1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/CaptureTracking.h" 27 #include "llvm/Analysis/CmpInstAnalysis.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/InstSimplifyFolder.h" 30 #include "llvm/Analysis/LoopAnalysisManager.h" 31 #include "llvm/Analysis/MemoryBuiltins.h" 32 #include "llvm/Analysis/OverflowInstAnalysis.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/ConstantRange.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/Support/KnownBits.h" 43 #include <algorithm> 44 using namespace llvm; 45 using namespace llvm::PatternMatch; 46 47 #define DEBUG_TYPE "instsimplify" 48 49 enum { RecursionLimit = 3 }; 50 51 STATISTIC(NumExpand, "Number of expansions"); 52 STATISTIC(NumReassoc, "Number of reassociations"); 53 54 static Value *simplifyAndInst(Value *, Value *, const SimplifyQuery &, 55 unsigned); 56 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 57 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 58 const SimplifyQuery &, unsigned); 59 static Value *simplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 60 unsigned); 61 static Value *simplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 62 const SimplifyQuery &, unsigned); 63 static Value *simplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 64 unsigned); 65 static Value *simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 66 const SimplifyQuery &Q, unsigned MaxRecurse); 67 static Value *simplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 68 static Value *simplifyXorInst(Value *, Value *, const SimplifyQuery &, 69 unsigned); 70 static Value *simplifyCastInst(unsigned, Value *, Type *, const SimplifyQuery &, 71 unsigned); 72 static Value *simplifyGEPInst(Type *, Value *, ArrayRef<Value *>, bool, 73 const SimplifyQuery &, unsigned); 74 static Value *simplifySelectInst(Value *, Value *, Value *, 75 const SimplifyQuery &, unsigned); 76 77 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 78 Value *FalseVal) { 79 BinaryOperator::BinaryOps BinOpCode; 80 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 81 BinOpCode = BO->getOpcode(); 82 else 83 return nullptr; 84 85 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 86 if (BinOpCode == BinaryOperator::Or) { 87 ExpectedPred = ICmpInst::ICMP_NE; 88 } else if (BinOpCode == BinaryOperator::And) { 89 ExpectedPred = ICmpInst::ICMP_EQ; 90 } else 91 return nullptr; 92 93 // %A = icmp eq %TV, %FV 94 // %B = icmp eq %X, %Y (and one of these is a select operand) 95 // %C = and %A, %B 96 // %D = select %C, %TV, %FV 97 // --> 98 // %FV 99 100 // %A = icmp ne %TV, %FV 101 // %B = icmp ne %X, %Y (and one of these is a select operand) 102 // %C = or %A, %B 103 // %D = select %C, %TV, %FV 104 // --> 105 // %TV 106 Value *X, *Y; 107 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 108 m_Specific(FalseVal)), 109 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 110 Pred1 != Pred2 || Pred1 != ExpectedPred) 111 return nullptr; 112 113 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 114 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 115 116 return nullptr; 117 } 118 119 /// For a boolean type or a vector of boolean type, return false or a vector 120 /// with every element false. 121 static Constant *getFalse(Type *Ty) { return ConstantInt::getFalse(Ty); } 122 123 /// For a boolean type or a vector of boolean type, return true or a vector 124 /// with every element true. 125 static Constant *getTrue(Type *Ty) { return ConstantInt::getTrue(Ty); } 126 127 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 128 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 129 Value *RHS) { 130 CmpInst *Cmp = dyn_cast<CmpInst>(V); 131 if (!Cmp) 132 return false; 133 CmpInst::Predicate CPred = Cmp->getPredicate(); 134 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 135 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 136 return true; 137 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 138 CRHS == LHS; 139 } 140 141 /// Simplify comparison with true or false branch of select: 142 /// %sel = select i1 %cond, i32 %tv, i32 %fv 143 /// %cmp = icmp sle i32 %sel, %rhs 144 /// Compose new comparison by substituting %sel with either %tv or %fv 145 /// and see if it simplifies. 146 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 147 Value *RHS, Value *Cond, 148 const SimplifyQuery &Q, unsigned MaxRecurse, 149 Constant *TrueOrFalse) { 150 Value *SimplifiedCmp = simplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 151 if (SimplifiedCmp == Cond) { 152 // %cmp simplified to the select condition (%cond). 153 return TrueOrFalse; 154 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 155 // It didn't simplify. However, if composed comparison is equivalent 156 // to the select condition (%cond) then we can replace it. 157 return TrueOrFalse; 158 } 159 return SimplifiedCmp; 160 } 161 162 /// Simplify comparison with true branch of select 163 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 164 Value *RHS, Value *Cond, 165 const SimplifyQuery &Q, 166 unsigned MaxRecurse) { 167 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 168 getTrue(Cond->getType())); 169 } 170 171 /// Simplify comparison with false branch of select 172 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 173 Value *RHS, Value *Cond, 174 const SimplifyQuery &Q, 175 unsigned MaxRecurse) { 176 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 177 getFalse(Cond->getType())); 178 } 179 180 /// We know comparison with both branches of select can be simplified, but they 181 /// are not equal. This routine handles some logical simplifications. 182 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 183 Value *Cond, 184 const SimplifyQuery &Q, 185 unsigned MaxRecurse) { 186 // If the false value simplified to false, then the result of the compare 187 // is equal to "Cond && TCmp". This also catches the case when the false 188 // value simplified to false and the true value to true, returning "Cond". 189 // Folding select to and/or isn't poison-safe in general; impliesPoison 190 // checks whether folding it does not convert a well-defined value into 191 // poison. 192 if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond)) 193 if (Value *V = simplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 194 return V; 195 // If the true value simplified to true, then the result of the compare 196 // is equal to "Cond || FCmp". 197 if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond)) 198 if (Value *V = simplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 199 return V; 200 // Finally, if the false value simplified to true and the true value to 201 // false, then the result of the compare is equal to "!Cond". 202 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 203 if (Value *V = simplifyXorInst( 204 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 205 return V; 206 return nullptr; 207 } 208 209 /// Does the given value dominate the specified phi node? 210 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 211 Instruction *I = dyn_cast<Instruction>(V); 212 if (!I) 213 // Arguments and constants dominate all instructions. 214 return true; 215 216 // If we are processing instructions (and/or basic blocks) that have not been 217 // fully added to a function, the parent nodes may still be null. Simply 218 // return the conservative answer in these cases. 219 if (!I->getParent() || !P->getParent() || !I->getFunction()) 220 return false; 221 222 // If we have a DominatorTree then do a precise test. 223 if (DT) 224 return DT->dominates(I, P); 225 226 // Otherwise, if the instruction is in the entry block and is not an invoke, 227 // then it obviously dominates all phi nodes. 228 if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) && 229 !isa<CallBrInst>(I)) 230 return true; 231 232 return false; 233 } 234 235 /// Try to simplify a binary operator of form "V op OtherOp" where V is 236 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 237 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 238 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 239 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 240 const SimplifyQuery &Q, unsigned MaxRecurse) { 241 auto *B = dyn_cast<BinaryOperator>(V); 242 if (!B || B->getOpcode() != OpcodeToExpand) 243 return nullptr; 244 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 245 Value *L = 246 simplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), MaxRecurse); 247 if (!L) 248 return nullptr; 249 Value *R = 250 simplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), MaxRecurse); 251 if (!R) 252 return nullptr; 253 254 // Does the expanded pair of binops simplify to the existing binop? 255 if ((L == B0 && R == B1) || 256 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 257 ++NumExpand; 258 return B; 259 } 260 261 // Otherwise, return "L op' R" if it simplifies. 262 Value *S = simplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 263 if (!S) 264 return nullptr; 265 266 ++NumExpand; 267 return S; 268 } 269 270 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 271 /// distributing op over op'. 272 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, Value *L, 273 Value *R, 274 Instruction::BinaryOps OpcodeToExpand, 275 const SimplifyQuery &Q, 276 unsigned MaxRecurse) { 277 // Recursion is always used, so bail out at once if we already hit the limit. 278 if (!MaxRecurse--) 279 return nullptr; 280 281 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 282 return V; 283 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 284 return V; 285 return nullptr; 286 } 287 288 /// Generic simplifications for associative binary operations. 289 /// Returns the simpler value, or null if none was found. 290 static Value *simplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 291 Value *LHS, Value *RHS, 292 const SimplifyQuery &Q, 293 unsigned MaxRecurse) { 294 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 295 296 // Recursion is always used, so bail out at once if we already hit the limit. 297 if (!MaxRecurse--) 298 return nullptr; 299 300 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 301 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 302 303 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 304 if (Op0 && Op0->getOpcode() == Opcode) { 305 Value *A = Op0->getOperand(0); 306 Value *B = Op0->getOperand(1); 307 Value *C = RHS; 308 309 // Does "B op C" simplify? 310 if (Value *V = simplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 311 // It does! Return "A op V" if it simplifies or is already available. 312 // If V equals B then "A op V" is just the LHS. 313 if (V == B) 314 return LHS; 315 // Otherwise return "A op V" if it simplifies. 316 if (Value *W = simplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 317 ++NumReassoc; 318 return W; 319 } 320 } 321 } 322 323 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 324 if (Op1 && Op1->getOpcode() == Opcode) { 325 Value *A = LHS; 326 Value *B = Op1->getOperand(0); 327 Value *C = Op1->getOperand(1); 328 329 // Does "A op B" simplify? 330 if (Value *V = simplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 331 // It does! Return "V op C" if it simplifies or is already available. 332 // If V equals B then "V op C" is just the RHS. 333 if (V == B) 334 return RHS; 335 // Otherwise return "V op C" if it simplifies. 336 if (Value *W = simplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 337 ++NumReassoc; 338 return W; 339 } 340 } 341 } 342 343 // The remaining transforms require commutativity as well as associativity. 344 if (!Instruction::isCommutative(Opcode)) 345 return nullptr; 346 347 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 348 if (Op0 && Op0->getOpcode() == Opcode) { 349 Value *A = Op0->getOperand(0); 350 Value *B = Op0->getOperand(1); 351 Value *C = RHS; 352 353 // Does "C op A" simplify? 354 if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 355 // It does! Return "V op B" if it simplifies or is already available. 356 // If V equals A then "V op B" is just the LHS. 357 if (V == A) 358 return LHS; 359 // Otherwise return "V op B" if it simplifies. 360 if (Value *W = simplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 361 ++NumReassoc; 362 return W; 363 } 364 } 365 } 366 367 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 368 if (Op1 && Op1->getOpcode() == Opcode) { 369 Value *A = LHS; 370 Value *B = Op1->getOperand(0); 371 Value *C = Op1->getOperand(1); 372 373 // Does "C op A" simplify? 374 if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 375 // It does! Return "B op V" if it simplifies or is already available. 376 // If V equals C then "B op V" is just the RHS. 377 if (V == C) 378 return RHS; 379 // Otherwise return "B op V" if it simplifies. 380 if (Value *W = simplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 381 ++NumReassoc; 382 return W; 383 } 384 } 385 } 386 387 return nullptr; 388 } 389 390 /// In the case of a binary operation with a select instruction as an operand, 391 /// try to simplify the binop by seeing whether evaluating it on both branches 392 /// of the select results in the same value. Returns the common value if so, 393 /// otherwise returns null. 394 static Value *threadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 395 Value *RHS, const SimplifyQuery &Q, 396 unsigned MaxRecurse) { 397 // Recursion is always used, so bail out at once if we already hit the limit. 398 if (!MaxRecurse--) 399 return nullptr; 400 401 SelectInst *SI; 402 if (isa<SelectInst>(LHS)) { 403 SI = cast<SelectInst>(LHS); 404 } else { 405 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 406 SI = cast<SelectInst>(RHS); 407 } 408 409 // Evaluate the BinOp on the true and false branches of the select. 410 Value *TV; 411 Value *FV; 412 if (SI == LHS) { 413 TV = simplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 414 FV = simplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 415 } else { 416 TV = simplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 417 FV = simplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 418 } 419 420 // If they simplified to the same value, then return the common value. 421 // If they both failed to simplify then return null. 422 if (TV == FV) 423 return TV; 424 425 // If one branch simplified to undef, return the other one. 426 if (TV && Q.isUndefValue(TV)) 427 return FV; 428 if (FV && Q.isUndefValue(FV)) 429 return TV; 430 431 // If applying the operation did not change the true and false select values, 432 // then the result of the binop is the select itself. 433 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 434 return SI; 435 436 // If one branch simplified and the other did not, and the simplified 437 // value is equal to the unsimplified one, return the simplified value. 438 // For example, select (cond, X, X & Z) & Z -> X & Z. 439 if ((FV && !TV) || (TV && !FV)) { 440 // Check that the simplified value has the form "X op Y" where "op" is the 441 // same as the original operation. 442 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 443 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 444 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 445 // We already know that "op" is the same as for the simplified value. See 446 // if the operands match too. If so, return the simplified value. 447 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 448 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 449 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 450 if (Simplified->getOperand(0) == UnsimplifiedLHS && 451 Simplified->getOperand(1) == UnsimplifiedRHS) 452 return Simplified; 453 if (Simplified->isCommutative() && 454 Simplified->getOperand(1) == UnsimplifiedLHS && 455 Simplified->getOperand(0) == UnsimplifiedRHS) 456 return Simplified; 457 } 458 } 459 460 return nullptr; 461 } 462 463 /// In the case of a comparison with a select instruction, try to simplify the 464 /// comparison by seeing whether both branches of the select result in the same 465 /// value. Returns the common value if so, otherwise returns null. 466 /// For example, if we have: 467 /// %tmp = select i1 %cmp, i32 1, i32 2 468 /// %cmp1 = icmp sle i32 %tmp, 3 469 /// We can simplify %cmp1 to true, because both branches of select are 470 /// less than 3. We compose new comparison by substituting %tmp with both 471 /// branches of select and see if it can be simplified. 472 static Value *threadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 473 Value *RHS, const SimplifyQuery &Q, 474 unsigned MaxRecurse) { 475 // Recursion is always used, so bail out at once if we already hit the limit. 476 if (!MaxRecurse--) 477 return nullptr; 478 479 // Make sure the select is on the LHS. 480 if (!isa<SelectInst>(LHS)) { 481 std::swap(LHS, RHS); 482 Pred = CmpInst::getSwappedPredicate(Pred); 483 } 484 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 485 SelectInst *SI = cast<SelectInst>(LHS); 486 Value *Cond = SI->getCondition(); 487 Value *TV = SI->getTrueValue(); 488 Value *FV = SI->getFalseValue(); 489 490 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 491 // Does "cmp TV, RHS" simplify? 492 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 493 if (!TCmp) 494 return nullptr; 495 496 // Does "cmp FV, RHS" simplify? 497 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 498 if (!FCmp) 499 return nullptr; 500 501 // If both sides simplified to the same value, then use it as the result of 502 // the original comparison. 503 if (TCmp == FCmp) 504 return TCmp; 505 506 // The remaining cases only make sense if the select condition has the same 507 // type as the result of the comparison, so bail out if this is not so. 508 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 509 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 510 511 return nullptr; 512 } 513 514 /// In the case of a binary operation with an operand that is a PHI instruction, 515 /// try to simplify the binop by seeing whether evaluating it on the incoming 516 /// phi values yields the same result for every value. If so returns the common 517 /// value, otherwise returns null. 518 static Value *threadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 519 Value *RHS, const SimplifyQuery &Q, 520 unsigned MaxRecurse) { 521 // Recursion is always used, so bail out at once if we already hit the limit. 522 if (!MaxRecurse--) 523 return nullptr; 524 525 PHINode *PI; 526 if (isa<PHINode>(LHS)) { 527 PI = cast<PHINode>(LHS); 528 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 529 if (!valueDominatesPHI(RHS, PI, Q.DT)) 530 return nullptr; 531 } else { 532 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 533 PI = cast<PHINode>(RHS); 534 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 535 if (!valueDominatesPHI(LHS, PI, Q.DT)) 536 return nullptr; 537 } 538 539 // Evaluate the BinOp on the incoming phi values. 540 Value *CommonValue = nullptr; 541 for (Value *Incoming : PI->incoming_values()) { 542 // If the incoming value is the phi node itself, it can safely be skipped. 543 if (Incoming == PI) 544 continue; 545 Value *V = PI == LHS ? simplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) 546 : simplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 547 // If the operation failed to simplify, or simplified to a different value 548 // to previously, then give up. 549 if (!V || (CommonValue && V != CommonValue)) 550 return nullptr; 551 CommonValue = V; 552 } 553 554 return CommonValue; 555 } 556 557 /// In the case of a comparison with a PHI instruction, try to simplify the 558 /// comparison by seeing whether comparing with all of the incoming phi values 559 /// yields the same result every time. If so returns the common result, 560 /// otherwise returns null. 561 static Value *threadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 562 const SimplifyQuery &Q, unsigned MaxRecurse) { 563 // Recursion is always used, so bail out at once if we already hit the limit. 564 if (!MaxRecurse--) 565 return nullptr; 566 567 // Make sure the phi is on the LHS. 568 if (!isa<PHINode>(LHS)) { 569 std::swap(LHS, RHS); 570 Pred = CmpInst::getSwappedPredicate(Pred); 571 } 572 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 573 PHINode *PI = cast<PHINode>(LHS); 574 575 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 576 if (!valueDominatesPHI(RHS, PI, Q.DT)) 577 return nullptr; 578 579 // Evaluate the BinOp on the incoming phi values. 580 Value *CommonValue = nullptr; 581 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 582 Value *Incoming = PI->getIncomingValue(u); 583 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 584 // If the incoming value is the phi node itself, it can safely be skipped. 585 if (Incoming == PI) 586 continue; 587 // Change the context instruction to the "edge" that flows into the phi. 588 // This is important because that is where incoming is actually "evaluated" 589 // even though it is used later somewhere else. 590 Value *V = simplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 591 MaxRecurse); 592 // If the operation failed to simplify, or simplified to a different value 593 // to previously, then give up. 594 if (!V || (CommonValue && V != CommonValue)) 595 return nullptr; 596 CommonValue = V; 597 } 598 599 return CommonValue; 600 } 601 602 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 603 Value *&Op0, Value *&Op1, 604 const SimplifyQuery &Q) { 605 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 606 if (auto *CRHS = dyn_cast<Constant>(Op1)) { 607 switch (Opcode) { 608 default: 609 break; 610 case Instruction::FAdd: 611 case Instruction::FSub: 612 case Instruction::FMul: 613 case Instruction::FDiv: 614 case Instruction::FRem: 615 if (Q.CxtI != nullptr) 616 return ConstantFoldFPInstOperands(Opcode, CLHS, CRHS, Q.DL, Q.CxtI); 617 } 618 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 619 } 620 621 // Canonicalize the constant to the RHS if this is a commutative operation. 622 if (Instruction::isCommutative(Opcode)) 623 std::swap(Op0, Op1); 624 } 625 return nullptr; 626 } 627 628 /// Given operands for an Add, see if we can fold the result. 629 /// If not, this returns null. 630 static Value *simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 631 const SimplifyQuery &Q, unsigned MaxRecurse) { 632 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 633 return C; 634 635 // X + poison -> poison 636 if (isa<PoisonValue>(Op1)) 637 return Op1; 638 639 // X + undef -> undef 640 if (Q.isUndefValue(Op1)) 641 return Op1; 642 643 // X + 0 -> X 644 if (match(Op1, m_Zero())) 645 return Op0; 646 647 // If two operands are negative, return 0. 648 if (isKnownNegation(Op0, Op1)) 649 return Constant::getNullValue(Op0->getType()); 650 651 // X + (Y - X) -> Y 652 // (Y - X) + X -> Y 653 // Eg: X + -X -> 0 654 Value *Y = nullptr; 655 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 656 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 657 return Y; 658 659 // X + ~X -> -1 since ~X = -X-1 660 Type *Ty = Op0->getType(); 661 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) 662 return Constant::getAllOnesValue(Ty); 663 664 // add nsw/nuw (xor Y, signmask), signmask --> Y 665 // The no-wrapping add guarantees that the top bit will be set by the add. 666 // Therefore, the xor must be clearing the already set sign bit of Y. 667 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 668 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 669 return Y; 670 671 // add nuw %x, -1 -> -1, because %x can only be 0. 672 if (IsNUW && match(Op1, m_AllOnes())) 673 return Op1; // Which is -1. 674 675 /// i1 add -> xor. 676 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 677 if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1)) 678 return V; 679 680 // Try some generic simplifications for associative operations. 681 if (Value *V = 682 simplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, MaxRecurse)) 683 return V; 684 685 // Threading Add over selects and phi nodes is pointless, so don't bother. 686 // Threading over the select in "A + select(cond, B, C)" means evaluating 687 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 688 // only if B and C are equal. If B and C are equal then (since we assume 689 // that operands have already been simplified) "select(cond, B, C)" should 690 // have been simplified to the common value of B and C already. Analysing 691 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 692 // for threading over phi nodes. 693 694 return nullptr; 695 } 696 697 Value *llvm::simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 698 const SimplifyQuery &Query) { 699 return ::simplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 700 } 701 702 /// Compute the base pointer and cumulative constant offsets for V. 703 /// 704 /// This strips all constant offsets off of V, leaving it the base pointer, and 705 /// accumulates the total constant offset applied in the returned constant. 706 /// It returns zero if there are no constant offsets applied. 707 /// 708 /// This is very similar to stripAndAccumulateConstantOffsets(), except it 709 /// normalizes the offset bitwidth to the stripped pointer type, not the 710 /// original pointer type. 711 static APInt stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 712 bool AllowNonInbounds = false) { 713 assert(V->getType()->isPtrOrPtrVectorTy()); 714 715 APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType())); 716 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 717 // As that strip may trace through `addrspacecast`, need to sext or trunc 718 // the offset calculated. 719 return Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(V->getType())); 720 } 721 722 /// Compute the constant difference between two pointer values. 723 /// If the difference is not a constant, returns zero. 724 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 725 Value *RHS) { 726 APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 727 APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 728 729 // If LHS and RHS are not related via constant offsets to the same base 730 // value, there is nothing we can do here. 731 if (LHS != RHS) 732 return nullptr; 733 734 // Otherwise, the difference of LHS - RHS can be computed as: 735 // LHS - RHS 736 // = (LHSOffset + Base) - (RHSOffset + Base) 737 // = LHSOffset - RHSOffset 738 Constant *Res = ConstantInt::get(LHS->getContext(), LHSOffset - RHSOffset); 739 if (auto *VecTy = dyn_cast<VectorType>(LHS->getType())) 740 Res = ConstantVector::getSplat(VecTy->getElementCount(), Res); 741 return Res; 742 } 743 744 /// Given operands for a Sub, see if we can fold the result. 745 /// If not, this returns null. 746 static Value *simplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 747 const SimplifyQuery &Q, unsigned MaxRecurse) { 748 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 749 return C; 750 751 // X - poison -> poison 752 // poison - X -> poison 753 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 754 return PoisonValue::get(Op0->getType()); 755 756 // X - undef -> undef 757 // undef - X -> undef 758 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 759 return UndefValue::get(Op0->getType()); 760 761 // X - 0 -> X 762 if (match(Op1, m_Zero())) 763 return Op0; 764 765 // X - X -> 0 766 if (Op0 == Op1) 767 return Constant::getNullValue(Op0->getType()); 768 769 // Is this a negation? 770 if (match(Op0, m_Zero())) { 771 // 0 - X -> 0 if the sub is NUW. 772 if (isNUW) 773 return Constant::getNullValue(Op0->getType()); 774 775 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 776 if (Known.Zero.isMaxSignedValue()) { 777 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 778 // Op1 must be 0 because negating the minimum signed value is undefined. 779 if (isNSW) 780 return Constant::getNullValue(Op0->getType()); 781 782 // 0 - X -> X if X is 0 or the minimum signed value. 783 return Op1; 784 } 785 } 786 787 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 788 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 789 Value *X = nullptr, *Y = nullptr, *Z = Op1; 790 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 791 // See if "V === Y - Z" simplifies. 792 if (Value *V = simplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse - 1)) 793 // It does! Now see if "X + V" simplifies. 794 if (Value *W = simplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse - 1)) { 795 // It does, we successfully reassociated! 796 ++NumReassoc; 797 return W; 798 } 799 // See if "V === X - Z" simplifies. 800 if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1)) 801 // It does! Now see if "Y + V" simplifies. 802 if (Value *W = simplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse - 1)) { 803 // It does, we successfully reassociated! 804 ++NumReassoc; 805 return W; 806 } 807 } 808 809 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 810 // For example, X - (X + 1) -> -1 811 X = Op0; 812 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 813 // See if "V === X - Y" simplifies. 814 if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1)) 815 // It does! Now see if "V - Z" simplifies. 816 if (Value *W = simplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse - 1)) { 817 // It does, we successfully reassociated! 818 ++NumReassoc; 819 return W; 820 } 821 // See if "V === X - Z" simplifies. 822 if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1)) 823 // It does! Now see if "V - Y" simplifies. 824 if (Value *W = simplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse - 1)) { 825 // It does, we successfully reassociated! 826 ++NumReassoc; 827 return W; 828 } 829 } 830 831 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 832 // For example, X - (X - Y) -> Y. 833 Z = Op0; 834 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 835 // See if "V === Z - X" simplifies. 836 if (Value *V = simplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse - 1)) 837 // It does! Now see if "V + Y" simplifies. 838 if (Value *W = simplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse - 1)) { 839 // It does, we successfully reassociated! 840 ++NumReassoc; 841 return W; 842 } 843 844 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 845 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 846 match(Op1, m_Trunc(m_Value(Y)))) 847 if (X->getType() == Y->getType()) 848 // See if "V === X - Y" simplifies. 849 if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1)) 850 // It does! Now see if "trunc V" simplifies. 851 if (Value *W = simplifyCastInst(Instruction::Trunc, V, Op0->getType(), 852 Q, MaxRecurse - 1)) 853 // It does, return the simplified "trunc V". 854 return W; 855 856 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 857 if (match(Op0, m_PtrToInt(m_Value(X))) && match(Op1, m_PtrToInt(m_Value(Y)))) 858 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 859 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 860 861 // i1 sub -> xor. 862 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 863 if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1)) 864 return V; 865 866 // Threading Sub over selects and phi nodes is pointless, so don't bother. 867 // Threading over the select in "A - select(cond, B, C)" means evaluating 868 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 869 // only if B and C are equal. If B and C are equal then (since we assume 870 // that operands have already been simplified) "select(cond, B, C)" should 871 // have been simplified to the common value of B and C already. Analysing 872 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 873 // for threading over phi nodes. 874 875 return nullptr; 876 } 877 878 Value *llvm::simplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 879 const SimplifyQuery &Q) { 880 return ::simplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 881 } 882 883 /// Given operands for a Mul, see if we can fold the result. 884 /// If not, this returns null. 885 static Value *simplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 886 unsigned MaxRecurse) { 887 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 888 return C; 889 890 // X * poison -> poison 891 if (isa<PoisonValue>(Op1)) 892 return Op1; 893 894 // X * undef -> 0 895 // X * 0 -> 0 896 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 897 return Constant::getNullValue(Op0->getType()); 898 899 // X * 1 -> X 900 if (match(Op1, m_One())) 901 return Op0; 902 903 // (X / Y) * Y -> X if the division is exact. 904 Value *X = nullptr; 905 if (Q.IIQ.UseInstrInfo && 906 (match(Op0, 907 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 908 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 909 return X; 910 911 // i1 mul -> and. 912 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 913 if (Value *V = simplifyAndInst(Op0, Op1, Q, MaxRecurse - 1)) 914 return V; 915 916 // Try some generic simplifications for associative operations. 917 if (Value *V = 918 simplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) 919 return V; 920 921 // Mul distributes over Add. Try some generic simplifications based on this. 922 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 923 Instruction::Add, Q, MaxRecurse)) 924 return V; 925 926 // If the operation is with the result of a select instruction, check whether 927 // operating on either branch of the select always yields the same value. 928 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 929 if (Value *V = 930 threadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) 931 return V; 932 933 // If the operation is with the result of a phi instruction, check whether 934 // operating on all incoming values of the phi always yields the same value. 935 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 936 if (Value *V = 937 threadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) 938 return V; 939 940 return nullptr; 941 } 942 943 Value *llvm::simplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 944 return ::simplifyMulInst(Op0, Op1, Q, RecursionLimit); 945 } 946 947 /// Check for common or similar folds of integer division or integer remainder. 948 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 949 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, 950 Value *Op1, const SimplifyQuery &Q) { 951 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv); 952 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem); 953 954 Type *Ty = Op0->getType(); 955 956 // X / undef -> poison 957 // X % undef -> poison 958 if (Q.isUndefValue(Op1) || isa<PoisonValue>(Op1)) 959 return PoisonValue::get(Ty); 960 961 // X / 0 -> poison 962 // X % 0 -> poison 963 // We don't need to preserve faults! 964 if (match(Op1, m_Zero())) 965 return PoisonValue::get(Ty); 966 967 // If any element of a constant divisor fixed width vector is zero or undef 968 // the behavior is undefined and we can fold the whole op to poison. 969 auto *Op1C = dyn_cast<Constant>(Op1); 970 auto *VTy = dyn_cast<FixedVectorType>(Ty); 971 if (Op1C && VTy) { 972 unsigned NumElts = VTy->getNumElements(); 973 for (unsigned i = 0; i != NumElts; ++i) { 974 Constant *Elt = Op1C->getAggregateElement(i); 975 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) 976 return PoisonValue::get(Ty); 977 } 978 } 979 980 // poison / X -> poison 981 // poison % X -> poison 982 if (isa<PoisonValue>(Op0)) 983 return Op0; 984 985 // undef / X -> 0 986 // undef % X -> 0 987 if (Q.isUndefValue(Op0)) 988 return Constant::getNullValue(Ty); 989 990 // 0 / X -> 0 991 // 0 % X -> 0 992 if (match(Op0, m_Zero())) 993 return Constant::getNullValue(Op0->getType()); 994 995 // X / X -> 1 996 // X % X -> 0 997 if (Op0 == Op1) 998 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 999 1000 // X / 1 -> X 1001 // X % 1 -> 0 1002 // If this is a boolean op (single-bit element type), we can't have 1003 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 1004 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 1005 Value *X; 1006 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 1007 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1008 return IsDiv ? Op0 : Constant::getNullValue(Ty); 1009 1010 // If X * Y does not overflow, then: 1011 // X * Y / Y -> X 1012 // X * Y % Y -> 0 1013 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1014 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1015 // The multiplication can't overflow if it is defined not to, or if 1016 // X == A / Y for some A. 1017 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1018 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) || 1019 (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1020 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) { 1021 return IsDiv ? X : Constant::getNullValue(Op0->getType()); 1022 } 1023 } 1024 1025 return nullptr; 1026 } 1027 1028 /// Given a predicate and two operands, return true if the comparison is true. 1029 /// This is a helper for div/rem simplification where we return some other value 1030 /// when we can prove a relationship between the operands. 1031 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 1032 const SimplifyQuery &Q, unsigned MaxRecurse) { 1033 Value *V = simplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 1034 Constant *C = dyn_cast_or_null<Constant>(V); 1035 return (C && C->isAllOnesValue()); 1036 } 1037 1038 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 1039 /// to simplify X % Y to X. 1040 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 1041 unsigned MaxRecurse, bool IsSigned) { 1042 // Recursion is always used, so bail out at once if we already hit the limit. 1043 if (!MaxRecurse--) 1044 return false; 1045 1046 if (IsSigned) { 1047 // |X| / |Y| --> 0 1048 // 1049 // We require that 1 operand is a simple constant. That could be extended to 1050 // 2 variables if we computed the sign bit for each. 1051 // 1052 // Make sure that a constant is not the minimum signed value because taking 1053 // the abs() of that is undefined. 1054 Type *Ty = X->getType(); 1055 const APInt *C; 1056 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1057 // Is the variable divisor magnitude always greater than the constant 1058 // dividend magnitude? 1059 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1060 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1061 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1062 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1063 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1064 return true; 1065 } 1066 if (match(Y, m_APInt(C))) { 1067 // Special-case: we can't take the abs() of a minimum signed value. If 1068 // that's the divisor, then all we have to do is prove that the dividend 1069 // is also not the minimum signed value. 1070 if (C->isMinSignedValue()) 1071 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1072 1073 // Is the variable dividend magnitude always less than the constant 1074 // divisor magnitude? 1075 // |X| < |C| --> X > -abs(C) and X < abs(C) 1076 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1077 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1078 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1079 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1080 return true; 1081 } 1082 return false; 1083 } 1084 1085 // IsSigned == false. 1086 1087 // Is the unsigned dividend known to be less than a constant divisor? 1088 // TODO: Convert this (and above) to range analysis 1089 // ("computeConstantRangeIncludingKnownBits")? 1090 const APInt *C; 1091 if (match(Y, m_APInt(C)) && 1092 computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, Q.DT).getMaxValue().ult(*C)) 1093 return true; 1094 1095 // Try again for any divisor: 1096 // Is the dividend unsigned less than the divisor? 1097 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1098 } 1099 1100 /// These are simplifications common to SDiv and UDiv. 1101 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1102 const SimplifyQuery &Q, unsigned MaxRecurse) { 1103 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1104 return C; 1105 1106 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1107 return V; 1108 1109 bool IsSigned = Opcode == Instruction::SDiv; 1110 1111 // (X rem Y) / Y -> 0 1112 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1113 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1114 return Constant::getNullValue(Op0->getType()); 1115 1116 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1117 ConstantInt *C1, *C2; 1118 if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) && 1119 match(Op1, m_ConstantInt(C2))) { 1120 bool Overflow; 1121 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1122 if (Overflow) 1123 return Constant::getNullValue(Op0->getType()); 1124 } 1125 1126 // If the operation is with the result of a select instruction, check whether 1127 // operating on either branch of the select always yields the same value. 1128 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1129 if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1130 return V; 1131 1132 // If the operation is with the result of a phi instruction, check whether 1133 // operating on all incoming values of the phi always yields the same value. 1134 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1135 if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1136 return V; 1137 1138 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1139 return Constant::getNullValue(Op0->getType()); 1140 1141 return nullptr; 1142 } 1143 1144 /// These are simplifications common to SRem and URem. 1145 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1146 const SimplifyQuery &Q, unsigned MaxRecurse) { 1147 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1148 return C; 1149 1150 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1151 return V; 1152 1153 // (X % Y) % Y -> X % Y 1154 if ((Opcode == Instruction::SRem && 1155 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1156 (Opcode == Instruction::URem && 1157 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1158 return Op0; 1159 1160 // (X << Y) % X -> 0 1161 if (Q.IIQ.UseInstrInfo && 1162 ((Opcode == Instruction::SRem && 1163 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1164 (Opcode == Instruction::URem && 1165 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1166 return Constant::getNullValue(Op0->getType()); 1167 1168 // If the operation is with the result of a select instruction, check whether 1169 // operating on either branch of the select always yields the same value. 1170 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1171 if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1172 return V; 1173 1174 // If the operation is with the result of a phi instruction, check whether 1175 // operating on all incoming values of the phi always yields the same value. 1176 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1177 if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1178 return V; 1179 1180 // If X / Y == 0, then X % Y == X. 1181 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1182 return Op0; 1183 1184 return nullptr; 1185 } 1186 1187 /// Given operands for an SDiv, see if we can fold the result. 1188 /// If not, this returns null. 1189 static Value *simplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1190 unsigned MaxRecurse) { 1191 // If two operands are negated and no signed overflow, return -1. 1192 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1193 return Constant::getAllOnesValue(Op0->getType()); 1194 1195 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1196 } 1197 1198 Value *llvm::simplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1199 return ::simplifySDivInst(Op0, Op1, Q, RecursionLimit); 1200 } 1201 1202 /// Given operands for a UDiv, see if we can fold the result. 1203 /// If not, this returns null. 1204 static Value *simplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1205 unsigned MaxRecurse) { 1206 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1207 } 1208 1209 Value *llvm::simplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1210 return ::simplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1211 } 1212 1213 /// Given operands for an SRem, see if we can fold the result. 1214 /// If not, this returns null. 1215 static Value *simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1216 unsigned MaxRecurse) { 1217 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1218 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1219 Value *X; 1220 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1221 return ConstantInt::getNullValue(Op0->getType()); 1222 1223 // If the two operands are negated, return 0. 1224 if (isKnownNegation(Op0, Op1)) 1225 return ConstantInt::getNullValue(Op0->getType()); 1226 1227 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1228 } 1229 1230 Value *llvm::simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1231 return ::simplifySRemInst(Op0, Op1, Q, RecursionLimit); 1232 } 1233 1234 /// Given operands for a URem, see if we can fold the result. 1235 /// If not, this returns null. 1236 static Value *simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1237 unsigned MaxRecurse) { 1238 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1239 } 1240 1241 Value *llvm::simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1242 return ::simplifyURemInst(Op0, Op1, Q, RecursionLimit); 1243 } 1244 1245 /// Returns true if a shift by \c Amount always yields poison. 1246 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { 1247 Constant *C = dyn_cast<Constant>(Amount); 1248 if (!C) 1249 return false; 1250 1251 // X shift by undef -> poison because it may shift by the bitwidth. 1252 if (Q.isUndefValue(C)) 1253 return true; 1254 1255 // Shifting by the bitwidth or more is undefined. 1256 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1257 if (CI->getValue().uge(CI->getType()->getScalarSizeInBits())) 1258 return true; 1259 1260 // If all lanes of a vector shift are undefined the whole shift is. 1261 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1262 for (unsigned I = 0, 1263 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1264 I != E; ++I) 1265 if (!isPoisonShift(C->getAggregateElement(I), Q)) 1266 return false; 1267 return true; 1268 } 1269 1270 return false; 1271 } 1272 1273 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1274 /// If not, this returns null. 1275 static Value *simplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1276 Value *Op1, bool IsNSW, const SimplifyQuery &Q, 1277 unsigned MaxRecurse) { 1278 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1279 return C; 1280 1281 // poison shift by X -> poison 1282 if (isa<PoisonValue>(Op0)) 1283 return Op0; 1284 1285 // 0 shift by X -> 0 1286 if (match(Op0, m_Zero())) 1287 return Constant::getNullValue(Op0->getType()); 1288 1289 // X shift by 0 -> X 1290 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1291 // would be poison. 1292 Value *X; 1293 if (match(Op1, m_Zero()) || 1294 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1295 return Op0; 1296 1297 // Fold undefined shifts. 1298 if (isPoisonShift(Op1, Q)) 1299 return PoisonValue::get(Op0->getType()); 1300 1301 // If the operation is with the result of a select instruction, check whether 1302 // operating on either branch of the select always yields the same value. 1303 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1304 if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1305 return V; 1306 1307 // If the operation is with the result of a phi instruction, check whether 1308 // operating on all incoming values of the phi always yields the same value. 1309 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1310 if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1311 return V; 1312 1313 // If any bits in the shift amount make that value greater than or equal to 1314 // the number of bits in the type, the shift is undefined. 1315 KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1316 if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth())) 1317 return PoisonValue::get(Op0->getType()); 1318 1319 // If all valid bits in the shift amount are known zero, the first operand is 1320 // unchanged. 1321 unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth()); 1322 if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits) 1323 return Op0; 1324 1325 // Check for nsw shl leading to a poison value. 1326 if (IsNSW) { 1327 assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction"); 1328 KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1329 KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt); 1330 1331 if (KnownVal.Zero.isSignBitSet()) 1332 KnownShl.Zero.setSignBit(); 1333 if (KnownVal.One.isSignBitSet()) 1334 KnownShl.One.setSignBit(); 1335 1336 if (KnownShl.hasConflict()) 1337 return PoisonValue::get(Op0->getType()); 1338 } 1339 1340 return nullptr; 1341 } 1342 1343 /// Given operands for an Shl, LShr or AShr, see if we can 1344 /// fold the result. If not, this returns null. 1345 static Value *simplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1346 Value *Op1, bool isExact, 1347 const SimplifyQuery &Q, unsigned MaxRecurse) { 1348 if (Value *V = 1349 simplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse)) 1350 return V; 1351 1352 // X >> X -> 0 1353 if (Op0 == Op1) 1354 return Constant::getNullValue(Op0->getType()); 1355 1356 // undef >> X -> 0 1357 // undef >> X -> undef (if it's exact) 1358 if (Q.isUndefValue(Op0)) 1359 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1360 1361 // The low bit cannot be shifted out of an exact shift if it is set. 1362 if (isExact) { 1363 KnownBits Op0Known = 1364 computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1365 if (Op0Known.One[0]) 1366 return Op0; 1367 } 1368 1369 return nullptr; 1370 } 1371 1372 /// Given operands for an Shl, see if we can fold the result. 1373 /// If not, this returns null. 1374 static Value *simplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1375 const SimplifyQuery &Q, unsigned MaxRecurse) { 1376 if (Value *V = 1377 simplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse)) 1378 return V; 1379 1380 // undef << X -> 0 1381 // undef << X -> undef if (if it's NSW/NUW) 1382 if (Q.isUndefValue(Op0)) 1383 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1384 1385 // (X >> A) << A -> X 1386 Value *X; 1387 if (Q.IIQ.UseInstrInfo && 1388 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1389 return X; 1390 1391 // shl nuw i8 C, %x -> C iff C has sign bit set. 1392 if (isNUW && match(Op0, m_Negative())) 1393 return Op0; 1394 // NOTE: could use computeKnownBits() / LazyValueInfo, 1395 // but the cost-benefit analysis suggests it isn't worth it. 1396 1397 return nullptr; 1398 } 1399 1400 Value *llvm::simplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1401 const SimplifyQuery &Q) { 1402 return ::simplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1403 } 1404 1405 /// Given operands for an LShr, see if we can fold the result. 1406 /// If not, this returns null. 1407 static Value *simplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1408 const SimplifyQuery &Q, unsigned MaxRecurse) { 1409 if (Value *V = simplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1410 MaxRecurse)) 1411 return V; 1412 1413 // (X << A) >> A -> X 1414 Value *X; 1415 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1416 return X; 1417 1418 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1419 // We can return X as we do in the above case since OR alters no bits in X. 1420 // SimplifyDemandedBits in InstCombine can do more general optimization for 1421 // bit manipulation. This pattern aims to provide opportunities for other 1422 // optimizers by supporting a simple but common case in InstSimplify. 1423 Value *Y; 1424 const APInt *ShRAmt, *ShLAmt; 1425 if (match(Op1, m_APInt(ShRAmt)) && 1426 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1427 *ShRAmt == *ShLAmt) { 1428 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1429 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 1430 if (ShRAmt->uge(EffWidthY)) 1431 return X; 1432 } 1433 1434 return nullptr; 1435 } 1436 1437 Value *llvm::simplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1438 const SimplifyQuery &Q) { 1439 return ::simplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1440 } 1441 1442 /// Given operands for an AShr, see if we can fold the result. 1443 /// If not, this returns null. 1444 static Value *simplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1445 const SimplifyQuery &Q, unsigned MaxRecurse) { 1446 if (Value *V = simplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1447 MaxRecurse)) 1448 return V; 1449 1450 // -1 >>a X --> -1 1451 // (-1 << X) a>> X --> -1 1452 // Do not return Op0 because it may contain undef elements if it's a vector. 1453 if (match(Op0, m_AllOnes()) || 1454 match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1)))) 1455 return Constant::getAllOnesValue(Op0->getType()); 1456 1457 // (X << A) >> A -> X 1458 Value *X; 1459 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1460 return X; 1461 1462 // Arithmetic shifting an all-sign-bit value is a no-op. 1463 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1464 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1465 return Op0; 1466 1467 return nullptr; 1468 } 1469 1470 Value *llvm::simplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1471 const SimplifyQuery &Q) { 1472 return ::simplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1473 } 1474 1475 /// Commuted variants are assumed to be handled by calling this function again 1476 /// with the parameters swapped. 1477 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1478 ICmpInst *UnsignedICmp, bool IsAnd, 1479 const SimplifyQuery &Q) { 1480 Value *X, *Y; 1481 1482 ICmpInst::Predicate EqPred; 1483 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1484 !ICmpInst::isEquality(EqPred)) 1485 return nullptr; 1486 1487 ICmpInst::Predicate UnsignedPred; 1488 1489 Value *A, *B; 1490 // Y = (A - B); 1491 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1492 if (match(UnsignedICmp, 1493 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1494 ICmpInst::isUnsigned(UnsignedPred)) { 1495 // A >=/<= B || (A - B) != 0 <--> true 1496 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1497 UnsignedPred == ICmpInst::ICMP_ULE) && 1498 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1499 return ConstantInt::getTrue(UnsignedICmp->getType()); 1500 // A </> B && (A - B) == 0 <--> false 1501 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1502 UnsignedPred == ICmpInst::ICMP_UGT) && 1503 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1504 return ConstantInt::getFalse(UnsignedICmp->getType()); 1505 1506 // A </> B && (A - B) != 0 <--> A </> B 1507 // A </> B || (A - B) != 0 <--> (A - B) != 0 1508 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1509 UnsignedPred == ICmpInst::ICMP_UGT)) 1510 return IsAnd ? UnsignedICmp : ZeroICmp; 1511 1512 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1513 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1514 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1515 UnsignedPred == ICmpInst::ICMP_UGE)) 1516 return IsAnd ? ZeroICmp : UnsignedICmp; 1517 } 1518 1519 // Given Y = (A - B) 1520 // Y >= A && Y != 0 --> Y >= A iff B != 0 1521 // Y < A || Y == 0 --> Y < A iff B != 0 1522 if (match(UnsignedICmp, 1523 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1524 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1525 EqPred == ICmpInst::ICMP_NE && 1526 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1527 return UnsignedICmp; 1528 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1529 EqPred == ICmpInst::ICMP_EQ && 1530 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1531 return UnsignedICmp; 1532 } 1533 } 1534 1535 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1536 ICmpInst::isUnsigned(UnsignedPred)) 1537 ; 1538 else if (match(UnsignedICmp, 1539 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1540 ICmpInst::isUnsigned(UnsignedPred)) 1541 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1542 else 1543 return nullptr; 1544 1545 // X > Y && Y == 0 --> Y == 0 iff X != 0 1546 // X > Y || Y == 0 --> X > Y iff X != 0 1547 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1548 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1549 return IsAnd ? ZeroICmp : UnsignedICmp; 1550 1551 // X <= Y && Y != 0 --> X <= Y iff X != 0 1552 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1553 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1554 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1555 return IsAnd ? UnsignedICmp : ZeroICmp; 1556 1557 // The transforms below here are expected to be handled more generally with 1558 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1559 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1560 // these are candidates for removal. 1561 1562 // X < Y && Y != 0 --> X < Y 1563 // X < Y || Y != 0 --> Y != 0 1564 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1565 return IsAnd ? UnsignedICmp : ZeroICmp; 1566 1567 // X >= Y && Y == 0 --> Y == 0 1568 // X >= Y || Y == 0 --> X >= Y 1569 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1570 return IsAnd ? ZeroICmp : UnsignedICmp; 1571 1572 // X < Y && Y == 0 --> false 1573 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1574 IsAnd) 1575 return getFalse(UnsignedICmp->getType()); 1576 1577 // X >= Y || Y != 0 --> true 1578 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1579 !IsAnd) 1580 return getTrue(UnsignedICmp->getType()); 1581 1582 return nullptr; 1583 } 1584 1585 /// Commuted variants are assumed to be handled by calling this function again 1586 /// with the parameters swapped. 1587 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1588 ICmpInst::Predicate Pred0, Pred1; 1589 Value *A, *B; 1590 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1591 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1592 return nullptr; 1593 1594 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1595 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1596 // can eliminate Op1 from this 'and'. 1597 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1598 return Op0; 1599 1600 // Check for any combination of predicates that are guaranteed to be disjoint. 1601 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1602 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1603 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1604 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1605 return getFalse(Op0->getType()); 1606 1607 return nullptr; 1608 } 1609 1610 /// Commuted variants are assumed to be handled by calling this function again 1611 /// with the parameters swapped. 1612 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1613 ICmpInst::Predicate Pred0, Pred1; 1614 Value *A, *B; 1615 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1616 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1617 return nullptr; 1618 1619 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1620 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1621 // can eliminate Op0 from this 'or'. 1622 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1623 return Op1; 1624 1625 // Check for any combination of predicates that cover the entire range of 1626 // possibilities. 1627 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1628 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1629 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1630 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1631 return getTrue(Op0->getType()); 1632 1633 return nullptr; 1634 } 1635 1636 /// Test if a pair of compares with a shared operand and 2 constants has an 1637 /// empty set intersection, full set union, or if one compare is a superset of 1638 /// the other. 1639 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1640 bool IsAnd) { 1641 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1642 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1643 return nullptr; 1644 1645 const APInt *C0, *C1; 1646 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1647 !match(Cmp1->getOperand(1), m_APInt(C1))) 1648 return nullptr; 1649 1650 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1651 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1652 1653 // For and-of-compares, check if the intersection is empty: 1654 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1655 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1656 return getFalse(Cmp0->getType()); 1657 1658 // For or-of-compares, check if the union is full: 1659 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1660 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1661 return getTrue(Cmp0->getType()); 1662 1663 // Is one range a superset of the other? 1664 // If this is and-of-compares, take the smaller set: 1665 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1666 // If this is or-of-compares, take the larger set: 1667 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1668 if (Range0.contains(Range1)) 1669 return IsAnd ? Cmp1 : Cmp0; 1670 if (Range1.contains(Range0)) 1671 return IsAnd ? Cmp0 : Cmp1; 1672 1673 return nullptr; 1674 } 1675 1676 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1677 bool IsAnd) { 1678 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1679 if (!match(Cmp0->getOperand(1), m_Zero()) || 1680 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1681 return nullptr; 1682 1683 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1684 return nullptr; 1685 1686 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1687 Value *X = Cmp0->getOperand(0); 1688 Value *Y = Cmp1->getOperand(0); 1689 1690 // If one of the compares is a masked version of a (not) null check, then 1691 // that compare implies the other, so we eliminate the other. Optionally, look 1692 // through a pointer-to-int cast to match a null check of a pointer type. 1693 1694 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1695 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1696 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1697 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1698 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1699 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1700 return Cmp1; 1701 1702 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1703 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1704 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1705 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1706 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1707 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1708 return Cmp0; 1709 1710 return nullptr; 1711 } 1712 1713 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1714 const InstrInfoQuery &IIQ) { 1715 // (icmp (add V, C0), C1) & (icmp V, C0) 1716 ICmpInst::Predicate Pred0, Pred1; 1717 const APInt *C0, *C1; 1718 Value *V; 1719 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1720 return nullptr; 1721 1722 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1723 return nullptr; 1724 1725 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1726 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1727 return nullptr; 1728 1729 Type *ITy = Op0->getType(); 1730 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1731 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1732 1733 const APInt Delta = *C1 - *C0; 1734 if (C0->isStrictlyPositive()) { 1735 if (Delta == 2) { 1736 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1737 return getFalse(ITy); 1738 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1739 return getFalse(ITy); 1740 } 1741 if (Delta == 1) { 1742 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1743 return getFalse(ITy); 1744 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1745 return getFalse(ITy); 1746 } 1747 } 1748 if (C0->getBoolValue() && isNUW) { 1749 if (Delta == 2) 1750 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1751 return getFalse(ITy); 1752 if (Delta == 1) 1753 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1754 return getFalse(ITy); 1755 } 1756 1757 return nullptr; 1758 } 1759 1760 /// Try to eliminate compares with signed or unsigned min/max constants. 1761 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, 1762 bool IsAnd) { 1763 // Canonicalize an equality compare as Cmp0. 1764 if (Cmp1->isEquality()) 1765 std::swap(Cmp0, Cmp1); 1766 if (!Cmp0->isEquality()) 1767 return nullptr; 1768 1769 // The non-equality compare must include a common operand (X). Canonicalize 1770 // the common operand as operand 0 (the predicate is swapped if the common 1771 // operand was operand 1). 1772 ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); 1773 Value *X = Cmp0->getOperand(0); 1774 ICmpInst::Predicate Pred1; 1775 bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value())); 1776 if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value()))) 1777 return nullptr; 1778 if (ICmpInst::isEquality(Pred1)) 1779 return nullptr; 1780 1781 // The equality compare must be against a constant. Flip bits if we matched 1782 // a bitwise not. Convert a null pointer constant to an integer zero value. 1783 APInt MinMaxC; 1784 const APInt *C; 1785 if (match(Cmp0->getOperand(1), m_APInt(C))) 1786 MinMaxC = HasNotOp ? ~*C : *C; 1787 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) 1788 MinMaxC = APInt::getZero(8); 1789 else 1790 return nullptr; 1791 1792 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. 1793 if (!IsAnd) { 1794 Pred0 = ICmpInst::getInversePredicate(Pred0); 1795 Pred1 = ICmpInst::getInversePredicate(Pred1); 1796 } 1797 1798 // Normalize to unsigned compare and unsigned min/max value. 1799 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 1800 if (ICmpInst::isSigned(Pred1)) { 1801 Pred1 = ICmpInst::getUnsignedPredicate(Pred1); 1802 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); 1803 } 1804 1805 // (X != MAX) && (X < Y) --> X < Y 1806 // (X == MAX) || (X >= Y) --> X >= Y 1807 if (MinMaxC.isMaxValue()) 1808 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) 1809 return Cmp1; 1810 1811 // (X != MIN) && (X > Y) --> X > Y 1812 // (X == MIN) || (X <= Y) --> X <= Y 1813 if (MinMaxC.isMinValue()) 1814 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) 1815 return Cmp1; 1816 1817 return nullptr; 1818 } 1819 1820 /// Try to simplify and/or of icmp with ctpop intrinsic. 1821 static Value *simplifyAndOrOfICmpsWithCtpop(ICmpInst *Cmp0, ICmpInst *Cmp1, 1822 bool IsAnd) { 1823 ICmpInst::Predicate Pred0, Pred1; 1824 Value *X; 1825 const APInt *C; 1826 if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)), 1827 m_APInt(C))) || 1828 !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt())) || C->isZero()) 1829 return nullptr; 1830 1831 // (ctpop(X) == C) || (X != 0) --> X != 0 where C > 0 1832 if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_NE) 1833 return Cmp1; 1834 // (ctpop(X) != C) && (X == 0) --> X == 0 where C > 0 1835 if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_EQ) 1836 return Cmp1; 1837 1838 return nullptr; 1839 } 1840 1841 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1842 const SimplifyQuery &Q) { 1843 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1844 return X; 1845 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1846 return X; 1847 1848 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1849 return X; 1850 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1851 return X; 1852 1853 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1854 return X; 1855 1856 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) 1857 return X; 1858 1859 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1860 return X; 1861 1862 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, true)) 1863 return X; 1864 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, true)) 1865 return X; 1866 1867 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1868 return X; 1869 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1870 return X; 1871 1872 return nullptr; 1873 } 1874 1875 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1876 const InstrInfoQuery &IIQ) { 1877 // (icmp (add V, C0), C1) | (icmp V, C0) 1878 ICmpInst::Predicate Pred0, Pred1; 1879 const APInt *C0, *C1; 1880 Value *V; 1881 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1882 return nullptr; 1883 1884 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1885 return nullptr; 1886 1887 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1888 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1889 return nullptr; 1890 1891 Type *ITy = Op0->getType(); 1892 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1893 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1894 1895 const APInt Delta = *C1 - *C0; 1896 if (C0->isStrictlyPositive()) { 1897 if (Delta == 2) { 1898 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1899 return getTrue(ITy); 1900 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1901 return getTrue(ITy); 1902 } 1903 if (Delta == 1) { 1904 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1905 return getTrue(ITy); 1906 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1907 return getTrue(ITy); 1908 } 1909 } 1910 if (C0->getBoolValue() && isNUW) { 1911 if (Delta == 2) 1912 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1913 return getTrue(ITy); 1914 if (Delta == 1) 1915 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1916 return getTrue(ITy); 1917 } 1918 1919 return nullptr; 1920 } 1921 1922 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1923 const SimplifyQuery &Q) { 1924 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1925 return X; 1926 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1927 return X; 1928 1929 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1930 return X; 1931 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1932 return X; 1933 1934 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1935 return X; 1936 1937 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) 1938 return X; 1939 1940 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1941 return X; 1942 1943 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, false)) 1944 return X; 1945 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, false)) 1946 return X; 1947 1948 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1949 return X; 1950 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1951 return X; 1952 1953 return nullptr; 1954 } 1955 1956 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, FCmpInst *LHS, 1957 FCmpInst *RHS, bool IsAnd) { 1958 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1959 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1960 if (LHS0->getType() != RHS0->getType()) 1961 return nullptr; 1962 1963 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1964 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1965 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1966 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1967 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1968 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1969 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1970 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1971 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1972 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1973 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1974 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1975 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1976 return RHS; 1977 1978 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1979 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1980 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1981 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1982 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1983 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1984 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1985 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1986 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1987 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1988 return LHS; 1989 } 1990 1991 return nullptr; 1992 } 1993 1994 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, Value *Op0, 1995 Value *Op1, bool IsAnd) { 1996 // Look through casts of the 'and' operands to find compares. 1997 auto *Cast0 = dyn_cast<CastInst>(Op0); 1998 auto *Cast1 = dyn_cast<CastInst>(Op1); 1999 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 2000 Cast0->getSrcTy() == Cast1->getSrcTy()) { 2001 Op0 = Cast0->getOperand(0); 2002 Op1 = Cast1->getOperand(0); 2003 } 2004 2005 Value *V = nullptr; 2006 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 2007 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 2008 if (ICmp0 && ICmp1) 2009 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 2010 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 2011 2012 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 2013 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 2014 if (FCmp0 && FCmp1) 2015 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 2016 2017 if (!V) 2018 return nullptr; 2019 if (!Cast0) 2020 return V; 2021 2022 // If we looked through casts, we can only handle a constant simplification 2023 // because we are not allowed to create a cast instruction here. 2024 if (auto *C = dyn_cast<Constant>(V)) 2025 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 2026 2027 return nullptr; 2028 } 2029 2030 /// Given a bitwise logic op, check if the operands are add/sub with a common 2031 /// source value and inverted constant (identity: C - X -> ~(X + ~C)). 2032 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, 2033 Instruction::BinaryOps Opcode) { 2034 assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); 2035 assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); 2036 Value *X; 2037 Constant *C1, *C2; 2038 if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && 2039 match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || 2040 (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && 2041 match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { 2042 if (ConstantExpr::getNot(C1) == C2) { 2043 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 2044 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 2045 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 2046 Type *Ty = Op0->getType(); 2047 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) 2048 : ConstantInt::getAllOnesValue(Ty); 2049 } 2050 } 2051 return nullptr; 2052 } 2053 2054 /// Given operands for an And, see if we can fold the result. 2055 /// If not, this returns null. 2056 static Value *simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2057 unsigned MaxRecurse) { 2058 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2059 return C; 2060 2061 // X & poison -> poison 2062 if (isa<PoisonValue>(Op1)) 2063 return Op1; 2064 2065 // X & undef -> 0 2066 if (Q.isUndefValue(Op1)) 2067 return Constant::getNullValue(Op0->getType()); 2068 2069 // X & X = X 2070 if (Op0 == Op1) 2071 return Op0; 2072 2073 // X & 0 = 0 2074 if (match(Op1, m_Zero())) 2075 return Constant::getNullValue(Op0->getType()); 2076 2077 // X & -1 = X 2078 if (match(Op1, m_AllOnes())) 2079 return Op0; 2080 2081 // A & ~A = ~A & A = 0 2082 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) 2083 return Constant::getNullValue(Op0->getType()); 2084 2085 // (A | ?) & A = A 2086 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2087 return Op1; 2088 2089 // A & (A | ?) = A 2090 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 2091 return Op0; 2092 2093 // (X | Y) & (X | ~Y) --> X (commuted 8 ways) 2094 Value *X, *Y; 2095 if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2096 match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2097 return X; 2098 if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2099 match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2100 return X; 2101 2102 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) 2103 return V; 2104 2105 // A mask that only clears known zeros of a shifted value is a no-op. 2106 const APInt *Mask; 2107 const APInt *ShAmt; 2108 if (match(Op1, m_APInt(Mask))) { 2109 // If all bits in the inverted and shifted mask are clear: 2110 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2111 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2112 (~(*Mask)).lshr(*ShAmt).isZero()) 2113 return Op0; 2114 2115 // If all bits in the inverted and shifted mask are clear: 2116 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2117 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2118 (~(*Mask)).shl(*ShAmt).isZero()) 2119 return Op0; 2120 } 2121 2122 // If we have a multiplication overflow check that is being 'and'ed with a 2123 // check that one of the multipliers is not zero, we can omit the 'and', and 2124 // only keep the overflow check. 2125 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true)) 2126 return Op1; 2127 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true)) 2128 return Op0; 2129 2130 // A & (-A) = A if A is a power of two or zero. 2131 if (match(Op0, m_Neg(m_Specific(Op1))) || 2132 match(Op1, m_Neg(m_Specific(Op0)))) { 2133 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2134 Q.DT)) 2135 return Op0; 2136 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2137 Q.DT)) 2138 return Op1; 2139 } 2140 2141 // This is a similar pattern used for checking if a value is a power-of-2: 2142 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2143 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 2144 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2145 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2146 return Constant::getNullValue(Op1->getType()); 2147 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 2148 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2149 return Constant::getNullValue(Op0->getType()); 2150 2151 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2152 return V; 2153 2154 // Try some generic simplifications for associative operations. 2155 if (Value *V = 2156 simplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2157 return V; 2158 2159 // And distributes over Or. Try some generic simplifications based on this. 2160 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2161 Instruction::Or, Q, MaxRecurse)) 2162 return V; 2163 2164 // And distributes over Xor. Try some generic simplifications based on this. 2165 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2166 Instruction::Xor, Q, MaxRecurse)) 2167 return V; 2168 2169 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2170 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2171 // A & (A && B) -> A && B 2172 if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero()))) 2173 return Op1; 2174 else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero()))) 2175 return Op0; 2176 } 2177 // If the operation is with the result of a select instruction, check 2178 // whether operating on either branch of the select always yields the same 2179 // value. 2180 if (Value *V = 2181 threadBinOpOverSelect(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2182 return V; 2183 } 2184 2185 // If the operation is with the result of a phi instruction, check whether 2186 // operating on all incoming values of the phi always yields the same value. 2187 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2188 if (Value *V = 2189 threadBinOpOverPHI(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2190 return V; 2191 2192 // Assuming the effective width of Y is not larger than A, i.e. all bits 2193 // from X and Y are disjoint in (X << A) | Y, 2194 // if the mask of this AND op covers all bits of X or Y, while it covers 2195 // no bits from the other, we can bypass this AND op. E.g., 2196 // ((X << A) | Y) & Mask -> Y, 2197 // if Mask = ((1 << effective_width_of(Y)) - 1) 2198 // ((X << A) | Y) & Mask -> X << A, 2199 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2200 // SimplifyDemandedBits in InstCombine can optimize the general case. 2201 // This pattern aims to help other passes for a common case. 2202 Value *XShifted; 2203 if (match(Op1, m_APInt(Mask)) && 2204 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2205 m_Value(XShifted)), 2206 m_Value(Y)))) { 2207 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2208 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2209 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2210 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 2211 if (EffWidthY <= ShftCnt) { 2212 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2213 const unsigned EffWidthX = XKnown.countMaxActiveBits(); 2214 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2215 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2216 // If the mask is extracting all bits from X or Y as is, we can skip 2217 // this AND op. 2218 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2219 return Y; 2220 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2221 return XShifted; 2222 } 2223 } 2224 2225 // ((X | Y) ^ X ) & ((X | Y) ^ Y) --> 0 2226 // ((X | Y) ^ Y ) & ((X | Y) ^ X) --> 0 2227 BinaryOperator *Or; 2228 if (match(Op0, m_c_Xor(m_Value(X), 2229 m_CombineAnd(m_BinOp(Or), 2230 m_c_Or(m_Deferred(X), m_Value(Y))))) && 2231 match(Op1, m_c_Xor(m_Specific(Or), m_Specific(Y)))) 2232 return Constant::getNullValue(Op0->getType()); 2233 2234 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2235 // Op0&Op1 -> Op0 where Op0 implies Op1 2236 if (isImpliedCondition(Op0, Op1, Q.DL).value_or(false)) 2237 return Op0; 2238 // Op0&Op1 -> Op1 where Op1 implies Op0 2239 if (isImpliedCondition(Op1, Op0, Q.DL).value_or(false)) 2240 return Op1; 2241 } 2242 2243 return nullptr; 2244 } 2245 2246 Value *llvm::simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2247 return ::simplifyAndInst(Op0, Op1, Q, RecursionLimit); 2248 } 2249 2250 static Value *simplifyOrLogic(Value *X, Value *Y) { 2251 assert(X->getType() == Y->getType() && "Expected same type for 'or' ops"); 2252 Type *Ty = X->getType(); 2253 2254 // X | ~X --> -1 2255 if (match(Y, m_Not(m_Specific(X)))) 2256 return ConstantInt::getAllOnesValue(Ty); 2257 2258 // X | ~(X & ?) = -1 2259 if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value())))) 2260 return ConstantInt::getAllOnesValue(Ty); 2261 2262 // X | (X & ?) --> X 2263 if (match(Y, m_c_And(m_Specific(X), m_Value()))) 2264 return X; 2265 2266 Value *A, *B; 2267 2268 // (A ^ B) | (A | B) --> A | B 2269 // (A ^ B) | (B | A) --> B | A 2270 if (match(X, m_Xor(m_Value(A), m_Value(B))) && 2271 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2272 return Y; 2273 2274 // ~(A ^ B) | (A | B) --> -1 2275 // ~(A ^ B) | (B | A) --> -1 2276 if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) && 2277 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2278 return ConstantInt::getAllOnesValue(Ty); 2279 2280 // (A & ~B) | (A ^ B) --> A ^ B 2281 // (~B & A) | (A ^ B) --> A ^ B 2282 // (A & ~B) | (B ^ A) --> B ^ A 2283 // (~B & A) | (B ^ A) --> B ^ A 2284 if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) && 2285 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2286 return Y; 2287 2288 // (~A ^ B) | (A & B) --> ~A ^ B 2289 // (B ^ ~A) | (A & B) --> B ^ ~A 2290 // (~A ^ B) | (B & A) --> ~A ^ B 2291 // (B ^ ~A) | (B & A) --> B ^ ~A 2292 if (match(X, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && 2293 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2294 return X; 2295 2296 // (~A | B) | (A ^ B) --> -1 2297 // (~A | B) | (B ^ A) --> -1 2298 // (B | ~A) | (A ^ B) --> -1 2299 // (B | ~A) | (B ^ A) --> -1 2300 if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) && 2301 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2302 return ConstantInt::getAllOnesValue(Ty); 2303 2304 // (~A & B) | ~(A | B) --> ~A 2305 // (~A & B) | ~(B | A) --> ~A 2306 // (B & ~A) | ~(A | B) --> ~A 2307 // (B & ~A) | ~(B | A) --> ~A 2308 Value *NotA; 2309 if (match(X, 2310 m_c_And(m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))), 2311 m_Value(B))) && 2312 match(Y, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2313 return NotA; 2314 2315 // ~(A ^ B) | (A & B) --> ~(A ^ B) 2316 // ~(A ^ B) | (B & A) --> ~(A ^ B) 2317 Value *NotAB; 2318 if (match(X, m_CombineAnd(m_NotForbidUndef(m_Xor(m_Value(A), m_Value(B))), 2319 m_Value(NotAB))) && 2320 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2321 return NotAB; 2322 2323 // ~(A & B) | (A ^ B) --> ~(A & B) 2324 // ~(A & B) | (B ^ A) --> ~(A & B) 2325 if (match(X, m_CombineAnd(m_NotForbidUndef(m_And(m_Value(A), m_Value(B))), 2326 m_Value(NotAB))) && 2327 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2328 return NotAB; 2329 2330 return nullptr; 2331 } 2332 2333 /// Given operands for an Or, see if we can fold the result. 2334 /// If not, this returns null. 2335 static Value *simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2336 unsigned MaxRecurse) { 2337 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2338 return C; 2339 2340 // X | poison -> poison 2341 if (isa<PoisonValue>(Op1)) 2342 return Op1; 2343 2344 // X | undef -> -1 2345 // X | -1 = -1 2346 // Do not return Op1 because it may contain undef elements if it's a vector. 2347 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2348 return Constant::getAllOnesValue(Op0->getType()); 2349 2350 // X | X = X 2351 // X | 0 = X 2352 if (Op0 == Op1 || match(Op1, m_Zero())) 2353 return Op0; 2354 2355 if (Value *R = simplifyOrLogic(Op0, Op1)) 2356 return R; 2357 if (Value *R = simplifyOrLogic(Op1, Op0)) 2358 return R; 2359 2360 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) 2361 return V; 2362 2363 // Rotated -1 is still -1: 2364 // (-1 << X) | (-1 >> (C - X)) --> -1 2365 // (-1 >> X) | (-1 << (C - X)) --> -1 2366 // ...with C <= bitwidth (and commuted variants). 2367 Value *X, *Y; 2368 if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) && 2369 match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) || 2370 (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) && 2371 match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) { 2372 const APInt *C; 2373 if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) || 2374 match(Y, m_Sub(m_APInt(C), m_Specific(X)))) && 2375 C->ule(X->getType()->getScalarSizeInBits())) { 2376 return ConstantInt::getAllOnesValue(X->getType()); 2377 } 2378 } 2379 2380 // A funnel shift (rotate) can be decomposed into simpler shifts. See if we 2381 // are mixing in another shift that is redundant with the funnel shift. 2382 2383 // (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y 2384 // (shl X, Y) | (fshl X, ?, Y) --> fshl X, ?, Y 2385 if (match(Op0, 2386 m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) && 2387 match(Op1, m_Shl(m_Specific(X), m_Specific(Y)))) 2388 return Op0; 2389 if (match(Op1, 2390 m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) && 2391 match(Op0, m_Shl(m_Specific(X), m_Specific(Y)))) 2392 return Op1; 2393 2394 // (fshr ?, X, Y) | (lshr X, Y) --> fshr ?, X, Y 2395 // (lshr X, Y) | (fshr ?, X, Y) --> fshr ?, X, Y 2396 if (match(Op0, 2397 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) && 2398 match(Op1, m_LShr(m_Specific(X), m_Specific(Y)))) 2399 return Op0; 2400 if (match(Op1, 2401 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) && 2402 match(Op0, m_LShr(m_Specific(X), m_Specific(Y)))) 2403 return Op1; 2404 2405 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2406 return V; 2407 2408 // If we have a multiplication overflow check that is being 'and'ed with a 2409 // check that one of the multipliers is not zero, we can omit the 'and', and 2410 // only keep the overflow check. 2411 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false)) 2412 return Op1; 2413 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false)) 2414 return Op0; 2415 2416 // Try some generic simplifications for associative operations. 2417 if (Value *V = 2418 simplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2419 return V; 2420 2421 // Or distributes over And. Try some generic simplifications based on this. 2422 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2423 Instruction::And, Q, MaxRecurse)) 2424 return V; 2425 2426 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2427 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2428 // A | (A || B) -> A || B 2429 if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value()))) 2430 return Op1; 2431 else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value()))) 2432 return Op0; 2433 } 2434 // If the operation is with the result of a select instruction, check 2435 // whether operating on either branch of the select always yields the same 2436 // value. 2437 if (Value *V = 2438 threadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2439 return V; 2440 } 2441 2442 // (A & C1)|(B & C2) 2443 Value *A, *B; 2444 const APInt *C1, *C2; 2445 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2446 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2447 if (*C1 == ~*C2) { 2448 // (A & C1)|(B & C2) 2449 // If we have: ((V + N) & C1) | (V & C2) 2450 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2451 // replace with V+N. 2452 Value *N; 2453 if (C2->isMask() && // C2 == 0+1+ 2454 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2455 // Add commutes, try both ways. 2456 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2457 return A; 2458 } 2459 // Or commutes, try both ways. 2460 if (C1->isMask() && match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2461 // Add commutes, try both ways. 2462 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2463 return B; 2464 } 2465 } 2466 } 2467 2468 // If the operation is with the result of a phi instruction, check whether 2469 // operating on all incoming values of the phi always yields the same value. 2470 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2471 if (Value *V = threadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2472 return V; 2473 2474 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2475 // Op0|Op1 -> Op1 where Op0 implies Op1 2476 if (isImpliedCondition(Op0, Op1, Q.DL).value_or(false)) 2477 return Op1; 2478 // Op0|Op1 -> Op0 where Op1 implies Op0 2479 if (isImpliedCondition(Op1, Op0, Q.DL).value_or(false)) 2480 return Op0; 2481 } 2482 2483 return nullptr; 2484 } 2485 2486 Value *llvm::simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2487 return ::simplifyOrInst(Op0, Op1, Q, RecursionLimit); 2488 } 2489 2490 /// Given operands for a Xor, see if we can fold the result. 2491 /// If not, this returns null. 2492 static Value *simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2493 unsigned MaxRecurse) { 2494 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2495 return C; 2496 2497 // X ^ poison -> poison 2498 if (isa<PoisonValue>(Op1)) 2499 return Op1; 2500 2501 // A ^ undef -> undef 2502 if (Q.isUndefValue(Op1)) 2503 return Op1; 2504 2505 // A ^ 0 = A 2506 if (match(Op1, m_Zero())) 2507 return Op0; 2508 2509 // A ^ A = 0 2510 if (Op0 == Op1) 2511 return Constant::getNullValue(Op0->getType()); 2512 2513 // A ^ ~A = ~A ^ A = -1 2514 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) 2515 return Constant::getAllOnesValue(Op0->getType()); 2516 2517 auto foldAndOrNot = [](Value *X, Value *Y) -> Value * { 2518 Value *A, *B; 2519 // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants. 2520 if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) && 2521 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2522 return A; 2523 2524 // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants. 2525 // The 'not' op must contain a complete -1 operand (no undef elements for 2526 // vector) for the transform to be safe. 2527 Value *NotA; 2528 if (match(X, 2529 m_c_Or(m_CombineAnd(m_NotForbidUndef(m_Value(A)), m_Value(NotA)), 2530 m_Value(B))) && 2531 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2532 return NotA; 2533 2534 return nullptr; 2535 }; 2536 if (Value *R = foldAndOrNot(Op0, Op1)) 2537 return R; 2538 if (Value *R = foldAndOrNot(Op1, Op0)) 2539 return R; 2540 2541 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) 2542 return V; 2543 2544 // Try some generic simplifications for associative operations. 2545 if (Value *V = 2546 simplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, MaxRecurse)) 2547 return V; 2548 2549 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2550 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2551 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2552 // only if B and C are equal. If B and C are equal then (since we assume 2553 // that operands have already been simplified) "select(cond, B, C)" should 2554 // have been simplified to the common value of B and C already. Analysing 2555 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2556 // for threading over phi nodes. 2557 2558 return nullptr; 2559 } 2560 2561 Value *llvm::simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2562 return ::simplifyXorInst(Op0, Op1, Q, RecursionLimit); 2563 } 2564 2565 static Type *getCompareTy(Value *Op) { 2566 return CmpInst::makeCmpResultType(Op->getType()); 2567 } 2568 2569 /// Rummage around inside V looking for something equivalent to the comparison 2570 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2571 /// Helper function for analyzing max/min idioms. 2572 static Value *extractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2573 Value *LHS, Value *RHS) { 2574 SelectInst *SI = dyn_cast<SelectInst>(V); 2575 if (!SI) 2576 return nullptr; 2577 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2578 if (!Cmp) 2579 return nullptr; 2580 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2581 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2582 return Cmp; 2583 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2584 LHS == CmpRHS && RHS == CmpLHS) 2585 return Cmp; 2586 return nullptr; 2587 } 2588 2589 /// Return true if the underlying object (storage) must be disjoint from 2590 /// storage returned by any noalias return call. 2591 static bool isAllocDisjoint(const Value *V) { 2592 // For allocas, we consider only static ones (dynamic 2593 // allocas might be transformed into calls to malloc not simultaneously 2594 // live with the compared-to allocation). For globals, we exclude symbols 2595 // that might be resolve lazily to symbols in another dynamically-loaded 2596 // library (and, thus, could be malloc'ed by the implementation). 2597 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2598 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2599 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2600 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2601 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2602 !GV->isThreadLocal(); 2603 if (const Argument *A = dyn_cast<Argument>(V)) 2604 return A->hasByValAttr(); 2605 return false; 2606 } 2607 2608 /// Return true if V1 and V2 are each the base of some distict storage region 2609 /// [V, object_size(V)] which do not overlap. Note that zero sized regions 2610 /// *are* possible, and that zero sized regions do not overlap with any other. 2611 static bool haveNonOverlappingStorage(const Value *V1, const Value *V2) { 2612 // Global variables always exist, so they always exist during the lifetime 2613 // of each other and all allocas. Global variables themselves usually have 2614 // non-overlapping storage, but since their addresses are constants, the 2615 // case involving two globals does not reach here and is instead handled in 2616 // constant folding. 2617 // 2618 // Two different allocas usually have different addresses... 2619 // 2620 // However, if there's an @llvm.stackrestore dynamically in between two 2621 // allocas, they may have the same address. It's tempting to reduce the 2622 // scope of the problem by only looking at *static* allocas here. That would 2623 // cover the majority of allocas while significantly reducing the likelihood 2624 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2625 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2626 // an entry block. Also, if we have a block that's not attached to a 2627 // function, we can't tell if it's "static" under the current definition. 2628 // Theoretically, this problem could be fixed by creating a new kind of 2629 // instruction kind specifically for static allocas. Such a new instruction 2630 // could be required to be at the top of the entry block, thus preventing it 2631 // from being subject to a @llvm.stackrestore. Instcombine could even 2632 // convert regular allocas into these special allocas. It'd be nifty. 2633 // However, until then, this problem remains open. 2634 // 2635 // So, we'll assume that two non-empty allocas have different addresses 2636 // for now. 2637 auto isByValArg = [](const Value *V) { 2638 const Argument *A = dyn_cast<Argument>(V); 2639 return A && A->hasByValAttr(); 2640 }; 2641 2642 // Byval args are backed by store which does not overlap with each other, 2643 // allocas, or globals. 2644 if (isByValArg(V1)) 2645 return isa<AllocaInst>(V2) || isa<GlobalVariable>(V2) || isByValArg(V2); 2646 if (isByValArg(V2)) 2647 return isa<AllocaInst>(V1) || isa<GlobalVariable>(V1) || isByValArg(V1); 2648 2649 return isa<AllocaInst>(V1) && 2650 (isa<AllocaInst>(V2) || isa<GlobalVariable>(V2)); 2651 } 2652 2653 // A significant optimization not implemented here is assuming that alloca 2654 // addresses are not equal to incoming argument values. They don't *alias*, 2655 // as we say, but that doesn't mean they aren't equal, so we take a 2656 // conservative approach. 2657 // 2658 // This is inspired in part by C++11 5.10p1: 2659 // "Two pointers of the same type compare equal if and only if they are both 2660 // null, both point to the same function, or both represent the same 2661 // address." 2662 // 2663 // This is pretty permissive. 2664 // 2665 // It's also partly due to C11 6.5.9p6: 2666 // "Two pointers compare equal if and only if both are null pointers, both are 2667 // pointers to the same object (including a pointer to an object and a 2668 // subobject at its beginning) or function, both are pointers to one past the 2669 // last element of the same array object, or one is a pointer to one past the 2670 // end of one array object and the other is a pointer to the start of a 2671 // different array object that happens to immediately follow the first array 2672 // object in the address space.) 2673 // 2674 // C11's version is more restrictive, however there's no reason why an argument 2675 // couldn't be a one-past-the-end value for a stack object in the caller and be 2676 // equal to the beginning of a stack object in the callee. 2677 // 2678 // If the C and C++ standards are ever made sufficiently restrictive in this 2679 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2680 // this optimization. 2681 static Constant *computePointerICmp(CmpInst::Predicate Pred, Value *LHS, 2682 Value *RHS, const SimplifyQuery &Q) { 2683 const DataLayout &DL = Q.DL; 2684 const TargetLibraryInfo *TLI = Q.TLI; 2685 const DominatorTree *DT = Q.DT; 2686 const Instruction *CxtI = Q.CxtI; 2687 const InstrInfoQuery &IIQ = Q.IIQ; 2688 2689 // First, skip past any trivial no-ops. 2690 LHS = LHS->stripPointerCasts(); 2691 RHS = RHS->stripPointerCasts(); 2692 2693 // A non-null pointer is not equal to a null pointer. 2694 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && 2695 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2696 IIQ.UseInstrInfo)) 2697 return ConstantInt::get(getCompareTy(LHS), !CmpInst::isTrueWhenEqual(Pred)); 2698 2699 // We can only fold certain predicates on pointer comparisons. 2700 switch (Pred) { 2701 default: 2702 return nullptr; 2703 2704 // Equality comaprisons are easy to fold. 2705 case CmpInst::ICMP_EQ: 2706 case CmpInst::ICMP_NE: 2707 break; 2708 2709 // We can only handle unsigned relational comparisons because 'inbounds' on 2710 // a GEP only protects against unsigned wrapping. 2711 case CmpInst::ICMP_UGT: 2712 case CmpInst::ICMP_UGE: 2713 case CmpInst::ICMP_ULT: 2714 case CmpInst::ICMP_ULE: 2715 // However, we have to switch them to their signed variants to handle 2716 // negative indices from the base pointer. 2717 Pred = ICmpInst::getSignedPredicate(Pred); 2718 break; 2719 } 2720 2721 // Strip off any constant offsets so that we can reason about them. 2722 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2723 // here and compare base addresses like AliasAnalysis does, however there are 2724 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2725 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2726 // doesn't need to guarantee pointer inequality when it says NoAlias. 2727 2728 // Even if an non-inbounds GEP occurs along the path we can still optimize 2729 // equality comparisons concerning the result. 2730 bool AllowNonInbounds = ICmpInst::isEquality(Pred); 2731 APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS, AllowNonInbounds); 2732 APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS, AllowNonInbounds); 2733 2734 // If LHS and RHS are related via constant offsets to the same base 2735 // value, we can replace it with an icmp which just compares the offsets. 2736 if (LHS == RHS) 2737 return ConstantInt::get(getCompareTy(LHS), 2738 ICmpInst::compare(LHSOffset, RHSOffset, Pred)); 2739 2740 // Various optimizations for (in)equality comparisons. 2741 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2742 // Different non-empty allocations that exist at the same time have 2743 // different addresses (if the program can tell). If the offsets are 2744 // within the bounds of their allocations (and not one-past-the-end! 2745 // so we can't use inbounds!), and their allocations aren't the same, 2746 // the pointers are not equal. 2747 if (haveNonOverlappingStorage(LHS, RHS)) { 2748 uint64_t LHSSize, RHSSize; 2749 ObjectSizeOpts Opts; 2750 Opts.EvalMode = ObjectSizeOpts::Mode::Min; 2751 auto *F = [](Value *V) -> Function * { 2752 if (auto *I = dyn_cast<Instruction>(V)) 2753 return I->getFunction(); 2754 if (auto *A = dyn_cast<Argument>(V)) 2755 return A->getParent(); 2756 return nullptr; 2757 }(LHS); 2758 Opts.NullIsUnknownSize = F ? NullPointerIsDefined(F) : true; 2759 if (getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2760 getObjectSize(RHS, RHSSize, DL, TLI, Opts) && 2761 !LHSOffset.isNegative() && !RHSOffset.isNegative() && 2762 LHSOffset.ult(LHSSize) && RHSOffset.ult(RHSSize)) { 2763 return ConstantInt::get(getCompareTy(LHS), 2764 !CmpInst::isTrueWhenEqual(Pred)); 2765 } 2766 } 2767 2768 // If one side of the equality comparison must come from a noalias call 2769 // (meaning a system memory allocation function), and the other side must 2770 // come from a pointer that cannot overlap with dynamically-allocated 2771 // memory within the lifetime of the current function (allocas, byval 2772 // arguments, globals), then determine the comparison result here. 2773 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2774 getUnderlyingObjects(LHS, LHSUObjs); 2775 getUnderlyingObjects(RHS, RHSUObjs); 2776 2777 // Is the set of underlying objects all noalias calls? 2778 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2779 return all_of(Objects, isNoAliasCall); 2780 }; 2781 2782 // Is the set of underlying objects all things which must be disjoint from 2783 // noalias calls. We assume that indexing from such disjoint storage 2784 // into the heap is undefined, and thus offsets can be safely ignored. 2785 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2786 return all_of(Objects, ::isAllocDisjoint); 2787 }; 2788 2789 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2790 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2791 return ConstantInt::get(getCompareTy(LHS), 2792 !CmpInst::isTrueWhenEqual(Pred)); 2793 2794 // Fold comparisons for non-escaping pointer even if the allocation call 2795 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2796 // dynamic allocation call could be either of the operands. Note that 2797 // the other operand can not be based on the alloc - if it were, then 2798 // the cmp itself would be a capture. 2799 Value *MI = nullptr; 2800 if (isAllocLikeFn(LHS, TLI) && 2801 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2802 MI = LHS; 2803 else if (isAllocLikeFn(RHS, TLI) && 2804 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2805 MI = RHS; 2806 // FIXME: We should also fold the compare when the pointer escapes, but the 2807 // compare dominates the pointer escape 2808 if (MI && !PointerMayBeCaptured(MI, true, true)) 2809 return ConstantInt::get(getCompareTy(LHS), 2810 CmpInst::isFalseWhenEqual(Pred)); 2811 } 2812 2813 // Otherwise, fail. 2814 return nullptr; 2815 } 2816 2817 /// Fold an icmp when its operands have i1 scalar type. 2818 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2819 Value *RHS, const SimplifyQuery &Q) { 2820 Type *ITy = getCompareTy(LHS); // The return type. 2821 Type *OpTy = LHS->getType(); // The operand type. 2822 if (!OpTy->isIntOrIntVectorTy(1)) 2823 return nullptr; 2824 2825 // A boolean compared to true/false can be reduced in 14 out of the 20 2826 // (10 predicates * 2 constants) possible combinations. The other 2827 // 6 cases require a 'not' of the LHS. 2828 2829 auto ExtractNotLHS = [](Value *V) -> Value * { 2830 Value *X; 2831 if (match(V, m_Not(m_Value(X)))) 2832 return X; 2833 return nullptr; 2834 }; 2835 2836 if (match(RHS, m_Zero())) { 2837 switch (Pred) { 2838 case CmpInst::ICMP_NE: // X != 0 -> X 2839 case CmpInst::ICMP_UGT: // X >u 0 -> X 2840 case CmpInst::ICMP_SLT: // X <s 0 -> X 2841 return LHS; 2842 2843 case CmpInst::ICMP_EQ: // not(X) == 0 -> X != 0 -> X 2844 case CmpInst::ICMP_ULE: // not(X) <=u 0 -> X >u 0 -> X 2845 case CmpInst::ICMP_SGE: // not(X) >=s 0 -> X <s 0 -> X 2846 if (Value *X = ExtractNotLHS(LHS)) 2847 return X; 2848 break; 2849 2850 case CmpInst::ICMP_ULT: // X <u 0 -> false 2851 case CmpInst::ICMP_SGT: // X >s 0 -> false 2852 return getFalse(ITy); 2853 2854 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2855 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2856 return getTrue(ITy); 2857 2858 default: 2859 break; 2860 } 2861 } else if (match(RHS, m_One())) { 2862 switch (Pred) { 2863 case CmpInst::ICMP_EQ: // X == 1 -> X 2864 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2865 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2866 return LHS; 2867 2868 case CmpInst::ICMP_NE: // not(X) != 1 -> X == 1 -> X 2869 case CmpInst::ICMP_ULT: // not(X) <=u 1 -> X >=u 1 -> X 2870 case CmpInst::ICMP_SGT: // not(X) >s 1 -> X <=s -1 -> X 2871 if (Value *X = ExtractNotLHS(LHS)) 2872 return X; 2873 break; 2874 2875 case CmpInst::ICMP_UGT: // X >u 1 -> false 2876 case CmpInst::ICMP_SLT: // X <s -1 -> false 2877 return getFalse(ITy); 2878 2879 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2880 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2881 return getTrue(ITy); 2882 2883 default: 2884 break; 2885 } 2886 } 2887 2888 switch (Pred) { 2889 default: 2890 break; 2891 case ICmpInst::ICMP_UGE: 2892 if (isImpliedCondition(RHS, LHS, Q.DL).value_or(false)) 2893 return getTrue(ITy); 2894 break; 2895 case ICmpInst::ICMP_SGE: 2896 /// For signed comparison, the values for an i1 are 0 and -1 2897 /// respectively. This maps into a truth table of: 2898 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2899 /// 0 | 0 | 1 (0 >= 0) | 1 2900 /// 0 | 1 | 1 (0 >= -1) | 1 2901 /// 1 | 0 | 0 (-1 >= 0) | 0 2902 /// 1 | 1 | 1 (-1 >= -1) | 1 2903 if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false)) 2904 return getTrue(ITy); 2905 break; 2906 case ICmpInst::ICMP_ULE: 2907 if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false)) 2908 return getTrue(ITy); 2909 break; 2910 } 2911 2912 return nullptr; 2913 } 2914 2915 /// Try hard to fold icmp with zero RHS because this is a common case. 2916 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2917 Value *RHS, const SimplifyQuery &Q) { 2918 if (!match(RHS, m_Zero())) 2919 return nullptr; 2920 2921 Type *ITy = getCompareTy(LHS); // The return type. 2922 switch (Pred) { 2923 default: 2924 llvm_unreachable("Unknown ICmp predicate!"); 2925 case ICmpInst::ICMP_ULT: 2926 return getFalse(ITy); 2927 case ICmpInst::ICMP_UGE: 2928 return getTrue(ITy); 2929 case ICmpInst::ICMP_EQ: 2930 case ICmpInst::ICMP_ULE: 2931 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2932 return getFalse(ITy); 2933 break; 2934 case ICmpInst::ICMP_NE: 2935 case ICmpInst::ICMP_UGT: 2936 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2937 return getTrue(ITy); 2938 break; 2939 case ICmpInst::ICMP_SLT: { 2940 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2941 if (LHSKnown.isNegative()) 2942 return getTrue(ITy); 2943 if (LHSKnown.isNonNegative()) 2944 return getFalse(ITy); 2945 break; 2946 } 2947 case ICmpInst::ICMP_SLE: { 2948 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2949 if (LHSKnown.isNegative()) 2950 return getTrue(ITy); 2951 if (LHSKnown.isNonNegative() && 2952 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2953 return getFalse(ITy); 2954 break; 2955 } 2956 case ICmpInst::ICMP_SGE: { 2957 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2958 if (LHSKnown.isNegative()) 2959 return getFalse(ITy); 2960 if (LHSKnown.isNonNegative()) 2961 return getTrue(ITy); 2962 break; 2963 } 2964 case ICmpInst::ICMP_SGT: { 2965 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2966 if (LHSKnown.isNegative()) 2967 return getFalse(ITy); 2968 if (LHSKnown.isNonNegative() && 2969 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2970 return getTrue(ITy); 2971 break; 2972 } 2973 } 2974 2975 return nullptr; 2976 } 2977 2978 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2979 Value *RHS, const InstrInfoQuery &IIQ) { 2980 Type *ITy = getCompareTy(RHS); // The return type. 2981 2982 Value *X; 2983 // Sign-bit checks can be optimized to true/false after unsigned 2984 // floating-point casts: 2985 // icmp slt (bitcast (uitofp X)), 0 --> false 2986 // icmp sgt (bitcast (uitofp X)), -1 --> true 2987 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2988 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2989 return ConstantInt::getFalse(ITy); 2990 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2991 return ConstantInt::getTrue(ITy); 2992 } 2993 2994 const APInt *C; 2995 if (!match(RHS, m_APIntAllowUndef(C))) 2996 return nullptr; 2997 2998 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2999 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 3000 if (RHS_CR.isEmptySet()) 3001 return ConstantInt::getFalse(ITy); 3002 if (RHS_CR.isFullSet()) 3003 return ConstantInt::getTrue(ITy); 3004 3005 ConstantRange LHS_CR = 3006 computeConstantRange(LHS, CmpInst::isSigned(Pred), IIQ.UseInstrInfo); 3007 if (!LHS_CR.isFullSet()) { 3008 if (RHS_CR.contains(LHS_CR)) 3009 return ConstantInt::getTrue(ITy); 3010 if (RHS_CR.inverse().contains(LHS_CR)) 3011 return ConstantInt::getFalse(ITy); 3012 } 3013 3014 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 3015 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 3016 const APInt *MulC; 3017 if (ICmpInst::isEquality(Pred) && 3018 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && 3019 *MulC != 0 && C->urem(*MulC) != 0) || 3020 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && 3021 *MulC != 0 && C->srem(*MulC) != 0))) 3022 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 3023 3024 return nullptr; 3025 } 3026 3027 static Value *simplifyICmpWithBinOpOnLHS(CmpInst::Predicate Pred, 3028 BinaryOperator *LBO, Value *RHS, 3029 const SimplifyQuery &Q, 3030 unsigned MaxRecurse) { 3031 Type *ITy = getCompareTy(RHS); // The return type. 3032 3033 Value *Y = nullptr; 3034 // icmp pred (or X, Y), X 3035 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 3036 if (Pred == ICmpInst::ICMP_ULT) 3037 return getFalse(ITy); 3038 if (Pred == ICmpInst::ICMP_UGE) 3039 return getTrue(ITy); 3040 3041 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 3042 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3043 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3044 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 3045 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 3046 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 3047 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 3048 } 3049 } 3050 3051 // icmp pred (and X, Y), X 3052 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 3053 if (Pred == ICmpInst::ICMP_UGT) 3054 return getFalse(ITy); 3055 if (Pred == ICmpInst::ICMP_ULE) 3056 return getTrue(ITy); 3057 } 3058 3059 // icmp pred (urem X, Y), Y 3060 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 3061 switch (Pred) { 3062 default: 3063 break; 3064 case ICmpInst::ICMP_SGT: 3065 case ICmpInst::ICMP_SGE: { 3066 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3067 if (!Known.isNonNegative()) 3068 break; 3069 LLVM_FALLTHROUGH; 3070 } 3071 case ICmpInst::ICMP_EQ: 3072 case ICmpInst::ICMP_UGT: 3073 case ICmpInst::ICMP_UGE: 3074 return getFalse(ITy); 3075 case ICmpInst::ICMP_SLT: 3076 case ICmpInst::ICMP_SLE: { 3077 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3078 if (!Known.isNonNegative()) 3079 break; 3080 LLVM_FALLTHROUGH; 3081 } 3082 case ICmpInst::ICMP_NE: 3083 case ICmpInst::ICMP_ULT: 3084 case ICmpInst::ICMP_ULE: 3085 return getTrue(ITy); 3086 } 3087 } 3088 3089 // icmp pred (urem X, Y), X 3090 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 3091 if (Pred == ICmpInst::ICMP_ULE) 3092 return getTrue(ITy); 3093 if (Pred == ICmpInst::ICMP_UGT) 3094 return getFalse(ITy); 3095 } 3096 3097 // x >>u y <=u x --> true. 3098 // x >>u y >u x --> false. 3099 // x udiv y <=u x --> true. 3100 // x udiv y >u x --> false. 3101 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 3102 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 3103 // icmp pred (X op Y), X 3104 if (Pred == ICmpInst::ICMP_UGT) 3105 return getFalse(ITy); 3106 if (Pred == ICmpInst::ICMP_ULE) 3107 return getTrue(ITy); 3108 } 3109 3110 // If x is nonzero: 3111 // x >>u C <u x --> true for C != 0. 3112 // x >>u C != x --> true for C != 0. 3113 // x >>u C >=u x --> false for C != 0. 3114 // x >>u C == x --> false for C != 0. 3115 // x udiv C <u x --> true for C != 1. 3116 // x udiv C != x --> true for C != 1. 3117 // x udiv C >=u x --> false for C != 1. 3118 // x udiv C == x --> false for C != 1. 3119 // TODO: allow non-constant shift amount/divisor 3120 const APInt *C; 3121 if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) || 3122 (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) { 3123 if (isKnownNonZero(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) { 3124 switch (Pred) { 3125 default: 3126 break; 3127 case ICmpInst::ICMP_EQ: 3128 case ICmpInst::ICMP_UGE: 3129 return getFalse(ITy); 3130 case ICmpInst::ICMP_NE: 3131 case ICmpInst::ICMP_ULT: 3132 return getTrue(ITy); 3133 case ICmpInst::ICMP_UGT: 3134 case ICmpInst::ICMP_ULE: 3135 // UGT/ULE are handled by the more general case just above 3136 llvm_unreachable("Unexpected UGT/ULE, should have been handled"); 3137 } 3138 } 3139 } 3140 3141 // (x*C1)/C2 <= x for C1 <= C2. 3142 // This holds even if the multiplication overflows: Assume that x != 0 and 3143 // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and 3144 // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. 3145 // 3146 // Additionally, either the multiplication and division might be represented 3147 // as shifts: 3148 // (x*C1)>>C2 <= x for C1 < 2**C2. 3149 // (x<<C1)/C2 <= x for 2**C1 < C2. 3150 const APInt *C1, *C2; 3151 if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3152 C1->ule(*C2)) || 3153 (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3154 C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) || 3155 (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3156 (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) { 3157 if (Pred == ICmpInst::ICMP_UGT) 3158 return getFalse(ITy); 3159 if (Pred == ICmpInst::ICMP_ULE) 3160 return getTrue(ITy); 3161 } 3162 3163 return nullptr; 3164 } 3165 3166 // If only one of the icmp's operands has NSW flags, try to prove that: 3167 // 3168 // icmp slt (x + C1), (x +nsw C2) 3169 // 3170 // is equivalent to: 3171 // 3172 // icmp slt C1, C2 3173 // 3174 // which is true if x + C2 has the NSW flags set and: 3175 // *) C1 < C2 && C1 >= 0, or 3176 // *) C2 < C1 && C1 <= 0. 3177 // 3178 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, 3179 Value *RHS) { 3180 // TODO: only support icmp slt for now. 3181 if (Pred != CmpInst::ICMP_SLT) 3182 return false; 3183 3184 // Canonicalize nsw add as RHS. 3185 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3186 std::swap(LHS, RHS); 3187 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3188 return false; 3189 3190 Value *X; 3191 const APInt *C1, *C2; 3192 if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) || 3193 !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2)))) 3194 return false; 3195 3196 return (C1->slt(*C2) && C1->isNonNegative()) || 3197 (C2->slt(*C1) && C1->isNonPositive()); 3198 } 3199 3200 /// TODO: A large part of this logic is duplicated in InstCombine's 3201 /// foldICmpBinOp(). We should be able to share that and avoid the code 3202 /// duplication. 3203 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 3204 Value *RHS, const SimplifyQuery &Q, 3205 unsigned MaxRecurse) { 3206 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 3207 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 3208 if (MaxRecurse && (LBO || RBO)) { 3209 // Analyze the case when either LHS or RHS is an add instruction. 3210 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3211 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 3212 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 3213 if (LBO && LBO->getOpcode() == Instruction::Add) { 3214 A = LBO->getOperand(0); 3215 B = LBO->getOperand(1); 3216 NoLHSWrapProblem = 3217 ICmpInst::isEquality(Pred) || 3218 (CmpInst::isUnsigned(Pred) && 3219 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 3220 (CmpInst::isSigned(Pred) && 3221 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 3222 } 3223 if (RBO && RBO->getOpcode() == Instruction::Add) { 3224 C = RBO->getOperand(0); 3225 D = RBO->getOperand(1); 3226 NoRHSWrapProblem = 3227 ICmpInst::isEquality(Pred) || 3228 (CmpInst::isUnsigned(Pred) && 3229 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 3230 (CmpInst::isSigned(Pred) && 3231 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 3232 } 3233 3234 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3235 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 3236 if (Value *V = simplifyICmpInst(Pred, A == RHS ? B : A, 3237 Constant::getNullValue(RHS->getType()), Q, 3238 MaxRecurse - 1)) 3239 return V; 3240 3241 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3242 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 3243 if (Value *V = 3244 simplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 3245 C == LHS ? D : C, Q, MaxRecurse - 1)) 3246 return V; 3247 3248 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 3249 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || 3250 trySimplifyICmpWithAdds(Pred, LHS, RHS); 3251 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { 3252 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3253 Value *Y, *Z; 3254 if (A == C) { 3255 // C + B == C + D -> B == D 3256 Y = B; 3257 Z = D; 3258 } else if (A == D) { 3259 // D + B == C + D -> B == C 3260 Y = B; 3261 Z = C; 3262 } else if (B == C) { 3263 // A + C == C + D -> A == D 3264 Y = A; 3265 Z = D; 3266 } else { 3267 assert(B == D); 3268 // A + D == C + D -> A == C 3269 Y = A; 3270 Z = C; 3271 } 3272 if (Value *V = simplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 3273 return V; 3274 } 3275 } 3276 3277 if (LBO) 3278 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 3279 return V; 3280 3281 if (RBO) 3282 if (Value *V = simplifyICmpWithBinOpOnLHS( 3283 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 3284 return V; 3285 3286 // 0 - (zext X) pred C 3287 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 3288 const APInt *C; 3289 if (match(RHS, m_APInt(C))) { 3290 if (C->isStrictlyPositive()) { 3291 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) 3292 return ConstantInt::getTrue(getCompareTy(RHS)); 3293 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) 3294 return ConstantInt::getFalse(getCompareTy(RHS)); 3295 } 3296 if (C->isNonNegative()) { 3297 if (Pred == ICmpInst::ICMP_SLE) 3298 return ConstantInt::getTrue(getCompareTy(RHS)); 3299 if (Pred == ICmpInst::ICMP_SGT) 3300 return ConstantInt::getFalse(getCompareTy(RHS)); 3301 } 3302 } 3303 } 3304 3305 // If C2 is a power-of-2 and C is not: 3306 // (C2 << X) == C --> false 3307 // (C2 << X) != C --> true 3308 const APInt *C; 3309 if (match(LHS, m_Shl(m_Power2(), m_Value())) && 3310 match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) { 3311 // C2 << X can equal zero in some circumstances. 3312 // This simplification might be unsafe if C is zero. 3313 // 3314 // We know it is safe if: 3315 // - The shift is nsw. We can't shift out the one bit. 3316 // - The shift is nuw. We can't shift out the one bit. 3317 // - C2 is one. 3318 // - C isn't zero. 3319 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3320 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3321 match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) { 3322 if (Pred == ICmpInst::ICMP_EQ) 3323 return ConstantInt::getFalse(getCompareTy(RHS)); 3324 if (Pred == ICmpInst::ICMP_NE) 3325 return ConstantInt::getTrue(getCompareTy(RHS)); 3326 } 3327 } 3328 3329 // TODO: This is overly constrained. LHS can be any power-of-2. 3330 // (1 << X) >u 0x8000 --> false 3331 // (1 << X) <=u 0x8000 --> true 3332 if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) { 3333 if (Pred == ICmpInst::ICMP_UGT) 3334 return ConstantInt::getFalse(getCompareTy(RHS)); 3335 if (Pred == ICmpInst::ICMP_ULE) 3336 return ConstantInt::getTrue(getCompareTy(RHS)); 3337 } 3338 3339 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 3340 LBO->getOperand(1) == RBO->getOperand(1)) { 3341 switch (LBO->getOpcode()) { 3342 default: 3343 break; 3344 case Instruction::UDiv: 3345 case Instruction::LShr: 3346 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3347 !Q.IIQ.isExact(RBO)) 3348 break; 3349 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3350 RBO->getOperand(0), Q, MaxRecurse - 1)) 3351 return V; 3352 break; 3353 case Instruction::SDiv: 3354 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3355 !Q.IIQ.isExact(RBO)) 3356 break; 3357 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3358 RBO->getOperand(0), Q, MaxRecurse - 1)) 3359 return V; 3360 break; 3361 case Instruction::AShr: 3362 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3363 break; 3364 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3365 RBO->getOperand(0), Q, MaxRecurse - 1)) 3366 return V; 3367 break; 3368 case Instruction::Shl: { 3369 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3370 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3371 if (!NUW && !NSW) 3372 break; 3373 if (!NSW && ICmpInst::isSigned(Pred)) 3374 break; 3375 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3376 RBO->getOperand(0), Q, MaxRecurse - 1)) 3377 return V; 3378 break; 3379 } 3380 } 3381 } 3382 return nullptr; 3383 } 3384 3385 /// simplify integer comparisons where at least one operand of the compare 3386 /// matches an integer min/max idiom. 3387 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3388 Value *RHS, const SimplifyQuery &Q, 3389 unsigned MaxRecurse) { 3390 Type *ITy = getCompareTy(LHS); // The return type. 3391 Value *A, *B; 3392 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3393 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3394 3395 // Signed variants on "max(a,b)>=a -> true". 3396 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3397 if (A != RHS) 3398 std::swap(A, B); // smax(A, B) pred A. 3399 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3400 // We analyze this as smax(A, B) pred A. 3401 P = Pred; 3402 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3403 (A == LHS || B == LHS)) { 3404 if (A != LHS) 3405 std::swap(A, B); // A pred smax(A, B). 3406 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3407 // We analyze this as smax(A, B) swapped-pred A. 3408 P = CmpInst::getSwappedPredicate(Pred); 3409 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3410 (A == RHS || B == RHS)) { 3411 if (A != RHS) 3412 std::swap(A, B); // smin(A, B) pred A. 3413 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3414 // We analyze this as smax(-A, -B) swapped-pred -A. 3415 // Note that we do not need to actually form -A or -B thanks to EqP. 3416 P = CmpInst::getSwappedPredicate(Pred); 3417 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3418 (A == LHS || B == LHS)) { 3419 if (A != LHS) 3420 std::swap(A, B); // A pred smin(A, B). 3421 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3422 // We analyze this as smax(-A, -B) pred -A. 3423 // Note that we do not need to actually form -A or -B thanks to EqP. 3424 P = Pred; 3425 } 3426 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3427 // Cases correspond to "max(A, B) p A". 3428 switch (P) { 3429 default: 3430 break; 3431 case CmpInst::ICMP_EQ: 3432 case CmpInst::ICMP_SLE: 3433 // Equivalent to "A EqP B". This may be the same as the condition tested 3434 // in the max/min; if so, we can just return that. 3435 if (Value *V = extractEquivalentCondition(LHS, EqP, A, B)) 3436 return V; 3437 if (Value *V = extractEquivalentCondition(RHS, EqP, A, B)) 3438 return V; 3439 // Otherwise, see if "A EqP B" simplifies. 3440 if (MaxRecurse) 3441 if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3442 return V; 3443 break; 3444 case CmpInst::ICMP_NE: 3445 case CmpInst::ICMP_SGT: { 3446 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3447 // Equivalent to "A InvEqP B". This may be the same as the condition 3448 // tested in the max/min; if so, we can just return that. 3449 if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B)) 3450 return V; 3451 if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B)) 3452 return V; 3453 // Otherwise, see if "A InvEqP B" simplifies. 3454 if (MaxRecurse) 3455 if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3456 return V; 3457 break; 3458 } 3459 case CmpInst::ICMP_SGE: 3460 // Always true. 3461 return getTrue(ITy); 3462 case CmpInst::ICMP_SLT: 3463 // Always false. 3464 return getFalse(ITy); 3465 } 3466 } 3467 3468 // Unsigned variants on "max(a,b)>=a -> true". 3469 P = CmpInst::BAD_ICMP_PREDICATE; 3470 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3471 if (A != RHS) 3472 std::swap(A, B); // umax(A, B) pred A. 3473 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3474 // We analyze this as umax(A, B) pred A. 3475 P = Pred; 3476 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3477 (A == LHS || B == LHS)) { 3478 if (A != LHS) 3479 std::swap(A, B); // A pred umax(A, B). 3480 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3481 // We analyze this as umax(A, B) swapped-pred A. 3482 P = CmpInst::getSwappedPredicate(Pred); 3483 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3484 (A == RHS || B == RHS)) { 3485 if (A != RHS) 3486 std::swap(A, B); // umin(A, B) pred A. 3487 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3488 // We analyze this as umax(-A, -B) swapped-pred -A. 3489 // Note that we do not need to actually form -A or -B thanks to EqP. 3490 P = CmpInst::getSwappedPredicate(Pred); 3491 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3492 (A == LHS || B == LHS)) { 3493 if (A != LHS) 3494 std::swap(A, B); // A pred umin(A, B). 3495 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3496 // We analyze this as umax(-A, -B) pred -A. 3497 // Note that we do not need to actually form -A or -B thanks to EqP. 3498 P = Pred; 3499 } 3500 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3501 // Cases correspond to "max(A, B) p A". 3502 switch (P) { 3503 default: 3504 break; 3505 case CmpInst::ICMP_EQ: 3506 case CmpInst::ICMP_ULE: 3507 // Equivalent to "A EqP B". This may be the same as the condition tested 3508 // in the max/min; if so, we can just return that. 3509 if (Value *V = extractEquivalentCondition(LHS, EqP, A, B)) 3510 return V; 3511 if (Value *V = extractEquivalentCondition(RHS, EqP, A, B)) 3512 return V; 3513 // Otherwise, see if "A EqP B" simplifies. 3514 if (MaxRecurse) 3515 if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3516 return V; 3517 break; 3518 case CmpInst::ICMP_NE: 3519 case CmpInst::ICMP_UGT: { 3520 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3521 // Equivalent to "A InvEqP B". This may be the same as the condition 3522 // tested in the max/min; if so, we can just return that. 3523 if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B)) 3524 return V; 3525 if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B)) 3526 return V; 3527 // Otherwise, see if "A InvEqP B" simplifies. 3528 if (MaxRecurse) 3529 if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3530 return V; 3531 break; 3532 } 3533 case CmpInst::ICMP_UGE: 3534 return getTrue(ITy); 3535 case CmpInst::ICMP_ULT: 3536 return getFalse(ITy); 3537 } 3538 } 3539 3540 // Comparing 1 each of min/max with a common operand? 3541 // Canonicalize min operand to RHS. 3542 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3543 match(LHS, m_SMin(m_Value(), m_Value()))) { 3544 std::swap(LHS, RHS); 3545 Pred = ICmpInst::getSwappedPredicate(Pred); 3546 } 3547 3548 Value *C, *D; 3549 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3550 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3551 (A == C || A == D || B == C || B == D)) { 3552 // smax(A, B) >=s smin(A, D) --> true 3553 if (Pred == CmpInst::ICMP_SGE) 3554 return getTrue(ITy); 3555 // smax(A, B) <s smin(A, D) --> false 3556 if (Pred == CmpInst::ICMP_SLT) 3557 return getFalse(ITy); 3558 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3559 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3560 (A == C || A == D || B == C || B == D)) { 3561 // umax(A, B) >=u umin(A, D) --> true 3562 if (Pred == CmpInst::ICMP_UGE) 3563 return getTrue(ITy); 3564 // umax(A, B) <u umin(A, D) --> false 3565 if (Pred == CmpInst::ICMP_ULT) 3566 return getFalse(ITy); 3567 } 3568 3569 return nullptr; 3570 } 3571 3572 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3573 Value *LHS, Value *RHS, 3574 const SimplifyQuery &Q) { 3575 // Gracefully handle instructions that have not been inserted yet. 3576 if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) 3577 return nullptr; 3578 3579 for (Value *AssumeBaseOp : {LHS, RHS}) { 3580 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3581 if (!AssumeVH) 3582 continue; 3583 3584 CallInst *Assume = cast<CallInst>(AssumeVH); 3585 if (Optional<bool> Imp = isImpliedCondition(Assume->getArgOperand(0), 3586 Predicate, LHS, RHS, Q.DL)) 3587 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3588 return ConstantInt::get(getCompareTy(LHS), *Imp); 3589 } 3590 } 3591 3592 return nullptr; 3593 } 3594 3595 /// Given operands for an ICmpInst, see if we can fold the result. 3596 /// If not, this returns null. 3597 static Value *simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3598 const SimplifyQuery &Q, unsigned MaxRecurse) { 3599 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3600 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3601 3602 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3603 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3604 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3605 3606 // If we have a constant, make sure it is on the RHS. 3607 std::swap(LHS, RHS); 3608 Pred = CmpInst::getSwappedPredicate(Pred); 3609 } 3610 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3611 3612 Type *ITy = getCompareTy(LHS); // The return type. 3613 3614 // icmp poison, X -> poison 3615 if (isa<PoisonValue>(RHS)) 3616 return PoisonValue::get(ITy); 3617 3618 // For EQ and NE, we can always pick a value for the undef to make the 3619 // predicate pass or fail, so we can return undef. 3620 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3621 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3622 return UndefValue::get(ITy); 3623 3624 // icmp X, X -> true/false 3625 // icmp X, undef -> true/false because undef could be X. 3626 if (LHS == RHS || Q.isUndefValue(RHS)) 3627 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3628 3629 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3630 return V; 3631 3632 // TODO: Sink/common this with other potentially expensive calls that use 3633 // ValueTracking? See comment below for isKnownNonEqual(). 3634 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3635 return V; 3636 3637 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3638 return V; 3639 3640 // If both operands have range metadata, use the metadata 3641 // to simplify the comparison. 3642 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3643 auto RHS_Instr = cast<Instruction>(RHS); 3644 auto LHS_Instr = cast<Instruction>(LHS); 3645 3646 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3647 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3648 auto RHS_CR = getConstantRangeFromMetadata( 3649 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3650 auto LHS_CR = getConstantRangeFromMetadata( 3651 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3652 3653 if (LHS_CR.icmp(Pred, RHS_CR)) 3654 return ConstantInt::getTrue(RHS->getContext()); 3655 3656 if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR)) 3657 return ConstantInt::getFalse(RHS->getContext()); 3658 } 3659 } 3660 3661 // Compare of cast, for example (zext X) != 0 -> X != 0 3662 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3663 Instruction *LI = cast<CastInst>(LHS); 3664 Value *SrcOp = LI->getOperand(0); 3665 Type *SrcTy = SrcOp->getType(); 3666 Type *DstTy = LI->getType(); 3667 3668 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3669 // if the integer type is the same size as the pointer type. 3670 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3671 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3672 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3673 // Transfer the cast to the constant. 3674 if (Value *V = simplifyICmpInst(Pred, SrcOp, 3675 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3676 Q, MaxRecurse - 1)) 3677 return V; 3678 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3679 if (RI->getOperand(0)->getType() == SrcTy) 3680 // Compare without the cast. 3681 if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q, 3682 MaxRecurse - 1)) 3683 return V; 3684 } 3685 } 3686 3687 if (isa<ZExtInst>(LHS)) { 3688 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3689 // same type. 3690 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3691 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3692 // Compare X and Y. Note that signed predicates become unsigned. 3693 if (Value *V = 3694 simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), SrcOp, 3695 RI->getOperand(0), Q, MaxRecurse - 1)) 3696 return V; 3697 } 3698 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3699 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3700 if (SrcOp == RI->getOperand(0)) { 3701 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3702 return ConstantInt::getTrue(ITy); 3703 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3704 return ConstantInt::getFalse(ITy); 3705 } 3706 } 3707 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3708 // too. If not, then try to deduce the result of the comparison. 3709 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3710 // Compute the constant that would happen if we truncated to SrcTy then 3711 // reextended to DstTy. 3712 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3713 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3714 3715 // If the re-extended constant didn't change then this is effectively 3716 // also a case of comparing two zero-extended values. 3717 if (RExt == CI && MaxRecurse) 3718 if (Value *V = simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3719 SrcOp, Trunc, Q, MaxRecurse - 1)) 3720 return V; 3721 3722 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3723 // there. Use this to work out the result of the comparison. 3724 if (RExt != CI) { 3725 switch (Pred) { 3726 default: 3727 llvm_unreachable("Unknown ICmp predicate!"); 3728 // LHS <u RHS. 3729 case ICmpInst::ICMP_EQ: 3730 case ICmpInst::ICMP_UGT: 3731 case ICmpInst::ICMP_UGE: 3732 return ConstantInt::getFalse(CI->getContext()); 3733 3734 case ICmpInst::ICMP_NE: 3735 case ICmpInst::ICMP_ULT: 3736 case ICmpInst::ICMP_ULE: 3737 return ConstantInt::getTrue(CI->getContext()); 3738 3739 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3740 // is non-negative then LHS <s RHS. 3741 case ICmpInst::ICMP_SGT: 3742 case ICmpInst::ICMP_SGE: 3743 return CI->getValue().isNegative() 3744 ? ConstantInt::getTrue(CI->getContext()) 3745 : ConstantInt::getFalse(CI->getContext()); 3746 3747 case ICmpInst::ICMP_SLT: 3748 case ICmpInst::ICMP_SLE: 3749 return CI->getValue().isNegative() 3750 ? ConstantInt::getFalse(CI->getContext()) 3751 : ConstantInt::getTrue(CI->getContext()); 3752 } 3753 } 3754 } 3755 } 3756 3757 if (isa<SExtInst>(LHS)) { 3758 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3759 // same type. 3760 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3761 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3762 // Compare X and Y. Note that the predicate does not change. 3763 if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q, 3764 MaxRecurse - 1)) 3765 return V; 3766 } 3767 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3768 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3769 if (SrcOp == RI->getOperand(0)) { 3770 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3771 return ConstantInt::getTrue(ITy); 3772 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3773 return ConstantInt::getFalse(ITy); 3774 } 3775 } 3776 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3777 // too. If not, then try to deduce the result of the comparison. 3778 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3779 // Compute the constant that would happen if we truncated to SrcTy then 3780 // reextended to DstTy. 3781 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3782 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3783 3784 // If the re-extended constant didn't change then this is effectively 3785 // also a case of comparing two sign-extended values. 3786 if (RExt == CI && MaxRecurse) 3787 if (Value *V = 3788 simplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse - 1)) 3789 return V; 3790 3791 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3792 // bits there. Use this to work out the result of the comparison. 3793 if (RExt != CI) { 3794 switch (Pred) { 3795 default: 3796 llvm_unreachable("Unknown ICmp predicate!"); 3797 case ICmpInst::ICMP_EQ: 3798 return ConstantInt::getFalse(CI->getContext()); 3799 case ICmpInst::ICMP_NE: 3800 return ConstantInt::getTrue(CI->getContext()); 3801 3802 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3803 // LHS >s RHS. 3804 case ICmpInst::ICMP_SGT: 3805 case ICmpInst::ICMP_SGE: 3806 return CI->getValue().isNegative() 3807 ? ConstantInt::getTrue(CI->getContext()) 3808 : ConstantInt::getFalse(CI->getContext()); 3809 case ICmpInst::ICMP_SLT: 3810 case ICmpInst::ICMP_SLE: 3811 return CI->getValue().isNegative() 3812 ? ConstantInt::getFalse(CI->getContext()) 3813 : ConstantInt::getTrue(CI->getContext()); 3814 3815 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3816 // LHS >u RHS. 3817 case ICmpInst::ICMP_UGT: 3818 case ICmpInst::ICMP_UGE: 3819 // Comparison is true iff the LHS <s 0. 3820 if (MaxRecurse) 3821 if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3822 Constant::getNullValue(SrcTy), Q, 3823 MaxRecurse - 1)) 3824 return V; 3825 break; 3826 case ICmpInst::ICMP_ULT: 3827 case ICmpInst::ICMP_ULE: 3828 // Comparison is true iff the LHS >=s 0. 3829 if (MaxRecurse) 3830 if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3831 Constant::getNullValue(SrcTy), Q, 3832 MaxRecurse - 1)) 3833 return V; 3834 break; 3835 } 3836 } 3837 } 3838 } 3839 } 3840 3841 // icmp eq|ne X, Y -> false|true if X != Y 3842 // This is potentially expensive, and we have already computedKnownBits for 3843 // compares with 0 above here, so only try this for a non-zero compare. 3844 if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) && 3845 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3846 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3847 } 3848 3849 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3850 return V; 3851 3852 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3853 return V; 3854 3855 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3856 return V; 3857 3858 // Simplify comparisons of related pointers using a powerful, recursive 3859 // GEP-walk when we have target data available.. 3860 if (LHS->getType()->isPointerTy()) 3861 if (auto *C = computePointerICmp(Pred, LHS, RHS, Q)) 3862 return C; 3863 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3864 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3865 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3866 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3867 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3868 Q.DL.getTypeSizeInBits(CRHS->getType())) 3869 if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(), 3870 CRHS->getPointerOperand(), Q)) 3871 return C; 3872 3873 // If the comparison is with the result of a select instruction, check whether 3874 // comparing with either branch of the select always yields the same value. 3875 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3876 if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3877 return V; 3878 3879 // If the comparison is with the result of a phi instruction, check whether 3880 // doing the compare with each incoming phi value yields a common result. 3881 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3882 if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3883 return V; 3884 3885 return nullptr; 3886 } 3887 3888 Value *llvm::simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3889 const SimplifyQuery &Q) { 3890 return ::simplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3891 } 3892 3893 /// Given operands for an FCmpInst, see if we can fold the result. 3894 /// If not, this returns null. 3895 static Value *simplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3896 FastMathFlags FMF, const SimplifyQuery &Q, 3897 unsigned MaxRecurse) { 3898 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3899 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3900 3901 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3902 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3903 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI, 3904 Q.CxtI); 3905 3906 // If we have a constant, make sure it is on the RHS. 3907 std::swap(LHS, RHS); 3908 Pred = CmpInst::getSwappedPredicate(Pred); 3909 } 3910 3911 // Fold trivial predicates. 3912 Type *RetTy = getCompareTy(LHS); 3913 if (Pred == FCmpInst::FCMP_FALSE) 3914 return getFalse(RetTy); 3915 if (Pred == FCmpInst::FCMP_TRUE) 3916 return getTrue(RetTy); 3917 3918 // Fold (un)ordered comparison if we can determine there are no NaNs. 3919 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3920 if (FMF.noNaNs() || 3921 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3922 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3923 3924 // NaN is unordered; NaN is not ordered. 3925 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3926 "Comparison must be either ordered or unordered"); 3927 if (match(RHS, m_NaN())) 3928 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3929 3930 // fcmp pred x, poison and fcmp pred poison, x 3931 // fold to poison 3932 if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS)) 3933 return PoisonValue::get(RetTy); 3934 3935 // fcmp pred x, undef and fcmp pred undef, x 3936 // fold to true if unordered, false if ordered 3937 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 3938 // Choosing NaN for the undef will always make unordered comparison succeed 3939 // and ordered comparison fail. 3940 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3941 } 3942 3943 // fcmp x,x -> true/false. Not all compares are foldable. 3944 if (LHS == RHS) { 3945 if (CmpInst::isTrueWhenEqual(Pred)) 3946 return getTrue(RetTy); 3947 if (CmpInst::isFalseWhenEqual(Pred)) 3948 return getFalse(RetTy); 3949 } 3950 3951 // Handle fcmp with constant RHS. 3952 // TODO: Use match with a specific FP value, so these work with vectors with 3953 // undef lanes. 3954 const APFloat *C; 3955 if (match(RHS, m_APFloat(C))) { 3956 // Check whether the constant is an infinity. 3957 if (C->isInfinity()) { 3958 if (C->isNegative()) { 3959 switch (Pred) { 3960 case FCmpInst::FCMP_OLT: 3961 // No value is ordered and less than negative infinity. 3962 return getFalse(RetTy); 3963 case FCmpInst::FCMP_UGE: 3964 // All values are unordered with or at least negative infinity. 3965 return getTrue(RetTy); 3966 default: 3967 break; 3968 } 3969 } else { 3970 switch (Pred) { 3971 case FCmpInst::FCMP_OGT: 3972 // No value is ordered and greater than infinity. 3973 return getFalse(RetTy); 3974 case FCmpInst::FCMP_ULE: 3975 // All values are unordered with and at most infinity. 3976 return getTrue(RetTy); 3977 default: 3978 break; 3979 } 3980 } 3981 3982 // LHS == Inf 3983 if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI)) 3984 return getFalse(RetTy); 3985 // LHS != Inf 3986 if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI)) 3987 return getTrue(RetTy); 3988 // LHS == Inf || LHS == NaN 3989 if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) && 3990 isKnownNeverNaN(LHS, Q.TLI)) 3991 return getFalse(RetTy); 3992 // LHS != Inf && LHS != NaN 3993 if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) && 3994 isKnownNeverNaN(LHS, Q.TLI)) 3995 return getTrue(RetTy); 3996 } 3997 if (C->isNegative() && !C->isNegZero()) { 3998 assert(!C->isNaN() && "Unexpected NaN constant!"); 3999 // TODO: We can catch more cases by using a range check rather than 4000 // relying on CannotBeOrderedLessThanZero. 4001 switch (Pred) { 4002 case FCmpInst::FCMP_UGE: 4003 case FCmpInst::FCMP_UGT: 4004 case FCmpInst::FCMP_UNE: 4005 // (X >= 0) implies (X > C) when (C < 0) 4006 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 4007 return getTrue(RetTy); 4008 break; 4009 case FCmpInst::FCMP_OEQ: 4010 case FCmpInst::FCMP_OLE: 4011 case FCmpInst::FCMP_OLT: 4012 // (X >= 0) implies !(X < C) when (C < 0) 4013 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 4014 return getFalse(RetTy); 4015 break; 4016 default: 4017 break; 4018 } 4019 } 4020 4021 // Check comparison of [minnum/maxnum with constant] with other constant. 4022 const APFloat *C2; 4023 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 4024 *C2 < *C) || 4025 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 4026 *C2 > *C)) { 4027 bool IsMaxNum = 4028 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 4029 // The ordered relationship and minnum/maxnum guarantee that we do not 4030 // have NaN constants, so ordered/unordered preds are handled the same. 4031 switch (Pred) { 4032 case FCmpInst::FCMP_OEQ: 4033 case FCmpInst::FCMP_UEQ: 4034 // minnum(X, LesserC) == C --> false 4035 // maxnum(X, GreaterC) == C --> false 4036 return getFalse(RetTy); 4037 case FCmpInst::FCMP_ONE: 4038 case FCmpInst::FCMP_UNE: 4039 // minnum(X, LesserC) != C --> true 4040 // maxnum(X, GreaterC) != C --> true 4041 return getTrue(RetTy); 4042 case FCmpInst::FCMP_OGE: 4043 case FCmpInst::FCMP_UGE: 4044 case FCmpInst::FCMP_OGT: 4045 case FCmpInst::FCMP_UGT: 4046 // minnum(X, LesserC) >= C --> false 4047 // minnum(X, LesserC) > C --> false 4048 // maxnum(X, GreaterC) >= C --> true 4049 // maxnum(X, GreaterC) > C --> true 4050 return ConstantInt::get(RetTy, IsMaxNum); 4051 case FCmpInst::FCMP_OLE: 4052 case FCmpInst::FCMP_ULE: 4053 case FCmpInst::FCMP_OLT: 4054 case FCmpInst::FCMP_ULT: 4055 // minnum(X, LesserC) <= C --> true 4056 // minnum(X, LesserC) < C --> true 4057 // maxnum(X, GreaterC) <= C --> false 4058 // maxnum(X, GreaterC) < C --> false 4059 return ConstantInt::get(RetTy, !IsMaxNum); 4060 default: 4061 // TRUE/FALSE/ORD/UNO should be handled before this. 4062 llvm_unreachable("Unexpected fcmp predicate"); 4063 } 4064 } 4065 } 4066 4067 if (match(RHS, m_AnyZeroFP())) { 4068 switch (Pred) { 4069 case FCmpInst::FCMP_OGE: 4070 case FCmpInst::FCMP_ULT: 4071 // Positive or zero X >= 0.0 --> true 4072 // Positive or zero X < 0.0 --> false 4073 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 4074 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 4075 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 4076 break; 4077 case FCmpInst::FCMP_UGE: 4078 case FCmpInst::FCMP_OLT: 4079 // Positive or zero or nan X >= 0.0 --> true 4080 // Positive or zero or nan X < 0.0 --> false 4081 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 4082 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 4083 break; 4084 default: 4085 break; 4086 } 4087 } 4088 4089 // If the comparison is with the result of a select instruction, check whether 4090 // comparing with either branch of the select always yields the same value. 4091 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 4092 if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 4093 return V; 4094 4095 // If the comparison is with the result of a phi instruction, check whether 4096 // doing the compare with each incoming phi value yields a common result. 4097 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 4098 if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 4099 return V; 4100 4101 return nullptr; 4102 } 4103 4104 Value *llvm::simplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4105 FastMathFlags FMF, const SimplifyQuery &Q) { 4106 return ::simplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 4107 } 4108 4109 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4110 const SimplifyQuery &Q, 4111 bool AllowRefinement, 4112 unsigned MaxRecurse) { 4113 assert(!Op->getType()->isVectorTy() && "This is not safe for vectors"); 4114 4115 // Trivial replacement. 4116 if (V == Op) 4117 return RepOp; 4118 4119 // We cannot replace a constant, and shouldn't even try. 4120 if (isa<Constant>(Op)) 4121 return nullptr; 4122 4123 auto *I = dyn_cast<Instruction>(V); 4124 if (!I || !is_contained(I->operands(), Op)) 4125 return nullptr; 4126 4127 // Replace Op with RepOp in instruction operands. 4128 SmallVector<Value *, 8> NewOps(I->getNumOperands()); 4129 transform(I->operands(), NewOps.begin(), 4130 [&](Value *V) { return V == Op ? RepOp : V; }); 4131 4132 if (!AllowRefinement) { 4133 // General InstSimplify functions may refine the result, e.g. by returning 4134 // a constant for a potentially poison value. To avoid this, implement only 4135 // a few non-refining but profitable transforms here. 4136 4137 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 4138 unsigned Opcode = BO->getOpcode(); 4139 // id op x -> x, x op id -> x 4140 if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType())) 4141 return NewOps[1]; 4142 if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(), 4143 /* RHS */ true)) 4144 return NewOps[0]; 4145 4146 // x & x -> x, x | x -> x 4147 if ((Opcode == Instruction::And || Opcode == Instruction::Or) && 4148 NewOps[0] == NewOps[1]) 4149 return NewOps[0]; 4150 } 4151 4152 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 4153 // getelementptr x, 0 -> x 4154 if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) && 4155 !GEP->isInBounds()) 4156 return NewOps[0]; 4157 } 4158 } else if (MaxRecurse) { 4159 // The simplification queries below may return the original value. Consider: 4160 // %div = udiv i32 %arg, %arg2 4161 // %mul = mul nsw i32 %div, %arg2 4162 // %cmp = icmp eq i32 %mul, %arg 4163 // %sel = select i1 %cmp, i32 %div, i32 undef 4164 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which 4165 // simplifies back to %arg. This can only happen because %mul does not 4166 // dominate %div. To ensure a consistent return value contract, we make sure 4167 // that this case returns nullptr as well. 4168 auto PreventSelfSimplify = [V](Value *Simplified) { 4169 return Simplified != V ? Simplified : nullptr; 4170 }; 4171 4172 if (auto *B = dyn_cast<BinaryOperator>(I)) 4173 return PreventSelfSimplify(simplifyBinOp(B->getOpcode(), NewOps[0], 4174 NewOps[1], Q, MaxRecurse - 1)); 4175 4176 if (CmpInst *C = dyn_cast<CmpInst>(I)) 4177 return PreventSelfSimplify(simplifyCmpInst(C->getPredicate(), NewOps[0], 4178 NewOps[1], Q, MaxRecurse - 1)); 4179 4180 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 4181 return PreventSelfSimplify(simplifyGEPInst( 4182 GEP->getSourceElementType(), NewOps[0], makeArrayRef(NewOps).slice(1), 4183 GEP->isInBounds(), Q, MaxRecurse - 1)); 4184 4185 if (isa<SelectInst>(I)) 4186 return PreventSelfSimplify(simplifySelectInst( 4187 NewOps[0], NewOps[1], NewOps[2], Q, MaxRecurse - 1)); 4188 // TODO: We could hand off more cases to instsimplify here. 4189 } 4190 4191 // If all operands are constant after substituting Op for RepOp then we can 4192 // constant fold the instruction. 4193 SmallVector<Constant *, 8> ConstOps; 4194 for (Value *NewOp : NewOps) { 4195 if (Constant *ConstOp = dyn_cast<Constant>(NewOp)) 4196 ConstOps.push_back(ConstOp); 4197 else 4198 return nullptr; 4199 } 4200 4201 // Consider: 4202 // %cmp = icmp eq i32 %x, 2147483647 4203 // %add = add nsw i32 %x, 1 4204 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 4205 // 4206 // We can't replace %sel with %add unless we strip away the flags (which 4207 // will be done in InstCombine). 4208 // TODO: This may be unsound, because it only catches some forms of 4209 // refinement. 4210 if (!AllowRefinement && canCreatePoison(cast<Operator>(I))) 4211 return nullptr; 4212 4213 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 4214 } 4215 4216 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4217 const SimplifyQuery &Q, 4218 bool AllowRefinement) { 4219 return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, 4220 RecursionLimit); 4221 } 4222 4223 /// Try to simplify a select instruction when its condition operand is an 4224 /// integer comparison where one operand of the compare is a constant. 4225 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 4226 const APInt *Y, bool TrueWhenUnset) { 4227 const APInt *C; 4228 4229 // (X & Y) == 0 ? X & ~Y : X --> X 4230 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 4231 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 4232 *Y == ~*C) 4233 return TrueWhenUnset ? FalseVal : TrueVal; 4234 4235 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 4236 // (X & Y) != 0 ? X : X & ~Y --> X 4237 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 4238 *Y == ~*C) 4239 return TrueWhenUnset ? FalseVal : TrueVal; 4240 4241 if (Y->isPowerOf2()) { 4242 // (X & Y) == 0 ? X | Y : X --> X | Y 4243 // (X & Y) != 0 ? X | Y : X --> X 4244 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 4245 *Y == *C) 4246 return TrueWhenUnset ? TrueVal : FalseVal; 4247 4248 // (X & Y) == 0 ? X : X | Y --> X 4249 // (X & Y) != 0 ? X : X | Y --> X | Y 4250 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 4251 *Y == *C) 4252 return TrueWhenUnset ? TrueVal : FalseVal; 4253 } 4254 4255 return nullptr; 4256 } 4257 4258 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 4259 /// eq/ne. 4260 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 4261 ICmpInst::Predicate Pred, 4262 Value *TrueVal, Value *FalseVal) { 4263 Value *X; 4264 APInt Mask; 4265 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 4266 return nullptr; 4267 4268 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 4269 Pred == ICmpInst::ICMP_EQ); 4270 } 4271 4272 /// Try to simplify a select instruction when its condition operand is an 4273 /// integer comparison. 4274 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 4275 Value *FalseVal, 4276 const SimplifyQuery &Q, 4277 unsigned MaxRecurse) { 4278 ICmpInst::Predicate Pred; 4279 Value *CmpLHS, *CmpRHS; 4280 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 4281 return nullptr; 4282 4283 // Canonicalize ne to eq predicate. 4284 if (Pred == ICmpInst::ICMP_NE) { 4285 Pred = ICmpInst::ICMP_EQ; 4286 std::swap(TrueVal, FalseVal); 4287 } 4288 4289 // Check for integer min/max with a limit constant: 4290 // X > MIN_INT ? X : MIN_INT --> X 4291 // X < MAX_INT ? X : MAX_INT --> X 4292 if (TrueVal->getType()->isIntOrIntVectorTy()) { 4293 Value *X, *Y; 4294 SelectPatternFlavor SPF = 4295 matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal, 4296 X, Y) 4297 .Flavor; 4298 if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) { 4299 APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF), 4300 X->getType()->getScalarSizeInBits()); 4301 if (match(Y, m_SpecificInt(LimitC))) 4302 return X; 4303 } 4304 } 4305 4306 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 4307 Value *X; 4308 const APInt *Y; 4309 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 4310 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 4311 /*TrueWhenUnset=*/true)) 4312 return V; 4313 4314 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 4315 Value *ShAmt; 4316 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), 4317 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); 4318 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 4319 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 4320 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 4321 return X; 4322 4323 // Test for a zero-shift-guard-op around rotates. These are used to 4324 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4325 // intrinsics do not have that problem. 4326 // We do not allow this transform for the general funnel shift case because 4327 // that would not preserve the poison safety of the original code. 4328 auto isRotate = 4329 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), 4330 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); 4331 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4332 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4333 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4334 Pred == ICmpInst::ICMP_EQ) 4335 return FalseVal; 4336 4337 // X == 0 ? abs(X) : -abs(X) --> -abs(X) 4338 // X == 0 ? -abs(X) : abs(X) --> abs(X) 4339 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) && 4340 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))) 4341 return FalseVal; 4342 if (match(TrueVal, 4343 m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) && 4344 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) 4345 return FalseVal; 4346 } 4347 4348 // Check for other compares that behave like bit test. 4349 if (Value *V = 4350 simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, TrueVal, FalseVal)) 4351 return V; 4352 4353 // If we have a scalar equality comparison, then we know the value in one of 4354 // the arms of the select. See if substituting this value into the arm and 4355 // simplifying the result yields the same value as the other arm. 4356 // Note that the equivalence/replacement opportunity does not hold for vectors 4357 // because each element of a vector select is chosen independently. 4358 if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) { 4359 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, 4360 /* AllowRefinement */ false, 4361 MaxRecurse) == TrueVal || 4362 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, 4363 /* AllowRefinement */ false, 4364 MaxRecurse) == TrueVal) 4365 return FalseVal; 4366 if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4367 /* AllowRefinement */ true, 4368 MaxRecurse) == FalseVal || 4369 simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, 4370 /* AllowRefinement */ true, 4371 MaxRecurse) == FalseVal) 4372 return FalseVal; 4373 } 4374 4375 return nullptr; 4376 } 4377 4378 /// Try to simplify a select instruction when its condition operand is a 4379 /// floating-point comparison. 4380 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4381 const SimplifyQuery &Q) { 4382 FCmpInst::Predicate Pred; 4383 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4384 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4385 return nullptr; 4386 4387 // This transform is safe if we do not have (do not care about) -0.0 or if 4388 // at least one operand is known to not be -0.0. Otherwise, the select can 4389 // change the sign of a zero operand. 4390 bool HasNoSignedZeros = 4391 Q.CxtI && isa<FPMathOperator>(Q.CxtI) && Q.CxtI->hasNoSignedZeros(); 4392 const APFloat *C; 4393 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4394 (match(F, m_APFloat(C)) && C->isNonZero())) { 4395 // (T == F) ? T : F --> F 4396 // (F == T) ? T : F --> F 4397 if (Pred == FCmpInst::FCMP_OEQ) 4398 return F; 4399 4400 // (T != F) ? T : F --> T 4401 // (F != T) ? T : F --> T 4402 if (Pred == FCmpInst::FCMP_UNE) 4403 return T; 4404 } 4405 4406 return nullptr; 4407 } 4408 4409 /// Given operands for a SelectInst, see if we can fold the result. 4410 /// If not, this returns null. 4411 static Value *simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4412 const SimplifyQuery &Q, unsigned MaxRecurse) { 4413 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4414 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4415 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4416 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4417 4418 // select poison, X, Y -> poison 4419 if (isa<PoisonValue>(CondC)) 4420 return PoisonValue::get(TrueVal->getType()); 4421 4422 // select undef, X, Y -> X or Y 4423 if (Q.isUndefValue(CondC)) 4424 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4425 4426 // select true, X, Y --> X 4427 // select false, X, Y --> Y 4428 // For vectors, allow undef/poison elements in the condition to match the 4429 // defined elements, so we can eliminate the select. 4430 if (match(CondC, m_One())) 4431 return TrueVal; 4432 if (match(CondC, m_Zero())) 4433 return FalseVal; 4434 } 4435 4436 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4437 "Select must have bool or bool vector condition"); 4438 assert(TrueVal->getType() == FalseVal->getType() && 4439 "Select must have same types for true/false ops"); 4440 4441 if (Cond->getType() == TrueVal->getType()) { 4442 // select i1 Cond, i1 true, i1 false --> i1 Cond 4443 if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4444 return Cond; 4445 4446 // (X || Y) && (X || !Y) --> X (commuted 8 ways) 4447 Value *X, *Y; 4448 if (match(FalseVal, m_ZeroInt())) { 4449 if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4450 match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4451 return X; 4452 if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4453 match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4454 return X; 4455 } 4456 } 4457 4458 // select ?, X, X -> X 4459 if (TrueVal == FalseVal) 4460 return TrueVal; 4461 4462 // If the true or false value is poison, we can fold to the other value. 4463 // If the true or false value is undef, we can fold to the other value as 4464 // long as the other value isn't poison. 4465 // select ?, poison, X -> X 4466 // select ?, undef, X -> X 4467 if (isa<PoisonValue>(TrueVal) || 4468 (Q.isUndefValue(TrueVal) && 4469 isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT))) 4470 return FalseVal; 4471 // select ?, X, poison -> X 4472 // select ?, X, undef -> X 4473 if (isa<PoisonValue>(FalseVal) || 4474 (Q.isUndefValue(FalseVal) && 4475 isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT))) 4476 return TrueVal; 4477 4478 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4479 Constant *TrueC, *FalseC; 4480 if (isa<FixedVectorType>(TrueVal->getType()) && 4481 match(TrueVal, m_Constant(TrueC)) && 4482 match(FalseVal, m_Constant(FalseC))) { 4483 unsigned NumElts = 4484 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4485 SmallVector<Constant *, 16> NewC; 4486 for (unsigned i = 0; i != NumElts; ++i) { 4487 // Bail out on incomplete vector constants. 4488 Constant *TEltC = TrueC->getAggregateElement(i); 4489 Constant *FEltC = FalseC->getAggregateElement(i); 4490 if (!TEltC || !FEltC) 4491 break; 4492 4493 // If the elements match (undef or not), that value is the result. If only 4494 // one element is undef, choose the defined element as the safe result. 4495 if (TEltC == FEltC) 4496 NewC.push_back(TEltC); 4497 else if (isa<PoisonValue>(TEltC) || 4498 (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC))) 4499 NewC.push_back(FEltC); 4500 else if (isa<PoisonValue>(FEltC) || 4501 (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC))) 4502 NewC.push_back(TEltC); 4503 else 4504 break; 4505 } 4506 if (NewC.size() == NumElts) 4507 return ConstantVector::get(NewC); 4508 } 4509 4510 if (Value *V = 4511 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4512 return V; 4513 4514 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4515 return V; 4516 4517 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4518 return V; 4519 4520 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4521 if (Imp) 4522 return *Imp ? TrueVal : FalseVal; 4523 4524 return nullptr; 4525 } 4526 4527 Value *llvm::simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4528 const SimplifyQuery &Q) { 4529 return ::simplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4530 } 4531 4532 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4533 /// If not, this returns null. 4534 static Value *simplifyGEPInst(Type *SrcTy, Value *Ptr, 4535 ArrayRef<Value *> Indices, bool InBounds, 4536 const SimplifyQuery &Q, unsigned) { 4537 // The type of the GEP pointer operand. 4538 unsigned AS = 4539 cast<PointerType>(Ptr->getType()->getScalarType())->getAddressSpace(); 4540 4541 // getelementptr P -> P. 4542 if (Indices.empty()) 4543 return Ptr; 4544 4545 // Compute the (pointer) type returned by the GEP instruction. 4546 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Indices); 4547 Type *GEPTy = PointerType::get(LastType, AS); 4548 if (VectorType *VT = dyn_cast<VectorType>(Ptr->getType())) 4549 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4550 else { 4551 for (Value *Op : Indices) { 4552 // If one of the operands is a vector, the result type is a vector of 4553 // pointers. All vector operands must have the same number of elements. 4554 if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) { 4555 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4556 break; 4557 } 4558 } 4559 } 4560 4561 // For opaque pointers an all-zero GEP is a no-op. For typed pointers, 4562 // it may be equivalent to a bitcast. 4563 if (Ptr->getType()->getScalarType()->isOpaquePointerTy() && 4564 Ptr->getType() == GEPTy && 4565 all_of(Indices, [](const auto *V) { return match(V, m_Zero()); })) 4566 return Ptr; 4567 4568 // getelementptr poison, idx -> poison 4569 // getelementptr baseptr, poison -> poison 4570 if (isa<PoisonValue>(Ptr) || 4571 any_of(Indices, [](const auto *V) { return isa<PoisonValue>(V); })) 4572 return PoisonValue::get(GEPTy); 4573 4574 if (Q.isUndefValue(Ptr)) 4575 // If inbounds, we can choose an out-of-bounds pointer as a base pointer. 4576 return InBounds ? PoisonValue::get(GEPTy) : UndefValue::get(GEPTy); 4577 4578 bool IsScalableVec = 4579 isa<ScalableVectorType>(SrcTy) || any_of(Indices, [](const Value *V) { 4580 return isa<ScalableVectorType>(V->getType()); 4581 }); 4582 4583 if (Indices.size() == 1) { 4584 // getelementptr P, 0 -> P. 4585 if (match(Indices[0], m_Zero()) && Ptr->getType() == GEPTy) 4586 return Ptr; 4587 4588 Type *Ty = SrcTy; 4589 if (!IsScalableVec && Ty->isSized()) { 4590 Value *P; 4591 uint64_t C; 4592 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4593 // getelementptr P, N -> P if P points to a type of zero size. 4594 if (TyAllocSize == 0 && Ptr->getType() == GEPTy) 4595 return Ptr; 4596 4597 // The following transforms are only safe if the ptrtoint cast 4598 // doesn't truncate the pointers. 4599 if (Indices[0]->getType()->getScalarSizeInBits() == 4600 Q.DL.getPointerSizeInBits(AS)) { 4601 auto CanSimplify = [GEPTy, &P, Ptr]() -> bool { 4602 return P->getType() == GEPTy && 4603 getUnderlyingObject(P) == getUnderlyingObject(Ptr); 4604 }; 4605 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4606 if (TyAllocSize == 1 && 4607 match(Indices[0], 4608 m_Sub(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Specific(Ptr)))) && 4609 CanSimplify()) 4610 return P; 4611 4612 // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of 4613 // size 1 << C. 4614 if (match(Indices[0], m_AShr(m_Sub(m_PtrToInt(m_Value(P)), 4615 m_PtrToInt(m_Specific(Ptr))), 4616 m_ConstantInt(C))) && 4617 TyAllocSize == 1ULL << C && CanSimplify()) 4618 return P; 4619 4620 // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of 4621 // size C. 4622 if (match(Indices[0], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)), 4623 m_PtrToInt(m_Specific(Ptr))), 4624 m_SpecificInt(TyAllocSize))) && 4625 CanSimplify()) 4626 return P; 4627 } 4628 } 4629 } 4630 4631 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 4632 all_of(Indices.drop_back(1), 4633 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4634 unsigned IdxWidth = 4635 Q.DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()); 4636 if (Q.DL.getTypeSizeInBits(Indices.back()->getType()) == IdxWidth) { 4637 APInt BasePtrOffset(IdxWidth, 0); 4638 Value *StrippedBasePtr = 4639 Ptr->stripAndAccumulateInBoundsConstantOffsets(Q.DL, BasePtrOffset); 4640 4641 // Avoid creating inttoptr of zero here: While LLVMs treatment of 4642 // inttoptr is generally conservative, this particular case is folded to 4643 // a null pointer, which will have incorrect provenance. 4644 4645 // gep (gep V, C), (sub 0, V) -> C 4646 if (match(Indices.back(), 4647 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) && 4648 !BasePtrOffset.isZero()) { 4649 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4650 return ConstantExpr::getIntToPtr(CI, GEPTy); 4651 } 4652 // gep (gep V, C), (xor V, -1) -> C-1 4653 if (match(Indices.back(), 4654 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) && 4655 !BasePtrOffset.isOne()) { 4656 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4657 return ConstantExpr::getIntToPtr(CI, GEPTy); 4658 } 4659 } 4660 } 4661 4662 // Check to see if this is constant foldable. 4663 if (!isa<Constant>(Ptr) || 4664 !all_of(Indices, [](Value *V) { return isa<Constant>(V); })) 4665 return nullptr; 4666 4667 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ptr), Indices, 4668 InBounds); 4669 return ConstantFoldConstant(CE, Q.DL); 4670 } 4671 4672 Value *llvm::simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef<Value *> Indices, 4673 bool InBounds, const SimplifyQuery &Q) { 4674 return ::simplifyGEPInst(SrcTy, Ptr, Indices, InBounds, Q, RecursionLimit); 4675 } 4676 4677 /// Given operands for an InsertValueInst, see if we can fold the result. 4678 /// If not, this returns null. 4679 static Value *simplifyInsertValueInst(Value *Agg, Value *Val, 4680 ArrayRef<unsigned> Idxs, 4681 const SimplifyQuery &Q, unsigned) { 4682 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4683 if (Constant *CVal = dyn_cast<Constant>(Val)) 4684 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4685 4686 // insertvalue x, undef, n -> x 4687 if (Q.isUndefValue(Val)) 4688 return Agg; 4689 4690 // insertvalue x, (extractvalue y, n), n 4691 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4692 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4693 EV->getIndices() == Idxs) { 4694 // insertvalue undef, (extractvalue y, n), n -> y 4695 if (Q.isUndefValue(Agg)) 4696 return EV->getAggregateOperand(); 4697 4698 // insertvalue y, (extractvalue y, n), n -> y 4699 if (Agg == EV->getAggregateOperand()) 4700 return Agg; 4701 } 4702 4703 return nullptr; 4704 } 4705 4706 Value *llvm::simplifyInsertValueInst(Value *Agg, Value *Val, 4707 ArrayRef<unsigned> Idxs, 4708 const SimplifyQuery &Q) { 4709 return ::simplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4710 } 4711 4712 Value *llvm::simplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4713 const SimplifyQuery &Q) { 4714 // Try to constant fold. 4715 auto *VecC = dyn_cast<Constant>(Vec); 4716 auto *ValC = dyn_cast<Constant>(Val); 4717 auto *IdxC = dyn_cast<Constant>(Idx); 4718 if (VecC && ValC && IdxC) 4719 return ConstantExpr::getInsertElement(VecC, ValC, IdxC); 4720 4721 // For fixed-length vector, fold into poison if index is out of bounds. 4722 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4723 if (isa<FixedVectorType>(Vec->getType()) && 4724 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 4725 return PoisonValue::get(Vec->getType()); 4726 } 4727 4728 // If index is undef, it might be out of bounds (see above case) 4729 if (Q.isUndefValue(Idx)) 4730 return PoisonValue::get(Vec->getType()); 4731 4732 // If the scalar is poison, or it is undef and there is no risk of 4733 // propagating poison from the vector value, simplify to the vector value. 4734 if (isa<PoisonValue>(Val) || 4735 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec))) 4736 return Vec; 4737 4738 // If we are extracting a value from a vector, then inserting it into the same 4739 // place, that's the input vector: 4740 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4741 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 4742 return Vec; 4743 4744 return nullptr; 4745 } 4746 4747 /// Given operands for an ExtractValueInst, see if we can fold the result. 4748 /// If not, this returns null. 4749 static Value *simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4750 const SimplifyQuery &, unsigned) { 4751 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4752 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4753 4754 // extractvalue x, (insertvalue y, elt, n), n -> elt 4755 unsigned NumIdxs = Idxs.size(); 4756 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4757 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4758 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4759 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4760 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4761 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4762 Idxs.slice(0, NumCommonIdxs)) { 4763 if (NumIdxs == NumInsertValueIdxs) 4764 return IVI->getInsertedValueOperand(); 4765 break; 4766 } 4767 } 4768 4769 return nullptr; 4770 } 4771 4772 Value *llvm::simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4773 const SimplifyQuery &Q) { 4774 return ::simplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4775 } 4776 4777 /// Given operands for an ExtractElementInst, see if we can fold the result. 4778 /// If not, this returns null. 4779 static Value *simplifyExtractElementInst(Value *Vec, Value *Idx, 4780 const SimplifyQuery &Q, unsigned) { 4781 auto *VecVTy = cast<VectorType>(Vec->getType()); 4782 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4783 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4784 return ConstantExpr::getExtractElement(CVec, CIdx); 4785 4786 if (Q.isUndefValue(Vec)) 4787 return UndefValue::get(VecVTy->getElementType()); 4788 } 4789 4790 // An undef extract index can be arbitrarily chosen to be an out-of-range 4791 // index value, which would result in the instruction being poison. 4792 if (Q.isUndefValue(Idx)) 4793 return PoisonValue::get(VecVTy->getElementType()); 4794 4795 // If extracting a specified index from the vector, see if we can recursively 4796 // find a previously computed scalar that was inserted into the vector. 4797 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4798 // For fixed-length vector, fold into undef if index is out of bounds. 4799 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue(); 4800 if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts)) 4801 return PoisonValue::get(VecVTy->getElementType()); 4802 // Handle case where an element is extracted from a splat. 4803 if (IdxC->getValue().ult(MinNumElts)) 4804 if (auto *Splat = getSplatValue(Vec)) 4805 return Splat; 4806 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4807 return Elt; 4808 } else { 4809 // The index is not relevant if our vector is a splat. 4810 if (Value *Splat = getSplatValue(Vec)) 4811 return Splat; 4812 } 4813 return nullptr; 4814 } 4815 4816 Value *llvm::simplifyExtractElementInst(Value *Vec, Value *Idx, 4817 const SimplifyQuery &Q) { 4818 return ::simplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4819 } 4820 4821 /// See if we can fold the given phi. If not, returns null. 4822 static Value *simplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues, 4823 const SimplifyQuery &Q) { 4824 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE 4825 // here, because the PHI we may succeed simplifying to was not 4826 // def-reachable from the original PHI! 4827 4828 // If all of the PHI's incoming values are the same then replace the PHI node 4829 // with the common value. 4830 Value *CommonValue = nullptr; 4831 bool HasUndefInput = false; 4832 for (Value *Incoming : IncomingValues) { 4833 // If the incoming value is the phi node itself, it can safely be skipped. 4834 if (Incoming == PN) 4835 continue; 4836 if (Q.isUndefValue(Incoming)) { 4837 // Remember that we saw an undef value, but otherwise ignore them. 4838 HasUndefInput = true; 4839 continue; 4840 } 4841 if (CommonValue && Incoming != CommonValue) 4842 return nullptr; // Not the same, bail out. 4843 CommonValue = Incoming; 4844 } 4845 4846 // If CommonValue is null then all of the incoming values were either undef or 4847 // equal to the phi node itself. 4848 if (!CommonValue) 4849 return UndefValue::get(PN->getType()); 4850 4851 if (HasUndefInput) { 4852 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4853 // instruction, we cannot return X as the result of the PHI node unless it 4854 // dominates the PHI block. 4855 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4856 } 4857 4858 return CommonValue; 4859 } 4860 4861 static Value *simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4862 const SimplifyQuery &Q, unsigned MaxRecurse) { 4863 if (auto *C = dyn_cast<Constant>(Op)) 4864 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4865 4866 if (auto *CI = dyn_cast<CastInst>(Op)) { 4867 auto *Src = CI->getOperand(0); 4868 Type *SrcTy = Src->getType(); 4869 Type *MidTy = CI->getType(); 4870 Type *DstTy = Ty; 4871 if (Src->getType() == Ty) { 4872 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4873 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4874 Type *SrcIntPtrTy = 4875 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4876 Type *MidIntPtrTy = 4877 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4878 Type *DstIntPtrTy = 4879 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4880 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4881 SrcIntPtrTy, MidIntPtrTy, 4882 DstIntPtrTy) == Instruction::BitCast) 4883 return Src; 4884 } 4885 } 4886 4887 // bitcast x -> x 4888 if (CastOpc == Instruction::BitCast) 4889 if (Op->getType() == Ty) 4890 return Op; 4891 4892 return nullptr; 4893 } 4894 4895 Value *llvm::simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4896 const SimplifyQuery &Q) { 4897 return ::simplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4898 } 4899 4900 /// For the given destination element of a shuffle, peek through shuffles to 4901 /// match a root vector source operand that contains that element in the same 4902 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4903 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4904 int MaskVal, Value *RootVec, 4905 unsigned MaxRecurse) { 4906 if (!MaxRecurse--) 4907 return nullptr; 4908 4909 // Bail out if any mask value is undefined. That kind of shuffle may be 4910 // simplified further based on demanded bits or other folds. 4911 if (MaskVal == -1) 4912 return nullptr; 4913 4914 // The mask value chooses which source operand we need to look at next. 4915 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 4916 int RootElt = MaskVal; 4917 Value *SourceOp = Op0; 4918 if (MaskVal >= InVecNumElts) { 4919 RootElt = MaskVal - InVecNumElts; 4920 SourceOp = Op1; 4921 } 4922 4923 // If the source operand is a shuffle itself, look through it to find the 4924 // matching root vector. 4925 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4926 return foldIdentityShuffles( 4927 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4928 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4929 } 4930 4931 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4932 // size? 4933 4934 // The source operand is not a shuffle. Initialize the root vector value for 4935 // this shuffle if that has not been done yet. 4936 if (!RootVec) 4937 RootVec = SourceOp; 4938 4939 // Give up as soon as a source operand does not match the existing root value. 4940 if (RootVec != SourceOp) 4941 return nullptr; 4942 4943 // The element must be coming from the same lane in the source vector 4944 // (although it may have crossed lanes in intermediate shuffles). 4945 if (RootElt != DestElt) 4946 return nullptr; 4947 4948 return RootVec; 4949 } 4950 4951 static Value *simplifyShuffleVectorInst(Value *Op0, Value *Op1, 4952 ArrayRef<int> Mask, Type *RetTy, 4953 const SimplifyQuery &Q, 4954 unsigned MaxRecurse) { 4955 if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) 4956 return UndefValue::get(RetTy); 4957 4958 auto *InVecTy = cast<VectorType>(Op0->getType()); 4959 unsigned MaskNumElts = Mask.size(); 4960 ElementCount InVecEltCount = InVecTy->getElementCount(); 4961 4962 bool Scalable = InVecEltCount.isScalable(); 4963 4964 SmallVector<int, 32> Indices; 4965 Indices.assign(Mask.begin(), Mask.end()); 4966 4967 // Canonicalization: If mask does not select elements from an input vector, 4968 // replace that input vector with poison. 4969 if (!Scalable) { 4970 bool MaskSelects0 = false, MaskSelects1 = false; 4971 unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); 4972 for (unsigned i = 0; i != MaskNumElts; ++i) { 4973 if (Indices[i] == -1) 4974 continue; 4975 if ((unsigned)Indices[i] < InVecNumElts) 4976 MaskSelects0 = true; 4977 else 4978 MaskSelects1 = true; 4979 } 4980 if (!MaskSelects0) 4981 Op0 = PoisonValue::get(InVecTy); 4982 if (!MaskSelects1) 4983 Op1 = PoisonValue::get(InVecTy); 4984 } 4985 4986 auto *Op0Const = dyn_cast<Constant>(Op0); 4987 auto *Op1Const = dyn_cast<Constant>(Op1); 4988 4989 // If all operands are constant, constant fold the shuffle. This 4990 // transformation depends on the value of the mask which is not known at 4991 // compile time for scalable vectors 4992 if (Op0Const && Op1Const) 4993 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); 4994 4995 // Canonicalization: if only one input vector is constant, it shall be the 4996 // second one. This transformation depends on the value of the mask which 4997 // is not known at compile time for scalable vectors 4998 if (!Scalable && Op0Const && !Op1Const) { 4999 std::swap(Op0, Op1); 5000 ShuffleVectorInst::commuteShuffleMask(Indices, 5001 InVecEltCount.getKnownMinValue()); 5002 } 5003 5004 // A splat of an inserted scalar constant becomes a vector constant: 5005 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 5006 // NOTE: We may have commuted above, so analyze the updated Indices, not the 5007 // original mask constant. 5008 // NOTE: This transformation depends on the value of the mask which is not 5009 // known at compile time for scalable vectors 5010 Constant *C; 5011 ConstantInt *IndexC; 5012 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 5013 m_ConstantInt(IndexC)))) { 5014 // Match a splat shuffle mask of the insert index allowing undef elements. 5015 int InsertIndex = IndexC->getZExtValue(); 5016 if (all_of(Indices, [InsertIndex](int MaskElt) { 5017 return MaskElt == InsertIndex || MaskElt == -1; 5018 })) { 5019 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 5020 5021 // Shuffle mask undefs become undefined constant result elements. 5022 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 5023 for (unsigned i = 0; i != MaskNumElts; ++i) 5024 if (Indices[i] == -1) 5025 VecC[i] = UndefValue::get(C->getType()); 5026 return ConstantVector::get(VecC); 5027 } 5028 } 5029 5030 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 5031 // value type is same as the input vectors' type. 5032 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 5033 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 5034 is_splat(OpShuf->getShuffleMask())) 5035 return Op0; 5036 5037 // All remaining transformation depend on the value of the mask, which is 5038 // not known at compile time for scalable vectors. 5039 if (Scalable) 5040 return nullptr; 5041 5042 // Don't fold a shuffle with undef mask elements. This may get folded in a 5043 // better way using demanded bits or other analysis. 5044 // TODO: Should we allow this? 5045 if (is_contained(Indices, -1)) 5046 return nullptr; 5047 5048 // Check if every element of this shuffle can be mapped back to the 5049 // corresponding element of a single root vector. If so, we don't need this 5050 // shuffle. This handles simple identity shuffles as well as chains of 5051 // shuffles that may widen/narrow and/or move elements across lanes and back. 5052 Value *RootVec = nullptr; 5053 for (unsigned i = 0; i != MaskNumElts; ++i) { 5054 // Note that recursion is limited for each vector element, so if any element 5055 // exceeds the limit, this will fail to simplify. 5056 RootVec = 5057 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 5058 5059 // We can't replace a widening/narrowing shuffle with one of its operands. 5060 if (!RootVec || RootVec->getType() != RetTy) 5061 return nullptr; 5062 } 5063 return RootVec; 5064 } 5065 5066 /// Given operands for a ShuffleVectorInst, fold the result or return null. 5067 Value *llvm::simplifyShuffleVectorInst(Value *Op0, Value *Op1, 5068 ArrayRef<int> Mask, Type *RetTy, 5069 const SimplifyQuery &Q) { 5070 return ::simplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 5071 } 5072 5073 static Constant *foldConstant(Instruction::UnaryOps Opcode, Value *&Op, 5074 const SimplifyQuery &Q) { 5075 if (auto *C = dyn_cast<Constant>(Op)) 5076 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 5077 return nullptr; 5078 } 5079 5080 /// Given the operand for an FNeg, see if we can fold the result. If not, this 5081 /// returns null. 5082 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 5083 const SimplifyQuery &Q, unsigned MaxRecurse) { 5084 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 5085 return C; 5086 5087 Value *X; 5088 // fneg (fneg X) ==> X 5089 if (match(Op, m_FNeg(m_Value(X)))) 5090 return X; 5091 5092 return nullptr; 5093 } 5094 5095 Value *llvm::simplifyFNegInst(Value *Op, FastMathFlags FMF, 5096 const SimplifyQuery &Q) { 5097 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 5098 } 5099 5100 static Constant *propagateNaN(Constant *In) { 5101 // If the input is a vector with undef elements, just return a default NaN. 5102 if (!In->isNaN()) 5103 return ConstantFP::getNaN(In->getType()); 5104 5105 // Propagate the existing NaN constant when possible. 5106 // TODO: Should we quiet a signaling NaN? 5107 return In; 5108 } 5109 5110 /// Perform folds that are common to any floating-point operation. This implies 5111 /// transforms based on poison/undef/NaN because the operation itself makes no 5112 /// difference to the result. 5113 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF, 5114 const SimplifyQuery &Q, 5115 fp::ExceptionBehavior ExBehavior, 5116 RoundingMode Rounding) { 5117 // Poison is independent of anything else. It always propagates from an 5118 // operand to a math result. 5119 if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); })) 5120 return PoisonValue::get(Ops[0]->getType()); 5121 5122 for (Value *V : Ops) { 5123 bool IsNan = match(V, m_NaN()); 5124 bool IsInf = match(V, m_Inf()); 5125 bool IsUndef = Q.isUndefValue(V); 5126 5127 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 5128 // (an undef operand can be chosen to be Nan/Inf), then the result of 5129 // this operation is poison. 5130 if (FMF.noNaNs() && (IsNan || IsUndef)) 5131 return PoisonValue::get(V->getType()); 5132 if (FMF.noInfs() && (IsInf || IsUndef)) 5133 return PoisonValue::get(V->getType()); 5134 5135 if (isDefaultFPEnvironment(ExBehavior, Rounding)) { 5136 if (IsUndef || IsNan) 5137 return propagateNaN(cast<Constant>(V)); 5138 } else if (ExBehavior != fp::ebStrict) { 5139 if (IsNan) 5140 return propagateNaN(cast<Constant>(V)); 5141 } 5142 } 5143 return nullptr; 5144 } 5145 5146 /// Given operands for an FAdd, see if we can fold the result. If not, this 5147 /// returns null. 5148 static Value * 5149 simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5150 const SimplifyQuery &Q, unsigned MaxRecurse, 5151 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5152 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5153 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5154 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 5155 return C; 5156 5157 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5158 return C; 5159 5160 // fadd X, -0 ==> X 5161 // With strict/constrained FP, we have these possible edge cases that do 5162 // not simplify to Op0: 5163 // fadd SNaN, -0.0 --> QNaN 5164 // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative) 5165 if (canIgnoreSNaN(ExBehavior, FMF) && 5166 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 5167 FMF.noSignedZeros())) 5168 if (match(Op1, m_NegZeroFP())) 5169 return Op0; 5170 5171 // fadd X, 0 ==> X, when we know X is not -0 5172 if (canIgnoreSNaN(ExBehavior, FMF)) 5173 if (match(Op1, m_PosZeroFP()) && 5174 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 5175 return Op0; 5176 5177 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5178 return nullptr; 5179 5180 // With nnan: -X + X --> 0.0 (and commuted variant) 5181 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 5182 // Negative zeros are allowed because we always end up with positive zero: 5183 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5184 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5185 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 5186 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 5187 if (FMF.noNaNs()) { 5188 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 5189 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 5190 return ConstantFP::getNullValue(Op0->getType()); 5191 5192 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5193 match(Op1, m_FNeg(m_Specific(Op0)))) 5194 return ConstantFP::getNullValue(Op0->getType()); 5195 } 5196 5197 // (X - Y) + Y --> X 5198 // Y + (X - Y) --> X 5199 Value *X; 5200 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5201 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 5202 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 5203 return X; 5204 5205 return nullptr; 5206 } 5207 5208 /// Given operands for an FSub, see if we can fold the result. If not, this 5209 /// returns null. 5210 static Value * 5211 simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5212 const SimplifyQuery &Q, unsigned MaxRecurse, 5213 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5214 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5215 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5216 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 5217 return C; 5218 5219 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5220 return C; 5221 5222 // fsub X, +0 ==> X 5223 if (canIgnoreSNaN(ExBehavior, FMF) && 5224 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 5225 FMF.noSignedZeros())) 5226 if (match(Op1, m_PosZeroFP())) 5227 return Op0; 5228 5229 // fsub X, -0 ==> X, when we know X is not -0 5230 if (canIgnoreSNaN(ExBehavior, FMF)) 5231 if (match(Op1, m_NegZeroFP()) && 5232 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 5233 return Op0; 5234 5235 // fsub -0.0, (fsub -0.0, X) ==> X 5236 // fsub -0.0, (fneg X) ==> X 5237 Value *X; 5238 if (canIgnoreSNaN(ExBehavior, FMF)) 5239 if (match(Op0, m_NegZeroFP()) && match(Op1, m_FNeg(m_Value(X)))) 5240 return X; 5241 5242 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5243 return nullptr; 5244 5245 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 5246 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 5247 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 5248 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 5249 match(Op1, m_FNeg(m_Value(X))))) 5250 return X; 5251 5252 // fsub nnan x, x ==> 0.0 5253 if (FMF.noNaNs() && Op0 == Op1) 5254 return Constant::getNullValue(Op0->getType()); 5255 5256 // Y - (Y - X) --> X 5257 // (X + Y) - Y --> X 5258 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5259 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 5260 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 5261 return X; 5262 5263 return nullptr; 5264 } 5265 5266 static Value *simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5267 const SimplifyQuery &Q, unsigned MaxRecurse, 5268 fp::ExceptionBehavior ExBehavior, 5269 RoundingMode Rounding) { 5270 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5271 return C; 5272 5273 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5274 return nullptr; 5275 5276 // fmul X, 1.0 ==> X 5277 if (match(Op1, m_FPOne())) 5278 return Op0; 5279 5280 // fmul 1.0, X ==> X 5281 if (match(Op0, m_FPOne())) 5282 return Op1; 5283 5284 // fmul nnan nsz X, 0 ==> 0 5285 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 5286 return ConstantFP::getNullValue(Op0->getType()); 5287 5288 // fmul nnan nsz 0, X ==> 0 5289 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5290 return ConstantFP::getNullValue(Op1->getType()); 5291 5292 // sqrt(X) * sqrt(X) --> X, if we can: 5293 // 1. Remove the intermediate rounding (reassociate). 5294 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 5295 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 5296 Value *X; 5297 if (Op0 == Op1 && match(Op0, m_Sqrt(m_Value(X))) && FMF.allowReassoc() && 5298 FMF.noNaNs() && FMF.noSignedZeros()) 5299 return X; 5300 5301 return nullptr; 5302 } 5303 5304 /// Given the operands for an FMul, see if we can fold the result 5305 static Value * 5306 simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5307 const SimplifyQuery &Q, unsigned MaxRecurse, 5308 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5309 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5310 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5311 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 5312 return C; 5313 5314 // Now apply simplifications that do not require rounding. 5315 return simplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding); 5316 } 5317 5318 Value *llvm::simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5319 const SimplifyQuery &Q, 5320 fp::ExceptionBehavior ExBehavior, 5321 RoundingMode Rounding) { 5322 return ::simplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5323 Rounding); 5324 } 5325 5326 Value *llvm::simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5327 const SimplifyQuery &Q, 5328 fp::ExceptionBehavior ExBehavior, 5329 RoundingMode Rounding) { 5330 return ::simplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5331 Rounding); 5332 } 5333 5334 Value *llvm::simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5335 const SimplifyQuery &Q, 5336 fp::ExceptionBehavior ExBehavior, 5337 RoundingMode Rounding) { 5338 return ::simplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5339 Rounding); 5340 } 5341 5342 Value *llvm::simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5343 const SimplifyQuery &Q, 5344 fp::ExceptionBehavior ExBehavior, 5345 RoundingMode Rounding) { 5346 return ::simplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5347 Rounding); 5348 } 5349 5350 static Value * 5351 simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5352 const SimplifyQuery &Q, unsigned, 5353 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5354 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5355 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5356 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 5357 return C; 5358 5359 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5360 return C; 5361 5362 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5363 return nullptr; 5364 5365 // X / 1.0 -> X 5366 if (match(Op1, m_FPOne())) 5367 return Op0; 5368 5369 // 0 / X -> 0 5370 // Requires that NaNs are off (X could be zero) and signed zeroes are 5371 // ignored (X could be positive or negative, so the output sign is unknown). 5372 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5373 return ConstantFP::getNullValue(Op0->getType()); 5374 5375 if (FMF.noNaNs()) { 5376 // X / X -> 1.0 is legal when NaNs are ignored. 5377 // We can ignore infinities because INF/INF is NaN. 5378 if (Op0 == Op1) 5379 return ConstantFP::get(Op0->getType(), 1.0); 5380 5381 // (X * Y) / Y --> X if we can reassociate to the above form. 5382 Value *X; 5383 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 5384 return X; 5385 5386 // -X / X -> -1.0 and 5387 // X / -X -> -1.0 are legal when NaNs are ignored. 5388 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 5389 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 5390 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 5391 return ConstantFP::get(Op0->getType(), -1.0); 5392 } 5393 5394 return nullptr; 5395 } 5396 5397 Value *llvm::simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5398 const SimplifyQuery &Q, 5399 fp::ExceptionBehavior ExBehavior, 5400 RoundingMode Rounding) { 5401 return ::simplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5402 Rounding); 5403 } 5404 5405 static Value * 5406 simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5407 const SimplifyQuery &Q, unsigned, 5408 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5409 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5410 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5411 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 5412 return C; 5413 5414 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5415 return C; 5416 5417 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5418 return nullptr; 5419 5420 // Unlike fdiv, the result of frem always matches the sign of the dividend. 5421 // The constant match may include undef elements in a vector, so return a full 5422 // zero constant as the result. 5423 if (FMF.noNaNs()) { 5424 // +0 % X -> 0 5425 if (match(Op0, m_PosZeroFP())) 5426 return ConstantFP::getNullValue(Op0->getType()); 5427 // -0 % X -> -0 5428 if (match(Op0, m_NegZeroFP())) 5429 return ConstantFP::getNegativeZero(Op0->getType()); 5430 } 5431 5432 return nullptr; 5433 } 5434 5435 Value *llvm::simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5436 const SimplifyQuery &Q, 5437 fp::ExceptionBehavior ExBehavior, 5438 RoundingMode Rounding) { 5439 return ::simplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5440 Rounding); 5441 } 5442 5443 //=== Helper functions for higher up the class hierarchy. 5444 5445 /// Given the operand for a UnaryOperator, see if we can fold the result. 5446 /// If not, this returns null. 5447 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 5448 unsigned MaxRecurse) { 5449 switch (Opcode) { 5450 case Instruction::FNeg: 5451 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 5452 default: 5453 llvm_unreachable("Unexpected opcode"); 5454 } 5455 } 5456 5457 /// Given the operand for a UnaryOperator, see if we can fold the result. 5458 /// If not, this returns null. 5459 /// Try to use FastMathFlags when folding the result. 5460 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 5461 const FastMathFlags &FMF, const SimplifyQuery &Q, 5462 unsigned MaxRecurse) { 5463 switch (Opcode) { 5464 case Instruction::FNeg: 5465 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 5466 default: 5467 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 5468 } 5469 } 5470 5471 Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 5472 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 5473 } 5474 5475 Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 5476 const SimplifyQuery &Q) { 5477 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 5478 } 5479 5480 /// Given operands for a BinaryOperator, see if we can fold the result. 5481 /// If not, this returns null. 5482 static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5483 const SimplifyQuery &Q, unsigned MaxRecurse) { 5484 switch (Opcode) { 5485 case Instruction::Add: 5486 return simplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 5487 case Instruction::Sub: 5488 return simplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 5489 case Instruction::Mul: 5490 return simplifyMulInst(LHS, RHS, Q, MaxRecurse); 5491 case Instruction::SDiv: 5492 return simplifySDivInst(LHS, RHS, Q, MaxRecurse); 5493 case Instruction::UDiv: 5494 return simplifyUDivInst(LHS, RHS, Q, MaxRecurse); 5495 case Instruction::SRem: 5496 return simplifySRemInst(LHS, RHS, Q, MaxRecurse); 5497 case Instruction::URem: 5498 return simplifyURemInst(LHS, RHS, Q, MaxRecurse); 5499 case Instruction::Shl: 5500 return simplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 5501 case Instruction::LShr: 5502 return simplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 5503 case Instruction::AShr: 5504 return simplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 5505 case Instruction::And: 5506 return simplifyAndInst(LHS, RHS, Q, MaxRecurse); 5507 case Instruction::Or: 5508 return simplifyOrInst(LHS, RHS, Q, MaxRecurse); 5509 case Instruction::Xor: 5510 return simplifyXorInst(LHS, RHS, Q, MaxRecurse); 5511 case Instruction::FAdd: 5512 return simplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5513 case Instruction::FSub: 5514 return simplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5515 case Instruction::FMul: 5516 return simplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5517 case Instruction::FDiv: 5518 return simplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5519 case Instruction::FRem: 5520 return simplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5521 default: 5522 llvm_unreachable("Unexpected opcode"); 5523 } 5524 } 5525 5526 /// Given operands for a BinaryOperator, see if we can fold the result. 5527 /// If not, this returns null. 5528 /// Try to use FastMathFlags when folding the result. 5529 static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5530 const FastMathFlags &FMF, const SimplifyQuery &Q, 5531 unsigned MaxRecurse) { 5532 switch (Opcode) { 5533 case Instruction::FAdd: 5534 return simplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 5535 case Instruction::FSub: 5536 return simplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 5537 case Instruction::FMul: 5538 return simplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 5539 case Instruction::FDiv: 5540 return simplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 5541 default: 5542 return simplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 5543 } 5544 } 5545 5546 Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5547 const SimplifyQuery &Q) { 5548 return ::simplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 5549 } 5550 5551 Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5552 FastMathFlags FMF, const SimplifyQuery &Q) { 5553 return ::simplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 5554 } 5555 5556 /// Given operands for a CmpInst, see if we can fold the result. 5557 static Value *simplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5558 const SimplifyQuery &Q, unsigned MaxRecurse) { 5559 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 5560 return simplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 5561 return simplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5562 } 5563 5564 Value *llvm::simplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5565 const SimplifyQuery &Q) { 5566 return ::simplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 5567 } 5568 5569 static bool isIdempotent(Intrinsic::ID ID) { 5570 switch (ID) { 5571 default: 5572 return false; 5573 5574 // Unary idempotent: f(f(x)) = f(x) 5575 case Intrinsic::fabs: 5576 case Intrinsic::floor: 5577 case Intrinsic::ceil: 5578 case Intrinsic::trunc: 5579 case Intrinsic::rint: 5580 case Intrinsic::nearbyint: 5581 case Intrinsic::round: 5582 case Intrinsic::roundeven: 5583 case Intrinsic::canonicalize: 5584 return true; 5585 } 5586 } 5587 5588 static Value *simplifyRelativeLoad(Constant *Ptr, Constant *Offset, 5589 const DataLayout &DL) { 5590 GlobalValue *PtrSym; 5591 APInt PtrOffset; 5592 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 5593 return nullptr; 5594 5595 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 5596 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 5597 Type *Int32PtrTy = Int32Ty->getPointerTo(); 5598 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 5599 5600 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 5601 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 5602 return nullptr; 5603 5604 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 5605 if (OffsetInt % 4 != 0) 5606 return nullptr; 5607 5608 Constant *C = ConstantExpr::getGetElementPtr( 5609 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 5610 ConstantInt::get(Int64Ty, OffsetInt / 4)); 5611 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 5612 if (!Loaded) 5613 return nullptr; 5614 5615 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 5616 if (!LoadedCE) 5617 return nullptr; 5618 5619 if (LoadedCE->getOpcode() == Instruction::Trunc) { 5620 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5621 if (!LoadedCE) 5622 return nullptr; 5623 } 5624 5625 if (LoadedCE->getOpcode() != Instruction::Sub) 5626 return nullptr; 5627 5628 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5629 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 5630 return nullptr; 5631 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 5632 5633 Constant *LoadedRHS = LoadedCE->getOperand(1); 5634 GlobalValue *LoadedRHSSym; 5635 APInt LoadedRHSOffset; 5636 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 5637 DL) || 5638 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 5639 return nullptr; 5640 5641 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 5642 } 5643 5644 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 5645 const SimplifyQuery &Q) { 5646 // Idempotent functions return the same result when called repeatedly. 5647 Intrinsic::ID IID = F->getIntrinsicID(); 5648 if (isIdempotent(IID)) 5649 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 5650 if (II->getIntrinsicID() == IID) 5651 return II; 5652 5653 Value *X; 5654 switch (IID) { 5655 case Intrinsic::fabs: 5656 if (SignBitMustBeZero(Op0, Q.TLI)) 5657 return Op0; 5658 break; 5659 case Intrinsic::bswap: 5660 // bswap(bswap(x)) -> x 5661 if (match(Op0, m_BSwap(m_Value(X)))) 5662 return X; 5663 break; 5664 case Intrinsic::bitreverse: 5665 // bitreverse(bitreverse(x)) -> x 5666 if (match(Op0, m_BitReverse(m_Value(X)))) 5667 return X; 5668 break; 5669 case Intrinsic::ctpop: { 5670 // If everything but the lowest bit is zero, that bit is the pop-count. Ex: 5671 // ctpop(and X, 1) --> and X, 1 5672 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 5673 if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), 5674 Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 5675 return Op0; 5676 break; 5677 } 5678 case Intrinsic::exp: 5679 // exp(log(x)) -> x 5680 if (Q.CxtI->hasAllowReassoc() && 5681 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) 5682 return X; 5683 break; 5684 case Intrinsic::exp2: 5685 // exp2(log2(x)) -> x 5686 if (Q.CxtI->hasAllowReassoc() && 5687 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) 5688 return X; 5689 break; 5690 case Intrinsic::log: 5691 // log(exp(x)) -> x 5692 if (Q.CxtI->hasAllowReassoc() && 5693 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) 5694 return X; 5695 break; 5696 case Intrinsic::log2: 5697 // log2(exp2(x)) -> x 5698 if (Q.CxtI->hasAllowReassoc() && 5699 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 5700 match(Op0, 5701 m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), m_Value(X))))) 5702 return X; 5703 break; 5704 case Intrinsic::log10: 5705 // log10(pow(10.0, x)) -> x 5706 if (Q.CxtI->hasAllowReassoc() && 5707 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), m_Value(X)))) 5708 return X; 5709 break; 5710 case Intrinsic::floor: 5711 case Intrinsic::trunc: 5712 case Intrinsic::ceil: 5713 case Intrinsic::round: 5714 case Intrinsic::roundeven: 5715 case Intrinsic::nearbyint: 5716 case Intrinsic::rint: { 5717 // floor (sitofp x) -> sitofp x 5718 // floor (uitofp x) -> uitofp x 5719 // 5720 // Converting from int always results in a finite integral number or 5721 // infinity. For either of those inputs, these rounding functions always 5722 // return the same value, so the rounding can be eliminated. 5723 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 5724 return Op0; 5725 break; 5726 } 5727 case Intrinsic::experimental_vector_reverse: 5728 // experimental.vector.reverse(experimental.vector.reverse(x)) -> x 5729 if (match(Op0, 5730 m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X)))) 5731 return X; 5732 // experimental.vector.reverse(splat(X)) -> splat(X) 5733 if (isSplatValue(Op0)) 5734 return Op0; 5735 break; 5736 default: 5737 break; 5738 } 5739 5740 return nullptr; 5741 } 5742 5743 /// Given a min/max intrinsic, see if it can be removed based on having an 5744 /// operand that is another min/max intrinsic with shared operand(s). The caller 5745 /// is expected to swap the operand arguments to handle commutation. 5746 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 5747 Value *X, *Y; 5748 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 5749 return nullptr; 5750 5751 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 5752 if (!MM0) 5753 return nullptr; 5754 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 5755 5756 if (Op1 == X || Op1 == Y || 5757 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 5758 // max (max X, Y), X --> max X, Y 5759 if (IID0 == IID) 5760 return MM0; 5761 // max (min X, Y), X --> X 5762 if (IID0 == getInverseMinMaxIntrinsic(IID)) 5763 return Op1; 5764 } 5765 return nullptr; 5766 } 5767 5768 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 5769 const SimplifyQuery &Q) { 5770 Intrinsic::ID IID = F->getIntrinsicID(); 5771 Type *ReturnType = F->getReturnType(); 5772 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 5773 switch (IID) { 5774 case Intrinsic::abs: 5775 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 5776 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 5777 // on the outer abs. 5778 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 5779 return Op0; 5780 break; 5781 5782 case Intrinsic::cttz: { 5783 Value *X; 5784 if (match(Op0, m_Shl(m_One(), m_Value(X)))) 5785 return X; 5786 break; 5787 } 5788 case Intrinsic::ctlz: { 5789 Value *X; 5790 if (match(Op0, m_LShr(m_Negative(), m_Value(X)))) 5791 return X; 5792 if (match(Op0, m_AShr(m_Negative(), m_Value()))) 5793 return Constant::getNullValue(ReturnType); 5794 break; 5795 } 5796 case Intrinsic::smax: 5797 case Intrinsic::smin: 5798 case Intrinsic::umax: 5799 case Intrinsic::umin: { 5800 // If the arguments are the same, this is a no-op. 5801 if (Op0 == Op1) 5802 return Op0; 5803 5804 // Canonicalize constant operand as Op1. 5805 if (isa<Constant>(Op0)) 5806 std::swap(Op0, Op1); 5807 5808 // Assume undef is the limit value. 5809 if (Q.isUndefValue(Op1)) 5810 return ConstantInt::get( 5811 ReturnType, MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)); 5812 5813 const APInt *C; 5814 if (match(Op1, m_APIntAllowUndef(C))) { 5815 // Clamp to limit value. For example: 5816 // umax(i8 %x, i8 255) --> 255 5817 if (*C == MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)) 5818 return ConstantInt::get(ReturnType, *C); 5819 5820 // If the constant op is the opposite of the limit value, the other must 5821 // be larger/smaller or equal. For example: 5822 // umin(i8 %x, i8 255) --> %x 5823 if (*C == MinMaxIntrinsic::getSaturationPoint( 5824 getInverseMinMaxIntrinsic(IID), BitWidth)) 5825 return Op0; 5826 5827 // Remove nested call if constant operands allow it. Example: 5828 // max (max X, 7), 5 -> max X, 7 5829 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 5830 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 5831 // TODO: loosen undef/splat restrictions for vector constants. 5832 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 5833 const APInt *InnerC; 5834 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 5835 ICmpInst::compare(*InnerC, *C, 5836 ICmpInst::getNonStrictPredicate( 5837 MinMaxIntrinsic::getPredicate(IID)))) 5838 return Op0; 5839 } 5840 } 5841 5842 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 5843 return V; 5844 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 5845 return V; 5846 5847 ICmpInst::Predicate Pred = 5848 ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID)); 5849 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) 5850 return Op0; 5851 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) 5852 return Op1; 5853 5854 if (Optional<bool> Imp = 5855 isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL)) 5856 return *Imp ? Op0 : Op1; 5857 if (Optional<bool> Imp = 5858 isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL)) 5859 return *Imp ? Op1 : Op0; 5860 5861 break; 5862 } 5863 case Intrinsic::usub_with_overflow: 5864 case Intrinsic::ssub_with_overflow: 5865 // X - X -> { 0, false } 5866 // X - undef -> { 0, false } 5867 // undef - X -> { 0, false } 5868 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5869 return Constant::getNullValue(ReturnType); 5870 break; 5871 case Intrinsic::uadd_with_overflow: 5872 case Intrinsic::sadd_with_overflow: 5873 // X + undef -> { -1, false } 5874 // undef + x -> { -1, false } 5875 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 5876 return ConstantStruct::get( 5877 cast<StructType>(ReturnType), 5878 {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), 5879 Constant::getNullValue(ReturnType->getStructElementType(1))}); 5880 } 5881 break; 5882 case Intrinsic::umul_with_overflow: 5883 case Intrinsic::smul_with_overflow: 5884 // 0 * X -> { 0, false } 5885 // X * 0 -> { 0, false } 5886 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 5887 return Constant::getNullValue(ReturnType); 5888 // undef * X -> { 0, false } 5889 // X * undef -> { 0, false } 5890 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5891 return Constant::getNullValue(ReturnType); 5892 break; 5893 case Intrinsic::uadd_sat: 5894 // sat(MAX + X) -> MAX 5895 // sat(X + MAX) -> MAX 5896 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 5897 return Constant::getAllOnesValue(ReturnType); 5898 LLVM_FALLTHROUGH; 5899 case Intrinsic::sadd_sat: 5900 // sat(X + undef) -> -1 5901 // sat(undef + X) -> -1 5902 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5903 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5904 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5905 return Constant::getAllOnesValue(ReturnType); 5906 5907 // X + 0 -> X 5908 if (match(Op1, m_Zero())) 5909 return Op0; 5910 // 0 + X -> X 5911 if (match(Op0, m_Zero())) 5912 return Op1; 5913 break; 5914 case Intrinsic::usub_sat: 5915 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5916 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5917 return Constant::getNullValue(ReturnType); 5918 LLVM_FALLTHROUGH; 5919 case Intrinsic::ssub_sat: 5920 // X - X -> 0, X - undef -> 0, undef - X -> 0 5921 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5922 return Constant::getNullValue(ReturnType); 5923 // X - 0 -> X 5924 if (match(Op1, m_Zero())) 5925 return Op0; 5926 break; 5927 case Intrinsic::load_relative: 5928 if (auto *C0 = dyn_cast<Constant>(Op0)) 5929 if (auto *C1 = dyn_cast<Constant>(Op1)) 5930 return simplifyRelativeLoad(C0, C1, Q.DL); 5931 break; 5932 case Intrinsic::powi: 5933 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5934 // powi(x, 0) -> 1.0 5935 if (Power->isZero()) 5936 return ConstantFP::get(Op0->getType(), 1.0); 5937 // powi(x, 1) -> x 5938 if (Power->isOne()) 5939 return Op0; 5940 } 5941 break; 5942 case Intrinsic::copysign: 5943 // copysign X, X --> X 5944 if (Op0 == Op1) 5945 return Op0; 5946 // copysign -X, X --> X 5947 // copysign X, -X --> -X 5948 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5949 match(Op1, m_FNeg(m_Specific(Op0)))) 5950 return Op1; 5951 break; 5952 case Intrinsic::maxnum: 5953 case Intrinsic::minnum: 5954 case Intrinsic::maximum: 5955 case Intrinsic::minimum: { 5956 // If the arguments are the same, this is a no-op. 5957 if (Op0 == Op1) 5958 return Op0; 5959 5960 // Canonicalize constant operand as Op1. 5961 if (isa<Constant>(Op0)) 5962 std::swap(Op0, Op1); 5963 5964 // If an argument is undef, return the other argument. 5965 if (Q.isUndefValue(Op1)) 5966 return Op0; 5967 5968 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5969 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; 5970 5971 // minnum(X, nan) -> X 5972 // maxnum(X, nan) -> X 5973 // minimum(X, nan) -> nan 5974 // maximum(X, nan) -> nan 5975 if (match(Op1, m_NaN())) 5976 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; 5977 5978 // In the following folds, inf can be replaced with the largest finite 5979 // float, if the ninf flag is set. 5980 const APFloat *C; 5981 if (match(Op1, m_APFloat(C)) && 5982 (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) { 5983 // minnum(X, -inf) -> -inf 5984 // maxnum(X, +inf) -> +inf 5985 // minimum(X, -inf) -> -inf if nnan 5986 // maximum(X, +inf) -> +inf if nnan 5987 if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs())) 5988 return ConstantFP::get(ReturnType, *C); 5989 5990 // minnum(X, +inf) -> X if nnan 5991 // maxnum(X, -inf) -> X if nnan 5992 // minimum(X, +inf) -> X 5993 // maximum(X, -inf) -> X 5994 if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs())) 5995 return Op0; 5996 } 5997 5998 // Min/max of the same operation with common operand: 5999 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 6000 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 6001 if (M0->getIntrinsicID() == IID && 6002 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 6003 return Op0; 6004 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 6005 if (M1->getIntrinsicID() == IID && 6006 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 6007 return Op1; 6008 6009 break; 6010 } 6011 case Intrinsic::vector_extract: { 6012 Type *ReturnType = F->getReturnType(); 6013 6014 // (extract_vector (insert_vector _, X, 0), 0) -> X 6015 unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue(); 6016 Value *X = nullptr; 6017 if (match(Op0, m_Intrinsic<Intrinsic::vector_insert>(m_Value(), m_Value(X), 6018 m_Zero())) && 6019 IdxN == 0 && X->getType() == ReturnType) 6020 return X; 6021 6022 break; 6023 } 6024 default: 6025 break; 6026 } 6027 6028 return nullptr; 6029 } 6030 6031 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 6032 6033 unsigned NumOperands = Call->arg_size(); 6034 Function *F = cast<Function>(Call->getCalledFunction()); 6035 Intrinsic::ID IID = F->getIntrinsicID(); 6036 6037 // Most of the intrinsics with no operands have some kind of side effect. 6038 // Don't simplify. 6039 if (!NumOperands) { 6040 switch (IID) { 6041 case Intrinsic::vscale: { 6042 // Call may not be inserted into the IR yet at point of calling simplify. 6043 if (!Call->getParent() || !Call->getParent()->getParent()) 6044 return nullptr; 6045 auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange); 6046 if (!Attr.isValid()) 6047 return nullptr; 6048 unsigned VScaleMin = Attr.getVScaleRangeMin(); 6049 Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax(); 6050 if (VScaleMax && VScaleMin == VScaleMax) 6051 return ConstantInt::get(F->getReturnType(), VScaleMin); 6052 return nullptr; 6053 } 6054 default: 6055 return nullptr; 6056 } 6057 } 6058 6059 if (NumOperands == 1) 6060 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 6061 6062 if (NumOperands == 2) 6063 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 6064 Call->getArgOperand(1), Q); 6065 6066 // Handle intrinsics with 3 or more arguments. 6067 switch (IID) { 6068 case Intrinsic::masked_load: 6069 case Intrinsic::masked_gather: { 6070 Value *MaskArg = Call->getArgOperand(2); 6071 Value *PassthruArg = Call->getArgOperand(3); 6072 // If the mask is all zeros or undef, the "passthru" argument is the result. 6073 if (maskIsAllZeroOrUndef(MaskArg)) 6074 return PassthruArg; 6075 return nullptr; 6076 } 6077 case Intrinsic::fshl: 6078 case Intrinsic::fshr: { 6079 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 6080 *ShAmtArg = Call->getArgOperand(2); 6081 6082 // If both operands are undef, the result is undef. 6083 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 6084 return UndefValue::get(F->getReturnType()); 6085 6086 // If shift amount is undef, assume it is zero. 6087 if (Q.isUndefValue(ShAmtArg)) 6088 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 6089 6090 const APInt *ShAmtC; 6091 if (match(ShAmtArg, m_APInt(ShAmtC))) { 6092 // If there's effectively no shift, return the 1st arg or 2nd arg. 6093 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 6094 if (ShAmtC->urem(BitWidth).isZero()) 6095 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 6096 } 6097 6098 // Rotating zero by anything is zero. 6099 if (match(Op0, m_Zero()) && match(Op1, m_Zero())) 6100 return ConstantInt::getNullValue(F->getReturnType()); 6101 6102 // Rotating -1 by anything is -1. 6103 if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes())) 6104 return ConstantInt::getAllOnesValue(F->getReturnType()); 6105 6106 return nullptr; 6107 } 6108 case Intrinsic::experimental_constrained_fma: { 6109 Value *Op0 = Call->getArgOperand(0); 6110 Value *Op1 = Call->getArgOperand(1); 6111 Value *Op2 = Call->getArgOperand(2); 6112 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6113 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, 6114 FPI->getExceptionBehavior().value(), 6115 FPI->getRoundingMode().value())) 6116 return V; 6117 return nullptr; 6118 } 6119 case Intrinsic::fma: 6120 case Intrinsic::fmuladd: { 6121 Value *Op0 = Call->getArgOperand(0); 6122 Value *Op1 = Call->getArgOperand(1); 6123 Value *Op2 = Call->getArgOperand(2); 6124 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore, 6125 RoundingMode::NearestTiesToEven)) 6126 return V; 6127 return nullptr; 6128 } 6129 case Intrinsic::smul_fix: 6130 case Intrinsic::smul_fix_sat: { 6131 Value *Op0 = Call->getArgOperand(0); 6132 Value *Op1 = Call->getArgOperand(1); 6133 Value *Op2 = Call->getArgOperand(2); 6134 Type *ReturnType = F->getReturnType(); 6135 6136 // Canonicalize constant operand as Op1 (ConstantFolding handles the case 6137 // when both Op0 and Op1 are constant so we do not care about that special 6138 // case here). 6139 if (isa<Constant>(Op0)) 6140 std::swap(Op0, Op1); 6141 6142 // X * 0 -> 0 6143 if (match(Op1, m_Zero())) 6144 return Constant::getNullValue(ReturnType); 6145 6146 // X * undef -> 0 6147 if (Q.isUndefValue(Op1)) 6148 return Constant::getNullValue(ReturnType); 6149 6150 // X * (1 << Scale) -> X 6151 APInt ScaledOne = 6152 APInt::getOneBitSet(ReturnType->getScalarSizeInBits(), 6153 cast<ConstantInt>(Op2)->getZExtValue()); 6154 if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne))) 6155 return Op0; 6156 6157 return nullptr; 6158 } 6159 case Intrinsic::vector_insert: { 6160 Value *Vec = Call->getArgOperand(0); 6161 Value *SubVec = Call->getArgOperand(1); 6162 Value *Idx = Call->getArgOperand(2); 6163 Type *ReturnType = F->getReturnType(); 6164 6165 // (insert_vector Y, (extract_vector X, 0), 0) -> X 6166 // where: Y is X, or Y is undef 6167 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 6168 Value *X = nullptr; 6169 if (match(SubVec, 6170 m_Intrinsic<Intrinsic::vector_extract>(m_Value(X), m_Zero())) && 6171 (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 && 6172 X->getType() == ReturnType) 6173 return X; 6174 6175 return nullptr; 6176 } 6177 case Intrinsic::experimental_constrained_fadd: { 6178 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6179 return simplifyFAddInst( 6180 FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(), 6181 Q, FPI->getExceptionBehavior().value(), FPI->getRoundingMode().value()); 6182 } 6183 case Intrinsic::experimental_constrained_fsub: { 6184 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6185 return simplifyFSubInst( 6186 FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(), 6187 Q, FPI->getExceptionBehavior().value(), FPI->getRoundingMode().value()); 6188 } 6189 case Intrinsic::experimental_constrained_fmul: { 6190 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6191 return simplifyFMulInst( 6192 FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(), 6193 Q, FPI->getExceptionBehavior().value(), FPI->getRoundingMode().value()); 6194 } 6195 case Intrinsic::experimental_constrained_fdiv: { 6196 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6197 return simplifyFDivInst( 6198 FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(), 6199 Q, FPI->getExceptionBehavior().value(), FPI->getRoundingMode().value()); 6200 } 6201 case Intrinsic::experimental_constrained_frem: { 6202 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6203 return simplifyFRemInst( 6204 FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(), 6205 Q, FPI->getExceptionBehavior().value(), FPI->getRoundingMode().value()); 6206 } 6207 default: 6208 return nullptr; 6209 } 6210 } 6211 6212 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) { 6213 auto *F = dyn_cast<Function>(Call->getCalledOperand()); 6214 if (!F || !canConstantFoldCallTo(Call, F)) 6215 return nullptr; 6216 6217 SmallVector<Constant *, 4> ConstantArgs; 6218 unsigned NumArgs = Call->arg_size(); 6219 ConstantArgs.reserve(NumArgs); 6220 for (auto &Arg : Call->args()) { 6221 Constant *C = dyn_cast<Constant>(&Arg); 6222 if (!C) { 6223 if (isa<MetadataAsValue>(Arg.get())) 6224 continue; 6225 return nullptr; 6226 } 6227 ConstantArgs.push_back(C); 6228 } 6229 6230 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 6231 } 6232 6233 Value *llvm::simplifyCall(CallBase *Call, const SimplifyQuery &Q) { 6234 // musttail calls can only be simplified if they are also DCEd. 6235 // As we can't guarantee this here, don't simplify them. 6236 if (Call->isMustTailCall()) 6237 return nullptr; 6238 6239 // call undef -> poison 6240 // call null -> poison 6241 Value *Callee = Call->getCalledOperand(); 6242 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 6243 return PoisonValue::get(Call->getType()); 6244 6245 if (Value *V = tryConstantFoldCall(Call, Q)) 6246 return V; 6247 6248 auto *F = dyn_cast<Function>(Callee); 6249 if (F && F->isIntrinsic()) 6250 if (Value *Ret = simplifyIntrinsic(Call, Q)) 6251 return Ret; 6252 6253 return nullptr; 6254 } 6255 6256 Value *llvm::simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q) { 6257 assert(isa<ConstrainedFPIntrinsic>(Call)); 6258 if (Value *V = tryConstantFoldCall(Call, Q)) 6259 return V; 6260 if (Value *Ret = simplifyIntrinsic(Call, Q)) 6261 return Ret; 6262 return nullptr; 6263 } 6264 6265 /// Given operands for a Freeze, see if we can fold the result. 6266 static Value *simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6267 // Use a utility function defined in ValueTracking. 6268 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) 6269 return Op0; 6270 // We have room for improvement. 6271 return nullptr; 6272 } 6273 6274 Value *llvm::simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6275 return ::simplifyFreezeInst(Op0, Q); 6276 } 6277 6278 static Value *simplifyLoadInst(LoadInst *LI, Value *PtrOp, 6279 const SimplifyQuery &Q) { 6280 if (LI->isVolatile()) 6281 return nullptr; 6282 6283 APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0); 6284 auto *PtrOpC = dyn_cast<Constant>(PtrOp); 6285 // Try to convert operand into a constant by stripping offsets while looking 6286 // through invariant.group intrinsics. Don't bother if the underlying object 6287 // is not constant, as calculating GEP offsets is expensive. 6288 if (!PtrOpC && isa<Constant>(getUnderlyingObject(PtrOp))) { 6289 PtrOp = PtrOp->stripAndAccumulateConstantOffsets( 6290 Q.DL, Offset, /* AllowNonInbounts */ true, 6291 /* AllowInvariantGroup */ true); 6292 // Index size may have changed due to address space casts. 6293 Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType())); 6294 PtrOpC = dyn_cast<Constant>(PtrOp); 6295 } 6296 6297 if (PtrOpC) 6298 return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Offset, Q.DL); 6299 return nullptr; 6300 } 6301 6302 /// See if we can compute a simplified version of this instruction. 6303 /// If not, this returns null. 6304 6305 static Value *simplifyInstructionWithOperands(Instruction *I, 6306 ArrayRef<Value *> NewOps, 6307 const SimplifyQuery &SQ, 6308 OptimizationRemarkEmitter *ORE) { 6309 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 6310 Value *Result = nullptr; 6311 6312 switch (I->getOpcode()) { 6313 default: 6314 if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) { 6315 SmallVector<Constant *, 8> NewConstOps(NewOps.size()); 6316 transform(NewOps, NewConstOps.begin(), 6317 [](Value *V) { return cast<Constant>(V); }); 6318 Result = ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI); 6319 } 6320 break; 6321 case Instruction::FNeg: 6322 Result = simplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q); 6323 break; 6324 case Instruction::FAdd: 6325 Result = simplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6326 break; 6327 case Instruction::Add: 6328 Result = simplifyAddInst( 6329 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6330 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6331 break; 6332 case Instruction::FSub: 6333 Result = simplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6334 break; 6335 case Instruction::Sub: 6336 Result = simplifySubInst( 6337 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6338 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6339 break; 6340 case Instruction::FMul: 6341 Result = simplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6342 break; 6343 case Instruction::Mul: 6344 Result = simplifyMulInst(NewOps[0], NewOps[1], Q); 6345 break; 6346 case Instruction::SDiv: 6347 Result = simplifySDivInst(NewOps[0], NewOps[1], Q); 6348 break; 6349 case Instruction::UDiv: 6350 Result = simplifyUDivInst(NewOps[0], NewOps[1], Q); 6351 break; 6352 case Instruction::FDiv: 6353 Result = simplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6354 break; 6355 case Instruction::SRem: 6356 Result = simplifySRemInst(NewOps[0], NewOps[1], Q); 6357 break; 6358 case Instruction::URem: 6359 Result = simplifyURemInst(NewOps[0], NewOps[1], Q); 6360 break; 6361 case Instruction::FRem: 6362 Result = simplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6363 break; 6364 case Instruction::Shl: 6365 Result = simplifyShlInst( 6366 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6367 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6368 break; 6369 case Instruction::LShr: 6370 Result = simplifyLShrInst(NewOps[0], NewOps[1], 6371 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6372 break; 6373 case Instruction::AShr: 6374 Result = simplifyAShrInst(NewOps[0], NewOps[1], 6375 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6376 break; 6377 case Instruction::And: 6378 Result = simplifyAndInst(NewOps[0], NewOps[1], Q); 6379 break; 6380 case Instruction::Or: 6381 Result = simplifyOrInst(NewOps[0], NewOps[1], Q); 6382 break; 6383 case Instruction::Xor: 6384 Result = simplifyXorInst(NewOps[0], NewOps[1], Q); 6385 break; 6386 case Instruction::ICmp: 6387 Result = simplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0], 6388 NewOps[1], Q); 6389 break; 6390 case Instruction::FCmp: 6391 Result = simplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0], 6392 NewOps[1], I->getFastMathFlags(), Q); 6393 break; 6394 case Instruction::Select: 6395 Result = simplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q); 6396 break; 6397 case Instruction::GetElementPtr: { 6398 auto *GEPI = cast<GetElementPtrInst>(I); 6399 Result = 6400 simplifyGEPInst(GEPI->getSourceElementType(), NewOps[0], 6401 makeArrayRef(NewOps).slice(1), GEPI->isInBounds(), Q); 6402 break; 6403 } 6404 case Instruction::InsertValue: { 6405 InsertValueInst *IV = cast<InsertValueInst>(I); 6406 Result = simplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q); 6407 break; 6408 } 6409 case Instruction::InsertElement: { 6410 Result = simplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q); 6411 break; 6412 } 6413 case Instruction::ExtractValue: { 6414 auto *EVI = cast<ExtractValueInst>(I); 6415 Result = simplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q); 6416 break; 6417 } 6418 case Instruction::ExtractElement: { 6419 Result = simplifyExtractElementInst(NewOps[0], NewOps[1], Q); 6420 break; 6421 } 6422 case Instruction::ShuffleVector: { 6423 auto *SVI = cast<ShuffleVectorInst>(I); 6424 Result = simplifyShuffleVectorInst( 6425 NewOps[0], NewOps[1], SVI->getShuffleMask(), SVI->getType(), Q); 6426 break; 6427 } 6428 case Instruction::PHI: 6429 Result = simplifyPHINode(cast<PHINode>(I), NewOps, Q); 6430 break; 6431 case Instruction::Call: { 6432 // TODO: Use NewOps 6433 Result = simplifyCall(cast<CallInst>(I), Q); 6434 break; 6435 } 6436 case Instruction::Freeze: 6437 Result = llvm::simplifyFreezeInst(NewOps[0], Q); 6438 break; 6439 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 6440 #include "llvm/IR/Instruction.def" 6441 #undef HANDLE_CAST_INST 6442 Result = simplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q); 6443 break; 6444 case Instruction::Alloca: 6445 // No simplifications for Alloca and it can't be constant folded. 6446 Result = nullptr; 6447 break; 6448 case Instruction::Load: 6449 Result = simplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q); 6450 break; 6451 } 6452 6453 /// If called on unreachable code, the above logic may report that the 6454 /// instruction simplified to itself. Make life easier for users by 6455 /// detecting that case here, returning a safe value instead. 6456 return Result == I ? UndefValue::get(I->getType()) : Result; 6457 } 6458 6459 Value *llvm::simplifyInstructionWithOperands(Instruction *I, 6460 ArrayRef<Value *> NewOps, 6461 const SimplifyQuery &SQ, 6462 OptimizationRemarkEmitter *ORE) { 6463 assert(NewOps.size() == I->getNumOperands() && 6464 "Number of operands should match the instruction!"); 6465 return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE); 6466 } 6467 6468 Value *llvm::simplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 6469 OptimizationRemarkEmitter *ORE) { 6470 SmallVector<Value *, 8> Ops(I->operands()); 6471 return ::simplifyInstructionWithOperands(I, Ops, SQ, ORE); 6472 } 6473 6474 /// Implementation of recursive simplification through an instruction's 6475 /// uses. 6476 /// 6477 /// This is the common implementation of the recursive simplification routines. 6478 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 6479 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 6480 /// instructions to process and attempt to simplify it using 6481 /// InstructionSimplify. Recursively visited users which could not be 6482 /// simplified themselves are to the optional UnsimplifiedUsers set for 6483 /// further processing by the caller. 6484 /// 6485 /// This routine returns 'true' only when *it* simplifies something. The passed 6486 /// in simplified value does not count toward this. 6487 static bool replaceAndRecursivelySimplifyImpl( 6488 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6489 const DominatorTree *DT, AssumptionCache *AC, 6490 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 6491 bool Simplified = false; 6492 SmallSetVector<Instruction *, 8> Worklist; 6493 const DataLayout &DL = I->getModule()->getDataLayout(); 6494 6495 // If we have an explicit value to collapse to, do that round of the 6496 // simplification loop by hand initially. 6497 if (SimpleV) { 6498 for (User *U : I->users()) 6499 if (U != I) 6500 Worklist.insert(cast<Instruction>(U)); 6501 6502 // Replace the instruction with its simplified value. 6503 I->replaceAllUsesWith(SimpleV); 6504 6505 // Gracefully handle edge cases where the instruction is not wired into any 6506 // parent block. 6507 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6508 !I->mayHaveSideEffects()) 6509 I->eraseFromParent(); 6510 } else { 6511 Worklist.insert(I); 6512 } 6513 6514 // Note that we must test the size on each iteration, the worklist can grow. 6515 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 6516 I = Worklist[Idx]; 6517 6518 // See if this instruction simplifies. 6519 SimpleV = simplifyInstruction(I, {DL, TLI, DT, AC}); 6520 if (!SimpleV) { 6521 if (UnsimplifiedUsers) 6522 UnsimplifiedUsers->insert(I); 6523 continue; 6524 } 6525 6526 Simplified = true; 6527 6528 // Stash away all the uses of the old instruction so we can check them for 6529 // recursive simplifications after a RAUW. This is cheaper than checking all 6530 // uses of To on the recursive step in most cases. 6531 for (User *U : I->users()) 6532 Worklist.insert(cast<Instruction>(U)); 6533 6534 // Replace the instruction with its simplified value. 6535 I->replaceAllUsesWith(SimpleV); 6536 6537 // Gracefully handle edge cases where the instruction is not wired into any 6538 // parent block. 6539 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6540 !I->mayHaveSideEffects()) 6541 I->eraseFromParent(); 6542 } 6543 return Simplified; 6544 } 6545 6546 bool llvm::replaceAndRecursivelySimplify( 6547 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6548 const DominatorTree *DT, AssumptionCache *AC, 6549 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 6550 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 6551 assert(SimpleV && "Must provide a simplified value."); 6552 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 6553 UnsimplifiedUsers); 6554 } 6555 6556 namespace llvm { 6557 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 6558 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 6559 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 6560 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6561 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 6562 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 6563 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 6564 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6565 } 6566 6567 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 6568 const DataLayout &DL) { 6569 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 6570 } 6571 6572 template <class T, class... TArgs> 6573 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 6574 Function &F) { 6575 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 6576 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 6577 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 6578 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6579 } 6580 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 6581 Function &); 6582 } // namespace llvm 6583 6584 void InstSimplifyFolder::anchor() {} 6585