1589   // an unstable order, the order has no effect so it remains correct.
1590   for (auto &FunctionNodePair : NodeMap)
1591     FunctionNodePair.second->G = this;
1592 
1593   for (auto *RC : PostOrderRefSCCs)
1594     RC->G = this;
1595 }
1596 
1597 LazyCallGraph::Node &LazyCallGraph::createNode(Function &F) {
1598   assert(!lookup(F) && "node already exists");
1599 
1600   Node &N = get(F);
1601   NodeMap[&F] = &N;
1602   N.DFSNumber = N.LowLink = -1;
1603   N.populate();
1604   return N;
1605 }
1606 
1607 void LazyCallGraph::addNodeToSCC(LazyCallGraph::SCC &C, Node &N) {
1608   C.Nodes.push_back(&N);
1609   SCCMap[&N] = &C;
1610 }
1611 
1612 template <typename RootsT, typename GetBeginT, typename GetEndT,
1613           typename GetNodeT, typename FormSCCCallbackT>
1614 void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
1615                                      GetEndT &&GetEnd, GetNodeT &&GetNode,
1616                                      FormSCCCallbackT &&FormSCC) {
1617   using EdgeItT = decltype(GetBegin(std::declval<Node &>()));
1618 
1619   SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack;
1620   SmallVector<Node *, 16> PendingSCCStack;
1621 
1622   // Scan down the stack and DFS across the call edges.
1623   for (Node *RootN : Roots) {
1624     assert(DFSStack.empty() &&
1625            "Cannot begin a new root with a non-empty DFS stack!");
1626     assert(PendingSCCStack.empty() &&
1627            "Cannot begin a new root with pending nodes for an SCC!");
1628 
1629     // Skip any nodes we've already reached in the DFS.
1630     if (RootN->DFSNumber != 0) {
1631       assert(RootN->DFSNumber == -1 &&
1632              "Shouldn't have any mid-DFS root nodes!");
1633       continue;
1634     }
1635 
1636     RootN->DFSNumber = RootN->LowLink = 1;
1637     int NextDFSNumber = 2;
1638 
1639     DFSStack.push_back({RootN, GetBegin(*RootN)});
1640     do {
1641       Node *N;
1642       EdgeItT I;
1643       std::tie(N, I) = DFSStack.pop_back_val();
1644       auto E = GetEnd(*N);
1645       while (I != E) {
1646         Node &ChildN = GetNode(I);
1647         if (ChildN.DFSNumber == 0) {
1648           // We haven't yet visited this child, so descend, pushing the current
1649           // node onto the stack.
1650           DFSStack.push_back({N, I});
1651 
1652           ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
1653           N = &ChildN;
1654           I = GetBegin(*N);
1655           E = GetEnd(*N);
1656           continue;
1657         }
1658 
1659         // If the child has already been added to some child component, it
1660         // couldn't impact the low-link of this parent because it isn't
1661         // connected, and thus its low-link isn't relevant so skip it.
1662         if (ChildN.DFSNumber == -1) {
1663           ++I;
1664           continue;
1665         }
1666 
1667         // Track the lowest linked child as the lowest link for this node.
1668         assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1669         if (ChildN.LowLink < N->LowLink)
1670           N->LowLink = ChildN.LowLink;
1671 
1672         // Move to the next edge.
1673         ++I;
1674       }
1675 
1676       // We've finished processing N and its descendants, put it on our pending
1677       // SCC stack to eventually get merged into an SCC of nodes.
1678       PendingSCCStack.push_back(N);
1679 
1680       // If this node is linked to some lower entry, continue walking up the
1681       // stack.
1682       if (N->LowLink != N->DFSNumber)
1683         continue;
1684 
1685       // Otherwise, we've completed an SCC. Append it to our post order list of
1686       // SCCs.
1687       int RootDFSNumber = N->DFSNumber;
1688       // Find the range of the node stack by walking down until we pass the
1689       // root DFS number.
1690       auto SCCNodes = make_range(
1691           PendingSCCStack.rbegin(),
1692           find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
1693             return N->DFSNumber < RootDFSNumber;
1694           }));
1695       // Form a new SCC out of these nodes and then clear them off our pending
1696       // stack.
1697       FormSCC(SCCNodes);
1698       PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
1699     } while (!DFSStack.empty());
1700   }
1701 }
1702 
1703 /// Build the internal SCCs for a RefSCC from a sequence of nodes.
1704 ///
1705 /// Appends the SCCs to the provided vector and updates the map with their
1706 /// indices. Both the vector and map must be empty when passed into this
1707 /// routine.
1708 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
1709   assert(RC.SCCs.empty() && "Already built SCCs!");
1710   assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
1711 
1712   for (Node *N : Nodes) {
1713     assert(N->LowLink >= (*Nodes.begin())->LowLink &&
1714            "We cannot have a low link in an SCC lower than its root on the "
1715            "stack!");
1716 
1717     // This node will go into the next RefSCC, clear out its DFS and low link
1718     // as we scan.
1719     N->DFSNumber = N->LowLink = 0;
1720   }
1721 
1722   // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1723   // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1724   // internal storage as we won't need it for the outer graph's DFS any longer.
1725   buildGenericSCCs(
1726       Nodes, [](Node &N) { return N->call_begin(); },
1727       [](Node &N) { return N->call_end(); },
1728       [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); },
1729       [this, &RC](node_stack_range Nodes) {
1730         RC.SCCs.push_back(createSCC(RC, Nodes));
1731         for (Node &N : *RC.SCCs.back()) {
1732           N.DFSNumber = N.LowLink = -1;
1733           SCCMap[&N] = RC.SCCs.back();
1734         }
1735       });
1736 
1737   // Wire up the SCC indices.
1738   for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
1739     RC.SCCIndices[RC.SCCs[i]] = i;
1740 }
1741 
1742 void LazyCallGraph::buildRefSCCs() {
1743   if (EntryEdges.empty() || !PostOrderRefSCCs.empty())
1744     // RefSCCs are either non-existent or already built!
1745     return;
1746 
1747   assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!");
1748 
1749   SmallVector<Node *, 16> Roots;
1750   for (Edge &E : *this)
1751     Roots.push_back(&E.getNode());
1752 
1753   // The roots will be popped of a stack, so use reverse to get a less
1754   // surprising order. This doesn't change any of the semantics anywhere.
1755   std::reverse(Roots.begin(), Roots.end());
1756 
1757   buildGenericSCCs(
1758       Roots,
1759       [](Node &N) {
1760         // We need to populate each node as we begin to walk its edges.
1761         N.populate();
1762         return N->begin();
1763       },
1764       [](Node &N) { return N->end(); },
1765       [](EdgeSequence::iterator I) -> Node & { return I->getNode(); },
1766       [this](node_stack_range Nodes) {
1767         RefSCC *NewRC = createRefSCC(*this);
1768         buildSCCs(*NewRC, Nodes);
1769 
1770         // Push the new node into the postorder list and remember its position
1771         // in the index map.
1772         bool Inserted =
1773             RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second;
1774         (void)Inserted;
1775         assert(Inserted && "Cannot already have this RefSCC in the index map!");
1776         PostOrderRefSCCs.push_back(NewRC);
1777 #ifndef NDEBUG
1778         NewRC->verify();
1779 #endif
1780       });
1781 }
1782 
1783 AnalysisKey LazyCallGraphAnalysis::Key;
1784 
1785 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
1786 
1787 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
1788   OS << "  Edges in function: " << N.getFunction().getName() << "\n";
1789   for (LazyCallGraph::Edge &E : N.populate())
1790     OS << "    " << (E.isCall() ? "call" : "ref ") << " -> "
1791        << E.getFunction().getName() << "\n";
1792 
1793   OS << "\n";
1794 }
1795 
1796 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
1797   OS << "    SCC with " << C.size() << " functions:\n";
1798 
1799   for (LazyCallGraph::Node &N : C)
1800     OS << "      " << N.getFunction().getName() << "\n";
1801 }
1802 
1803 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
1804   OS << "  RefSCC with " << C.size() << " call SCCs:\n";
1805 
1806   for (LazyCallGraph::SCC &InnerC : C)
1807     printSCC(OS, InnerC);
1808 
1809   OS << "\n";
1810 }
1811 
1812 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
1813                                                 ModuleAnalysisManager &AM) {
1814   LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1815 
1816   OS << "Printing the call graph for module: " << M.getModuleIdentifier()
1817      << "\n\n";
1818 
1819   for (Function &F : M)
1820     printNode(OS, G.get(F));
1821 
1822   G.buildRefSCCs();
1823   for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
1824     printRefSCC(OS, C);
1825 
1826   return PreservedAnalyses::all();
1827 }
1828 
1829 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
1830     : OS(OS) {}
1831 
1832 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
1833   std::string Name =
1834       "\"" + DOT::EscapeString(std::string(N.getFunction().getName())) + "\"";
1835 
1836   for (LazyCallGraph::Edge &E : N.populate()) {
1837     OS << "  " << Name << " -> \""
1838        << DOT::EscapeString(std::string(E.getFunction().getName())) << "\"";
1839     if (!E.isCall()) // It is a ref edge.
1840       OS << " [style=dashed,label=\"ref\"]";
1841     OS << ";\n";
1842   }
1843 
1844   OS << "\n";
1845 }
1846 
1847 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
1848                                                    ModuleAnalysisManager &AM) {
1849   LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1850 
1851   OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
1852 
1853   for (Function &F : M)
1854     printNodeDOT(OS, G.get(F));
1855 
1856   OS << "}\n";
1857 
1858   return PreservedAnalyses::all();
1859 }
1860