1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/CaptureTracking.h" 27 #include "llvm/Analysis/CmpInstAnalysis.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/InstSimplifyFolder.h" 30 #include "llvm/Analysis/LoopAnalysisManager.h" 31 #include "llvm/Analysis/MemoryBuiltins.h" 32 #include "llvm/Analysis/OverflowInstAnalysis.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/ConstantRange.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/Support/KnownBits.h" 43 #include <algorithm> 44 using namespace llvm; 45 using namespace llvm::PatternMatch; 46 47 #define DEBUG_TYPE "instsimplify" 48 49 enum { RecursionLimit = 3 }; 50 51 STATISTIC(NumExpand, "Number of expansions"); 52 STATISTIC(NumReassoc, "Number of reassociations"); 53 54 static Value *simplifyAndInst(Value *, Value *, const SimplifyQuery &, 55 unsigned); 56 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 57 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 58 const SimplifyQuery &, unsigned); 59 static Value *simplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 60 unsigned); 61 static Value *simplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 62 const SimplifyQuery &, unsigned); 63 static Value *simplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 64 unsigned); 65 static Value *simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 66 const SimplifyQuery &Q, unsigned MaxRecurse); 67 static Value *simplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 68 static Value *simplifyXorInst(Value *, Value *, const SimplifyQuery &, 69 unsigned); 70 static Value *simplifyCastInst(unsigned, Value *, Type *, const SimplifyQuery &, 71 unsigned); 72 static Value *simplifyGEPInst(Type *, Value *, ArrayRef<Value *>, bool, 73 const SimplifyQuery &, unsigned); 74 static Value *simplifySelectInst(Value *, Value *, Value *, 75 const SimplifyQuery &, unsigned); 76 77 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 78 Value *FalseVal) { 79 BinaryOperator::BinaryOps BinOpCode; 80 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 81 BinOpCode = BO->getOpcode(); 82 else 83 return nullptr; 84 85 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 86 if (BinOpCode == BinaryOperator::Or) { 87 ExpectedPred = ICmpInst::ICMP_NE; 88 } else if (BinOpCode == BinaryOperator::And) { 89 ExpectedPred = ICmpInst::ICMP_EQ; 90 } else 91 return nullptr; 92 93 // %A = icmp eq %TV, %FV 94 // %B = icmp eq %X, %Y (and one of these is a select operand) 95 // %C = and %A, %B 96 // %D = select %C, %TV, %FV 97 // --> 98 // %FV 99 100 // %A = icmp ne %TV, %FV 101 // %B = icmp ne %X, %Y (and one of these is a select operand) 102 // %C = or %A, %B 103 // %D = select %C, %TV, %FV 104 // --> 105 // %TV 106 Value *X, *Y; 107 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 108 m_Specific(FalseVal)), 109 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 110 Pred1 != Pred2 || Pred1 != ExpectedPred) 111 return nullptr; 112 113 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 114 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 115 116 return nullptr; 117 } 118 119 /// For a boolean type or a vector of boolean type, return false or a vector 120 /// with every element false. 121 static Constant *getFalse(Type *Ty) { return ConstantInt::getFalse(Ty); } 122 123 /// For a boolean type or a vector of boolean type, return true or a vector 124 /// with every element true. 125 static Constant *getTrue(Type *Ty) { return ConstantInt::getTrue(Ty); } 126 127 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 128 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 129 Value *RHS) { 130 CmpInst *Cmp = dyn_cast<CmpInst>(V); 131 if (!Cmp) 132 return false; 133 CmpInst::Predicate CPred = Cmp->getPredicate(); 134 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 135 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 136 return true; 137 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 138 CRHS == LHS; 139 } 140 141 /// Simplify comparison with true or false branch of select: 142 /// %sel = select i1 %cond, i32 %tv, i32 %fv 143 /// %cmp = icmp sle i32 %sel, %rhs 144 /// Compose new comparison by substituting %sel with either %tv or %fv 145 /// and see if it simplifies. 146 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 147 Value *RHS, Value *Cond, 148 const SimplifyQuery &Q, unsigned MaxRecurse, 149 Constant *TrueOrFalse) { 150 Value *SimplifiedCmp = simplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 151 if (SimplifiedCmp == Cond) { 152 // %cmp simplified to the select condition (%cond). 153 return TrueOrFalse; 154 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 155 // It didn't simplify. However, if composed comparison is equivalent 156 // to the select condition (%cond) then we can replace it. 157 return TrueOrFalse; 158 } 159 return SimplifiedCmp; 160 } 161 162 /// Simplify comparison with true branch of select 163 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 164 Value *RHS, Value *Cond, 165 const SimplifyQuery &Q, 166 unsigned MaxRecurse) { 167 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 168 getTrue(Cond->getType())); 169 } 170 171 /// Simplify comparison with false branch of select 172 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 173 Value *RHS, Value *Cond, 174 const SimplifyQuery &Q, 175 unsigned MaxRecurse) { 176 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 177 getFalse(Cond->getType())); 178 } 179 180 /// We know comparison with both branches of select can be simplified, but they 181 /// are not equal. This routine handles some logical simplifications. 182 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 183 Value *Cond, 184 const SimplifyQuery &Q, 185 unsigned MaxRecurse) { 186 // If the false value simplified to false, then the result of the compare 187 // is equal to "Cond && TCmp". This also catches the case when the false 188 // value simplified to false and the true value to true, returning "Cond". 189 // Folding select to and/or isn't poison-safe in general; impliesPoison 190 // checks whether folding it does not convert a well-defined value into 191 // poison. 192 if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond)) 193 if (Value *V = simplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 194 return V; 195 // If the true value simplified to true, then the result of the compare 196 // is equal to "Cond || FCmp". 197 if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond)) 198 if (Value *V = simplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 199 return V; 200 // Finally, if the false value simplified to true and the true value to 201 // false, then the result of the compare is equal to "!Cond". 202 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 203 if (Value *V = simplifyXorInst( 204 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 205 return V; 206 return nullptr; 207 } 208 209 /// Does the given value dominate the specified phi node? 210 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 211 Instruction *I = dyn_cast<Instruction>(V); 212 if (!I) 213 // Arguments and constants dominate all instructions. 214 return true; 215 216 // If we are processing instructions (and/or basic blocks) that have not been 217 // fully added to a function, the parent nodes may still be null. Simply 218 // return the conservative answer in these cases. 219 if (!I->getParent() || !P->getParent() || !I->getFunction()) 220 return false; 221 222 // If we have a DominatorTree then do a precise test. 223 if (DT) 224 return DT->dominates(I, P); 225 226 // Otherwise, if the instruction is in the entry block and is not an invoke, 227 // then it obviously dominates all phi nodes. 228 if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) && 229 !isa<CallBrInst>(I)) 230 return true; 231 232 return false; 233 } 234 235 /// Try to simplify a binary operator of form "V op OtherOp" where V is 236 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 237 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 238 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 239 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 240 const SimplifyQuery &Q, unsigned MaxRecurse) { 241 auto *B = dyn_cast<BinaryOperator>(V); 242 if (!B || B->getOpcode() != OpcodeToExpand) 243 return nullptr; 244 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 245 Value *L = 246 simplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), MaxRecurse); 247 if (!L) 248 return nullptr; 249 Value *R = 250 simplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), MaxRecurse); 251 if (!R) 252 return nullptr; 253 254 // Does the expanded pair of binops simplify to the existing binop? 255 if ((L == B0 && R == B1) || 256 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 257 ++NumExpand; 258 return B; 259 } 260 261 // Otherwise, return "L op' R" if it simplifies. 262 Value *S = simplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 263 if (!S) 264 return nullptr; 265 266 ++NumExpand; 267 return S; 268 } 269 270 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 271 /// distributing op over op'. 272 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, Value *L, 273 Value *R, 274 Instruction::BinaryOps OpcodeToExpand, 275 const SimplifyQuery &Q, 276 unsigned MaxRecurse) { 277 // Recursion is always used, so bail out at once if we already hit the limit. 278 if (!MaxRecurse--) 279 return nullptr; 280 281 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 282 return V; 283 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 284 return V; 285 return nullptr; 286 } 287 288 /// Generic simplifications for associative binary operations. 289 /// Returns the simpler value, or null if none was found. 290 static Value *simplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 291 Value *LHS, Value *RHS, 292 const SimplifyQuery &Q, 293 unsigned MaxRecurse) { 294 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 295 296 // Recursion is always used, so bail out at once if we already hit the limit. 297 if (!MaxRecurse--) 298 return nullptr; 299 300 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 301 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 302 303 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 304 if (Op0 && Op0->getOpcode() == Opcode) { 305 Value *A = Op0->getOperand(0); 306 Value *B = Op0->getOperand(1); 307 Value *C = RHS; 308 309 // Does "B op C" simplify? 310 if (Value *V = simplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 311 // It does! Return "A op V" if it simplifies or is already available. 312 // If V equals B then "A op V" is just the LHS. 313 if (V == B) 314 return LHS; 315 // Otherwise return "A op V" if it simplifies. 316 if (Value *W = simplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 317 ++NumReassoc; 318 return W; 319 } 320 } 321 } 322 323 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 324 if (Op1 && Op1->getOpcode() == Opcode) { 325 Value *A = LHS; 326 Value *B = Op1->getOperand(0); 327 Value *C = Op1->getOperand(1); 328 329 // Does "A op B" simplify? 330 if (Value *V = simplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 331 // It does! Return "V op C" if it simplifies or is already available. 332 // If V equals B then "V op C" is just the RHS. 333 if (V == B) 334 return RHS; 335 // Otherwise return "V op C" if it simplifies. 336 if (Value *W = simplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 337 ++NumReassoc; 338 return W; 339 } 340 } 341 } 342 343 // The remaining transforms require commutativity as well as associativity. 344 if (!Instruction::isCommutative(Opcode)) 345 return nullptr; 346 347 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 348 if (Op0 && Op0->getOpcode() == Opcode) { 349 Value *A = Op0->getOperand(0); 350 Value *B = Op0->getOperand(1); 351 Value *C = RHS; 352 353 // Does "C op A" simplify? 354 if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 355 // It does! Return "V op B" if it simplifies or is already available. 356 // If V equals A then "V op B" is just the LHS. 357 if (V == A) 358 return LHS; 359 // Otherwise return "V op B" if it simplifies. 360 if (Value *W = simplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 361 ++NumReassoc; 362 return W; 363 } 364 } 365 } 366 367 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 368 if (Op1 && Op1->getOpcode() == Opcode) { 369 Value *A = LHS; 370 Value *B = Op1->getOperand(0); 371 Value *C = Op1->getOperand(1); 372 373 // Does "C op A" simplify? 374 if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 375 // It does! Return "B op V" if it simplifies or is already available. 376 // If V equals C then "B op V" is just the RHS. 377 if (V == C) 378 return RHS; 379 // Otherwise return "B op V" if it simplifies. 380 if (Value *W = simplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 381 ++NumReassoc; 382 return W; 383 } 384 } 385 } 386 387 return nullptr; 388 } 389 390 /// In the case of a binary operation with a select instruction as an operand, 391 /// try to simplify the binop by seeing whether evaluating it on both branches 392 /// of the select results in the same value. Returns the common value if so, 393 /// otherwise returns null. 394 static Value *threadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 395 Value *RHS, const SimplifyQuery &Q, 396 unsigned MaxRecurse) { 397 // Recursion is always used, so bail out at once if we already hit the limit. 398 if (!MaxRecurse--) 399 return nullptr; 400 401 SelectInst *SI; 402 if (isa<SelectInst>(LHS)) { 403 SI = cast<SelectInst>(LHS); 404 } else { 405 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 406 SI = cast<SelectInst>(RHS); 407 } 408 409 // Evaluate the BinOp on the true and false branches of the select. 410 Value *TV; 411 Value *FV; 412 if (SI == LHS) { 413 TV = simplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 414 FV = simplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 415 } else { 416 TV = simplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 417 FV = simplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 418 } 419 420 // If they simplified to the same value, then return the common value. 421 // If they both failed to simplify then return null. 422 if (TV == FV) 423 return TV; 424 425 // If one branch simplified to undef, return the other one. 426 if (TV && Q.isUndefValue(TV)) 427 return FV; 428 if (FV && Q.isUndefValue(FV)) 429 return TV; 430 431 // If applying the operation did not change the true and false select values, 432 // then the result of the binop is the select itself. 433 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 434 return SI; 435 436 // If one branch simplified and the other did not, and the simplified 437 // value is equal to the unsimplified one, return the simplified value. 438 // For example, select (cond, X, X & Z) & Z -> X & Z. 439 if ((FV && !TV) || (TV && !FV)) { 440 // Check that the simplified value has the form "X op Y" where "op" is the 441 // same as the original operation. 442 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 443 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 444 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 445 // We already know that "op" is the same as for the simplified value. See 446 // if the operands match too. If so, return the simplified value. 447 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 448 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 449 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 450 if (Simplified->getOperand(0) == UnsimplifiedLHS && 451 Simplified->getOperand(1) == UnsimplifiedRHS) 452 return Simplified; 453 if (Simplified->isCommutative() && 454 Simplified->getOperand(1) == UnsimplifiedLHS && 455 Simplified->getOperand(0) == UnsimplifiedRHS) 456 return Simplified; 457 } 458 } 459 460 return nullptr; 461 } 462 463 /// In the case of a comparison with a select instruction, try to simplify the 464 /// comparison by seeing whether both branches of the select result in the same 465 /// value. Returns the common value if so, otherwise returns null. 466 /// For example, if we have: 467 /// %tmp = select i1 %cmp, i32 1, i32 2 468 /// %cmp1 = icmp sle i32 %tmp, 3 469 /// We can simplify %cmp1 to true, because both branches of select are 470 /// less than 3. We compose new comparison by substituting %tmp with both 471 /// branches of select and see if it can be simplified. 472 static Value *threadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 473 Value *RHS, const SimplifyQuery &Q, 474 unsigned MaxRecurse) { 475 // Recursion is always used, so bail out at once if we already hit the limit. 476 if (!MaxRecurse--) 477 return nullptr; 478 479 // Make sure the select is on the LHS. 480 if (!isa<SelectInst>(LHS)) { 481 std::swap(LHS, RHS); 482 Pred = CmpInst::getSwappedPredicate(Pred); 483 } 484 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 485 SelectInst *SI = cast<SelectInst>(LHS); 486 Value *Cond = SI->getCondition(); 487 Value *TV = SI->getTrueValue(); 488 Value *FV = SI->getFalseValue(); 489 490 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 491 // Does "cmp TV, RHS" simplify? 492 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 493 if (!TCmp) 494 return nullptr; 495 496 // Does "cmp FV, RHS" simplify? 497 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 498 if (!FCmp) 499 return nullptr; 500 501 // If both sides simplified to the same value, then use it as the result of 502 // the original comparison. 503 if (TCmp == FCmp) 504 return TCmp; 505 506 // The remaining cases only make sense if the select condition has the same 507 // type as the result of the comparison, so bail out if this is not so. 508 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 509 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 510 511 return nullptr; 512 } 513 514 /// In the case of a binary operation with an operand that is a PHI instruction, 515 /// try to simplify the binop by seeing whether evaluating it on the incoming 516 /// phi values yields the same result for every value. If so returns the common 517 /// value, otherwise returns null. 518 static Value *threadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 519 Value *RHS, const SimplifyQuery &Q, 520 unsigned MaxRecurse) { 521 // Recursion is always used, so bail out at once if we already hit the limit. 522 if (!MaxRecurse--) 523 return nullptr; 524 525 PHINode *PI; 526 if (isa<PHINode>(LHS)) { 527 PI = cast<PHINode>(LHS); 528 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 529 if (!valueDominatesPHI(RHS, PI, Q.DT)) 530 return nullptr; 531 } else { 532 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 533 PI = cast<PHINode>(RHS); 534 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 535 if (!valueDominatesPHI(LHS, PI, Q.DT)) 536 return nullptr; 537 } 538 539 // Evaluate the BinOp on the incoming phi values. 540 Value *CommonValue = nullptr; 541 for (Value *Incoming : PI->incoming_values()) { 542 // If the incoming value is the phi node itself, it can safely be skipped. 543 if (Incoming == PI) 544 continue; 545 Value *V = PI == LHS ? simplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) 546 : simplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 547 // If the operation failed to simplify, or simplified to a different value 548 // to previously, then give up. 549 if (!V || (CommonValue && V != CommonValue)) 550 return nullptr; 551 CommonValue = V; 552 } 553 554 return CommonValue; 555 } 556 557 /// In the case of a comparison with a PHI instruction, try to simplify the 558 /// comparison by seeing whether comparing with all of the incoming phi values 559 /// yields the same result every time. If so returns the common result, 560 /// otherwise returns null. 561 static Value *threadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 562 const SimplifyQuery &Q, unsigned MaxRecurse) { 563 // Recursion is always used, so bail out at once if we already hit the limit. 564 if (!MaxRecurse--) 565 return nullptr; 566 567 // Make sure the phi is on the LHS. 568 if (!isa<PHINode>(LHS)) { 569 std::swap(LHS, RHS); 570 Pred = CmpInst::getSwappedPredicate(Pred); 571 } 572 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 573 PHINode *PI = cast<PHINode>(LHS); 574 575 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 576 if (!valueDominatesPHI(RHS, PI, Q.DT)) 577 return nullptr; 578 579 // Evaluate the BinOp on the incoming phi values. 580 Value *CommonValue = nullptr; 581 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 582 Value *Incoming = PI->getIncomingValue(u); 583 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 584 // If the incoming value is the phi node itself, it can safely be skipped. 585 if (Incoming == PI) 586 continue; 587 // Change the context instruction to the "edge" that flows into the phi. 588 // This is important because that is where incoming is actually "evaluated" 589 // even though it is used later somewhere else. 590 Value *V = simplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 591 MaxRecurse); 592 // If the operation failed to simplify, or simplified to a different value 593 // to previously, then give up. 594 if (!V || (CommonValue && V != CommonValue)) 595 return nullptr; 596 CommonValue = V; 597 } 598 599 return CommonValue; 600 } 601 602 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 603 Value *&Op0, Value *&Op1, 604 const SimplifyQuery &Q) { 605 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 606 if (auto *CRHS = dyn_cast<Constant>(Op1)) { 607 switch (Opcode) { 608 default: 609 break; 610 case Instruction::FAdd: 611 case Instruction::FSub: 612 case Instruction::FMul: 613 case Instruction::FDiv: 614 case Instruction::FRem: 615 if (Q.CxtI != nullptr) 616 return ConstantFoldFPInstOperands(Opcode, CLHS, CRHS, Q.DL, Q.CxtI); 617 } 618 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 619 } 620 621 // Canonicalize the constant to the RHS if this is a commutative operation. 622 if (Instruction::isCommutative(Opcode)) 623 std::swap(Op0, Op1); 624 } 625 return nullptr; 626 } 627 628 /// Given operands for an Add, see if we can fold the result. 629 /// If not, this returns null. 630 static Value *simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 631 const SimplifyQuery &Q, unsigned MaxRecurse) { 632 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 633 return C; 634 635 // X + poison -> poison 636 if (isa<PoisonValue>(Op1)) 637 return Op1; 638 639 // X + undef -> undef 640 if (Q.isUndefValue(Op1)) 641 return Op1; 642 643 // X + 0 -> X 644 if (match(Op1, m_Zero())) 645 return Op0; 646 647 // If two operands are negative, return 0. 648 if (isKnownNegation(Op0, Op1)) 649 return Constant::getNullValue(Op0->getType()); 650 651 // X + (Y - X) -> Y 652 // (Y - X) + X -> Y 653 // Eg: X + -X -> 0 654 Value *Y = nullptr; 655 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 656 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 657 return Y; 658 659 // X + ~X -> -1 since ~X = -X-1 660 Type *Ty = Op0->getType(); 661 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) 662 return Constant::getAllOnesValue(Ty); 663 664 // add nsw/nuw (xor Y, signmask), signmask --> Y 665 // The no-wrapping add guarantees that the top bit will be set by the add. 666 // Therefore, the xor must be clearing the already set sign bit of Y. 667 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 668 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 669 return Y; 670 671 // add nuw %x, -1 -> -1, because %x can only be 0. 672 if (IsNUW && match(Op1, m_AllOnes())) 673 return Op1; // Which is -1. 674 675 /// i1 add -> xor. 676 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 677 if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1)) 678 return V; 679 680 // Try some generic simplifications for associative operations. 681 if (Value *V = 682 simplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, MaxRecurse)) 683 return V; 684 685 // Threading Add over selects and phi nodes is pointless, so don't bother. 686 // Threading over the select in "A + select(cond, B, C)" means evaluating 687 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 688 // only if B and C are equal. If B and C are equal then (since we assume 689 // that operands have already been simplified) "select(cond, B, C)" should 690 // have been simplified to the common value of B and C already. Analysing 691 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 692 // for threading over phi nodes. 693 694 return nullptr; 695 } 696 697 Value *llvm::simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 698 const SimplifyQuery &Query) { 699 return ::simplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 700 } 701 702 /// Compute the base pointer and cumulative constant offsets for V. 703 /// 704 /// This strips all constant offsets off of V, leaving it the base pointer, and 705 /// accumulates the total constant offset applied in the returned constant. 706 /// It returns zero if there are no constant offsets applied. 707 /// 708 /// This is very similar to stripAndAccumulateConstantOffsets(), except it 709 /// normalizes the offset bitwidth to the stripped pointer type, not the 710 /// original pointer type. 711 static APInt stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 712 bool AllowNonInbounds = false) { 713 assert(V->getType()->isPtrOrPtrVectorTy()); 714 715 APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType())); 716 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 717 // As that strip may trace through `addrspacecast`, need to sext or trunc 718 // the offset calculated. 719 return Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(V->getType())); 720 } 721 722 /// Compute the constant difference between two pointer values. 723 /// If the difference is not a constant, returns zero. 724 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 725 Value *RHS) { 726 APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 727 APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 728 729 // If LHS and RHS are not related via constant offsets to the same base 730 // value, there is nothing we can do here. 731 if (LHS != RHS) 732 return nullptr; 733 734 // Otherwise, the difference of LHS - RHS can be computed as: 735 // LHS - RHS 736 // = (LHSOffset + Base) - (RHSOffset + Base) 737 // = LHSOffset - RHSOffset 738 Constant *Res = ConstantInt::get(LHS->getContext(), LHSOffset - RHSOffset); 739 if (auto *VecTy = dyn_cast<VectorType>(LHS->getType())) 740 Res = ConstantVector::getSplat(VecTy->getElementCount(), Res); 741 return Res; 742 } 743 744 /// Given operands for a Sub, see if we can fold the result. 745 /// If not, this returns null. 746 static Value *simplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 747 const SimplifyQuery &Q, unsigned MaxRecurse) { 748 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 749 return C; 750 751 // X - poison -> poison 752 // poison - X -> poison 753 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 754 return PoisonValue::get(Op0->getType()); 755 756 // X - undef -> undef 757 // undef - X -> undef 758 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 759 return UndefValue::get(Op0->getType()); 760 761 // X - 0 -> X 762 if (match(Op1, m_Zero())) 763 return Op0; 764 765 // X - X -> 0 766 if (Op0 == Op1) 767 return Constant::getNullValue(Op0->getType()); 768 769 // Is this a negation? 770 if (match(Op0, m_Zero())) { 771 // 0 - X -> 0 if the sub is NUW. 772 if (isNUW) 773 return Constant::getNullValue(Op0->getType()); 774 775 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 776 if (Known.Zero.isMaxSignedValue()) { 777 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 778 // Op1 must be 0 because negating the minimum signed value is undefined. 779 if (isNSW) 780 return Constant::getNullValue(Op0->getType()); 781 782 // 0 - X -> X if X is 0 or the minimum signed value. 783 return Op1; 784 } 785 } 786 787 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 788 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 789 Value *X = nullptr, *Y = nullptr, *Z = Op1; 790 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 791 // See if "V === Y - Z" simplifies. 792 if (Value *V = simplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse - 1)) 793 // It does! Now see if "X + V" simplifies. 794 if (Value *W = simplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse - 1)) { 795 // It does, we successfully reassociated! 796 ++NumReassoc; 797 return W; 798 } 799 // See if "V === X - Z" simplifies. 800 if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1)) 801 // It does! Now see if "Y + V" simplifies. 802 if (Value *W = simplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse - 1)) { 803 // It does, we successfully reassociated! 804 ++NumReassoc; 805 return W; 806 } 807 } 808 809 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 810 // For example, X - (X + 1) -> -1 811 X = Op0; 812 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 813 // See if "V === X - Y" simplifies. 814 if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1)) 815 // It does! Now see if "V - Z" simplifies. 816 if (Value *W = simplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse - 1)) { 817 // It does, we successfully reassociated! 818 ++NumReassoc; 819 return W; 820 } 821 // See if "V === X - Z" simplifies. 822 if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1)) 823 // It does! Now see if "V - Y" simplifies. 824 if (Value *W = simplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse - 1)) { 825 // It does, we successfully reassociated! 826 ++NumReassoc; 827 return W; 828 } 829 } 830 831 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 832 // For example, X - (X - Y) -> Y. 833 Z = Op0; 834 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 835 // See if "V === Z - X" simplifies. 836 if (Value *V = simplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse - 1)) 837 // It does! Now see if "V + Y" simplifies. 838 if (Value *W = simplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse - 1)) { 839 // It does, we successfully reassociated! 840 ++NumReassoc; 841 return W; 842 } 843 844 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 845 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 846 match(Op1, m_Trunc(m_Value(Y)))) 847 if (X->getType() == Y->getType()) 848 // See if "V === X - Y" simplifies. 849 if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1)) 850 // It does! Now see if "trunc V" simplifies. 851 if (Value *W = simplifyCastInst(Instruction::Trunc, V, Op0->getType(), 852 Q, MaxRecurse - 1)) 853 // It does, return the simplified "trunc V". 854 return W; 855 856 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 857 if (match(Op0, m_PtrToInt(m_Value(X))) && match(Op1, m_PtrToInt(m_Value(Y)))) 858 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 859 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 860 861 // i1 sub -> xor. 862 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 863 if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1)) 864 return V; 865 866 // Threading Sub over selects and phi nodes is pointless, so don't bother. 867 // Threading over the select in "A - select(cond, B, C)" means evaluating 868 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 869 // only if B and C are equal. If B and C are equal then (since we assume 870 // that operands have already been simplified) "select(cond, B, C)" should 871 // have been simplified to the common value of B and C already. Analysing 872 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 873 // for threading over phi nodes. 874 875 return nullptr; 876 } 877 878 Value *llvm::simplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 879 const SimplifyQuery &Q) { 880 return ::simplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 881 } 882 883 /// Given operands for a Mul, see if we can fold the result. 884 /// If not, this returns null. 885 static Value *simplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 886 unsigned MaxRecurse) { 887 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 888 return C; 889 890 // X * poison -> poison 891 if (isa<PoisonValue>(Op1)) 892 return Op1; 893 894 // X * undef -> 0 895 // X * 0 -> 0 896 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 897 return Constant::getNullValue(Op0->getType()); 898 899 // X * 1 -> X 900 if (match(Op1, m_One())) 901 return Op0; 902 903 // (X / Y) * Y -> X if the division is exact. 904 Value *X = nullptr; 905 if (Q.IIQ.UseInstrInfo && 906 (match(Op0, 907 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 908 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 909 return X; 910 911 // i1 mul -> and. 912 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 913 if (Value *V = simplifyAndInst(Op0, Op1, Q, MaxRecurse - 1)) 914 return V; 915 916 // Try some generic simplifications for associative operations. 917 if (Value *V = 918 simplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) 919 return V; 920 921 // Mul distributes over Add. Try some generic simplifications based on this. 922 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 923 Instruction::Add, Q, MaxRecurse)) 924 return V; 925 926 // If the operation is with the result of a select instruction, check whether 927 // operating on either branch of the select always yields the same value. 928 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 929 if (Value *V = 930 threadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) 931 return V; 932 933 // If the operation is with the result of a phi instruction, check whether 934 // operating on all incoming values of the phi always yields the same value. 935 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 936 if (Value *V = 937 threadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) 938 return V; 939 940 return nullptr; 941 } 942 943 Value *llvm::simplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 944 return ::simplifyMulInst(Op0, Op1, Q, RecursionLimit); 945 } 946 947 /// Check for common or similar folds of integer division or integer remainder. 948 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 949 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, 950 Value *Op1, const SimplifyQuery &Q) { 951 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv); 952 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem); 953 954 Type *Ty = Op0->getType(); 955 956 // X / undef -> poison 957 // X % undef -> poison 958 if (Q.isUndefValue(Op1) || isa<PoisonValue>(Op1)) 959 return PoisonValue::get(Ty); 960 961 // X / 0 -> poison 962 // X % 0 -> poison 963 // We don't need to preserve faults! 964 if (match(Op1, m_Zero())) 965 return PoisonValue::get(Ty); 966 967 // If any element of a constant divisor fixed width vector is zero or undef 968 // the behavior is undefined and we can fold the whole op to poison. 969 auto *Op1C = dyn_cast<Constant>(Op1); 970 auto *VTy = dyn_cast<FixedVectorType>(Ty); 971 if (Op1C && VTy) { 972 unsigned NumElts = VTy->getNumElements(); 973 for (unsigned i = 0; i != NumElts; ++i) { 974 Constant *Elt = Op1C->getAggregateElement(i); 975 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) 976 return PoisonValue::get(Ty); 977 } 978 } 979 980 // poison / X -> poison 981 // poison % X -> poison 982 if (isa<PoisonValue>(Op0)) 983 return Op0; 984 985 // undef / X -> 0 986 // undef % X -> 0 987 if (Q.isUndefValue(Op0)) 988 return Constant::getNullValue(Ty); 989 990 // 0 / X -> 0 991 // 0 % X -> 0 992 if (match(Op0, m_Zero())) 993 return Constant::getNullValue(Op0->getType()); 994 995 // X / X -> 1 996 // X % X -> 0 997 if (Op0 == Op1) 998 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 999 1000 // X / 1 -> X 1001 // X % 1 -> 0 1002 // If this is a boolean op (single-bit element type), we can't have 1003 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 1004 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 1005 Value *X; 1006 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 1007 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1008 return IsDiv ? Op0 : Constant::getNullValue(Ty); 1009 1010 // If X * Y does not overflow, then: 1011 // X * Y / Y -> X 1012 // X * Y % Y -> 0 1013 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1014 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1015 // The multiplication can't overflow if it is defined not to, or if 1016 // X == A / Y for some A. 1017 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1018 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) || 1019 (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1020 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) { 1021 return IsDiv ? X : Constant::getNullValue(Op0->getType()); 1022 } 1023 } 1024 1025 return nullptr; 1026 } 1027 1028 /// Given a predicate and two operands, return true if the comparison is true. 1029 /// This is a helper for div/rem simplification where we return some other value 1030 /// when we can prove a relationship between the operands. 1031 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 1032 const SimplifyQuery &Q, unsigned MaxRecurse) { 1033 Value *V = simplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 1034 Constant *C = dyn_cast_or_null<Constant>(V); 1035 return (C && C->isAllOnesValue()); 1036 } 1037 1038 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 1039 /// to simplify X % Y to X. 1040 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 1041 unsigned MaxRecurse, bool IsSigned) { 1042 // Recursion is always used, so bail out at once if we already hit the limit. 1043 if (!MaxRecurse--) 1044 return false; 1045 1046 if (IsSigned) { 1047 // |X| / |Y| --> 0 1048 // 1049 // We require that 1 operand is a simple constant. That could be extended to 1050 // 2 variables if we computed the sign bit for each. 1051 // 1052 // Make sure that a constant is not the minimum signed value because taking 1053 // the abs() of that is undefined. 1054 Type *Ty = X->getType(); 1055 const APInt *C; 1056 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1057 // Is the variable divisor magnitude always greater than the constant 1058 // dividend magnitude? 1059 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1060 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1061 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1062 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1063 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1064 return true; 1065 } 1066 if (match(Y, m_APInt(C))) { 1067 // Special-case: we can't take the abs() of a minimum signed value. If 1068 // that's the divisor, then all we have to do is prove that the dividend 1069 // is also not the minimum signed value. 1070 if (C->isMinSignedValue()) 1071 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1072 1073 // Is the variable dividend magnitude always less than the constant 1074 // divisor magnitude? 1075 // |X| < |C| --> X > -abs(C) and X < abs(C) 1076 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1077 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1078 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1079 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1080 return true; 1081 } 1082 return false; 1083 } 1084 1085 // IsSigned == false. 1086 1087 // Is the unsigned dividend known to be less than a constant divisor? 1088 // TODO: Convert this (and above) to range analysis 1089 // ("computeConstantRangeIncludingKnownBits")? 1090 const APInt *C; 1091 if (match(Y, m_APInt(C)) && 1092 computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, Q.DT).getMaxValue().ult(*C)) 1093 return true; 1094 1095 // Try again for any divisor: 1096 // Is the dividend unsigned less than the divisor? 1097 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1098 } 1099 1100 /// These are simplifications common to SDiv and UDiv. 1101 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1102 const SimplifyQuery &Q, unsigned MaxRecurse) { 1103 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1104 return C; 1105 1106 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1107 return V; 1108 1109 bool IsSigned = Opcode == Instruction::SDiv; 1110 1111 // (X rem Y) / Y -> 0 1112 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1113 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1114 return Constant::getNullValue(Op0->getType()); 1115 1116 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1117 ConstantInt *C1, *C2; 1118 if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) && 1119 match(Op1, m_ConstantInt(C2))) { 1120 bool Overflow; 1121 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1122 if (Overflow) 1123 return Constant::getNullValue(Op0->getType()); 1124 } 1125 1126 // If the operation is with the result of a select instruction, check whether 1127 // operating on either branch of the select always yields the same value. 1128 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1129 if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1130 return V; 1131 1132 // If the operation is with the result of a phi instruction, check whether 1133 // operating on all incoming values of the phi always yields the same value. 1134 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1135 if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1136 return V; 1137 1138 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1139 return Constant::getNullValue(Op0->getType()); 1140 1141 return nullptr; 1142 } 1143 1144 /// These are simplifications common to SRem and URem. 1145 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1146 const SimplifyQuery &Q, unsigned MaxRecurse) { 1147 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1148 return C; 1149 1150 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1151 return V; 1152 1153 // (X % Y) % Y -> X % Y 1154 if ((Opcode == Instruction::SRem && 1155 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1156 (Opcode == Instruction::URem && 1157 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1158 return Op0; 1159 1160 // (X << Y) % X -> 0 1161 if (Q.IIQ.UseInstrInfo && 1162 ((Opcode == Instruction::SRem && 1163 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1164 (Opcode == Instruction::URem && 1165 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1166 return Constant::getNullValue(Op0->getType()); 1167 1168 // If the operation is with the result of a select instruction, check whether 1169 // operating on either branch of the select always yields the same value. 1170 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1171 if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1172 return V; 1173 1174 // If the operation is with the result of a phi instruction, check whether 1175 // operating on all incoming values of the phi always yields the same value. 1176 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1177 if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1178 return V; 1179 1180 // If X / Y == 0, then X % Y == X. 1181 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1182 return Op0; 1183 1184 return nullptr; 1185 } 1186 1187 /// Given operands for an SDiv, see if we can fold the result. 1188 /// If not, this returns null. 1189 static Value *simplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1190 unsigned MaxRecurse) { 1191 // If two operands are negated and no signed overflow, return -1. 1192 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1193 return Constant::getAllOnesValue(Op0->getType()); 1194 1195 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1196 } 1197 1198 Value *llvm::simplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1199 return ::simplifySDivInst(Op0, Op1, Q, RecursionLimit); 1200 } 1201 1202 /// Given operands for a UDiv, see if we can fold the result. 1203 /// If not, this returns null. 1204 static Value *simplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1205 unsigned MaxRecurse) { 1206 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1207 } 1208 1209 Value *llvm::simplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1210 return ::simplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1211 } 1212 1213 /// Given operands for an SRem, see if we can fold the result. 1214 /// If not, this returns null. 1215 static Value *simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1216 unsigned MaxRecurse) { 1217 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1218 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1219 Value *X; 1220 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1221 return ConstantInt::getNullValue(Op0->getType()); 1222 1223 // If the two operands are negated, return 0. 1224 if (isKnownNegation(Op0, Op1)) 1225 return ConstantInt::getNullValue(Op0->getType()); 1226 1227 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1228 } 1229 1230 Value *llvm::simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1231 return ::simplifySRemInst(Op0, Op1, Q, RecursionLimit); 1232 } 1233 1234 /// Given operands for a URem, see if we can fold the result. 1235 /// If not, this returns null. 1236 static Value *simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1237 unsigned MaxRecurse) { 1238 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1239 } 1240 1241 Value *llvm::simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1242 return ::simplifyURemInst(Op0, Op1, Q, RecursionLimit); 1243 } 1244 1245 /// Returns true if a shift by \c Amount always yields poison. 1246 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { 1247 Constant *C = dyn_cast<Constant>(Amount); 1248 if (!C) 1249 return false; 1250 1251 // X shift by undef -> poison because it may shift by the bitwidth. 1252 if (Q.isUndefValue(C)) 1253 return true; 1254 1255 // Shifting by the bitwidth or more is undefined. 1256 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1257 if (CI->getValue().uge(CI->getType()->getScalarSizeInBits())) 1258 return true; 1259 1260 // If all lanes of a vector shift are undefined the whole shift is. 1261 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1262 for (unsigned I = 0, 1263 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1264 I != E; ++I) 1265 if (!isPoisonShift(C->getAggregateElement(I), Q)) 1266 return false; 1267 return true; 1268 } 1269 1270 return false; 1271 } 1272 1273 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1274 /// If not, this returns null. 1275 static Value *simplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1276 Value *Op1, bool IsNSW, const SimplifyQuery &Q, 1277 unsigned MaxRecurse) { 1278 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1279 return C; 1280 1281 // poison shift by X -> poison 1282 if (isa<PoisonValue>(Op0)) 1283 return Op0; 1284 1285 // 0 shift by X -> 0 1286 if (match(Op0, m_Zero())) 1287 return Constant::getNullValue(Op0->getType()); 1288 1289 // X shift by 0 -> X 1290 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1291 // would be poison. 1292 Value *X; 1293 if (match(Op1, m_Zero()) || 1294 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1295 return Op0; 1296 1297 // Fold undefined shifts. 1298 if (isPoisonShift(Op1, Q)) 1299 return PoisonValue::get(Op0->getType()); 1300 1301 // If the operation is with the result of a select instruction, check whether 1302 // operating on either branch of the select always yields the same value. 1303 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1304 if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1305 return V; 1306 1307 // If the operation is with the result of a phi instruction, check whether 1308 // operating on all incoming values of the phi always yields the same value. 1309 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1310 if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1311 return V; 1312 1313 // If any bits in the shift amount make that value greater than or equal to 1314 // the number of bits in the type, the shift is undefined. 1315 KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1316 if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth())) 1317 return PoisonValue::get(Op0->getType()); 1318 1319 // If all valid bits in the shift amount are known zero, the first operand is 1320 // unchanged. 1321 unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth()); 1322 if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits) 1323 return Op0; 1324 1325 // Check for nsw shl leading to a poison value. 1326 if (IsNSW) { 1327 assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction"); 1328 KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1329 KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt); 1330 1331 if (KnownVal.Zero.isSignBitSet()) 1332 KnownShl.Zero.setSignBit(); 1333 if (KnownVal.One.isSignBitSet()) 1334 KnownShl.One.setSignBit(); 1335 1336 if (KnownShl.hasConflict()) 1337 return PoisonValue::get(Op0->getType()); 1338 } 1339 1340 return nullptr; 1341 } 1342 1343 /// Given operands for an Shl, LShr or AShr, see if we can 1344 /// fold the result. If not, this returns null. 1345 static Value *simplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1346 Value *Op1, bool isExact, 1347 const SimplifyQuery &Q, unsigned MaxRecurse) { 1348 if (Value *V = 1349 simplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse)) 1350 return V; 1351 1352 // X >> X -> 0 1353 if (Op0 == Op1) 1354 return Constant::getNullValue(Op0->getType()); 1355 1356 // undef >> X -> 0 1357 // undef >> X -> undef (if it's exact) 1358 if (Q.isUndefValue(Op0)) 1359 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1360 1361 // The low bit cannot be shifted out of an exact shift if it is set. 1362 if (isExact) { 1363 KnownBits Op0Known = 1364 computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1365 if (Op0Known.One[0]) 1366 return Op0; 1367 } 1368 1369 return nullptr; 1370 } 1371 1372 /// Given operands for an Shl, see if we can fold the result. 1373 /// If not, this returns null. 1374 static Value *simplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1375 const SimplifyQuery &Q, unsigned MaxRecurse) { 1376 if (Value *V = 1377 simplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse)) 1378 return V; 1379 1380 // undef << X -> 0 1381 // undef << X -> undef if (if it's NSW/NUW) 1382 if (Q.isUndefValue(Op0)) 1383 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1384 1385 // (X >> A) << A -> X 1386 Value *X; 1387 if (Q.IIQ.UseInstrInfo && 1388 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1389 return X; 1390 1391 // shl nuw i8 C, %x -> C iff C has sign bit set. 1392 if (isNUW && match(Op0, m_Negative())) 1393 return Op0; 1394 // NOTE: could use computeKnownBits() / LazyValueInfo, 1395 // but the cost-benefit analysis suggests it isn't worth it. 1396 1397 return nullptr; 1398 } 1399 1400 Value *llvm::simplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1401 const SimplifyQuery &Q) { 1402 return ::simplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1403 } 1404 1405 /// Given operands for an LShr, see if we can fold the result. 1406 /// If not, this returns null. 1407 static Value *simplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1408 const SimplifyQuery &Q, unsigned MaxRecurse) { 1409 if (Value *V = simplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1410 MaxRecurse)) 1411 return V; 1412 1413 // (X << A) >> A -> X 1414 Value *X; 1415 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1416 return X; 1417 1418 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1419 // We can return X as we do in the above case since OR alters no bits in X. 1420 // SimplifyDemandedBits in InstCombine can do more general optimization for 1421 // bit manipulation. This pattern aims to provide opportunities for other 1422 // optimizers by supporting a simple but common case in InstSimplify. 1423 Value *Y; 1424 const APInt *ShRAmt, *ShLAmt; 1425 if (match(Op1, m_APInt(ShRAmt)) && 1426 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1427 *ShRAmt == *ShLAmt) { 1428 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1429 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 1430 if (ShRAmt->uge(EffWidthY)) 1431 return X; 1432 } 1433 1434 return nullptr; 1435 } 1436 1437 Value *llvm::simplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1438 const SimplifyQuery &Q) { 1439 return ::simplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1440 } 1441 1442 /// Given operands for an AShr, see if we can fold the result. 1443 /// If not, this returns null. 1444 static Value *simplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1445 const SimplifyQuery &Q, unsigned MaxRecurse) { 1446 if (Value *V = simplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1447 MaxRecurse)) 1448 return V; 1449 1450 // -1 >>a X --> -1 1451 // (-1 << X) a>> X --> -1 1452 // Do not return Op0 because it may contain undef elements if it's a vector. 1453 if (match(Op0, m_AllOnes()) || 1454 match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1)))) 1455 return Constant::getAllOnesValue(Op0->getType()); 1456 1457 // (X << A) >> A -> X 1458 Value *X; 1459 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1460 return X; 1461 1462 // Arithmetic shifting an all-sign-bit value is a no-op. 1463 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1464 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1465 return Op0; 1466 1467 return nullptr; 1468 } 1469 1470 Value *llvm::simplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1471 const SimplifyQuery &Q) { 1472 return ::simplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1473 } 1474 1475 /// Commuted variants are assumed to be handled by calling this function again 1476 /// with the parameters swapped. 1477 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1478 ICmpInst *UnsignedICmp, bool IsAnd, 1479 const SimplifyQuery &Q) { 1480 Value *X, *Y; 1481 1482 ICmpInst::Predicate EqPred; 1483 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1484 !ICmpInst::isEquality(EqPred)) 1485 return nullptr; 1486 1487 ICmpInst::Predicate UnsignedPred; 1488 1489 Value *A, *B; 1490 // Y = (A - B); 1491 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1492 if (match(UnsignedICmp, 1493 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1494 ICmpInst::isUnsigned(UnsignedPred)) { 1495 // A >=/<= B || (A - B) != 0 <--> true 1496 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1497 UnsignedPred == ICmpInst::ICMP_ULE) && 1498 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1499 return ConstantInt::getTrue(UnsignedICmp->getType()); 1500 // A </> B && (A - B) == 0 <--> false 1501 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1502 UnsignedPred == ICmpInst::ICMP_UGT) && 1503 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1504 return ConstantInt::getFalse(UnsignedICmp->getType()); 1505 1506 // A </> B && (A - B) != 0 <--> A </> B 1507 // A </> B || (A - B) != 0 <--> (A - B) != 0 1508 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1509 UnsignedPred == ICmpInst::ICMP_UGT)) 1510 return IsAnd ? UnsignedICmp : ZeroICmp; 1511 1512 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1513 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1514 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1515 UnsignedPred == ICmpInst::ICMP_UGE)) 1516 return IsAnd ? ZeroICmp : UnsignedICmp; 1517 } 1518 1519 // Given Y = (A - B) 1520 // Y >= A && Y != 0 --> Y >= A iff B != 0 1521 // Y < A || Y == 0 --> Y < A iff B != 0 1522 if (match(UnsignedICmp, 1523 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1524 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1525 EqPred == ICmpInst::ICMP_NE && 1526 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1527 return UnsignedICmp; 1528 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1529 EqPred == ICmpInst::ICMP_EQ && 1530 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1531 return UnsignedICmp; 1532 } 1533 } 1534 1535 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1536 ICmpInst::isUnsigned(UnsignedPred)) 1537 ; 1538 else if (match(UnsignedICmp, 1539 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1540 ICmpInst::isUnsigned(UnsignedPred)) 1541 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1542 else 1543 return nullptr; 1544 1545 // X > Y && Y == 0 --> Y == 0 iff X != 0 1546 // X > Y || Y == 0 --> X > Y iff X != 0 1547 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1548 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1549 return IsAnd ? ZeroICmp : UnsignedICmp; 1550 1551 // X <= Y && Y != 0 --> X <= Y iff X != 0 1552 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1553 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1554 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1555 return IsAnd ? UnsignedICmp : ZeroICmp; 1556 1557 // The transforms below here are expected to be handled more generally with 1558 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1559 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1560 // these are candidates for removal. 1561 1562 // X < Y && Y != 0 --> X < Y 1563 // X < Y || Y != 0 --> Y != 0 1564 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1565 return IsAnd ? UnsignedICmp : ZeroICmp; 1566 1567 // X >= Y && Y == 0 --> Y == 0 1568 // X >= Y || Y == 0 --> X >= Y 1569 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1570 return IsAnd ? ZeroICmp : UnsignedICmp; 1571 1572 // X < Y && Y == 0 --> false 1573 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1574 IsAnd) 1575 return getFalse(UnsignedICmp->getType()); 1576 1577 // X >= Y || Y != 0 --> true 1578 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1579 !IsAnd) 1580 return getTrue(UnsignedICmp->getType()); 1581 1582 return nullptr; 1583 } 1584 1585 /// Commuted variants are assumed to be handled by calling this function again 1586 /// with the parameters swapped. 1587 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1588 ICmpInst::Predicate Pred0, Pred1; 1589 Value *A, *B; 1590 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1591 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1592 return nullptr; 1593 1594 // Check for any combination of predicates that are guaranteed to be disjoint. 1595 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1596 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1597 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1598 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1599 return getFalse(Op0->getType()); 1600 1601 return nullptr; 1602 } 1603 1604 /// Commuted variants are assumed to be handled by calling this function again 1605 /// with the parameters swapped. 1606 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1607 ICmpInst::Predicate Pred0, Pred1; 1608 Value *A, *B; 1609 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1610 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1611 return nullptr; 1612 1613 // Check for any combination of predicates that cover the entire range of 1614 // possibilities. 1615 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1616 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1617 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1618 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1619 return getTrue(Op0->getType()); 1620 1621 return nullptr; 1622 } 1623 1624 /// Test if a pair of compares with a shared operand and 2 constants has an 1625 /// empty set intersection, full set union, or if one compare is a superset of 1626 /// the other. 1627 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1628 bool IsAnd) { 1629 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1630 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1631 return nullptr; 1632 1633 const APInt *C0, *C1; 1634 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1635 !match(Cmp1->getOperand(1), m_APInt(C1))) 1636 return nullptr; 1637 1638 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1639 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1640 1641 // For and-of-compares, check if the intersection is empty: 1642 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1643 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1644 return getFalse(Cmp0->getType()); 1645 1646 // For or-of-compares, check if the union is full: 1647 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1648 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1649 return getTrue(Cmp0->getType()); 1650 1651 // Is one range a superset of the other? 1652 // If this is and-of-compares, take the smaller set: 1653 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1654 // If this is or-of-compares, take the larger set: 1655 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1656 if (Range0.contains(Range1)) 1657 return IsAnd ? Cmp1 : Cmp0; 1658 if (Range1.contains(Range0)) 1659 return IsAnd ? Cmp0 : Cmp1; 1660 1661 return nullptr; 1662 } 1663 1664 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1665 bool IsAnd) { 1666 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1667 if (!match(Cmp0->getOperand(1), m_Zero()) || 1668 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1669 return nullptr; 1670 1671 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1672 return nullptr; 1673 1674 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1675 Value *X = Cmp0->getOperand(0); 1676 Value *Y = Cmp1->getOperand(0); 1677 1678 // If one of the compares is a masked version of a (not) null check, then 1679 // that compare implies the other, so we eliminate the other. Optionally, look 1680 // through a pointer-to-int cast to match a null check of a pointer type. 1681 1682 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1683 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1684 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1685 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1686 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1687 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1688 return Cmp1; 1689 1690 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1691 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1692 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1693 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1694 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1695 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1696 return Cmp0; 1697 1698 return nullptr; 1699 } 1700 1701 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1702 const InstrInfoQuery &IIQ) { 1703 // (icmp (add V, C0), C1) & (icmp V, C0) 1704 ICmpInst::Predicate Pred0, Pred1; 1705 const APInt *C0, *C1; 1706 Value *V; 1707 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1708 return nullptr; 1709 1710 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1711 return nullptr; 1712 1713 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1714 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1715 return nullptr; 1716 1717 Type *ITy = Op0->getType(); 1718 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1719 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1720 1721 const APInt Delta = *C1 - *C0; 1722 if (C0->isStrictlyPositive()) { 1723 if (Delta == 2) { 1724 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1725 return getFalse(ITy); 1726 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1727 return getFalse(ITy); 1728 } 1729 if (Delta == 1) { 1730 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1731 return getFalse(ITy); 1732 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1733 return getFalse(ITy); 1734 } 1735 } 1736 if (C0->getBoolValue() && isNUW) { 1737 if (Delta == 2) 1738 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1739 return getFalse(ITy); 1740 if (Delta == 1) 1741 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1742 return getFalse(ITy); 1743 } 1744 1745 return nullptr; 1746 } 1747 1748 /// Try to eliminate compares with signed or unsigned min/max constants. 1749 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, 1750 bool IsAnd) { 1751 // Canonicalize an equality compare as Cmp0. 1752 if (Cmp1->isEquality()) 1753 std::swap(Cmp0, Cmp1); 1754 if (!Cmp0->isEquality()) 1755 return nullptr; 1756 1757 // The non-equality compare must include a common operand (X). Canonicalize 1758 // the common operand as operand 0 (the predicate is swapped if the common 1759 // operand was operand 1). 1760 ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); 1761 Value *X = Cmp0->getOperand(0); 1762 ICmpInst::Predicate Pred1; 1763 bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value())); 1764 if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value()))) 1765 return nullptr; 1766 if (ICmpInst::isEquality(Pred1)) 1767 return nullptr; 1768 1769 // The equality compare must be against a constant. Flip bits if we matched 1770 // a bitwise not. Convert a null pointer constant to an integer zero value. 1771 APInt MinMaxC; 1772 const APInt *C; 1773 if (match(Cmp0->getOperand(1), m_APInt(C))) 1774 MinMaxC = HasNotOp ? ~*C : *C; 1775 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) 1776 MinMaxC = APInt::getZero(8); 1777 else 1778 return nullptr; 1779 1780 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. 1781 if (!IsAnd) { 1782 Pred0 = ICmpInst::getInversePredicate(Pred0); 1783 Pred1 = ICmpInst::getInversePredicate(Pred1); 1784 } 1785 1786 // Normalize to unsigned compare and unsigned min/max value. 1787 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 1788 if (ICmpInst::isSigned(Pred1)) { 1789 Pred1 = ICmpInst::getUnsignedPredicate(Pred1); 1790 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); 1791 } 1792 1793 // (X != MAX) && (X < Y) --> X < Y 1794 // (X == MAX) || (X >= Y) --> X >= Y 1795 if (MinMaxC.isMaxValue()) 1796 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) 1797 return Cmp1; 1798 1799 // (X != MIN) && (X > Y) --> X > Y 1800 // (X == MIN) || (X <= Y) --> X <= Y 1801 if (MinMaxC.isMinValue()) 1802 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) 1803 return Cmp1; 1804 1805 return nullptr; 1806 } 1807 1808 /// Try to simplify and/or of icmp with ctpop intrinsic. 1809 static Value *simplifyAndOrOfICmpsWithCtpop(ICmpInst *Cmp0, ICmpInst *Cmp1, 1810 bool IsAnd) { 1811 ICmpInst::Predicate Pred0, Pred1; 1812 Value *X; 1813 const APInt *C; 1814 if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)), 1815 m_APInt(C))) || 1816 !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt())) || C->isZero()) 1817 return nullptr; 1818 1819 // (ctpop(X) == C) || (X != 0) --> X != 0 where C > 0 1820 if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_NE) 1821 return Cmp1; 1822 // (ctpop(X) != C) && (X == 0) --> X == 0 where C > 0 1823 if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_EQ) 1824 return Cmp1; 1825 1826 return nullptr; 1827 } 1828 1829 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1830 const SimplifyQuery &Q) { 1831 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1832 return X; 1833 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1834 return X; 1835 1836 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1837 return X; 1838 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1839 return X; 1840 1841 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1842 return X; 1843 1844 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) 1845 return X; 1846 1847 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1848 return X; 1849 1850 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, true)) 1851 return X; 1852 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, true)) 1853 return X; 1854 1855 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1856 return X; 1857 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1858 return X; 1859 1860 return nullptr; 1861 } 1862 1863 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1864 const InstrInfoQuery &IIQ) { 1865 // (icmp (add V, C0), C1) | (icmp V, C0) 1866 ICmpInst::Predicate Pred0, Pred1; 1867 const APInt *C0, *C1; 1868 Value *V; 1869 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1870 return nullptr; 1871 1872 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1873 return nullptr; 1874 1875 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1876 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1877 return nullptr; 1878 1879 Type *ITy = Op0->getType(); 1880 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1881 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1882 1883 const APInt Delta = *C1 - *C0; 1884 if (C0->isStrictlyPositive()) { 1885 if (Delta == 2) { 1886 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1887 return getTrue(ITy); 1888 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1889 return getTrue(ITy); 1890 } 1891 if (Delta == 1) { 1892 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1893 return getTrue(ITy); 1894 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1895 return getTrue(ITy); 1896 } 1897 } 1898 if (C0->getBoolValue() && isNUW) { 1899 if (Delta == 2) 1900 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1901 return getTrue(ITy); 1902 if (Delta == 1) 1903 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1904 return getTrue(ITy); 1905 } 1906 1907 return nullptr; 1908 } 1909 1910 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1911 const SimplifyQuery &Q) { 1912 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1913 return X; 1914 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1915 return X; 1916 1917 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1918 return X; 1919 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1920 return X; 1921 1922 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1923 return X; 1924 1925 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) 1926 return X; 1927 1928 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1929 return X; 1930 1931 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, false)) 1932 return X; 1933 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, false)) 1934 return X; 1935 1936 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1937 return X; 1938 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1939 return X; 1940 1941 return nullptr; 1942 } 1943 1944 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, FCmpInst *LHS, 1945 FCmpInst *RHS, bool IsAnd) { 1946 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1947 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1948 if (LHS0->getType() != RHS0->getType()) 1949 return nullptr; 1950 1951 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1952 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1953 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1954 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1955 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1956 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1957 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1958 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1959 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1960 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1961 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1962 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1963 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1964 return RHS; 1965 1966 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1967 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1968 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1969 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1970 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1971 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1972 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1973 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1974 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1975 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1976 return LHS; 1977 } 1978 1979 return nullptr; 1980 } 1981 1982 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, Value *Op0, 1983 Value *Op1, bool IsAnd) { 1984 // Look through casts of the 'and' operands to find compares. 1985 auto *Cast0 = dyn_cast<CastInst>(Op0); 1986 auto *Cast1 = dyn_cast<CastInst>(Op1); 1987 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1988 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1989 Op0 = Cast0->getOperand(0); 1990 Op1 = Cast1->getOperand(0); 1991 } 1992 1993 Value *V = nullptr; 1994 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1995 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1996 if (ICmp0 && ICmp1) 1997 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1998 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1999 2000 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 2001 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 2002 if (FCmp0 && FCmp1) 2003 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 2004 2005 if (!V) 2006 return nullptr; 2007 if (!Cast0) 2008 return V; 2009 2010 // If we looked through casts, we can only handle a constant simplification 2011 // because we are not allowed to create a cast instruction here. 2012 if (auto *C = dyn_cast<Constant>(V)) 2013 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 2014 2015 return nullptr; 2016 } 2017 2018 /// Given a bitwise logic op, check if the operands are add/sub with a common 2019 /// source value and inverted constant (identity: C - X -> ~(X + ~C)). 2020 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, 2021 Instruction::BinaryOps Opcode) { 2022 assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); 2023 assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); 2024 Value *X; 2025 Constant *C1, *C2; 2026 if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && 2027 match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || 2028 (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && 2029 match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { 2030 if (ConstantExpr::getNot(C1) == C2) { 2031 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 2032 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 2033 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 2034 Type *Ty = Op0->getType(); 2035 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) 2036 : ConstantInt::getAllOnesValue(Ty); 2037 } 2038 } 2039 return nullptr; 2040 } 2041 2042 /// Given operands for an And, see if we can fold the result. 2043 /// If not, this returns null. 2044 static Value *simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2045 unsigned MaxRecurse) { 2046 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2047 return C; 2048 2049 // X & poison -> poison 2050 if (isa<PoisonValue>(Op1)) 2051 return Op1; 2052 2053 // X & undef -> 0 2054 if (Q.isUndefValue(Op1)) 2055 return Constant::getNullValue(Op0->getType()); 2056 2057 // X & X = X 2058 if (Op0 == Op1) 2059 return Op0; 2060 2061 // X & 0 = 0 2062 if (match(Op1, m_Zero())) 2063 return Constant::getNullValue(Op0->getType()); 2064 2065 // X & -1 = X 2066 if (match(Op1, m_AllOnes())) 2067 return Op0; 2068 2069 // A & ~A = ~A & A = 0 2070 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) 2071 return Constant::getNullValue(Op0->getType()); 2072 2073 // (A | ?) & A = A 2074 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2075 return Op1; 2076 2077 // A & (A | ?) = A 2078 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 2079 return Op0; 2080 2081 // (X | Y) & (X | ~Y) --> X (commuted 8 ways) 2082 Value *X, *Y; 2083 if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2084 match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2085 return X; 2086 if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2087 match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2088 return X; 2089 2090 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) 2091 return V; 2092 2093 // A mask that only clears known zeros of a shifted value is a no-op. 2094 const APInt *Mask; 2095 const APInt *ShAmt; 2096 if (match(Op1, m_APInt(Mask))) { 2097 // If all bits in the inverted and shifted mask are clear: 2098 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2099 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2100 (~(*Mask)).lshr(*ShAmt).isZero()) 2101 return Op0; 2102 2103 // If all bits in the inverted and shifted mask are clear: 2104 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2105 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2106 (~(*Mask)).shl(*ShAmt).isZero()) 2107 return Op0; 2108 } 2109 2110 // If we have a multiplication overflow check that is being 'and'ed with a 2111 // check that one of the multipliers is not zero, we can omit the 'and', and 2112 // only keep the overflow check. 2113 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true)) 2114 return Op1; 2115 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true)) 2116 return Op0; 2117 2118 // A & (-A) = A if A is a power of two or zero. 2119 if (match(Op0, m_Neg(m_Specific(Op1))) || 2120 match(Op1, m_Neg(m_Specific(Op0)))) { 2121 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2122 Q.DT)) 2123 return Op0; 2124 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2125 Q.DT)) 2126 return Op1; 2127 } 2128 2129 // This is a similar pattern used for checking if a value is a power-of-2: 2130 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2131 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 2132 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2133 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2134 return Constant::getNullValue(Op1->getType()); 2135 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 2136 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2137 return Constant::getNullValue(Op0->getType()); 2138 2139 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2140 return V; 2141 2142 // Try some generic simplifications for associative operations. 2143 if (Value *V = 2144 simplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2145 return V; 2146 2147 // And distributes over Or. Try some generic simplifications based on this. 2148 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2149 Instruction::Or, Q, MaxRecurse)) 2150 return V; 2151 2152 // And distributes over Xor. Try some generic simplifications based on this. 2153 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2154 Instruction::Xor, Q, MaxRecurse)) 2155 return V; 2156 2157 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2158 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2159 // A & (A && B) -> A && B 2160 if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero()))) 2161 return Op1; 2162 else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero()))) 2163 return Op0; 2164 } 2165 // If the operation is with the result of a select instruction, check 2166 // whether operating on either branch of the select always yields the same 2167 // value. 2168 if (Value *V = 2169 threadBinOpOverSelect(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2170 return V; 2171 } 2172 2173 // If the operation is with the result of a phi instruction, check whether 2174 // operating on all incoming values of the phi always yields the same value. 2175 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2176 if (Value *V = 2177 threadBinOpOverPHI(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2178 return V; 2179 2180 // Assuming the effective width of Y is not larger than A, i.e. all bits 2181 // from X and Y are disjoint in (X << A) | Y, 2182 // if the mask of this AND op covers all bits of X or Y, while it covers 2183 // no bits from the other, we can bypass this AND op. E.g., 2184 // ((X << A) | Y) & Mask -> Y, 2185 // if Mask = ((1 << effective_width_of(Y)) - 1) 2186 // ((X << A) | Y) & Mask -> X << A, 2187 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2188 // SimplifyDemandedBits in InstCombine can optimize the general case. 2189 // This pattern aims to help other passes for a common case. 2190 Value *XShifted; 2191 if (match(Op1, m_APInt(Mask)) && 2192 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2193 m_Value(XShifted)), 2194 m_Value(Y)))) { 2195 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2196 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2197 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2198 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 2199 if (EffWidthY <= ShftCnt) { 2200 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2201 const unsigned EffWidthX = XKnown.countMaxActiveBits(); 2202 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2203 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2204 // If the mask is extracting all bits from X or Y as is, we can skip 2205 // this AND op. 2206 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2207 return Y; 2208 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2209 return XShifted; 2210 } 2211 } 2212 2213 // ((X | Y) ^ X ) & ((X | Y) ^ Y) --> 0 2214 // ((X | Y) ^ Y ) & ((X | Y) ^ X) --> 0 2215 BinaryOperator *Or; 2216 if (match(Op0, m_c_Xor(m_Value(X), 2217 m_CombineAnd(m_BinOp(Or), 2218 m_c_Or(m_Deferred(X), m_Value(Y))))) && 2219 match(Op1, m_c_Xor(m_Specific(Or), m_Specific(Y)))) 2220 return Constant::getNullValue(Op0->getType()); 2221 2222 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2223 // Op0&Op1 -> Op0 where Op0 implies Op1 2224 if (isImpliedCondition(Op0, Op1, Q.DL).value_or(false)) 2225 return Op0; 2226 // Op0&Op1 -> Op1 where Op1 implies Op0 2227 if (isImpliedCondition(Op1, Op0, Q.DL).value_or(false)) 2228 return Op1; 2229 } 2230 2231 return nullptr; 2232 } 2233 2234 Value *llvm::simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2235 return ::simplifyAndInst(Op0, Op1, Q, RecursionLimit); 2236 } 2237 2238 static Value *simplifyOrLogic(Value *X, Value *Y) { 2239 assert(X->getType() == Y->getType() && "Expected same type for 'or' ops"); 2240 Type *Ty = X->getType(); 2241 2242 // X | ~X --> -1 2243 if (match(Y, m_Not(m_Specific(X)))) 2244 return ConstantInt::getAllOnesValue(Ty); 2245 2246 // X | ~(X & ?) = -1 2247 if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value())))) 2248 return ConstantInt::getAllOnesValue(Ty); 2249 2250 // X | (X & ?) --> X 2251 if (match(Y, m_c_And(m_Specific(X), m_Value()))) 2252 return X; 2253 2254 Value *A, *B; 2255 2256 // (A ^ B) | (A | B) --> A | B 2257 // (A ^ B) | (B | A) --> B | A 2258 if (match(X, m_Xor(m_Value(A), m_Value(B))) && 2259 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2260 return Y; 2261 2262 // ~(A ^ B) | (A | B) --> -1 2263 // ~(A ^ B) | (B | A) --> -1 2264 if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) && 2265 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2266 return ConstantInt::getAllOnesValue(Ty); 2267 2268 // (A & ~B) | (A ^ B) --> A ^ B 2269 // (~B & A) | (A ^ B) --> A ^ B 2270 // (A & ~B) | (B ^ A) --> B ^ A 2271 // (~B & A) | (B ^ A) --> B ^ A 2272 if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) && 2273 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2274 return Y; 2275 2276 // (~A ^ B) | (A & B) --> ~A ^ B 2277 // (B ^ ~A) | (A & B) --> B ^ ~A 2278 // (~A ^ B) | (B & A) --> ~A ^ B 2279 // (B ^ ~A) | (B & A) --> B ^ ~A 2280 if (match(X, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && 2281 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2282 return X; 2283 2284 // (~A | B) | (A ^ B) --> -1 2285 // (~A | B) | (B ^ A) --> -1 2286 // (B | ~A) | (A ^ B) --> -1 2287 // (B | ~A) | (B ^ A) --> -1 2288 if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) && 2289 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2290 return ConstantInt::getAllOnesValue(Ty); 2291 2292 // (~A & B) | ~(A | B) --> ~A 2293 // (~A & B) | ~(B | A) --> ~A 2294 // (B & ~A) | ~(A | B) --> ~A 2295 // (B & ~A) | ~(B | A) --> ~A 2296 Value *NotA; 2297 if (match(X, 2298 m_c_And(m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))), 2299 m_Value(B))) && 2300 match(Y, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2301 return NotA; 2302 2303 // ~(A ^ B) | (A & B) --> ~(A ^ B) 2304 // ~(A ^ B) | (B & A) --> ~(A ^ B) 2305 Value *NotAB; 2306 if (match(X, m_CombineAnd(m_NotForbidUndef(m_Xor(m_Value(A), m_Value(B))), 2307 m_Value(NotAB))) && 2308 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2309 return NotAB; 2310 2311 // ~(A & B) | (A ^ B) --> ~(A & B) 2312 // ~(A & B) | (B ^ A) --> ~(A & B) 2313 if (match(X, m_CombineAnd(m_NotForbidUndef(m_And(m_Value(A), m_Value(B))), 2314 m_Value(NotAB))) && 2315 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2316 return NotAB; 2317 2318 return nullptr; 2319 } 2320 2321 /// Given operands for an Or, see if we can fold the result. 2322 /// If not, this returns null. 2323 static Value *simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2324 unsigned MaxRecurse) { 2325 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2326 return C; 2327 2328 // X | poison -> poison 2329 if (isa<PoisonValue>(Op1)) 2330 return Op1; 2331 2332 // X | undef -> -1 2333 // X | -1 = -1 2334 // Do not return Op1 because it may contain undef elements if it's a vector. 2335 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2336 return Constant::getAllOnesValue(Op0->getType()); 2337 2338 // X | X = X 2339 // X | 0 = X 2340 if (Op0 == Op1 || match(Op1, m_Zero())) 2341 return Op0; 2342 2343 if (Value *R = simplifyOrLogic(Op0, Op1)) 2344 return R; 2345 if (Value *R = simplifyOrLogic(Op1, Op0)) 2346 return R; 2347 2348 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) 2349 return V; 2350 2351 // Rotated -1 is still -1: 2352 // (-1 << X) | (-1 >> (C - X)) --> -1 2353 // (-1 >> X) | (-1 << (C - X)) --> -1 2354 // ...with C <= bitwidth (and commuted variants). 2355 Value *X, *Y; 2356 if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) && 2357 match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) || 2358 (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) && 2359 match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) { 2360 const APInt *C; 2361 if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) || 2362 match(Y, m_Sub(m_APInt(C), m_Specific(X)))) && 2363 C->ule(X->getType()->getScalarSizeInBits())) { 2364 return ConstantInt::getAllOnesValue(X->getType()); 2365 } 2366 } 2367 2368 // A funnel shift (rotate) can be decomposed into simpler shifts. See if we 2369 // are mixing in another shift that is redundant with the funnel shift. 2370 2371 // (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y 2372 // (shl X, Y) | (fshl X, ?, Y) --> fshl X, ?, Y 2373 if (match(Op0, 2374 m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) && 2375 match(Op1, m_Shl(m_Specific(X), m_Specific(Y)))) 2376 return Op0; 2377 if (match(Op1, 2378 m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) && 2379 match(Op0, m_Shl(m_Specific(X), m_Specific(Y)))) 2380 return Op1; 2381 2382 // (fshr ?, X, Y) | (lshr X, Y) --> fshr ?, X, Y 2383 // (lshr X, Y) | (fshr ?, X, Y) --> fshr ?, X, Y 2384 if (match(Op0, 2385 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) && 2386 match(Op1, m_LShr(m_Specific(X), m_Specific(Y)))) 2387 return Op0; 2388 if (match(Op1, 2389 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) && 2390 match(Op0, m_LShr(m_Specific(X), m_Specific(Y)))) 2391 return Op1; 2392 2393 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2394 return V; 2395 2396 // If we have a multiplication overflow check that is being 'and'ed with a 2397 // check that one of the multipliers is not zero, we can omit the 'and', and 2398 // only keep the overflow check. 2399 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false)) 2400 return Op1; 2401 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false)) 2402 return Op0; 2403 2404 // Try some generic simplifications for associative operations. 2405 if (Value *V = 2406 simplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2407 return V; 2408 2409 // Or distributes over And. Try some generic simplifications based on this. 2410 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2411 Instruction::And, Q, MaxRecurse)) 2412 return V; 2413 2414 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2415 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2416 // A | (A || B) -> A || B 2417 if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value()))) 2418 return Op1; 2419 else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value()))) 2420 return Op0; 2421 } 2422 // If the operation is with the result of a select instruction, check 2423 // whether operating on either branch of the select always yields the same 2424 // value. 2425 if (Value *V = 2426 threadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2427 return V; 2428 } 2429 2430 // (A & C1)|(B & C2) 2431 Value *A, *B; 2432 const APInt *C1, *C2; 2433 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2434 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2435 if (*C1 == ~*C2) { 2436 // (A & C1)|(B & C2) 2437 // If we have: ((V + N) & C1) | (V & C2) 2438 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2439 // replace with V+N. 2440 Value *N; 2441 if (C2->isMask() && // C2 == 0+1+ 2442 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2443 // Add commutes, try both ways. 2444 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2445 return A; 2446 } 2447 // Or commutes, try both ways. 2448 if (C1->isMask() && match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2449 // Add commutes, try both ways. 2450 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2451 return B; 2452 } 2453 } 2454 } 2455 2456 // If the operation is with the result of a phi instruction, check whether 2457 // operating on all incoming values of the phi always yields the same value. 2458 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2459 if (Value *V = threadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2460 return V; 2461 2462 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2463 // Op0|Op1 -> Op1 where Op0 implies Op1 2464 if (isImpliedCondition(Op0, Op1, Q.DL).value_or(false)) 2465 return Op1; 2466 // Op0|Op1 -> Op0 where Op1 implies Op0 2467 if (isImpliedCondition(Op1, Op0, Q.DL).value_or(false)) 2468 return Op0; 2469 } 2470 2471 return nullptr; 2472 } 2473 2474 Value *llvm::simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2475 return ::simplifyOrInst(Op0, Op1, Q, RecursionLimit); 2476 } 2477 2478 /// Given operands for a Xor, see if we can fold the result. 2479 /// If not, this returns null. 2480 static Value *simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2481 unsigned MaxRecurse) { 2482 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2483 return C; 2484 2485 // X ^ poison -> poison 2486 if (isa<PoisonValue>(Op1)) 2487 return Op1; 2488 2489 // A ^ undef -> undef 2490 if (Q.isUndefValue(Op1)) 2491 return Op1; 2492 2493 // A ^ 0 = A 2494 if (match(Op1, m_Zero())) 2495 return Op0; 2496 2497 // A ^ A = 0 2498 if (Op0 == Op1) 2499 return Constant::getNullValue(Op0->getType()); 2500 2501 // A ^ ~A = ~A ^ A = -1 2502 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) 2503 return Constant::getAllOnesValue(Op0->getType()); 2504 2505 auto foldAndOrNot = [](Value *X, Value *Y) -> Value * { 2506 Value *A, *B; 2507 // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants. 2508 if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) && 2509 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2510 return A; 2511 2512 // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants. 2513 // The 'not' op must contain a complete -1 operand (no undef elements for 2514 // vector) for the transform to be safe. 2515 Value *NotA; 2516 if (match(X, 2517 m_c_Or(m_CombineAnd(m_NotForbidUndef(m_Value(A)), m_Value(NotA)), 2518 m_Value(B))) && 2519 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2520 return NotA; 2521 2522 return nullptr; 2523 }; 2524 if (Value *R = foldAndOrNot(Op0, Op1)) 2525 return R; 2526 if (Value *R = foldAndOrNot(Op1, Op0)) 2527 return R; 2528 2529 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) 2530 return V; 2531 2532 // Try some generic simplifications for associative operations. 2533 if (Value *V = 2534 simplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, MaxRecurse)) 2535 return V; 2536 2537 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2538 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2539 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2540 // only if B and C are equal. If B and C are equal then (since we assume 2541 // that operands have already been simplified) "select(cond, B, C)" should 2542 // have been simplified to the common value of B and C already. Analysing 2543 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2544 // for threading over phi nodes. 2545 2546 return nullptr; 2547 } 2548 2549 Value *llvm::simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2550 return ::simplifyXorInst(Op0, Op1, Q, RecursionLimit); 2551 } 2552 2553 static Type *getCompareTy(Value *Op) { 2554 return CmpInst::makeCmpResultType(Op->getType()); 2555 } 2556 2557 /// Rummage around inside V looking for something equivalent to the comparison 2558 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2559 /// Helper function for analyzing max/min idioms. 2560 static Value *extractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2561 Value *LHS, Value *RHS) { 2562 SelectInst *SI = dyn_cast<SelectInst>(V); 2563 if (!SI) 2564 return nullptr; 2565 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2566 if (!Cmp) 2567 return nullptr; 2568 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2569 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2570 return Cmp; 2571 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2572 LHS == CmpRHS && RHS == CmpLHS) 2573 return Cmp; 2574 return nullptr; 2575 } 2576 2577 /// Return true if the underlying object (storage) must be disjoint from 2578 /// storage returned by any noalias return call. 2579 static bool isAllocDisjoint(const Value *V) { 2580 // For allocas, we consider only static ones (dynamic 2581 // allocas might be transformed into calls to malloc not simultaneously 2582 // live with the compared-to allocation). For globals, we exclude symbols 2583 // that might be resolve lazily to symbols in another dynamically-loaded 2584 // library (and, thus, could be malloc'ed by the implementation). 2585 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2586 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2587 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2588 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2589 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2590 !GV->isThreadLocal(); 2591 if (const Argument *A = dyn_cast<Argument>(V)) 2592 return A->hasByValAttr(); 2593 return false; 2594 } 2595 2596 /// Return true if V1 and V2 are each the base of some distict storage region 2597 /// [V, object_size(V)] which do not overlap. Note that zero sized regions 2598 /// *are* possible, and that zero sized regions do not overlap with any other. 2599 static bool haveNonOverlappingStorage(const Value *V1, const Value *V2) { 2600 // Global variables always exist, so they always exist during the lifetime 2601 // of each other and all allocas. Global variables themselves usually have 2602 // non-overlapping storage, but since their addresses are constants, the 2603 // case involving two globals does not reach here and is instead handled in 2604 // constant folding. 2605 // 2606 // Two different allocas usually have different addresses... 2607 // 2608 // However, if there's an @llvm.stackrestore dynamically in between two 2609 // allocas, they may have the same address. It's tempting to reduce the 2610 // scope of the problem by only looking at *static* allocas here. That would 2611 // cover the majority of allocas while significantly reducing the likelihood 2612 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2613 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2614 // an entry block. Also, if we have a block that's not attached to a 2615 // function, we can't tell if it's "static" under the current definition. 2616 // Theoretically, this problem could be fixed by creating a new kind of 2617 // instruction kind specifically for static allocas. Such a new instruction 2618 // could be required to be at the top of the entry block, thus preventing it 2619 // from being subject to a @llvm.stackrestore. Instcombine could even 2620 // convert regular allocas into these special allocas. It'd be nifty. 2621 // However, until then, this problem remains open. 2622 // 2623 // So, we'll assume that two non-empty allocas have different addresses 2624 // for now. 2625 auto isByValArg = [](const Value *V) { 2626 const Argument *A = dyn_cast<Argument>(V); 2627 return A && A->hasByValAttr(); 2628 }; 2629 2630 // Byval args are backed by store which does not overlap with each other, 2631 // allocas, or globals. 2632 if (isByValArg(V1)) 2633 return isa<AllocaInst>(V2) || isa<GlobalVariable>(V2) || isByValArg(V2); 2634 if (isByValArg(V2)) 2635 return isa<AllocaInst>(V1) || isa<GlobalVariable>(V1) || isByValArg(V1); 2636 2637 return isa<AllocaInst>(V1) && 2638 (isa<AllocaInst>(V2) || isa<GlobalVariable>(V2)); 2639 } 2640 2641 // A significant optimization not implemented here is assuming that alloca 2642 // addresses are not equal to incoming argument values. They don't *alias*, 2643 // as we say, but that doesn't mean they aren't equal, so we take a 2644 // conservative approach. 2645 // 2646 // This is inspired in part by C++11 5.10p1: 2647 // "Two pointers of the same type compare equal if and only if they are both 2648 // null, both point to the same function, or both represent the same 2649 // address." 2650 // 2651 // This is pretty permissive. 2652 // 2653 // It's also partly due to C11 6.5.9p6: 2654 // "Two pointers compare equal if and only if both are null pointers, both are 2655 // pointers to the same object (including a pointer to an object and a 2656 // subobject at its beginning) or function, both are pointers to one past the 2657 // last element of the same array object, or one is a pointer to one past the 2658 // end of one array object and the other is a pointer to the start of a 2659 // different array object that happens to immediately follow the first array 2660 // object in the address space.) 2661 // 2662 // C11's version is more restrictive, however there's no reason why an argument 2663 // couldn't be a one-past-the-end value for a stack object in the caller and be 2664 // equal to the beginning of a stack object in the callee. 2665 // 2666 // If the C and C++ standards are ever made sufficiently restrictive in this 2667 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2668 // this optimization. 2669 static Constant *computePointerICmp(CmpInst::Predicate Pred, Value *LHS, 2670 Value *RHS, const SimplifyQuery &Q) { 2671 const DataLayout &DL = Q.DL; 2672 const TargetLibraryInfo *TLI = Q.TLI; 2673 const DominatorTree *DT = Q.DT; 2674 const Instruction *CxtI = Q.CxtI; 2675 const InstrInfoQuery &IIQ = Q.IIQ; 2676 2677 // First, skip past any trivial no-ops. 2678 LHS = LHS->stripPointerCasts(); 2679 RHS = RHS->stripPointerCasts(); 2680 2681 // A non-null pointer is not equal to a null pointer. 2682 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && 2683 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2684 IIQ.UseInstrInfo)) 2685 return ConstantInt::get(getCompareTy(LHS), !CmpInst::isTrueWhenEqual(Pred)); 2686 2687 // We can only fold certain predicates on pointer comparisons. 2688 switch (Pred) { 2689 default: 2690 return nullptr; 2691 2692 // Equality comaprisons are easy to fold. 2693 case CmpInst::ICMP_EQ: 2694 case CmpInst::ICMP_NE: 2695 break; 2696 2697 // We can only handle unsigned relational comparisons because 'inbounds' on 2698 // a GEP only protects against unsigned wrapping. 2699 case CmpInst::ICMP_UGT: 2700 case CmpInst::ICMP_UGE: 2701 case CmpInst::ICMP_ULT: 2702 case CmpInst::ICMP_ULE: 2703 // However, we have to switch them to their signed variants to handle 2704 // negative indices from the base pointer. 2705 Pred = ICmpInst::getSignedPredicate(Pred); 2706 break; 2707 } 2708 2709 // Strip off any constant offsets so that we can reason about them. 2710 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2711 // here and compare base addresses like AliasAnalysis does, however there are 2712 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2713 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2714 // doesn't need to guarantee pointer inequality when it says NoAlias. 2715 2716 // Even if an non-inbounds GEP occurs along the path we can still optimize 2717 // equality comparisons concerning the result. 2718 bool AllowNonInbounds = ICmpInst::isEquality(Pred); 2719 APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS, AllowNonInbounds); 2720 APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS, AllowNonInbounds); 2721 2722 // If LHS and RHS are related via constant offsets to the same base 2723 // value, we can replace it with an icmp which just compares the offsets. 2724 if (LHS == RHS) 2725 return ConstantInt::get(getCompareTy(LHS), 2726 ICmpInst::compare(LHSOffset, RHSOffset, Pred)); 2727 2728 // Various optimizations for (in)equality comparisons. 2729 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2730 // Different non-empty allocations that exist at the same time have 2731 // different addresses (if the program can tell). If the offsets are 2732 // within the bounds of their allocations (and not one-past-the-end! 2733 // so we can't use inbounds!), and their allocations aren't the same, 2734 // the pointers are not equal. 2735 if (haveNonOverlappingStorage(LHS, RHS)) { 2736 uint64_t LHSSize, RHSSize; 2737 ObjectSizeOpts Opts; 2738 Opts.EvalMode = ObjectSizeOpts::Mode::Min; 2739 auto *F = [](Value *V) -> Function * { 2740 if (auto *I = dyn_cast<Instruction>(V)) 2741 return I->getFunction(); 2742 if (auto *A = dyn_cast<Argument>(V)) 2743 return A->getParent(); 2744 return nullptr; 2745 }(LHS); 2746 Opts.NullIsUnknownSize = F ? NullPointerIsDefined(F) : true; 2747 if (getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2748 getObjectSize(RHS, RHSSize, DL, TLI, Opts) && 2749 !LHSOffset.isNegative() && !RHSOffset.isNegative() && 2750 LHSOffset.ult(LHSSize) && RHSOffset.ult(RHSSize)) { 2751 return ConstantInt::get(getCompareTy(LHS), 2752 !CmpInst::isTrueWhenEqual(Pred)); 2753 } 2754 } 2755 2756 // If one side of the equality comparison must come from a noalias call 2757 // (meaning a system memory allocation function), and the other side must 2758 // come from a pointer that cannot overlap with dynamically-allocated 2759 // memory within the lifetime of the current function (allocas, byval 2760 // arguments, globals), then determine the comparison result here. 2761 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2762 getUnderlyingObjects(LHS, LHSUObjs); 2763 getUnderlyingObjects(RHS, RHSUObjs); 2764 2765 // Is the set of underlying objects all noalias calls? 2766 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2767 return all_of(Objects, isNoAliasCall); 2768 }; 2769 2770 // Is the set of underlying objects all things which must be disjoint from 2771 // noalias calls. We assume that indexing from such disjoint storage 2772 // into the heap is undefined, and thus offsets can be safely ignored. 2773 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2774 return all_of(Objects, ::isAllocDisjoint); 2775 }; 2776 2777 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2778 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2779 return ConstantInt::get(getCompareTy(LHS), 2780 !CmpInst::isTrueWhenEqual(Pred)); 2781 2782 // Fold comparisons for non-escaping pointer even if the allocation call 2783 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2784 // dynamic allocation call could be either of the operands. Note that 2785 // the other operand can not be based on the alloc - if it were, then 2786 // the cmp itself would be a capture. 2787 Value *MI = nullptr; 2788 if (isAllocLikeFn(LHS, TLI) && 2789 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2790 MI = LHS; 2791 else if (isAllocLikeFn(RHS, TLI) && 2792 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2793 MI = RHS; 2794 // FIXME: We should also fold the compare when the pointer escapes, but the 2795 // compare dominates the pointer escape 2796 if (MI && !PointerMayBeCaptured(MI, true, true)) 2797 return ConstantInt::get(getCompareTy(LHS), 2798 CmpInst::isFalseWhenEqual(Pred)); 2799 } 2800 2801 // Otherwise, fail. 2802 return nullptr; 2803 } 2804 2805 /// Fold an icmp when its operands have i1 scalar type. 2806 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2807 Value *RHS, const SimplifyQuery &Q) { 2808 Type *ITy = getCompareTy(LHS); // The return type. 2809 Type *OpTy = LHS->getType(); // The operand type. 2810 if (!OpTy->isIntOrIntVectorTy(1)) 2811 return nullptr; 2812 2813 // A boolean compared to true/false can be reduced in 14 out of the 20 2814 // (10 predicates * 2 constants) possible combinations. The other 2815 // 6 cases require a 'not' of the LHS. 2816 2817 auto ExtractNotLHS = [](Value *V) -> Value * { 2818 Value *X; 2819 if (match(V, m_Not(m_Value(X)))) 2820 return X; 2821 return nullptr; 2822 }; 2823 2824 if (match(RHS, m_Zero())) { 2825 switch (Pred) { 2826 case CmpInst::ICMP_NE: // X != 0 -> X 2827 case CmpInst::ICMP_UGT: // X >u 0 -> X 2828 case CmpInst::ICMP_SLT: // X <s 0 -> X 2829 return LHS; 2830 2831 case CmpInst::ICMP_EQ: // not(X) == 0 -> X != 0 -> X 2832 case CmpInst::ICMP_ULE: // not(X) <=u 0 -> X >u 0 -> X 2833 case CmpInst::ICMP_SGE: // not(X) >=s 0 -> X <s 0 -> X 2834 if (Value *X = ExtractNotLHS(LHS)) 2835 return X; 2836 break; 2837 2838 case CmpInst::ICMP_ULT: // X <u 0 -> false 2839 case CmpInst::ICMP_SGT: // X >s 0 -> false 2840 return getFalse(ITy); 2841 2842 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2843 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2844 return getTrue(ITy); 2845 2846 default: 2847 break; 2848 } 2849 } else if (match(RHS, m_One())) { 2850 switch (Pred) { 2851 case CmpInst::ICMP_EQ: // X == 1 -> X 2852 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2853 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2854 return LHS; 2855 2856 case CmpInst::ICMP_NE: // not(X) != 1 -> X == 1 -> X 2857 case CmpInst::ICMP_ULT: // not(X) <=u 1 -> X >=u 1 -> X 2858 case CmpInst::ICMP_SGT: // not(X) >s 1 -> X <=s -1 -> X 2859 if (Value *X = ExtractNotLHS(LHS)) 2860 return X; 2861 break; 2862 2863 case CmpInst::ICMP_UGT: // X >u 1 -> false 2864 case CmpInst::ICMP_SLT: // X <s -1 -> false 2865 return getFalse(ITy); 2866 2867 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2868 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2869 return getTrue(ITy); 2870 2871 default: 2872 break; 2873 } 2874 } 2875 2876 switch (Pred) { 2877 default: 2878 break; 2879 case ICmpInst::ICMP_UGE: 2880 if (isImpliedCondition(RHS, LHS, Q.DL).value_or(false)) 2881 return getTrue(ITy); 2882 break; 2883 case ICmpInst::ICMP_SGE: 2884 /// For signed comparison, the values for an i1 are 0 and -1 2885 /// respectively. This maps into a truth table of: 2886 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2887 /// 0 | 0 | 1 (0 >= 0) | 1 2888 /// 0 | 1 | 1 (0 >= -1) | 1 2889 /// 1 | 0 | 0 (-1 >= 0) | 0 2890 /// 1 | 1 | 1 (-1 >= -1) | 1 2891 if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false)) 2892 return getTrue(ITy); 2893 break; 2894 case ICmpInst::ICMP_ULE: 2895 if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false)) 2896 return getTrue(ITy); 2897 break; 2898 } 2899 2900 return nullptr; 2901 } 2902 2903 /// Try hard to fold icmp with zero RHS because this is a common case. 2904 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2905 Value *RHS, const SimplifyQuery &Q) { 2906 if (!match(RHS, m_Zero())) 2907 return nullptr; 2908 2909 Type *ITy = getCompareTy(LHS); // The return type. 2910 switch (Pred) { 2911 default: 2912 llvm_unreachable("Unknown ICmp predicate!"); 2913 case ICmpInst::ICMP_ULT: 2914 return getFalse(ITy); 2915 case ICmpInst::ICMP_UGE: 2916 return getTrue(ITy); 2917 case ICmpInst::ICMP_EQ: 2918 case ICmpInst::ICMP_ULE: 2919 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2920 return getFalse(ITy); 2921 break; 2922 case ICmpInst::ICMP_NE: 2923 case ICmpInst::ICMP_UGT: 2924 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2925 return getTrue(ITy); 2926 break; 2927 case ICmpInst::ICMP_SLT: { 2928 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2929 if (LHSKnown.isNegative()) 2930 return getTrue(ITy); 2931 if (LHSKnown.isNonNegative()) 2932 return getFalse(ITy); 2933 break; 2934 } 2935 case ICmpInst::ICMP_SLE: { 2936 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2937 if (LHSKnown.isNegative()) 2938 return getTrue(ITy); 2939 if (LHSKnown.isNonNegative() && 2940 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2941 return getFalse(ITy); 2942 break; 2943 } 2944 case ICmpInst::ICMP_SGE: { 2945 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2946 if (LHSKnown.isNegative()) 2947 return getFalse(ITy); 2948 if (LHSKnown.isNonNegative()) 2949 return getTrue(ITy); 2950 break; 2951 } 2952 case ICmpInst::ICMP_SGT: { 2953 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2954 if (LHSKnown.isNegative()) 2955 return getFalse(ITy); 2956 if (LHSKnown.isNonNegative() && 2957 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2958 return getTrue(ITy); 2959 break; 2960 } 2961 } 2962 2963 return nullptr; 2964 } 2965 2966 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2967 Value *RHS, const InstrInfoQuery &IIQ) { 2968 Type *ITy = getCompareTy(RHS); // The return type. 2969 2970 Value *X; 2971 // Sign-bit checks can be optimized to true/false after unsigned 2972 // floating-point casts: 2973 // icmp slt (bitcast (uitofp X)), 0 --> false 2974 // icmp sgt (bitcast (uitofp X)), -1 --> true 2975 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2976 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2977 return ConstantInt::getFalse(ITy); 2978 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2979 return ConstantInt::getTrue(ITy); 2980 } 2981 2982 const APInt *C; 2983 if (!match(RHS, m_APIntAllowUndef(C))) 2984 return nullptr; 2985 2986 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2987 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2988 if (RHS_CR.isEmptySet()) 2989 return ConstantInt::getFalse(ITy); 2990 if (RHS_CR.isFullSet()) 2991 return ConstantInt::getTrue(ITy); 2992 2993 ConstantRange LHS_CR = 2994 computeConstantRange(LHS, CmpInst::isSigned(Pred), IIQ.UseInstrInfo); 2995 if (!LHS_CR.isFullSet()) { 2996 if (RHS_CR.contains(LHS_CR)) 2997 return ConstantInt::getTrue(ITy); 2998 if (RHS_CR.inverse().contains(LHS_CR)) 2999 return ConstantInt::getFalse(ITy); 3000 } 3001 3002 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 3003 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 3004 const APInt *MulC; 3005 if (ICmpInst::isEquality(Pred) && 3006 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && 3007 *MulC != 0 && C->urem(*MulC) != 0) || 3008 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && 3009 *MulC != 0 && C->srem(*MulC) != 0))) 3010 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 3011 3012 return nullptr; 3013 } 3014 3015 static Value *simplifyICmpWithBinOpOnLHS(CmpInst::Predicate Pred, 3016 BinaryOperator *LBO, Value *RHS, 3017 const SimplifyQuery &Q, 3018 unsigned MaxRecurse) { 3019 Type *ITy = getCompareTy(RHS); // The return type. 3020 3021 Value *Y = nullptr; 3022 // icmp pred (or X, Y), X 3023 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 3024 if (Pred == ICmpInst::ICMP_ULT) 3025 return getFalse(ITy); 3026 if (Pred == ICmpInst::ICMP_UGE) 3027 return getTrue(ITy); 3028 3029 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 3030 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3031 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3032 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 3033 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 3034 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 3035 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 3036 } 3037 } 3038 3039 // icmp pred (and X, Y), X 3040 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 3041 if (Pred == ICmpInst::ICMP_UGT) 3042 return getFalse(ITy); 3043 if (Pred == ICmpInst::ICMP_ULE) 3044 return getTrue(ITy); 3045 } 3046 3047 // icmp pred (urem X, Y), Y 3048 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 3049 switch (Pred) { 3050 default: 3051 break; 3052 case ICmpInst::ICMP_SGT: 3053 case ICmpInst::ICMP_SGE: { 3054 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3055 if (!Known.isNonNegative()) 3056 break; 3057 LLVM_FALLTHROUGH; 3058 } 3059 case ICmpInst::ICMP_EQ: 3060 case ICmpInst::ICMP_UGT: 3061 case ICmpInst::ICMP_UGE: 3062 return getFalse(ITy); 3063 case ICmpInst::ICMP_SLT: 3064 case ICmpInst::ICMP_SLE: { 3065 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3066 if (!Known.isNonNegative()) 3067 break; 3068 LLVM_FALLTHROUGH; 3069 } 3070 case ICmpInst::ICMP_NE: 3071 case ICmpInst::ICMP_ULT: 3072 case ICmpInst::ICMP_ULE: 3073 return getTrue(ITy); 3074 } 3075 } 3076 3077 // icmp pred (urem X, Y), X 3078 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 3079 if (Pred == ICmpInst::ICMP_ULE) 3080 return getTrue(ITy); 3081 if (Pred == ICmpInst::ICMP_UGT) 3082 return getFalse(ITy); 3083 } 3084 3085 // x >>u y <=u x --> true. 3086 // x >>u y >u x --> false. 3087 // x udiv y <=u x --> true. 3088 // x udiv y >u x --> false. 3089 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 3090 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 3091 // icmp pred (X op Y), X 3092 if (Pred == ICmpInst::ICMP_UGT) 3093 return getFalse(ITy); 3094 if (Pred == ICmpInst::ICMP_ULE) 3095 return getTrue(ITy); 3096 } 3097 3098 // If x is nonzero: 3099 // x >>u C <u x --> true for C != 0. 3100 // x >>u C != x --> true for C != 0. 3101 // x >>u C >=u x --> false for C != 0. 3102 // x >>u C == x --> false for C != 0. 3103 // x udiv C <u x --> true for C != 1. 3104 // x udiv C != x --> true for C != 1. 3105 // x udiv C >=u x --> false for C != 1. 3106 // x udiv C == x --> false for C != 1. 3107 // TODO: allow non-constant shift amount/divisor 3108 const APInt *C; 3109 if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) || 3110 (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) { 3111 if (isKnownNonZero(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) { 3112 switch (Pred) { 3113 default: 3114 break; 3115 case ICmpInst::ICMP_EQ: 3116 case ICmpInst::ICMP_UGE: 3117 return getFalse(ITy); 3118 case ICmpInst::ICMP_NE: 3119 case ICmpInst::ICMP_ULT: 3120 return getTrue(ITy); 3121 case ICmpInst::ICMP_UGT: 3122 case ICmpInst::ICMP_ULE: 3123 // UGT/ULE are handled by the more general case just above 3124 llvm_unreachable("Unexpected UGT/ULE, should have been handled"); 3125 } 3126 } 3127 } 3128 3129 // (x*C1)/C2 <= x for C1 <= C2. 3130 // This holds even if the multiplication overflows: Assume that x != 0 and 3131 // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and 3132 // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. 3133 // 3134 // Additionally, either the multiplication and division might be represented 3135 // as shifts: 3136 // (x*C1)>>C2 <= x for C1 < 2**C2. 3137 // (x<<C1)/C2 <= x for 2**C1 < C2. 3138 const APInt *C1, *C2; 3139 if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3140 C1->ule(*C2)) || 3141 (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3142 C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) || 3143 (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3144 (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) { 3145 if (Pred == ICmpInst::ICMP_UGT) 3146 return getFalse(ITy); 3147 if (Pred == ICmpInst::ICMP_ULE) 3148 return getTrue(ITy); 3149 } 3150 3151 return nullptr; 3152 } 3153 3154 // If only one of the icmp's operands has NSW flags, try to prove that: 3155 // 3156 // icmp slt (x + C1), (x +nsw C2) 3157 // 3158 // is equivalent to: 3159 // 3160 // icmp slt C1, C2 3161 // 3162 // which is true if x + C2 has the NSW flags set and: 3163 // *) C1 < C2 && C1 >= 0, or 3164 // *) C2 < C1 && C1 <= 0. 3165 // 3166 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, 3167 Value *RHS) { 3168 // TODO: only support icmp slt for now. 3169 if (Pred != CmpInst::ICMP_SLT) 3170 return false; 3171 3172 // Canonicalize nsw add as RHS. 3173 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3174 std::swap(LHS, RHS); 3175 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3176 return false; 3177 3178 Value *X; 3179 const APInt *C1, *C2; 3180 if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) || 3181 !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2)))) 3182 return false; 3183 3184 return (C1->slt(*C2) && C1->isNonNegative()) || 3185 (C2->slt(*C1) && C1->isNonPositive()); 3186 } 3187 3188 /// TODO: A large part of this logic is duplicated in InstCombine's 3189 /// foldICmpBinOp(). We should be able to share that and avoid the code 3190 /// duplication. 3191 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 3192 Value *RHS, const SimplifyQuery &Q, 3193 unsigned MaxRecurse) { 3194 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 3195 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 3196 if (MaxRecurse && (LBO || RBO)) { 3197 // Analyze the case when either LHS or RHS is an add instruction. 3198 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3199 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 3200 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 3201 if (LBO && LBO->getOpcode() == Instruction::Add) { 3202 A = LBO->getOperand(0); 3203 B = LBO->getOperand(1); 3204 NoLHSWrapProblem = 3205 ICmpInst::isEquality(Pred) || 3206 (CmpInst::isUnsigned(Pred) && 3207 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 3208 (CmpInst::isSigned(Pred) && 3209 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 3210 } 3211 if (RBO && RBO->getOpcode() == Instruction::Add) { 3212 C = RBO->getOperand(0); 3213 D = RBO->getOperand(1); 3214 NoRHSWrapProblem = 3215 ICmpInst::isEquality(Pred) || 3216 (CmpInst::isUnsigned(Pred) && 3217 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 3218 (CmpInst::isSigned(Pred) && 3219 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 3220 } 3221 3222 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3223 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 3224 if (Value *V = simplifyICmpInst(Pred, A == RHS ? B : A, 3225 Constant::getNullValue(RHS->getType()), Q, 3226 MaxRecurse - 1)) 3227 return V; 3228 3229 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3230 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 3231 if (Value *V = 3232 simplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 3233 C == LHS ? D : C, Q, MaxRecurse - 1)) 3234 return V; 3235 3236 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 3237 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || 3238 trySimplifyICmpWithAdds(Pred, LHS, RHS); 3239 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { 3240 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3241 Value *Y, *Z; 3242 if (A == C) { 3243 // C + B == C + D -> B == D 3244 Y = B; 3245 Z = D; 3246 } else if (A == D) { 3247 // D + B == C + D -> B == C 3248 Y = B; 3249 Z = C; 3250 } else if (B == C) { 3251 // A + C == C + D -> A == D 3252 Y = A; 3253 Z = D; 3254 } else { 3255 assert(B == D); 3256 // A + D == C + D -> A == C 3257 Y = A; 3258 Z = C; 3259 } 3260 if (Value *V = simplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 3261 return V; 3262 } 3263 } 3264 3265 if (LBO) 3266 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 3267 return V; 3268 3269 if (RBO) 3270 if (Value *V = simplifyICmpWithBinOpOnLHS( 3271 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 3272 return V; 3273 3274 // 0 - (zext X) pred C 3275 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 3276 const APInt *C; 3277 if (match(RHS, m_APInt(C))) { 3278 if (C->isStrictlyPositive()) { 3279 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) 3280 return ConstantInt::getTrue(getCompareTy(RHS)); 3281 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) 3282 return ConstantInt::getFalse(getCompareTy(RHS)); 3283 } 3284 if (C->isNonNegative()) { 3285 if (Pred == ICmpInst::ICMP_SLE) 3286 return ConstantInt::getTrue(getCompareTy(RHS)); 3287 if (Pred == ICmpInst::ICMP_SGT) 3288 return ConstantInt::getFalse(getCompareTy(RHS)); 3289 } 3290 } 3291 } 3292 3293 // If C2 is a power-of-2 and C is not: 3294 // (C2 << X) == C --> false 3295 // (C2 << X) != C --> true 3296 const APInt *C; 3297 if (match(LHS, m_Shl(m_Power2(), m_Value())) && 3298 match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) { 3299 // C2 << X can equal zero in some circumstances. 3300 // This simplification might be unsafe if C is zero. 3301 // 3302 // We know it is safe if: 3303 // - The shift is nsw. We can't shift out the one bit. 3304 // - The shift is nuw. We can't shift out the one bit. 3305 // - C2 is one. 3306 // - C isn't zero. 3307 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3308 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3309 match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) { 3310 if (Pred == ICmpInst::ICMP_EQ) 3311 return ConstantInt::getFalse(getCompareTy(RHS)); 3312 if (Pred == ICmpInst::ICMP_NE) 3313 return ConstantInt::getTrue(getCompareTy(RHS)); 3314 } 3315 } 3316 3317 // TODO: This is overly constrained. LHS can be any power-of-2. 3318 // (1 << X) >u 0x8000 --> false 3319 // (1 << X) <=u 0x8000 --> true 3320 if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) { 3321 if (Pred == ICmpInst::ICMP_UGT) 3322 return ConstantInt::getFalse(getCompareTy(RHS)); 3323 if (Pred == ICmpInst::ICMP_ULE) 3324 return ConstantInt::getTrue(getCompareTy(RHS)); 3325 } 3326 3327 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 3328 LBO->getOperand(1) == RBO->getOperand(1)) { 3329 switch (LBO->getOpcode()) { 3330 default: 3331 break; 3332 case Instruction::UDiv: 3333 case Instruction::LShr: 3334 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3335 !Q.IIQ.isExact(RBO)) 3336 break; 3337 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3338 RBO->getOperand(0), Q, MaxRecurse - 1)) 3339 return V; 3340 break; 3341 case Instruction::SDiv: 3342 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3343 !Q.IIQ.isExact(RBO)) 3344 break; 3345 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3346 RBO->getOperand(0), Q, MaxRecurse - 1)) 3347 return V; 3348 break; 3349 case Instruction::AShr: 3350 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3351 break; 3352 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3353 RBO->getOperand(0), Q, MaxRecurse - 1)) 3354 return V; 3355 break; 3356 case Instruction::Shl: { 3357 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3358 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3359 if (!NUW && !NSW) 3360 break; 3361 if (!NSW && ICmpInst::isSigned(Pred)) 3362 break; 3363 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3364 RBO->getOperand(0), Q, MaxRecurse - 1)) 3365 return V; 3366 break; 3367 } 3368 } 3369 } 3370 return nullptr; 3371 } 3372 3373 /// simplify integer comparisons where at least one operand of the compare 3374 /// matches an integer min/max idiom. 3375 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3376 Value *RHS, const SimplifyQuery &Q, 3377 unsigned MaxRecurse) { 3378 Type *ITy = getCompareTy(LHS); // The return type. 3379 Value *A, *B; 3380 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3381 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3382 3383 // Signed variants on "max(a,b)>=a -> true". 3384 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3385 if (A != RHS) 3386 std::swap(A, B); // smax(A, B) pred A. 3387 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3388 // We analyze this as smax(A, B) pred A. 3389 P = Pred; 3390 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3391 (A == LHS || B == LHS)) { 3392 if (A != LHS) 3393 std::swap(A, B); // A pred smax(A, B). 3394 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3395 // We analyze this as smax(A, B) swapped-pred A. 3396 P = CmpInst::getSwappedPredicate(Pred); 3397 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3398 (A == RHS || B == RHS)) { 3399 if (A != RHS) 3400 std::swap(A, B); // smin(A, B) pred A. 3401 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3402 // We analyze this as smax(-A, -B) swapped-pred -A. 3403 // Note that we do not need to actually form -A or -B thanks to EqP. 3404 P = CmpInst::getSwappedPredicate(Pred); 3405 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3406 (A == LHS || B == LHS)) { 3407 if (A != LHS) 3408 std::swap(A, B); // A pred smin(A, B). 3409 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3410 // We analyze this as smax(-A, -B) pred -A. 3411 // Note that we do not need to actually form -A or -B thanks to EqP. 3412 P = Pred; 3413 } 3414 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3415 // Cases correspond to "max(A, B) p A". 3416 switch (P) { 3417 default: 3418 break; 3419 case CmpInst::ICMP_EQ: 3420 case CmpInst::ICMP_SLE: 3421 // Equivalent to "A EqP B". This may be the same as the condition tested 3422 // in the max/min; if so, we can just return that. 3423 if (Value *V = extractEquivalentCondition(LHS, EqP, A, B)) 3424 return V; 3425 if (Value *V = extractEquivalentCondition(RHS, EqP, A, B)) 3426 return V; 3427 // Otherwise, see if "A EqP B" simplifies. 3428 if (MaxRecurse) 3429 if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3430 return V; 3431 break; 3432 case CmpInst::ICMP_NE: 3433 case CmpInst::ICMP_SGT: { 3434 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3435 // Equivalent to "A InvEqP B". This may be the same as the condition 3436 // tested in the max/min; if so, we can just return that. 3437 if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B)) 3438 return V; 3439 if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B)) 3440 return V; 3441 // Otherwise, see if "A InvEqP B" simplifies. 3442 if (MaxRecurse) 3443 if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3444 return V; 3445 break; 3446 } 3447 case CmpInst::ICMP_SGE: 3448 // Always true. 3449 return getTrue(ITy); 3450 case CmpInst::ICMP_SLT: 3451 // Always false. 3452 return getFalse(ITy); 3453 } 3454 } 3455 3456 // Unsigned variants on "max(a,b)>=a -> true". 3457 P = CmpInst::BAD_ICMP_PREDICATE; 3458 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3459 if (A != RHS) 3460 std::swap(A, B); // umax(A, B) pred A. 3461 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3462 // We analyze this as umax(A, B) pred A. 3463 P = Pred; 3464 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3465 (A == LHS || B == LHS)) { 3466 if (A != LHS) 3467 std::swap(A, B); // A pred umax(A, B). 3468 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3469 // We analyze this as umax(A, B) swapped-pred A. 3470 P = CmpInst::getSwappedPredicate(Pred); 3471 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3472 (A == RHS || B == RHS)) { 3473 if (A != RHS) 3474 std::swap(A, B); // umin(A, B) pred A. 3475 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3476 // We analyze this as umax(-A, -B) swapped-pred -A. 3477 // Note that we do not need to actually form -A or -B thanks to EqP. 3478 P = CmpInst::getSwappedPredicate(Pred); 3479 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3480 (A == LHS || B == LHS)) { 3481 if (A != LHS) 3482 std::swap(A, B); // A pred umin(A, B). 3483 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3484 // We analyze this as umax(-A, -B) pred -A. 3485 // Note that we do not need to actually form -A or -B thanks to EqP. 3486 P = Pred; 3487 } 3488 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3489 // Cases correspond to "max(A, B) p A". 3490 switch (P) { 3491 default: 3492 break; 3493 case CmpInst::ICMP_EQ: 3494 case CmpInst::ICMP_ULE: 3495 // Equivalent to "A EqP B". This may be the same as the condition tested 3496 // in the max/min; if so, we can just return that. 3497 if (Value *V = extractEquivalentCondition(LHS, EqP, A, B)) 3498 return V; 3499 if (Value *V = extractEquivalentCondition(RHS, EqP, A, B)) 3500 return V; 3501 // Otherwise, see if "A EqP B" simplifies. 3502 if (MaxRecurse) 3503 if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3504 return V; 3505 break; 3506 case CmpInst::ICMP_NE: 3507 case CmpInst::ICMP_UGT: { 3508 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3509 // Equivalent to "A InvEqP B". This may be the same as the condition 3510 // tested in the max/min; if so, we can just return that. 3511 if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B)) 3512 return V; 3513 if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B)) 3514 return V; 3515 // Otherwise, see if "A InvEqP B" simplifies. 3516 if (MaxRecurse) 3517 if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3518 return V; 3519 break; 3520 } 3521 case CmpInst::ICMP_UGE: 3522 return getTrue(ITy); 3523 case CmpInst::ICMP_ULT: 3524 return getFalse(ITy); 3525 } 3526 } 3527 3528 // Comparing 1 each of min/max with a common operand? 3529 // Canonicalize min operand to RHS. 3530 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3531 match(LHS, m_SMin(m_Value(), m_Value()))) { 3532 std::swap(LHS, RHS); 3533 Pred = ICmpInst::getSwappedPredicate(Pred); 3534 } 3535 3536 Value *C, *D; 3537 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3538 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3539 (A == C || A == D || B == C || B == D)) { 3540 // smax(A, B) >=s smin(A, D) --> true 3541 if (Pred == CmpInst::ICMP_SGE) 3542 return getTrue(ITy); 3543 // smax(A, B) <s smin(A, D) --> false 3544 if (Pred == CmpInst::ICMP_SLT) 3545 return getFalse(ITy); 3546 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3547 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3548 (A == C || A == D || B == C || B == D)) { 3549 // umax(A, B) >=u umin(A, D) --> true 3550 if (Pred == CmpInst::ICMP_UGE) 3551 return getTrue(ITy); 3552 // umax(A, B) <u umin(A, D) --> false 3553 if (Pred == CmpInst::ICMP_ULT) 3554 return getFalse(ITy); 3555 } 3556 3557 return nullptr; 3558 } 3559 3560 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3561 Value *LHS, Value *RHS, 3562 const SimplifyQuery &Q) { 3563 // Gracefully handle instructions that have not been inserted yet. 3564 if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) 3565 return nullptr; 3566 3567 for (Value *AssumeBaseOp : {LHS, RHS}) { 3568 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3569 if (!AssumeVH) 3570 continue; 3571 3572 CallInst *Assume = cast<CallInst>(AssumeVH); 3573 if (Optional<bool> Imp = isImpliedCondition(Assume->getArgOperand(0), 3574 Predicate, LHS, RHS, Q.DL)) 3575 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3576 return ConstantInt::get(getCompareTy(LHS), *Imp); 3577 } 3578 } 3579 3580 return nullptr; 3581 } 3582 3583 /// Given operands for an ICmpInst, see if we can fold the result. 3584 /// If not, this returns null. 3585 static Value *simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3586 const SimplifyQuery &Q, unsigned MaxRecurse) { 3587 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3588 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3589 3590 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3591 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3592 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3593 3594 // If we have a constant, make sure it is on the RHS. 3595 std::swap(LHS, RHS); 3596 Pred = CmpInst::getSwappedPredicate(Pred); 3597 } 3598 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3599 3600 Type *ITy = getCompareTy(LHS); // The return type. 3601 3602 // icmp poison, X -> poison 3603 if (isa<PoisonValue>(RHS)) 3604 return PoisonValue::get(ITy); 3605 3606 // For EQ and NE, we can always pick a value for the undef to make the 3607 // predicate pass or fail, so we can return undef. 3608 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3609 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3610 return UndefValue::get(ITy); 3611 3612 // icmp X, X -> true/false 3613 // icmp X, undef -> true/false because undef could be X. 3614 if (LHS == RHS || Q.isUndefValue(RHS)) 3615 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3616 3617 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3618 return V; 3619 3620 // TODO: Sink/common this with other potentially expensive calls that use 3621 // ValueTracking? See comment below for isKnownNonEqual(). 3622 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3623 return V; 3624 3625 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3626 return V; 3627 3628 // If both operands have range metadata, use the metadata 3629 // to simplify the comparison. 3630 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3631 auto RHS_Instr = cast<Instruction>(RHS); 3632 auto LHS_Instr = cast<Instruction>(LHS); 3633 3634 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3635 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3636 auto RHS_CR = getConstantRangeFromMetadata( 3637 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3638 auto LHS_CR = getConstantRangeFromMetadata( 3639 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3640 3641 if (LHS_CR.icmp(Pred, RHS_CR)) 3642 return ConstantInt::getTrue(RHS->getContext()); 3643 3644 if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR)) 3645 return ConstantInt::getFalse(RHS->getContext()); 3646 } 3647 } 3648 3649 // Compare of cast, for example (zext X) != 0 -> X != 0 3650 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3651 Instruction *LI = cast<CastInst>(LHS); 3652 Value *SrcOp = LI->getOperand(0); 3653 Type *SrcTy = SrcOp->getType(); 3654 Type *DstTy = LI->getType(); 3655 3656 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3657 // if the integer type is the same size as the pointer type. 3658 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3659 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3660 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3661 // Transfer the cast to the constant. 3662 if (Value *V = simplifyICmpInst(Pred, SrcOp, 3663 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3664 Q, MaxRecurse - 1)) 3665 return V; 3666 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3667 if (RI->getOperand(0)->getType() == SrcTy) 3668 // Compare without the cast. 3669 if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q, 3670 MaxRecurse - 1)) 3671 return V; 3672 } 3673 } 3674 3675 if (isa<ZExtInst>(LHS)) { 3676 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3677 // same type. 3678 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3679 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3680 // Compare X and Y. Note that signed predicates become unsigned. 3681 if (Value *V = 3682 simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), SrcOp, 3683 RI->getOperand(0), Q, MaxRecurse - 1)) 3684 return V; 3685 } 3686 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3687 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3688 if (SrcOp == RI->getOperand(0)) { 3689 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3690 return ConstantInt::getTrue(ITy); 3691 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3692 return ConstantInt::getFalse(ITy); 3693 } 3694 } 3695 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3696 // too. If not, then try to deduce the result of the comparison. 3697 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3698 // Compute the constant that would happen if we truncated to SrcTy then 3699 // reextended to DstTy. 3700 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3701 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3702 3703 // If the re-extended constant didn't change then this is effectively 3704 // also a case of comparing two zero-extended values. 3705 if (RExt == CI && MaxRecurse) 3706 if (Value *V = simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3707 SrcOp, Trunc, Q, MaxRecurse - 1)) 3708 return V; 3709 3710 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3711 // there. Use this to work out the result of the comparison. 3712 if (RExt != CI) { 3713 switch (Pred) { 3714 default: 3715 llvm_unreachable("Unknown ICmp predicate!"); 3716 // LHS <u RHS. 3717 case ICmpInst::ICMP_EQ: 3718 case ICmpInst::ICMP_UGT: 3719 case ICmpInst::ICMP_UGE: 3720 return ConstantInt::getFalse(CI->getContext()); 3721 3722 case ICmpInst::ICMP_NE: 3723 case ICmpInst::ICMP_ULT: 3724 case ICmpInst::ICMP_ULE: 3725 return ConstantInt::getTrue(CI->getContext()); 3726 3727 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3728 // is non-negative then LHS <s RHS. 3729 case ICmpInst::ICMP_SGT: 3730 case ICmpInst::ICMP_SGE: 3731 return CI->getValue().isNegative() 3732 ? ConstantInt::getTrue(CI->getContext()) 3733 : ConstantInt::getFalse(CI->getContext()); 3734 3735 case ICmpInst::ICMP_SLT: 3736 case ICmpInst::ICMP_SLE: 3737 return CI->getValue().isNegative() 3738 ? ConstantInt::getFalse(CI->getContext()) 3739 : ConstantInt::getTrue(CI->getContext()); 3740 } 3741 } 3742 } 3743 } 3744 3745 if (isa<SExtInst>(LHS)) { 3746 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3747 // same type. 3748 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3749 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3750 // Compare X and Y. Note that the predicate does not change. 3751 if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q, 3752 MaxRecurse - 1)) 3753 return V; 3754 } 3755 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3756 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3757 if (SrcOp == RI->getOperand(0)) { 3758 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3759 return ConstantInt::getTrue(ITy); 3760 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3761 return ConstantInt::getFalse(ITy); 3762 } 3763 } 3764 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3765 // too. If not, then try to deduce the result of the comparison. 3766 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3767 // Compute the constant that would happen if we truncated to SrcTy then 3768 // reextended to DstTy. 3769 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3770 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3771 3772 // If the re-extended constant didn't change then this is effectively 3773 // also a case of comparing two sign-extended values. 3774 if (RExt == CI && MaxRecurse) 3775 if (Value *V = 3776 simplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse - 1)) 3777 return V; 3778 3779 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3780 // bits there. Use this to work out the result of the comparison. 3781 if (RExt != CI) { 3782 switch (Pred) { 3783 default: 3784 llvm_unreachable("Unknown ICmp predicate!"); 3785 case ICmpInst::ICMP_EQ: 3786 return ConstantInt::getFalse(CI->getContext()); 3787 case ICmpInst::ICMP_NE: 3788 return ConstantInt::getTrue(CI->getContext()); 3789 3790 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3791 // LHS >s RHS. 3792 case ICmpInst::ICMP_SGT: 3793 case ICmpInst::ICMP_SGE: 3794 return CI->getValue().isNegative() 3795 ? ConstantInt::getTrue(CI->getContext()) 3796 : ConstantInt::getFalse(CI->getContext()); 3797 case ICmpInst::ICMP_SLT: 3798 case ICmpInst::ICMP_SLE: 3799 return CI->getValue().isNegative() 3800 ? ConstantInt::getFalse(CI->getContext()) 3801 : ConstantInt::getTrue(CI->getContext()); 3802 3803 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3804 // LHS >u RHS. 3805 case ICmpInst::ICMP_UGT: 3806 case ICmpInst::ICMP_UGE: 3807 // Comparison is true iff the LHS <s 0. 3808 if (MaxRecurse) 3809 if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3810 Constant::getNullValue(SrcTy), Q, 3811 MaxRecurse - 1)) 3812 return V; 3813 break; 3814 case ICmpInst::ICMP_ULT: 3815 case ICmpInst::ICMP_ULE: 3816 // Comparison is true iff the LHS >=s 0. 3817 if (MaxRecurse) 3818 if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3819 Constant::getNullValue(SrcTy), Q, 3820 MaxRecurse - 1)) 3821 return V; 3822 break; 3823 } 3824 } 3825 } 3826 } 3827 } 3828 3829 // icmp eq|ne X, Y -> false|true if X != Y 3830 // This is potentially expensive, and we have already computedKnownBits for 3831 // compares with 0 above here, so only try this for a non-zero compare. 3832 if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) && 3833 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3834 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3835 } 3836 3837 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3838 return V; 3839 3840 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3841 return V; 3842 3843 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3844 return V; 3845 3846 // Simplify comparisons of related pointers using a powerful, recursive 3847 // GEP-walk when we have target data available.. 3848 if (LHS->getType()->isPointerTy()) 3849 if (auto *C = computePointerICmp(Pred, LHS, RHS, Q)) 3850 return C; 3851 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3852 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3853 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3854 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3855 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3856 Q.DL.getTypeSizeInBits(CRHS->getType())) 3857 if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(), 3858 CRHS->getPointerOperand(), Q)) 3859 return C; 3860 3861 // If the comparison is with the result of a select instruction, check whether 3862 // comparing with either branch of the select always yields the same value. 3863 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3864 if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3865 return V; 3866 3867 // If the comparison is with the result of a phi instruction, check whether 3868 // doing the compare with each incoming phi value yields a common result. 3869 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3870 if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3871 return V; 3872 3873 return nullptr; 3874 } 3875 3876 Value *llvm::simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3877 const SimplifyQuery &Q) { 3878 return ::simplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3879 } 3880 3881 /// Given operands for an FCmpInst, see if we can fold the result. 3882 /// If not, this returns null. 3883 static Value *simplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3884 FastMathFlags FMF, const SimplifyQuery &Q, 3885 unsigned MaxRecurse) { 3886 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3887 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3888 3889 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3890 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3891 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI, 3892 Q.CxtI); 3893 3894 // If we have a constant, make sure it is on the RHS. 3895 std::swap(LHS, RHS); 3896 Pred = CmpInst::getSwappedPredicate(Pred); 3897 } 3898 3899 // Fold trivial predicates. 3900 Type *RetTy = getCompareTy(LHS); 3901 if (Pred == FCmpInst::FCMP_FALSE) 3902 return getFalse(RetTy); 3903 if (Pred == FCmpInst::FCMP_TRUE) 3904 return getTrue(RetTy); 3905 3906 // Fold (un)ordered comparison if we can determine there are no NaNs. 3907 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3908 if (FMF.noNaNs() || 3909 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3910 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3911 3912 // NaN is unordered; NaN is not ordered. 3913 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3914 "Comparison must be either ordered or unordered"); 3915 if (match(RHS, m_NaN())) 3916 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3917 3918 // fcmp pred x, poison and fcmp pred poison, x 3919 // fold to poison 3920 if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS)) 3921 return PoisonValue::get(RetTy); 3922 3923 // fcmp pred x, undef and fcmp pred undef, x 3924 // fold to true if unordered, false if ordered 3925 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 3926 // Choosing NaN for the undef will always make unordered comparison succeed 3927 // and ordered comparison fail. 3928 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3929 } 3930 3931 // fcmp x,x -> true/false. Not all compares are foldable. 3932 if (LHS == RHS) { 3933 if (CmpInst::isTrueWhenEqual(Pred)) 3934 return getTrue(RetTy); 3935 if (CmpInst::isFalseWhenEqual(Pred)) 3936 return getFalse(RetTy); 3937 } 3938 3939 // Handle fcmp with constant RHS. 3940 // TODO: Use match with a specific FP value, so these work with vectors with 3941 // undef lanes. 3942 const APFloat *C; 3943 if (match(RHS, m_APFloat(C))) { 3944 // Check whether the constant is an infinity. 3945 if (C->isInfinity()) { 3946 if (C->isNegative()) { 3947 switch (Pred) { 3948 case FCmpInst::FCMP_OLT: 3949 // No value is ordered and less than negative infinity. 3950 return getFalse(RetTy); 3951 case FCmpInst::FCMP_UGE: 3952 // All values are unordered with or at least negative infinity. 3953 return getTrue(RetTy); 3954 default: 3955 break; 3956 } 3957 } else { 3958 switch (Pred) { 3959 case FCmpInst::FCMP_OGT: 3960 // No value is ordered and greater than infinity. 3961 return getFalse(RetTy); 3962 case FCmpInst::FCMP_ULE: 3963 // All values are unordered with and at most infinity. 3964 return getTrue(RetTy); 3965 default: 3966 break; 3967 } 3968 } 3969 3970 // LHS == Inf 3971 if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI)) 3972 return getFalse(RetTy); 3973 // LHS != Inf 3974 if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI)) 3975 return getTrue(RetTy); 3976 // LHS == Inf || LHS == NaN 3977 if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) && 3978 isKnownNeverNaN(LHS, Q.TLI)) 3979 return getFalse(RetTy); 3980 // LHS != Inf && LHS != NaN 3981 if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) && 3982 isKnownNeverNaN(LHS, Q.TLI)) 3983 return getTrue(RetTy); 3984 } 3985 if (C->isNegative() && !C->isNegZero()) { 3986 assert(!C->isNaN() && "Unexpected NaN constant!"); 3987 // TODO: We can catch more cases by using a range check rather than 3988 // relying on CannotBeOrderedLessThanZero. 3989 switch (Pred) { 3990 case FCmpInst::FCMP_UGE: 3991 case FCmpInst::FCMP_UGT: 3992 case FCmpInst::FCMP_UNE: 3993 // (X >= 0) implies (X > C) when (C < 0) 3994 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3995 return getTrue(RetTy); 3996 break; 3997 case FCmpInst::FCMP_OEQ: 3998 case FCmpInst::FCMP_OLE: 3999 case FCmpInst::FCMP_OLT: 4000 // (X >= 0) implies !(X < C) when (C < 0) 4001 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 4002 return getFalse(RetTy); 4003 break; 4004 default: 4005 break; 4006 } 4007 } 4008 4009 // Check comparison of [minnum/maxnum with constant] with other constant. 4010 const APFloat *C2; 4011 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 4012 *C2 < *C) || 4013 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 4014 *C2 > *C)) { 4015 bool IsMaxNum = 4016 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 4017 // The ordered relationship and minnum/maxnum guarantee that we do not 4018 // have NaN constants, so ordered/unordered preds are handled the same. 4019 switch (Pred) { 4020 case FCmpInst::FCMP_OEQ: 4021 case FCmpInst::FCMP_UEQ: 4022 // minnum(X, LesserC) == C --> false 4023 // maxnum(X, GreaterC) == C --> false 4024 return getFalse(RetTy); 4025 case FCmpInst::FCMP_ONE: 4026 case FCmpInst::FCMP_UNE: 4027 // minnum(X, LesserC) != C --> true 4028 // maxnum(X, GreaterC) != C --> true 4029 return getTrue(RetTy); 4030 case FCmpInst::FCMP_OGE: 4031 case FCmpInst::FCMP_UGE: 4032 case FCmpInst::FCMP_OGT: 4033 case FCmpInst::FCMP_UGT: 4034 // minnum(X, LesserC) >= C --> false 4035 // minnum(X, LesserC) > C --> false 4036 // maxnum(X, GreaterC) >= C --> true 4037 // maxnum(X, GreaterC) > C --> true 4038 return ConstantInt::get(RetTy, IsMaxNum); 4039 case FCmpInst::FCMP_OLE: 4040 case FCmpInst::FCMP_ULE: 4041 case FCmpInst::FCMP_OLT: 4042 case FCmpInst::FCMP_ULT: 4043 // minnum(X, LesserC) <= C --> true 4044 // minnum(X, LesserC) < C --> true 4045 // maxnum(X, GreaterC) <= C --> false 4046 // maxnum(X, GreaterC) < C --> false 4047 return ConstantInt::get(RetTy, !IsMaxNum); 4048 default: 4049 // TRUE/FALSE/ORD/UNO should be handled before this. 4050 llvm_unreachable("Unexpected fcmp predicate"); 4051 } 4052 } 4053 } 4054 4055 if (match(RHS, m_AnyZeroFP())) { 4056 switch (Pred) { 4057 case FCmpInst::FCMP_OGE: 4058 case FCmpInst::FCMP_ULT: 4059 // Positive or zero X >= 0.0 --> true 4060 // Positive or zero X < 0.0 --> false 4061 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 4062 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 4063 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 4064 break; 4065 case FCmpInst::FCMP_UGE: 4066 case FCmpInst::FCMP_OLT: 4067 // Positive or zero or nan X >= 0.0 --> true 4068 // Positive or zero or nan X < 0.0 --> false 4069 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 4070 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 4071 break; 4072 default: 4073 break; 4074 } 4075 } 4076 4077 // If the comparison is with the result of a select instruction, check whether 4078 // comparing with either branch of the select always yields the same value. 4079 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 4080 if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 4081 return V; 4082 4083 // If the comparison is with the result of a phi instruction, check whether 4084 // doing the compare with each incoming phi value yields a common result. 4085 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 4086 if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 4087 return V; 4088 4089 return nullptr; 4090 } 4091 4092 Value *llvm::simplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4093 FastMathFlags FMF, const SimplifyQuery &Q) { 4094 return ::simplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 4095 } 4096 4097 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4098 const SimplifyQuery &Q, 4099 bool AllowRefinement, 4100 unsigned MaxRecurse) { 4101 assert(!Op->getType()->isVectorTy() && "This is not safe for vectors"); 4102 4103 // Trivial replacement. 4104 if (V == Op) 4105 return RepOp; 4106 4107 // We cannot replace a constant, and shouldn't even try. 4108 if (isa<Constant>(Op)) 4109 return nullptr; 4110 4111 auto *I = dyn_cast<Instruction>(V); 4112 if (!I || !is_contained(I->operands(), Op)) 4113 return nullptr; 4114 4115 // Replace Op with RepOp in instruction operands. 4116 SmallVector<Value *, 8> NewOps(I->getNumOperands()); 4117 transform(I->operands(), NewOps.begin(), 4118 [&](Value *V) { return V == Op ? RepOp : V; }); 4119 4120 if (!AllowRefinement) { 4121 // General InstSimplify functions may refine the result, e.g. by returning 4122 // a constant for a potentially poison value. To avoid this, implement only 4123 // a few non-refining but profitable transforms here. 4124 4125 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 4126 unsigned Opcode = BO->getOpcode(); 4127 // id op x -> x, x op id -> x 4128 if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType())) 4129 return NewOps[1]; 4130 if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(), 4131 /* RHS */ true)) 4132 return NewOps[0]; 4133 4134 // x & x -> x, x | x -> x 4135 if ((Opcode == Instruction::And || Opcode == Instruction::Or) && 4136 NewOps[0] == NewOps[1]) 4137 return NewOps[0]; 4138 } 4139 4140 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 4141 // getelementptr x, 0 -> x 4142 if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) && 4143 !GEP->isInBounds()) 4144 return NewOps[0]; 4145 } 4146 } else if (MaxRecurse) { 4147 // The simplification queries below may return the original value. Consider: 4148 // %div = udiv i32 %arg, %arg2 4149 // %mul = mul nsw i32 %div, %arg2 4150 // %cmp = icmp eq i32 %mul, %arg 4151 // %sel = select i1 %cmp, i32 %div, i32 undef 4152 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which 4153 // simplifies back to %arg. This can only happen because %mul does not 4154 // dominate %div. To ensure a consistent return value contract, we make sure 4155 // that this case returns nullptr as well. 4156 auto PreventSelfSimplify = [V](Value *Simplified) { 4157 return Simplified != V ? Simplified : nullptr; 4158 }; 4159 4160 if (auto *B = dyn_cast<BinaryOperator>(I)) 4161 return PreventSelfSimplify(simplifyBinOp(B->getOpcode(), NewOps[0], 4162 NewOps[1], Q, MaxRecurse - 1)); 4163 4164 if (CmpInst *C = dyn_cast<CmpInst>(I)) 4165 return PreventSelfSimplify(simplifyCmpInst(C->getPredicate(), NewOps[0], 4166 NewOps[1], Q, MaxRecurse - 1)); 4167 4168 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 4169 return PreventSelfSimplify(simplifyGEPInst( 4170 GEP->getSourceElementType(), NewOps[0], makeArrayRef(NewOps).slice(1), 4171 GEP->isInBounds(), Q, MaxRecurse - 1)); 4172 4173 if (isa<SelectInst>(I)) 4174 return PreventSelfSimplify(simplifySelectInst( 4175 NewOps[0], NewOps[1], NewOps[2], Q, MaxRecurse - 1)); 4176 // TODO: We could hand off more cases to instsimplify here. 4177 } 4178 4179 // If all operands are constant after substituting Op for RepOp then we can 4180 // constant fold the instruction. 4181 SmallVector<Constant *, 8> ConstOps; 4182 for (Value *NewOp : NewOps) { 4183 if (Constant *ConstOp = dyn_cast<Constant>(NewOp)) 4184 ConstOps.push_back(ConstOp); 4185 else 4186 return nullptr; 4187 } 4188 4189 // Consider: 4190 // %cmp = icmp eq i32 %x, 2147483647 4191 // %add = add nsw i32 %x, 1 4192 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 4193 // 4194 // We can't replace %sel with %add unless we strip away the flags (which 4195 // will be done in InstCombine). 4196 // TODO: This may be unsound, because it only catches some forms of 4197 // refinement. 4198 if (!AllowRefinement && canCreatePoison(cast<Operator>(I))) 4199 return nullptr; 4200 4201 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 4202 } 4203 4204 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4205 const SimplifyQuery &Q, 4206 bool AllowRefinement) { 4207 return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, 4208 RecursionLimit); 4209 } 4210 4211 /// Try to simplify a select instruction when its condition operand is an 4212 /// integer comparison where one operand of the compare is a constant. 4213 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 4214 const APInt *Y, bool TrueWhenUnset) { 4215 const APInt *C; 4216 4217 // (X & Y) == 0 ? X & ~Y : X --> X 4218 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 4219 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 4220 *Y == ~*C) 4221 return TrueWhenUnset ? FalseVal : TrueVal; 4222 4223 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 4224 // (X & Y) != 0 ? X : X & ~Y --> X 4225 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 4226 *Y == ~*C) 4227 return TrueWhenUnset ? FalseVal : TrueVal; 4228 4229 if (Y->isPowerOf2()) { 4230 // (X & Y) == 0 ? X | Y : X --> X | Y 4231 // (X & Y) != 0 ? X | Y : X --> X 4232 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 4233 *Y == *C) 4234 return TrueWhenUnset ? TrueVal : FalseVal; 4235 4236 // (X & Y) == 0 ? X : X | Y --> X 4237 // (X & Y) != 0 ? X : X | Y --> X | Y 4238 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 4239 *Y == *C) 4240 return TrueWhenUnset ? TrueVal : FalseVal; 4241 } 4242 4243 return nullptr; 4244 } 4245 4246 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 4247 /// eq/ne. 4248 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 4249 ICmpInst::Predicate Pred, 4250 Value *TrueVal, Value *FalseVal) { 4251 Value *X; 4252 APInt Mask; 4253 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 4254 return nullptr; 4255 4256 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 4257 Pred == ICmpInst::ICMP_EQ); 4258 } 4259 4260 /// Try to simplify a select instruction when its condition operand is an 4261 /// integer comparison. 4262 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 4263 Value *FalseVal, 4264 const SimplifyQuery &Q, 4265 unsigned MaxRecurse) { 4266 ICmpInst::Predicate Pred; 4267 Value *CmpLHS, *CmpRHS; 4268 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 4269 return nullptr; 4270 4271 // Canonicalize ne to eq predicate. 4272 if (Pred == ICmpInst::ICMP_NE) { 4273 Pred = ICmpInst::ICMP_EQ; 4274 std::swap(TrueVal, FalseVal); 4275 } 4276 4277 // Check for integer min/max with a limit constant: 4278 // X > MIN_INT ? X : MIN_INT --> X 4279 // X < MAX_INT ? X : MAX_INT --> X 4280 if (TrueVal->getType()->isIntOrIntVectorTy()) { 4281 Value *X, *Y; 4282 SelectPatternFlavor SPF = 4283 matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal, 4284 X, Y) 4285 .Flavor; 4286 if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) { 4287 APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF), 4288 X->getType()->getScalarSizeInBits()); 4289 if (match(Y, m_SpecificInt(LimitC))) 4290 return X; 4291 } 4292 } 4293 4294 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 4295 Value *X; 4296 const APInt *Y; 4297 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 4298 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 4299 /*TrueWhenUnset=*/true)) 4300 return V; 4301 4302 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 4303 Value *ShAmt; 4304 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), 4305 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); 4306 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 4307 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 4308 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 4309 return X; 4310 4311 // Test for a zero-shift-guard-op around rotates. These are used to 4312 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4313 // intrinsics do not have that problem. 4314 // We do not allow this transform for the general funnel shift case because 4315 // that would not preserve the poison safety of the original code. 4316 auto isRotate = 4317 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), 4318 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); 4319 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4320 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4321 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4322 Pred == ICmpInst::ICMP_EQ) 4323 return FalseVal; 4324 4325 // X == 0 ? abs(X) : -abs(X) --> -abs(X) 4326 // X == 0 ? -abs(X) : abs(X) --> abs(X) 4327 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) && 4328 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))) 4329 return FalseVal; 4330 if (match(TrueVal, 4331 m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) && 4332 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) 4333 return FalseVal; 4334 } 4335 4336 // Check for other compares that behave like bit test. 4337 if (Value *V = 4338 simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, TrueVal, FalseVal)) 4339 return V; 4340 4341 // If we have a scalar equality comparison, then we know the value in one of 4342 // the arms of the select. See if substituting this value into the arm and 4343 // simplifying the result yields the same value as the other arm. 4344 // Note that the equivalence/replacement opportunity does not hold for vectors 4345 // because each element of a vector select is chosen independently. 4346 if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) { 4347 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, 4348 /* AllowRefinement */ false, 4349 MaxRecurse) == TrueVal || 4350 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, 4351 /* AllowRefinement */ false, 4352 MaxRecurse) == TrueVal) 4353 return FalseVal; 4354 if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4355 /* AllowRefinement */ true, 4356 MaxRecurse) == FalseVal || 4357 simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, 4358 /* AllowRefinement */ true, 4359 MaxRecurse) == FalseVal) 4360 return FalseVal; 4361 } 4362 4363 return nullptr; 4364 } 4365 4366 /// Try to simplify a select instruction when its condition operand is a 4367 /// floating-point comparison. 4368 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4369 const SimplifyQuery &Q) { 4370 FCmpInst::Predicate Pred; 4371 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4372 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4373 return nullptr; 4374 4375 // This transform is safe if we do not have (do not care about) -0.0 or if 4376 // at least one operand is known to not be -0.0. Otherwise, the select can 4377 // change the sign of a zero operand. 4378 bool HasNoSignedZeros = 4379 Q.CxtI && isa<FPMathOperator>(Q.CxtI) && Q.CxtI->hasNoSignedZeros(); 4380 const APFloat *C; 4381 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4382 (match(F, m_APFloat(C)) && C->isNonZero())) { 4383 // (T == F) ? T : F --> F 4384 // (F == T) ? T : F --> F 4385 if (Pred == FCmpInst::FCMP_OEQ) 4386 return F; 4387 4388 // (T != F) ? T : F --> T 4389 // (F != T) ? T : F --> T 4390 if (Pred == FCmpInst::FCMP_UNE) 4391 return T; 4392 } 4393 4394 return nullptr; 4395 } 4396 4397 /// Given operands for a SelectInst, see if we can fold the result. 4398 /// If not, this returns null. 4399 static Value *simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4400 const SimplifyQuery &Q, unsigned MaxRecurse) { 4401 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4402 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4403 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4404 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4405 4406 // select poison, X, Y -> poison 4407 if (isa<PoisonValue>(CondC)) 4408 return PoisonValue::get(TrueVal->getType()); 4409 4410 // select undef, X, Y -> X or Y 4411 if (Q.isUndefValue(CondC)) 4412 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4413 4414 // select true, X, Y --> X 4415 // select false, X, Y --> Y 4416 // For vectors, allow undef/poison elements in the condition to match the 4417 // defined elements, so we can eliminate the select. 4418 if (match(CondC, m_One())) 4419 return TrueVal; 4420 if (match(CondC, m_Zero())) 4421 return FalseVal; 4422 } 4423 4424 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4425 "Select must have bool or bool vector condition"); 4426 assert(TrueVal->getType() == FalseVal->getType() && 4427 "Select must have same types for true/false ops"); 4428 4429 if (Cond->getType() == TrueVal->getType()) { 4430 // select i1 Cond, i1 true, i1 false --> i1 Cond 4431 if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4432 return Cond; 4433 4434 // (X || Y) && (X || !Y) --> X (commuted 8 ways) 4435 Value *X, *Y; 4436 if (match(FalseVal, m_ZeroInt())) { 4437 if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4438 match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4439 return X; 4440 if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4441 match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4442 return X; 4443 } 4444 } 4445 4446 // select ?, X, X -> X 4447 if (TrueVal == FalseVal) 4448 return TrueVal; 4449 4450 // If the true or false value is poison, we can fold to the other value. 4451 // If the true or false value is undef, we can fold to the other value as 4452 // long as the other value isn't poison. 4453 // select ?, poison, X -> X 4454 // select ?, undef, X -> X 4455 if (isa<PoisonValue>(TrueVal) || 4456 (Q.isUndefValue(TrueVal) && 4457 isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT))) 4458 return FalseVal; 4459 // select ?, X, poison -> X 4460 // select ?, X, undef -> X 4461 if (isa<PoisonValue>(FalseVal) || 4462 (Q.isUndefValue(FalseVal) && 4463 isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT))) 4464 return TrueVal; 4465 4466 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4467 Constant *TrueC, *FalseC; 4468 if (isa<FixedVectorType>(TrueVal->getType()) && 4469 match(TrueVal, m_Constant(TrueC)) && 4470 match(FalseVal, m_Constant(FalseC))) { 4471 unsigned NumElts = 4472 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4473 SmallVector<Constant *, 16> NewC; 4474 for (unsigned i = 0; i != NumElts; ++i) { 4475 // Bail out on incomplete vector constants. 4476 Constant *TEltC = TrueC->getAggregateElement(i); 4477 Constant *FEltC = FalseC->getAggregateElement(i); 4478 if (!TEltC || !FEltC) 4479 break; 4480 4481 // If the elements match (undef or not), that value is the result. If only 4482 // one element is undef, choose the defined element as the safe result. 4483 if (TEltC == FEltC) 4484 NewC.push_back(TEltC); 4485 else if (isa<PoisonValue>(TEltC) || 4486 (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC))) 4487 NewC.push_back(FEltC); 4488 else if (isa<PoisonValue>(FEltC) || 4489 (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC))) 4490 NewC.push_back(TEltC); 4491 else 4492 break; 4493 } 4494 if (NewC.size() == NumElts) 4495 return ConstantVector::get(NewC); 4496 } 4497 4498 if (Value *V = 4499 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4500 return V; 4501 4502 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4503 return V; 4504 4505 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4506 return V; 4507 4508 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4509 if (Imp) 4510 return *Imp ? TrueVal : FalseVal; 4511 4512 return nullptr; 4513 } 4514 4515 Value *llvm::simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4516 const SimplifyQuery &Q) { 4517 return ::simplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4518 } 4519 4520 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4521 /// If not, this returns null. 4522 static Value *simplifyGEPInst(Type *SrcTy, Value *Ptr, 4523 ArrayRef<Value *> Indices, bool InBounds, 4524 const SimplifyQuery &Q, unsigned) { 4525 // The type of the GEP pointer operand. 4526 unsigned AS = 4527 cast<PointerType>(Ptr->getType()->getScalarType())->getAddressSpace(); 4528 4529 // getelementptr P -> P. 4530 if (Indices.empty()) 4531 return Ptr; 4532 4533 // Compute the (pointer) type returned by the GEP instruction. 4534 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Indices); 4535 Type *GEPTy = PointerType::get(LastType, AS); 4536 if (VectorType *VT = dyn_cast<VectorType>(Ptr->getType())) 4537 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4538 else { 4539 for (Value *Op : Indices) { 4540 // If one of the operands is a vector, the result type is a vector of 4541 // pointers. All vector operands must have the same number of elements. 4542 if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) { 4543 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4544 break; 4545 } 4546 } 4547 } 4548 4549 // For opaque pointers an all-zero GEP is a no-op. For typed pointers, 4550 // it may be equivalent to a bitcast. 4551 if (Ptr->getType()->getScalarType()->isOpaquePointerTy() && 4552 Ptr->getType() == GEPTy && 4553 all_of(Indices, [](const auto *V) { return match(V, m_Zero()); })) 4554 return Ptr; 4555 4556 // getelementptr poison, idx -> poison 4557 // getelementptr baseptr, poison -> poison 4558 if (isa<PoisonValue>(Ptr) || 4559 any_of(Indices, [](const auto *V) { return isa<PoisonValue>(V); })) 4560 return PoisonValue::get(GEPTy); 4561 4562 if (Q.isUndefValue(Ptr)) 4563 // If inbounds, we can choose an out-of-bounds pointer as a base pointer. 4564 return InBounds ? PoisonValue::get(GEPTy) : UndefValue::get(GEPTy); 4565 4566 bool IsScalableVec = 4567 isa<ScalableVectorType>(SrcTy) || any_of(Indices, [](const Value *V) { 4568 return isa<ScalableVectorType>(V->getType()); 4569 }); 4570 4571 if (Indices.size() == 1) { 4572 // getelementptr P, 0 -> P. 4573 if (match(Indices[0], m_Zero()) && Ptr->getType() == GEPTy) 4574 return Ptr; 4575 4576 Type *Ty = SrcTy; 4577 if (!IsScalableVec && Ty->isSized()) { 4578 Value *P; 4579 uint64_t C; 4580 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4581 // getelementptr P, N -> P if P points to a type of zero size. 4582 if (TyAllocSize == 0 && Ptr->getType() == GEPTy) 4583 return Ptr; 4584 4585 // The following transforms are only safe if the ptrtoint cast 4586 // doesn't truncate the pointers. 4587 if (Indices[0]->getType()->getScalarSizeInBits() == 4588 Q.DL.getPointerSizeInBits(AS)) { 4589 auto CanSimplify = [GEPTy, &P, Ptr]() -> bool { 4590 return P->getType() == GEPTy && 4591 getUnderlyingObject(P) == getUnderlyingObject(Ptr); 4592 }; 4593 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4594 if (TyAllocSize == 1 && 4595 match(Indices[0], 4596 m_Sub(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Specific(Ptr)))) && 4597 CanSimplify()) 4598 return P; 4599 4600 // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of 4601 // size 1 << C. 4602 if (match(Indices[0], m_AShr(m_Sub(m_PtrToInt(m_Value(P)), 4603 m_PtrToInt(m_Specific(Ptr))), 4604 m_ConstantInt(C))) && 4605 TyAllocSize == 1ULL << C && CanSimplify()) 4606 return P; 4607 4608 // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of 4609 // size C. 4610 if (match(Indices[0], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)), 4611 m_PtrToInt(m_Specific(Ptr))), 4612 m_SpecificInt(TyAllocSize))) && 4613 CanSimplify()) 4614 return P; 4615 } 4616 } 4617 } 4618 4619 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 4620 all_of(Indices.drop_back(1), 4621 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4622 unsigned IdxWidth = 4623 Q.DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()); 4624 if (Q.DL.getTypeSizeInBits(Indices.back()->getType()) == IdxWidth) { 4625 APInt BasePtrOffset(IdxWidth, 0); 4626 Value *StrippedBasePtr = 4627 Ptr->stripAndAccumulateInBoundsConstantOffsets(Q.DL, BasePtrOffset); 4628 4629 // Avoid creating inttoptr of zero here: While LLVMs treatment of 4630 // inttoptr is generally conservative, this particular case is folded to 4631 // a null pointer, which will have incorrect provenance. 4632 4633 // gep (gep V, C), (sub 0, V) -> C 4634 if (match(Indices.back(), 4635 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) && 4636 !BasePtrOffset.isZero()) { 4637 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4638 return ConstantExpr::getIntToPtr(CI, GEPTy); 4639 } 4640 // gep (gep V, C), (xor V, -1) -> C-1 4641 if (match(Indices.back(), 4642 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) && 4643 !BasePtrOffset.isOne()) { 4644 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4645 return ConstantExpr::getIntToPtr(CI, GEPTy); 4646 } 4647 } 4648 } 4649 4650 // Check to see if this is constant foldable. 4651 if (!isa<Constant>(Ptr) || 4652 !all_of(Indices, [](Value *V) { return isa<Constant>(V); })) 4653 return nullptr; 4654 4655 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ptr), Indices, 4656 InBounds); 4657 return ConstantFoldConstant(CE, Q.DL); 4658 } 4659 4660 Value *llvm::simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef<Value *> Indices, 4661 bool InBounds, const SimplifyQuery &Q) { 4662 return ::simplifyGEPInst(SrcTy, Ptr, Indices, InBounds, Q, RecursionLimit); 4663 } 4664 4665 /// Given operands for an InsertValueInst, see if we can fold the result. 4666 /// If not, this returns null. 4667 static Value *simplifyInsertValueInst(Value *Agg, Value *Val, 4668 ArrayRef<unsigned> Idxs, 4669 const SimplifyQuery &Q, unsigned) { 4670 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4671 if (Constant *CVal = dyn_cast<Constant>(Val)) 4672 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4673 4674 // insertvalue x, undef, n -> x 4675 if (Q.isUndefValue(Val)) 4676 return Agg; 4677 4678 // insertvalue x, (extractvalue y, n), n 4679 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4680 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4681 EV->getIndices() == Idxs) { 4682 // insertvalue undef, (extractvalue y, n), n -> y 4683 if (Q.isUndefValue(Agg)) 4684 return EV->getAggregateOperand(); 4685 4686 // insertvalue y, (extractvalue y, n), n -> y 4687 if (Agg == EV->getAggregateOperand()) 4688 return Agg; 4689 } 4690 4691 return nullptr; 4692 } 4693 4694 Value *llvm::simplifyInsertValueInst(Value *Agg, Value *Val, 4695 ArrayRef<unsigned> Idxs, 4696 const SimplifyQuery &Q) { 4697 return ::simplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4698 } 4699 4700 Value *llvm::simplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4701 const SimplifyQuery &Q) { 4702 // Try to constant fold. 4703 auto *VecC = dyn_cast<Constant>(Vec); 4704 auto *ValC = dyn_cast<Constant>(Val); 4705 auto *IdxC = dyn_cast<Constant>(Idx); 4706 if (VecC && ValC && IdxC) 4707 return ConstantExpr::getInsertElement(VecC, ValC, IdxC); 4708 4709 // For fixed-length vector, fold into poison if index is out of bounds. 4710 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4711 if (isa<FixedVectorType>(Vec->getType()) && 4712 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 4713 return PoisonValue::get(Vec->getType()); 4714 } 4715 4716 // If index is undef, it might be out of bounds (see above case) 4717 if (Q.isUndefValue(Idx)) 4718 return PoisonValue::get(Vec->getType()); 4719 4720 // If the scalar is poison, or it is undef and there is no risk of 4721 // propagating poison from the vector value, simplify to the vector value. 4722 if (isa<PoisonValue>(Val) || 4723 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec))) 4724 return Vec; 4725 4726 // If we are extracting a value from a vector, then inserting it into the same 4727 // place, that's the input vector: 4728 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4729 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 4730 return Vec; 4731 4732 return nullptr; 4733 } 4734 4735 /// Given operands for an ExtractValueInst, see if we can fold the result. 4736 /// If not, this returns null. 4737 static Value *simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4738 const SimplifyQuery &, unsigned) { 4739 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4740 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4741 4742 // extractvalue x, (insertvalue y, elt, n), n -> elt 4743 unsigned NumIdxs = Idxs.size(); 4744 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4745 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4746 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4747 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4748 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4749 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4750 Idxs.slice(0, NumCommonIdxs)) { 4751 if (NumIdxs == NumInsertValueIdxs) 4752 return IVI->getInsertedValueOperand(); 4753 break; 4754 } 4755 } 4756 4757 return nullptr; 4758 } 4759 4760 Value *llvm::simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4761 const SimplifyQuery &Q) { 4762 return ::simplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4763 } 4764 4765 /// Given operands for an ExtractElementInst, see if we can fold the result. 4766 /// If not, this returns null. 4767 static Value *simplifyExtractElementInst(Value *Vec, Value *Idx, 4768 const SimplifyQuery &Q, unsigned) { 4769 auto *VecVTy = cast<VectorType>(Vec->getType()); 4770 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4771 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4772 return ConstantExpr::getExtractElement(CVec, CIdx); 4773 4774 if (Q.isUndefValue(Vec)) 4775 return UndefValue::get(VecVTy->getElementType()); 4776 } 4777 4778 // An undef extract index can be arbitrarily chosen to be an out-of-range 4779 // index value, which would result in the instruction being poison. 4780 if (Q.isUndefValue(Idx)) 4781 return PoisonValue::get(VecVTy->getElementType()); 4782 4783 // If extracting a specified index from the vector, see if we can recursively 4784 // find a previously computed scalar that was inserted into the vector. 4785 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4786 // For fixed-length vector, fold into undef if index is out of bounds. 4787 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue(); 4788 if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts)) 4789 return PoisonValue::get(VecVTy->getElementType()); 4790 // Handle case where an element is extracted from a splat. 4791 if (IdxC->getValue().ult(MinNumElts)) 4792 if (auto *Splat = getSplatValue(Vec)) 4793 return Splat; 4794 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4795 return Elt; 4796 } else { 4797 // The index is not relevant if our vector is a splat. 4798 if (Value *Splat = getSplatValue(Vec)) 4799 return Splat; 4800 } 4801 return nullptr; 4802 } 4803 4804 Value *llvm::simplifyExtractElementInst(Value *Vec, Value *Idx, 4805 const SimplifyQuery &Q) { 4806 return ::simplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4807 } 4808 4809 /// See if we can fold the given phi. If not, returns null. 4810 static Value *simplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues, 4811 const SimplifyQuery &Q) { 4812 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE 4813 // here, because the PHI we may succeed simplifying to was not 4814 // def-reachable from the original PHI! 4815 4816 // If all of the PHI's incoming values are the same then replace the PHI node 4817 // with the common value. 4818 Value *CommonValue = nullptr; 4819 bool HasUndefInput = false; 4820 for (Value *Incoming : IncomingValues) { 4821 // If the incoming value is the phi node itself, it can safely be skipped. 4822 if (Incoming == PN) 4823 continue; 4824 if (Q.isUndefValue(Incoming)) { 4825 // Remember that we saw an undef value, but otherwise ignore them. 4826 HasUndefInput = true; 4827 continue; 4828 } 4829 if (CommonValue && Incoming != CommonValue) 4830 return nullptr; // Not the same, bail out. 4831 CommonValue = Incoming; 4832 } 4833 4834 // If CommonValue is null then all of the incoming values were either undef or 4835 // equal to the phi node itself. 4836 if (!CommonValue) 4837 return UndefValue::get(PN->getType()); 4838 4839 if (HasUndefInput) { 4840 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4841 // instruction, we cannot return X as the result of the PHI node unless it 4842 // dominates the PHI block. 4843 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4844 } 4845 4846 return CommonValue; 4847 } 4848 4849 static Value *simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4850 const SimplifyQuery &Q, unsigned MaxRecurse) { 4851 if (auto *C = dyn_cast<Constant>(Op)) 4852 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4853 4854 if (auto *CI = dyn_cast<CastInst>(Op)) { 4855 auto *Src = CI->getOperand(0); 4856 Type *SrcTy = Src->getType(); 4857 Type *MidTy = CI->getType(); 4858 Type *DstTy = Ty; 4859 if (Src->getType() == Ty) { 4860 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4861 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4862 Type *SrcIntPtrTy = 4863 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4864 Type *MidIntPtrTy = 4865 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4866 Type *DstIntPtrTy = 4867 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4868 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4869 SrcIntPtrTy, MidIntPtrTy, 4870 DstIntPtrTy) == Instruction::BitCast) 4871 return Src; 4872 } 4873 } 4874 4875 // bitcast x -> x 4876 if (CastOpc == Instruction::BitCast) 4877 if (Op->getType() == Ty) 4878 return Op; 4879 4880 return nullptr; 4881 } 4882 4883 Value *llvm::simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4884 const SimplifyQuery &Q) { 4885 return ::simplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4886 } 4887 4888 /// For the given destination element of a shuffle, peek through shuffles to 4889 /// match a root vector source operand that contains that element in the same 4890 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4891 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4892 int MaskVal, Value *RootVec, 4893 unsigned MaxRecurse) { 4894 if (!MaxRecurse--) 4895 return nullptr; 4896 4897 // Bail out if any mask value is undefined. That kind of shuffle may be 4898 // simplified further based on demanded bits or other folds. 4899 if (MaskVal == -1) 4900 return nullptr; 4901 4902 // The mask value chooses which source operand we need to look at next. 4903 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 4904 int RootElt = MaskVal; 4905 Value *SourceOp = Op0; 4906 if (MaskVal >= InVecNumElts) { 4907 RootElt = MaskVal - InVecNumElts; 4908 SourceOp = Op1; 4909 } 4910 4911 // If the source operand is a shuffle itself, look through it to find the 4912 // matching root vector. 4913 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4914 return foldIdentityShuffles( 4915 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4916 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4917 } 4918 4919 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4920 // size? 4921 4922 // The source operand is not a shuffle. Initialize the root vector value for 4923 // this shuffle if that has not been done yet. 4924 if (!RootVec) 4925 RootVec = SourceOp; 4926 4927 // Give up as soon as a source operand does not match the existing root value. 4928 if (RootVec != SourceOp) 4929 return nullptr; 4930 4931 // The element must be coming from the same lane in the source vector 4932 // (although it may have crossed lanes in intermediate shuffles). 4933 if (RootElt != DestElt) 4934 return nullptr; 4935 4936 return RootVec; 4937 } 4938 4939 static Value *simplifyShuffleVectorInst(Value *Op0, Value *Op1, 4940 ArrayRef<int> Mask, Type *RetTy, 4941 const SimplifyQuery &Q, 4942 unsigned MaxRecurse) { 4943 if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) 4944 return UndefValue::get(RetTy); 4945 4946 auto *InVecTy = cast<VectorType>(Op0->getType()); 4947 unsigned MaskNumElts = Mask.size(); 4948 ElementCount InVecEltCount = InVecTy->getElementCount(); 4949 4950 bool Scalable = InVecEltCount.isScalable(); 4951 4952 SmallVector<int, 32> Indices; 4953 Indices.assign(Mask.begin(), Mask.end()); 4954 4955 // Canonicalization: If mask does not select elements from an input vector, 4956 // replace that input vector with poison. 4957 if (!Scalable) { 4958 bool MaskSelects0 = false, MaskSelects1 = false; 4959 unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); 4960 for (unsigned i = 0; i != MaskNumElts; ++i) { 4961 if (Indices[i] == -1) 4962 continue; 4963 if ((unsigned)Indices[i] < InVecNumElts) 4964 MaskSelects0 = true; 4965 else 4966 MaskSelects1 = true; 4967 } 4968 if (!MaskSelects0) 4969 Op0 = PoisonValue::get(InVecTy); 4970 if (!MaskSelects1) 4971 Op1 = PoisonValue::get(InVecTy); 4972 } 4973 4974 auto *Op0Const = dyn_cast<Constant>(Op0); 4975 auto *Op1Const = dyn_cast<Constant>(Op1); 4976 4977 // If all operands are constant, constant fold the shuffle. This 4978 // transformation depends on the value of the mask which is not known at 4979 // compile time for scalable vectors 4980 if (Op0Const && Op1Const) 4981 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); 4982 4983 // Canonicalization: if only one input vector is constant, it shall be the 4984 // second one. This transformation depends on the value of the mask which 4985 // is not known at compile time for scalable vectors 4986 if (!Scalable && Op0Const && !Op1Const) { 4987 std::swap(Op0, Op1); 4988 ShuffleVectorInst::commuteShuffleMask(Indices, 4989 InVecEltCount.getKnownMinValue()); 4990 } 4991 4992 // A splat of an inserted scalar constant becomes a vector constant: 4993 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 4994 // NOTE: We may have commuted above, so analyze the updated Indices, not the 4995 // original mask constant. 4996 // NOTE: This transformation depends on the value of the mask which is not 4997 // known at compile time for scalable vectors 4998 Constant *C; 4999 ConstantInt *IndexC; 5000 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 5001 m_ConstantInt(IndexC)))) { 5002 // Match a splat shuffle mask of the insert index allowing undef elements. 5003 int InsertIndex = IndexC->getZExtValue(); 5004 if (all_of(Indices, [InsertIndex](int MaskElt) { 5005 return MaskElt == InsertIndex || MaskElt == -1; 5006 })) { 5007 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 5008 5009 // Shuffle mask undefs become undefined constant result elements. 5010 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 5011 for (unsigned i = 0; i != MaskNumElts; ++i) 5012 if (Indices[i] == -1) 5013 VecC[i] = UndefValue::get(C->getType()); 5014 return ConstantVector::get(VecC); 5015 } 5016 } 5017 5018 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 5019 // value type is same as the input vectors' type. 5020 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 5021 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 5022 is_splat(OpShuf->getShuffleMask())) 5023 return Op0; 5024 5025 // All remaining transformation depend on the value of the mask, which is 5026 // not known at compile time for scalable vectors. 5027 if (Scalable) 5028 return nullptr; 5029 5030 // Don't fold a shuffle with undef mask elements. This may get folded in a 5031 // better way using demanded bits or other analysis. 5032 // TODO: Should we allow this? 5033 if (is_contained(Indices, -1)) 5034 return nullptr; 5035 5036 // Check if every element of this shuffle can be mapped back to the 5037 // corresponding element of a single root vector. If so, we don't need this 5038 // shuffle. This handles simple identity shuffles as well as chains of 5039 // shuffles that may widen/narrow and/or move elements across lanes and back. 5040 Value *RootVec = nullptr; 5041 for (unsigned i = 0; i != MaskNumElts; ++i) { 5042 // Note that recursion is limited for each vector element, so if any element 5043 // exceeds the limit, this will fail to simplify. 5044 RootVec = 5045 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 5046 5047 // We can't replace a widening/narrowing shuffle with one of its operands. 5048 if (!RootVec || RootVec->getType() != RetTy) 5049 return nullptr; 5050 } 5051 return RootVec; 5052 } 5053 5054 /// Given operands for a ShuffleVectorInst, fold the result or return null. 5055 Value *llvm::simplifyShuffleVectorInst(Value *Op0, Value *Op1, 5056 ArrayRef<int> Mask, Type *RetTy, 5057 const SimplifyQuery &Q) { 5058 return ::simplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 5059 } 5060 5061 static Constant *foldConstant(Instruction::UnaryOps Opcode, Value *&Op, 5062 const SimplifyQuery &Q) { 5063 if (auto *C = dyn_cast<Constant>(Op)) 5064 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 5065 return nullptr; 5066 } 5067 5068 /// Given the operand for an FNeg, see if we can fold the result. If not, this 5069 /// returns null. 5070 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 5071 const SimplifyQuery &Q, unsigned MaxRecurse) { 5072 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 5073 return C; 5074 5075 Value *X; 5076 // fneg (fneg X) ==> X 5077 if (match(Op, m_FNeg(m_Value(X)))) 5078 return X; 5079 5080 return nullptr; 5081 } 5082 5083 Value *llvm::simplifyFNegInst(Value *Op, FastMathFlags FMF, 5084 const SimplifyQuery &Q) { 5085 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 5086 } 5087 5088 static Constant *propagateNaN(Constant *In) { 5089 // If the input is a vector with undef elements, just return a default NaN. 5090 if (!In->isNaN()) 5091 return ConstantFP::getNaN(In->getType()); 5092 5093 // Propagate the existing NaN constant when possible. 5094 // TODO: Should we quiet a signaling NaN? 5095 return In; 5096 } 5097 5098 /// Perform folds that are common to any floating-point operation. This implies 5099 /// transforms based on poison/undef/NaN because the operation itself makes no 5100 /// difference to the result. 5101 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF, 5102 const SimplifyQuery &Q, 5103 fp::ExceptionBehavior ExBehavior, 5104 RoundingMode Rounding) { 5105 // Poison is independent of anything else. It always propagates from an 5106 // operand to a math result. 5107 if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); })) 5108 return PoisonValue::get(Ops[0]->getType()); 5109 5110 for (Value *V : Ops) { 5111 bool IsNan = match(V, m_NaN()); 5112 bool IsInf = match(V, m_Inf()); 5113 bool IsUndef = Q.isUndefValue(V); 5114 5115 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 5116 // (an undef operand can be chosen to be Nan/Inf), then the result of 5117 // this operation is poison. 5118 if (FMF.noNaNs() && (IsNan || IsUndef)) 5119 return PoisonValue::get(V->getType()); 5120 if (FMF.noInfs() && (IsInf || IsUndef)) 5121 return PoisonValue::get(V->getType()); 5122 5123 if (isDefaultFPEnvironment(ExBehavior, Rounding)) { 5124 if (IsUndef || IsNan) 5125 return propagateNaN(cast<Constant>(V)); 5126 } else if (ExBehavior != fp::ebStrict) { 5127 if (IsNan) 5128 return propagateNaN(cast<Constant>(V)); 5129 } 5130 } 5131 return nullptr; 5132 } 5133 5134 /// Given operands for an FAdd, see if we can fold the result. If not, this 5135 /// returns null. 5136 static Value * 5137 simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5138 const SimplifyQuery &Q, unsigned MaxRecurse, 5139 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5140 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5141 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5142 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 5143 return C; 5144 5145 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5146 return C; 5147 5148 // fadd X, -0 ==> X 5149 // With strict/constrained FP, we have these possible edge cases that do 5150 // not simplify to Op0: 5151 // fadd SNaN, -0.0 --> QNaN 5152 // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative) 5153 if (canIgnoreSNaN(ExBehavior, FMF) && 5154 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 5155 FMF.noSignedZeros())) 5156 if (match(Op1, m_NegZeroFP())) 5157 return Op0; 5158 5159 // fadd X, 0 ==> X, when we know X is not -0 5160 if (canIgnoreSNaN(ExBehavior, FMF)) 5161 if (match(Op1, m_PosZeroFP()) && 5162 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 5163 return Op0; 5164 5165 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5166 return nullptr; 5167 5168 // With nnan: -X + X --> 0.0 (and commuted variant) 5169 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 5170 // Negative zeros are allowed because we always end up with positive zero: 5171 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5172 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5173 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 5174 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 5175 if (FMF.noNaNs()) { 5176 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 5177 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 5178 return ConstantFP::getNullValue(Op0->getType()); 5179 5180 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5181 match(Op1, m_FNeg(m_Specific(Op0)))) 5182 return ConstantFP::getNullValue(Op0->getType()); 5183 } 5184 5185 // (X - Y) + Y --> X 5186 // Y + (X - Y) --> X 5187 Value *X; 5188 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5189 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 5190 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 5191 return X; 5192 5193 return nullptr; 5194 } 5195 5196 /// Given operands for an FSub, see if we can fold the result. If not, this 5197 /// returns null. 5198 static Value * 5199 simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5200 const SimplifyQuery &Q, unsigned MaxRecurse, 5201 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5202 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5203 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5204 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 5205 return C; 5206 5207 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5208 return C; 5209 5210 // fsub X, +0 ==> X 5211 if (canIgnoreSNaN(ExBehavior, FMF) && 5212 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 5213 FMF.noSignedZeros())) 5214 if (match(Op1, m_PosZeroFP())) 5215 return Op0; 5216 5217 // fsub X, -0 ==> X, when we know X is not -0 5218 if (canIgnoreSNaN(ExBehavior, FMF)) 5219 if (match(Op1, m_NegZeroFP()) && 5220 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 5221 return Op0; 5222 5223 // fsub -0.0, (fsub -0.0, X) ==> X 5224 // fsub -0.0, (fneg X) ==> X 5225 Value *X; 5226 if (canIgnoreSNaN(ExBehavior, FMF)) 5227 if (match(Op0, m_NegZeroFP()) && match(Op1, m_FNeg(m_Value(X)))) 5228 return X; 5229 5230 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5231 return nullptr; 5232 5233 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 5234 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 5235 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 5236 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 5237 match(Op1, m_FNeg(m_Value(X))))) 5238 return X; 5239 5240 // fsub nnan x, x ==> 0.0 5241 if (FMF.noNaNs() && Op0 == Op1) 5242 return Constant::getNullValue(Op0->getType()); 5243 5244 // Y - (Y - X) --> X 5245 // (X + Y) - Y --> X 5246 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5247 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 5248 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 5249 return X; 5250 5251 return nullptr; 5252 } 5253 5254 static Value *simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5255 const SimplifyQuery &Q, unsigned MaxRecurse, 5256 fp::ExceptionBehavior ExBehavior, 5257 RoundingMode Rounding) { 5258 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5259 return C; 5260 5261 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5262 return nullptr; 5263 5264 // fmul X, 1.0 ==> X 5265 if (match(Op1, m_FPOne())) 5266 return Op0; 5267 5268 // fmul 1.0, X ==> X 5269 if (match(Op0, m_FPOne())) 5270 return Op1; 5271 5272 // fmul nnan nsz X, 0 ==> 0 5273 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 5274 return ConstantFP::getNullValue(Op0->getType()); 5275 5276 // fmul nnan nsz 0, X ==> 0 5277 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5278 return ConstantFP::getNullValue(Op1->getType()); 5279 5280 // sqrt(X) * sqrt(X) --> X, if we can: 5281 // 1. Remove the intermediate rounding (reassociate). 5282 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 5283 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 5284 Value *X; 5285 if (Op0 == Op1 && match(Op0, m_Sqrt(m_Value(X))) && FMF.allowReassoc() && 5286 FMF.noNaNs() && FMF.noSignedZeros()) 5287 return X; 5288 5289 return nullptr; 5290 } 5291 5292 /// Given the operands for an FMul, see if we can fold the result 5293 static Value * 5294 simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5295 const SimplifyQuery &Q, unsigned MaxRecurse, 5296 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5297 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5298 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5299 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 5300 return C; 5301 5302 // Now apply simplifications that do not require rounding. 5303 return simplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding); 5304 } 5305 5306 Value *llvm::simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5307 const SimplifyQuery &Q, 5308 fp::ExceptionBehavior ExBehavior, 5309 RoundingMode Rounding) { 5310 return ::simplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5311 Rounding); 5312 } 5313 5314 Value *llvm::simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5315 const SimplifyQuery &Q, 5316 fp::ExceptionBehavior ExBehavior, 5317 RoundingMode Rounding) { 5318 return ::simplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5319 Rounding); 5320 } 5321 5322 Value *llvm::simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5323 const SimplifyQuery &Q, 5324 fp::ExceptionBehavior ExBehavior, 5325 RoundingMode Rounding) { 5326 return ::simplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5327 Rounding); 5328 } 5329 5330 Value *llvm::simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5331 const SimplifyQuery &Q, 5332 fp::ExceptionBehavior ExBehavior, 5333 RoundingMode Rounding) { 5334 return ::simplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5335 Rounding); 5336 } 5337 5338 static Value * 5339 simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5340 const SimplifyQuery &Q, unsigned, 5341 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5342 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5343 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5344 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 5345 return C; 5346 5347 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5348 return C; 5349 5350 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5351 return nullptr; 5352 5353 // X / 1.0 -> X 5354 if (match(Op1, m_FPOne())) 5355 return Op0; 5356 5357 // 0 / X -> 0 5358 // Requires that NaNs are off (X could be zero) and signed zeroes are 5359 // ignored (X could be positive or negative, so the output sign is unknown). 5360 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5361 return ConstantFP::getNullValue(Op0->getType()); 5362 5363 if (FMF.noNaNs()) { 5364 // X / X -> 1.0 is legal when NaNs are ignored. 5365 // We can ignore infinities because INF/INF is NaN. 5366 if (Op0 == Op1) 5367 return ConstantFP::get(Op0->getType(), 1.0); 5368 5369 // (X * Y) / Y --> X if we can reassociate to the above form. 5370 Value *X; 5371 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 5372 return X; 5373 5374 // -X / X -> -1.0 and 5375 // X / -X -> -1.0 are legal when NaNs are ignored. 5376 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 5377 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 5378 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 5379 return ConstantFP::get(Op0->getType(), -1.0); 5380 } 5381 5382 return nullptr; 5383 } 5384 5385 Value *llvm::simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5386 const SimplifyQuery &Q, 5387 fp::ExceptionBehavior ExBehavior, 5388 RoundingMode Rounding) { 5389 return ::simplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5390 Rounding); 5391 } 5392 5393 static Value * 5394 simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5395 const SimplifyQuery &Q, unsigned, 5396 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5397 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5398 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5399 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 5400 return C; 5401 5402 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5403 return C; 5404 5405 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5406 return nullptr; 5407 5408 // Unlike fdiv, the result of frem always matches the sign of the dividend. 5409 // The constant match may include undef elements in a vector, so return a full 5410 // zero constant as the result. 5411 if (FMF.noNaNs()) { 5412 // +0 % X -> 0 5413 if (match(Op0, m_PosZeroFP())) 5414 return ConstantFP::getNullValue(Op0->getType()); 5415 // -0 % X -> -0 5416 if (match(Op0, m_NegZeroFP())) 5417 return ConstantFP::getNegativeZero(Op0->getType()); 5418 } 5419 5420 return nullptr; 5421 } 5422 5423 Value *llvm::simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5424 const SimplifyQuery &Q, 5425 fp::ExceptionBehavior ExBehavior, 5426 RoundingMode Rounding) { 5427 return ::simplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5428 Rounding); 5429 } 5430 5431 //=== Helper functions for higher up the class hierarchy. 5432 5433 /// Given the operand for a UnaryOperator, see if we can fold the result. 5434 /// If not, this returns null. 5435 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 5436 unsigned MaxRecurse) { 5437 switch (Opcode) { 5438 case Instruction::FNeg: 5439 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 5440 default: 5441 llvm_unreachable("Unexpected opcode"); 5442 } 5443 } 5444 5445 /// Given the operand for a UnaryOperator, see if we can fold the result. 5446 /// If not, this returns null. 5447 /// Try to use FastMathFlags when folding the result. 5448 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 5449 const FastMathFlags &FMF, const SimplifyQuery &Q, 5450 unsigned MaxRecurse) { 5451 switch (Opcode) { 5452 case Instruction::FNeg: 5453 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 5454 default: 5455 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 5456 } 5457 } 5458 5459 Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 5460 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 5461 } 5462 5463 Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 5464 const SimplifyQuery &Q) { 5465 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 5466 } 5467 5468 /// Given operands for a BinaryOperator, see if we can fold the result. 5469 /// If not, this returns null. 5470 static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5471 const SimplifyQuery &Q, unsigned MaxRecurse) { 5472 switch (Opcode) { 5473 case Instruction::Add: 5474 return simplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 5475 case Instruction::Sub: 5476 return simplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 5477 case Instruction::Mul: 5478 return simplifyMulInst(LHS, RHS, Q, MaxRecurse); 5479 case Instruction::SDiv: 5480 return simplifySDivInst(LHS, RHS, Q, MaxRecurse); 5481 case Instruction::UDiv: 5482 return simplifyUDivInst(LHS, RHS, Q, MaxRecurse); 5483 case Instruction::SRem: 5484 return simplifySRemInst(LHS, RHS, Q, MaxRecurse); 5485 case Instruction::URem: 5486 return simplifyURemInst(LHS, RHS, Q, MaxRecurse); 5487 case Instruction::Shl: 5488 return simplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 5489 case Instruction::LShr: 5490 return simplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 5491 case Instruction::AShr: 5492 return simplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 5493 case Instruction::And: 5494 return simplifyAndInst(LHS, RHS, Q, MaxRecurse); 5495 case Instruction::Or: 5496 return simplifyOrInst(LHS, RHS, Q, MaxRecurse); 5497 case Instruction::Xor: 5498 return simplifyXorInst(LHS, RHS, Q, MaxRecurse); 5499 case Instruction::FAdd: 5500 return simplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5501 case Instruction::FSub: 5502 return simplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5503 case Instruction::FMul: 5504 return simplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5505 case Instruction::FDiv: 5506 return simplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5507 case Instruction::FRem: 5508 return simplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5509 default: 5510 llvm_unreachable("Unexpected opcode"); 5511 } 5512 } 5513 5514 /// Given operands for a BinaryOperator, see if we can fold the result. 5515 /// If not, this returns null. 5516 /// Try to use FastMathFlags when folding the result. 5517 static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5518 const FastMathFlags &FMF, const SimplifyQuery &Q, 5519 unsigned MaxRecurse) { 5520 switch (Opcode) { 5521 case Instruction::FAdd: 5522 return simplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 5523 case Instruction::FSub: 5524 return simplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 5525 case Instruction::FMul: 5526 return simplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 5527 case Instruction::FDiv: 5528 return simplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 5529 default: 5530 return simplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 5531 } 5532 } 5533 5534 Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5535 const SimplifyQuery &Q) { 5536 return ::simplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 5537 } 5538 5539 Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5540 FastMathFlags FMF, const SimplifyQuery &Q) { 5541 return ::simplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 5542 } 5543 5544 /// Given operands for a CmpInst, see if we can fold the result. 5545 static Value *simplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5546 const SimplifyQuery &Q, unsigned MaxRecurse) { 5547 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 5548 return simplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 5549 return simplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5550 } 5551 5552 Value *llvm::simplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5553 const SimplifyQuery &Q) { 5554 return ::simplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 5555 } 5556 5557 static bool isIdempotent(Intrinsic::ID ID) { 5558 switch (ID) { 5559 default: 5560 return false; 5561 5562 // Unary idempotent: f(f(x)) = f(x) 5563 case Intrinsic::fabs: 5564 case Intrinsic::floor: 5565 case Intrinsic::ceil: 5566 case Intrinsic::trunc: 5567 case Intrinsic::rint: 5568 case Intrinsic::nearbyint: 5569 case Intrinsic::round: 5570 case Intrinsic::roundeven: 5571 case Intrinsic::canonicalize: 5572 return true; 5573 } 5574 } 5575 5576 static Value *simplifyRelativeLoad(Constant *Ptr, Constant *Offset, 5577 const DataLayout &DL) { 5578 GlobalValue *PtrSym; 5579 APInt PtrOffset; 5580 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 5581 return nullptr; 5582 5583 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 5584 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 5585 Type *Int32PtrTy = Int32Ty->getPointerTo(); 5586 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 5587 5588 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 5589 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 5590 return nullptr; 5591 5592 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 5593 if (OffsetInt % 4 != 0) 5594 return nullptr; 5595 5596 Constant *C = ConstantExpr::getGetElementPtr( 5597 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 5598 ConstantInt::get(Int64Ty, OffsetInt / 4)); 5599 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 5600 if (!Loaded) 5601 return nullptr; 5602 5603 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 5604 if (!LoadedCE) 5605 return nullptr; 5606 5607 if (LoadedCE->getOpcode() == Instruction::Trunc) { 5608 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5609 if (!LoadedCE) 5610 return nullptr; 5611 } 5612 5613 if (LoadedCE->getOpcode() != Instruction::Sub) 5614 return nullptr; 5615 5616 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5617 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 5618 return nullptr; 5619 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 5620 5621 Constant *LoadedRHS = LoadedCE->getOperand(1); 5622 GlobalValue *LoadedRHSSym; 5623 APInt LoadedRHSOffset; 5624 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 5625 DL) || 5626 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 5627 return nullptr; 5628 5629 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 5630 } 5631 5632 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 5633 const SimplifyQuery &Q) { 5634 // Idempotent functions return the same result when called repeatedly. 5635 Intrinsic::ID IID = F->getIntrinsicID(); 5636 if (isIdempotent(IID)) 5637 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 5638 if (II->getIntrinsicID() == IID) 5639 return II; 5640 5641 Value *X; 5642 switch (IID) { 5643 case Intrinsic::fabs: 5644 if (SignBitMustBeZero(Op0, Q.TLI)) 5645 return Op0; 5646 break; 5647 case Intrinsic::bswap: 5648 // bswap(bswap(x)) -> x 5649 if (match(Op0, m_BSwap(m_Value(X)))) 5650 return X; 5651 break; 5652 case Intrinsic::bitreverse: 5653 // bitreverse(bitreverse(x)) -> x 5654 if (match(Op0, m_BitReverse(m_Value(X)))) 5655 return X; 5656 break; 5657 case Intrinsic::ctpop: { 5658 // If everything but the lowest bit is zero, that bit is the pop-count. Ex: 5659 // ctpop(and X, 1) --> and X, 1 5660 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 5661 if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), 5662 Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 5663 return Op0; 5664 break; 5665 } 5666 case Intrinsic::exp: 5667 // exp(log(x)) -> x 5668 if (Q.CxtI->hasAllowReassoc() && 5669 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) 5670 return X; 5671 break; 5672 case Intrinsic::exp2: 5673 // exp2(log2(x)) -> x 5674 if (Q.CxtI->hasAllowReassoc() && 5675 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) 5676 return X; 5677 break; 5678 case Intrinsic::log: 5679 // log(exp(x)) -> x 5680 if (Q.CxtI->hasAllowReassoc() && 5681 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) 5682 return X; 5683 break; 5684 case Intrinsic::log2: 5685 // log2(exp2(x)) -> x 5686 if (Q.CxtI->hasAllowReassoc() && 5687 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 5688 match(Op0, 5689 m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), m_Value(X))))) 5690 return X; 5691 break; 5692 case Intrinsic::log10: 5693 // log10(pow(10.0, x)) -> x 5694 if (Q.CxtI->hasAllowReassoc() && 5695 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), m_Value(X)))) 5696 return X; 5697 break; 5698 case Intrinsic::floor: 5699 case Intrinsic::trunc: 5700 case Intrinsic::ceil: 5701 case Intrinsic::round: 5702 case Intrinsic::roundeven: 5703 case Intrinsic::nearbyint: 5704 case Intrinsic::rint: { 5705 // floor (sitofp x) -> sitofp x 5706 // floor (uitofp x) -> uitofp x 5707 // 5708 // Converting from int always results in a finite integral number or 5709 // infinity. For either of those inputs, these rounding functions always 5710 // return the same value, so the rounding can be eliminated. 5711 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 5712 return Op0; 5713 break; 5714 } 5715 case Intrinsic::experimental_vector_reverse: 5716 // experimental.vector.reverse(experimental.vector.reverse(x)) -> x 5717 if (match(Op0, 5718 m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X)))) 5719 return X; 5720 // experimental.vector.reverse(splat(X)) -> splat(X) 5721 if (isSplatValue(Op0)) 5722 return Op0; 5723 break; 5724 default: 5725 break; 5726 } 5727 5728 return nullptr; 5729 } 5730 5731 /// Given a min/max intrinsic, see if it can be removed based on having an 5732 /// operand that is another min/max intrinsic with shared operand(s). The caller 5733 /// is expected to swap the operand arguments to handle commutation. 5734 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 5735 Value *X, *Y; 5736 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 5737 return nullptr; 5738 5739 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 5740 if (!MM0) 5741 return nullptr; 5742 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 5743 5744 if (Op1 == X || Op1 == Y || 5745 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 5746 // max (max X, Y), X --> max X, Y 5747 if (IID0 == IID) 5748 return MM0; 5749 // max (min X, Y), X --> X 5750 if (IID0 == getInverseMinMaxIntrinsic(IID)) 5751 return Op1; 5752 } 5753 return nullptr; 5754 } 5755 5756 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 5757 const SimplifyQuery &Q) { 5758 Intrinsic::ID IID = F->getIntrinsicID(); 5759 Type *ReturnType = F->getReturnType(); 5760 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 5761 switch (IID) { 5762 case Intrinsic::abs: 5763 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 5764 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 5765 // on the outer abs. 5766 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 5767 return Op0; 5768 break; 5769 5770 case Intrinsic::cttz: { 5771 Value *X; 5772 if (match(Op0, m_Shl(m_One(), m_Value(X)))) 5773 return X; 5774 break; 5775 } 5776 case Intrinsic::ctlz: { 5777 Value *X; 5778 if (match(Op0, m_LShr(m_Negative(), m_Value(X)))) 5779 return X; 5780 if (match(Op0, m_AShr(m_Negative(), m_Value()))) 5781 return Constant::getNullValue(ReturnType); 5782 break; 5783 } 5784 case Intrinsic::smax: 5785 case Intrinsic::smin: 5786 case Intrinsic::umax: 5787 case Intrinsic::umin: { 5788 // If the arguments are the same, this is a no-op. 5789 if (Op0 == Op1) 5790 return Op0; 5791 5792 // Canonicalize constant operand as Op1. 5793 if (isa<Constant>(Op0)) 5794 std::swap(Op0, Op1); 5795 5796 // Assume undef is the limit value. 5797 if (Q.isUndefValue(Op1)) 5798 return ConstantInt::get( 5799 ReturnType, MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)); 5800 5801 const APInt *C; 5802 if (match(Op1, m_APIntAllowUndef(C))) { 5803 // Clamp to limit value. For example: 5804 // umax(i8 %x, i8 255) --> 255 5805 if (*C == MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)) 5806 return ConstantInt::get(ReturnType, *C); 5807 5808 // If the constant op is the opposite of the limit value, the other must 5809 // be larger/smaller or equal. For example: 5810 // umin(i8 %x, i8 255) --> %x 5811 if (*C == MinMaxIntrinsic::getSaturationPoint( 5812 getInverseMinMaxIntrinsic(IID), BitWidth)) 5813 return Op0; 5814 5815 // Remove nested call if constant operands allow it. Example: 5816 // max (max X, 7), 5 -> max X, 7 5817 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 5818 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 5819 // TODO: loosen undef/splat restrictions for vector constants. 5820 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 5821 const APInt *InnerC; 5822 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 5823 ICmpInst::compare(*InnerC, *C, 5824 ICmpInst::getNonStrictPredicate( 5825 MinMaxIntrinsic::getPredicate(IID)))) 5826 return Op0; 5827 } 5828 } 5829 5830 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 5831 return V; 5832 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 5833 return V; 5834 5835 ICmpInst::Predicate Pred = 5836 ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID)); 5837 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) 5838 return Op0; 5839 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) 5840 return Op1; 5841 5842 if (Optional<bool> Imp = 5843 isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL)) 5844 return *Imp ? Op0 : Op1; 5845 if (Optional<bool> Imp = 5846 isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL)) 5847 return *Imp ? Op1 : Op0; 5848 5849 break; 5850 } 5851 case Intrinsic::usub_with_overflow: 5852 case Intrinsic::ssub_with_overflow: 5853 // X - X -> { 0, false } 5854 // X - undef -> { 0, false } 5855 // undef - X -> { 0, false } 5856 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5857 return Constant::getNullValue(ReturnType); 5858 break; 5859 case Intrinsic::uadd_with_overflow: 5860 case Intrinsic::sadd_with_overflow: 5861 // X + undef -> { -1, false } 5862 // undef + x -> { -1, false } 5863 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 5864 return ConstantStruct::get( 5865 cast<StructType>(ReturnType), 5866 {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), 5867 Constant::getNullValue(ReturnType->getStructElementType(1))}); 5868 } 5869 break; 5870 case Intrinsic::umul_with_overflow: 5871 case Intrinsic::smul_with_overflow: 5872 // 0 * X -> { 0, false } 5873 // X * 0 -> { 0, false } 5874 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 5875 return Constant::getNullValue(ReturnType); 5876 // undef * X -> { 0, false } 5877 // X * undef -> { 0, false } 5878 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5879 return Constant::getNullValue(ReturnType); 5880 break; 5881 case Intrinsic::uadd_sat: 5882 // sat(MAX + X) -> MAX 5883 // sat(X + MAX) -> MAX 5884 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 5885 return Constant::getAllOnesValue(ReturnType); 5886 LLVM_FALLTHROUGH; 5887 case Intrinsic::sadd_sat: 5888 // sat(X + undef) -> -1 5889 // sat(undef + X) -> -1 5890 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5891 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5892 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5893 return Constant::getAllOnesValue(ReturnType); 5894 5895 // X + 0 -> X 5896 if (match(Op1, m_Zero())) 5897 return Op0; 5898 // 0 + X -> X 5899 if (match(Op0, m_Zero())) 5900 return Op1; 5901 break; 5902 case Intrinsic::usub_sat: 5903 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5904 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5905 return Constant::getNullValue(ReturnType); 5906 LLVM_FALLTHROUGH; 5907 case Intrinsic::ssub_sat: 5908 // X - X -> 0, X - undef -> 0, undef - X -> 0 5909 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5910 return Constant::getNullValue(ReturnType); 5911 // X - 0 -> X 5912 if (match(Op1, m_Zero())) 5913 return Op0; 5914 break; 5915 case Intrinsic::load_relative: 5916 if (auto *C0 = dyn_cast<Constant>(Op0)) 5917 if (auto *C1 = dyn_cast<Constant>(Op1)) 5918 return simplifyRelativeLoad(C0, C1, Q.DL); 5919 break; 5920 case Intrinsic::powi: 5921 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5922 // powi(x, 0) -> 1.0 5923 if (Power->isZero()) 5924 return ConstantFP::get(Op0->getType(), 1.0); 5925 // powi(x, 1) -> x 5926 if (Power->isOne()) 5927 return Op0; 5928 } 5929 break; 5930 case Intrinsic::copysign: 5931 // copysign X, X --> X 5932 if (Op0 == Op1) 5933 return Op0; 5934 // copysign -X, X --> X 5935 // copysign X, -X --> -X 5936 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5937 match(Op1, m_FNeg(m_Specific(Op0)))) 5938 return Op1; 5939 break; 5940 case Intrinsic::maxnum: 5941 case Intrinsic::minnum: 5942 case Intrinsic::maximum: 5943 case Intrinsic::minimum: { 5944 // If the arguments are the same, this is a no-op. 5945 if (Op0 == Op1) 5946 return Op0; 5947 5948 // Canonicalize constant operand as Op1. 5949 if (isa<Constant>(Op0)) 5950 std::swap(Op0, Op1); 5951 5952 // If an argument is undef, return the other argument. 5953 if (Q.isUndefValue(Op1)) 5954 return Op0; 5955 5956 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5957 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; 5958 5959 // minnum(X, nan) -> X 5960 // maxnum(X, nan) -> X 5961 // minimum(X, nan) -> nan 5962 // maximum(X, nan) -> nan 5963 if (match(Op1, m_NaN())) 5964 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; 5965 5966 // In the following folds, inf can be replaced with the largest finite 5967 // float, if the ninf flag is set. 5968 const APFloat *C; 5969 if (match(Op1, m_APFloat(C)) && 5970 (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) { 5971 // minnum(X, -inf) -> -inf 5972 // maxnum(X, +inf) -> +inf 5973 // minimum(X, -inf) -> -inf if nnan 5974 // maximum(X, +inf) -> +inf if nnan 5975 if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs())) 5976 return ConstantFP::get(ReturnType, *C); 5977 5978 // minnum(X, +inf) -> X if nnan 5979 // maxnum(X, -inf) -> X if nnan 5980 // minimum(X, +inf) -> X 5981 // maximum(X, -inf) -> X 5982 if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs())) 5983 return Op0; 5984 } 5985 5986 // Min/max of the same operation with common operand: 5987 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5988 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5989 if (M0->getIntrinsicID() == IID && 5990 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5991 return Op0; 5992 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5993 if (M1->getIntrinsicID() == IID && 5994 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5995 return Op1; 5996 5997 break; 5998 } 5999 case Intrinsic::vector_extract: { 6000 Type *ReturnType = F->getReturnType(); 6001 6002 // (extract_vector (insert_vector _, X, 0), 0) -> X 6003 unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue(); 6004 Value *X = nullptr; 6005 if (match(Op0, m_Intrinsic<Intrinsic::vector_insert>(m_Value(), m_Value(X), 6006 m_Zero())) && 6007 IdxN == 0 && X->getType() == ReturnType) 6008 return X; 6009 6010 break; 6011 } 6012 default: 6013 break; 6014 } 6015 6016 return nullptr; 6017 } 6018 6019 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 6020 6021 unsigned NumOperands = Call->arg_size(); 6022 Function *F = cast<Function>(Call->getCalledFunction()); 6023 Intrinsic::ID IID = F->getIntrinsicID(); 6024 6025 // Most of the intrinsics with no operands have some kind of side effect. 6026 // Don't simplify. 6027 if (!NumOperands) { 6028 switch (IID) { 6029 case Intrinsic::vscale: { 6030 // Call may not be inserted into the IR yet at point of calling simplify. 6031 if (!Call->getParent() || !Call->getParent()->getParent()) 6032 return nullptr; 6033 auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange); 6034 if (!Attr.isValid()) 6035 return nullptr; 6036 unsigned VScaleMin = Attr.getVScaleRangeMin(); 6037 Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax(); 6038 if (VScaleMax && VScaleMin == VScaleMax) 6039 return ConstantInt::get(F->getReturnType(), VScaleMin); 6040 return nullptr; 6041 } 6042 default: 6043 return nullptr; 6044 } 6045 } 6046 6047 if (NumOperands == 1) 6048 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 6049 6050 if (NumOperands == 2) 6051 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 6052 Call->getArgOperand(1), Q); 6053 6054 // Handle intrinsics with 3 or more arguments. 6055 switch (IID) { 6056 case Intrinsic::masked_load: 6057 case Intrinsic::masked_gather: { 6058 Value *MaskArg = Call->getArgOperand(2); 6059 Value *PassthruArg = Call->getArgOperand(3); 6060 // If the mask is all zeros or undef, the "passthru" argument is the result. 6061 if (maskIsAllZeroOrUndef(MaskArg)) 6062 return PassthruArg; 6063 return nullptr; 6064 } 6065 case Intrinsic::fshl: 6066 case Intrinsic::fshr: { 6067 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 6068 *ShAmtArg = Call->getArgOperand(2); 6069 6070 // If both operands are undef, the result is undef. 6071 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 6072 return UndefValue::get(F->getReturnType()); 6073 6074 // If shift amount is undef, assume it is zero. 6075 if (Q.isUndefValue(ShAmtArg)) 6076 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 6077 6078 const APInt *ShAmtC; 6079 if (match(ShAmtArg, m_APInt(ShAmtC))) { 6080 // If there's effectively no shift, return the 1st arg or 2nd arg. 6081 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 6082 if (ShAmtC->urem(BitWidth).isZero()) 6083 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 6084 } 6085 6086 // Rotating zero by anything is zero. 6087 if (match(Op0, m_Zero()) && match(Op1, m_Zero())) 6088 return ConstantInt::getNullValue(F->getReturnType()); 6089 6090 // Rotating -1 by anything is -1. 6091 if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes())) 6092 return ConstantInt::getAllOnesValue(F->getReturnType()); 6093 6094 return nullptr; 6095 } 6096 case Intrinsic::experimental_constrained_fma: { 6097 Value *Op0 = Call->getArgOperand(0); 6098 Value *Op1 = Call->getArgOperand(1); 6099 Value *Op2 = Call->getArgOperand(2); 6100 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6101 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, 6102 FPI->getExceptionBehavior().value(), 6103 FPI->getRoundingMode().value())) 6104 return V; 6105 return nullptr; 6106 } 6107 case Intrinsic::fma: 6108 case Intrinsic::fmuladd: { 6109 Value *Op0 = Call->getArgOperand(0); 6110 Value *Op1 = Call->getArgOperand(1); 6111 Value *Op2 = Call->getArgOperand(2); 6112 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore, 6113 RoundingMode::NearestTiesToEven)) 6114 return V; 6115 return nullptr; 6116 } 6117 case Intrinsic::smul_fix: 6118 case Intrinsic::smul_fix_sat: { 6119 Value *Op0 = Call->getArgOperand(0); 6120 Value *Op1 = Call->getArgOperand(1); 6121 Value *Op2 = Call->getArgOperand(2); 6122 Type *ReturnType = F->getReturnType(); 6123 6124 // Canonicalize constant operand as Op1 (ConstantFolding handles the case 6125 // when both Op0 and Op1 are constant so we do not care about that special 6126 // case here). 6127 if (isa<Constant>(Op0)) 6128 std::swap(Op0, Op1); 6129 6130 // X * 0 -> 0 6131 if (match(Op1, m_Zero())) 6132 return Constant::getNullValue(ReturnType); 6133 6134 // X * undef -> 0 6135 if (Q.isUndefValue(Op1)) 6136 return Constant::getNullValue(ReturnType); 6137 6138 // X * (1 << Scale) -> X 6139 APInt ScaledOne = 6140 APInt::getOneBitSet(ReturnType->getScalarSizeInBits(), 6141 cast<ConstantInt>(Op2)->getZExtValue()); 6142 if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne))) 6143 return Op0; 6144 6145 return nullptr; 6146 } 6147 case Intrinsic::vector_insert: { 6148 Value *Vec = Call->getArgOperand(0); 6149 Value *SubVec = Call->getArgOperand(1); 6150 Value *Idx = Call->getArgOperand(2); 6151 Type *ReturnType = F->getReturnType(); 6152 6153 // (insert_vector Y, (extract_vector X, 0), 0) -> X 6154 // where: Y is X, or Y is undef 6155 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 6156 Value *X = nullptr; 6157 if (match(SubVec, 6158 m_Intrinsic<Intrinsic::vector_extract>(m_Value(X), m_Zero())) && 6159 (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 && 6160 X->getType() == ReturnType) 6161 return X; 6162 6163 return nullptr; 6164 } 6165 case Intrinsic::experimental_constrained_fadd: { 6166 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6167 return simplifyFAddInst( 6168 FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(), 6169 Q, FPI->getExceptionBehavior().value(), FPI->getRoundingMode().value()); 6170 } 6171 case Intrinsic::experimental_constrained_fsub: { 6172 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6173 return simplifyFSubInst( 6174 FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(), 6175 Q, FPI->getExceptionBehavior().value(), FPI->getRoundingMode().value()); 6176 } 6177 case Intrinsic::experimental_constrained_fmul: { 6178 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6179 return simplifyFMulInst( 6180 FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(), 6181 Q, FPI->getExceptionBehavior().value(), FPI->getRoundingMode().value()); 6182 } 6183 case Intrinsic::experimental_constrained_fdiv: { 6184 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6185 return simplifyFDivInst( 6186 FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(), 6187 Q, FPI->getExceptionBehavior().value(), FPI->getRoundingMode().value()); 6188 } 6189 case Intrinsic::experimental_constrained_frem: { 6190 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6191 return simplifyFRemInst( 6192 FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(), 6193 Q, FPI->getExceptionBehavior().value(), FPI->getRoundingMode().value()); 6194 } 6195 default: 6196 return nullptr; 6197 } 6198 } 6199 6200 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) { 6201 auto *F = dyn_cast<Function>(Call->getCalledOperand()); 6202 if (!F || !canConstantFoldCallTo(Call, F)) 6203 return nullptr; 6204 6205 SmallVector<Constant *, 4> ConstantArgs; 6206 unsigned NumArgs = Call->arg_size(); 6207 ConstantArgs.reserve(NumArgs); 6208 for (auto &Arg : Call->args()) { 6209 Constant *C = dyn_cast<Constant>(&Arg); 6210 if (!C) { 6211 if (isa<MetadataAsValue>(Arg.get())) 6212 continue; 6213 return nullptr; 6214 } 6215 ConstantArgs.push_back(C); 6216 } 6217 6218 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 6219 } 6220 6221 Value *llvm::simplifyCall(CallBase *Call, const SimplifyQuery &Q) { 6222 // musttail calls can only be simplified if they are also DCEd. 6223 // As we can't guarantee this here, don't simplify them. 6224 if (Call->isMustTailCall()) 6225 return nullptr; 6226 6227 // call undef -> poison 6228 // call null -> poison 6229 Value *Callee = Call->getCalledOperand(); 6230 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 6231 return PoisonValue::get(Call->getType()); 6232 6233 if (Value *V = tryConstantFoldCall(Call, Q)) 6234 return V; 6235 6236 auto *F = dyn_cast<Function>(Callee); 6237 if (F && F->isIntrinsic()) 6238 if (Value *Ret = simplifyIntrinsic(Call, Q)) 6239 return Ret; 6240 6241 return nullptr; 6242 } 6243 6244 Value *llvm::simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q) { 6245 assert(isa<ConstrainedFPIntrinsic>(Call)); 6246 if (Value *V = tryConstantFoldCall(Call, Q)) 6247 return V; 6248 if (Value *Ret = simplifyIntrinsic(Call, Q)) 6249 return Ret; 6250 return nullptr; 6251 } 6252 6253 /// Given operands for a Freeze, see if we can fold the result. 6254 static Value *simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6255 // Use a utility function defined in ValueTracking. 6256 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) 6257 return Op0; 6258 // We have room for improvement. 6259 return nullptr; 6260 } 6261 6262 Value *llvm::simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6263 return ::simplifyFreezeInst(Op0, Q); 6264 } 6265 6266 static Value *simplifyLoadInst(LoadInst *LI, Value *PtrOp, 6267 const SimplifyQuery &Q) { 6268 if (LI->isVolatile()) 6269 return nullptr; 6270 6271 APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0); 6272 auto *PtrOpC = dyn_cast<Constant>(PtrOp); 6273 // Try to convert operand into a constant by stripping offsets while looking 6274 // through invariant.group intrinsics. Don't bother if the underlying object 6275 // is not constant, as calculating GEP offsets is expensive. 6276 if (!PtrOpC && isa<Constant>(getUnderlyingObject(PtrOp))) { 6277 PtrOp = PtrOp->stripAndAccumulateConstantOffsets( 6278 Q.DL, Offset, /* AllowNonInbounts */ true, 6279 /* AllowInvariantGroup */ true); 6280 // Index size may have changed due to address space casts. 6281 Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType())); 6282 PtrOpC = dyn_cast<Constant>(PtrOp); 6283 } 6284 6285 if (PtrOpC) 6286 return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Offset, Q.DL); 6287 return nullptr; 6288 } 6289 6290 /// See if we can compute a simplified version of this instruction. 6291 /// If not, this returns null. 6292 6293 static Value *simplifyInstructionWithOperands(Instruction *I, 6294 ArrayRef<Value *> NewOps, 6295 const SimplifyQuery &SQ, 6296 OptimizationRemarkEmitter *ORE) { 6297 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 6298 Value *Result = nullptr; 6299 6300 switch (I->getOpcode()) { 6301 default: 6302 if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) { 6303 SmallVector<Constant *, 8> NewConstOps(NewOps.size()); 6304 transform(NewOps, NewConstOps.begin(), 6305 [](Value *V) { return cast<Constant>(V); }); 6306 Result = ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI); 6307 } 6308 break; 6309 case Instruction::FNeg: 6310 Result = simplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q); 6311 break; 6312 case Instruction::FAdd: 6313 Result = simplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6314 break; 6315 case Instruction::Add: 6316 Result = simplifyAddInst( 6317 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6318 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6319 break; 6320 case Instruction::FSub: 6321 Result = simplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6322 break; 6323 case Instruction::Sub: 6324 Result = simplifySubInst( 6325 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6326 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6327 break; 6328 case Instruction::FMul: 6329 Result = simplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6330 break; 6331 case Instruction::Mul: 6332 Result = simplifyMulInst(NewOps[0], NewOps[1], Q); 6333 break; 6334 case Instruction::SDiv: 6335 Result = simplifySDivInst(NewOps[0], NewOps[1], Q); 6336 break; 6337 case Instruction::UDiv: 6338 Result = simplifyUDivInst(NewOps[0], NewOps[1], Q); 6339 break; 6340 case Instruction::FDiv: 6341 Result = simplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6342 break; 6343 case Instruction::SRem: 6344 Result = simplifySRemInst(NewOps[0], NewOps[1], Q); 6345 break; 6346 case Instruction::URem: 6347 Result = simplifyURemInst(NewOps[0], NewOps[1], Q); 6348 break; 6349 case Instruction::FRem: 6350 Result = simplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6351 break; 6352 case Instruction::Shl: 6353 Result = simplifyShlInst( 6354 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6355 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6356 break; 6357 case Instruction::LShr: 6358 Result = simplifyLShrInst(NewOps[0], NewOps[1], 6359 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6360 break; 6361 case Instruction::AShr: 6362 Result = simplifyAShrInst(NewOps[0], NewOps[1], 6363 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6364 break; 6365 case Instruction::And: 6366 Result = simplifyAndInst(NewOps[0], NewOps[1], Q); 6367 break; 6368 case Instruction::Or: 6369 Result = simplifyOrInst(NewOps[0], NewOps[1], Q); 6370 break; 6371 case Instruction::Xor: 6372 Result = simplifyXorInst(NewOps[0], NewOps[1], Q); 6373 break; 6374 case Instruction::ICmp: 6375 Result = simplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0], 6376 NewOps[1], Q); 6377 break; 6378 case Instruction::FCmp: 6379 Result = simplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0], 6380 NewOps[1], I->getFastMathFlags(), Q); 6381 break; 6382 case Instruction::Select: 6383 Result = simplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q); 6384 break; 6385 case Instruction::GetElementPtr: { 6386 auto *GEPI = cast<GetElementPtrInst>(I); 6387 Result = 6388 simplifyGEPInst(GEPI->getSourceElementType(), NewOps[0], 6389 makeArrayRef(NewOps).slice(1), GEPI->isInBounds(), Q); 6390 break; 6391 } 6392 case Instruction::InsertValue: { 6393 InsertValueInst *IV = cast<InsertValueInst>(I); 6394 Result = simplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q); 6395 break; 6396 } 6397 case Instruction::InsertElement: { 6398 Result = simplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q); 6399 break; 6400 } 6401 case Instruction::ExtractValue: { 6402 auto *EVI = cast<ExtractValueInst>(I); 6403 Result = simplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q); 6404 break; 6405 } 6406 case Instruction::ExtractElement: { 6407 Result = simplifyExtractElementInst(NewOps[0], NewOps[1], Q); 6408 break; 6409 } 6410 case Instruction::ShuffleVector: { 6411 auto *SVI = cast<ShuffleVectorInst>(I); 6412 Result = simplifyShuffleVectorInst( 6413 NewOps[0], NewOps[1], SVI->getShuffleMask(), SVI->getType(), Q); 6414 break; 6415 } 6416 case Instruction::PHI: 6417 Result = simplifyPHINode(cast<PHINode>(I), NewOps, Q); 6418 break; 6419 case Instruction::Call: { 6420 // TODO: Use NewOps 6421 Result = simplifyCall(cast<CallInst>(I), Q); 6422 break; 6423 } 6424 case Instruction::Freeze: 6425 Result = llvm::simplifyFreezeInst(NewOps[0], Q); 6426 break; 6427 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 6428 #include "llvm/IR/Instruction.def" 6429 #undef HANDLE_CAST_INST 6430 Result = simplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q); 6431 break; 6432 case Instruction::Alloca: 6433 // No simplifications for Alloca and it can't be constant folded. 6434 Result = nullptr; 6435 break; 6436 case Instruction::Load: 6437 Result = simplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q); 6438 break; 6439 } 6440 6441 /// If called on unreachable code, the above logic may report that the 6442 /// instruction simplified to itself. Make life easier for users by 6443 /// detecting that case here, returning a safe value instead. 6444 return Result == I ? UndefValue::get(I->getType()) : Result; 6445 } 6446 6447 Value *llvm::simplifyInstructionWithOperands(Instruction *I, 6448 ArrayRef<Value *> NewOps, 6449 const SimplifyQuery &SQ, 6450 OptimizationRemarkEmitter *ORE) { 6451 assert(NewOps.size() == I->getNumOperands() && 6452 "Number of operands should match the instruction!"); 6453 return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE); 6454 } 6455 6456 Value *llvm::simplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 6457 OptimizationRemarkEmitter *ORE) { 6458 SmallVector<Value *, 8> Ops(I->operands()); 6459 return ::simplifyInstructionWithOperands(I, Ops, SQ, ORE); 6460 } 6461 6462 /// Implementation of recursive simplification through an instruction's 6463 /// uses. 6464 /// 6465 /// This is the common implementation of the recursive simplification routines. 6466 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 6467 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 6468 /// instructions to process and attempt to simplify it using 6469 /// InstructionSimplify. Recursively visited users which could not be 6470 /// simplified themselves are to the optional UnsimplifiedUsers set for 6471 /// further processing by the caller. 6472 /// 6473 /// This routine returns 'true' only when *it* simplifies something. The passed 6474 /// in simplified value does not count toward this. 6475 static bool replaceAndRecursivelySimplifyImpl( 6476 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6477 const DominatorTree *DT, AssumptionCache *AC, 6478 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 6479 bool Simplified = false; 6480 SmallSetVector<Instruction *, 8> Worklist; 6481 const DataLayout &DL = I->getModule()->getDataLayout(); 6482 6483 // If we have an explicit value to collapse to, do that round of the 6484 // simplification loop by hand initially. 6485 if (SimpleV) { 6486 for (User *U : I->users()) 6487 if (U != I) 6488 Worklist.insert(cast<Instruction>(U)); 6489 6490 // Replace the instruction with its simplified value. 6491 I->replaceAllUsesWith(SimpleV); 6492 6493 // Gracefully handle edge cases where the instruction is not wired into any 6494 // parent block. 6495 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6496 !I->mayHaveSideEffects()) 6497 I->eraseFromParent(); 6498 } else { 6499 Worklist.insert(I); 6500 } 6501 6502 // Note that we must test the size on each iteration, the worklist can grow. 6503 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 6504 I = Worklist[Idx]; 6505 6506 // See if this instruction simplifies. 6507 SimpleV = simplifyInstruction(I, {DL, TLI, DT, AC}); 6508 if (!SimpleV) { 6509 if (UnsimplifiedUsers) 6510 UnsimplifiedUsers->insert(I); 6511 continue; 6512 } 6513 6514 Simplified = true; 6515 6516 // Stash away all the uses of the old instruction so we can check them for 6517 // recursive simplifications after a RAUW. This is cheaper than checking all 6518 // uses of To on the recursive step in most cases. 6519 for (User *U : I->users()) 6520 Worklist.insert(cast<Instruction>(U)); 6521 6522 // Replace the instruction with its simplified value. 6523 I->replaceAllUsesWith(SimpleV); 6524 6525 // Gracefully handle edge cases where the instruction is not wired into any 6526 // parent block. 6527 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6528 !I->mayHaveSideEffects()) 6529 I->eraseFromParent(); 6530 } 6531 return Simplified; 6532 } 6533 6534 bool llvm::replaceAndRecursivelySimplify( 6535 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6536 const DominatorTree *DT, AssumptionCache *AC, 6537 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 6538 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 6539 assert(SimpleV && "Must provide a simplified value."); 6540 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 6541 UnsimplifiedUsers); 6542 } 6543 6544 namespace llvm { 6545 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 6546 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 6547 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 6548 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6549 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 6550 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 6551 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 6552 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6553 } 6554 6555 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 6556 const DataLayout &DL) { 6557 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 6558 } 6559 6560 template <class T, class... TArgs> 6561 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 6562 Function &F) { 6563 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 6564 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 6565 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 6566 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6567 } 6568 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 6569 Function &); 6570 } // namespace llvm 6571 6572 void InstSimplifyFolder::anchor() {} 6573