xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/LazyCallGraph.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/LazyCallGraph.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/ScopeExit.h"
13 #include "llvm/ADT/Sequence.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/Analysis/VectorUtils.h"
19 #include "llvm/Config/llvm-config.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalVariable.h"
22 #include "llvm/IR/InstIterator.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/PassManager.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/Compiler.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/GraphWriter.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>
32 #include <cassert>
33 #include <cstddef>
34 #include <iterator>
35 #include <string>
36 #include <tuple>
37 #include <utility>
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "lcg"
42 
43 void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN,
44                                                      Edge::Kind EK) {
45   EdgeIndexMap.insert({&TargetN, Edges.size()});
46   Edges.emplace_back(TargetN, EK);
47 }
48 
49 void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) {
50   Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK);
51 }
52 
53 bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) {
54   auto IndexMapI = EdgeIndexMap.find(&TargetN);
55   if (IndexMapI == EdgeIndexMap.end())
56     return false;
57 
58   Edges[IndexMapI->second] = Edge();
59   EdgeIndexMap.erase(IndexMapI);
60   return true;
61 }
62 
63 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
64                     DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap,
65                     LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) {
66   if (!EdgeIndexMap.insert({&N, Edges.size()}).second)
67     return;
68 
69   LLVM_DEBUG(dbgs() << "    Added callable function: " << N.getName() << "\n");
70   Edges.emplace_back(LazyCallGraph::Edge(N, EK));
71 }
72 
73 LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() {
74   assert(!Edges && "Must not have already populated the edges for this node!");
75 
76   LLVM_DEBUG(dbgs() << "  Adding functions called by '" << getName()
77                     << "' to the graph.\n");
78 
79   Edges = EdgeSequence();
80 
81   SmallVector<Constant *, 16> Worklist;
82   SmallPtrSet<Function *, 4> Callees;
83   SmallPtrSet<Constant *, 16> Visited;
84 
85   // Find all the potential call graph edges in this function. We track both
86   // actual call edges and indirect references to functions. The direct calls
87   // are trivially added, but to accumulate the latter we walk the instructions
88   // and add every operand which is a constant to the worklist to process
89   // afterward.
90   //
91   // Note that we consider *any* function with a definition to be a viable
92   // edge. Even if the function's definition is subject to replacement by
93   // some other module (say, a weak definition) there may still be
94   // optimizations which essentially speculate based on the definition and
95   // a way to check that the specific definition is in fact the one being
96   // used. For example, this could be done by moving the weak definition to
97   // a strong (internal) definition and making the weak definition be an
98   // alias. Then a test of the address of the weak function against the new
99   // strong definition's address would be an effective way to determine the
100   // safety of optimizing a direct call edge.
101   for (BasicBlock &BB : *F)
102     for (Instruction &I : BB) {
103       if (auto *CB = dyn_cast<CallBase>(&I))
104         if (Function *Callee = CB->getCalledFunction())
105           if (!Callee->isDeclaration())
106             if (Callees.insert(Callee).second) {
107               Visited.insert(Callee);
108               addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee),
109                       LazyCallGraph::Edge::Call);
110             }
111 
112       for (Value *Op : I.operand_values())
113         if (Constant *C = dyn_cast<Constant>(Op))
114           if (Visited.insert(C).second)
115             Worklist.push_back(C);
116     }
117 
118   // We've collected all the constant (and thus potentially function or
119   // function containing) operands to all of the instructions in the function.
120   // Process them (recursively) collecting every function found.
121   visitReferences(Worklist, Visited, [&](Function &F) {
122     addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F),
123             LazyCallGraph::Edge::Ref);
124   });
125 
126   // Add implicit reference edges to any defined libcall functions (if we
127   // haven't found an explicit edge).
128   for (auto *F : G->LibFunctions)
129     if (!Visited.count(F))
130       addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F),
131               LazyCallGraph::Edge::Ref);
132 
133   return *Edges;
134 }
135 
136 void LazyCallGraph::Node::replaceFunction(Function &NewF) {
137   assert(F != &NewF && "Must not replace a function with itself!");
138   F = &NewF;
139 }
140 
141 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
142 LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const {
143   dbgs() << *this << '\n';
144 }
145 #endif
146 
147 static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) {
148   LibFunc LF;
149 
150   // Either this is a normal library function or a "vectorizable"
151   // function.  Not using the VFDatabase here because this query
152   // is related only to libraries handled via the TLI.
153   return TLI.getLibFunc(F, LF) ||
154          TLI.isKnownVectorFunctionInLibrary(F.getName());
155 }
156 
157 LazyCallGraph::LazyCallGraph(
158     Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
159   LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
160                     << "\n");
161   for (Function &F : M) {
162     if (F.isDeclaration())
163       continue;
164     // If this function is a known lib function to LLVM then we want to
165     // synthesize reference edges to it to model the fact that LLVM can turn
166     // arbitrary code into a library function call.
167     if (isKnownLibFunction(F, GetTLI(F)))
168       LibFunctions.insert(&F);
169 
170     if (F.hasLocalLinkage())
171       continue;
172 
173     // External linkage defined functions have edges to them from other
174     // modules.
175     LLVM_DEBUG(dbgs() << "  Adding '" << F.getName()
176                       << "' to entry set of the graph.\n");
177     addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref);
178   }
179 
180   // Externally visible aliases of internal functions are also viable entry
181   // edges to the module.
182   for (auto &A : M.aliases()) {
183     if (A.hasLocalLinkage())
184       continue;
185     if (Function* F = dyn_cast<Function>(A.getAliasee())) {
186       LLVM_DEBUG(dbgs() << "  Adding '" << F->getName()
187                         << "' with alias '" << A.getName()
188                         << "' to entry set of the graph.\n");
189       addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(*F), Edge::Ref);
190     }
191   }
192 
193   // Now add entry nodes for functions reachable via initializers to globals.
194   SmallVector<Constant *, 16> Worklist;
195   SmallPtrSet<Constant *, 16> Visited;
196   for (GlobalVariable &GV : M.globals())
197     if (GV.hasInitializer())
198       if (Visited.insert(GV.getInitializer()).second)
199         Worklist.push_back(GV.getInitializer());
200 
201   LLVM_DEBUG(
202       dbgs() << "  Adding functions referenced by global initializers to the "
203                 "entry set.\n");
204   visitReferences(Worklist, Visited, [&](Function &F) {
205     addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F),
206             LazyCallGraph::Edge::Ref);
207   });
208 }
209 
210 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
211     : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
212       EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)),
213       SCCMap(std::move(G.SCCMap)),
214       LibFunctions(std::move(G.LibFunctions)) {
215   updateGraphPtrs();
216 }
217 
218 bool LazyCallGraph::invalidate(Module &, const PreservedAnalyses &PA,
219                                ModuleAnalysisManager::Invalidator &) {
220   // Check whether the analysis, all analyses on functions, or the function's
221   // CFG have been preserved.
222   auto PAC = PA.getChecker<llvm::LazyCallGraphAnalysis>();
223   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>() ||
224            PAC.preservedSet<CFGAnalyses>());
225 }
226 
227 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
228   BPA = std::move(G.BPA);
229   NodeMap = std::move(G.NodeMap);
230   EntryEdges = std::move(G.EntryEdges);
231   SCCBPA = std::move(G.SCCBPA);
232   SCCMap = std::move(G.SCCMap);
233   LibFunctions = std::move(G.LibFunctions);
234   updateGraphPtrs();
235   return *this;
236 }
237 
238 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
239 LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const {
240   dbgs() << *this << '\n';
241 }
242 #endif
243 
244 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
245 void LazyCallGraph::SCC::verify() {
246   assert(OuterRefSCC && "Can't have a null RefSCC!");
247   assert(!Nodes.empty() && "Can't have an empty SCC!");
248 
249   for (Node *N : Nodes) {
250     assert(N && "Can't have a null node!");
251     assert(OuterRefSCC->G->lookupSCC(*N) == this &&
252            "Node does not map to this SCC!");
253     assert(N->DFSNumber == -1 &&
254            "Must set DFS numbers to -1 when adding a node to an SCC!");
255     assert(N->LowLink == -1 &&
256            "Must set low link to -1 when adding a node to an SCC!");
257     for (Edge &E : **N)
258       assert(E.getNode().isPopulated() && "Can't have an unpopulated node!");
259 
260 #ifdef EXPENSIVE_CHECKS
261     // Verify that all nodes in this SCC can reach all other nodes.
262     SmallVector<Node *, 4> Worklist;
263     SmallPtrSet<Node *, 4> Visited;
264     Worklist.push_back(N);
265     while (!Worklist.empty()) {
266       Node *VisitingNode = Worklist.pop_back_val();
267       if (!Visited.insert(VisitingNode).second)
268         continue;
269       for (Edge &E : (*VisitingNode)->calls())
270         Worklist.push_back(&E.getNode());
271     }
272     for (Node *NodeToVisit : Nodes) {
273       assert(Visited.contains(NodeToVisit) &&
274              "Cannot reach all nodes within SCC");
275     }
276 #endif
277   }
278 }
279 #endif
280 
281 bool LazyCallGraph::SCC::isParentOf(const SCC &C) const {
282   if (this == &C)
283     return false;
284 
285   for (Node &N : *this)
286     for (Edge &E : N->calls())
287       if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C)
288         return true;
289 
290   // No edges found.
291   return false;
292 }
293 
294 bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const {
295   if (this == &TargetC)
296     return false;
297 
298   LazyCallGraph &G = *OuterRefSCC->G;
299 
300   // Start with this SCC.
301   SmallPtrSet<const SCC *, 16> Visited = {this};
302   SmallVector<const SCC *, 16> Worklist = {this};
303 
304   // Walk down the graph until we run out of edges or find a path to TargetC.
305   do {
306     const SCC &C = *Worklist.pop_back_val();
307     for (Node &N : C)
308       for (Edge &E : N->calls()) {
309         SCC *CalleeC = G.lookupSCC(E.getNode());
310         if (!CalleeC)
311           continue;
312 
313         // If the callee's SCC is the TargetC, we're done.
314         if (CalleeC == &TargetC)
315           return true;
316 
317         // If this is the first time we've reached this SCC, put it on the
318         // worklist to recurse through.
319         if (Visited.insert(CalleeC).second)
320           Worklist.push_back(CalleeC);
321       }
322   } while (!Worklist.empty());
323 
324   // No paths found.
325   return false;
326 }
327 
328 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
329 
330 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
331 LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const {
332   dbgs() << *this << '\n';
333 }
334 #endif
335 
336 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
337 void LazyCallGraph::RefSCC::verify() {
338   assert(G && "Can't have a null graph!");
339   assert(!SCCs.empty() && "Can't have an empty SCC!");
340 
341   // Verify basic properties of the SCCs.
342   SmallPtrSet<SCC *, 4> SCCSet;
343   for (SCC *C : SCCs) {
344     assert(C && "Can't have a null SCC!");
345     C->verify();
346     assert(&C->getOuterRefSCC() == this &&
347            "SCC doesn't think it is inside this RefSCC!");
348     bool Inserted = SCCSet.insert(C).second;
349     assert(Inserted && "Found a duplicate SCC!");
350     auto IndexIt = SCCIndices.find(C);
351     assert(IndexIt != SCCIndices.end() &&
352            "Found an SCC that doesn't have an index!");
353   }
354 
355   // Check that our indices map correctly.
356   for (auto &SCCIndexPair : SCCIndices) {
357     SCC *C = SCCIndexPair.first;
358     int i = SCCIndexPair.second;
359     assert(C && "Can't have a null SCC in the indices!");
360     assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
361     assert(SCCs[i] == C && "Index doesn't point to SCC!");
362   }
363 
364   // Check that the SCCs are in fact in post-order.
365   for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
366     SCC &SourceSCC = *SCCs[i];
367     for (Node &N : SourceSCC)
368       for (Edge &E : *N) {
369         if (!E.isCall())
370           continue;
371         SCC &TargetSCC = *G->lookupSCC(E.getNode());
372         if (&TargetSCC.getOuterRefSCC() == this) {
373           assert(SCCIndices.find(&TargetSCC)->second <= i &&
374                  "Edge between SCCs violates post-order relationship.");
375           continue;
376         }
377       }
378   }
379 
380 #ifdef EXPENSIVE_CHECKS
381   // Verify that all nodes in this RefSCC can reach all other nodes.
382   SmallVector<Node *> Nodes;
383   for (SCC *C : SCCs) {
384     for (Node &N : *C)
385       Nodes.push_back(&N);
386   }
387   for (Node *N : Nodes) {
388     SmallVector<Node *, 4> Worklist;
389     SmallPtrSet<Node *, 4> Visited;
390     Worklist.push_back(N);
391     while (!Worklist.empty()) {
392       Node *VisitingNode = Worklist.pop_back_val();
393       if (!Visited.insert(VisitingNode).second)
394         continue;
395       for (Edge &E : **VisitingNode)
396         Worklist.push_back(&E.getNode());
397     }
398     for (Node *NodeToVisit : Nodes) {
399       assert(Visited.contains(NodeToVisit) &&
400              "Cannot reach all nodes within RefSCC");
401     }
402   }
403 #endif
404 }
405 #endif
406 
407 bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const {
408   if (&RC == this)
409     return false;
410 
411   // Search all edges to see if this is a parent.
412   for (SCC &C : *this)
413     for (Node &N : C)
414       for (Edge &E : *N)
415         if (G->lookupRefSCC(E.getNode()) == &RC)
416           return true;
417 
418   return false;
419 }
420 
421 bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const {
422   if (&RC == this)
423     return false;
424 
425   // For each descendant of this RefSCC, see if one of its children is the
426   // argument. If not, add that descendant to the worklist and continue
427   // searching.
428   SmallVector<const RefSCC *, 4> Worklist;
429   SmallPtrSet<const RefSCC *, 4> Visited;
430   Worklist.push_back(this);
431   Visited.insert(this);
432   do {
433     const RefSCC &DescendantRC = *Worklist.pop_back_val();
434     for (SCC &C : DescendantRC)
435       for (Node &N : C)
436         for (Edge &E : *N) {
437           auto *ChildRC = G->lookupRefSCC(E.getNode());
438           if (ChildRC == &RC)
439             return true;
440           if (!ChildRC || !Visited.insert(ChildRC).second)
441             continue;
442           Worklist.push_back(ChildRC);
443         }
444   } while (!Worklist.empty());
445 
446   return false;
447 }
448 
449 /// Generic helper that updates a postorder sequence of SCCs for a potentially
450 /// cycle-introducing edge insertion.
451 ///
452 /// A postorder sequence of SCCs of a directed graph has one fundamental
453 /// property: all deges in the DAG of SCCs point "up" the sequence. That is,
454 /// all edges in the SCC DAG point to prior SCCs in the sequence.
455 ///
456 /// This routine both updates a postorder sequence and uses that sequence to
457 /// compute the set of SCCs connected into a cycle. It should only be called to
458 /// insert a "downward" edge which will require changing the sequence to
459 /// restore it to a postorder.
460 ///
461 /// When inserting an edge from an earlier SCC to a later SCC in some postorder
462 /// sequence, all of the SCCs which may be impacted are in the closed range of
463 /// those two within the postorder sequence. The algorithm used here to restore
464 /// the state is as follows:
465 ///
466 /// 1) Starting from the source SCC, construct a set of SCCs which reach the
467 ///    source SCC consisting of just the source SCC. Then scan toward the
468 ///    target SCC in postorder and for each SCC, if it has an edge to an SCC
469 ///    in the set, add it to the set. Otherwise, the source SCC is not
470 ///    a successor, move it in the postorder sequence to immediately before
471 ///    the source SCC, shifting the source SCC and all SCCs in the set one
472 ///    position toward the target SCC. Stop scanning after processing the
473 ///    target SCC.
474 /// 2) If the source SCC is now past the target SCC in the postorder sequence,
475 ///    and thus the new edge will flow toward the start, we are done.
476 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an
477 ///    SCC between the source and the target, and add them to the set of
478 ///    connected SCCs, then recurse through them. Once a complete set of the
479 ///    SCCs the target connects to is known, hoist the remaining SCCs between
480 ///    the source and the target to be above the target. Note that there is no
481 ///    need to process the source SCC, it is already known to connect.
482 /// 4) At this point, all of the SCCs in the closed range between the source
483 ///    SCC and the target SCC in the postorder sequence are connected,
484 ///    including the target SCC and the source SCC. Inserting the edge from
485 ///    the source SCC to the target SCC will form a cycle out of precisely
486 ///    these SCCs. Thus we can merge all of the SCCs in this closed range into
487 ///    a single SCC.
488 ///
489 /// This process has various important properties:
490 /// - Only mutates the SCCs when adding the edge actually changes the SCC
491 ///   structure.
492 /// - Never mutates SCCs which are unaffected by the change.
493 /// - Updates the postorder sequence to correctly satisfy the postorder
494 ///   constraint after the edge is inserted.
495 /// - Only reorders SCCs in the closed postorder sequence from the source to
496 ///   the target, so easy to bound how much has changed even in the ordering.
497 /// - Big-O is the number of edges in the closed postorder range of SCCs from
498 ///   source to target.
499 ///
500 /// This helper routine, in addition to updating the postorder sequence itself
501 /// will also update a map from SCCs to indices within that sequence.
502 ///
503 /// The sequence and the map must operate on pointers to the SCC type.
504 ///
505 /// Two callbacks must be provided. The first computes the subset of SCCs in
506 /// the postorder closed range from the source to the target which connect to
507 /// the source SCC via some (transitive) set of edges. The second computes the
508 /// subset of the same range which the target SCC connects to via some
509 /// (transitive) set of edges. Both callbacks should populate the set argument
510 /// provided.
511 template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
512           typename ComputeSourceConnectedSetCallableT,
513           typename ComputeTargetConnectedSetCallableT>
514 static iterator_range<typename PostorderSequenceT::iterator>
515 updatePostorderSequenceForEdgeInsertion(
516     SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
517     SCCIndexMapT &SCCIndices,
518     ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
519     ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
520   int SourceIdx = SCCIndices[&SourceSCC];
521   int TargetIdx = SCCIndices[&TargetSCC];
522   assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
523 
524   SmallPtrSet<SCCT *, 4> ConnectedSet;
525 
526   // Compute the SCCs which (transitively) reach the source.
527   ComputeSourceConnectedSet(ConnectedSet);
528 
529   // Partition the SCCs in this part of the port-order sequence so only SCCs
530   // connecting to the source remain between it and the target. This is
531   // a benign partition as it preserves postorder.
532   auto SourceI = std::stable_partition(
533       SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
534       [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
535   for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
536     SCCIndices.find(SCCs[i])->second = i;
537 
538   // If the target doesn't connect to the source, then we've corrected the
539   // post-order and there are no cycles formed.
540   if (!ConnectedSet.count(&TargetSCC)) {
541     assert(SourceI > (SCCs.begin() + SourceIdx) &&
542            "Must have moved the source to fix the post-order.");
543     assert(*std::prev(SourceI) == &TargetSCC &&
544            "Last SCC to move should have bene the target.");
545 
546     // Return an empty range at the target SCC indicating there is nothing to
547     // merge.
548     return make_range(std::prev(SourceI), std::prev(SourceI));
549   }
550 
551   assert(SCCs[TargetIdx] == &TargetSCC &&
552          "Should not have moved target if connected!");
553   SourceIdx = SourceI - SCCs.begin();
554   assert(SCCs[SourceIdx] == &SourceSCC &&
555          "Bad updated index computation for the source SCC!");
556 
557 
558   // See whether there are any remaining intervening SCCs between the source
559   // and target. If so we need to make sure they all are reachable form the
560   // target.
561   if (SourceIdx + 1 < TargetIdx) {
562     ConnectedSet.clear();
563     ComputeTargetConnectedSet(ConnectedSet);
564 
565     // Partition SCCs so that only SCCs reached from the target remain between
566     // the source and the target. This preserves postorder.
567     auto TargetI = std::stable_partition(
568         SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
569         [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
570     for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
571       SCCIndices.find(SCCs[i])->second = i;
572     TargetIdx = std::prev(TargetI) - SCCs.begin();
573     assert(SCCs[TargetIdx] == &TargetSCC &&
574            "Should always end with the target!");
575   }
576 
577   // At this point, we know that connecting source to target forms a cycle
578   // because target connects back to source, and we know that all of the SCCs
579   // between the source and target in the postorder sequence participate in that
580   // cycle.
581   return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
582 }
583 
584 bool
585 LazyCallGraph::RefSCC::switchInternalEdgeToCall(
586     Node &SourceN, Node &TargetN,
587     function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) {
588   assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
589   SmallVector<SCC *, 1> DeletedSCCs;
590 
591 #ifdef EXPENSIVE_CHECKS
592   verify();
593   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
594 #endif
595 
596   SCC &SourceSCC = *G->lookupSCC(SourceN);
597   SCC &TargetSCC = *G->lookupSCC(TargetN);
598 
599   // If the two nodes are already part of the same SCC, we're also done as
600   // we've just added more connectivity.
601   if (&SourceSCC == &TargetSCC) {
602     SourceN->setEdgeKind(TargetN, Edge::Call);
603     return false; // No new cycle.
604   }
605 
606   // At this point we leverage the postorder list of SCCs to detect when the
607   // insertion of an edge changes the SCC structure in any way.
608   //
609   // First and foremost, we can eliminate the need for any changes when the
610   // edge is toward the beginning of the postorder sequence because all edges
611   // flow in that direction already. Thus adding a new one cannot form a cycle.
612   int SourceIdx = SCCIndices[&SourceSCC];
613   int TargetIdx = SCCIndices[&TargetSCC];
614   if (TargetIdx < SourceIdx) {
615     SourceN->setEdgeKind(TargetN, Edge::Call);
616     return false; // No new cycle.
617   }
618 
619   // Compute the SCCs which (transitively) reach the source.
620   auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
621 #ifdef EXPENSIVE_CHECKS
622     // Check that the RefSCC is still valid before computing this as the
623     // results will be nonsensical of we've broken its invariants.
624     verify();
625 #endif
626     ConnectedSet.insert(&SourceSCC);
627     auto IsConnected = [&](SCC &C) {
628       for (Node &N : C)
629         for (Edge &E : N->calls())
630           if (ConnectedSet.count(G->lookupSCC(E.getNode())))
631             return true;
632 
633       return false;
634     };
635 
636     for (SCC *C :
637          make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
638       if (IsConnected(*C))
639         ConnectedSet.insert(C);
640   };
641 
642   // Use a normal worklist to find which SCCs the target connects to. We still
643   // bound the search based on the range in the postorder list we care about,
644   // but because this is forward connectivity we just "recurse" through the
645   // edges.
646   auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
647 #ifdef EXPENSIVE_CHECKS
648     // Check that the RefSCC is still valid before computing this as the
649     // results will be nonsensical of we've broken its invariants.
650     verify();
651 #endif
652     ConnectedSet.insert(&TargetSCC);
653     SmallVector<SCC *, 4> Worklist;
654     Worklist.push_back(&TargetSCC);
655     do {
656       SCC &C = *Worklist.pop_back_val();
657       for (Node &N : C)
658         for (Edge &E : *N) {
659           if (!E.isCall())
660             continue;
661           SCC &EdgeC = *G->lookupSCC(E.getNode());
662           if (&EdgeC.getOuterRefSCC() != this)
663             // Not in this RefSCC...
664             continue;
665           if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
666             // Not in the postorder sequence between source and target.
667             continue;
668 
669           if (ConnectedSet.insert(&EdgeC).second)
670             Worklist.push_back(&EdgeC);
671         }
672     } while (!Worklist.empty());
673   };
674 
675   // Use a generic helper to update the postorder sequence of SCCs and return
676   // a range of any SCCs connected into a cycle by inserting this edge. This
677   // routine will also take care of updating the indices into the postorder
678   // sequence.
679   auto MergeRange = updatePostorderSequenceForEdgeInsertion(
680       SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
681       ComputeTargetConnectedSet);
682 
683   // Run the user's callback on the merged SCCs before we actually merge them.
684   if (MergeCB)
685     MergeCB(makeArrayRef(MergeRange.begin(), MergeRange.end()));
686 
687   // If the merge range is empty, then adding the edge didn't actually form any
688   // new cycles. We're done.
689   if (MergeRange.empty()) {
690     // Now that the SCC structure is finalized, flip the kind to call.
691     SourceN->setEdgeKind(TargetN, Edge::Call);
692     return false; // No new cycle.
693   }
694 
695 #ifdef EXPENSIVE_CHECKS
696   // Before merging, check that the RefSCC remains valid after all the
697   // postorder updates.
698   verify();
699 #endif
700 
701   // Otherwise we need to merge all of the SCCs in the cycle into a single
702   // result SCC.
703   //
704   // NB: We merge into the target because all of these functions were already
705   // reachable from the target, meaning any SCC-wide properties deduced about it
706   // other than the set of functions within it will not have changed.
707   for (SCC *C : MergeRange) {
708     assert(C != &TargetSCC &&
709            "We merge *into* the target and shouldn't process it here!");
710     SCCIndices.erase(C);
711     TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
712     for (Node *N : C->Nodes)
713       G->SCCMap[N] = &TargetSCC;
714     C->clear();
715     DeletedSCCs.push_back(C);
716   }
717 
718   // Erase the merged SCCs from the list and update the indices of the
719   // remaining SCCs.
720   int IndexOffset = MergeRange.end() - MergeRange.begin();
721   auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
722   for (SCC *C : make_range(EraseEnd, SCCs.end()))
723     SCCIndices[C] -= IndexOffset;
724 
725   // Now that the SCC structure is finalized, flip the kind to call.
726   SourceN->setEdgeKind(TargetN, Edge::Call);
727 
728   // And we're done, but we did form a new cycle.
729   return true;
730 }
731 
732 void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN,
733                                                            Node &TargetN) {
734   assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
735 
736 #ifdef EXPENSIVE_CHECKS
737   verify();
738   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
739 #endif
740 
741   assert(G->lookupRefSCC(SourceN) == this &&
742          "Source must be in this RefSCC.");
743   assert(G->lookupRefSCC(TargetN) == this &&
744          "Target must be in this RefSCC.");
745   assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) &&
746          "Source and Target must be in separate SCCs for this to be trivial!");
747 
748   // Set the edge kind.
749   SourceN->setEdgeKind(TargetN, Edge::Ref);
750 }
751 
752 iterator_range<LazyCallGraph::RefSCC::iterator>
753 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
754   assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
755 
756 #ifdef EXPENSIVE_CHECKS
757   verify();
758   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
759 #endif
760 
761   assert(G->lookupRefSCC(SourceN) == this &&
762          "Source must be in this RefSCC.");
763   assert(G->lookupRefSCC(TargetN) == this &&
764          "Target must be in this RefSCC.");
765 
766   SCC &TargetSCC = *G->lookupSCC(TargetN);
767   assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in "
768                                                 "the same SCC to require the "
769                                                 "full CG update.");
770 
771   // Set the edge kind.
772   SourceN->setEdgeKind(TargetN, Edge::Ref);
773 
774   // Otherwise we are removing a call edge from a single SCC. This may break
775   // the cycle. In order to compute the new set of SCCs, we need to do a small
776   // DFS over the nodes within the SCC to form any sub-cycles that remain as
777   // distinct SCCs and compute a postorder over the resulting SCCs.
778   //
779   // However, we specially handle the target node. The target node is known to
780   // reach all other nodes in the original SCC by definition. This means that
781   // we want the old SCC to be replaced with an SCC containing that node as it
782   // will be the root of whatever SCC DAG results from the DFS. Assumptions
783   // about an SCC such as the set of functions called will continue to hold,
784   // etc.
785 
786   SCC &OldSCC = TargetSCC;
787   SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack;
788   SmallVector<Node *, 16> PendingSCCStack;
789   SmallVector<SCC *, 4> NewSCCs;
790 
791   // Prepare the nodes for a fresh DFS.
792   SmallVector<Node *, 16> Worklist;
793   Worklist.swap(OldSCC.Nodes);
794   for (Node *N : Worklist) {
795     N->DFSNumber = N->LowLink = 0;
796     G->SCCMap.erase(N);
797   }
798 
799   // Force the target node to be in the old SCC. This also enables us to take
800   // a very significant short-cut in the standard Tarjan walk to re-form SCCs
801   // below: whenever we build an edge that reaches the target node, we know
802   // that the target node eventually connects back to all other nodes in our
803   // walk. As a consequence, we can detect and handle participants in that
804   // cycle without walking all the edges that form this connection, and instead
805   // by relying on the fundamental guarantee coming into this operation (all
806   // nodes are reachable from the target due to previously forming an SCC).
807   TargetN.DFSNumber = TargetN.LowLink = -1;
808   OldSCC.Nodes.push_back(&TargetN);
809   G->SCCMap[&TargetN] = &OldSCC;
810 
811   // Scan down the stack and DFS across the call edges.
812   for (Node *RootN : Worklist) {
813     assert(DFSStack.empty() &&
814            "Cannot begin a new root with a non-empty DFS stack!");
815     assert(PendingSCCStack.empty() &&
816            "Cannot begin a new root with pending nodes for an SCC!");
817 
818     // Skip any nodes we've already reached in the DFS.
819     if (RootN->DFSNumber != 0) {
820       assert(RootN->DFSNumber == -1 &&
821              "Shouldn't have any mid-DFS root nodes!");
822       continue;
823     }
824 
825     RootN->DFSNumber = RootN->LowLink = 1;
826     int NextDFSNumber = 2;
827 
828     DFSStack.push_back({RootN, (*RootN)->call_begin()});
829     do {
830       Node *N;
831       EdgeSequence::call_iterator I;
832       std::tie(N, I) = DFSStack.pop_back_val();
833       auto E = (*N)->call_end();
834       while (I != E) {
835         Node &ChildN = I->getNode();
836         if (ChildN.DFSNumber == 0) {
837           // We haven't yet visited this child, so descend, pushing the current
838           // node onto the stack.
839           DFSStack.push_back({N, I});
840 
841           assert(!G->SCCMap.count(&ChildN) &&
842                  "Found a node with 0 DFS number but already in an SCC!");
843           ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
844           N = &ChildN;
845           I = (*N)->call_begin();
846           E = (*N)->call_end();
847           continue;
848         }
849 
850         // Check for the child already being part of some component.
851         if (ChildN.DFSNumber == -1) {
852           if (G->lookupSCC(ChildN) == &OldSCC) {
853             // If the child is part of the old SCC, we know that it can reach
854             // every other node, so we have formed a cycle. Pull the entire DFS
855             // and pending stacks into it. See the comment above about setting
856             // up the old SCC for why we do this.
857             int OldSize = OldSCC.size();
858             OldSCC.Nodes.push_back(N);
859             OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
860             PendingSCCStack.clear();
861             while (!DFSStack.empty())
862               OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
863             for (Node &N : drop_begin(OldSCC, OldSize)) {
864               N.DFSNumber = N.LowLink = -1;
865               G->SCCMap[&N] = &OldSCC;
866             }
867             N = nullptr;
868             break;
869           }
870 
871           // If the child has already been added to some child component, it
872           // couldn't impact the low-link of this parent because it isn't
873           // connected, and thus its low-link isn't relevant so skip it.
874           ++I;
875           continue;
876         }
877 
878         // Track the lowest linked child as the lowest link for this node.
879         assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
880         if (ChildN.LowLink < N->LowLink)
881           N->LowLink = ChildN.LowLink;
882 
883         // Move to the next edge.
884         ++I;
885       }
886       if (!N)
887         // Cleared the DFS early, start another round.
888         break;
889 
890       // We've finished processing N and its descendants, put it on our pending
891       // SCC stack to eventually get merged into an SCC of nodes.
892       PendingSCCStack.push_back(N);
893 
894       // If this node is linked to some lower entry, continue walking up the
895       // stack.
896       if (N->LowLink != N->DFSNumber)
897         continue;
898 
899       // Otherwise, we've completed an SCC. Append it to our post order list of
900       // SCCs.
901       int RootDFSNumber = N->DFSNumber;
902       // Find the range of the node stack by walking down until we pass the
903       // root DFS number.
904       auto SCCNodes = make_range(
905           PendingSCCStack.rbegin(),
906           find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
907             return N->DFSNumber < RootDFSNumber;
908           }));
909 
910       // Form a new SCC out of these nodes and then clear them off our pending
911       // stack.
912       NewSCCs.push_back(G->createSCC(*this, SCCNodes));
913       for (Node &N : *NewSCCs.back()) {
914         N.DFSNumber = N.LowLink = -1;
915         G->SCCMap[&N] = NewSCCs.back();
916       }
917       PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
918     } while (!DFSStack.empty());
919   }
920 
921   // Insert the remaining SCCs before the old one. The old SCC can reach all
922   // other SCCs we form because it contains the target node of the removed edge
923   // of the old SCC. This means that we will have edges into all of the new
924   // SCCs, which means the old one must come last for postorder.
925   int OldIdx = SCCIndices[&OldSCC];
926   SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
927 
928   // Update the mapping from SCC* to index to use the new SCC*s, and remove the
929   // old SCC from the mapping.
930   for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
931     SCCIndices[SCCs[Idx]] = Idx;
932 
933   return make_range(SCCs.begin() + OldIdx,
934                     SCCs.begin() + OldIdx + NewSCCs.size());
935 }
936 
937 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
938                                                      Node &TargetN) {
939   assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
940 
941   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
942   assert(G->lookupRefSCC(TargetN) != this &&
943          "Target must not be in this RefSCC.");
944 #ifdef EXPENSIVE_CHECKS
945   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
946          "Target must be a descendant of the Source.");
947 #endif
948 
949   // Edges between RefSCCs are the same regardless of call or ref, so we can
950   // just flip the edge here.
951   SourceN->setEdgeKind(TargetN, Edge::Call);
952 
953 #ifdef EXPENSIVE_CHECKS
954   verify();
955 #endif
956 }
957 
958 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
959                                                     Node &TargetN) {
960   assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
961 
962   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
963   assert(G->lookupRefSCC(TargetN) != this &&
964          "Target must not be in this RefSCC.");
965 #ifdef EXPENSIVE_CHECKS
966   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
967          "Target must be a descendant of the Source.");
968 #endif
969 
970   // Edges between RefSCCs are the same regardless of call or ref, so we can
971   // just flip the edge here.
972   SourceN->setEdgeKind(TargetN, Edge::Ref);
973 
974 #ifdef EXPENSIVE_CHECKS
975   verify();
976 #endif
977 }
978 
979 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
980                                                   Node &TargetN) {
981   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
982   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
983 
984   SourceN->insertEdgeInternal(TargetN, Edge::Ref);
985 
986 #ifdef EXPENSIVE_CHECKS
987   verify();
988 #endif
989 }
990 
991 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
992                                                Edge::Kind EK) {
993   // First insert it into the caller.
994   SourceN->insertEdgeInternal(TargetN, EK);
995 
996   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
997 
998   assert(G->lookupRefSCC(TargetN) != this &&
999          "Target must not be in this RefSCC.");
1000 #ifdef EXPENSIVE_CHECKS
1001   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
1002          "Target must be a descendant of the Source.");
1003 #endif
1004 
1005 #ifdef EXPENSIVE_CHECKS
1006   verify();
1007 #endif
1008 }
1009 
1010 SmallVector<LazyCallGraph::RefSCC *, 1>
1011 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
1012   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
1013   RefSCC &SourceC = *G->lookupRefSCC(SourceN);
1014   assert(&SourceC != this && "Source must not be in this RefSCC.");
1015 #ifdef EXPENSIVE_CHECKS
1016   assert(SourceC.isDescendantOf(*this) &&
1017          "Source must be a descendant of the Target.");
1018 #endif
1019 
1020   SmallVector<RefSCC *, 1> DeletedRefSCCs;
1021 
1022 #ifdef EXPENSIVE_CHECKS
1023   verify();
1024   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1025 #endif
1026 
1027   int SourceIdx = G->RefSCCIndices[&SourceC];
1028   int TargetIdx = G->RefSCCIndices[this];
1029   assert(SourceIdx < TargetIdx &&
1030          "Postorder list doesn't see edge as incoming!");
1031 
1032   // Compute the RefSCCs which (transitively) reach the source. We do this by
1033   // working backwards from the source using the parent set in each RefSCC,
1034   // skipping any RefSCCs that don't fall in the postorder range. This has the
1035   // advantage of walking the sparser parent edge (in high fan-out graphs) but
1036   // more importantly this removes examining all forward edges in all RefSCCs
1037   // within the postorder range which aren't in fact connected. Only connected
1038   // RefSCCs (and their edges) are visited here.
1039   auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
1040     Set.insert(&SourceC);
1041     auto IsConnected = [&](RefSCC &RC) {
1042       for (SCC &C : RC)
1043         for (Node &N : C)
1044           for (Edge &E : *N)
1045             if (Set.count(G->lookupRefSCC(E.getNode())))
1046               return true;
1047 
1048       return false;
1049     };
1050 
1051     for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1,
1052                                 G->PostOrderRefSCCs.begin() + TargetIdx + 1))
1053       if (IsConnected(*C))
1054         Set.insert(C);
1055   };
1056 
1057   // Use a normal worklist to find which SCCs the target connects to. We still
1058   // bound the search based on the range in the postorder list we care about,
1059   // but because this is forward connectivity we just "recurse" through the
1060   // edges.
1061   auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
1062     Set.insert(this);
1063     SmallVector<RefSCC *, 4> Worklist;
1064     Worklist.push_back(this);
1065     do {
1066       RefSCC &RC = *Worklist.pop_back_val();
1067       for (SCC &C : RC)
1068         for (Node &N : C)
1069           for (Edge &E : *N) {
1070             RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode());
1071             if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
1072               // Not in the postorder sequence between source and target.
1073               continue;
1074 
1075             if (Set.insert(&EdgeRC).second)
1076               Worklist.push_back(&EdgeRC);
1077           }
1078     } while (!Worklist.empty());
1079   };
1080 
1081   // Use a generic helper to update the postorder sequence of RefSCCs and return
1082   // a range of any RefSCCs connected into a cycle by inserting this edge. This
1083   // routine will also take care of updating the indices into the postorder
1084   // sequence.
1085   iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange =
1086       updatePostorderSequenceForEdgeInsertion(
1087           SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
1088           ComputeSourceConnectedSet, ComputeTargetConnectedSet);
1089 
1090   // Build a set so we can do fast tests for whether a RefSCC will end up as
1091   // part of the merged RefSCC.
1092   SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end());
1093 
1094   // This RefSCC will always be part of that set, so just insert it here.
1095   MergeSet.insert(this);
1096 
1097   // Now that we have identified all of the SCCs which need to be merged into
1098   // a connected set with the inserted edge, merge all of them into this SCC.
1099   SmallVector<SCC *, 16> MergedSCCs;
1100   int SCCIndex = 0;
1101   for (RefSCC *RC : MergeRange) {
1102     assert(RC != this && "We're merging into the target RefSCC, so it "
1103                          "shouldn't be in the range.");
1104 
1105     // Walk the inner SCCs to update their up-pointer and walk all the edges to
1106     // update any parent sets.
1107     // FIXME: We should try to find a way to avoid this (rather expensive) edge
1108     // walk by updating the parent sets in some other manner.
1109     for (SCC &InnerC : *RC) {
1110       InnerC.OuterRefSCC = this;
1111       SCCIndices[&InnerC] = SCCIndex++;
1112       for (Node &N : InnerC)
1113         G->SCCMap[&N] = &InnerC;
1114     }
1115 
1116     // Now merge in the SCCs. We can actually move here so try to reuse storage
1117     // the first time through.
1118     if (MergedSCCs.empty())
1119       MergedSCCs = std::move(RC->SCCs);
1120     else
1121       MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
1122     RC->SCCs.clear();
1123     DeletedRefSCCs.push_back(RC);
1124   }
1125 
1126   // Append our original SCCs to the merged list and move it into place.
1127   for (SCC &InnerC : *this)
1128     SCCIndices[&InnerC] = SCCIndex++;
1129   MergedSCCs.append(SCCs.begin(), SCCs.end());
1130   SCCs = std::move(MergedSCCs);
1131 
1132   // Remove the merged away RefSCCs from the post order sequence.
1133   for (RefSCC *RC : MergeRange)
1134     G->RefSCCIndices.erase(RC);
1135   int IndexOffset = MergeRange.end() - MergeRange.begin();
1136   auto EraseEnd =
1137       G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
1138   for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
1139     G->RefSCCIndices[RC] -= IndexOffset;
1140 
1141   // At this point we have a merged RefSCC with a post-order SCCs list, just
1142   // connect the nodes to form the new edge.
1143   SourceN->insertEdgeInternal(TargetN, Edge::Ref);
1144 
1145   // We return the list of SCCs which were merged so that callers can
1146   // invalidate any data they have associated with those SCCs. Note that these
1147   // SCCs are no longer in an interesting state (they are totally empty) but
1148   // the pointers will remain stable for the life of the graph itself.
1149   return DeletedRefSCCs;
1150 }
1151 
1152 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
1153   assert(G->lookupRefSCC(SourceN) == this &&
1154          "The source must be a member of this RefSCC.");
1155   assert(G->lookupRefSCC(TargetN) != this &&
1156          "The target must not be a member of this RefSCC");
1157 
1158 #ifdef EXPENSIVE_CHECKS
1159   verify();
1160   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1161 #endif
1162 
1163   // First remove it from the node.
1164   bool Removed = SourceN->removeEdgeInternal(TargetN);
1165   (void)Removed;
1166   assert(Removed && "Target not in the edge set for this caller?");
1167 }
1168 
1169 SmallVector<LazyCallGraph::RefSCC *, 1>
1170 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN,
1171                                              ArrayRef<Node *> TargetNs) {
1172   // We return a list of the resulting *new* RefSCCs in post-order.
1173   SmallVector<RefSCC *, 1> Result;
1174 
1175 #ifdef EXPENSIVE_CHECKS
1176   // Verify the RefSCC is valid to start with and that either we return an empty
1177   // list of result RefSCCs and this RefSCC remains valid, or we return new
1178   // RefSCCs and this RefSCC is dead.
1179   verify();
1180   auto VerifyOnExit = make_scope_exit([&]() {
1181     // If we didn't replace our RefSCC with new ones, check that this one
1182     // remains valid.
1183     if (G)
1184       verify();
1185   });
1186 #endif
1187 
1188   // First remove the actual edges.
1189   for (Node *TargetN : TargetNs) {
1190     assert(!(*SourceN)[*TargetN].isCall() &&
1191            "Cannot remove a call edge, it must first be made a ref edge");
1192 
1193     bool Removed = SourceN->removeEdgeInternal(*TargetN);
1194     (void)Removed;
1195     assert(Removed && "Target not in the edge set for this caller?");
1196   }
1197 
1198   // Direct self references don't impact the ref graph at all.
1199   if (llvm::all_of(TargetNs,
1200                    [&](Node *TargetN) { return &SourceN == TargetN; }))
1201     return Result;
1202 
1203   // If all targets are in the same SCC as the source, because no call edges
1204   // were removed there is no RefSCC structure change.
1205   SCC &SourceC = *G->lookupSCC(SourceN);
1206   if (llvm::all_of(TargetNs, [&](Node *TargetN) {
1207         return G->lookupSCC(*TargetN) == &SourceC;
1208       }))
1209     return Result;
1210 
1211   // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1212   // for each inner SCC. We store these inside the low-link field of the nodes
1213   // rather than associated with SCCs because this saves a round-trip through
1214   // the node->SCC map and in the common case, SCCs are small. We will verify
1215   // that we always give the same number to every node in the SCC such that
1216   // these are equivalent.
1217   int PostOrderNumber = 0;
1218 
1219   // Reset all the other nodes to prepare for a DFS over them, and add them to
1220   // our worklist.
1221   SmallVector<Node *, 8> Worklist;
1222   for (SCC *C : SCCs) {
1223     for (Node &N : *C)
1224       N.DFSNumber = N.LowLink = 0;
1225 
1226     Worklist.append(C->Nodes.begin(), C->Nodes.end());
1227   }
1228 
1229   // Track the number of nodes in this RefSCC so that we can quickly recognize
1230   // an important special case of the edge removal not breaking the cycle of
1231   // this RefSCC.
1232   const int NumRefSCCNodes = Worklist.size();
1233 
1234   SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack;
1235   SmallVector<Node *, 4> PendingRefSCCStack;
1236   do {
1237     assert(DFSStack.empty() &&
1238            "Cannot begin a new root with a non-empty DFS stack!");
1239     assert(PendingRefSCCStack.empty() &&
1240            "Cannot begin a new root with pending nodes for an SCC!");
1241 
1242     Node *RootN = Worklist.pop_back_val();
1243     // Skip any nodes we've already reached in the DFS.
1244     if (RootN->DFSNumber != 0) {
1245       assert(RootN->DFSNumber == -1 &&
1246              "Shouldn't have any mid-DFS root nodes!");
1247       continue;
1248     }
1249 
1250     RootN->DFSNumber = RootN->LowLink = 1;
1251     int NextDFSNumber = 2;
1252 
1253     DFSStack.push_back({RootN, (*RootN)->begin()});
1254     do {
1255       Node *N;
1256       EdgeSequence::iterator I;
1257       std::tie(N, I) = DFSStack.pop_back_val();
1258       auto E = (*N)->end();
1259 
1260       assert(N->DFSNumber != 0 && "We should always assign a DFS number "
1261                                   "before processing a node.");
1262 
1263       while (I != E) {
1264         Node &ChildN = I->getNode();
1265         if (ChildN.DFSNumber == 0) {
1266           // Mark that we should start at this child when next this node is the
1267           // top of the stack. We don't start at the next child to ensure this
1268           // child's lowlink is reflected.
1269           DFSStack.push_back({N, I});
1270 
1271           // Continue, resetting to the child node.
1272           ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1273           N = &ChildN;
1274           I = ChildN->begin();
1275           E = ChildN->end();
1276           continue;
1277         }
1278         if (ChildN.DFSNumber == -1) {
1279           // If this child isn't currently in this RefSCC, no need to process
1280           // it.
1281           ++I;
1282           continue;
1283         }
1284 
1285         // Track the lowest link of the children, if any are still in the stack.
1286         // Any child not on the stack will have a LowLink of -1.
1287         assert(ChildN.LowLink != 0 &&
1288                "Low-link must not be zero with a non-zero DFS number.");
1289         if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
1290           N->LowLink = ChildN.LowLink;
1291         ++I;
1292       }
1293 
1294       // We've finished processing N and its descendants, put it on our pending
1295       // stack to eventually get merged into a RefSCC.
1296       PendingRefSCCStack.push_back(N);
1297 
1298       // If this node is linked to some lower entry, continue walking up the
1299       // stack.
1300       if (N->LowLink != N->DFSNumber) {
1301         assert(!DFSStack.empty() &&
1302                "We never found a viable root for a RefSCC to pop off!");
1303         continue;
1304       }
1305 
1306       // Otherwise, form a new RefSCC from the top of the pending node stack.
1307       int RefSCCNumber = PostOrderNumber++;
1308       int RootDFSNumber = N->DFSNumber;
1309 
1310       // Find the range of the node stack by walking down until we pass the
1311       // root DFS number. Update the DFS numbers and low link numbers in the
1312       // process to avoid re-walking this list where possible.
1313       auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) {
1314         if (N->DFSNumber < RootDFSNumber)
1315           // We've found the bottom.
1316           return true;
1317 
1318         // Update this node and keep scanning.
1319         N->DFSNumber = -1;
1320         // Save the post-order number in the lowlink field so that we can use
1321         // it to map SCCs into new RefSCCs after we finish the DFS.
1322         N->LowLink = RefSCCNumber;
1323         return false;
1324       });
1325       auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end());
1326 
1327       // If we find a cycle containing all nodes originally in this RefSCC then
1328       // the removal hasn't changed the structure at all. This is an important
1329       // special case and we can directly exit the entire routine more
1330       // efficiently as soon as we discover it.
1331       if (llvm::size(RefSCCNodes) == NumRefSCCNodes) {
1332         // Clear out the low link field as we won't need it.
1333         for (Node *N : RefSCCNodes)
1334           N->LowLink = -1;
1335         // Return the empty result immediately.
1336         return Result;
1337       }
1338 
1339       // We've already marked the nodes internally with the RefSCC number so
1340       // just clear them off the stack and continue.
1341       PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end());
1342     } while (!DFSStack.empty());
1343 
1344     assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
1345     assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
1346   } while (!Worklist.empty());
1347 
1348   assert(PostOrderNumber > 1 &&
1349          "Should never finish the DFS when the existing RefSCC remains valid!");
1350 
1351   // Otherwise we create a collection of new RefSCC nodes and build
1352   // a radix-sort style map from postorder number to these new RefSCCs. We then
1353   // append SCCs to each of these RefSCCs in the order they occurred in the
1354   // original SCCs container.
1355   for (int i = 0; i < PostOrderNumber; ++i)
1356     Result.push_back(G->createRefSCC(*G));
1357 
1358   // Insert the resulting postorder sequence into the global graph postorder
1359   // sequence before the current RefSCC in that sequence, and then remove the
1360   // current one.
1361   //
1362   // FIXME: It'd be nice to change the APIs so that we returned an iterator
1363   // range over the global postorder sequence and generally use that sequence
1364   // rather than building a separate result vector here.
1365   int Idx = G->getRefSCCIndex(*this);
1366   G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx);
1367   G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(),
1368                              Result.end());
1369   for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size()))
1370     G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i;
1371 
1372   for (SCC *C : SCCs) {
1373     // We store the SCC number in the node's low-link field above.
1374     int SCCNumber = C->begin()->LowLink;
1375     // Clear out all of the SCC's node's low-link fields now that we're done
1376     // using them as side-storage.
1377     for (Node &N : *C) {
1378       assert(N.LowLink == SCCNumber &&
1379              "Cannot have different numbers for nodes in the same SCC!");
1380       N.LowLink = -1;
1381     }
1382 
1383     RefSCC &RC = *Result[SCCNumber];
1384     int SCCIndex = RC.SCCs.size();
1385     RC.SCCs.push_back(C);
1386     RC.SCCIndices[C] = SCCIndex;
1387     C->OuterRefSCC = &RC;
1388   }
1389 
1390   // Now that we've moved things into the new RefSCCs, clear out our current
1391   // one.
1392   G = nullptr;
1393   SCCs.clear();
1394   SCCIndices.clear();
1395 
1396 #ifdef EXPENSIVE_CHECKS
1397   // Verify the new RefSCCs we've built.
1398   for (RefSCC *RC : Result)
1399     RC->verify();
1400 #endif
1401 
1402   // Return the new list of SCCs.
1403   return Result;
1404 }
1405 
1406 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
1407                                                   Node &TargetN) {
1408 #ifdef EXPENSIVE_CHECKS
1409   auto ExitVerifier = make_scope_exit([this] { verify(); });
1410 
1411   // Check that we aren't breaking some invariants of the SCC graph. Note that
1412   // this is quadratic in the number of edges in the call graph!
1413   SCC &SourceC = *G->lookupSCC(SourceN);
1414   SCC &TargetC = *G->lookupSCC(TargetN);
1415   if (&SourceC != &TargetC)
1416     assert(SourceC.isAncestorOf(TargetC) &&
1417            "Call edge is not trivial in the SCC graph!");
1418 #endif
1419 
1420   // First insert it into the source or find the existing edge.
1421   auto InsertResult =
1422       SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
1423   if (!InsertResult.second) {
1424     // Already an edge, just update it.
1425     Edge &E = SourceN->Edges[InsertResult.first->second];
1426     if (E.isCall())
1427       return; // Nothing to do!
1428     E.setKind(Edge::Call);
1429   } else {
1430     // Create the new edge.
1431     SourceN->Edges.emplace_back(TargetN, Edge::Call);
1432   }
1433 }
1434 
1435 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
1436 #ifdef EXPENSIVE_CHECKS
1437   auto ExitVerifier = make_scope_exit([this] { verify(); });
1438 
1439   // Check that we aren't breaking some invariants of the RefSCC graph.
1440   RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
1441   RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1442   if (&SourceRC != &TargetRC)
1443     assert(SourceRC.isAncestorOf(TargetRC) &&
1444            "Ref edge is not trivial in the RefSCC graph!");
1445 #endif
1446 
1447   // First insert it into the source or find the existing edge.
1448   auto InsertResult =
1449       SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
1450   if (!InsertResult.second)
1451     // Already an edge, we're done.
1452     return;
1453 
1454   // Create the new edge.
1455   SourceN->Edges.emplace_back(TargetN, Edge::Ref);
1456 }
1457 
1458 void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) {
1459   Function &OldF = N.getFunction();
1460 
1461 #ifdef EXPENSIVE_CHECKS
1462   auto ExitVerifier = make_scope_exit([this] { verify(); });
1463 
1464   assert(G->lookupRefSCC(N) == this &&
1465          "Cannot replace the function of a node outside this RefSCC.");
1466 
1467   assert(G->NodeMap.find(&NewF) == G->NodeMap.end() &&
1468          "Must not have already walked the new function!'");
1469 
1470   // It is important that this replacement not introduce graph changes so we
1471   // insist that the caller has already removed every use of the original
1472   // function and that all uses of the new function correspond to existing
1473   // edges in the graph. The common and expected way to use this is when
1474   // replacing the function itself in the IR without changing the call graph
1475   // shape and just updating the analysis based on that.
1476   assert(&OldF != &NewF && "Cannot replace a function with itself!");
1477   assert(OldF.use_empty() &&
1478          "Must have moved all uses from the old function to the new!");
1479 #endif
1480 
1481   N.replaceFunction(NewF);
1482 
1483   // Update various call graph maps.
1484   G->NodeMap.erase(&OldF);
1485   G->NodeMap[&NewF] = &N;
1486 }
1487 
1488 void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) {
1489   assert(SCCMap.empty() &&
1490          "This method cannot be called after SCCs have been formed!");
1491 
1492   return SourceN->insertEdgeInternal(TargetN, EK);
1493 }
1494 
1495 void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) {
1496   assert(SCCMap.empty() &&
1497          "This method cannot be called after SCCs have been formed!");
1498 
1499   bool Removed = SourceN->removeEdgeInternal(TargetN);
1500   (void)Removed;
1501   assert(Removed && "Target not in the edge set for this caller?");
1502 }
1503 
1504 void LazyCallGraph::removeDeadFunction(Function &F) {
1505   // FIXME: This is unnecessarily restrictive. We should be able to remove
1506   // functions which recursively call themselves.
1507   assert(F.use_empty() &&
1508          "This routine should only be called on trivially dead functions!");
1509 
1510   // We shouldn't remove library functions as they are never really dead while
1511   // the call graph is in use -- every function definition refers to them.
1512   assert(!isLibFunction(F) &&
1513          "Must not remove lib functions from the call graph!");
1514 
1515   auto NI = NodeMap.find(&F);
1516   if (NI == NodeMap.end())
1517     // Not in the graph at all!
1518     return;
1519 
1520   Node &N = *NI->second;
1521   NodeMap.erase(NI);
1522 
1523   // Remove this from the entry edges if present.
1524   EntryEdges.removeEdgeInternal(N);
1525 
1526   if (SCCMap.empty()) {
1527     // No SCCs have been formed, so removing this is fine and there is nothing
1528     // else necessary at this point but clearing out the node.
1529     N.clear();
1530     return;
1531   }
1532 
1533   // Cannot remove a function which has yet to be visited in the DFS walk, so
1534   // if we have a node at all then we must have an SCC and RefSCC.
1535   auto CI = SCCMap.find(&N);
1536   assert(CI != SCCMap.end() &&
1537          "Tried to remove a node without an SCC after DFS walk started!");
1538   SCC &C = *CI->second;
1539   SCCMap.erase(CI);
1540   RefSCC &RC = C.getOuterRefSCC();
1541 
1542   // This node must be the only member of its SCC as it has no callers, and
1543   // that SCC must be the only member of a RefSCC as it has no references.
1544   // Validate these properties first.
1545   assert(C.size() == 1 && "Dead functions must be in a singular SCC");
1546   assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC");
1547 
1548   auto RCIndexI = RefSCCIndices.find(&RC);
1549   int RCIndex = RCIndexI->second;
1550   PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex);
1551   RefSCCIndices.erase(RCIndexI);
1552   for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i)
1553     RefSCCIndices[PostOrderRefSCCs[i]] = i;
1554 
1555   // Finally clear out all the data structures from the node down through the
1556   // components.
1557   N.clear();
1558   N.G = nullptr;
1559   N.F = nullptr;
1560   C.clear();
1561   RC.clear();
1562   RC.G = nullptr;
1563 
1564   // Nothing to delete as all the objects are allocated in stable bump pointer
1565   // allocators.
1566 }
1567 
1568 // Gets the Edge::Kind from one function to another by looking at the function's
1569 // instructions. Asserts if there is no edge.
1570 // Useful for determining what type of edge should exist between functions when
1571 // the edge hasn't been created yet.
1572 static LazyCallGraph::Edge::Kind getEdgeKind(Function &OriginalFunction,
1573                                              Function &NewFunction) {
1574   // In release builds, assume that if there are no direct calls to the new
1575   // function, then there is a ref edge. In debug builds, keep track of
1576   // references to assert that there is actually a ref edge if there is no call
1577   // edge.
1578 #ifndef NDEBUG
1579   SmallVector<Constant *, 16> Worklist;
1580   SmallPtrSet<Constant *, 16> Visited;
1581 #endif
1582 
1583   for (Instruction &I : instructions(OriginalFunction)) {
1584     if (auto *CB = dyn_cast<CallBase>(&I)) {
1585       if (Function *Callee = CB->getCalledFunction()) {
1586         if (Callee == &NewFunction)
1587           return LazyCallGraph::Edge::Kind::Call;
1588       }
1589     }
1590 #ifndef NDEBUG
1591     for (Value *Op : I.operand_values()) {
1592       if (Constant *C = dyn_cast<Constant>(Op)) {
1593         if (Visited.insert(C).second)
1594           Worklist.push_back(C);
1595       }
1596     }
1597 #endif
1598   }
1599 
1600 #ifndef NDEBUG
1601   bool FoundNewFunction = false;
1602   LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &F) {
1603     if (&F == &NewFunction)
1604       FoundNewFunction = true;
1605   });
1606   assert(FoundNewFunction && "No edge from original function to new function");
1607 #endif
1608 
1609   return LazyCallGraph::Edge::Kind::Ref;
1610 }
1611 
1612 void LazyCallGraph::addSplitFunction(Function &OriginalFunction,
1613                                      Function &NewFunction) {
1614   assert(lookup(OriginalFunction) &&
1615          "Original function's node should already exist");
1616   Node &OriginalN = get(OriginalFunction);
1617   SCC *OriginalC = lookupSCC(OriginalN);
1618   RefSCC *OriginalRC = lookupRefSCC(OriginalN);
1619 
1620 #ifdef EXPENSIVE_CHECKS
1621   OriginalRC->verify();
1622   auto VerifyOnExit = make_scope_exit([&]() { OriginalRC->verify(); });
1623 #endif
1624 
1625   assert(!lookup(NewFunction) &&
1626          "New function's node should not already exist");
1627   Node &NewN = initNode(NewFunction);
1628 
1629   Edge::Kind EK = getEdgeKind(OriginalFunction, NewFunction);
1630 
1631   SCC *NewC = nullptr;
1632   for (Edge &E : *NewN) {
1633     Node &EN = E.getNode();
1634     if (EK == Edge::Kind::Call && E.isCall() && lookupSCC(EN) == OriginalC) {
1635       // If the edge to the new function is a call edge and there is a call edge
1636       // from the new function to any function in the original function's SCC,
1637       // it is in the same SCC (and RefSCC) as the original function.
1638       NewC = OriginalC;
1639       NewC->Nodes.push_back(&NewN);
1640       break;
1641     }
1642   }
1643 
1644   if (!NewC) {
1645     for (Edge &E : *NewN) {
1646       Node &EN = E.getNode();
1647       if (lookupRefSCC(EN) == OriginalRC) {
1648         // If there is any edge from the new function to any function in the
1649         // original function's RefSCC, it is in the same RefSCC as the original
1650         // function but a new SCC.
1651         RefSCC *NewRC = OriginalRC;
1652         NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1653 
1654         // The new function's SCC is not the same as the original function's
1655         // SCC, since that case was handled earlier. If the edge from the
1656         // original function to the new function was a call edge, then we need
1657         // to insert the newly created function's SCC before the original
1658         // function's SCC. Otherwise either the new SCC comes after the original
1659         // function's SCC, or it doesn't matter, and in both cases we can add it
1660         // to the very end.
1661         int InsertIndex = EK == Edge::Kind::Call ? NewRC->SCCIndices[OriginalC]
1662                                                  : NewRC->SCCIndices.size();
1663         NewRC->SCCs.insert(NewRC->SCCs.begin() + InsertIndex, NewC);
1664         for (int I = InsertIndex, Size = NewRC->SCCs.size(); I < Size; ++I)
1665           NewRC->SCCIndices[NewRC->SCCs[I]] = I;
1666 
1667         break;
1668       }
1669     }
1670   }
1671 
1672   if (!NewC) {
1673     // We didn't find any edges back to the original function's RefSCC, so the
1674     // new function belongs in a new RefSCC. The new RefSCC goes before the
1675     // original function's RefSCC.
1676     RefSCC *NewRC = createRefSCC(*this);
1677     NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1678     NewRC->SCCIndices[NewC] = 0;
1679     NewRC->SCCs.push_back(NewC);
1680     auto OriginalRCIndex = RefSCCIndices.find(OriginalRC)->second;
1681     PostOrderRefSCCs.insert(PostOrderRefSCCs.begin() + OriginalRCIndex, NewRC);
1682     for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I)
1683       RefSCCIndices[PostOrderRefSCCs[I]] = I;
1684   }
1685 
1686   SCCMap[&NewN] = NewC;
1687 
1688   OriginalN->insertEdgeInternal(NewN, EK);
1689 }
1690 
1691 void LazyCallGraph::addSplitRefRecursiveFunctions(
1692     Function &OriginalFunction, ArrayRef<Function *> NewFunctions) {
1693   assert(!NewFunctions.empty() && "Can't add zero functions");
1694   assert(lookup(OriginalFunction) &&
1695          "Original function's node should already exist");
1696   Node &OriginalN = get(OriginalFunction);
1697   RefSCC *OriginalRC = lookupRefSCC(OriginalN);
1698 
1699 #ifdef EXPENSIVE_CHECKS
1700   OriginalRC->verify();
1701   auto VerifyOnExit = make_scope_exit([&]() {
1702     OriginalRC->verify();
1703     for (Function *NewFunction : NewFunctions)
1704       lookupRefSCC(get(*NewFunction))->verify();
1705   });
1706 #endif
1707 
1708   bool ExistsRefToOriginalRefSCC = false;
1709 
1710   for (Function *NewFunction : NewFunctions) {
1711     Node &NewN = initNode(*NewFunction);
1712 
1713     OriginalN->insertEdgeInternal(NewN, Edge::Kind::Ref);
1714 
1715     // Check if there is any edge from any new function back to any function in
1716     // the original function's RefSCC.
1717     for (Edge &E : *NewN) {
1718       if (lookupRefSCC(E.getNode()) == OriginalRC) {
1719         ExistsRefToOriginalRefSCC = true;
1720         break;
1721       }
1722     }
1723   }
1724 
1725   RefSCC *NewRC;
1726   if (ExistsRefToOriginalRefSCC) {
1727     // If there is any edge from any new function to any function in the
1728     // original function's RefSCC, all new functions will be in the same RefSCC
1729     // as the original function.
1730     NewRC = OriginalRC;
1731   } else {
1732     // Otherwise the new functions are in their own RefSCC.
1733     NewRC = createRefSCC(*this);
1734     // The new RefSCC goes before the original function's RefSCC in postorder
1735     // since there are only edges from the original function's RefSCC to the new
1736     // RefSCC.
1737     auto OriginalRCIndex = RefSCCIndices.find(OriginalRC)->second;
1738     PostOrderRefSCCs.insert(PostOrderRefSCCs.begin() + OriginalRCIndex, NewRC);
1739     for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I)
1740       RefSCCIndices[PostOrderRefSCCs[I]] = I;
1741   }
1742 
1743   for (Function *NewFunction : NewFunctions) {
1744     Node &NewN = get(*NewFunction);
1745     // Each new function is in its own new SCC. The original function can only
1746     // have a ref edge to new functions, and no other existing functions can
1747     // have references to new functions. Each new function only has a ref edge
1748     // to the other new functions.
1749     SCC *NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1750     // The new SCCs are either sibling SCCs or parent SCCs to all other existing
1751     // SCCs in the RefSCC. Either way, they can go at the back of the postorder
1752     // SCC list.
1753     auto Index = NewRC->SCCIndices.size();
1754     NewRC->SCCIndices[NewC] = Index;
1755     NewRC->SCCs.push_back(NewC);
1756     SCCMap[&NewN] = NewC;
1757   }
1758 
1759 #ifndef NDEBUG
1760   for (Function *F1 : NewFunctions) {
1761     assert(getEdgeKind(OriginalFunction, *F1) == Edge::Kind::Ref &&
1762            "Expected ref edges from original function to every new function");
1763     Node &N1 = get(*F1);
1764     for (Function *F2 : NewFunctions) {
1765       if (F1 == F2)
1766         continue;
1767       Node &N2 = get(*F2);
1768       assert(!N1->lookup(N2)->isCall() &&
1769              "Edges between new functions must be ref edges");
1770     }
1771   }
1772 #endif
1773 }
1774 
1775 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
1776   return *new (MappedN = BPA.Allocate()) Node(*this, F);
1777 }
1778 
1779 void LazyCallGraph::updateGraphPtrs() {
1780   // Walk the node map to update their graph pointers. While this iterates in
1781   // an unstable order, the order has no effect so it remains correct.
1782   for (auto &FunctionNodePair : NodeMap)
1783     FunctionNodePair.second->G = this;
1784 
1785   for (auto *RC : PostOrderRefSCCs)
1786     RC->G = this;
1787 }
1788 
1789 LazyCallGraph::Node &LazyCallGraph::initNode(Function &F) {
1790   Node &N = get(F);
1791   N.DFSNumber = N.LowLink = -1;
1792   N.populate();
1793   NodeMap[&F] = &N;
1794   return N;
1795 }
1796 
1797 template <typename RootsT, typename GetBeginT, typename GetEndT,
1798           typename GetNodeT, typename FormSCCCallbackT>
1799 void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
1800                                      GetEndT &&GetEnd, GetNodeT &&GetNode,
1801                                      FormSCCCallbackT &&FormSCC) {
1802   using EdgeItT = decltype(GetBegin(std::declval<Node &>()));
1803 
1804   SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack;
1805   SmallVector<Node *, 16> PendingSCCStack;
1806 
1807   // Scan down the stack and DFS across the call edges.
1808   for (Node *RootN : Roots) {
1809     assert(DFSStack.empty() &&
1810            "Cannot begin a new root with a non-empty DFS stack!");
1811     assert(PendingSCCStack.empty() &&
1812            "Cannot begin a new root with pending nodes for an SCC!");
1813 
1814     // Skip any nodes we've already reached in the DFS.
1815     if (RootN->DFSNumber != 0) {
1816       assert(RootN->DFSNumber == -1 &&
1817              "Shouldn't have any mid-DFS root nodes!");
1818       continue;
1819     }
1820 
1821     RootN->DFSNumber = RootN->LowLink = 1;
1822     int NextDFSNumber = 2;
1823 
1824     DFSStack.push_back({RootN, GetBegin(*RootN)});
1825     do {
1826       Node *N;
1827       EdgeItT I;
1828       std::tie(N, I) = DFSStack.pop_back_val();
1829       auto E = GetEnd(*N);
1830       while (I != E) {
1831         Node &ChildN = GetNode(I);
1832         if (ChildN.DFSNumber == 0) {
1833           // We haven't yet visited this child, so descend, pushing the current
1834           // node onto the stack.
1835           DFSStack.push_back({N, I});
1836 
1837           ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
1838           N = &ChildN;
1839           I = GetBegin(*N);
1840           E = GetEnd(*N);
1841           continue;
1842         }
1843 
1844         // If the child has already been added to some child component, it
1845         // couldn't impact the low-link of this parent because it isn't
1846         // connected, and thus its low-link isn't relevant so skip it.
1847         if (ChildN.DFSNumber == -1) {
1848           ++I;
1849           continue;
1850         }
1851 
1852         // Track the lowest linked child as the lowest link for this node.
1853         assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1854         if (ChildN.LowLink < N->LowLink)
1855           N->LowLink = ChildN.LowLink;
1856 
1857         // Move to the next edge.
1858         ++I;
1859       }
1860 
1861       // We've finished processing N and its descendants, put it on our pending
1862       // SCC stack to eventually get merged into an SCC of nodes.
1863       PendingSCCStack.push_back(N);
1864 
1865       // If this node is linked to some lower entry, continue walking up the
1866       // stack.
1867       if (N->LowLink != N->DFSNumber)
1868         continue;
1869 
1870       // Otherwise, we've completed an SCC. Append it to our post order list of
1871       // SCCs.
1872       int RootDFSNumber = N->DFSNumber;
1873       // Find the range of the node stack by walking down until we pass the
1874       // root DFS number.
1875       auto SCCNodes = make_range(
1876           PendingSCCStack.rbegin(),
1877           find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
1878             return N->DFSNumber < RootDFSNumber;
1879           }));
1880       // Form a new SCC out of these nodes and then clear them off our pending
1881       // stack.
1882       FormSCC(SCCNodes);
1883       PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
1884     } while (!DFSStack.empty());
1885   }
1886 }
1887 
1888 /// Build the internal SCCs for a RefSCC from a sequence of nodes.
1889 ///
1890 /// Appends the SCCs to the provided vector and updates the map with their
1891 /// indices. Both the vector and map must be empty when passed into this
1892 /// routine.
1893 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
1894   assert(RC.SCCs.empty() && "Already built SCCs!");
1895   assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
1896 
1897   for (Node *N : Nodes) {
1898     assert(N->LowLink >= (*Nodes.begin())->LowLink &&
1899            "We cannot have a low link in an SCC lower than its root on the "
1900            "stack!");
1901 
1902     // This node will go into the next RefSCC, clear out its DFS and low link
1903     // as we scan.
1904     N->DFSNumber = N->LowLink = 0;
1905   }
1906 
1907   // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1908   // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1909   // internal storage as we won't need it for the outer graph's DFS any longer.
1910   buildGenericSCCs(
1911       Nodes, [](Node &N) { return N->call_begin(); },
1912       [](Node &N) { return N->call_end(); },
1913       [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); },
1914       [this, &RC](node_stack_range Nodes) {
1915         RC.SCCs.push_back(createSCC(RC, Nodes));
1916         for (Node &N : *RC.SCCs.back()) {
1917           N.DFSNumber = N.LowLink = -1;
1918           SCCMap[&N] = RC.SCCs.back();
1919         }
1920       });
1921 
1922   // Wire up the SCC indices.
1923   for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
1924     RC.SCCIndices[RC.SCCs[i]] = i;
1925 }
1926 
1927 void LazyCallGraph::buildRefSCCs() {
1928   if (EntryEdges.empty() || !PostOrderRefSCCs.empty())
1929     // RefSCCs are either non-existent or already built!
1930     return;
1931 
1932   assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!");
1933 
1934   SmallVector<Node *, 16> Roots;
1935   for (Edge &E : *this)
1936     Roots.push_back(&E.getNode());
1937 
1938   // The roots will be iterated in order.
1939   buildGenericSCCs(
1940       Roots,
1941       [](Node &N) {
1942         // We need to populate each node as we begin to walk its edges.
1943         N.populate();
1944         return N->begin();
1945       },
1946       [](Node &N) { return N->end(); },
1947       [](EdgeSequence::iterator I) -> Node & { return I->getNode(); },
1948       [this](node_stack_range Nodes) {
1949         RefSCC *NewRC = createRefSCC(*this);
1950         buildSCCs(*NewRC, Nodes);
1951 
1952         // Push the new node into the postorder list and remember its position
1953         // in the index map.
1954         bool Inserted =
1955             RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second;
1956         (void)Inserted;
1957         assert(Inserted && "Cannot already have this RefSCC in the index map!");
1958         PostOrderRefSCCs.push_back(NewRC);
1959 #ifdef EXPENSIVE_CHECKS
1960         NewRC->verify();
1961 #endif
1962       });
1963 }
1964 
1965 AnalysisKey LazyCallGraphAnalysis::Key;
1966 
1967 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
1968 
1969 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
1970   OS << "  Edges in function: " << N.getFunction().getName() << "\n";
1971   for (LazyCallGraph::Edge &E : N.populate())
1972     OS << "    " << (E.isCall() ? "call" : "ref ") << " -> "
1973        << E.getFunction().getName() << "\n";
1974 
1975   OS << "\n";
1976 }
1977 
1978 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
1979   OS << "    SCC with " << C.size() << " functions:\n";
1980 
1981   for (LazyCallGraph::Node &N : C)
1982     OS << "      " << N.getFunction().getName() << "\n";
1983 }
1984 
1985 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
1986   OS << "  RefSCC with " << C.size() << " call SCCs:\n";
1987 
1988   for (LazyCallGraph::SCC &InnerC : C)
1989     printSCC(OS, InnerC);
1990 
1991   OS << "\n";
1992 }
1993 
1994 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
1995                                                 ModuleAnalysisManager &AM) {
1996   LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1997 
1998   OS << "Printing the call graph for module: " << M.getModuleIdentifier()
1999      << "\n\n";
2000 
2001   for (Function &F : M)
2002     printNode(OS, G.get(F));
2003 
2004   G.buildRefSCCs();
2005   for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
2006     printRefSCC(OS, C);
2007 
2008   return PreservedAnalyses::all();
2009 }
2010 
2011 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
2012     : OS(OS) {}
2013 
2014 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
2015   std::string Name =
2016       "\"" + DOT::EscapeString(std::string(N.getFunction().getName())) + "\"";
2017 
2018   for (LazyCallGraph::Edge &E : N.populate()) {
2019     OS << "  " << Name << " -> \""
2020        << DOT::EscapeString(std::string(E.getFunction().getName())) << "\"";
2021     if (!E.isCall()) // It is a ref edge.
2022       OS << " [style=dashed,label=\"ref\"]";
2023     OS << ";\n";
2024   }
2025 
2026   OS << "\n";
2027 }
2028 
2029 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
2030                                                    ModuleAnalysisManager &AM) {
2031   LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
2032 
2033   OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
2034 
2035   for (Function &F : M)
2036     printNodeDOT(OS, G.get(F));
2037 
2038   OS << "}\n";
2039 
2040   return PreservedAnalyses::all();
2041 }
2042