xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/LazyCallGraph.cpp (revision 0e8011faf58b743cc652e3b2ad0f7671227610df)
1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/LazyCallGraph.h"
10 
11 #include "llvm/ADT/ArrayRef.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/Sequence.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/GlobalVariable.h"
21 #include "llvm/IR/InstIterator.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/GraphWriter.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <algorithm>
31 
32 #ifdef EXPENSIVE_CHECKS
33 #include "llvm/ADT/ScopeExit.h"
34 #endif
35 
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "lcg"
39 
40 void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN,
41                                                      Edge::Kind EK) {
42   EdgeIndexMap.try_emplace(&TargetN, Edges.size());
43   Edges.emplace_back(TargetN, EK);
44 }
45 
46 void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) {
47   Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK);
48 }
49 
50 bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) {
51   auto IndexMapI = EdgeIndexMap.find(&TargetN);
52   if (IndexMapI == EdgeIndexMap.end())
53     return false;
54 
55   Edges[IndexMapI->second] = Edge();
56   EdgeIndexMap.erase(IndexMapI);
57   return true;
58 }
59 
60 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
61                     DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap,
62                     LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) {
63   if (!EdgeIndexMap.try_emplace(&N, Edges.size()).second)
64     return;
65 
66   LLVM_DEBUG(dbgs() << "    Added callable function: " << N.getName() << "\n");
67   Edges.emplace_back(LazyCallGraph::Edge(N, EK));
68 }
69 
70 LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() {
71   assert(!Edges && "Must not have already populated the edges for this node!");
72 
73   LLVM_DEBUG(dbgs() << "  Adding functions called by '" << getName()
74                     << "' to the graph.\n");
75 
76   Edges = EdgeSequence();
77 
78   SmallVector<Constant *, 16> Worklist;
79   SmallPtrSet<Function *, 4> Callees;
80   SmallPtrSet<Constant *, 16> Visited;
81 
82   // Find all the potential call graph edges in this function. We track both
83   // actual call edges and indirect references to functions. The direct calls
84   // are trivially added, but to accumulate the latter we walk the instructions
85   // and add every operand which is a constant to the worklist to process
86   // afterward.
87   //
88   // Note that we consider *any* function with a definition to be a viable
89   // edge. Even if the function's definition is subject to replacement by
90   // some other module (say, a weak definition) there may still be
91   // optimizations which essentially speculate based on the definition and
92   // a way to check that the specific definition is in fact the one being
93   // used. For example, this could be done by moving the weak definition to
94   // a strong (internal) definition and making the weak definition be an
95   // alias. Then a test of the address of the weak function against the new
96   // strong definition's address would be an effective way to determine the
97   // safety of optimizing a direct call edge.
98   for (BasicBlock &BB : *F)
99     for (Instruction &I : BB) {
100       if (auto *CB = dyn_cast<CallBase>(&I))
101         if (Function *Callee = CB->getCalledFunction())
102           if (!Callee->isDeclaration())
103             if (Callees.insert(Callee).second) {
104               Visited.insert(Callee);
105               addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee),
106                       LazyCallGraph::Edge::Call);
107             }
108 
109       for (Value *Op : I.operand_values())
110         if (Constant *C = dyn_cast<Constant>(Op))
111           if (Visited.insert(C).second)
112             Worklist.push_back(C);
113     }
114 
115   // We've collected all the constant (and thus potentially function or
116   // function containing) operands to all the instructions in the function.
117   // Process them (recursively) collecting every function found.
118   visitReferences(Worklist, Visited, [&](Function &F) {
119     addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F),
120             LazyCallGraph::Edge::Ref);
121   });
122 
123   // Add implicit reference edges to any defined libcall functions (if we
124   // haven't found an explicit edge).
125   for (auto *F : G->LibFunctions)
126     if (!Visited.count(F))
127       addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F),
128               LazyCallGraph::Edge::Ref);
129 
130   return *Edges;
131 }
132 
133 void LazyCallGraph::Node::replaceFunction(Function &NewF) {
134   assert(F != &NewF && "Must not replace a function with itself!");
135   F = &NewF;
136 }
137 
138 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
139 LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const {
140   dbgs() << *this << '\n';
141 }
142 #endif
143 
144 static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) {
145   LibFunc LF;
146 
147   // Either this is a normal library function or a "vectorizable"
148   // function.  Not using the VFDatabase here because this query
149   // is related only to libraries handled via the TLI.
150   return TLI.getLibFunc(F, LF) ||
151          TLI.isKnownVectorFunctionInLibrary(F.getName());
152 }
153 
154 LazyCallGraph::LazyCallGraph(
155     Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
156   LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
157                     << "\n");
158   for (Function &F : M) {
159     if (F.isDeclaration())
160       continue;
161     // If this function is a known lib function to LLVM then we want to
162     // synthesize reference edges to it to model the fact that LLVM can turn
163     // arbitrary code into a library function call.
164     if (isKnownLibFunction(F, GetTLI(F)))
165       LibFunctions.insert(&F);
166 
167     if (F.hasLocalLinkage())
168       continue;
169 
170     // External linkage defined functions have edges to them from other
171     // modules.
172     LLVM_DEBUG(dbgs() << "  Adding '" << F.getName()
173                       << "' to entry set of the graph.\n");
174     addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref);
175   }
176 
177   // Externally visible aliases of internal functions are also viable entry
178   // edges to the module.
179   for (auto &A : M.aliases()) {
180     if (A.hasLocalLinkage())
181       continue;
182     if (Function* F = dyn_cast<Function>(A.getAliasee())) {
183       LLVM_DEBUG(dbgs() << "  Adding '" << F->getName()
184                         << "' with alias '" << A.getName()
185                         << "' to entry set of the graph.\n");
186       addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(*F), Edge::Ref);
187     }
188   }
189 
190   // Now add entry nodes for functions reachable via initializers to globals.
191   SmallVector<Constant *, 16> Worklist;
192   SmallPtrSet<Constant *, 16> Visited;
193   for (GlobalVariable &GV : M.globals())
194     if (GV.hasInitializer())
195       if (Visited.insert(GV.getInitializer()).second)
196         Worklist.push_back(GV.getInitializer());
197 
198   LLVM_DEBUG(
199       dbgs() << "  Adding functions referenced by global initializers to the "
200                 "entry set.\n");
201   visitReferences(Worklist, Visited, [&](Function &F) {
202     addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F),
203             LazyCallGraph::Edge::Ref);
204   });
205 }
206 
207 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
208     : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
209       EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)),
210       SCCMap(std::move(G.SCCMap)), LibFunctions(std::move(G.LibFunctions)) {
211   updateGraphPtrs();
212 }
213 
214 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
215 void LazyCallGraph::verify() {
216   for (RefSCC &RC : postorder_ref_sccs()) {
217     RC.verify();
218   }
219 }
220 #endif
221 
222 bool LazyCallGraph::invalidate(Module &, const PreservedAnalyses &PA,
223                                ModuleAnalysisManager::Invalidator &) {
224   // Check whether the analysis, all analyses on functions, or the function's
225   // CFG have been preserved.
226   auto PAC = PA.getChecker<llvm::LazyCallGraphAnalysis>();
227   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>());
228 }
229 
230 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
231   BPA = std::move(G.BPA);
232   NodeMap = std::move(G.NodeMap);
233   EntryEdges = std::move(G.EntryEdges);
234   SCCBPA = std::move(G.SCCBPA);
235   SCCMap = std::move(G.SCCMap);
236   LibFunctions = std::move(G.LibFunctions);
237   updateGraphPtrs();
238   return *this;
239 }
240 
241 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
242 LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const {
243   dbgs() << *this << '\n';
244 }
245 #endif
246 
247 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
248 void LazyCallGraph::SCC::verify() {
249   assert(OuterRefSCC && "Can't have a null RefSCC!");
250   assert(!Nodes.empty() && "Can't have an empty SCC!");
251 
252   for (Node *N : Nodes) {
253     assert(N && "Can't have a null node!");
254     assert(OuterRefSCC->G->lookupSCC(*N) == this &&
255            "Node does not map to this SCC!");
256     assert(N->DFSNumber == -1 &&
257            "Must set DFS numbers to -1 when adding a node to an SCC!");
258     assert(N->LowLink == -1 &&
259            "Must set low link to -1 when adding a node to an SCC!");
260     for (Edge &E : **N)
261       assert(E.getNode().isPopulated() && "Can't have an unpopulated node!");
262 
263 #ifdef EXPENSIVE_CHECKS
264     // Verify that all nodes in this SCC can reach all other nodes.
265     SmallVector<Node *, 4> Worklist;
266     SmallPtrSet<Node *, 4> Visited;
267     Worklist.push_back(N);
268     while (!Worklist.empty()) {
269       Node *VisitingNode = Worklist.pop_back_val();
270       if (!Visited.insert(VisitingNode).second)
271         continue;
272       for (Edge &E : (*VisitingNode)->calls())
273         Worklist.push_back(&E.getNode());
274     }
275     for (Node *NodeToVisit : Nodes) {
276       assert(Visited.contains(NodeToVisit) &&
277              "Cannot reach all nodes within SCC");
278     }
279 #endif
280   }
281 }
282 #endif
283 
284 bool LazyCallGraph::SCC::isParentOf(const SCC &C) const {
285   if (this == &C)
286     return false;
287 
288   for (Node &N : *this)
289     for (Edge &E : N->calls())
290       if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C)
291         return true;
292 
293   // No edges found.
294   return false;
295 }
296 
297 bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const {
298   if (this == &TargetC)
299     return false;
300 
301   LazyCallGraph &G = *OuterRefSCC->G;
302 
303   // Start with this SCC.
304   SmallPtrSet<const SCC *, 16> Visited = {this};
305   SmallVector<const SCC *, 16> Worklist = {this};
306 
307   // Walk down the graph until we run out of edges or find a path to TargetC.
308   do {
309     const SCC &C = *Worklist.pop_back_val();
310     for (Node &N : C)
311       for (Edge &E : N->calls()) {
312         SCC *CalleeC = G.lookupSCC(E.getNode());
313         if (!CalleeC)
314           continue;
315 
316         // If the callee's SCC is the TargetC, we're done.
317         if (CalleeC == &TargetC)
318           return true;
319 
320         // If this is the first time we've reached this SCC, put it on the
321         // worklist to recurse through.
322         if (Visited.insert(CalleeC).second)
323           Worklist.push_back(CalleeC);
324       }
325   } while (!Worklist.empty());
326 
327   // No paths found.
328   return false;
329 }
330 
331 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
332 
333 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
334 LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const {
335   dbgs() << *this << '\n';
336 }
337 #endif
338 
339 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
340 void LazyCallGraph::RefSCC::verify() {
341   assert(G && "Can't have a null graph!");
342   assert(!SCCs.empty() && "Can't have an empty SCC!");
343 
344   // Verify basic properties of the SCCs.
345   SmallPtrSet<SCC *, 4> SCCSet;
346   for (SCC *C : SCCs) {
347     assert(C && "Can't have a null SCC!");
348     C->verify();
349     assert(&C->getOuterRefSCC() == this &&
350            "SCC doesn't think it is inside this RefSCC!");
351     bool Inserted = SCCSet.insert(C).second;
352     assert(Inserted && "Found a duplicate SCC!");
353     auto IndexIt = SCCIndices.find(C);
354     assert(IndexIt != SCCIndices.end() &&
355            "Found an SCC that doesn't have an index!");
356   }
357 
358   // Check that our indices map correctly.
359   for (auto [C, I] : SCCIndices) {
360     assert(C && "Can't have a null SCC in the indices!");
361     assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
362     assert(SCCs[I] == C && "Index doesn't point to SCC!");
363   }
364 
365   // Check that the SCCs are in fact in post-order.
366   for (int I = 0, Size = SCCs.size(); I < Size; ++I) {
367     SCC &SourceSCC = *SCCs[I];
368     for (Node &N : SourceSCC)
369       for (Edge &E : *N) {
370         if (!E.isCall())
371           continue;
372         SCC &TargetSCC = *G->lookupSCC(E.getNode());
373         if (&TargetSCC.getOuterRefSCC() == this) {
374           assert(SCCIndices.find(&TargetSCC)->second <= I &&
375                  "Edge between SCCs violates post-order relationship.");
376           continue;
377         }
378       }
379   }
380 
381 #ifdef EXPENSIVE_CHECKS
382   // Verify that all nodes in this RefSCC can reach all other nodes.
383   SmallVector<Node *> Nodes;
384   for (SCC *C : SCCs) {
385     for (Node &N : *C)
386       Nodes.push_back(&N);
387   }
388   for (Node *N : Nodes) {
389     SmallVector<Node *, 4> Worklist;
390     SmallPtrSet<Node *, 4> Visited;
391     Worklist.push_back(N);
392     while (!Worklist.empty()) {
393       Node *VisitingNode = Worklist.pop_back_val();
394       if (!Visited.insert(VisitingNode).second)
395         continue;
396       for (Edge &E : **VisitingNode)
397         Worklist.push_back(&E.getNode());
398     }
399     for (Node *NodeToVisit : Nodes) {
400       assert(Visited.contains(NodeToVisit) &&
401              "Cannot reach all nodes within RefSCC");
402     }
403   }
404 #endif
405 }
406 #endif
407 
408 bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const {
409   if (&RC == this)
410     return false;
411 
412   // Search all edges to see if this is a parent.
413   for (SCC &C : *this)
414     for (Node &N : C)
415       for (Edge &E : *N)
416         if (G->lookupRefSCC(E.getNode()) == &RC)
417           return true;
418 
419   return false;
420 }
421 
422 bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const {
423   if (&RC == this)
424     return false;
425 
426   // For each descendant of this RefSCC, see if one of its children is the
427   // argument. If not, add that descendant to the worklist and continue
428   // searching.
429   SmallVector<const RefSCC *, 4> Worklist;
430   SmallPtrSet<const RefSCC *, 4> Visited;
431   Worklist.push_back(this);
432   Visited.insert(this);
433   do {
434     const RefSCC &DescendantRC = *Worklist.pop_back_val();
435     for (SCC &C : DescendantRC)
436       for (Node &N : C)
437         for (Edge &E : *N) {
438           auto *ChildRC = G->lookupRefSCC(E.getNode());
439           if (ChildRC == &RC)
440             return true;
441           if (!ChildRC || !Visited.insert(ChildRC).second)
442             continue;
443           Worklist.push_back(ChildRC);
444         }
445   } while (!Worklist.empty());
446 
447   return false;
448 }
449 
450 /// Generic helper that updates a postorder sequence of SCCs for a potentially
451 /// cycle-introducing edge insertion.
452 ///
453 /// A postorder sequence of SCCs of a directed graph has one fundamental
454 /// property: all deges in the DAG of SCCs point "up" the sequence. That is,
455 /// all edges in the SCC DAG point to prior SCCs in the sequence.
456 ///
457 /// This routine both updates a postorder sequence and uses that sequence to
458 /// compute the set of SCCs connected into a cycle. It should only be called to
459 /// insert a "downward" edge which will require changing the sequence to
460 /// restore it to a postorder.
461 ///
462 /// When inserting an edge from an earlier SCC to a later SCC in some postorder
463 /// sequence, all of the SCCs which may be impacted are in the closed range of
464 /// those two within the postorder sequence. The algorithm used here to restore
465 /// the state is as follows:
466 ///
467 /// 1) Starting from the source SCC, construct a set of SCCs which reach the
468 ///    source SCC consisting of just the source SCC. Then scan toward the
469 ///    target SCC in postorder and for each SCC, if it has an edge to an SCC
470 ///    in the set, add it to the set. Otherwise, the source SCC is not
471 ///    a successor, move it in the postorder sequence to immediately before
472 ///    the source SCC, shifting the source SCC and all SCCs in the set one
473 ///    position toward the target SCC. Stop scanning after processing the
474 ///    target SCC.
475 /// 2) If the source SCC is now past the target SCC in the postorder sequence,
476 ///    and thus the new edge will flow toward the start, we are done.
477 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an
478 ///    SCC between the source and the target, and add them to the set of
479 ///    connected SCCs, then recurse through them. Once a complete set of the
480 ///    SCCs the target connects to is known, hoist the remaining SCCs between
481 ///    the source and the target to be above the target. Note that there is no
482 ///    need to process the source SCC, it is already known to connect.
483 /// 4) At this point, all of the SCCs in the closed range between the source
484 ///    SCC and the target SCC in the postorder sequence are connected,
485 ///    including the target SCC and the source SCC. Inserting the edge from
486 ///    the source SCC to the target SCC will form a cycle out of precisely
487 ///    these SCCs. Thus we can merge all of the SCCs in this closed range into
488 ///    a single SCC.
489 ///
490 /// This process has various important properties:
491 /// - Only mutates the SCCs when adding the edge actually changes the SCC
492 ///   structure.
493 /// - Never mutates SCCs which are unaffected by the change.
494 /// - Updates the postorder sequence to correctly satisfy the postorder
495 ///   constraint after the edge is inserted.
496 /// - Only reorders SCCs in the closed postorder sequence from the source to
497 ///   the target, so easy to bound how much has changed even in the ordering.
498 /// - Big-O is the number of edges in the closed postorder range of SCCs from
499 ///   source to target.
500 ///
501 /// This helper routine, in addition to updating the postorder sequence itself
502 /// will also update a map from SCCs to indices within that sequence.
503 ///
504 /// The sequence and the map must operate on pointers to the SCC type.
505 ///
506 /// Two callbacks must be provided. The first computes the subset of SCCs in
507 /// the postorder closed range from the source to the target which connect to
508 /// the source SCC via some (transitive) set of edges. The second computes the
509 /// subset of the same range which the target SCC connects to via some
510 /// (transitive) set of edges. Both callbacks should populate the set argument
511 /// provided.
512 template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
513           typename ComputeSourceConnectedSetCallableT,
514           typename ComputeTargetConnectedSetCallableT>
515 static iterator_range<typename PostorderSequenceT::iterator>
516 updatePostorderSequenceForEdgeInsertion(
517     SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
518     SCCIndexMapT &SCCIndices,
519     ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
520     ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
521   int SourceIdx = SCCIndices[&SourceSCC];
522   int TargetIdx = SCCIndices[&TargetSCC];
523   assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
524 
525   SmallPtrSet<SCCT *, 4> ConnectedSet;
526 
527   // Compute the SCCs which (transitively) reach the source.
528   ComputeSourceConnectedSet(ConnectedSet);
529 
530   // Partition the SCCs in this part of the port-order sequence so only SCCs
531   // connecting to the source remain between it and the target. This is
532   // a benign partition as it preserves postorder.
533   auto SourceI = std::stable_partition(
534       SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
535       [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
536   for (int I = SourceIdx, E = TargetIdx + 1; I < E; ++I)
537     SCCIndices.find(SCCs[I])->second = I;
538 
539   // If the target doesn't connect to the source, then we've corrected the
540   // post-order and there are no cycles formed.
541   if (!ConnectedSet.count(&TargetSCC)) {
542     assert(SourceI > (SCCs.begin() + SourceIdx) &&
543            "Must have moved the source to fix the post-order.");
544     assert(*std::prev(SourceI) == &TargetSCC &&
545            "Last SCC to move should have bene the target.");
546 
547     // Return an empty range at the target SCC indicating there is nothing to
548     // merge.
549     return make_range(std::prev(SourceI), std::prev(SourceI));
550   }
551 
552   assert(SCCs[TargetIdx] == &TargetSCC &&
553          "Should not have moved target if connected!");
554   SourceIdx = SourceI - SCCs.begin();
555   assert(SCCs[SourceIdx] == &SourceSCC &&
556          "Bad updated index computation for the source SCC!");
557 
558   // See whether there are any remaining intervening SCCs between the source
559   // and target. If so we need to make sure they all are reachable form the
560   // target.
561   if (SourceIdx + 1 < TargetIdx) {
562     ConnectedSet.clear();
563     ComputeTargetConnectedSet(ConnectedSet);
564 
565     // Partition SCCs so that only SCCs reached from the target remain between
566     // the source and the target. This preserves postorder.
567     auto TargetI = std::stable_partition(
568         SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
569         [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
570     for (int I = SourceIdx + 1, E = TargetIdx + 1; I < E; ++I)
571       SCCIndices.find(SCCs[I])->second = I;
572     TargetIdx = std::prev(TargetI) - SCCs.begin();
573     assert(SCCs[TargetIdx] == &TargetSCC &&
574            "Should always end with the target!");
575   }
576 
577   // At this point, we know that connecting source to target forms a cycle
578   // because target connects back to source, and we know that all the SCCs
579   // between the source and target in the postorder sequence participate in that
580   // cycle.
581   return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
582 }
583 
584 bool LazyCallGraph::RefSCC::switchInternalEdgeToCall(
585     Node &SourceN, Node &TargetN,
586     function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) {
587   assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
588   SmallVector<SCC *, 1> DeletedSCCs;
589 
590 #ifdef EXPENSIVE_CHECKS
591   verify();
592   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
593 #endif
594 
595   SCC &SourceSCC = *G->lookupSCC(SourceN);
596   SCC &TargetSCC = *G->lookupSCC(TargetN);
597 
598   // If the two nodes are already part of the same SCC, we're also done as
599   // we've just added more connectivity.
600   if (&SourceSCC == &TargetSCC) {
601     SourceN->setEdgeKind(TargetN, Edge::Call);
602     return false; // No new cycle.
603   }
604 
605   // At this point we leverage the postorder list of SCCs to detect when the
606   // insertion of an edge changes the SCC structure in any way.
607   //
608   // First and foremost, we can eliminate the need for any changes when the
609   // edge is toward the beginning of the postorder sequence because all edges
610   // flow in that direction already. Thus adding a new one cannot form a cycle.
611   int SourceIdx = SCCIndices[&SourceSCC];
612   int TargetIdx = SCCIndices[&TargetSCC];
613   if (TargetIdx < SourceIdx) {
614     SourceN->setEdgeKind(TargetN, Edge::Call);
615     return false; // No new cycle.
616   }
617 
618   // Compute the SCCs which (transitively) reach the source.
619   auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
620 #ifdef EXPENSIVE_CHECKS
621     // Check that the RefSCC is still valid before computing this as the
622     // results will be nonsensical of we've broken its invariants.
623     verify();
624 #endif
625     ConnectedSet.insert(&SourceSCC);
626     auto IsConnected = [&](SCC &C) {
627       for (Node &N : C)
628         for (Edge &E : N->calls())
629           if (ConnectedSet.count(G->lookupSCC(E.getNode())))
630             return true;
631 
632       return false;
633     };
634 
635     for (SCC *C :
636          make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
637       if (IsConnected(*C))
638         ConnectedSet.insert(C);
639   };
640 
641   // Use a normal worklist to find which SCCs the target connects to. We still
642   // bound the search based on the range in the postorder list we care about,
643   // but because this is forward connectivity we just "recurse" through the
644   // edges.
645   auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
646 #ifdef EXPENSIVE_CHECKS
647     // Check that the RefSCC is still valid before computing this as the
648     // results will be nonsensical of we've broken its invariants.
649     verify();
650 #endif
651     ConnectedSet.insert(&TargetSCC);
652     SmallVector<SCC *, 4> Worklist;
653     Worklist.push_back(&TargetSCC);
654     do {
655       SCC &C = *Worklist.pop_back_val();
656       for (Node &N : C)
657         for (Edge &E : *N) {
658           if (!E.isCall())
659             continue;
660           SCC &EdgeC = *G->lookupSCC(E.getNode());
661           if (&EdgeC.getOuterRefSCC() != this)
662             // Not in this RefSCC...
663             continue;
664           if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
665             // Not in the postorder sequence between source and target.
666             continue;
667 
668           if (ConnectedSet.insert(&EdgeC).second)
669             Worklist.push_back(&EdgeC);
670         }
671     } while (!Worklist.empty());
672   };
673 
674   // Use a generic helper to update the postorder sequence of SCCs and return
675   // a range of any SCCs connected into a cycle by inserting this edge. This
676   // routine will also take care of updating the indices into the postorder
677   // sequence.
678   auto MergeRange = updatePostorderSequenceForEdgeInsertion(
679       SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
680       ComputeTargetConnectedSet);
681 
682   // Run the user's callback on the merged SCCs before we actually merge them.
683   if (MergeCB)
684     MergeCB(ArrayRef(MergeRange.begin(), MergeRange.end()));
685 
686   // If the merge range is empty, then adding the edge didn't actually form any
687   // new cycles. We're done.
688   if (MergeRange.empty()) {
689     // Now that the SCC structure is finalized, flip the kind to call.
690     SourceN->setEdgeKind(TargetN, Edge::Call);
691     return false; // No new cycle.
692   }
693 
694 #ifdef EXPENSIVE_CHECKS
695   // Before merging, check that the RefSCC remains valid after all the
696   // postorder updates.
697   verify();
698 #endif
699 
700   // Otherwise we need to merge all the SCCs in the cycle into a single result
701   // SCC.
702   //
703   // NB: We merge into the target because all of these functions were already
704   // reachable from the target, meaning any SCC-wide properties deduced about it
705   // other than the set of functions within it will not have changed.
706   for (SCC *C : MergeRange) {
707     assert(C != &TargetSCC &&
708            "We merge *into* the target and shouldn't process it here!");
709     SCCIndices.erase(C);
710     TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
711     for (Node *N : C->Nodes)
712       G->SCCMap[N] = &TargetSCC;
713     C->clear();
714     DeletedSCCs.push_back(C);
715   }
716 
717   // Erase the merged SCCs from the list and update the indices of the
718   // remaining SCCs.
719   int IndexOffset = MergeRange.end() - MergeRange.begin();
720   auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
721   for (SCC *C : make_range(EraseEnd, SCCs.end()))
722     SCCIndices[C] -= IndexOffset;
723 
724   // Now that the SCC structure is finalized, flip the kind to call.
725   SourceN->setEdgeKind(TargetN, Edge::Call);
726 
727   // And we're done, but we did form a new cycle.
728   return true;
729 }
730 
731 void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN,
732                                                            Node &TargetN) {
733   assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
734 
735 #ifdef EXPENSIVE_CHECKS
736   verify();
737   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
738 #endif
739 
740   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
741   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
742   assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) &&
743          "Source and Target must be in separate SCCs for this to be trivial!");
744 
745   // Set the edge kind.
746   SourceN->setEdgeKind(TargetN, Edge::Ref);
747 }
748 
749 iterator_range<LazyCallGraph::RefSCC::iterator>
750 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
751   assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
752 
753 #ifdef EXPENSIVE_CHECKS
754   verify();
755   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
756 #endif
757 
758   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
759   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
760 
761   SCC &TargetSCC = *G->lookupSCC(TargetN);
762   assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in "
763                                                 "the same SCC to require the "
764                                                 "full CG update.");
765 
766   // Set the edge kind.
767   SourceN->setEdgeKind(TargetN, Edge::Ref);
768 
769   // Otherwise we are removing a call edge from a single SCC. This may break
770   // the cycle. In order to compute the new set of SCCs, we need to do a small
771   // DFS over the nodes within the SCC to form any sub-cycles that remain as
772   // distinct SCCs and compute a postorder over the resulting SCCs.
773   //
774   // However, we specially handle the target node. The target node is known to
775   // reach all other nodes in the original SCC by definition. This means that
776   // we want the old SCC to be replaced with an SCC containing that node as it
777   // will be the root of whatever SCC DAG results from the DFS. Assumptions
778   // about an SCC such as the set of functions called will continue to hold,
779   // etc.
780 
781   SCC &OldSCC = TargetSCC;
782   SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack;
783   SmallVector<Node *, 16> PendingSCCStack;
784   SmallVector<SCC *, 4> NewSCCs;
785 
786   // Prepare the nodes for a fresh DFS.
787   SmallVector<Node *, 16> Worklist;
788   Worklist.swap(OldSCC.Nodes);
789   for (Node *N : Worklist) {
790     N->DFSNumber = N->LowLink = 0;
791     G->SCCMap.erase(N);
792   }
793 
794   // Force the target node to be in the old SCC. This also enables us to take
795   // a very significant short-cut in the standard Tarjan walk to re-form SCCs
796   // below: whenever we build an edge that reaches the target node, we know
797   // that the target node eventually connects back to all other nodes in our
798   // walk. As a consequence, we can detect and handle participants in that
799   // cycle without walking all the edges that form this connection, and instead
800   // by relying on the fundamental guarantee coming into this operation (all
801   // nodes are reachable from the target due to previously forming an SCC).
802   TargetN.DFSNumber = TargetN.LowLink = -1;
803   OldSCC.Nodes.push_back(&TargetN);
804   G->SCCMap[&TargetN] = &OldSCC;
805 
806   // Scan down the stack and DFS across the call edges.
807   for (Node *RootN : Worklist) {
808     assert(DFSStack.empty() &&
809            "Cannot begin a new root with a non-empty DFS stack!");
810     assert(PendingSCCStack.empty() &&
811            "Cannot begin a new root with pending nodes for an SCC!");
812 
813     // Skip any nodes we've already reached in the DFS.
814     if (RootN->DFSNumber != 0) {
815       assert(RootN->DFSNumber == -1 &&
816              "Shouldn't have any mid-DFS root nodes!");
817       continue;
818     }
819 
820     RootN->DFSNumber = RootN->LowLink = 1;
821     int NextDFSNumber = 2;
822 
823     DFSStack.emplace_back(RootN, (*RootN)->call_begin());
824     do {
825       auto [N, I] = DFSStack.pop_back_val();
826       auto E = (*N)->call_end();
827       while (I != E) {
828         Node &ChildN = I->getNode();
829         if (ChildN.DFSNumber == 0) {
830           // We haven't yet visited this child, so descend, pushing the current
831           // node onto the stack.
832           DFSStack.emplace_back(N, I);
833 
834           assert(!G->SCCMap.count(&ChildN) &&
835                  "Found a node with 0 DFS number but already in an SCC!");
836           ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
837           N = &ChildN;
838           I = (*N)->call_begin();
839           E = (*N)->call_end();
840           continue;
841         }
842 
843         // Check for the child already being part of some component.
844         if (ChildN.DFSNumber == -1) {
845           if (G->lookupSCC(ChildN) == &OldSCC) {
846             // If the child is part of the old SCC, we know that it can reach
847             // every other node, so we have formed a cycle. Pull the entire DFS
848             // and pending stacks into it. See the comment above about setting
849             // up the old SCC for why we do this.
850             int OldSize = OldSCC.size();
851             OldSCC.Nodes.push_back(N);
852             OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
853             PendingSCCStack.clear();
854             while (!DFSStack.empty())
855               OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
856             for (Node &N : drop_begin(OldSCC, OldSize)) {
857               N.DFSNumber = N.LowLink = -1;
858               G->SCCMap[&N] = &OldSCC;
859             }
860             N = nullptr;
861             break;
862           }
863 
864           // If the child has already been added to some child component, it
865           // couldn't impact the low-link of this parent because it isn't
866           // connected, and thus its low-link isn't relevant so skip it.
867           ++I;
868           continue;
869         }
870 
871         // Track the lowest linked child as the lowest link for this node.
872         assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
873         if (ChildN.LowLink < N->LowLink)
874           N->LowLink = ChildN.LowLink;
875 
876         // Move to the next edge.
877         ++I;
878       }
879       if (!N)
880         // Cleared the DFS early, start another round.
881         break;
882 
883       // We've finished processing N and its descendants, put it on our pending
884       // SCC stack to eventually get merged into an SCC of nodes.
885       PendingSCCStack.push_back(N);
886 
887       // If this node is linked to some lower entry, continue walking up the
888       // stack.
889       if (N->LowLink != N->DFSNumber)
890         continue;
891 
892       // Otherwise, we've completed an SCC. Append it to our post order list of
893       // SCCs.
894       int RootDFSNumber = N->DFSNumber;
895       // Find the range of the node stack by walking down until we pass the
896       // root DFS number.
897       auto SCCNodes = make_range(
898           PendingSCCStack.rbegin(),
899           find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
900             return N->DFSNumber < RootDFSNumber;
901           }));
902 
903       // Form a new SCC out of these nodes and then clear them off our pending
904       // stack.
905       NewSCCs.push_back(G->createSCC(*this, SCCNodes));
906       for (Node &N : *NewSCCs.back()) {
907         N.DFSNumber = N.LowLink = -1;
908         G->SCCMap[&N] = NewSCCs.back();
909       }
910       PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
911     } while (!DFSStack.empty());
912   }
913 
914   // Insert the remaining SCCs before the old one. The old SCC can reach all
915   // other SCCs we form because it contains the target node of the removed edge
916   // of the old SCC. This means that we will have edges into all the new SCCs,
917   // which means the old one must come last for postorder.
918   int OldIdx = SCCIndices[&OldSCC];
919   SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
920 
921   // Update the mapping from SCC* to index to use the new SCC*s, and remove the
922   // old SCC from the mapping.
923   for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
924     SCCIndices[SCCs[Idx]] = Idx;
925 
926   return make_range(SCCs.begin() + OldIdx,
927                     SCCs.begin() + OldIdx + NewSCCs.size());
928 }
929 
930 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
931                                                      Node &TargetN) {
932   assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
933 
934   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
935   assert(G->lookupRefSCC(TargetN) != this &&
936          "Target must not be in this RefSCC.");
937 #ifdef EXPENSIVE_CHECKS
938   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
939          "Target must be a descendant of the Source.");
940 #endif
941 
942   // Edges between RefSCCs are the same regardless of call or ref, so we can
943   // just flip the edge here.
944   SourceN->setEdgeKind(TargetN, Edge::Call);
945 
946 #ifdef EXPENSIVE_CHECKS
947   verify();
948 #endif
949 }
950 
951 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
952                                                     Node &TargetN) {
953   assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
954 
955   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
956   assert(G->lookupRefSCC(TargetN) != this &&
957          "Target must not be in this RefSCC.");
958 #ifdef EXPENSIVE_CHECKS
959   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
960          "Target must be a descendant of the Source.");
961 #endif
962 
963   // Edges between RefSCCs are the same regardless of call or ref, so we can
964   // just flip the edge here.
965   SourceN->setEdgeKind(TargetN, Edge::Ref);
966 
967 #ifdef EXPENSIVE_CHECKS
968   verify();
969 #endif
970 }
971 
972 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
973                                                   Node &TargetN) {
974   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
975   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
976 
977   SourceN->insertEdgeInternal(TargetN, Edge::Ref);
978 
979 #ifdef EXPENSIVE_CHECKS
980   verify();
981 #endif
982 }
983 
984 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
985                                                Edge::Kind EK) {
986   // First insert it into the caller.
987   SourceN->insertEdgeInternal(TargetN, EK);
988 
989   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
990 
991   assert(G->lookupRefSCC(TargetN) != this &&
992          "Target must not be in this RefSCC.");
993 #ifdef EXPENSIVE_CHECKS
994   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
995          "Target must be a descendant of the Source.");
996 #endif
997 
998 #ifdef EXPENSIVE_CHECKS
999   verify();
1000 #endif
1001 }
1002 
1003 SmallVector<LazyCallGraph::RefSCC *, 1>
1004 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
1005   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
1006   RefSCC &SourceC = *G->lookupRefSCC(SourceN);
1007   assert(&SourceC != this && "Source must not be in this RefSCC.");
1008 #ifdef EXPENSIVE_CHECKS
1009   assert(SourceC.isDescendantOf(*this) &&
1010          "Source must be a descendant of the Target.");
1011 #endif
1012 
1013   SmallVector<RefSCC *, 1> DeletedRefSCCs;
1014 
1015 #ifdef EXPENSIVE_CHECKS
1016   verify();
1017   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1018 #endif
1019 
1020   int SourceIdx = G->RefSCCIndices[&SourceC];
1021   int TargetIdx = G->RefSCCIndices[this];
1022   assert(SourceIdx < TargetIdx &&
1023          "Postorder list doesn't see edge as incoming!");
1024 
1025   // Compute the RefSCCs which (transitively) reach the source. We do this by
1026   // working backwards from the source using the parent set in each RefSCC,
1027   // skipping any RefSCCs that don't fall in the postorder range. This has the
1028   // advantage of walking the sparser parent edge (in high fan-out graphs) but
1029   // more importantly this removes examining all forward edges in all RefSCCs
1030   // within the postorder range which aren't in fact connected. Only connected
1031   // RefSCCs (and their edges) are visited here.
1032   auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
1033     Set.insert(&SourceC);
1034     auto IsConnected = [&](RefSCC &RC) {
1035       for (SCC &C : RC)
1036         for (Node &N : C)
1037           for (Edge &E : *N)
1038             if (Set.count(G->lookupRefSCC(E.getNode())))
1039               return true;
1040 
1041       return false;
1042     };
1043 
1044     for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1,
1045                                 G->PostOrderRefSCCs.begin() + TargetIdx + 1))
1046       if (IsConnected(*C))
1047         Set.insert(C);
1048   };
1049 
1050   // Use a normal worklist to find which SCCs the target connects to. We still
1051   // bound the search based on the range in the postorder list we care about,
1052   // but because this is forward connectivity we just "recurse" through the
1053   // edges.
1054   auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
1055     Set.insert(this);
1056     SmallVector<RefSCC *, 4> Worklist;
1057     Worklist.push_back(this);
1058     do {
1059       RefSCC &RC = *Worklist.pop_back_val();
1060       for (SCC &C : RC)
1061         for (Node &N : C)
1062           for (Edge &E : *N) {
1063             RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode());
1064             if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
1065               // Not in the postorder sequence between source and target.
1066               continue;
1067 
1068             if (Set.insert(&EdgeRC).second)
1069               Worklist.push_back(&EdgeRC);
1070           }
1071     } while (!Worklist.empty());
1072   };
1073 
1074   // Use a generic helper to update the postorder sequence of RefSCCs and return
1075   // a range of any RefSCCs connected into a cycle by inserting this edge. This
1076   // routine will also take care of updating the indices into the postorder
1077   // sequence.
1078   iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange =
1079       updatePostorderSequenceForEdgeInsertion(
1080           SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
1081           ComputeSourceConnectedSet, ComputeTargetConnectedSet);
1082 
1083   // Build a set, so we can do fast tests for whether a RefSCC will end up as
1084   // part of the merged RefSCC.
1085   SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end());
1086 
1087   // This RefSCC will always be part of that set, so just insert it here.
1088   MergeSet.insert(this);
1089 
1090   // Now that we have identified all the SCCs which need to be merged into
1091   // a connected set with the inserted edge, merge all of them into this SCC.
1092   SmallVector<SCC *, 16> MergedSCCs;
1093   int SCCIndex = 0;
1094   for (RefSCC *RC : MergeRange) {
1095     assert(RC != this && "We're merging into the target RefSCC, so it "
1096                          "shouldn't be in the range.");
1097 
1098     // Walk the inner SCCs to update their up-pointer and walk all the edges to
1099     // update any parent sets.
1100     // FIXME: We should try to find a way to avoid this (rather expensive) edge
1101     // walk by updating the parent sets in some other manner.
1102     for (SCC &InnerC : *RC) {
1103       InnerC.OuterRefSCC = this;
1104       SCCIndices[&InnerC] = SCCIndex++;
1105       for (Node &N : InnerC)
1106         G->SCCMap[&N] = &InnerC;
1107     }
1108 
1109     // Now merge in the SCCs. We can actually move here so try to reuse storage
1110     // the first time through.
1111     if (MergedSCCs.empty())
1112       MergedSCCs = std::move(RC->SCCs);
1113     else
1114       MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
1115     RC->SCCs.clear();
1116     DeletedRefSCCs.push_back(RC);
1117   }
1118 
1119   // Append our original SCCs to the merged list and move it into place.
1120   for (SCC &InnerC : *this)
1121     SCCIndices[&InnerC] = SCCIndex++;
1122   MergedSCCs.append(SCCs.begin(), SCCs.end());
1123   SCCs = std::move(MergedSCCs);
1124 
1125   // Remove the merged away RefSCCs from the post order sequence.
1126   for (RefSCC *RC : MergeRange)
1127     G->RefSCCIndices.erase(RC);
1128   int IndexOffset = MergeRange.end() - MergeRange.begin();
1129   auto EraseEnd =
1130       G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
1131   for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
1132     G->RefSCCIndices[RC] -= IndexOffset;
1133 
1134   // At this point we have a merged RefSCC with a post-order SCCs list, just
1135   // connect the nodes to form the new edge.
1136   SourceN->insertEdgeInternal(TargetN, Edge::Ref);
1137 
1138   // We return the list of SCCs which were merged so that callers can
1139   // invalidate any data they have associated with those SCCs. Note that these
1140   // SCCs are no longer in an interesting state (they are totally empty) but
1141   // the pointers will remain stable for the life of the graph itself.
1142   return DeletedRefSCCs;
1143 }
1144 
1145 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
1146   assert(G->lookupRefSCC(SourceN) == this &&
1147          "The source must be a member of this RefSCC.");
1148   assert(G->lookupRefSCC(TargetN) != this &&
1149          "The target must not be a member of this RefSCC");
1150 
1151 #ifdef EXPENSIVE_CHECKS
1152   verify();
1153   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1154 #endif
1155 
1156   // First remove it from the node.
1157   bool Removed = SourceN->removeEdgeInternal(TargetN);
1158   (void)Removed;
1159   assert(Removed && "Target not in the edge set for this caller?");
1160 }
1161 
1162 SmallVector<LazyCallGraph::RefSCC *, 1>
1163 LazyCallGraph::RefSCC::removeInternalRefEdges(
1164     ArrayRef<std::pair<Node *, Node *>> Edges) {
1165   // We return a list of the resulting *new* RefSCCs in post-order.
1166   SmallVector<RefSCC *, 1> Result;
1167 
1168 #ifdef EXPENSIVE_CHECKS
1169   // Verify the RefSCC is valid to start with and that either we return an empty
1170   // list of result RefSCCs and this RefSCC remains valid, or we return new
1171   // RefSCCs and this RefSCC is dead.
1172   verify();
1173   auto VerifyOnExit = make_scope_exit([&]() {
1174     // If we didn't replace our RefSCC with new ones, check that this one
1175     // remains valid.
1176     if (G)
1177       verify();
1178   });
1179 #endif
1180 
1181   // First remove the actual edges.
1182   for (auto [SourceN, TargetN] : Edges) {
1183     assert(!(**SourceN)[*TargetN].isCall() &&
1184            "Cannot remove a call edge, it must first be made a ref edge");
1185 
1186     bool Removed = (*SourceN)->removeEdgeInternal(*TargetN);
1187     (void)Removed;
1188     assert(Removed && "Target not in the edge set for this caller?");
1189   }
1190 
1191   // Direct self references don't impact the ref graph at all.
1192   // If all targets are in the same SCC as the source, because no call edges
1193   // were removed there is no RefSCC structure change.
1194   if (llvm::all_of(Edges, [&](std::pair<Node *, Node *> E) {
1195         return E.first == E.second ||
1196                G->lookupSCC(*E.first) == G->lookupSCC(*E.second);
1197       }))
1198     return Result;
1199 
1200   // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1201   // for each inner SCC. We store these inside the low-link field of the nodes
1202   // rather than associated with SCCs because this saves a round-trip through
1203   // the node->SCC map and in the common case, SCCs are small. We will verify
1204   // that we always give the same number to every node in the SCC such that
1205   // these are equivalent.
1206   int PostOrderNumber = 0;
1207 
1208   // Reset all the other nodes to prepare for a DFS over them, and add them to
1209   // our worklist.
1210   SmallVector<Node *, 8> Worklist;
1211   for (SCC *C : SCCs) {
1212     for (Node &N : *C)
1213       N.DFSNumber = N.LowLink = 0;
1214 
1215     Worklist.append(C->Nodes.begin(), C->Nodes.end());
1216   }
1217 
1218   // Track the number of nodes in this RefSCC so that we can quickly recognize
1219   // an important special case of the edge removal not breaking the cycle of
1220   // this RefSCC.
1221   const int NumRefSCCNodes = Worklist.size();
1222 
1223   SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack;
1224   SmallVector<Node *, 4> PendingRefSCCStack;
1225   do {
1226     assert(DFSStack.empty() &&
1227            "Cannot begin a new root with a non-empty DFS stack!");
1228     assert(PendingRefSCCStack.empty() &&
1229            "Cannot begin a new root with pending nodes for an SCC!");
1230 
1231     Node *RootN = Worklist.pop_back_val();
1232     // Skip any nodes we've already reached in the DFS.
1233     if (RootN->DFSNumber != 0) {
1234       assert(RootN->DFSNumber == -1 &&
1235              "Shouldn't have any mid-DFS root nodes!");
1236       continue;
1237     }
1238 
1239     RootN->DFSNumber = RootN->LowLink = 1;
1240     int NextDFSNumber = 2;
1241 
1242     DFSStack.emplace_back(RootN, (*RootN)->begin());
1243     do {
1244       auto [N, I] = DFSStack.pop_back_val();
1245       auto E = (*N)->end();
1246 
1247       assert(N->DFSNumber != 0 && "We should always assign a DFS number "
1248                                   "before processing a node.");
1249 
1250       while (I != E) {
1251         Node &ChildN = I->getNode();
1252         if (ChildN.DFSNumber == 0) {
1253           // Mark that we should start at this child when next this node is the
1254           // top of the stack. We don't start at the next child to ensure this
1255           // child's lowlink is reflected.
1256           DFSStack.emplace_back(N, I);
1257 
1258           // Continue, resetting to the child node.
1259           ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1260           N = &ChildN;
1261           I = ChildN->begin();
1262           E = ChildN->end();
1263           continue;
1264         }
1265         if (ChildN.DFSNumber == -1) {
1266           // If this child isn't currently in this RefSCC, no need to process
1267           // it.
1268           ++I;
1269           continue;
1270         }
1271 
1272         // Track the lowest link of the children, if any are still in the stack.
1273         // Any child not on the stack will have a LowLink of -1.
1274         assert(ChildN.LowLink != 0 &&
1275                "Low-link must not be zero with a non-zero DFS number.");
1276         if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
1277           N->LowLink = ChildN.LowLink;
1278         ++I;
1279       }
1280 
1281       // We've finished processing N and its descendants, put it on our pending
1282       // stack to eventually get merged into a RefSCC.
1283       PendingRefSCCStack.push_back(N);
1284 
1285       // If this node is linked to some lower entry, continue walking up the
1286       // stack.
1287       if (N->LowLink != N->DFSNumber) {
1288         assert(!DFSStack.empty() &&
1289                "We never found a viable root for a RefSCC to pop off!");
1290         continue;
1291       }
1292 
1293       // Otherwise, form a new RefSCC from the top of the pending node stack.
1294       int RefSCCNumber = PostOrderNumber++;
1295       int RootDFSNumber = N->DFSNumber;
1296 
1297       // Find the range of the node stack by walking down until we pass the
1298       // root DFS number. Update the DFS numbers and low link numbers in the
1299       // process to avoid re-walking this list where possible.
1300       auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) {
1301         if (N->DFSNumber < RootDFSNumber)
1302           // We've found the bottom.
1303           return true;
1304 
1305         // Update this node and keep scanning.
1306         N->DFSNumber = -1;
1307         // Save the post-order number in the lowlink field so that we can use
1308         // it to map SCCs into new RefSCCs after we finish the DFS.
1309         N->LowLink = RefSCCNumber;
1310         return false;
1311       });
1312       auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end());
1313 
1314       // If we find a cycle containing all nodes originally in this RefSCC then
1315       // the removal hasn't changed the structure at all. This is an important
1316       // special case, and we can directly exit the entire routine more
1317       // efficiently as soon as we discover it.
1318       if (llvm::size(RefSCCNodes) == NumRefSCCNodes) {
1319         // Clear out the low link field as we won't need it.
1320         for (Node *N : RefSCCNodes)
1321           N->LowLink = -1;
1322         // Return the empty result immediately.
1323         return Result;
1324       }
1325 
1326       // We've already marked the nodes internally with the RefSCC number so
1327       // just clear them off the stack and continue.
1328       PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end());
1329     } while (!DFSStack.empty());
1330 
1331     assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
1332     assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
1333   } while (!Worklist.empty());
1334 
1335   assert(PostOrderNumber > 1 &&
1336          "Should never finish the DFS when the existing RefSCC remains valid!");
1337 
1338   // Otherwise we create a collection of new RefSCC nodes and build
1339   // a radix-sort style map from postorder number to these new RefSCCs. We then
1340   // append SCCs to each of these RefSCCs in the order they occurred in the
1341   // original SCCs container.
1342   for (int I = 0; I < PostOrderNumber; ++I)
1343     Result.push_back(G->createRefSCC(*G));
1344 
1345   // Insert the resulting postorder sequence into the global graph postorder
1346   // sequence before the current RefSCC in that sequence, and then remove the
1347   // current one.
1348   //
1349   // FIXME: It'd be nice to change the APIs so that we returned an iterator
1350   // range over the global postorder sequence and generally use that sequence
1351   // rather than building a separate result vector here.
1352   int Idx = G->getRefSCCIndex(*this);
1353   G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx);
1354   G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(),
1355                              Result.end());
1356   for (int I : seq<int>(Idx, G->PostOrderRefSCCs.size()))
1357     G->RefSCCIndices[G->PostOrderRefSCCs[I]] = I;
1358 
1359   for (SCC *C : SCCs) {
1360     // We store the SCC number in the node's low-link field above.
1361     int SCCNumber = C->begin()->LowLink;
1362     // Clear out all the SCC's node's low-link fields now that we're done
1363     // using them as side-storage.
1364     for (Node &N : *C) {
1365       assert(N.LowLink == SCCNumber &&
1366              "Cannot have different numbers for nodes in the same SCC!");
1367       N.LowLink = -1;
1368     }
1369 
1370     RefSCC &RC = *Result[SCCNumber];
1371     int SCCIndex = RC.SCCs.size();
1372     RC.SCCs.push_back(C);
1373     RC.SCCIndices[C] = SCCIndex;
1374     C->OuterRefSCC = &RC;
1375   }
1376 
1377   // Now that we've moved things into the new RefSCCs, clear out our current
1378   // one.
1379   G = nullptr;
1380   SCCs.clear();
1381   SCCIndices.clear();
1382 
1383 #ifdef EXPENSIVE_CHECKS
1384   // Verify the new RefSCCs we've built.
1385   for (RefSCC *RC : Result)
1386     RC->verify();
1387 #endif
1388 
1389   // Return the new list of SCCs.
1390   return Result;
1391 }
1392 
1393 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
1394                                                   Node &TargetN) {
1395 #ifdef EXPENSIVE_CHECKS
1396   auto ExitVerifier = make_scope_exit([this] { verify(); });
1397 
1398   // Check that we aren't breaking some invariants of the SCC graph. Note that
1399   // this is quadratic in the number of edges in the call graph!
1400   SCC &SourceC = *G->lookupSCC(SourceN);
1401   SCC &TargetC = *G->lookupSCC(TargetN);
1402   if (&SourceC != &TargetC)
1403     assert(SourceC.isAncestorOf(TargetC) &&
1404            "Call edge is not trivial in the SCC graph!");
1405 #endif
1406 
1407   // First insert it into the source or find the existing edge.
1408   auto [Iterator, Inserted] =
1409       SourceN->EdgeIndexMap.try_emplace(&TargetN, SourceN->Edges.size());
1410   if (!Inserted) {
1411     // Already an edge, just update it.
1412     Edge &E = SourceN->Edges[Iterator->second];
1413     if (E.isCall())
1414       return; // Nothing to do!
1415     E.setKind(Edge::Call);
1416   } else {
1417     // Create the new edge.
1418     SourceN->Edges.emplace_back(TargetN, Edge::Call);
1419   }
1420 }
1421 
1422 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
1423 #ifdef EXPENSIVE_CHECKS
1424   auto ExitVerifier = make_scope_exit([this] { verify(); });
1425 
1426   // Check that we aren't breaking some invariants of the RefSCC graph.
1427   RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
1428   RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1429   if (&SourceRC != &TargetRC)
1430     assert(SourceRC.isAncestorOf(TargetRC) &&
1431            "Ref edge is not trivial in the RefSCC graph!");
1432 #endif
1433 
1434   // First insert it into the source or find the existing edge.
1435   auto [Iterator, Inserted] =
1436       SourceN->EdgeIndexMap.try_emplace(&TargetN, SourceN->Edges.size());
1437   (void)Iterator;
1438   if (!Inserted)
1439     // Already an edge, we're done.
1440     return;
1441 
1442   // Create the new edge.
1443   SourceN->Edges.emplace_back(TargetN, Edge::Ref);
1444 }
1445 
1446 void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) {
1447   Function &OldF = N.getFunction();
1448 
1449 #ifdef EXPENSIVE_CHECKS
1450   auto ExitVerifier = make_scope_exit([this] { verify(); });
1451 
1452   assert(G->lookupRefSCC(N) == this &&
1453          "Cannot replace the function of a node outside this RefSCC.");
1454 
1455   assert(G->NodeMap.find(&NewF) == G->NodeMap.end() &&
1456          "Must not have already walked the new function!'");
1457 
1458   // It is important that this replacement not introduce graph changes so we
1459   // insist that the caller has already removed every use of the original
1460   // function and that all uses of the new function correspond to existing
1461   // edges in the graph. The common and expected way to use this is when
1462   // replacing the function itself in the IR without changing the call graph
1463   // shape and just updating the analysis based on that.
1464   assert(&OldF != &NewF && "Cannot replace a function with itself!");
1465   assert(OldF.use_empty() &&
1466          "Must have moved all uses from the old function to the new!");
1467 #endif
1468 
1469   N.replaceFunction(NewF);
1470 
1471   // Update various call graph maps.
1472   G->NodeMap.erase(&OldF);
1473   G->NodeMap[&NewF] = &N;
1474 
1475   // Update lib functions.
1476   if (G->isLibFunction(OldF)) {
1477     G->LibFunctions.remove(&OldF);
1478     G->LibFunctions.insert(&NewF);
1479   }
1480 }
1481 
1482 void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) {
1483   assert(SCCMap.empty() &&
1484          "This method cannot be called after SCCs have been formed!");
1485 
1486   return SourceN->insertEdgeInternal(TargetN, EK);
1487 }
1488 
1489 void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) {
1490   assert(SCCMap.empty() &&
1491          "This method cannot be called after SCCs have been formed!");
1492 
1493   bool Removed = SourceN->removeEdgeInternal(TargetN);
1494   (void)Removed;
1495   assert(Removed && "Target not in the edge set for this caller?");
1496 }
1497 
1498 void LazyCallGraph::markDeadFunction(Function &F) {
1499   // FIXME: This is unnecessarily restrictive. We should be able to remove
1500   // functions which recursively call themselves.
1501   assert(F.hasZeroLiveUses() &&
1502          "This routine should only be called on trivially dead functions!");
1503 
1504   // We shouldn't remove library functions as they are never really dead while
1505   // the call graph is in use -- every function definition refers to them.
1506   assert(!isLibFunction(F) &&
1507          "Must not remove lib functions from the call graph!");
1508 
1509   auto NI = NodeMap.find(&F);
1510   assert(NI != NodeMap.end() && "Removed function should be known!");
1511 
1512   Node &N = *NI->second;
1513 
1514   // Remove all call edges out of dead function.
1515   for (Edge E : *N) {
1516     if (E.isCall())
1517       N->setEdgeKind(E.getNode(), Edge::Ref);
1518   }
1519 }
1520 
1521 void LazyCallGraph::removeDeadFunctions(ArrayRef<Function *> DeadFs) {
1522   if (DeadFs.empty())
1523     return;
1524 
1525   // Group dead functions by the RefSCC they're in.
1526   DenseMap<RefSCC *, SmallVector<Node *, 1>> RCs;
1527   for (Function *DeadF : DeadFs) {
1528     Node *N = lookup(*DeadF);
1529 #ifndef NDEBUG
1530     for (Edge &E : **N) {
1531       assert(!E.isCall() &&
1532              "dead function shouldn't have any outgoing call edges");
1533     }
1534 #endif
1535     RefSCC *RC = lookupRefSCC(*N);
1536     RCs[RC].push_back(N);
1537   }
1538   // Remove outgoing edges from all dead functions. Dead functions should
1539   // already have had their call edges removed in markDeadFunction(), so we only
1540   // need to worry about spurious ref edges.
1541   for (auto [RC, DeadNs] : RCs) {
1542     SmallVector<std::pair<Node *, Node *>> InternalEdgesToRemove;
1543     for (Node *DeadN : DeadNs) {
1544       for (Edge &E : **DeadN) {
1545         if (lookupRefSCC(E.getNode()) == RC)
1546           InternalEdgesToRemove.push_back({DeadN, &E.getNode()});
1547         else
1548           RC->removeOutgoingEdge(*DeadN, E.getNode());
1549       }
1550     }
1551     // We ignore the returned RefSCCs since at this point we're done with CGSCC
1552     // iteration and don't need to add it to any worklists.
1553     (void)RC->removeInternalRefEdges(InternalEdgesToRemove);
1554     for (Node *DeadN : DeadNs) {
1555       RefSCC *DeadRC = lookupRefSCC(*DeadN);
1556       assert(DeadRC->size() == 1);
1557       assert(DeadRC->begin()->size() == 1);
1558       DeadRC->clear();
1559       DeadRC->G = nullptr;
1560     }
1561   }
1562   // Clean up data structures.
1563   for (Function *DeadF : DeadFs) {
1564     Node &N = *lookup(*DeadF);
1565 
1566     EntryEdges.removeEdgeInternal(N);
1567     SCCMap.erase(SCCMap.find(&N));
1568     NodeMap.erase(NodeMap.find(DeadF));
1569 
1570     N.clear();
1571     N.G = nullptr;
1572     N.F = nullptr;
1573   }
1574 }
1575 
1576 // Gets the Edge::Kind from one function to another by looking at the function's
1577 // instructions. Asserts if there is no edge.
1578 // Useful for determining what type of edge should exist between functions when
1579 // the edge hasn't been created yet.
1580 static LazyCallGraph::Edge::Kind getEdgeKind(Function &OriginalFunction,
1581                                              Function &NewFunction) {
1582   // In release builds, assume that if there are no direct calls to the new
1583   // function, then there is a ref edge. In debug builds, keep track of
1584   // references to assert that there is actually a ref edge if there is no call
1585   // edge.
1586 #ifndef NDEBUG
1587   SmallVector<Constant *, 16> Worklist;
1588   SmallPtrSet<Constant *, 16> Visited;
1589 #endif
1590 
1591   for (Instruction &I : instructions(OriginalFunction)) {
1592     if (auto *CB = dyn_cast<CallBase>(&I)) {
1593       if (Function *Callee = CB->getCalledFunction()) {
1594         if (Callee == &NewFunction)
1595           return LazyCallGraph::Edge::Kind::Call;
1596       }
1597     }
1598 #ifndef NDEBUG
1599     for (Value *Op : I.operand_values()) {
1600       if (Constant *C = dyn_cast<Constant>(Op)) {
1601         if (Visited.insert(C).second)
1602           Worklist.push_back(C);
1603       }
1604     }
1605 #endif
1606   }
1607 
1608 #ifndef NDEBUG
1609   bool FoundNewFunction = false;
1610   LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &F) {
1611     if (&F == &NewFunction)
1612       FoundNewFunction = true;
1613   });
1614   assert(FoundNewFunction && "No edge from original function to new function");
1615 #endif
1616 
1617   return LazyCallGraph::Edge::Kind::Ref;
1618 }
1619 
1620 void LazyCallGraph::addSplitFunction(Function &OriginalFunction,
1621                                      Function &NewFunction) {
1622   assert(lookup(OriginalFunction) &&
1623          "Original function's node should already exist");
1624   Node &OriginalN = get(OriginalFunction);
1625   SCC *OriginalC = lookupSCC(OriginalN);
1626   RefSCC *OriginalRC = lookupRefSCC(OriginalN);
1627 
1628 #ifdef EXPENSIVE_CHECKS
1629   OriginalRC->verify();
1630   auto VerifyOnExit = make_scope_exit([&]() { OriginalRC->verify(); });
1631 #endif
1632 
1633   assert(!lookup(NewFunction) &&
1634          "New function's node should not already exist");
1635   Node &NewN = initNode(NewFunction);
1636 
1637   Edge::Kind EK = getEdgeKind(OriginalFunction, NewFunction);
1638 
1639   SCC *NewC = nullptr;
1640   for (Edge &E : *NewN) {
1641     Node &EN = E.getNode();
1642     if (EK == Edge::Kind::Call && E.isCall() && lookupSCC(EN) == OriginalC) {
1643       // If the edge to the new function is a call edge and there is a call edge
1644       // from the new function to any function in the original function's SCC,
1645       // it is in the same SCC (and RefSCC) as the original function.
1646       NewC = OriginalC;
1647       NewC->Nodes.push_back(&NewN);
1648       break;
1649     }
1650   }
1651 
1652   if (!NewC) {
1653     for (Edge &E : *NewN) {
1654       Node &EN = E.getNode();
1655       if (lookupRefSCC(EN) == OriginalRC) {
1656         // If there is any edge from the new function to any function in the
1657         // original function's RefSCC, it is in the same RefSCC as the original
1658         // function but a new SCC.
1659         RefSCC *NewRC = OriginalRC;
1660         NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1661 
1662         // The new function's SCC is not the same as the original function's
1663         // SCC, since that case was handled earlier. If the edge from the
1664         // original function to the new function was a call edge, then we need
1665         // to insert the newly created function's SCC before the original
1666         // function's SCC. Otherwise, either the new SCC comes after the
1667         // original function's SCC, or it doesn't matter, and in both cases we
1668         // can add it to the very end.
1669         int InsertIndex = EK == Edge::Kind::Call ? NewRC->SCCIndices[OriginalC]
1670                                                  : NewRC->SCCIndices.size();
1671         NewRC->SCCs.insert(NewRC->SCCs.begin() + InsertIndex, NewC);
1672         for (int I = InsertIndex, Size = NewRC->SCCs.size(); I < Size; ++I)
1673           NewRC->SCCIndices[NewRC->SCCs[I]] = I;
1674 
1675         break;
1676       }
1677     }
1678   }
1679 
1680   if (!NewC) {
1681     // We didn't find any edges back to the original function's RefSCC, so the
1682     // new function belongs in a new RefSCC. The new RefSCC goes before the
1683     // original function's RefSCC.
1684     RefSCC *NewRC = createRefSCC(*this);
1685     NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1686     NewRC->SCCIndices[NewC] = 0;
1687     NewRC->SCCs.push_back(NewC);
1688     auto OriginalRCIndex = RefSCCIndices.find(OriginalRC)->second;
1689     PostOrderRefSCCs.insert(PostOrderRefSCCs.begin() + OriginalRCIndex, NewRC);
1690     for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I)
1691       RefSCCIndices[PostOrderRefSCCs[I]] = I;
1692   }
1693 
1694   SCCMap[&NewN] = NewC;
1695 
1696   OriginalN->insertEdgeInternal(NewN, EK);
1697 }
1698 
1699 void LazyCallGraph::addSplitRefRecursiveFunctions(
1700     Function &OriginalFunction, ArrayRef<Function *> NewFunctions) {
1701   assert(!NewFunctions.empty() && "Can't add zero functions");
1702   assert(lookup(OriginalFunction) &&
1703          "Original function's node should already exist");
1704   Node &OriginalN = get(OriginalFunction);
1705   RefSCC *OriginalRC = lookupRefSCC(OriginalN);
1706 
1707 #ifdef EXPENSIVE_CHECKS
1708   OriginalRC->verify();
1709   auto VerifyOnExit = make_scope_exit([&]() {
1710     OriginalRC->verify();
1711     for (Function *NewFunction : NewFunctions)
1712       lookupRefSCC(get(*NewFunction))->verify();
1713   });
1714 #endif
1715 
1716   bool ExistsRefToOriginalRefSCC = false;
1717 
1718   for (Function *NewFunction : NewFunctions) {
1719     Node &NewN = initNode(*NewFunction);
1720 
1721     OriginalN->insertEdgeInternal(NewN, Edge::Kind::Ref);
1722 
1723     // Check if there is any edge from any new function back to any function in
1724     // the original function's RefSCC.
1725     for (Edge &E : *NewN) {
1726       if (lookupRefSCC(E.getNode()) == OriginalRC) {
1727         ExistsRefToOriginalRefSCC = true;
1728         break;
1729       }
1730     }
1731   }
1732 
1733   RefSCC *NewRC;
1734   if (ExistsRefToOriginalRefSCC) {
1735     // If there is any edge from any new function to any function in the
1736     // original function's RefSCC, all new functions will be in the same RefSCC
1737     // as the original function.
1738     NewRC = OriginalRC;
1739   } else {
1740     // Otherwise the new functions are in their own RefSCC.
1741     NewRC = createRefSCC(*this);
1742     // The new RefSCC goes before the original function's RefSCC in postorder
1743     // since there are only edges from the original function's RefSCC to the new
1744     // RefSCC.
1745     auto OriginalRCIndex = RefSCCIndices.find(OriginalRC)->second;
1746     PostOrderRefSCCs.insert(PostOrderRefSCCs.begin() + OriginalRCIndex, NewRC);
1747     for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I)
1748       RefSCCIndices[PostOrderRefSCCs[I]] = I;
1749   }
1750 
1751   for (Function *NewFunction : NewFunctions) {
1752     Node &NewN = get(*NewFunction);
1753     // Each new function is in its own new SCC. The original function can only
1754     // have a ref edge to new functions, and no other existing functions can
1755     // have references to new functions. Each new function only has a ref edge
1756     // to the other new functions.
1757     SCC *NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1758     // The new SCCs are either sibling SCCs or parent SCCs to all other existing
1759     // SCCs in the RefSCC. Either way, they can go at the back of the postorder
1760     // SCC list.
1761     auto Index = NewRC->SCCIndices.size();
1762     NewRC->SCCIndices[NewC] = Index;
1763     NewRC->SCCs.push_back(NewC);
1764     SCCMap[&NewN] = NewC;
1765   }
1766 
1767 #ifndef NDEBUG
1768   for (Function *F1 : NewFunctions) {
1769     assert(getEdgeKind(OriginalFunction, *F1) == Edge::Kind::Ref &&
1770            "Expected ref edges from original function to every new function");
1771     Node &N1 = get(*F1);
1772     for (Function *F2 : NewFunctions) {
1773       if (F1 == F2)
1774         continue;
1775       Node &N2 = get(*F2);
1776       assert(!N1->lookup(N2)->isCall() &&
1777              "Edges between new functions must be ref edges");
1778     }
1779   }
1780 #endif
1781 }
1782 
1783 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
1784   return *new (MappedN = BPA.Allocate()) Node(*this, F);
1785 }
1786 
1787 void LazyCallGraph::updateGraphPtrs() {
1788   // Walk the node map to update their graph pointers. While this iterates in
1789   // an unstable order, the order has no effect, so it remains correct.
1790   for (auto &FunctionNodePair : NodeMap)
1791     FunctionNodePair.second->G = this;
1792 
1793   for (auto *RC : PostOrderRefSCCs)
1794     RC->G = this;
1795 }
1796 
1797 LazyCallGraph::Node &LazyCallGraph::initNode(Function &F) {
1798   Node &N = get(F);
1799   N.DFSNumber = N.LowLink = -1;
1800   N.populate();
1801   NodeMap[&F] = &N;
1802   return N;
1803 }
1804 
1805 template <typename RootsT, typename GetBeginT, typename GetEndT,
1806           typename GetNodeT, typename FormSCCCallbackT>
1807 void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
1808                                      GetEndT &&GetEnd, GetNodeT &&GetNode,
1809                                      FormSCCCallbackT &&FormSCC) {
1810   using EdgeItT = decltype(GetBegin(std::declval<Node &>()));
1811 
1812   SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack;
1813   SmallVector<Node *, 16> PendingSCCStack;
1814 
1815   // Scan down the stack and DFS across the call edges.
1816   for (Node *RootN : Roots) {
1817     assert(DFSStack.empty() &&
1818            "Cannot begin a new root with a non-empty DFS stack!");
1819     assert(PendingSCCStack.empty() &&
1820            "Cannot begin a new root with pending nodes for an SCC!");
1821 
1822     // Skip any nodes we've already reached in the DFS.
1823     if (RootN->DFSNumber != 0) {
1824       assert(RootN->DFSNumber == -1 &&
1825              "Shouldn't have any mid-DFS root nodes!");
1826       continue;
1827     }
1828 
1829     RootN->DFSNumber = RootN->LowLink = 1;
1830     int NextDFSNumber = 2;
1831 
1832     DFSStack.emplace_back(RootN, GetBegin(*RootN));
1833     do {
1834       auto [N, I] = DFSStack.pop_back_val();
1835       auto E = GetEnd(*N);
1836       while (I != E) {
1837         Node &ChildN = GetNode(I);
1838         if (ChildN.DFSNumber == 0) {
1839           // We haven't yet visited this child, so descend, pushing the current
1840           // node onto the stack.
1841           DFSStack.emplace_back(N, I);
1842 
1843           ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
1844           N = &ChildN;
1845           I = GetBegin(*N);
1846           E = GetEnd(*N);
1847           continue;
1848         }
1849 
1850         // If the child has already been added to some child component, it
1851         // couldn't impact the low-link of this parent because it isn't
1852         // connected, and thus its low-link isn't relevant so skip it.
1853         if (ChildN.DFSNumber == -1) {
1854           ++I;
1855           continue;
1856         }
1857 
1858         // Track the lowest linked child as the lowest link for this node.
1859         assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1860         if (ChildN.LowLink < N->LowLink)
1861           N->LowLink = ChildN.LowLink;
1862 
1863         // Move to the next edge.
1864         ++I;
1865       }
1866 
1867       // We've finished processing N and its descendants, put it on our pending
1868       // SCC stack to eventually get merged into an SCC of nodes.
1869       PendingSCCStack.push_back(N);
1870 
1871       // If this node is linked to some lower entry, continue walking up the
1872       // stack.
1873       if (N->LowLink != N->DFSNumber)
1874         continue;
1875 
1876       // Otherwise, we've completed an SCC. Append it to our post order list of
1877       // SCCs.
1878       int RootDFSNumber = N->DFSNumber;
1879       // Find the range of the node stack by walking down until we pass the
1880       // root DFS number.
1881       auto SCCNodes = make_range(
1882           PendingSCCStack.rbegin(),
1883           find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
1884             return N->DFSNumber < RootDFSNumber;
1885           }));
1886       // Form a new SCC out of these nodes and then clear them off our pending
1887       // stack.
1888       FormSCC(SCCNodes);
1889       PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
1890     } while (!DFSStack.empty());
1891   }
1892 }
1893 
1894 /// Build the internal SCCs for a RefSCC from a sequence of nodes.
1895 ///
1896 /// Appends the SCCs to the provided vector and updates the map with their
1897 /// indices. Both the vector and map must be empty when passed into this
1898 /// routine.
1899 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
1900   assert(RC.SCCs.empty() && "Already built SCCs!");
1901   assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
1902 
1903   for (Node *N : Nodes) {
1904     assert(N->LowLink >= (*Nodes.begin())->LowLink &&
1905            "We cannot have a low link in an SCC lower than its root on the "
1906            "stack!");
1907 
1908     // This node will go into the next RefSCC, clear out its DFS and low link
1909     // as we scan.
1910     N->DFSNumber = N->LowLink = 0;
1911   }
1912 
1913   // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1914   // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1915   // internal storage as we won't need it for the outer graph's DFS any longer.
1916   buildGenericSCCs(
1917       Nodes, [](Node &N) { return N->call_begin(); },
1918       [](Node &N) { return N->call_end(); },
1919       [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); },
1920       [this, &RC](node_stack_range Nodes) {
1921         RC.SCCs.push_back(createSCC(RC, Nodes));
1922         for (Node &N : *RC.SCCs.back()) {
1923           N.DFSNumber = N.LowLink = -1;
1924           SCCMap[&N] = RC.SCCs.back();
1925         }
1926       });
1927 
1928   // Wire up the SCC indices.
1929   for (int I = 0, Size = RC.SCCs.size(); I < Size; ++I)
1930     RC.SCCIndices[RC.SCCs[I]] = I;
1931 }
1932 
1933 void LazyCallGraph::buildRefSCCs() {
1934   if (EntryEdges.empty() || !PostOrderRefSCCs.empty())
1935     // RefSCCs are either non-existent or already built!
1936     return;
1937 
1938   assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!");
1939 
1940   SmallVector<Node *, 16> Roots;
1941   for (Edge &E : *this)
1942     Roots.push_back(&E.getNode());
1943 
1944   // The roots will be iterated in order.
1945   buildGenericSCCs(
1946       Roots,
1947       [](Node &N) {
1948         // We need to populate each node as we begin to walk its edges.
1949         N.populate();
1950         return N->begin();
1951       },
1952       [](Node &N) { return N->end(); },
1953       [](EdgeSequence::iterator I) -> Node & { return I->getNode(); },
1954       [this](node_stack_range Nodes) {
1955         RefSCC *NewRC = createRefSCC(*this);
1956         buildSCCs(*NewRC, Nodes);
1957 
1958         // Push the new node into the postorder list and remember its position
1959         // in the index map.
1960         bool Inserted =
1961             RefSCCIndices.try_emplace(NewRC, PostOrderRefSCCs.size()).second;
1962         (void)Inserted;
1963         assert(Inserted && "Cannot already have this RefSCC in the index map!");
1964         PostOrderRefSCCs.push_back(NewRC);
1965 #ifdef EXPENSIVE_CHECKS
1966         NewRC->verify();
1967 #endif
1968       });
1969 }
1970 
1971 void LazyCallGraph::visitReferences(SmallVectorImpl<Constant *> &Worklist,
1972                                     SmallPtrSetImpl<Constant *> &Visited,
1973                                     function_ref<void(Function &)> Callback) {
1974   while (!Worklist.empty()) {
1975     Constant *C = Worklist.pop_back_val();
1976 
1977     if (Function *F = dyn_cast<Function>(C)) {
1978       if (!F->isDeclaration())
1979         Callback(*F);
1980       continue;
1981     }
1982 
1983     // blockaddresses are weird and don't participate in the call graph anyway,
1984     // skip them.
1985     if (isa<BlockAddress>(C))
1986       continue;
1987 
1988     for (Value *Op : C->operand_values())
1989       if (Visited.insert(cast<Constant>(Op)).second)
1990         Worklist.push_back(cast<Constant>(Op));
1991   }
1992 }
1993 
1994 AnalysisKey LazyCallGraphAnalysis::Key;
1995 
1996 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
1997 
1998 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
1999   OS << "  Edges in function: " << N.getFunction().getName() << "\n";
2000   for (LazyCallGraph::Edge &E : N.populate())
2001     OS << "    " << (E.isCall() ? "call" : "ref ") << " -> "
2002        << E.getFunction().getName() << "\n";
2003 
2004   OS << "\n";
2005 }
2006 
2007 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
2008   OS << "    SCC with " << C.size() << " functions:\n";
2009 
2010   for (LazyCallGraph::Node &N : C)
2011     OS << "      " << N.getFunction().getName() << "\n";
2012 }
2013 
2014 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
2015   OS << "  RefSCC with " << C.size() << " call SCCs:\n";
2016 
2017   for (LazyCallGraph::SCC &InnerC : C)
2018     printSCC(OS, InnerC);
2019 
2020   OS << "\n";
2021 }
2022 
2023 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
2024                                                 ModuleAnalysisManager &AM) {
2025   LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
2026 
2027   OS << "Printing the call graph for module: " << M.getModuleIdentifier()
2028      << "\n\n";
2029 
2030   for (Function &F : M)
2031     printNode(OS, G.get(F));
2032 
2033   G.buildRefSCCs();
2034   for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
2035     printRefSCC(OS, C);
2036 
2037   return PreservedAnalyses::all();
2038 }
2039 
2040 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
2041     : OS(OS) {}
2042 
2043 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
2044   std::string Name =
2045       "\"" + DOT::EscapeString(std::string(N.getFunction().getName())) + "\"";
2046 
2047   for (LazyCallGraph::Edge &E : N.populate()) {
2048     OS << "  " << Name << " -> \""
2049        << DOT::EscapeString(std::string(E.getFunction().getName())) << "\"";
2050     if (!E.isCall()) // It is a ref edge.
2051       OS << " [style=dashed,label=\"ref\"]";
2052     OS << ";\n";
2053   }
2054 
2055   OS << "\n";
2056 }
2057 
2058 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
2059                                                    ModuleAnalysisManager &AM) {
2060   LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
2061 
2062   OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
2063 
2064   for (Function &F : M)
2065     printNodeDOT(OS, G.get(F));
2066 
2067   OS << "}\n";
2068 
2069   return PreservedAnalyses::all();
2070 }
2071