1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/CaptureTracking.h" 27 #include "llvm/Analysis/CmpInstAnalysis.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/InstSimplifyFolder.h" 30 #include "llvm/Analysis/LoopAnalysisManager.h" 31 #include "llvm/Analysis/MemoryBuiltins.h" 32 #include "llvm/Analysis/OverflowInstAnalysis.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/ConstantRange.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/Support/KnownBits.h" 43 #include <algorithm> 44 #include <optional> 45 using namespace llvm; 46 using namespace llvm::PatternMatch; 47 48 #define DEBUG_TYPE "instsimplify" 49 50 enum { RecursionLimit = 3 }; 51 52 STATISTIC(NumExpand, "Number of expansions"); 53 STATISTIC(NumReassoc, "Number of reassociations"); 54 55 static Value *simplifyAndInst(Value *, Value *, const SimplifyQuery &, 56 unsigned); 57 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 58 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 59 const SimplifyQuery &, unsigned); 60 static Value *simplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 61 unsigned); 62 static Value *simplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 63 const SimplifyQuery &, unsigned); 64 static Value *simplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 65 unsigned); 66 static Value *simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 67 const SimplifyQuery &Q, unsigned MaxRecurse); 68 static Value *simplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 69 static Value *simplifyXorInst(Value *, Value *, const SimplifyQuery &, 70 unsigned); 71 static Value *simplifyCastInst(unsigned, Value *, Type *, const SimplifyQuery &, 72 unsigned); 73 static Value *simplifyGEPInst(Type *, Value *, ArrayRef<Value *>, bool, 74 const SimplifyQuery &, unsigned); 75 static Value *simplifySelectInst(Value *, Value *, Value *, 76 const SimplifyQuery &, unsigned); 77 78 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 79 Value *FalseVal) { 80 BinaryOperator::BinaryOps BinOpCode; 81 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 82 BinOpCode = BO->getOpcode(); 83 else 84 return nullptr; 85 86 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 87 if (BinOpCode == BinaryOperator::Or) { 88 ExpectedPred = ICmpInst::ICMP_NE; 89 } else if (BinOpCode == BinaryOperator::And) { 90 ExpectedPred = ICmpInst::ICMP_EQ; 91 } else 92 return nullptr; 93 94 // %A = icmp eq %TV, %FV 95 // %B = icmp eq %X, %Y (and one of these is a select operand) 96 // %C = and %A, %B 97 // %D = select %C, %TV, %FV 98 // --> 99 // %FV 100 101 // %A = icmp ne %TV, %FV 102 // %B = icmp ne %X, %Y (and one of these is a select operand) 103 // %C = or %A, %B 104 // %D = select %C, %TV, %FV 105 // --> 106 // %TV 107 Value *X, *Y; 108 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 109 m_Specific(FalseVal)), 110 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 111 Pred1 != Pred2 || Pred1 != ExpectedPred) 112 return nullptr; 113 114 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 115 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 116 117 return nullptr; 118 } 119 120 /// For a boolean type or a vector of boolean type, return false or a vector 121 /// with every element false. 122 static Constant *getFalse(Type *Ty) { return ConstantInt::getFalse(Ty); } 123 124 /// For a boolean type or a vector of boolean type, return true or a vector 125 /// with every element true. 126 static Constant *getTrue(Type *Ty) { return ConstantInt::getTrue(Ty); } 127 128 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 129 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 130 Value *RHS) { 131 CmpInst *Cmp = dyn_cast<CmpInst>(V); 132 if (!Cmp) 133 return false; 134 CmpInst::Predicate CPred = Cmp->getPredicate(); 135 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 136 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 137 return true; 138 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 139 CRHS == LHS; 140 } 141 142 /// Simplify comparison with true or false branch of select: 143 /// %sel = select i1 %cond, i32 %tv, i32 %fv 144 /// %cmp = icmp sle i32 %sel, %rhs 145 /// Compose new comparison by substituting %sel with either %tv or %fv 146 /// and see if it simplifies. 147 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 148 Value *RHS, Value *Cond, 149 const SimplifyQuery &Q, unsigned MaxRecurse, 150 Constant *TrueOrFalse) { 151 Value *SimplifiedCmp = simplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 152 if (SimplifiedCmp == Cond) { 153 // %cmp simplified to the select condition (%cond). 154 return TrueOrFalse; 155 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 156 // It didn't simplify. However, if composed comparison is equivalent 157 // to the select condition (%cond) then we can replace it. 158 return TrueOrFalse; 159 } 160 return SimplifiedCmp; 161 } 162 163 /// Simplify comparison with true branch of select 164 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 165 Value *RHS, Value *Cond, 166 const SimplifyQuery &Q, 167 unsigned MaxRecurse) { 168 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 169 getTrue(Cond->getType())); 170 } 171 172 /// Simplify comparison with false branch of select 173 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 174 Value *RHS, Value *Cond, 175 const SimplifyQuery &Q, 176 unsigned MaxRecurse) { 177 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 178 getFalse(Cond->getType())); 179 } 180 181 /// We know comparison with both branches of select can be simplified, but they 182 /// are not equal. This routine handles some logical simplifications. 183 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 184 Value *Cond, 185 const SimplifyQuery &Q, 186 unsigned MaxRecurse) { 187 // If the false value simplified to false, then the result of the compare 188 // is equal to "Cond && TCmp". This also catches the case when the false 189 // value simplified to false and the true value to true, returning "Cond". 190 // Folding select to and/or isn't poison-safe in general; impliesPoison 191 // checks whether folding it does not convert a well-defined value into 192 // poison. 193 if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond)) 194 if (Value *V = simplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 195 return V; 196 // If the true value simplified to true, then the result of the compare 197 // is equal to "Cond || FCmp". 198 if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond)) 199 if (Value *V = simplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 200 return V; 201 // Finally, if the false value simplified to true and the true value to 202 // false, then the result of the compare is equal to "!Cond". 203 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 204 if (Value *V = simplifyXorInst( 205 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 206 return V; 207 return nullptr; 208 } 209 210 /// Does the given value dominate the specified phi node? 211 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 212 Instruction *I = dyn_cast<Instruction>(V); 213 if (!I) 214 // Arguments and constants dominate all instructions. 215 return true; 216 217 // If we are processing instructions (and/or basic blocks) that have not been 218 // fully added to a function, the parent nodes may still be null. Simply 219 // return the conservative answer in these cases. 220 if (!I->getParent() || !P->getParent() || !I->getFunction()) 221 return false; 222 223 // If we have a DominatorTree then do a precise test. 224 if (DT) 225 return DT->dominates(I, P); 226 227 // Otherwise, if the instruction is in the entry block and is not an invoke, 228 // then it obviously dominates all phi nodes. 229 if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) && 230 !isa<CallBrInst>(I)) 231 return true; 232 233 return false; 234 } 235 236 /// Try to simplify a binary operator of form "V op OtherOp" where V is 237 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 238 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 239 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 240 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 241 const SimplifyQuery &Q, unsigned MaxRecurse) { 242 auto *B = dyn_cast<BinaryOperator>(V); 243 if (!B || B->getOpcode() != OpcodeToExpand) 244 return nullptr; 245 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 246 Value *L = 247 simplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), MaxRecurse); 248 if (!L) 249 return nullptr; 250 Value *R = 251 simplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), MaxRecurse); 252 if (!R) 253 return nullptr; 254 255 // Does the expanded pair of binops simplify to the existing binop? 256 if ((L == B0 && R == B1) || 257 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 258 ++NumExpand; 259 return B; 260 } 261 262 // Otherwise, return "L op' R" if it simplifies. 263 Value *S = simplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 264 if (!S) 265 return nullptr; 266 267 ++NumExpand; 268 return S; 269 } 270 271 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 272 /// distributing op over op'. 273 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, Value *L, 274 Value *R, 275 Instruction::BinaryOps OpcodeToExpand, 276 const SimplifyQuery &Q, 277 unsigned MaxRecurse) { 278 // Recursion is always used, so bail out at once if we already hit the limit. 279 if (!MaxRecurse--) 280 return nullptr; 281 282 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 283 return V; 284 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 285 return V; 286 return nullptr; 287 } 288 289 /// Generic simplifications for associative binary operations. 290 /// Returns the simpler value, or null if none was found. 291 static Value *simplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 292 Value *LHS, Value *RHS, 293 const SimplifyQuery &Q, 294 unsigned MaxRecurse) { 295 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 296 297 // Recursion is always used, so bail out at once if we already hit the limit. 298 if (!MaxRecurse--) 299 return nullptr; 300 301 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 302 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 303 304 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 305 if (Op0 && Op0->getOpcode() == Opcode) { 306 Value *A = Op0->getOperand(0); 307 Value *B = Op0->getOperand(1); 308 Value *C = RHS; 309 310 // Does "B op C" simplify? 311 if (Value *V = simplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 312 // It does! Return "A op V" if it simplifies or is already available. 313 // If V equals B then "A op V" is just the LHS. 314 if (V == B) 315 return LHS; 316 // Otherwise return "A op V" if it simplifies. 317 if (Value *W = simplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 318 ++NumReassoc; 319 return W; 320 } 321 } 322 } 323 324 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 325 if (Op1 && Op1->getOpcode() == Opcode) { 326 Value *A = LHS; 327 Value *B = Op1->getOperand(0); 328 Value *C = Op1->getOperand(1); 329 330 // Does "A op B" simplify? 331 if (Value *V = simplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 332 // It does! Return "V op C" if it simplifies or is already available. 333 // If V equals B then "V op C" is just the RHS. 334 if (V == B) 335 return RHS; 336 // Otherwise return "V op C" if it simplifies. 337 if (Value *W = simplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 338 ++NumReassoc; 339 return W; 340 } 341 } 342 } 343 344 // The remaining transforms require commutativity as well as associativity. 345 if (!Instruction::isCommutative(Opcode)) 346 return nullptr; 347 348 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 349 if (Op0 && Op0->getOpcode() == Opcode) { 350 Value *A = Op0->getOperand(0); 351 Value *B = Op0->getOperand(1); 352 Value *C = RHS; 353 354 // Does "C op A" simplify? 355 if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 356 // It does! Return "V op B" if it simplifies or is already available. 357 // If V equals A then "V op B" is just the LHS. 358 if (V == A) 359 return LHS; 360 // Otherwise return "V op B" if it simplifies. 361 if (Value *W = simplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 362 ++NumReassoc; 363 return W; 364 } 365 } 366 } 367 368 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 369 if (Op1 && Op1->getOpcode() == Opcode) { 370 Value *A = LHS; 371 Value *B = Op1->getOperand(0); 372 Value *C = Op1->getOperand(1); 373 374 // Does "C op A" simplify? 375 if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 376 // It does! Return "B op V" if it simplifies or is already available. 377 // If V equals C then "B op V" is just the RHS. 378 if (V == C) 379 return RHS; 380 // Otherwise return "B op V" if it simplifies. 381 if (Value *W = simplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 382 ++NumReassoc; 383 return W; 384 } 385 } 386 } 387 388 return nullptr; 389 } 390 391 /// In the case of a binary operation with a select instruction as an operand, 392 /// try to simplify the binop by seeing whether evaluating it on both branches 393 /// of the select results in the same value. Returns the common value if so, 394 /// otherwise returns null. 395 static Value *threadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 396 Value *RHS, const SimplifyQuery &Q, 397 unsigned MaxRecurse) { 398 // Recursion is always used, so bail out at once if we already hit the limit. 399 if (!MaxRecurse--) 400 return nullptr; 401 402 SelectInst *SI; 403 if (isa<SelectInst>(LHS)) { 404 SI = cast<SelectInst>(LHS); 405 } else { 406 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 407 SI = cast<SelectInst>(RHS); 408 } 409 410 // Evaluate the BinOp on the true and false branches of the select. 411 Value *TV; 412 Value *FV; 413 if (SI == LHS) { 414 TV = simplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 415 FV = simplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 416 } else { 417 TV = simplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 418 FV = simplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 419 } 420 421 // If they simplified to the same value, then return the common value. 422 // If they both failed to simplify then return null. 423 if (TV == FV) 424 return TV; 425 426 // If one branch simplified to undef, return the other one. 427 if (TV && Q.isUndefValue(TV)) 428 return FV; 429 if (FV && Q.isUndefValue(FV)) 430 return TV; 431 432 // If applying the operation did not change the true and false select values, 433 // then the result of the binop is the select itself. 434 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 435 return SI; 436 437 // If one branch simplified and the other did not, and the simplified 438 // value is equal to the unsimplified one, return the simplified value. 439 // For example, select (cond, X, X & Z) & Z -> X & Z. 440 if ((FV && !TV) || (TV && !FV)) { 441 // Check that the simplified value has the form "X op Y" where "op" is the 442 // same as the original operation. 443 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 444 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 445 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 446 // We already know that "op" is the same as for the simplified value. See 447 // if the operands match too. If so, return the simplified value. 448 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 449 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 450 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 451 if (Simplified->getOperand(0) == UnsimplifiedLHS && 452 Simplified->getOperand(1) == UnsimplifiedRHS) 453 return Simplified; 454 if (Simplified->isCommutative() && 455 Simplified->getOperand(1) == UnsimplifiedLHS && 456 Simplified->getOperand(0) == UnsimplifiedRHS) 457 return Simplified; 458 } 459 } 460 461 return nullptr; 462 } 463 464 /// In the case of a comparison with a select instruction, try to simplify the 465 /// comparison by seeing whether both branches of the select result in the same 466 /// value. Returns the common value if so, otherwise returns null. 467 /// For example, if we have: 468 /// %tmp = select i1 %cmp, i32 1, i32 2 469 /// %cmp1 = icmp sle i32 %tmp, 3 470 /// We can simplify %cmp1 to true, because both branches of select are 471 /// less than 3. We compose new comparison by substituting %tmp with both 472 /// branches of select and see if it can be simplified. 473 static Value *threadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 474 Value *RHS, const SimplifyQuery &Q, 475 unsigned MaxRecurse) { 476 // Recursion is always used, so bail out at once if we already hit the limit. 477 if (!MaxRecurse--) 478 return nullptr; 479 480 // Make sure the select is on the LHS. 481 if (!isa<SelectInst>(LHS)) { 482 std::swap(LHS, RHS); 483 Pred = CmpInst::getSwappedPredicate(Pred); 484 } 485 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 486 SelectInst *SI = cast<SelectInst>(LHS); 487 Value *Cond = SI->getCondition(); 488 Value *TV = SI->getTrueValue(); 489 Value *FV = SI->getFalseValue(); 490 491 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 492 // Does "cmp TV, RHS" simplify? 493 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 494 if (!TCmp) 495 return nullptr; 496 497 // Does "cmp FV, RHS" simplify? 498 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 499 if (!FCmp) 500 return nullptr; 501 502 // If both sides simplified to the same value, then use it as the result of 503 // the original comparison. 504 if (TCmp == FCmp) 505 return TCmp; 506 507 // The remaining cases only make sense if the select condition has the same 508 // type as the result of the comparison, so bail out if this is not so. 509 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 510 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 511 512 return nullptr; 513 } 514 515 /// In the case of a binary operation with an operand that is a PHI instruction, 516 /// try to simplify the binop by seeing whether evaluating it on the incoming 517 /// phi values yields the same result for every value. If so returns the common 518 /// value, otherwise returns null. 519 static Value *threadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 520 Value *RHS, const SimplifyQuery &Q, 521 unsigned MaxRecurse) { 522 // Recursion is always used, so bail out at once if we already hit the limit. 523 if (!MaxRecurse--) 524 return nullptr; 525 526 PHINode *PI; 527 if (isa<PHINode>(LHS)) { 528 PI = cast<PHINode>(LHS); 529 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 530 if (!valueDominatesPHI(RHS, PI, Q.DT)) 531 return nullptr; 532 } else { 533 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 534 PI = cast<PHINode>(RHS); 535 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 536 if (!valueDominatesPHI(LHS, PI, Q.DT)) 537 return nullptr; 538 } 539 540 // Evaluate the BinOp on the incoming phi values. 541 Value *CommonValue = nullptr; 542 for (Value *Incoming : PI->incoming_values()) { 543 // If the incoming value is the phi node itself, it can safely be skipped. 544 if (Incoming == PI) 545 continue; 546 Value *V = PI == LHS ? simplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) 547 : simplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 548 // If the operation failed to simplify, or simplified to a different value 549 // to previously, then give up. 550 if (!V || (CommonValue && V != CommonValue)) 551 return nullptr; 552 CommonValue = V; 553 } 554 555 return CommonValue; 556 } 557 558 /// In the case of a comparison with a PHI instruction, try to simplify the 559 /// comparison by seeing whether comparing with all of the incoming phi values 560 /// yields the same result every time. If so returns the common result, 561 /// otherwise returns null. 562 static Value *threadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 563 const SimplifyQuery &Q, unsigned MaxRecurse) { 564 // Recursion is always used, so bail out at once if we already hit the limit. 565 if (!MaxRecurse--) 566 return nullptr; 567 568 // Make sure the phi is on the LHS. 569 if (!isa<PHINode>(LHS)) { 570 std::swap(LHS, RHS); 571 Pred = CmpInst::getSwappedPredicate(Pred); 572 } 573 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 574 PHINode *PI = cast<PHINode>(LHS); 575 576 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 577 if (!valueDominatesPHI(RHS, PI, Q.DT)) 578 return nullptr; 579 580 // Evaluate the BinOp on the incoming phi values. 581 Value *CommonValue = nullptr; 582 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 583 Value *Incoming = PI->getIncomingValue(u); 584 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 585 // If the incoming value is the phi node itself, it can safely be skipped. 586 if (Incoming == PI) 587 continue; 588 // Change the context instruction to the "edge" that flows into the phi. 589 // This is important because that is where incoming is actually "evaluated" 590 // even though it is used later somewhere else. 591 Value *V = simplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 592 MaxRecurse); 593 // If the operation failed to simplify, or simplified to a different value 594 // to previously, then give up. 595 if (!V || (CommonValue && V != CommonValue)) 596 return nullptr; 597 CommonValue = V; 598 } 599 600 return CommonValue; 601 } 602 603 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 604 Value *&Op0, Value *&Op1, 605 const SimplifyQuery &Q) { 606 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 607 if (auto *CRHS = dyn_cast<Constant>(Op1)) { 608 switch (Opcode) { 609 default: 610 break; 611 case Instruction::FAdd: 612 case Instruction::FSub: 613 case Instruction::FMul: 614 case Instruction::FDiv: 615 case Instruction::FRem: 616 if (Q.CxtI != nullptr) 617 return ConstantFoldFPInstOperands(Opcode, CLHS, CRHS, Q.DL, Q.CxtI); 618 } 619 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 620 } 621 622 // Canonicalize the constant to the RHS if this is a commutative operation. 623 if (Instruction::isCommutative(Opcode)) 624 std::swap(Op0, Op1); 625 } 626 return nullptr; 627 } 628 629 /// Given operands for an Add, see if we can fold the result. 630 /// If not, this returns null. 631 static Value *simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 632 const SimplifyQuery &Q, unsigned MaxRecurse) { 633 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 634 return C; 635 636 // X + poison -> poison 637 if (isa<PoisonValue>(Op1)) 638 return Op1; 639 640 // X + undef -> undef 641 if (Q.isUndefValue(Op1)) 642 return Op1; 643 644 // X + 0 -> X 645 if (match(Op1, m_Zero())) 646 return Op0; 647 648 // If two operands are negative, return 0. 649 if (isKnownNegation(Op0, Op1)) 650 return Constant::getNullValue(Op0->getType()); 651 652 // X + (Y - X) -> Y 653 // (Y - X) + X -> Y 654 // Eg: X + -X -> 0 655 Value *Y = nullptr; 656 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 657 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 658 return Y; 659 660 // X + ~X -> -1 since ~X = -X-1 661 Type *Ty = Op0->getType(); 662 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) 663 return Constant::getAllOnesValue(Ty); 664 665 // add nsw/nuw (xor Y, signmask), signmask --> Y 666 // The no-wrapping add guarantees that the top bit will be set by the add. 667 // Therefore, the xor must be clearing the already set sign bit of Y. 668 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 669 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 670 return Y; 671 672 // add nuw %x, -1 -> -1, because %x can only be 0. 673 if (IsNUW && match(Op1, m_AllOnes())) 674 return Op1; // Which is -1. 675 676 /// i1 add -> xor. 677 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 678 if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1)) 679 return V; 680 681 // Try some generic simplifications for associative operations. 682 if (Value *V = 683 simplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, MaxRecurse)) 684 return V; 685 686 // Threading Add over selects and phi nodes is pointless, so don't bother. 687 // Threading over the select in "A + select(cond, B, C)" means evaluating 688 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 689 // only if B and C are equal. If B and C are equal then (since we assume 690 // that operands have already been simplified) "select(cond, B, C)" should 691 // have been simplified to the common value of B and C already. Analysing 692 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 693 // for threading over phi nodes. 694 695 return nullptr; 696 } 697 698 Value *llvm::simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 699 const SimplifyQuery &Query) { 700 return ::simplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 701 } 702 703 /// Compute the base pointer and cumulative constant offsets for V. 704 /// 705 /// This strips all constant offsets off of V, leaving it the base pointer, and 706 /// accumulates the total constant offset applied in the returned constant. 707 /// It returns zero if there are no constant offsets applied. 708 /// 709 /// This is very similar to stripAndAccumulateConstantOffsets(), except it 710 /// normalizes the offset bitwidth to the stripped pointer type, not the 711 /// original pointer type. 712 static APInt stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 713 bool AllowNonInbounds = false) { 714 assert(V->getType()->isPtrOrPtrVectorTy()); 715 716 APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType())); 717 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 718 // As that strip may trace through `addrspacecast`, need to sext or trunc 719 // the offset calculated. 720 return Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(V->getType())); 721 } 722 723 /// Compute the constant difference between two pointer values. 724 /// If the difference is not a constant, returns zero. 725 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 726 Value *RHS) { 727 APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 728 APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 729 730 // If LHS and RHS are not related via constant offsets to the same base 731 // value, there is nothing we can do here. 732 if (LHS != RHS) 733 return nullptr; 734 735 // Otherwise, the difference of LHS - RHS can be computed as: 736 // LHS - RHS 737 // = (LHSOffset + Base) - (RHSOffset + Base) 738 // = LHSOffset - RHSOffset 739 Constant *Res = ConstantInt::get(LHS->getContext(), LHSOffset - RHSOffset); 740 if (auto *VecTy = dyn_cast<VectorType>(LHS->getType())) 741 Res = ConstantVector::getSplat(VecTy->getElementCount(), Res); 742 return Res; 743 } 744 745 /// Test if there is a dominating equivalence condition for the 746 /// two operands. If there is, try to reduce the binary operation 747 /// between the two operands. 748 /// Example: Op0 - Op1 --> 0 when Op0 == Op1 749 static Value *simplifyByDomEq(unsigned Opcode, Value *Op0, Value *Op1, 750 const SimplifyQuery &Q, unsigned MaxRecurse) { 751 // Recursive run it can not get any benefit 752 if (MaxRecurse != RecursionLimit) 753 return nullptr; 754 755 std::optional<bool> Imp = 756 isImpliedByDomCondition(CmpInst::ICMP_EQ, Op0, Op1, Q.CxtI, Q.DL); 757 if (Imp && *Imp) { 758 Type *Ty = Op0->getType(); 759 switch (Opcode) { 760 case Instruction::Sub: 761 case Instruction::Xor: 762 case Instruction::URem: 763 case Instruction::SRem: 764 return Constant::getNullValue(Ty); 765 766 case Instruction::SDiv: 767 case Instruction::UDiv: 768 return ConstantInt::get(Ty, 1); 769 770 case Instruction::And: 771 case Instruction::Or: 772 // Could be either one - choose Op1 since that's more likely a constant. 773 return Op1; 774 default: 775 break; 776 } 777 } 778 return nullptr; 779 } 780 781 /// Given operands for a Sub, see if we can fold the result. 782 /// If not, this returns null. 783 static Value *simplifySubInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 784 const SimplifyQuery &Q, unsigned MaxRecurse) { 785 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 786 return C; 787 788 // X - poison -> poison 789 // poison - X -> poison 790 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 791 return PoisonValue::get(Op0->getType()); 792 793 // X - undef -> undef 794 // undef - X -> undef 795 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 796 return UndefValue::get(Op0->getType()); 797 798 // X - 0 -> X 799 if (match(Op1, m_Zero())) 800 return Op0; 801 802 // X - X -> 0 803 if (Op0 == Op1) 804 return Constant::getNullValue(Op0->getType()); 805 806 // Is this a negation? 807 if (match(Op0, m_Zero())) { 808 // 0 - X -> 0 if the sub is NUW. 809 if (IsNUW) 810 return Constant::getNullValue(Op0->getType()); 811 812 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 813 if (Known.Zero.isMaxSignedValue()) { 814 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 815 // Op1 must be 0 because negating the minimum signed value is undefined. 816 if (IsNSW) 817 return Constant::getNullValue(Op0->getType()); 818 819 // 0 - X -> X if X is 0 or the minimum signed value. 820 return Op1; 821 } 822 } 823 824 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 825 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 826 Value *X = nullptr, *Y = nullptr, *Z = Op1; 827 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 828 // See if "V === Y - Z" simplifies. 829 if (Value *V = simplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse - 1)) 830 // It does! Now see if "X + V" simplifies. 831 if (Value *W = simplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse - 1)) { 832 // It does, we successfully reassociated! 833 ++NumReassoc; 834 return W; 835 } 836 // See if "V === X - Z" simplifies. 837 if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1)) 838 // It does! Now see if "Y + V" simplifies. 839 if (Value *W = simplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse - 1)) { 840 // It does, we successfully reassociated! 841 ++NumReassoc; 842 return W; 843 } 844 } 845 846 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 847 // For example, X - (X + 1) -> -1 848 X = Op0; 849 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 850 // See if "V === X - Y" simplifies. 851 if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1)) 852 // It does! Now see if "V - Z" simplifies. 853 if (Value *W = simplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse - 1)) { 854 // It does, we successfully reassociated! 855 ++NumReassoc; 856 return W; 857 } 858 // See if "V === X - Z" simplifies. 859 if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1)) 860 // It does! Now see if "V - Y" simplifies. 861 if (Value *W = simplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse - 1)) { 862 // It does, we successfully reassociated! 863 ++NumReassoc; 864 return W; 865 } 866 } 867 868 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 869 // For example, X - (X - Y) -> Y. 870 Z = Op0; 871 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 872 // See if "V === Z - X" simplifies. 873 if (Value *V = simplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse - 1)) 874 // It does! Now see if "V + Y" simplifies. 875 if (Value *W = simplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse - 1)) { 876 // It does, we successfully reassociated! 877 ++NumReassoc; 878 return W; 879 } 880 881 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 882 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 883 match(Op1, m_Trunc(m_Value(Y)))) 884 if (X->getType() == Y->getType()) 885 // See if "V === X - Y" simplifies. 886 if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1)) 887 // It does! Now see if "trunc V" simplifies. 888 if (Value *W = simplifyCastInst(Instruction::Trunc, V, Op0->getType(), 889 Q, MaxRecurse - 1)) 890 // It does, return the simplified "trunc V". 891 return W; 892 893 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 894 if (match(Op0, m_PtrToInt(m_Value(X))) && match(Op1, m_PtrToInt(m_Value(Y)))) 895 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 896 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 897 898 // i1 sub -> xor. 899 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 900 if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1)) 901 return V; 902 903 // Threading Sub over selects and phi nodes is pointless, so don't bother. 904 // Threading over the select in "A - select(cond, B, C)" means evaluating 905 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 906 // only if B and C are equal. If B and C are equal then (since we assume 907 // that operands have already been simplified) "select(cond, B, C)" should 908 // have been simplified to the common value of B and C already. Analysing 909 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 910 // for threading over phi nodes. 911 912 if (Value *V = simplifyByDomEq(Instruction::Sub, Op0, Op1, Q, MaxRecurse)) 913 return V; 914 915 return nullptr; 916 } 917 918 Value *llvm::simplifySubInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 919 const SimplifyQuery &Q) { 920 return ::simplifySubInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit); 921 } 922 923 /// Given operands for a Mul, see if we can fold the result. 924 /// If not, this returns null. 925 static Value *simplifyMulInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 926 const SimplifyQuery &Q, unsigned MaxRecurse) { 927 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 928 return C; 929 930 // X * poison -> poison 931 if (isa<PoisonValue>(Op1)) 932 return Op1; 933 934 // X * undef -> 0 935 // X * 0 -> 0 936 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 937 return Constant::getNullValue(Op0->getType()); 938 939 // X * 1 -> X 940 if (match(Op1, m_One())) 941 return Op0; 942 943 // (X / Y) * Y -> X if the division is exact. 944 Value *X = nullptr; 945 if (Q.IIQ.UseInstrInfo && 946 (match(Op0, 947 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 948 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 949 return X; 950 951 if (Op0->getType()->isIntOrIntVectorTy(1)) { 952 // mul i1 nsw is a special-case because -1 * -1 is poison (+1 is not 953 // representable). All other cases reduce to 0, so just return 0. 954 if (IsNSW) 955 return ConstantInt::getNullValue(Op0->getType()); 956 957 // Treat "mul i1" as "and i1". 958 if (MaxRecurse) 959 if (Value *V = simplifyAndInst(Op0, Op1, Q, MaxRecurse - 1)) 960 return V; 961 } 962 963 // Try some generic simplifications for associative operations. 964 if (Value *V = 965 simplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) 966 return V; 967 968 // Mul distributes over Add. Try some generic simplifications based on this. 969 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 970 Instruction::Add, Q, MaxRecurse)) 971 return V; 972 973 // If the operation is with the result of a select instruction, check whether 974 // operating on either branch of the select always yields the same value. 975 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 976 if (Value *V = 977 threadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) 978 return V; 979 980 // If the operation is with the result of a phi instruction, check whether 981 // operating on all incoming values of the phi always yields the same value. 982 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 983 if (Value *V = 984 threadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) 985 return V; 986 987 return nullptr; 988 } 989 990 Value *llvm::simplifyMulInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 991 const SimplifyQuery &Q) { 992 return ::simplifyMulInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit); 993 } 994 995 /// Check for common or similar folds of integer division or integer remainder. 996 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 997 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, 998 Value *Op1, const SimplifyQuery &Q, 999 unsigned MaxRecurse) { 1000 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv); 1001 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem); 1002 1003 Type *Ty = Op0->getType(); 1004 1005 // X / undef -> poison 1006 // X % undef -> poison 1007 if (Q.isUndefValue(Op1) || isa<PoisonValue>(Op1)) 1008 return PoisonValue::get(Ty); 1009 1010 // X / 0 -> poison 1011 // X % 0 -> poison 1012 // We don't need to preserve faults! 1013 if (match(Op1, m_Zero())) 1014 return PoisonValue::get(Ty); 1015 1016 // If any element of a constant divisor fixed width vector is zero or undef 1017 // the behavior is undefined and we can fold the whole op to poison. 1018 auto *Op1C = dyn_cast<Constant>(Op1); 1019 auto *VTy = dyn_cast<FixedVectorType>(Ty); 1020 if (Op1C && VTy) { 1021 unsigned NumElts = VTy->getNumElements(); 1022 for (unsigned i = 0; i != NumElts; ++i) { 1023 Constant *Elt = Op1C->getAggregateElement(i); 1024 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) 1025 return PoisonValue::get(Ty); 1026 } 1027 } 1028 1029 // poison / X -> poison 1030 // poison % X -> poison 1031 if (isa<PoisonValue>(Op0)) 1032 return Op0; 1033 1034 // undef / X -> 0 1035 // undef % X -> 0 1036 if (Q.isUndefValue(Op0)) 1037 return Constant::getNullValue(Ty); 1038 1039 // 0 / X -> 0 1040 // 0 % X -> 0 1041 if (match(Op0, m_Zero())) 1042 return Constant::getNullValue(Op0->getType()); 1043 1044 // X / X -> 1 1045 // X % X -> 0 1046 if (Op0 == Op1) 1047 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 1048 1049 // X / 1 -> X 1050 // X % 1 -> 0 1051 // If this is a boolean op (single-bit element type), we can't have 1052 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 1053 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 1054 Value *X; 1055 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 1056 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1057 return IsDiv ? Op0 : Constant::getNullValue(Ty); 1058 1059 // If X * Y does not overflow, then: 1060 // X * Y / Y -> X 1061 // X * Y % Y -> 0 1062 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1063 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1064 // The multiplication can't overflow if it is defined not to, or if 1065 // X == A / Y for some A. 1066 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1067 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) || 1068 (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1069 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) { 1070 return IsDiv ? X : Constant::getNullValue(Op0->getType()); 1071 } 1072 } 1073 1074 if (Value *V = simplifyByDomEq(Opcode, Op0, Op1, Q, MaxRecurse)) 1075 return V; 1076 1077 return nullptr; 1078 } 1079 1080 /// Given a predicate and two operands, return true if the comparison is true. 1081 /// This is a helper for div/rem simplification where we return some other value 1082 /// when we can prove a relationship between the operands. 1083 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 1084 const SimplifyQuery &Q, unsigned MaxRecurse) { 1085 Value *V = simplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 1086 Constant *C = dyn_cast_or_null<Constant>(V); 1087 return (C && C->isAllOnesValue()); 1088 } 1089 1090 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 1091 /// to simplify X % Y to X. 1092 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 1093 unsigned MaxRecurse, bool IsSigned) { 1094 // Recursion is always used, so bail out at once if we already hit the limit. 1095 if (!MaxRecurse--) 1096 return false; 1097 1098 if (IsSigned) { 1099 // |X| / |Y| --> 0 1100 // 1101 // We require that 1 operand is a simple constant. That could be extended to 1102 // 2 variables if we computed the sign bit for each. 1103 // 1104 // Make sure that a constant is not the minimum signed value because taking 1105 // the abs() of that is undefined. 1106 Type *Ty = X->getType(); 1107 const APInt *C; 1108 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1109 // Is the variable divisor magnitude always greater than the constant 1110 // dividend magnitude? 1111 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1112 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1113 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1114 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1115 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1116 return true; 1117 } 1118 if (match(Y, m_APInt(C))) { 1119 // Special-case: we can't take the abs() of a minimum signed value. If 1120 // that's the divisor, then all we have to do is prove that the dividend 1121 // is also not the minimum signed value. 1122 if (C->isMinSignedValue()) 1123 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1124 1125 // Is the variable dividend magnitude always less than the constant 1126 // divisor magnitude? 1127 // |X| < |C| --> X > -abs(C) and X < abs(C) 1128 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1129 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1130 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1131 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1132 return true; 1133 } 1134 return false; 1135 } 1136 1137 // IsSigned == false. 1138 1139 // Is the unsigned dividend known to be less than a constant divisor? 1140 // TODO: Convert this (and above) to range analysis 1141 // ("computeConstantRangeIncludingKnownBits")? 1142 const APInt *C; 1143 if (match(Y, m_APInt(C)) && 1144 computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, Q.DT).getMaxValue().ult(*C)) 1145 return true; 1146 1147 // Try again for any divisor: 1148 // Is the dividend unsigned less than the divisor? 1149 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1150 } 1151 1152 /// These are simplifications common to SDiv and UDiv. 1153 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1154 bool IsExact, const SimplifyQuery &Q, 1155 unsigned MaxRecurse) { 1156 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1157 return C; 1158 1159 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q, MaxRecurse)) 1160 return V; 1161 1162 // If this is an exact divide by a constant, then the dividend (Op0) must have 1163 // at least as many trailing zeros as the divisor to divide evenly. If it has 1164 // less trailing zeros, then the result must be poison. 1165 const APInt *DivC; 1166 if (IsExact && match(Op1, m_APInt(DivC)) && DivC->countTrailingZeros()) { 1167 KnownBits KnownOp0 = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1168 if (KnownOp0.countMaxTrailingZeros() < DivC->countTrailingZeros()) 1169 return PoisonValue::get(Op0->getType()); 1170 } 1171 1172 bool IsSigned = Opcode == Instruction::SDiv; 1173 1174 // (X rem Y) / Y -> 0 1175 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1176 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1177 return Constant::getNullValue(Op0->getType()); 1178 1179 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1180 ConstantInt *C1, *C2; 1181 if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) && 1182 match(Op1, m_ConstantInt(C2))) { 1183 bool Overflow; 1184 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1185 if (Overflow) 1186 return Constant::getNullValue(Op0->getType()); 1187 } 1188 1189 // If the operation is with the result of a select instruction, check whether 1190 // operating on either branch of the select always yields the same value. 1191 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1192 if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1193 return V; 1194 1195 // If the operation is with the result of a phi instruction, check whether 1196 // operating on all incoming values of the phi always yields the same value. 1197 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1198 if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1199 return V; 1200 1201 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1202 return Constant::getNullValue(Op0->getType()); 1203 1204 return nullptr; 1205 } 1206 1207 /// These are simplifications common to SRem and URem. 1208 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1209 const SimplifyQuery &Q, unsigned MaxRecurse) { 1210 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1211 return C; 1212 1213 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q, MaxRecurse)) 1214 return V; 1215 1216 // (X % Y) % Y -> X % Y 1217 if ((Opcode == Instruction::SRem && 1218 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1219 (Opcode == Instruction::URem && 1220 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1221 return Op0; 1222 1223 // (X << Y) % X -> 0 1224 if (Q.IIQ.UseInstrInfo && 1225 ((Opcode == Instruction::SRem && 1226 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1227 (Opcode == Instruction::URem && 1228 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1229 return Constant::getNullValue(Op0->getType()); 1230 1231 // If the operation is with the result of a select instruction, check whether 1232 // operating on either branch of the select always yields the same value. 1233 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1234 if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1235 return V; 1236 1237 // If the operation is with the result of a phi instruction, check whether 1238 // operating on all incoming values of the phi always yields the same value. 1239 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1240 if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1241 return V; 1242 1243 // If X / Y == 0, then X % Y == X. 1244 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1245 return Op0; 1246 1247 return nullptr; 1248 } 1249 1250 /// Given operands for an SDiv, see if we can fold the result. 1251 /// If not, this returns null. 1252 static Value *simplifySDivInst(Value *Op0, Value *Op1, bool IsExact, 1253 const SimplifyQuery &Q, unsigned MaxRecurse) { 1254 // If two operands are negated and no signed overflow, return -1. 1255 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1256 return Constant::getAllOnesValue(Op0->getType()); 1257 1258 return simplifyDiv(Instruction::SDiv, Op0, Op1, IsExact, Q, MaxRecurse); 1259 } 1260 1261 Value *llvm::simplifySDivInst(Value *Op0, Value *Op1, bool IsExact, 1262 const SimplifyQuery &Q) { 1263 return ::simplifySDivInst(Op0, Op1, IsExact, Q, RecursionLimit); 1264 } 1265 1266 /// Given operands for a UDiv, see if we can fold the result. 1267 /// If not, this returns null. 1268 static Value *simplifyUDivInst(Value *Op0, Value *Op1, bool IsExact, 1269 const SimplifyQuery &Q, unsigned MaxRecurse) { 1270 return simplifyDiv(Instruction::UDiv, Op0, Op1, IsExact, Q, MaxRecurse); 1271 } 1272 1273 Value *llvm::simplifyUDivInst(Value *Op0, Value *Op1, bool IsExact, 1274 const SimplifyQuery &Q) { 1275 return ::simplifyUDivInst(Op0, Op1, IsExact, Q, RecursionLimit); 1276 } 1277 1278 /// Given operands for an SRem, see if we can fold the result. 1279 /// If not, this returns null. 1280 static Value *simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1281 unsigned MaxRecurse) { 1282 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1283 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1284 Value *X; 1285 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1286 return ConstantInt::getNullValue(Op0->getType()); 1287 1288 // If the two operands are negated, return 0. 1289 if (isKnownNegation(Op0, Op1)) 1290 return ConstantInt::getNullValue(Op0->getType()); 1291 1292 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1293 } 1294 1295 Value *llvm::simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1296 return ::simplifySRemInst(Op0, Op1, Q, RecursionLimit); 1297 } 1298 1299 /// Given operands for a URem, see if we can fold the result. 1300 /// If not, this returns null. 1301 static Value *simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1302 unsigned MaxRecurse) { 1303 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1304 } 1305 1306 Value *llvm::simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1307 return ::simplifyURemInst(Op0, Op1, Q, RecursionLimit); 1308 } 1309 1310 /// Returns true if a shift by \c Amount always yields poison. 1311 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { 1312 Constant *C = dyn_cast<Constant>(Amount); 1313 if (!C) 1314 return false; 1315 1316 // X shift by undef -> poison because it may shift by the bitwidth. 1317 if (Q.isUndefValue(C)) 1318 return true; 1319 1320 // Shifting by the bitwidth or more is poison. This covers scalars and 1321 // fixed/scalable vectors with splat constants. 1322 const APInt *AmountC; 1323 if (match(C, m_APInt(AmountC)) && AmountC->uge(AmountC->getBitWidth())) 1324 return true; 1325 1326 // Try harder for fixed-length vectors: 1327 // If all lanes of a vector shift are poison, the whole shift is poison. 1328 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1329 for (unsigned I = 0, 1330 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1331 I != E; ++I) 1332 if (!isPoisonShift(C->getAggregateElement(I), Q)) 1333 return false; 1334 return true; 1335 } 1336 1337 return false; 1338 } 1339 1340 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1341 /// If not, this returns null. 1342 static Value *simplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1343 Value *Op1, bool IsNSW, const SimplifyQuery &Q, 1344 unsigned MaxRecurse) { 1345 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1346 return C; 1347 1348 // poison shift by X -> poison 1349 if (isa<PoisonValue>(Op0)) 1350 return Op0; 1351 1352 // 0 shift by X -> 0 1353 if (match(Op0, m_Zero())) 1354 return Constant::getNullValue(Op0->getType()); 1355 1356 // X shift by 0 -> X 1357 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1358 // would be poison. 1359 Value *X; 1360 if (match(Op1, m_Zero()) || 1361 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1362 return Op0; 1363 1364 // Fold undefined shifts. 1365 if (isPoisonShift(Op1, Q)) 1366 return PoisonValue::get(Op0->getType()); 1367 1368 // If the operation is with the result of a select instruction, check whether 1369 // operating on either branch of the select always yields the same value. 1370 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1371 if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1372 return V; 1373 1374 // If the operation is with the result of a phi instruction, check whether 1375 // operating on all incoming values of the phi always yields the same value. 1376 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1377 if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1378 return V; 1379 1380 // If any bits in the shift amount make that value greater than or equal to 1381 // the number of bits in the type, the shift is undefined. 1382 KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1383 if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth())) 1384 return PoisonValue::get(Op0->getType()); 1385 1386 // If all valid bits in the shift amount are known zero, the first operand is 1387 // unchanged. 1388 unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth()); 1389 if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits) 1390 return Op0; 1391 1392 // Check for nsw shl leading to a poison value. 1393 if (IsNSW) { 1394 assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction"); 1395 KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1396 KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt); 1397 1398 if (KnownVal.Zero.isSignBitSet()) 1399 KnownShl.Zero.setSignBit(); 1400 if (KnownVal.One.isSignBitSet()) 1401 KnownShl.One.setSignBit(); 1402 1403 if (KnownShl.hasConflict()) 1404 return PoisonValue::get(Op0->getType()); 1405 } 1406 1407 return nullptr; 1408 } 1409 1410 /// Given operands for an Shl, LShr or AShr, see if we can 1411 /// fold the result. If not, this returns null. 1412 static Value *simplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1413 Value *Op1, bool IsExact, 1414 const SimplifyQuery &Q, unsigned MaxRecurse) { 1415 if (Value *V = 1416 simplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse)) 1417 return V; 1418 1419 // X >> X -> 0 1420 if (Op0 == Op1) 1421 return Constant::getNullValue(Op0->getType()); 1422 1423 // undef >> X -> 0 1424 // undef >> X -> undef (if it's exact) 1425 if (Q.isUndefValue(Op0)) 1426 return IsExact ? Op0 : Constant::getNullValue(Op0->getType()); 1427 1428 // The low bit cannot be shifted out of an exact shift if it is set. 1429 // TODO: Generalize by counting trailing zeros (see fold for exact division). 1430 if (IsExact) { 1431 KnownBits Op0Known = 1432 computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1433 if (Op0Known.One[0]) 1434 return Op0; 1435 } 1436 1437 return nullptr; 1438 } 1439 1440 /// Given operands for an Shl, see if we can fold the result. 1441 /// If not, this returns null. 1442 static Value *simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 1443 const SimplifyQuery &Q, unsigned MaxRecurse) { 1444 if (Value *V = 1445 simplifyShift(Instruction::Shl, Op0, Op1, IsNSW, Q, MaxRecurse)) 1446 return V; 1447 1448 // undef << X -> 0 1449 // undef << X -> undef if (if it's NSW/NUW) 1450 if (Q.isUndefValue(Op0)) 1451 return IsNSW || IsNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1452 1453 // (X >> A) << A -> X 1454 Value *X; 1455 if (Q.IIQ.UseInstrInfo && 1456 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1457 return X; 1458 1459 // shl nuw i8 C, %x -> C iff C has sign bit set. 1460 if (IsNUW && match(Op0, m_Negative())) 1461 return Op0; 1462 // NOTE: could use computeKnownBits() / LazyValueInfo, 1463 // but the cost-benefit analysis suggests it isn't worth it. 1464 1465 return nullptr; 1466 } 1467 1468 Value *llvm::simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 1469 const SimplifyQuery &Q) { 1470 return ::simplifyShlInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit); 1471 } 1472 1473 /// Given operands for an LShr, see if we can fold the result. 1474 /// If not, this returns null. 1475 static Value *simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, 1476 const SimplifyQuery &Q, unsigned MaxRecurse) { 1477 if (Value *V = simplifyRightShift(Instruction::LShr, Op0, Op1, IsExact, Q, 1478 MaxRecurse)) 1479 return V; 1480 1481 // (X << A) >> A -> X 1482 Value *X; 1483 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1484 return X; 1485 1486 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1487 // We can return X as we do in the above case since OR alters no bits in X. 1488 // SimplifyDemandedBits in InstCombine can do more general optimization for 1489 // bit manipulation. This pattern aims to provide opportunities for other 1490 // optimizers by supporting a simple but common case in InstSimplify. 1491 Value *Y; 1492 const APInt *ShRAmt, *ShLAmt; 1493 if (match(Op1, m_APInt(ShRAmt)) && 1494 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1495 *ShRAmt == *ShLAmt) { 1496 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1497 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 1498 if (ShRAmt->uge(EffWidthY)) 1499 return X; 1500 } 1501 1502 return nullptr; 1503 } 1504 1505 Value *llvm::simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, 1506 const SimplifyQuery &Q) { 1507 return ::simplifyLShrInst(Op0, Op1, IsExact, Q, RecursionLimit); 1508 } 1509 1510 /// Given operands for an AShr, see if we can fold the result. 1511 /// If not, this returns null. 1512 static Value *simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, 1513 const SimplifyQuery &Q, unsigned MaxRecurse) { 1514 if (Value *V = simplifyRightShift(Instruction::AShr, Op0, Op1, IsExact, Q, 1515 MaxRecurse)) 1516 return V; 1517 1518 // -1 >>a X --> -1 1519 // (-1 << X) a>> X --> -1 1520 // Do not return Op0 because it may contain undef elements if it's a vector. 1521 if (match(Op0, m_AllOnes()) || 1522 match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1)))) 1523 return Constant::getAllOnesValue(Op0->getType()); 1524 1525 // (X << A) >> A -> X 1526 Value *X; 1527 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1528 return X; 1529 1530 // Arithmetic shifting an all-sign-bit value is a no-op. 1531 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1532 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1533 return Op0; 1534 1535 return nullptr; 1536 } 1537 1538 Value *llvm::simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, 1539 const SimplifyQuery &Q) { 1540 return ::simplifyAShrInst(Op0, Op1, IsExact, Q, RecursionLimit); 1541 } 1542 1543 /// Commuted variants are assumed to be handled by calling this function again 1544 /// with the parameters swapped. 1545 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1546 ICmpInst *UnsignedICmp, bool IsAnd, 1547 const SimplifyQuery &Q) { 1548 Value *X, *Y; 1549 1550 ICmpInst::Predicate EqPred; 1551 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1552 !ICmpInst::isEquality(EqPred)) 1553 return nullptr; 1554 1555 ICmpInst::Predicate UnsignedPred; 1556 1557 Value *A, *B; 1558 // Y = (A - B); 1559 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1560 if (match(UnsignedICmp, 1561 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1562 ICmpInst::isUnsigned(UnsignedPred)) { 1563 // A >=/<= B || (A - B) != 0 <--> true 1564 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1565 UnsignedPred == ICmpInst::ICMP_ULE) && 1566 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1567 return ConstantInt::getTrue(UnsignedICmp->getType()); 1568 // A </> B && (A - B) == 0 <--> false 1569 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1570 UnsignedPred == ICmpInst::ICMP_UGT) && 1571 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1572 return ConstantInt::getFalse(UnsignedICmp->getType()); 1573 1574 // A </> B && (A - B) != 0 <--> A </> B 1575 // A </> B || (A - B) != 0 <--> (A - B) != 0 1576 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1577 UnsignedPred == ICmpInst::ICMP_UGT)) 1578 return IsAnd ? UnsignedICmp : ZeroICmp; 1579 1580 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1581 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1582 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1583 UnsignedPred == ICmpInst::ICMP_UGE)) 1584 return IsAnd ? ZeroICmp : UnsignedICmp; 1585 } 1586 1587 // Given Y = (A - B) 1588 // Y >= A && Y != 0 --> Y >= A iff B != 0 1589 // Y < A || Y == 0 --> Y < A iff B != 0 1590 if (match(UnsignedICmp, 1591 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1592 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1593 EqPred == ICmpInst::ICMP_NE && 1594 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1595 return UnsignedICmp; 1596 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1597 EqPred == ICmpInst::ICMP_EQ && 1598 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1599 return UnsignedICmp; 1600 } 1601 } 1602 1603 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1604 ICmpInst::isUnsigned(UnsignedPred)) 1605 ; 1606 else if (match(UnsignedICmp, 1607 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1608 ICmpInst::isUnsigned(UnsignedPred)) 1609 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1610 else 1611 return nullptr; 1612 1613 // X > Y && Y == 0 --> Y == 0 iff X != 0 1614 // X > Y || Y == 0 --> X > Y iff X != 0 1615 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1616 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1617 return IsAnd ? ZeroICmp : UnsignedICmp; 1618 1619 // X <= Y && Y != 0 --> X <= Y iff X != 0 1620 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1621 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1622 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1623 return IsAnd ? UnsignedICmp : ZeroICmp; 1624 1625 // The transforms below here are expected to be handled more generally with 1626 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1627 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1628 // these are candidates for removal. 1629 1630 // X < Y && Y != 0 --> X < Y 1631 // X < Y || Y != 0 --> Y != 0 1632 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1633 return IsAnd ? UnsignedICmp : ZeroICmp; 1634 1635 // X >= Y && Y == 0 --> Y == 0 1636 // X >= Y || Y == 0 --> X >= Y 1637 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1638 return IsAnd ? ZeroICmp : UnsignedICmp; 1639 1640 // X < Y && Y == 0 --> false 1641 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1642 IsAnd) 1643 return getFalse(UnsignedICmp->getType()); 1644 1645 // X >= Y || Y != 0 --> true 1646 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1647 !IsAnd) 1648 return getTrue(UnsignedICmp->getType()); 1649 1650 return nullptr; 1651 } 1652 1653 /// Test if a pair of compares with a shared operand and 2 constants has an 1654 /// empty set intersection, full set union, or if one compare is a superset of 1655 /// the other. 1656 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1657 bool IsAnd) { 1658 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1659 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1660 return nullptr; 1661 1662 const APInt *C0, *C1; 1663 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1664 !match(Cmp1->getOperand(1), m_APInt(C1))) 1665 return nullptr; 1666 1667 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1668 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1669 1670 // For and-of-compares, check if the intersection is empty: 1671 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1672 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1673 return getFalse(Cmp0->getType()); 1674 1675 // For or-of-compares, check if the union is full: 1676 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1677 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1678 return getTrue(Cmp0->getType()); 1679 1680 // Is one range a superset of the other? 1681 // If this is and-of-compares, take the smaller set: 1682 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1683 // If this is or-of-compares, take the larger set: 1684 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1685 if (Range0.contains(Range1)) 1686 return IsAnd ? Cmp1 : Cmp0; 1687 if (Range1.contains(Range0)) 1688 return IsAnd ? Cmp0 : Cmp1; 1689 1690 return nullptr; 1691 } 1692 1693 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1694 bool IsAnd) { 1695 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1696 if (!match(Cmp0->getOperand(1), m_Zero()) || 1697 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1698 return nullptr; 1699 1700 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1701 return nullptr; 1702 1703 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1704 Value *X = Cmp0->getOperand(0); 1705 Value *Y = Cmp1->getOperand(0); 1706 1707 // If one of the compares is a masked version of a (not) null check, then 1708 // that compare implies the other, so we eliminate the other. Optionally, look 1709 // through a pointer-to-int cast to match a null check of a pointer type. 1710 1711 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1712 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1713 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1714 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1715 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1716 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1717 return Cmp1; 1718 1719 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1720 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1721 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1722 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1723 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1724 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1725 return Cmp0; 1726 1727 return nullptr; 1728 } 1729 1730 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1731 const InstrInfoQuery &IIQ) { 1732 // (icmp (add V, C0), C1) & (icmp V, C0) 1733 ICmpInst::Predicate Pred0, Pred1; 1734 const APInt *C0, *C1; 1735 Value *V; 1736 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1737 return nullptr; 1738 1739 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1740 return nullptr; 1741 1742 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1743 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1744 return nullptr; 1745 1746 Type *ITy = Op0->getType(); 1747 bool IsNSW = IIQ.hasNoSignedWrap(AddInst); 1748 bool IsNUW = IIQ.hasNoUnsignedWrap(AddInst); 1749 1750 const APInt Delta = *C1 - *C0; 1751 if (C0->isStrictlyPositive()) { 1752 if (Delta == 2) { 1753 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1754 return getFalse(ITy); 1755 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && IsNSW) 1756 return getFalse(ITy); 1757 } 1758 if (Delta == 1) { 1759 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1760 return getFalse(ITy); 1761 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && IsNSW) 1762 return getFalse(ITy); 1763 } 1764 } 1765 if (C0->getBoolValue() && IsNUW) { 1766 if (Delta == 2) 1767 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1768 return getFalse(ITy); 1769 if (Delta == 1) 1770 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1771 return getFalse(ITy); 1772 } 1773 1774 return nullptr; 1775 } 1776 1777 /// Try to eliminate compares with signed or unsigned min/max constants. 1778 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, 1779 bool IsAnd) { 1780 // Canonicalize an equality compare as Cmp0. 1781 if (Cmp1->isEquality()) 1782 std::swap(Cmp0, Cmp1); 1783 if (!Cmp0->isEquality()) 1784 return nullptr; 1785 1786 // The non-equality compare must include a common operand (X). Canonicalize 1787 // the common operand as operand 0 (the predicate is swapped if the common 1788 // operand was operand 1). 1789 ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); 1790 Value *X = Cmp0->getOperand(0); 1791 ICmpInst::Predicate Pred1; 1792 bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value())); 1793 if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value()))) 1794 return nullptr; 1795 if (ICmpInst::isEquality(Pred1)) 1796 return nullptr; 1797 1798 // The equality compare must be against a constant. Flip bits if we matched 1799 // a bitwise not. Convert a null pointer constant to an integer zero value. 1800 APInt MinMaxC; 1801 const APInt *C; 1802 if (match(Cmp0->getOperand(1), m_APInt(C))) 1803 MinMaxC = HasNotOp ? ~*C : *C; 1804 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) 1805 MinMaxC = APInt::getZero(8); 1806 else 1807 return nullptr; 1808 1809 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. 1810 if (!IsAnd) { 1811 Pred0 = ICmpInst::getInversePredicate(Pred0); 1812 Pred1 = ICmpInst::getInversePredicate(Pred1); 1813 } 1814 1815 // Normalize to unsigned compare and unsigned min/max value. 1816 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 1817 if (ICmpInst::isSigned(Pred1)) { 1818 Pred1 = ICmpInst::getUnsignedPredicate(Pred1); 1819 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); 1820 } 1821 1822 // (X != MAX) && (X < Y) --> X < Y 1823 // (X == MAX) || (X >= Y) --> X >= Y 1824 if (MinMaxC.isMaxValue()) 1825 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) 1826 return Cmp1; 1827 1828 // (X != MIN) && (X > Y) --> X > Y 1829 // (X == MIN) || (X <= Y) --> X <= Y 1830 if (MinMaxC.isMinValue()) 1831 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) 1832 return Cmp1; 1833 1834 return nullptr; 1835 } 1836 1837 /// Try to simplify and/or of icmp with ctpop intrinsic. 1838 static Value *simplifyAndOrOfICmpsWithCtpop(ICmpInst *Cmp0, ICmpInst *Cmp1, 1839 bool IsAnd) { 1840 ICmpInst::Predicate Pred0, Pred1; 1841 Value *X; 1842 const APInt *C; 1843 if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)), 1844 m_APInt(C))) || 1845 !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt())) || C->isZero()) 1846 return nullptr; 1847 1848 // (ctpop(X) == C) || (X != 0) --> X != 0 where C > 0 1849 if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_NE) 1850 return Cmp1; 1851 // (ctpop(X) != C) && (X == 0) --> X == 0 where C > 0 1852 if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_EQ) 1853 return Cmp1; 1854 1855 return nullptr; 1856 } 1857 1858 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1859 const SimplifyQuery &Q) { 1860 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1861 return X; 1862 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1863 return X; 1864 1865 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1866 return X; 1867 1868 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) 1869 return X; 1870 1871 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1872 return X; 1873 1874 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, true)) 1875 return X; 1876 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, true)) 1877 return X; 1878 1879 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1880 return X; 1881 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1882 return X; 1883 1884 return nullptr; 1885 } 1886 1887 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1888 const InstrInfoQuery &IIQ) { 1889 // (icmp (add V, C0), C1) | (icmp V, C0) 1890 ICmpInst::Predicate Pred0, Pred1; 1891 const APInt *C0, *C1; 1892 Value *V; 1893 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1894 return nullptr; 1895 1896 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1897 return nullptr; 1898 1899 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1900 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1901 return nullptr; 1902 1903 Type *ITy = Op0->getType(); 1904 bool IsNSW = IIQ.hasNoSignedWrap(AddInst); 1905 bool IsNUW = IIQ.hasNoUnsignedWrap(AddInst); 1906 1907 const APInt Delta = *C1 - *C0; 1908 if (C0->isStrictlyPositive()) { 1909 if (Delta == 2) { 1910 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1911 return getTrue(ITy); 1912 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && IsNSW) 1913 return getTrue(ITy); 1914 } 1915 if (Delta == 1) { 1916 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1917 return getTrue(ITy); 1918 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && IsNSW) 1919 return getTrue(ITy); 1920 } 1921 } 1922 if (C0->getBoolValue() && IsNUW) { 1923 if (Delta == 2) 1924 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1925 return getTrue(ITy); 1926 if (Delta == 1) 1927 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1928 return getTrue(ITy); 1929 } 1930 1931 return nullptr; 1932 } 1933 1934 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1935 const SimplifyQuery &Q) { 1936 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1937 return X; 1938 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1939 return X; 1940 1941 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1942 return X; 1943 1944 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) 1945 return X; 1946 1947 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1948 return X; 1949 1950 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, false)) 1951 return X; 1952 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, false)) 1953 return X; 1954 1955 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1956 return X; 1957 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1958 return X; 1959 1960 return nullptr; 1961 } 1962 1963 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, FCmpInst *LHS, 1964 FCmpInst *RHS, bool IsAnd) { 1965 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1966 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1967 if (LHS0->getType() != RHS0->getType()) 1968 return nullptr; 1969 1970 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1971 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1972 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1973 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1974 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1975 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1976 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1977 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1978 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1979 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1980 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1981 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1982 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1983 return RHS; 1984 1985 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1986 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1987 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1988 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1989 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1990 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1991 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1992 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1993 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1994 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1995 return LHS; 1996 } 1997 1998 return nullptr; 1999 } 2000 2001 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, Value *Op0, 2002 Value *Op1, bool IsAnd) { 2003 // Look through casts of the 'and' operands to find compares. 2004 auto *Cast0 = dyn_cast<CastInst>(Op0); 2005 auto *Cast1 = dyn_cast<CastInst>(Op1); 2006 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 2007 Cast0->getSrcTy() == Cast1->getSrcTy()) { 2008 Op0 = Cast0->getOperand(0); 2009 Op1 = Cast1->getOperand(0); 2010 } 2011 2012 Value *V = nullptr; 2013 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 2014 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 2015 if (ICmp0 && ICmp1) 2016 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 2017 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 2018 2019 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 2020 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 2021 if (FCmp0 && FCmp1) 2022 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 2023 2024 if (!V) 2025 return nullptr; 2026 if (!Cast0) 2027 return V; 2028 2029 // If we looked through casts, we can only handle a constant simplification 2030 // because we are not allowed to create a cast instruction here. 2031 if (auto *C = dyn_cast<Constant>(V)) 2032 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 2033 2034 return nullptr; 2035 } 2036 2037 /// Given a bitwise logic op, check if the operands are add/sub with a common 2038 /// source value and inverted constant (identity: C - X -> ~(X + ~C)). 2039 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, 2040 Instruction::BinaryOps Opcode) { 2041 assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); 2042 assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); 2043 Value *X; 2044 Constant *C1, *C2; 2045 if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && 2046 match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || 2047 (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && 2048 match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { 2049 if (ConstantExpr::getNot(C1) == C2) { 2050 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 2051 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 2052 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 2053 Type *Ty = Op0->getType(); 2054 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) 2055 : ConstantInt::getAllOnesValue(Ty); 2056 } 2057 } 2058 return nullptr; 2059 } 2060 2061 /// Given operands for an And, see if we can fold the result. 2062 /// If not, this returns null. 2063 static Value *simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2064 unsigned MaxRecurse) { 2065 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2066 return C; 2067 2068 // X & poison -> poison 2069 if (isa<PoisonValue>(Op1)) 2070 return Op1; 2071 2072 // X & undef -> 0 2073 if (Q.isUndefValue(Op1)) 2074 return Constant::getNullValue(Op0->getType()); 2075 2076 // X & X = X 2077 if (Op0 == Op1) 2078 return Op0; 2079 2080 // X & 0 = 0 2081 if (match(Op1, m_Zero())) 2082 return Constant::getNullValue(Op0->getType()); 2083 2084 // X & -1 = X 2085 if (match(Op1, m_AllOnes())) 2086 return Op0; 2087 2088 // A & ~A = ~A & A = 0 2089 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) 2090 return Constant::getNullValue(Op0->getType()); 2091 2092 // (A | ?) & A = A 2093 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2094 return Op1; 2095 2096 // A & (A | ?) = A 2097 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 2098 return Op0; 2099 2100 // (X | Y) & (X | ~Y) --> X (commuted 8 ways) 2101 Value *X, *Y; 2102 if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2103 match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2104 return X; 2105 if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2106 match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2107 return X; 2108 2109 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) 2110 return V; 2111 2112 // A mask that only clears known zeros of a shifted value is a no-op. 2113 const APInt *Mask; 2114 const APInt *ShAmt; 2115 if (match(Op1, m_APInt(Mask))) { 2116 // If all bits in the inverted and shifted mask are clear: 2117 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2118 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2119 (~(*Mask)).lshr(*ShAmt).isZero()) 2120 return Op0; 2121 2122 // If all bits in the inverted and shifted mask are clear: 2123 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2124 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2125 (~(*Mask)).shl(*ShAmt).isZero()) 2126 return Op0; 2127 } 2128 2129 // If we have a multiplication overflow check that is being 'and'ed with a 2130 // check that one of the multipliers is not zero, we can omit the 'and', and 2131 // only keep the overflow check. 2132 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true)) 2133 return Op1; 2134 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true)) 2135 return Op0; 2136 2137 // A & (-A) = A if A is a power of two or zero. 2138 if (match(Op0, m_Neg(m_Specific(Op1))) || 2139 match(Op1, m_Neg(m_Specific(Op0)))) { 2140 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2141 Q.DT)) 2142 return Op0; 2143 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2144 Q.DT)) 2145 return Op1; 2146 } 2147 2148 // This is a similar pattern used for checking if a value is a power-of-2: 2149 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2150 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 2151 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2152 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2153 return Constant::getNullValue(Op1->getType()); 2154 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 2155 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2156 return Constant::getNullValue(Op0->getType()); 2157 2158 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2159 return V; 2160 2161 // Try some generic simplifications for associative operations. 2162 if (Value *V = 2163 simplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2164 return V; 2165 2166 // And distributes over Or. Try some generic simplifications based on this. 2167 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2168 Instruction::Or, Q, MaxRecurse)) 2169 return V; 2170 2171 // And distributes over Xor. Try some generic simplifications based on this. 2172 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2173 Instruction::Xor, Q, MaxRecurse)) 2174 return V; 2175 2176 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2177 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2178 // A & (A && B) -> A && B 2179 if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero()))) 2180 return Op1; 2181 else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero()))) 2182 return Op0; 2183 } 2184 // If the operation is with the result of a select instruction, check 2185 // whether operating on either branch of the select always yields the same 2186 // value. 2187 if (Value *V = 2188 threadBinOpOverSelect(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2189 return V; 2190 } 2191 2192 // If the operation is with the result of a phi instruction, check whether 2193 // operating on all incoming values of the phi always yields the same value. 2194 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2195 if (Value *V = 2196 threadBinOpOverPHI(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2197 return V; 2198 2199 // Assuming the effective width of Y is not larger than A, i.e. all bits 2200 // from X and Y are disjoint in (X << A) | Y, 2201 // if the mask of this AND op covers all bits of X or Y, while it covers 2202 // no bits from the other, we can bypass this AND op. E.g., 2203 // ((X << A) | Y) & Mask -> Y, 2204 // if Mask = ((1 << effective_width_of(Y)) - 1) 2205 // ((X << A) | Y) & Mask -> X << A, 2206 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2207 // SimplifyDemandedBits in InstCombine can optimize the general case. 2208 // This pattern aims to help other passes for a common case. 2209 Value *XShifted; 2210 if (match(Op1, m_APInt(Mask)) && 2211 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2212 m_Value(XShifted)), 2213 m_Value(Y)))) { 2214 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2215 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2216 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2217 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 2218 if (EffWidthY <= ShftCnt) { 2219 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2220 const unsigned EffWidthX = XKnown.countMaxActiveBits(); 2221 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2222 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2223 // If the mask is extracting all bits from X or Y as is, we can skip 2224 // this AND op. 2225 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2226 return Y; 2227 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2228 return XShifted; 2229 } 2230 } 2231 2232 // ((X | Y) ^ X ) & ((X | Y) ^ Y) --> 0 2233 // ((X | Y) ^ Y ) & ((X | Y) ^ X) --> 0 2234 BinaryOperator *Or; 2235 if (match(Op0, m_c_Xor(m_Value(X), 2236 m_CombineAnd(m_BinOp(Or), 2237 m_c_Or(m_Deferred(X), m_Value(Y))))) && 2238 match(Op1, m_c_Xor(m_Specific(Or), m_Specific(Y)))) 2239 return Constant::getNullValue(Op0->getType()); 2240 2241 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2242 if (std::optional<bool> Implied = isImpliedCondition(Op0, Op1, Q.DL)) { 2243 // If Op0 is true implies Op1 is true, then Op0 is a subset of Op1. 2244 if (*Implied == true) 2245 return Op0; 2246 // If Op0 is true implies Op1 is false, then they are not true together. 2247 if (*Implied == false) 2248 return ConstantInt::getFalse(Op0->getType()); 2249 } 2250 if (std::optional<bool> Implied = isImpliedCondition(Op1, Op0, Q.DL)) { 2251 // If Op1 is true implies Op0 is true, then Op1 is a subset of Op0. 2252 if (*Implied) 2253 return Op1; 2254 // If Op1 is true implies Op0 is false, then they are not true together. 2255 if (!*Implied) 2256 return ConstantInt::getFalse(Op1->getType()); 2257 } 2258 } 2259 2260 if (Value *V = simplifyByDomEq(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2261 return V; 2262 2263 return nullptr; 2264 } 2265 2266 Value *llvm::simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2267 return ::simplifyAndInst(Op0, Op1, Q, RecursionLimit); 2268 } 2269 2270 // TODO: Many of these folds could use LogicalAnd/LogicalOr. 2271 static Value *simplifyOrLogic(Value *X, Value *Y) { 2272 assert(X->getType() == Y->getType() && "Expected same type for 'or' ops"); 2273 Type *Ty = X->getType(); 2274 2275 // X | ~X --> -1 2276 if (match(Y, m_Not(m_Specific(X)))) 2277 return ConstantInt::getAllOnesValue(Ty); 2278 2279 // X | ~(X & ?) = -1 2280 if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value())))) 2281 return ConstantInt::getAllOnesValue(Ty); 2282 2283 // X | (X & ?) --> X 2284 if (match(Y, m_c_And(m_Specific(X), m_Value()))) 2285 return X; 2286 2287 Value *A, *B; 2288 2289 // (A ^ B) | (A | B) --> A | B 2290 // (A ^ B) | (B | A) --> B | A 2291 if (match(X, m_Xor(m_Value(A), m_Value(B))) && 2292 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2293 return Y; 2294 2295 // ~(A ^ B) | (A | B) --> -1 2296 // ~(A ^ B) | (B | A) --> -1 2297 if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) && 2298 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2299 return ConstantInt::getAllOnesValue(Ty); 2300 2301 // (A & ~B) | (A ^ B) --> A ^ B 2302 // (~B & A) | (A ^ B) --> A ^ B 2303 // (A & ~B) | (B ^ A) --> B ^ A 2304 // (~B & A) | (B ^ A) --> B ^ A 2305 if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) && 2306 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2307 return Y; 2308 2309 // (~A ^ B) | (A & B) --> ~A ^ B 2310 // (B ^ ~A) | (A & B) --> B ^ ~A 2311 // (~A ^ B) | (B & A) --> ~A ^ B 2312 // (B ^ ~A) | (B & A) --> B ^ ~A 2313 if (match(X, m_c_Xor(m_NotForbidUndef(m_Value(A)), m_Value(B))) && 2314 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2315 return X; 2316 2317 // (~A | B) | (A ^ B) --> -1 2318 // (~A | B) | (B ^ A) --> -1 2319 // (B | ~A) | (A ^ B) --> -1 2320 // (B | ~A) | (B ^ A) --> -1 2321 if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) && 2322 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2323 return ConstantInt::getAllOnesValue(Ty); 2324 2325 // (~A & B) | ~(A | B) --> ~A 2326 // (~A & B) | ~(B | A) --> ~A 2327 // (B & ~A) | ~(A | B) --> ~A 2328 // (B & ~A) | ~(B | A) --> ~A 2329 Value *NotA; 2330 if (match(X, 2331 m_c_And(m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))), 2332 m_Value(B))) && 2333 match(Y, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2334 return NotA; 2335 // The same is true of Logical And 2336 // TODO: This could share the logic of the version above if there was a 2337 // version of LogicalAnd that allowed more than just i1 types. 2338 if (match(X, m_c_LogicalAnd( 2339 m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))), 2340 m_Value(B))) && 2341 match(Y, m_Not(m_c_LogicalOr(m_Specific(A), m_Specific(B))))) 2342 return NotA; 2343 2344 // ~(A ^ B) | (A & B) --> ~(A ^ B) 2345 // ~(A ^ B) | (B & A) --> ~(A ^ B) 2346 Value *NotAB; 2347 if (match(X, m_CombineAnd(m_NotForbidUndef(m_Xor(m_Value(A), m_Value(B))), 2348 m_Value(NotAB))) && 2349 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2350 return NotAB; 2351 2352 // ~(A & B) | (A ^ B) --> ~(A & B) 2353 // ~(A & B) | (B ^ A) --> ~(A & B) 2354 if (match(X, m_CombineAnd(m_NotForbidUndef(m_And(m_Value(A), m_Value(B))), 2355 m_Value(NotAB))) && 2356 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2357 return NotAB; 2358 2359 return nullptr; 2360 } 2361 2362 /// Given operands for an Or, see if we can fold the result. 2363 /// If not, this returns null. 2364 static Value *simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2365 unsigned MaxRecurse) { 2366 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2367 return C; 2368 2369 // X | poison -> poison 2370 if (isa<PoisonValue>(Op1)) 2371 return Op1; 2372 2373 // X | undef -> -1 2374 // X | -1 = -1 2375 // Do not return Op1 because it may contain undef elements if it's a vector. 2376 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2377 return Constant::getAllOnesValue(Op0->getType()); 2378 2379 // X | X = X 2380 // X | 0 = X 2381 if (Op0 == Op1 || match(Op1, m_Zero())) 2382 return Op0; 2383 2384 if (Value *R = simplifyOrLogic(Op0, Op1)) 2385 return R; 2386 if (Value *R = simplifyOrLogic(Op1, Op0)) 2387 return R; 2388 2389 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) 2390 return V; 2391 2392 // Rotated -1 is still -1: 2393 // (-1 << X) | (-1 >> (C - X)) --> -1 2394 // (-1 >> X) | (-1 << (C - X)) --> -1 2395 // ...with C <= bitwidth (and commuted variants). 2396 Value *X, *Y; 2397 if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) && 2398 match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) || 2399 (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) && 2400 match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) { 2401 const APInt *C; 2402 if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) || 2403 match(Y, m_Sub(m_APInt(C), m_Specific(X)))) && 2404 C->ule(X->getType()->getScalarSizeInBits())) { 2405 return ConstantInt::getAllOnesValue(X->getType()); 2406 } 2407 } 2408 2409 // A funnel shift (rotate) can be decomposed into simpler shifts. See if we 2410 // are mixing in another shift that is redundant with the funnel shift. 2411 2412 // (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y 2413 // (shl X, Y) | (fshl X, ?, Y) --> fshl X, ?, Y 2414 if (match(Op0, 2415 m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) && 2416 match(Op1, m_Shl(m_Specific(X), m_Specific(Y)))) 2417 return Op0; 2418 if (match(Op1, 2419 m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) && 2420 match(Op0, m_Shl(m_Specific(X), m_Specific(Y)))) 2421 return Op1; 2422 2423 // (fshr ?, X, Y) | (lshr X, Y) --> fshr ?, X, Y 2424 // (lshr X, Y) | (fshr ?, X, Y) --> fshr ?, X, Y 2425 if (match(Op0, 2426 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) && 2427 match(Op1, m_LShr(m_Specific(X), m_Specific(Y)))) 2428 return Op0; 2429 if (match(Op1, 2430 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) && 2431 match(Op0, m_LShr(m_Specific(X), m_Specific(Y)))) 2432 return Op1; 2433 2434 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2435 return V; 2436 2437 // If we have a multiplication overflow check that is being 'and'ed with a 2438 // check that one of the multipliers is not zero, we can omit the 'and', and 2439 // only keep the overflow check. 2440 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false)) 2441 return Op1; 2442 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false)) 2443 return Op0; 2444 2445 // Try some generic simplifications for associative operations. 2446 if (Value *V = 2447 simplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2448 return V; 2449 2450 // Or distributes over And. Try some generic simplifications based on this. 2451 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2452 Instruction::And, Q, MaxRecurse)) 2453 return V; 2454 2455 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2456 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2457 // A | (A || B) -> A || B 2458 if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value()))) 2459 return Op1; 2460 else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value()))) 2461 return Op0; 2462 } 2463 // If the operation is with the result of a select instruction, check 2464 // whether operating on either branch of the select always yields the same 2465 // value. 2466 if (Value *V = 2467 threadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2468 return V; 2469 } 2470 2471 // (A & C1)|(B & C2) 2472 Value *A, *B; 2473 const APInt *C1, *C2; 2474 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2475 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2476 if (*C1 == ~*C2) { 2477 // (A & C1)|(B & C2) 2478 // If we have: ((V + N) & C1) | (V & C2) 2479 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2480 // replace with V+N. 2481 Value *N; 2482 if (C2->isMask() && // C2 == 0+1+ 2483 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2484 // Add commutes, try both ways. 2485 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2486 return A; 2487 } 2488 // Or commutes, try both ways. 2489 if (C1->isMask() && match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2490 // Add commutes, try both ways. 2491 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2492 return B; 2493 } 2494 } 2495 } 2496 2497 // If the operation is with the result of a phi instruction, check whether 2498 // operating on all incoming values of the phi always yields the same value. 2499 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2500 if (Value *V = threadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2501 return V; 2502 2503 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2504 if (std::optional<bool> Implied = 2505 isImpliedCondition(Op0, Op1, Q.DL, false)) { 2506 // If Op0 is false implies Op1 is false, then Op1 is a subset of Op0. 2507 if (*Implied == false) 2508 return Op0; 2509 // If Op0 is false implies Op1 is true, then at least one is always true. 2510 if (*Implied == true) 2511 return ConstantInt::getTrue(Op0->getType()); 2512 } 2513 if (std::optional<bool> Implied = 2514 isImpliedCondition(Op1, Op0, Q.DL, false)) { 2515 // If Op1 is false implies Op0 is false, then Op0 is a subset of Op1. 2516 if (*Implied == false) 2517 return Op1; 2518 // If Op1 is false implies Op0 is true, then at least one is always true. 2519 if (*Implied == true) 2520 return ConstantInt::getTrue(Op1->getType()); 2521 } 2522 } 2523 2524 if (Value *V = simplifyByDomEq(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2525 return V; 2526 2527 return nullptr; 2528 } 2529 2530 Value *llvm::simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2531 return ::simplifyOrInst(Op0, Op1, Q, RecursionLimit); 2532 } 2533 2534 /// Given operands for a Xor, see if we can fold the result. 2535 /// If not, this returns null. 2536 static Value *simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2537 unsigned MaxRecurse) { 2538 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2539 return C; 2540 2541 // X ^ poison -> poison 2542 if (isa<PoisonValue>(Op1)) 2543 return Op1; 2544 2545 // A ^ undef -> undef 2546 if (Q.isUndefValue(Op1)) 2547 return Op1; 2548 2549 // A ^ 0 = A 2550 if (match(Op1, m_Zero())) 2551 return Op0; 2552 2553 // A ^ A = 0 2554 if (Op0 == Op1) 2555 return Constant::getNullValue(Op0->getType()); 2556 2557 // A ^ ~A = ~A ^ A = -1 2558 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) 2559 return Constant::getAllOnesValue(Op0->getType()); 2560 2561 auto foldAndOrNot = [](Value *X, Value *Y) -> Value * { 2562 Value *A, *B; 2563 // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants. 2564 if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) && 2565 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2566 return A; 2567 2568 // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants. 2569 // The 'not' op must contain a complete -1 operand (no undef elements for 2570 // vector) for the transform to be safe. 2571 Value *NotA; 2572 if (match(X, 2573 m_c_Or(m_CombineAnd(m_NotForbidUndef(m_Value(A)), m_Value(NotA)), 2574 m_Value(B))) && 2575 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2576 return NotA; 2577 2578 return nullptr; 2579 }; 2580 if (Value *R = foldAndOrNot(Op0, Op1)) 2581 return R; 2582 if (Value *R = foldAndOrNot(Op1, Op0)) 2583 return R; 2584 2585 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) 2586 return V; 2587 2588 // Try some generic simplifications for associative operations. 2589 if (Value *V = 2590 simplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, MaxRecurse)) 2591 return V; 2592 2593 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2594 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2595 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2596 // only if B and C are equal. If B and C are equal then (since we assume 2597 // that operands have already been simplified) "select(cond, B, C)" should 2598 // have been simplified to the common value of B and C already. Analysing 2599 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2600 // for threading over phi nodes. 2601 2602 if (Value *V = simplifyByDomEq(Instruction::Xor, Op0, Op1, Q, MaxRecurse)) 2603 return V; 2604 2605 return nullptr; 2606 } 2607 2608 Value *llvm::simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2609 return ::simplifyXorInst(Op0, Op1, Q, RecursionLimit); 2610 } 2611 2612 static Type *getCompareTy(Value *Op) { 2613 return CmpInst::makeCmpResultType(Op->getType()); 2614 } 2615 2616 /// Rummage around inside V looking for something equivalent to the comparison 2617 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2618 /// Helper function for analyzing max/min idioms. 2619 static Value *extractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2620 Value *LHS, Value *RHS) { 2621 SelectInst *SI = dyn_cast<SelectInst>(V); 2622 if (!SI) 2623 return nullptr; 2624 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2625 if (!Cmp) 2626 return nullptr; 2627 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2628 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2629 return Cmp; 2630 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2631 LHS == CmpRHS && RHS == CmpLHS) 2632 return Cmp; 2633 return nullptr; 2634 } 2635 2636 /// Return true if the underlying object (storage) must be disjoint from 2637 /// storage returned by any noalias return call. 2638 static bool isAllocDisjoint(const Value *V) { 2639 // For allocas, we consider only static ones (dynamic 2640 // allocas might be transformed into calls to malloc not simultaneously 2641 // live with the compared-to allocation). For globals, we exclude symbols 2642 // that might be resolve lazily to symbols in another dynamically-loaded 2643 // library (and, thus, could be malloc'ed by the implementation). 2644 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2645 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2646 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2647 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2648 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2649 !GV->isThreadLocal(); 2650 if (const Argument *A = dyn_cast<Argument>(V)) 2651 return A->hasByValAttr(); 2652 return false; 2653 } 2654 2655 /// Return true if V1 and V2 are each the base of some distict storage region 2656 /// [V, object_size(V)] which do not overlap. Note that zero sized regions 2657 /// *are* possible, and that zero sized regions do not overlap with any other. 2658 static bool haveNonOverlappingStorage(const Value *V1, const Value *V2) { 2659 // Global variables always exist, so they always exist during the lifetime 2660 // of each other and all allocas. Global variables themselves usually have 2661 // non-overlapping storage, but since their addresses are constants, the 2662 // case involving two globals does not reach here and is instead handled in 2663 // constant folding. 2664 // 2665 // Two different allocas usually have different addresses... 2666 // 2667 // However, if there's an @llvm.stackrestore dynamically in between two 2668 // allocas, they may have the same address. It's tempting to reduce the 2669 // scope of the problem by only looking at *static* allocas here. That would 2670 // cover the majority of allocas while significantly reducing the likelihood 2671 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2672 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2673 // an entry block. Also, if we have a block that's not attached to a 2674 // function, we can't tell if it's "static" under the current definition. 2675 // Theoretically, this problem could be fixed by creating a new kind of 2676 // instruction kind specifically for static allocas. Such a new instruction 2677 // could be required to be at the top of the entry block, thus preventing it 2678 // from being subject to a @llvm.stackrestore. Instcombine could even 2679 // convert regular allocas into these special allocas. It'd be nifty. 2680 // However, until then, this problem remains open. 2681 // 2682 // So, we'll assume that two non-empty allocas have different addresses 2683 // for now. 2684 auto isByValArg = [](const Value *V) { 2685 const Argument *A = dyn_cast<Argument>(V); 2686 return A && A->hasByValAttr(); 2687 }; 2688 2689 // Byval args are backed by store which does not overlap with each other, 2690 // allocas, or globals. 2691 if (isByValArg(V1)) 2692 return isa<AllocaInst>(V2) || isa<GlobalVariable>(V2) || isByValArg(V2); 2693 if (isByValArg(V2)) 2694 return isa<AllocaInst>(V1) || isa<GlobalVariable>(V1) || isByValArg(V1); 2695 2696 return isa<AllocaInst>(V1) && 2697 (isa<AllocaInst>(V2) || isa<GlobalVariable>(V2)); 2698 } 2699 2700 // A significant optimization not implemented here is assuming that alloca 2701 // addresses are not equal to incoming argument values. They don't *alias*, 2702 // as we say, but that doesn't mean they aren't equal, so we take a 2703 // conservative approach. 2704 // 2705 // This is inspired in part by C++11 5.10p1: 2706 // "Two pointers of the same type compare equal if and only if they are both 2707 // null, both point to the same function, or both represent the same 2708 // address." 2709 // 2710 // This is pretty permissive. 2711 // 2712 // It's also partly due to C11 6.5.9p6: 2713 // "Two pointers compare equal if and only if both are null pointers, both are 2714 // pointers to the same object (including a pointer to an object and a 2715 // subobject at its beginning) or function, both are pointers to one past the 2716 // last element of the same array object, or one is a pointer to one past the 2717 // end of one array object and the other is a pointer to the start of a 2718 // different array object that happens to immediately follow the first array 2719 // object in the address space.) 2720 // 2721 // C11's version is more restrictive, however there's no reason why an argument 2722 // couldn't be a one-past-the-end value for a stack object in the caller and be 2723 // equal to the beginning of a stack object in the callee. 2724 // 2725 // If the C and C++ standards are ever made sufficiently restrictive in this 2726 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2727 // this optimization. 2728 static Constant *computePointerICmp(CmpInst::Predicate Pred, Value *LHS, 2729 Value *RHS, const SimplifyQuery &Q) { 2730 const DataLayout &DL = Q.DL; 2731 const TargetLibraryInfo *TLI = Q.TLI; 2732 const DominatorTree *DT = Q.DT; 2733 const Instruction *CxtI = Q.CxtI; 2734 const InstrInfoQuery &IIQ = Q.IIQ; 2735 2736 // First, skip past any trivial no-ops. 2737 LHS = LHS->stripPointerCasts(); 2738 RHS = RHS->stripPointerCasts(); 2739 2740 // A non-null pointer is not equal to a null pointer. 2741 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && 2742 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2743 IIQ.UseInstrInfo)) 2744 return ConstantInt::get(getCompareTy(LHS), !CmpInst::isTrueWhenEqual(Pred)); 2745 2746 // We can only fold certain predicates on pointer comparisons. 2747 switch (Pred) { 2748 default: 2749 return nullptr; 2750 2751 // Equality comparisons are easy to fold. 2752 case CmpInst::ICMP_EQ: 2753 case CmpInst::ICMP_NE: 2754 break; 2755 2756 // We can only handle unsigned relational comparisons because 'inbounds' on 2757 // a GEP only protects against unsigned wrapping. 2758 case CmpInst::ICMP_UGT: 2759 case CmpInst::ICMP_UGE: 2760 case CmpInst::ICMP_ULT: 2761 case CmpInst::ICMP_ULE: 2762 // However, we have to switch them to their signed variants to handle 2763 // negative indices from the base pointer. 2764 Pred = ICmpInst::getSignedPredicate(Pred); 2765 break; 2766 } 2767 2768 // Strip off any constant offsets so that we can reason about them. 2769 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2770 // here and compare base addresses like AliasAnalysis does, however there are 2771 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2772 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2773 // doesn't need to guarantee pointer inequality when it says NoAlias. 2774 2775 // Even if an non-inbounds GEP occurs along the path we can still optimize 2776 // equality comparisons concerning the result. 2777 bool AllowNonInbounds = ICmpInst::isEquality(Pred); 2778 APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS, AllowNonInbounds); 2779 APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS, AllowNonInbounds); 2780 2781 // If LHS and RHS are related via constant offsets to the same base 2782 // value, we can replace it with an icmp which just compares the offsets. 2783 if (LHS == RHS) 2784 return ConstantInt::get(getCompareTy(LHS), 2785 ICmpInst::compare(LHSOffset, RHSOffset, Pred)); 2786 2787 // Various optimizations for (in)equality comparisons. 2788 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2789 // Different non-empty allocations that exist at the same time have 2790 // different addresses (if the program can tell). If the offsets are 2791 // within the bounds of their allocations (and not one-past-the-end! 2792 // so we can't use inbounds!), and their allocations aren't the same, 2793 // the pointers are not equal. 2794 if (haveNonOverlappingStorage(LHS, RHS)) { 2795 uint64_t LHSSize, RHSSize; 2796 ObjectSizeOpts Opts; 2797 Opts.EvalMode = ObjectSizeOpts::Mode::Min; 2798 auto *F = [](Value *V) -> Function * { 2799 if (auto *I = dyn_cast<Instruction>(V)) 2800 return I->getFunction(); 2801 if (auto *A = dyn_cast<Argument>(V)) 2802 return A->getParent(); 2803 return nullptr; 2804 }(LHS); 2805 Opts.NullIsUnknownSize = F ? NullPointerIsDefined(F) : true; 2806 if (getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2807 getObjectSize(RHS, RHSSize, DL, TLI, Opts) && 2808 !LHSOffset.isNegative() && !RHSOffset.isNegative() && 2809 LHSOffset.ult(LHSSize) && RHSOffset.ult(RHSSize)) { 2810 return ConstantInt::get(getCompareTy(LHS), 2811 !CmpInst::isTrueWhenEqual(Pred)); 2812 } 2813 } 2814 2815 // If one side of the equality comparison must come from a noalias call 2816 // (meaning a system memory allocation function), and the other side must 2817 // come from a pointer that cannot overlap with dynamically-allocated 2818 // memory within the lifetime of the current function (allocas, byval 2819 // arguments, globals), then determine the comparison result here. 2820 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2821 getUnderlyingObjects(LHS, LHSUObjs); 2822 getUnderlyingObjects(RHS, RHSUObjs); 2823 2824 // Is the set of underlying objects all noalias calls? 2825 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2826 return all_of(Objects, isNoAliasCall); 2827 }; 2828 2829 // Is the set of underlying objects all things which must be disjoint from 2830 // noalias calls. We assume that indexing from such disjoint storage 2831 // into the heap is undefined, and thus offsets can be safely ignored. 2832 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2833 return all_of(Objects, ::isAllocDisjoint); 2834 }; 2835 2836 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2837 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2838 return ConstantInt::get(getCompareTy(LHS), 2839 !CmpInst::isTrueWhenEqual(Pred)); 2840 2841 // Fold comparisons for non-escaping pointer even if the allocation call 2842 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2843 // dynamic allocation call could be either of the operands. Note that 2844 // the other operand can not be based on the alloc - if it were, then 2845 // the cmp itself would be a capture. 2846 Value *MI = nullptr; 2847 if (isAllocLikeFn(LHS, TLI) && 2848 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2849 MI = LHS; 2850 else if (isAllocLikeFn(RHS, TLI) && 2851 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2852 MI = RHS; 2853 // FIXME: We should also fold the compare when the pointer escapes, but the 2854 // compare dominates the pointer escape 2855 if (MI && !PointerMayBeCaptured(MI, true, true)) 2856 return ConstantInt::get(getCompareTy(LHS), 2857 CmpInst::isFalseWhenEqual(Pred)); 2858 } 2859 2860 // Otherwise, fail. 2861 return nullptr; 2862 } 2863 2864 /// Fold an icmp when its operands have i1 scalar type. 2865 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2866 Value *RHS, const SimplifyQuery &Q) { 2867 Type *ITy = getCompareTy(LHS); // The return type. 2868 Type *OpTy = LHS->getType(); // The operand type. 2869 if (!OpTy->isIntOrIntVectorTy(1)) 2870 return nullptr; 2871 2872 // A boolean compared to true/false can be reduced in 14 out of the 20 2873 // (10 predicates * 2 constants) possible combinations. The other 2874 // 6 cases require a 'not' of the LHS. 2875 2876 auto ExtractNotLHS = [](Value *V) -> Value * { 2877 Value *X; 2878 if (match(V, m_Not(m_Value(X)))) 2879 return X; 2880 return nullptr; 2881 }; 2882 2883 if (match(RHS, m_Zero())) { 2884 switch (Pred) { 2885 case CmpInst::ICMP_NE: // X != 0 -> X 2886 case CmpInst::ICMP_UGT: // X >u 0 -> X 2887 case CmpInst::ICMP_SLT: // X <s 0 -> X 2888 return LHS; 2889 2890 case CmpInst::ICMP_EQ: // not(X) == 0 -> X != 0 -> X 2891 case CmpInst::ICMP_ULE: // not(X) <=u 0 -> X >u 0 -> X 2892 case CmpInst::ICMP_SGE: // not(X) >=s 0 -> X <s 0 -> X 2893 if (Value *X = ExtractNotLHS(LHS)) 2894 return X; 2895 break; 2896 2897 case CmpInst::ICMP_ULT: // X <u 0 -> false 2898 case CmpInst::ICMP_SGT: // X >s 0 -> false 2899 return getFalse(ITy); 2900 2901 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2902 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2903 return getTrue(ITy); 2904 2905 default: 2906 break; 2907 } 2908 } else if (match(RHS, m_One())) { 2909 switch (Pred) { 2910 case CmpInst::ICMP_EQ: // X == 1 -> X 2911 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2912 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2913 return LHS; 2914 2915 case CmpInst::ICMP_NE: // not(X) != 1 -> X == 1 -> X 2916 case CmpInst::ICMP_ULT: // not(X) <=u 1 -> X >=u 1 -> X 2917 case CmpInst::ICMP_SGT: // not(X) >s 1 -> X <=s -1 -> X 2918 if (Value *X = ExtractNotLHS(LHS)) 2919 return X; 2920 break; 2921 2922 case CmpInst::ICMP_UGT: // X >u 1 -> false 2923 case CmpInst::ICMP_SLT: // X <s -1 -> false 2924 return getFalse(ITy); 2925 2926 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2927 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2928 return getTrue(ITy); 2929 2930 default: 2931 break; 2932 } 2933 } 2934 2935 switch (Pred) { 2936 default: 2937 break; 2938 case ICmpInst::ICMP_UGE: 2939 if (isImpliedCondition(RHS, LHS, Q.DL).value_or(false)) 2940 return getTrue(ITy); 2941 break; 2942 case ICmpInst::ICMP_SGE: 2943 /// For signed comparison, the values for an i1 are 0 and -1 2944 /// respectively. This maps into a truth table of: 2945 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2946 /// 0 | 0 | 1 (0 >= 0) | 1 2947 /// 0 | 1 | 1 (0 >= -1) | 1 2948 /// 1 | 0 | 0 (-1 >= 0) | 0 2949 /// 1 | 1 | 1 (-1 >= -1) | 1 2950 if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false)) 2951 return getTrue(ITy); 2952 break; 2953 case ICmpInst::ICMP_ULE: 2954 if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false)) 2955 return getTrue(ITy); 2956 break; 2957 case ICmpInst::ICMP_SLE: 2958 /// SLE follows the same logic as SGE with the LHS and RHS swapped. 2959 if (isImpliedCondition(RHS, LHS, Q.DL).value_or(false)) 2960 return getTrue(ITy); 2961 break; 2962 } 2963 2964 return nullptr; 2965 } 2966 2967 /// Try hard to fold icmp with zero RHS because this is a common case. 2968 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2969 Value *RHS, const SimplifyQuery &Q) { 2970 if (!match(RHS, m_Zero())) 2971 return nullptr; 2972 2973 Type *ITy = getCompareTy(LHS); // The return type. 2974 switch (Pred) { 2975 default: 2976 llvm_unreachable("Unknown ICmp predicate!"); 2977 case ICmpInst::ICMP_ULT: 2978 return getFalse(ITy); 2979 case ICmpInst::ICMP_UGE: 2980 return getTrue(ITy); 2981 case ICmpInst::ICMP_EQ: 2982 case ICmpInst::ICMP_ULE: 2983 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2984 return getFalse(ITy); 2985 break; 2986 case ICmpInst::ICMP_NE: 2987 case ICmpInst::ICMP_UGT: 2988 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2989 return getTrue(ITy); 2990 break; 2991 case ICmpInst::ICMP_SLT: { 2992 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2993 if (LHSKnown.isNegative()) 2994 return getTrue(ITy); 2995 if (LHSKnown.isNonNegative()) 2996 return getFalse(ITy); 2997 break; 2998 } 2999 case ICmpInst::ICMP_SLE: { 3000 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3001 if (LHSKnown.isNegative()) 3002 return getTrue(ITy); 3003 if (LHSKnown.isNonNegative() && 3004 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 3005 return getFalse(ITy); 3006 break; 3007 } 3008 case ICmpInst::ICMP_SGE: { 3009 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3010 if (LHSKnown.isNegative()) 3011 return getFalse(ITy); 3012 if (LHSKnown.isNonNegative()) 3013 return getTrue(ITy); 3014 break; 3015 } 3016 case ICmpInst::ICMP_SGT: { 3017 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3018 if (LHSKnown.isNegative()) 3019 return getFalse(ITy); 3020 if (LHSKnown.isNonNegative() && 3021 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 3022 return getTrue(ITy); 3023 break; 3024 } 3025 } 3026 3027 return nullptr; 3028 } 3029 3030 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 3031 Value *RHS, const InstrInfoQuery &IIQ) { 3032 Type *ITy = getCompareTy(RHS); // The return type. 3033 3034 Value *X; 3035 // Sign-bit checks can be optimized to true/false after unsigned 3036 // floating-point casts: 3037 // icmp slt (bitcast (uitofp X)), 0 --> false 3038 // icmp sgt (bitcast (uitofp X)), -1 --> true 3039 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 3040 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 3041 return ConstantInt::getFalse(ITy); 3042 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 3043 return ConstantInt::getTrue(ITy); 3044 } 3045 3046 const APInt *C; 3047 if (!match(RHS, m_APIntAllowUndef(C))) 3048 return nullptr; 3049 3050 // Rule out tautological comparisons (eg., ult 0 or uge 0). 3051 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 3052 if (RHS_CR.isEmptySet()) 3053 return ConstantInt::getFalse(ITy); 3054 if (RHS_CR.isFullSet()) 3055 return ConstantInt::getTrue(ITy); 3056 3057 ConstantRange LHS_CR = 3058 computeConstantRange(LHS, CmpInst::isSigned(Pred), IIQ.UseInstrInfo); 3059 if (!LHS_CR.isFullSet()) { 3060 if (RHS_CR.contains(LHS_CR)) 3061 return ConstantInt::getTrue(ITy); 3062 if (RHS_CR.inverse().contains(LHS_CR)) 3063 return ConstantInt::getFalse(ITy); 3064 } 3065 3066 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 3067 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 3068 const APInt *MulC; 3069 if (ICmpInst::isEquality(Pred) && 3070 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && 3071 *MulC != 0 && C->urem(*MulC) != 0) || 3072 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && 3073 *MulC != 0 && C->srem(*MulC) != 0))) 3074 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 3075 3076 return nullptr; 3077 } 3078 3079 static Value *simplifyICmpWithBinOpOnLHS(CmpInst::Predicate Pred, 3080 BinaryOperator *LBO, Value *RHS, 3081 const SimplifyQuery &Q, 3082 unsigned MaxRecurse) { 3083 Type *ITy = getCompareTy(RHS); // The return type. 3084 3085 Value *Y = nullptr; 3086 // icmp pred (or X, Y), X 3087 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 3088 if (Pred == ICmpInst::ICMP_ULT) 3089 return getFalse(ITy); 3090 if (Pred == ICmpInst::ICMP_UGE) 3091 return getTrue(ITy); 3092 3093 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 3094 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3095 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3096 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 3097 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 3098 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 3099 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 3100 } 3101 } 3102 3103 // icmp pred (and X, Y), X 3104 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 3105 if (Pred == ICmpInst::ICMP_UGT) 3106 return getFalse(ITy); 3107 if (Pred == ICmpInst::ICMP_ULE) 3108 return getTrue(ITy); 3109 } 3110 3111 // icmp pred (urem X, Y), Y 3112 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 3113 switch (Pred) { 3114 default: 3115 break; 3116 case ICmpInst::ICMP_SGT: 3117 case ICmpInst::ICMP_SGE: { 3118 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3119 if (!Known.isNonNegative()) 3120 break; 3121 [[fallthrough]]; 3122 } 3123 case ICmpInst::ICMP_EQ: 3124 case ICmpInst::ICMP_UGT: 3125 case ICmpInst::ICMP_UGE: 3126 return getFalse(ITy); 3127 case ICmpInst::ICMP_SLT: 3128 case ICmpInst::ICMP_SLE: { 3129 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3130 if (!Known.isNonNegative()) 3131 break; 3132 [[fallthrough]]; 3133 } 3134 case ICmpInst::ICMP_NE: 3135 case ICmpInst::ICMP_ULT: 3136 case ICmpInst::ICMP_ULE: 3137 return getTrue(ITy); 3138 } 3139 } 3140 3141 // icmp pred (urem X, Y), X 3142 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 3143 if (Pred == ICmpInst::ICMP_ULE) 3144 return getTrue(ITy); 3145 if (Pred == ICmpInst::ICMP_UGT) 3146 return getFalse(ITy); 3147 } 3148 3149 // x >>u y <=u x --> true. 3150 // x >>u y >u x --> false. 3151 // x udiv y <=u x --> true. 3152 // x udiv y >u x --> false. 3153 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 3154 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 3155 // icmp pred (X op Y), X 3156 if (Pred == ICmpInst::ICMP_UGT) 3157 return getFalse(ITy); 3158 if (Pred == ICmpInst::ICMP_ULE) 3159 return getTrue(ITy); 3160 } 3161 3162 // If x is nonzero: 3163 // x >>u C <u x --> true for C != 0. 3164 // x >>u C != x --> true for C != 0. 3165 // x >>u C >=u x --> false for C != 0. 3166 // x >>u C == x --> false for C != 0. 3167 // x udiv C <u x --> true for C != 1. 3168 // x udiv C != x --> true for C != 1. 3169 // x udiv C >=u x --> false for C != 1. 3170 // x udiv C == x --> false for C != 1. 3171 // TODO: allow non-constant shift amount/divisor 3172 const APInt *C; 3173 if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) || 3174 (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) { 3175 if (isKnownNonZero(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) { 3176 switch (Pred) { 3177 default: 3178 break; 3179 case ICmpInst::ICMP_EQ: 3180 case ICmpInst::ICMP_UGE: 3181 return getFalse(ITy); 3182 case ICmpInst::ICMP_NE: 3183 case ICmpInst::ICMP_ULT: 3184 return getTrue(ITy); 3185 case ICmpInst::ICMP_UGT: 3186 case ICmpInst::ICMP_ULE: 3187 // UGT/ULE are handled by the more general case just above 3188 llvm_unreachable("Unexpected UGT/ULE, should have been handled"); 3189 } 3190 } 3191 } 3192 3193 // (x*C1)/C2 <= x for C1 <= C2. 3194 // This holds even if the multiplication overflows: Assume that x != 0 and 3195 // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and 3196 // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. 3197 // 3198 // Additionally, either the multiplication and division might be represented 3199 // as shifts: 3200 // (x*C1)>>C2 <= x for C1 < 2**C2. 3201 // (x<<C1)/C2 <= x for 2**C1 < C2. 3202 const APInt *C1, *C2; 3203 if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3204 C1->ule(*C2)) || 3205 (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3206 C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) || 3207 (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3208 (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) { 3209 if (Pred == ICmpInst::ICMP_UGT) 3210 return getFalse(ITy); 3211 if (Pred == ICmpInst::ICMP_ULE) 3212 return getTrue(ITy); 3213 } 3214 3215 // (sub C, X) == X, C is odd --> false 3216 // (sub C, X) != X, C is odd --> true 3217 if (match(LBO, m_Sub(m_APIntAllowUndef(C), m_Specific(RHS))) && 3218 (*C & 1) == 1 && ICmpInst::isEquality(Pred)) 3219 return (Pred == ICmpInst::ICMP_EQ) ? getFalse(ITy) : getTrue(ITy); 3220 3221 return nullptr; 3222 } 3223 3224 // If only one of the icmp's operands has NSW flags, try to prove that: 3225 // 3226 // icmp slt (x + C1), (x +nsw C2) 3227 // 3228 // is equivalent to: 3229 // 3230 // icmp slt C1, C2 3231 // 3232 // which is true if x + C2 has the NSW flags set and: 3233 // *) C1 < C2 && C1 >= 0, or 3234 // *) C2 < C1 && C1 <= 0. 3235 // 3236 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, 3237 Value *RHS) { 3238 // TODO: only support icmp slt for now. 3239 if (Pred != CmpInst::ICMP_SLT) 3240 return false; 3241 3242 // Canonicalize nsw add as RHS. 3243 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3244 std::swap(LHS, RHS); 3245 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3246 return false; 3247 3248 Value *X; 3249 const APInt *C1, *C2; 3250 if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) || 3251 !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2)))) 3252 return false; 3253 3254 return (C1->slt(*C2) && C1->isNonNegative()) || 3255 (C2->slt(*C1) && C1->isNonPositive()); 3256 } 3257 3258 /// TODO: A large part of this logic is duplicated in InstCombine's 3259 /// foldICmpBinOp(). We should be able to share that and avoid the code 3260 /// duplication. 3261 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 3262 Value *RHS, const SimplifyQuery &Q, 3263 unsigned MaxRecurse) { 3264 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 3265 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 3266 if (MaxRecurse && (LBO || RBO)) { 3267 // Analyze the case when either LHS or RHS is an add instruction. 3268 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3269 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 3270 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 3271 if (LBO && LBO->getOpcode() == Instruction::Add) { 3272 A = LBO->getOperand(0); 3273 B = LBO->getOperand(1); 3274 NoLHSWrapProblem = 3275 ICmpInst::isEquality(Pred) || 3276 (CmpInst::isUnsigned(Pred) && 3277 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 3278 (CmpInst::isSigned(Pred) && 3279 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 3280 } 3281 if (RBO && RBO->getOpcode() == Instruction::Add) { 3282 C = RBO->getOperand(0); 3283 D = RBO->getOperand(1); 3284 NoRHSWrapProblem = 3285 ICmpInst::isEquality(Pred) || 3286 (CmpInst::isUnsigned(Pred) && 3287 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 3288 (CmpInst::isSigned(Pred) && 3289 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 3290 } 3291 3292 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3293 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 3294 if (Value *V = simplifyICmpInst(Pred, A == RHS ? B : A, 3295 Constant::getNullValue(RHS->getType()), Q, 3296 MaxRecurse - 1)) 3297 return V; 3298 3299 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3300 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 3301 if (Value *V = 3302 simplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 3303 C == LHS ? D : C, Q, MaxRecurse - 1)) 3304 return V; 3305 3306 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 3307 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || 3308 trySimplifyICmpWithAdds(Pred, LHS, RHS); 3309 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { 3310 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3311 Value *Y, *Z; 3312 if (A == C) { 3313 // C + B == C + D -> B == D 3314 Y = B; 3315 Z = D; 3316 } else if (A == D) { 3317 // D + B == C + D -> B == C 3318 Y = B; 3319 Z = C; 3320 } else if (B == C) { 3321 // A + C == C + D -> A == D 3322 Y = A; 3323 Z = D; 3324 } else { 3325 assert(B == D); 3326 // A + D == C + D -> A == C 3327 Y = A; 3328 Z = C; 3329 } 3330 if (Value *V = simplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 3331 return V; 3332 } 3333 } 3334 3335 if (LBO) 3336 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 3337 return V; 3338 3339 if (RBO) 3340 if (Value *V = simplifyICmpWithBinOpOnLHS( 3341 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 3342 return V; 3343 3344 // 0 - (zext X) pred C 3345 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 3346 const APInt *C; 3347 if (match(RHS, m_APInt(C))) { 3348 if (C->isStrictlyPositive()) { 3349 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) 3350 return ConstantInt::getTrue(getCompareTy(RHS)); 3351 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) 3352 return ConstantInt::getFalse(getCompareTy(RHS)); 3353 } 3354 if (C->isNonNegative()) { 3355 if (Pred == ICmpInst::ICMP_SLE) 3356 return ConstantInt::getTrue(getCompareTy(RHS)); 3357 if (Pred == ICmpInst::ICMP_SGT) 3358 return ConstantInt::getFalse(getCompareTy(RHS)); 3359 } 3360 } 3361 } 3362 3363 // If C2 is a power-of-2 and C is not: 3364 // (C2 << X) == C --> false 3365 // (C2 << X) != C --> true 3366 const APInt *C; 3367 if (match(LHS, m_Shl(m_Power2(), m_Value())) && 3368 match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) { 3369 // C2 << X can equal zero in some circumstances. 3370 // This simplification might be unsafe if C is zero. 3371 // 3372 // We know it is safe if: 3373 // - The shift is nsw. We can't shift out the one bit. 3374 // - The shift is nuw. We can't shift out the one bit. 3375 // - C2 is one. 3376 // - C isn't zero. 3377 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3378 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3379 match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) { 3380 if (Pred == ICmpInst::ICMP_EQ) 3381 return ConstantInt::getFalse(getCompareTy(RHS)); 3382 if (Pred == ICmpInst::ICMP_NE) 3383 return ConstantInt::getTrue(getCompareTy(RHS)); 3384 } 3385 } 3386 3387 // TODO: This is overly constrained. LHS can be any power-of-2. 3388 // (1 << X) >u 0x8000 --> false 3389 // (1 << X) <=u 0x8000 --> true 3390 if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) { 3391 if (Pred == ICmpInst::ICMP_UGT) 3392 return ConstantInt::getFalse(getCompareTy(RHS)); 3393 if (Pred == ICmpInst::ICMP_ULE) 3394 return ConstantInt::getTrue(getCompareTy(RHS)); 3395 } 3396 3397 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 3398 LBO->getOperand(1) == RBO->getOperand(1)) { 3399 switch (LBO->getOpcode()) { 3400 default: 3401 break; 3402 case Instruction::UDiv: 3403 case Instruction::LShr: 3404 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3405 !Q.IIQ.isExact(RBO)) 3406 break; 3407 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3408 RBO->getOperand(0), Q, MaxRecurse - 1)) 3409 return V; 3410 break; 3411 case Instruction::SDiv: 3412 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3413 !Q.IIQ.isExact(RBO)) 3414 break; 3415 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3416 RBO->getOperand(0), Q, MaxRecurse - 1)) 3417 return V; 3418 break; 3419 case Instruction::AShr: 3420 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3421 break; 3422 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3423 RBO->getOperand(0), Q, MaxRecurse - 1)) 3424 return V; 3425 break; 3426 case Instruction::Shl: { 3427 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3428 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3429 if (!NUW && !NSW) 3430 break; 3431 if (!NSW && ICmpInst::isSigned(Pred)) 3432 break; 3433 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3434 RBO->getOperand(0), Q, MaxRecurse - 1)) 3435 return V; 3436 break; 3437 } 3438 } 3439 } 3440 return nullptr; 3441 } 3442 3443 /// simplify integer comparisons where at least one operand of the compare 3444 /// matches an integer min/max idiom. 3445 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3446 Value *RHS, const SimplifyQuery &Q, 3447 unsigned MaxRecurse) { 3448 Type *ITy = getCompareTy(LHS); // The return type. 3449 Value *A, *B; 3450 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3451 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3452 3453 // Signed variants on "max(a,b)>=a -> true". 3454 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3455 if (A != RHS) 3456 std::swap(A, B); // smax(A, B) pred A. 3457 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3458 // We analyze this as smax(A, B) pred A. 3459 P = Pred; 3460 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3461 (A == LHS || B == LHS)) { 3462 if (A != LHS) 3463 std::swap(A, B); // A pred smax(A, B). 3464 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3465 // We analyze this as smax(A, B) swapped-pred A. 3466 P = CmpInst::getSwappedPredicate(Pred); 3467 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3468 (A == RHS || B == RHS)) { 3469 if (A != RHS) 3470 std::swap(A, B); // smin(A, B) pred A. 3471 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3472 // We analyze this as smax(-A, -B) swapped-pred -A. 3473 // Note that we do not need to actually form -A or -B thanks to EqP. 3474 P = CmpInst::getSwappedPredicate(Pred); 3475 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3476 (A == LHS || B == LHS)) { 3477 if (A != LHS) 3478 std::swap(A, B); // A pred smin(A, B). 3479 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3480 // We analyze this as smax(-A, -B) pred -A. 3481 // Note that we do not need to actually form -A or -B thanks to EqP. 3482 P = Pred; 3483 } 3484 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3485 // Cases correspond to "max(A, B) p A". 3486 switch (P) { 3487 default: 3488 break; 3489 case CmpInst::ICMP_EQ: 3490 case CmpInst::ICMP_SLE: 3491 // Equivalent to "A EqP B". This may be the same as the condition tested 3492 // in the max/min; if so, we can just return that. 3493 if (Value *V = extractEquivalentCondition(LHS, EqP, A, B)) 3494 return V; 3495 if (Value *V = extractEquivalentCondition(RHS, EqP, A, B)) 3496 return V; 3497 // Otherwise, see if "A EqP B" simplifies. 3498 if (MaxRecurse) 3499 if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3500 return V; 3501 break; 3502 case CmpInst::ICMP_NE: 3503 case CmpInst::ICMP_SGT: { 3504 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3505 // Equivalent to "A InvEqP B". This may be the same as the condition 3506 // tested in the max/min; if so, we can just return that. 3507 if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B)) 3508 return V; 3509 if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B)) 3510 return V; 3511 // Otherwise, see if "A InvEqP B" simplifies. 3512 if (MaxRecurse) 3513 if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3514 return V; 3515 break; 3516 } 3517 case CmpInst::ICMP_SGE: 3518 // Always true. 3519 return getTrue(ITy); 3520 case CmpInst::ICMP_SLT: 3521 // Always false. 3522 return getFalse(ITy); 3523 } 3524 } 3525 3526 // Unsigned variants on "max(a,b)>=a -> true". 3527 P = CmpInst::BAD_ICMP_PREDICATE; 3528 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3529 if (A != RHS) 3530 std::swap(A, B); // umax(A, B) pred A. 3531 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3532 // We analyze this as umax(A, B) pred A. 3533 P = Pred; 3534 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3535 (A == LHS || B == LHS)) { 3536 if (A != LHS) 3537 std::swap(A, B); // A pred umax(A, B). 3538 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3539 // We analyze this as umax(A, B) swapped-pred A. 3540 P = CmpInst::getSwappedPredicate(Pred); 3541 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3542 (A == RHS || B == RHS)) { 3543 if (A != RHS) 3544 std::swap(A, B); // umin(A, B) pred A. 3545 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3546 // We analyze this as umax(-A, -B) swapped-pred -A. 3547 // Note that we do not need to actually form -A or -B thanks to EqP. 3548 P = CmpInst::getSwappedPredicate(Pred); 3549 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3550 (A == LHS || B == LHS)) { 3551 if (A != LHS) 3552 std::swap(A, B); // A pred umin(A, B). 3553 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3554 // We analyze this as umax(-A, -B) pred -A. 3555 // Note that we do not need to actually form -A or -B thanks to EqP. 3556 P = Pred; 3557 } 3558 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3559 // Cases correspond to "max(A, B) p A". 3560 switch (P) { 3561 default: 3562 break; 3563 case CmpInst::ICMP_EQ: 3564 case CmpInst::ICMP_ULE: 3565 // Equivalent to "A EqP B". This may be the same as the condition tested 3566 // in the max/min; if so, we can just return that. 3567 if (Value *V = extractEquivalentCondition(LHS, EqP, A, B)) 3568 return V; 3569 if (Value *V = extractEquivalentCondition(RHS, EqP, A, B)) 3570 return V; 3571 // Otherwise, see if "A EqP B" simplifies. 3572 if (MaxRecurse) 3573 if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3574 return V; 3575 break; 3576 case CmpInst::ICMP_NE: 3577 case CmpInst::ICMP_UGT: { 3578 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3579 // Equivalent to "A InvEqP B". This may be the same as the condition 3580 // tested in the max/min; if so, we can just return that. 3581 if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B)) 3582 return V; 3583 if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B)) 3584 return V; 3585 // Otherwise, see if "A InvEqP B" simplifies. 3586 if (MaxRecurse) 3587 if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3588 return V; 3589 break; 3590 } 3591 case CmpInst::ICMP_UGE: 3592 return getTrue(ITy); 3593 case CmpInst::ICMP_ULT: 3594 return getFalse(ITy); 3595 } 3596 } 3597 3598 // Comparing 1 each of min/max with a common operand? 3599 // Canonicalize min operand to RHS. 3600 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3601 match(LHS, m_SMin(m_Value(), m_Value()))) { 3602 std::swap(LHS, RHS); 3603 Pred = ICmpInst::getSwappedPredicate(Pred); 3604 } 3605 3606 Value *C, *D; 3607 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3608 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3609 (A == C || A == D || B == C || B == D)) { 3610 // smax(A, B) >=s smin(A, D) --> true 3611 if (Pred == CmpInst::ICMP_SGE) 3612 return getTrue(ITy); 3613 // smax(A, B) <s smin(A, D) --> false 3614 if (Pred == CmpInst::ICMP_SLT) 3615 return getFalse(ITy); 3616 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3617 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3618 (A == C || A == D || B == C || B == D)) { 3619 // umax(A, B) >=u umin(A, D) --> true 3620 if (Pred == CmpInst::ICMP_UGE) 3621 return getTrue(ITy); 3622 // umax(A, B) <u umin(A, D) --> false 3623 if (Pred == CmpInst::ICMP_ULT) 3624 return getFalse(ITy); 3625 } 3626 3627 return nullptr; 3628 } 3629 3630 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3631 Value *LHS, Value *RHS, 3632 const SimplifyQuery &Q) { 3633 // Gracefully handle instructions that have not been inserted yet. 3634 if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) 3635 return nullptr; 3636 3637 for (Value *AssumeBaseOp : {LHS, RHS}) { 3638 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3639 if (!AssumeVH) 3640 continue; 3641 3642 CallInst *Assume = cast<CallInst>(AssumeVH); 3643 if (std::optional<bool> Imp = isImpliedCondition( 3644 Assume->getArgOperand(0), Predicate, LHS, RHS, Q.DL)) 3645 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3646 return ConstantInt::get(getCompareTy(LHS), *Imp); 3647 } 3648 } 3649 3650 return nullptr; 3651 } 3652 3653 /// Given operands for an ICmpInst, see if we can fold the result. 3654 /// If not, this returns null. 3655 static Value *simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3656 const SimplifyQuery &Q, unsigned MaxRecurse) { 3657 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3658 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3659 3660 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3661 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3662 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3663 3664 // If we have a constant, make sure it is on the RHS. 3665 std::swap(LHS, RHS); 3666 Pred = CmpInst::getSwappedPredicate(Pred); 3667 } 3668 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3669 3670 Type *ITy = getCompareTy(LHS); // The return type. 3671 3672 // icmp poison, X -> poison 3673 if (isa<PoisonValue>(RHS)) 3674 return PoisonValue::get(ITy); 3675 3676 // For EQ and NE, we can always pick a value for the undef to make the 3677 // predicate pass or fail, so we can return undef. 3678 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3679 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3680 return UndefValue::get(ITy); 3681 3682 // icmp X, X -> true/false 3683 // icmp X, undef -> true/false because undef could be X. 3684 if (LHS == RHS || Q.isUndefValue(RHS)) 3685 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3686 3687 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3688 return V; 3689 3690 // TODO: Sink/common this with other potentially expensive calls that use 3691 // ValueTracking? See comment below for isKnownNonEqual(). 3692 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3693 return V; 3694 3695 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3696 return V; 3697 3698 // If both operands have range metadata, use the metadata 3699 // to simplify the comparison. 3700 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3701 auto RHS_Instr = cast<Instruction>(RHS); 3702 auto LHS_Instr = cast<Instruction>(LHS); 3703 3704 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3705 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3706 auto RHS_CR = getConstantRangeFromMetadata( 3707 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3708 auto LHS_CR = getConstantRangeFromMetadata( 3709 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3710 3711 if (LHS_CR.icmp(Pred, RHS_CR)) 3712 return ConstantInt::getTrue(RHS->getContext()); 3713 3714 if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR)) 3715 return ConstantInt::getFalse(RHS->getContext()); 3716 } 3717 } 3718 3719 // Compare of cast, for example (zext X) != 0 -> X != 0 3720 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3721 Instruction *LI = cast<CastInst>(LHS); 3722 Value *SrcOp = LI->getOperand(0); 3723 Type *SrcTy = SrcOp->getType(); 3724 Type *DstTy = LI->getType(); 3725 3726 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3727 // if the integer type is the same size as the pointer type. 3728 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3729 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3730 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3731 // Transfer the cast to the constant. 3732 if (Value *V = simplifyICmpInst(Pred, SrcOp, 3733 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3734 Q, MaxRecurse - 1)) 3735 return V; 3736 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3737 if (RI->getOperand(0)->getType() == SrcTy) 3738 // Compare without the cast. 3739 if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q, 3740 MaxRecurse - 1)) 3741 return V; 3742 } 3743 } 3744 3745 if (isa<ZExtInst>(LHS)) { 3746 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3747 // same type. 3748 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3749 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3750 // Compare X and Y. Note that signed predicates become unsigned. 3751 if (Value *V = 3752 simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), SrcOp, 3753 RI->getOperand(0), Q, MaxRecurse - 1)) 3754 return V; 3755 } 3756 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3757 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3758 if (SrcOp == RI->getOperand(0)) { 3759 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3760 return ConstantInt::getTrue(ITy); 3761 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3762 return ConstantInt::getFalse(ITy); 3763 } 3764 } 3765 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3766 // too. If not, then try to deduce the result of the comparison. 3767 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3768 // Compute the constant that would happen if we truncated to SrcTy then 3769 // reextended to DstTy. 3770 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3771 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3772 3773 // If the re-extended constant didn't change then this is effectively 3774 // also a case of comparing two zero-extended values. 3775 if (RExt == CI && MaxRecurse) 3776 if (Value *V = simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3777 SrcOp, Trunc, Q, MaxRecurse - 1)) 3778 return V; 3779 3780 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3781 // there. Use this to work out the result of the comparison. 3782 if (RExt != CI) { 3783 switch (Pred) { 3784 default: 3785 llvm_unreachable("Unknown ICmp predicate!"); 3786 // LHS <u RHS. 3787 case ICmpInst::ICMP_EQ: 3788 case ICmpInst::ICMP_UGT: 3789 case ICmpInst::ICMP_UGE: 3790 return ConstantInt::getFalse(CI->getContext()); 3791 3792 case ICmpInst::ICMP_NE: 3793 case ICmpInst::ICMP_ULT: 3794 case ICmpInst::ICMP_ULE: 3795 return ConstantInt::getTrue(CI->getContext()); 3796 3797 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3798 // is non-negative then LHS <s RHS. 3799 case ICmpInst::ICMP_SGT: 3800 case ICmpInst::ICMP_SGE: 3801 return CI->getValue().isNegative() 3802 ? ConstantInt::getTrue(CI->getContext()) 3803 : ConstantInt::getFalse(CI->getContext()); 3804 3805 case ICmpInst::ICMP_SLT: 3806 case ICmpInst::ICMP_SLE: 3807 return CI->getValue().isNegative() 3808 ? ConstantInt::getFalse(CI->getContext()) 3809 : ConstantInt::getTrue(CI->getContext()); 3810 } 3811 } 3812 } 3813 } 3814 3815 if (isa<SExtInst>(LHS)) { 3816 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3817 // same type. 3818 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3819 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3820 // Compare X and Y. Note that the predicate does not change. 3821 if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q, 3822 MaxRecurse - 1)) 3823 return V; 3824 } 3825 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3826 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3827 if (SrcOp == RI->getOperand(0)) { 3828 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3829 return ConstantInt::getTrue(ITy); 3830 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3831 return ConstantInt::getFalse(ITy); 3832 } 3833 } 3834 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3835 // too. If not, then try to deduce the result of the comparison. 3836 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3837 // Compute the constant that would happen if we truncated to SrcTy then 3838 // reextended to DstTy. 3839 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3840 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3841 3842 // If the re-extended constant didn't change then this is effectively 3843 // also a case of comparing two sign-extended values. 3844 if (RExt == CI && MaxRecurse) 3845 if (Value *V = 3846 simplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse - 1)) 3847 return V; 3848 3849 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3850 // bits there. Use this to work out the result of the comparison. 3851 if (RExt != CI) { 3852 switch (Pred) { 3853 default: 3854 llvm_unreachable("Unknown ICmp predicate!"); 3855 case ICmpInst::ICMP_EQ: 3856 return ConstantInt::getFalse(CI->getContext()); 3857 case ICmpInst::ICMP_NE: 3858 return ConstantInt::getTrue(CI->getContext()); 3859 3860 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3861 // LHS >s RHS. 3862 case ICmpInst::ICMP_SGT: 3863 case ICmpInst::ICMP_SGE: 3864 return CI->getValue().isNegative() 3865 ? ConstantInt::getTrue(CI->getContext()) 3866 : ConstantInt::getFalse(CI->getContext()); 3867 case ICmpInst::ICMP_SLT: 3868 case ICmpInst::ICMP_SLE: 3869 return CI->getValue().isNegative() 3870 ? ConstantInt::getFalse(CI->getContext()) 3871 : ConstantInt::getTrue(CI->getContext()); 3872 3873 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3874 // LHS >u RHS. 3875 case ICmpInst::ICMP_UGT: 3876 case ICmpInst::ICMP_UGE: 3877 // Comparison is true iff the LHS <s 0. 3878 if (MaxRecurse) 3879 if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3880 Constant::getNullValue(SrcTy), Q, 3881 MaxRecurse - 1)) 3882 return V; 3883 break; 3884 case ICmpInst::ICMP_ULT: 3885 case ICmpInst::ICMP_ULE: 3886 // Comparison is true iff the LHS >=s 0. 3887 if (MaxRecurse) 3888 if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3889 Constant::getNullValue(SrcTy), Q, 3890 MaxRecurse - 1)) 3891 return V; 3892 break; 3893 } 3894 } 3895 } 3896 } 3897 } 3898 3899 // icmp eq|ne X, Y -> false|true if X != Y 3900 // This is potentially expensive, and we have already computedKnownBits for 3901 // compares with 0 above here, so only try this for a non-zero compare. 3902 if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) && 3903 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3904 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3905 } 3906 3907 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3908 return V; 3909 3910 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3911 return V; 3912 3913 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3914 return V; 3915 3916 // Simplify comparisons of related pointers using a powerful, recursive 3917 // GEP-walk when we have target data available.. 3918 if (LHS->getType()->isPointerTy()) 3919 if (auto *C = computePointerICmp(Pred, LHS, RHS, Q)) 3920 return C; 3921 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3922 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3923 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3924 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3925 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3926 Q.DL.getTypeSizeInBits(CRHS->getType())) 3927 if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(), 3928 CRHS->getPointerOperand(), Q)) 3929 return C; 3930 3931 // If the comparison is with the result of a select instruction, check whether 3932 // comparing with either branch of the select always yields the same value. 3933 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3934 if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3935 return V; 3936 3937 // If the comparison is with the result of a phi instruction, check whether 3938 // doing the compare with each incoming phi value yields a common result. 3939 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3940 if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3941 return V; 3942 3943 return nullptr; 3944 } 3945 3946 Value *llvm::simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3947 const SimplifyQuery &Q) { 3948 return ::simplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3949 } 3950 3951 /// Given operands for an FCmpInst, see if we can fold the result. 3952 /// If not, this returns null. 3953 static Value *simplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3954 FastMathFlags FMF, const SimplifyQuery &Q, 3955 unsigned MaxRecurse) { 3956 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3957 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3958 3959 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3960 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3961 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI, 3962 Q.CxtI); 3963 3964 // If we have a constant, make sure it is on the RHS. 3965 std::swap(LHS, RHS); 3966 Pred = CmpInst::getSwappedPredicate(Pred); 3967 } 3968 3969 // Fold trivial predicates. 3970 Type *RetTy = getCompareTy(LHS); 3971 if (Pred == FCmpInst::FCMP_FALSE) 3972 return getFalse(RetTy); 3973 if (Pred == FCmpInst::FCMP_TRUE) 3974 return getTrue(RetTy); 3975 3976 // Fold (un)ordered comparison if we can determine there are no NaNs. 3977 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3978 if (FMF.noNaNs() || 3979 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3980 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3981 3982 // NaN is unordered; NaN is not ordered. 3983 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3984 "Comparison must be either ordered or unordered"); 3985 if (match(RHS, m_NaN())) 3986 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3987 3988 // fcmp pred x, poison and fcmp pred poison, x 3989 // fold to poison 3990 if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS)) 3991 return PoisonValue::get(RetTy); 3992 3993 // fcmp pred x, undef and fcmp pred undef, x 3994 // fold to true if unordered, false if ordered 3995 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 3996 // Choosing NaN for the undef will always make unordered comparison succeed 3997 // and ordered comparison fail. 3998 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3999 } 4000 4001 // fcmp x,x -> true/false. Not all compares are foldable. 4002 if (LHS == RHS) { 4003 if (CmpInst::isTrueWhenEqual(Pred)) 4004 return getTrue(RetTy); 4005 if (CmpInst::isFalseWhenEqual(Pred)) 4006 return getFalse(RetTy); 4007 } 4008 4009 // Handle fcmp with constant RHS. 4010 // TODO: Use match with a specific FP value, so these work with vectors with 4011 // undef lanes. 4012 const APFloat *C; 4013 if (match(RHS, m_APFloat(C))) { 4014 // Check whether the constant is an infinity. 4015 if (C->isInfinity()) { 4016 if (C->isNegative()) { 4017 switch (Pred) { 4018 case FCmpInst::FCMP_OLT: 4019 // No value is ordered and less than negative infinity. 4020 return getFalse(RetTy); 4021 case FCmpInst::FCMP_UGE: 4022 // All values are unordered with or at least negative infinity. 4023 return getTrue(RetTy); 4024 default: 4025 break; 4026 } 4027 } else { 4028 switch (Pred) { 4029 case FCmpInst::FCMP_OGT: 4030 // No value is ordered and greater than infinity. 4031 return getFalse(RetTy); 4032 case FCmpInst::FCMP_ULE: 4033 // All values are unordered with and at most infinity. 4034 return getTrue(RetTy); 4035 default: 4036 break; 4037 } 4038 } 4039 4040 // LHS == Inf 4041 if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI)) 4042 return getFalse(RetTy); 4043 // LHS != Inf 4044 if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI)) 4045 return getTrue(RetTy); 4046 // LHS == Inf || LHS == NaN 4047 if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) && 4048 isKnownNeverNaN(LHS, Q.TLI)) 4049 return getFalse(RetTy); 4050 // LHS != Inf && LHS != NaN 4051 if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) && 4052 isKnownNeverNaN(LHS, Q.TLI)) 4053 return getTrue(RetTy); 4054 } 4055 if (C->isNegative() && !C->isNegZero()) { 4056 assert(!C->isNaN() && "Unexpected NaN constant!"); 4057 // TODO: We can catch more cases by using a range check rather than 4058 // relying on CannotBeOrderedLessThanZero. 4059 switch (Pred) { 4060 case FCmpInst::FCMP_UGE: 4061 case FCmpInst::FCMP_UGT: 4062 case FCmpInst::FCMP_UNE: 4063 // (X >= 0) implies (X > C) when (C < 0) 4064 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 4065 return getTrue(RetTy); 4066 break; 4067 case FCmpInst::FCMP_OEQ: 4068 case FCmpInst::FCMP_OLE: 4069 case FCmpInst::FCMP_OLT: 4070 // (X >= 0) implies !(X < C) when (C < 0) 4071 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 4072 return getFalse(RetTy); 4073 break; 4074 default: 4075 break; 4076 } 4077 } 4078 4079 // Check comparison of [minnum/maxnum with constant] with other constant. 4080 const APFloat *C2; 4081 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 4082 *C2 < *C) || 4083 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 4084 *C2 > *C)) { 4085 bool IsMaxNum = 4086 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 4087 // The ordered relationship and minnum/maxnum guarantee that we do not 4088 // have NaN constants, so ordered/unordered preds are handled the same. 4089 switch (Pred) { 4090 case FCmpInst::FCMP_OEQ: 4091 case FCmpInst::FCMP_UEQ: 4092 // minnum(X, LesserC) == C --> false 4093 // maxnum(X, GreaterC) == C --> false 4094 return getFalse(RetTy); 4095 case FCmpInst::FCMP_ONE: 4096 case FCmpInst::FCMP_UNE: 4097 // minnum(X, LesserC) != C --> true 4098 // maxnum(X, GreaterC) != C --> true 4099 return getTrue(RetTy); 4100 case FCmpInst::FCMP_OGE: 4101 case FCmpInst::FCMP_UGE: 4102 case FCmpInst::FCMP_OGT: 4103 case FCmpInst::FCMP_UGT: 4104 // minnum(X, LesserC) >= C --> false 4105 // minnum(X, LesserC) > C --> false 4106 // maxnum(X, GreaterC) >= C --> true 4107 // maxnum(X, GreaterC) > C --> true 4108 return ConstantInt::get(RetTy, IsMaxNum); 4109 case FCmpInst::FCMP_OLE: 4110 case FCmpInst::FCMP_ULE: 4111 case FCmpInst::FCMP_OLT: 4112 case FCmpInst::FCMP_ULT: 4113 // minnum(X, LesserC) <= C --> true 4114 // minnum(X, LesserC) < C --> true 4115 // maxnum(X, GreaterC) <= C --> false 4116 // maxnum(X, GreaterC) < C --> false 4117 return ConstantInt::get(RetTy, !IsMaxNum); 4118 default: 4119 // TRUE/FALSE/ORD/UNO should be handled before this. 4120 llvm_unreachable("Unexpected fcmp predicate"); 4121 } 4122 } 4123 } 4124 4125 if (match(RHS, m_AnyZeroFP())) { 4126 switch (Pred) { 4127 case FCmpInst::FCMP_OGE: 4128 case FCmpInst::FCMP_ULT: 4129 // Positive or zero X >= 0.0 --> true 4130 // Positive or zero X < 0.0 --> false 4131 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 4132 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 4133 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 4134 break; 4135 case FCmpInst::FCMP_UGE: 4136 case FCmpInst::FCMP_OLT: 4137 // Positive or zero or nan X >= 0.0 --> true 4138 // Positive or zero or nan X < 0.0 --> false 4139 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 4140 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 4141 break; 4142 default: 4143 break; 4144 } 4145 } 4146 4147 // If the comparison is with the result of a select instruction, check whether 4148 // comparing with either branch of the select always yields the same value. 4149 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 4150 if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 4151 return V; 4152 4153 // If the comparison is with the result of a phi instruction, check whether 4154 // doing the compare with each incoming phi value yields a common result. 4155 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 4156 if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 4157 return V; 4158 4159 return nullptr; 4160 } 4161 4162 Value *llvm::simplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4163 FastMathFlags FMF, const SimplifyQuery &Q) { 4164 return ::simplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 4165 } 4166 4167 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4168 const SimplifyQuery &Q, 4169 bool AllowRefinement, 4170 unsigned MaxRecurse) { 4171 // Trivial replacement. 4172 if (V == Op) 4173 return RepOp; 4174 4175 // We cannot replace a constant, and shouldn't even try. 4176 if (isa<Constant>(Op)) 4177 return nullptr; 4178 4179 auto *I = dyn_cast<Instruction>(V); 4180 if (!I || !is_contained(I->operands(), Op)) 4181 return nullptr; 4182 4183 if (Op->getType()->isVectorTy()) { 4184 // For vector types, the simplification must hold per-lane, so forbid 4185 // potentially cross-lane operations like shufflevector. 4186 assert(I->getType()->isVectorTy() && "Vector type mismatch"); 4187 if (isa<ShuffleVectorInst>(I) || isa<CallBase>(I)) 4188 return nullptr; 4189 } 4190 4191 // Replace Op with RepOp in instruction operands. 4192 SmallVector<Value *, 8> NewOps(I->getNumOperands()); 4193 transform(I->operands(), NewOps.begin(), 4194 [&](Value *V) { return V == Op ? RepOp : V; }); 4195 4196 if (!AllowRefinement) { 4197 // General InstSimplify functions may refine the result, e.g. by returning 4198 // a constant for a potentially poison value. To avoid this, implement only 4199 // a few non-refining but profitable transforms here. 4200 4201 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 4202 unsigned Opcode = BO->getOpcode(); 4203 // id op x -> x, x op id -> x 4204 if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType())) 4205 return NewOps[1]; 4206 if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(), 4207 /* RHS */ true)) 4208 return NewOps[0]; 4209 4210 // x & x -> x, x | x -> x 4211 if ((Opcode == Instruction::And || Opcode == Instruction::Or) && 4212 NewOps[0] == NewOps[1]) 4213 return NewOps[0]; 4214 } 4215 4216 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 4217 // getelementptr x, 0 -> x 4218 if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) && 4219 !GEP->isInBounds()) 4220 return NewOps[0]; 4221 } 4222 } else if (MaxRecurse) { 4223 // The simplification queries below may return the original value. Consider: 4224 // %div = udiv i32 %arg, %arg2 4225 // %mul = mul nsw i32 %div, %arg2 4226 // %cmp = icmp eq i32 %mul, %arg 4227 // %sel = select i1 %cmp, i32 %div, i32 undef 4228 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which 4229 // simplifies back to %arg. This can only happen because %mul does not 4230 // dominate %div. To ensure a consistent return value contract, we make sure 4231 // that this case returns nullptr as well. 4232 auto PreventSelfSimplify = [V](Value *Simplified) { 4233 return Simplified != V ? Simplified : nullptr; 4234 }; 4235 4236 if (auto *B = dyn_cast<BinaryOperator>(I)) 4237 return PreventSelfSimplify(simplifyBinOp(B->getOpcode(), NewOps[0], 4238 NewOps[1], Q, MaxRecurse - 1)); 4239 4240 if (CmpInst *C = dyn_cast<CmpInst>(I)) 4241 return PreventSelfSimplify(simplifyCmpInst(C->getPredicate(), NewOps[0], 4242 NewOps[1], Q, MaxRecurse - 1)); 4243 4244 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 4245 return PreventSelfSimplify(simplifyGEPInst( 4246 GEP->getSourceElementType(), NewOps[0], ArrayRef(NewOps).slice(1), 4247 GEP->isInBounds(), Q, MaxRecurse - 1)); 4248 4249 if (isa<SelectInst>(I)) 4250 return PreventSelfSimplify(simplifySelectInst( 4251 NewOps[0], NewOps[1], NewOps[2], Q, MaxRecurse - 1)); 4252 // TODO: We could hand off more cases to instsimplify here. 4253 } 4254 4255 // If all operands are constant after substituting Op for RepOp then we can 4256 // constant fold the instruction. 4257 SmallVector<Constant *, 8> ConstOps; 4258 for (Value *NewOp : NewOps) { 4259 if (Constant *ConstOp = dyn_cast<Constant>(NewOp)) 4260 ConstOps.push_back(ConstOp); 4261 else 4262 return nullptr; 4263 } 4264 4265 // Consider: 4266 // %cmp = icmp eq i32 %x, 2147483647 4267 // %add = add nsw i32 %x, 1 4268 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 4269 // 4270 // We can't replace %sel with %add unless we strip away the flags (which 4271 // will be done in InstCombine). 4272 // TODO: This may be unsound, because it only catches some forms of 4273 // refinement. 4274 if (!AllowRefinement && canCreatePoison(cast<Operator>(I))) 4275 return nullptr; 4276 4277 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 4278 } 4279 4280 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4281 const SimplifyQuery &Q, 4282 bool AllowRefinement) { 4283 return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, 4284 RecursionLimit); 4285 } 4286 4287 /// Try to simplify a select instruction when its condition operand is an 4288 /// integer comparison where one operand of the compare is a constant. 4289 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 4290 const APInt *Y, bool TrueWhenUnset) { 4291 const APInt *C; 4292 4293 // (X & Y) == 0 ? X & ~Y : X --> X 4294 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 4295 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 4296 *Y == ~*C) 4297 return TrueWhenUnset ? FalseVal : TrueVal; 4298 4299 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 4300 // (X & Y) != 0 ? X : X & ~Y --> X 4301 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 4302 *Y == ~*C) 4303 return TrueWhenUnset ? FalseVal : TrueVal; 4304 4305 if (Y->isPowerOf2()) { 4306 // (X & Y) == 0 ? X | Y : X --> X | Y 4307 // (X & Y) != 0 ? X | Y : X --> X 4308 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 4309 *Y == *C) 4310 return TrueWhenUnset ? TrueVal : FalseVal; 4311 4312 // (X & Y) == 0 ? X : X | Y --> X 4313 // (X & Y) != 0 ? X : X | Y --> X | Y 4314 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 4315 *Y == *C) 4316 return TrueWhenUnset ? TrueVal : FalseVal; 4317 } 4318 4319 return nullptr; 4320 } 4321 4322 static Value *simplifyCmpSelOfMaxMin(Value *CmpLHS, Value *CmpRHS, 4323 ICmpInst::Predicate Pred, Value *TVal, 4324 Value *FVal) { 4325 // Canonicalize common cmp+sel operand as CmpLHS. 4326 if (CmpRHS == TVal || CmpRHS == FVal) { 4327 std::swap(CmpLHS, CmpRHS); 4328 Pred = ICmpInst::getSwappedPredicate(Pred); 4329 } 4330 4331 // Canonicalize common cmp+sel operand as TVal. 4332 if (CmpLHS == FVal) { 4333 std::swap(TVal, FVal); 4334 Pred = ICmpInst::getInversePredicate(Pred); 4335 } 4336 4337 // A vector select may be shuffling together elements that are equivalent 4338 // based on the max/min/select relationship. 4339 Value *X = CmpLHS, *Y = CmpRHS; 4340 bool PeekedThroughSelectShuffle = false; 4341 auto *Shuf = dyn_cast<ShuffleVectorInst>(FVal); 4342 if (Shuf && Shuf->isSelect()) { 4343 if (Shuf->getOperand(0) == Y) 4344 FVal = Shuf->getOperand(1); 4345 else if (Shuf->getOperand(1) == Y) 4346 FVal = Shuf->getOperand(0); 4347 else 4348 return nullptr; 4349 PeekedThroughSelectShuffle = true; 4350 } 4351 4352 // (X pred Y) ? X : max/min(X, Y) 4353 auto *MMI = dyn_cast<MinMaxIntrinsic>(FVal); 4354 if (!MMI || TVal != X || 4355 !match(FVal, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) 4356 return nullptr; 4357 4358 // (X > Y) ? X : max(X, Y) --> max(X, Y) 4359 // (X >= Y) ? X : max(X, Y) --> max(X, Y) 4360 // (X < Y) ? X : min(X, Y) --> min(X, Y) 4361 // (X <= Y) ? X : min(X, Y) --> min(X, Y) 4362 // 4363 // The equivalence allows a vector select (shuffle) of max/min and Y. Ex: 4364 // (X > Y) ? X : (Z ? max(X, Y) : Y) 4365 // If Z is true, this reduces as above, and if Z is false: 4366 // (X > Y) ? X : Y --> max(X, Y) 4367 ICmpInst::Predicate MMPred = MMI->getPredicate(); 4368 if (MMPred == CmpInst::getStrictPredicate(Pred)) 4369 return MMI; 4370 4371 // Other transforms are not valid with a shuffle. 4372 if (PeekedThroughSelectShuffle) 4373 return nullptr; 4374 4375 // (X == Y) ? X : max/min(X, Y) --> max/min(X, Y) 4376 if (Pred == CmpInst::ICMP_EQ) 4377 return MMI; 4378 4379 // (X != Y) ? X : max/min(X, Y) --> X 4380 if (Pred == CmpInst::ICMP_NE) 4381 return X; 4382 4383 // (X < Y) ? X : max(X, Y) --> X 4384 // (X <= Y) ? X : max(X, Y) --> X 4385 // (X > Y) ? X : min(X, Y) --> X 4386 // (X >= Y) ? X : min(X, Y) --> X 4387 ICmpInst::Predicate InvPred = CmpInst::getInversePredicate(Pred); 4388 if (MMPred == CmpInst::getStrictPredicate(InvPred)) 4389 return X; 4390 4391 return nullptr; 4392 } 4393 4394 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 4395 /// eq/ne. 4396 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 4397 ICmpInst::Predicate Pred, 4398 Value *TrueVal, Value *FalseVal) { 4399 Value *X; 4400 APInt Mask; 4401 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 4402 return nullptr; 4403 4404 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 4405 Pred == ICmpInst::ICMP_EQ); 4406 } 4407 4408 /// Try to simplify a select instruction when its condition operand is an 4409 /// integer comparison. 4410 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 4411 Value *FalseVal, 4412 const SimplifyQuery &Q, 4413 unsigned MaxRecurse) { 4414 ICmpInst::Predicate Pred; 4415 Value *CmpLHS, *CmpRHS; 4416 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 4417 return nullptr; 4418 4419 if (Value *V = simplifyCmpSelOfMaxMin(CmpLHS, CmpRHS, Pred, TrueVal, FalseVal)) 4420 return V; 4421 4422 // Canonicalize ne to eq predicate. 4423 if (Pred == ICmpInst::ICMP_NE) { 4424 Pred = ICmpInst::ICMP_EQ; 4425 std::swap(TrueVal, FalseVal); 4426 } 4427 4428 // Check for integer min/max with a limit constant: 4429 // X > MIN_INT ? X : MIN_INT --> X 4430 // X < MAX_INT ? X : MAX_INT --> X 4431 if (TrueVal->getType()->isIntOrIntVectorTy()) { 4432 Value *X, *Y; 4433 SelectPatternFlavor SPF = 4434 matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal, 4435 X, Y) 4436 .Flavor; 4437 if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) { 4438 APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF), 4439 X->getType()->getScalarSizeInBits()); 4440 if (match(Y, m_SpecificInt(LimitC))) 4441 return X; 4442 } 4443 } 4444 4445 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 4446 Value *X; 4447 const APInt *Y; 4448 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 4449 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 4450 /*TrueWhenUnset=*/true)) 4451 return V; 4452 4453 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 4454 Value *ShAmt; 4455 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), 4456 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); 4457 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 4458 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 4459 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 4460 return X; 4461 4462 // Test for a zero-shift-guard-op around rotates. These are used to 4463 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4464 // intrinsics do not have that problem. 4465 // We do not allow this transform for the general funnel shift case because 4466 // that would not preserve the poison safety of the original code. 4467 auto isRotate = 4468 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), 4469 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); 4470 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4471 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4472 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4473 Pred == ICmpInst::ICMP_EQ) 4474 return FalseVal; 4475 4476 // X == 0 ? abs(X) : -abs(X) --> -abs(X) 4477 // X == 0 ? -abs(X) : abs(X) --> abs(X) 4478 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) && 4479 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))) 4480 return FalseVal; 4481 if (match(TrueVal, 4482 m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) && 4483 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) 4484 return FalseVal; 4485 } 4486 4487 // Check for other compares that behave like bit test. 4488 if (Value *V = 4489 simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, TrueVal, FalseVal)) 4490 return V; 4491 4492 // If we have a scalar equality comparison, then we know the value in one of 4493 // the arms of the select. See if substituting this value into the arm and 4494 // simplifying the result yields the same value as the other arm. 4495 if (Pred == ICmpInst::ICMP_EQ) { 4496 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, 4497 /* AllowRefinement */ false, 4498 MaxRecurse) == TrueVal || 4499 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, 4500 /* AllowRefinement */ false, 4501 MaxRecurse) == TrueVal) 4502 return FalseVal; 4503 if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4504 /* AllowRefinement */ true, 4505 MaxRecurse) == FalseVal || 4506 simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, 4507 /* AllowRefinement */ true, 4508 MaxRecurse) == FalseVal) 4509 return FalseVal; 4510 } 4511 4512 return nullptr; 4513 } 4514 4515 /// Try to simplify a select instruction when its condition operand is a 4516 /// floating-point comparison. 4517 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4518 const SimplifyQuery &Q) { 4519 FCmpInst::Predicate Pred; 4520 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4521 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4522 return nullptr; 4523 4524 // This transform is safe if we do not have (do not care about) -0.0 or if 4525 // at least one operand is known to not be -0.0. Otherwise, the select can 4526 // change the sign of a zero operand. 4527 bool HasNoSignedZeros = 4528 Q.CxtI && isa<FPMathOperator>(Q.CxtI) && Q.CxtI->hasNoSignedZeros(); 4529 const APFloat *C; 4530 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4531 (match(F, m_APFloat(C)) && C->isNonZero())) { 4532 // (T == F) ? T : F --> F 4533 // (F == T) ? T : F --> F 4534 if (Pred == FCmpInst::FCMP_OEQ) 4535 return F; 4536 4537 // (T != F) ? T : F --> T 4538 // (F != T) ? T : F --> T 4539 if (Pred == FCmpInst::FCMP_UNE) 4540 return T; 4541 } 4542 4543 return nullptr; 4544 } 4545 4546 /// Given operands for a SelectInst, see if we can fold the result. 4547 /// If not, this returns null. 4548 static Value *simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4549 const SimplifyQuery &Q, unsigned MaxRecurse) { 4550 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4551 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4552 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4553 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4554 4555 // select poison, X, Y -> poison 4556 if (isa<PoisonValue>(CondC)) 4557 return PoisonValue::get(TrueVal->getType()); 4558 4559 // select undef, X, Y -> X or Y 4560 if (Q.isUndefValue(CondC)) 4561 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4562 4563 // select true, X, Y --> X 4564 // select false, X, Y --> Y 4565 // For vectors, allow undef/poison elements in the condition to match the 4566 // defined elements, so we can eliminate the select. 4567 if (match(CondC, m_One())) 4568 return TrueVal; 4569 if (match(CondC, m_Zero())) 4570 return FalseVal; 4571 } 4572 4573 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4574 "Select must have bool or bool vector condition"); 4575 assert(TrueVal->getType() == FalseVal->getType() && 4576 "Select must have same types for true/false ops"); 4577 4578 if (Cond->getType() == TrueVal->getType()) { 4579 // select i1 Cond, i1 true, i1 false --> i1 Cond 4580 if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4581 return Cond; 4582 4583 // (X && Y) ? X : Y --> Y (commuted 2 ways) 4584 if (match(Cond, m_c_LogicalAnd(m_Specific(TrueVal), m_Specific(FalseVal)))) 4585 return FalseVal; 4586 4587 // (X || Y) ? X : Y --> X (commuted 2 ways) 4588 if (match(Cond, m_c_LogicalOr(m_Specific(TrueVal), m_Specific(FalseVal)))) 4589 return TrueVal; 4590 4591 // (X || Y) ? false : X --> false (commuted 2 ways) 4592 if (match(Cond, m_c_LogicalOr(m_Specific(FalseVal), m_Value())) && 4593 match(TrueVal, m_ZeroInt())) 4594 return ConstantInt::getFalse(Cond->getType()); 4595 4596 // Match patterns that end in logical-and. 4597 if (match(FalseVal, m_ZeroInt())) { 4598 // !(X || Y) && X --> false (commuted 2 ways) 4599 if (match(Cond, m_Not(m_c_LogicalOr(m_Specific(TrueVal), m_Value())))) 4600 return ConstantInt::getFalse(Cond->getType()); 4601 4602 // (X || Y) && Y --> Y (commuted 2 ways) 4603 if (match(Cond, m_c_LogicalOr(m_Specific(TrueVal), m_Value()))) 4604 return TrueVal; 4605 // Y && (X || Y) --> Y (commuted 2 ways) 4606 if (match(TrueVal, m_c_LogicalOr(m_Specific(Cond), m_Value()))) 4607 return Cond; 4608 4609 // (X || Y) && (X || !Y) --> X (commuted 8 ways) 4610 Value *X, *Y; 4611 if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4612 match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4613 return X; 4614 if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4615 match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4616 return X; 4617 } 4618 4619 // Match patterns that end in logical-or. 4620 if (match(TrueVal, m_One())) { 4621 // (X && Y) || Y --> Y (commuted 2 ways) 4622 if (match(Cond, m_c_LogicalAnd(m_Specific(FalseVal), m_Value()))) 4623 return FalseVal; 4624 // Y || (X && Y) --> Y (commuted 2 ways) 4625 if (match(FalseVal, m_c_LogicalAnd(m_Specific(Cond), m_Value()))) 4626 return Cond; 4627 } 4628 } 4629 4630 // select ?, X, X -> X 4631 if (TrueVal == FalseVal) 4632 return TrueVal; 4633 4634 if (Cond == TrueVal) { 4635 // select i1 X, i1 X, i1 false --> X (logical-and) 4636 if (match(FalseVal, m_ZeroInt())) 4637 return Cond; 4638 // select i1 X, i1 X, i1 true --> true 4639 if (match(FalseVal, m_One())) 4640 return ConstantInt::getTrue(Cond->getType()); 4641 } 4642 if (Cond == FalseVal) { 4643 // select i1 X, i1 true, i1 X --> X (logical-or) 4644 if (match(TrueVal, m_One())) 4645 return Cond; 4646 // select i1 X, i1 false, i1 X --> false 4647 if (match(TrueVal, m_ZeroInt())) 4648 return ConstantInt::getFalse(Cond->getType()); 4649 } 4650 4651 // If the true or false value is poison, we can fold to the other value. 4652 // If the true or false value is undef, we can fold to the other value as 4653 // long as the other value isn't poison. 4654 // select ?, poison, X -> X 4655 // select ?, undef, X -> X 4656 if (isa<PoisonValue>(TrueVal) || 4657 (Q.isUndefValue(TrueVal) && 4658 isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT))) 4659 return FalseVal; 4660 // select ?, X, poison -> X 4661 // select ?, X, undef -> X 4662 if (isa<PoisonValue>(FalseVal) || 4663 (Q.isUndefValue(FalseVal) && 4664 isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT))) 4665 return TrueVal; 4666 4667 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4668 Constant *TrueC, *FalseC; 4669 if (isa<FixedVectorType>(TrueVal->getType()) && 4670 match(TrueVal, m_Constant(TrueC)) && 4671 match(FalseVal, m_Constant(FalseC))) { 4672 unsigned NumElts = 4673 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4674 SmallVector<Constant *, 16> NewC; 4675 for (unsigned i = 0; i != NumElts; ++i) { 4676 // Bail out on incomplete vector constants. 4677 Constant *TEltC = TrueC->getAggregateElement(i); 4678 Constant *FEltC = FalseC->getAggregateElement(i); 4679 if (!TEltC || !FEltC) 4680 break; 4681 4682 // If the elements match (undef or not), that value is the result. If only 4683 // one element is undef, choose the defined element as the safe result. 4684 if (TEltC == FEltC) 4685 NewC.push_back(TEltC); 4686 else if (isa<PoisonValue>(TEltC) || 4687 (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC))) 4688 NewC.push_back(FEltC); 4689 else if (isa<PoisonValue>(FEltC) || 4690 (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC))) 4691 NewC.push_back(TEltC); 4692 else 4693 break; 4694 } 4695 if (NewC.size() == NumElts) 4696 return ConstantVector::get(NewC); 4697 } 4698 4699 if (Value *V = 4700 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4701 return V; 4702 4703 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4704 return V; 4705 4706 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4707 return V; 4708 4709 std::optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4710 if (Imp) 4711 return *Imp ? TrueVal : FalseVal; 4712 4713 return nullptr; 4714 } 4715 4716 Value *llvm::simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4717 const SimplifyQuery &Q) { 4718 return ::simplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4719 } 4720 4721 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4722 /// If not, this returns null. 4723 static Value *simplifyGEPInst(Type *SrcTy, Value *Ptr, 4724 ArrayRef<Value *> Indices, bool InBounds, 4725 const SimplifyQuery &Q, unsigned) { 4726 // The type of the GEP pointer operand. 4727 unsigned AS = 4728 cast<PointerType>(Ptr->getType()->getScalarType())->getAddressSpace(); 4729 4730 // getelementptr P -> P. 4731 if (Indices.empty()) 4732 return Ptr; 4733 4734 // Compute the (pointer) type returned by the GEP instruction. 4735 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Indices); 4736 Type *GEPTy = PointerType::get(LastType, AS); 4737 if (VectorType *VT = dyn_cast<VectorType>(Ptr->getType())) 4738 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4739 else { 4740 for (Value *Op : Indices) { 4741 // If one of the operands is a vector, the result type is a vector of 4742 // pointers. All vector operands must have the same number of elements. 4743 if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) { 4744 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4745 break; 4746 } 4747 } 4748 } 4749 4750 // For opaque pointers an all-zero GEP is a no-op. For typed pointers, 4751 // it may be equivalent to a bitcast. 4752 if (Ptr->getType()->getScalarType()->isOpaquePointerTy() && 4753 Ptr->getType() == GEPTy && 4754 all_of(Indices, [](const auto *V) { return match(V, m_Zero()); })) 4755 return Ptr; 4756 4757 // getelementptr poison, idx -> poison 4758 // getelementptr baseptr, poison -> poison 4759 if (isa<PoisonValue>(Ptr) || 4760 any_of(Indices, [](const auto *V) { return isa<PoisonValue>(V); })) 4761 return PoisonValue::get(GEPTy); 4762 4763 if (Q.isUndefValue(Ptr)) 4764 // If inbounds, we can choose an out-of-bounds pointer as a base pointer. 4765 return InBounds ? PoisonValue::get(GEPTy) : UndefValue::get(GEPTy); 4766 4767 bool IsScalableVec = 4768 isa<ScalableVectorType>(SrcTy) || any_of(Indices, [](const Value *V) { 4769 return isa<ScalableVectorType>(V->getType()); 4770 }); 4771 4772 if (Indices.size() == 1) { 4773 // getelementptr P, 0 -> P. 4774 if (match(Indices[0], m_Zero()) && Ptr->getType() == GEPTy) 4775 return Ptr; 4776 4777 Type *Ty = SrcTy; 4778 if (!IsScalableVec && Ty->isSized()) { 4779 Value *P; 4780 uint64_t C; 4781 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4782 // getelementptr P, N -> P if P points to a type of zero size. 4783 if (TyAllocSize == 0 && Ptr->getType() == GEPTy) 4784 return Ptr; 4785 4786 // The following transforms are only safe if the ptrtoint cast 4787 // doesn't truncate the pointers. 4788 if (Indices[0]->getType()->getScalarSizeInBits() == 4789 Q.DL.getPointerSizeInBits(AS)) { 4790 auto CanSimplify = [GEPTy, &P, Ptr]() -> bool { 4791 return P->getType() == GEPTy && 4792 getUnderlyingObject(P) == getUnderlyingObject(Ptr); 4793 }; 4794 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4795 if (TyAllocSize == 1 && 4796 match(Indices[0], 4797 m_Sub(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Specific(Ptr)))) && 4798 CanSimplify()) 4799 return P; 4800 4801 // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of 4802 // size 1 << C. 4803 if (match(Indices[0], m_AShr(m_Sub(m_PtrToInt(m_Value(P)), 4804 m_PtrToInt(m_Specific(Ptr))), 4805 m_ConstantInt(C))) && 4806 TyAllocSize == 1ULL << C && CanSimplify()) 4807 return P; 4808 4809 // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of 4810 // size C. 4811 if (match(Indices[0], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)), 4812 m_PtrToInt(m_Specific(Ptr))), 4813 m_SpecificInt(TyAllocSize))) && 4814 CanSimplify()) 4815 return P; 4816 } 4817 } 4818 } 4819 4820 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 4821 all_of(Indices.drop_back(1), 4822 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4823 unsigned IdxWidth = 4824 Q.DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()); 4825 if (Q.DL.getTypeSizeInBits(Indices.back()->getType()) == IdxWidth) { 4826 APInt BasePtrOffset(IdxWidth, 0); 4827 Value *StrippedBasePtr = 4828 Ptr->stripAndAccumulateInBoundsConstantOffsets(Q.DL, BasePtrOffset); 4829 4830 // Avoid creating inttoptr of zero here: While LLVMs treatment of 4831 // inttoptr is generally conservative, this particular case is folded to 4832 // a null pointer, which will have incorrect provenance. 4833 4834 // gep (gep V, C), (sub 0, V) -> C 4835 if (match(Indices.back(), 4836 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) && 4837 !BasePtrOffset.isZero()) { 4838 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4839 return ConstantExpr::getIntToPtr(CI, GEPTy); 4840 } 4841 // gep (gep V, C), (xor V, -1) -> C-1 4842 if (match(Indices.back(), 4843 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) && 4844 !BasePtrOffset.isOne()) { 4845 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4846 return ConstantExpr::getIntToPtr(CI, GEPTy); 4847 } 4848 } 4849 } 4850 4851 // Check to see if this is constant foldable. 4852 if (!isa<Constant>(Ptr) || 4853 !all_of(Indices, [](Value *V) { return isa<Constant>(V); })) 4854 return nullptr; 4855 4856 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ptr), Indices, 4857 InBounds); 4858 return ConstantFoldConstant(CE, Q.DL); 4859 } 4860 4861 Value *llvm::simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef<Value *> Indices, 4862 bool InBounds, const SimplifyQuery &Q) { 4863 return ::simplifyGEPInst(SrcTy, Ptr, Indices, InBounds, Q, RecursionLimit); 4864 } 4865 4866 /// Given operands for an InsertValueInst, see if we can fold the result. 4867 /// If not, this returns null. 4868 static Value *simplifyInsertValueInst(Value *Agg, Value *Val, 4869 ArrayRef<unsigned> Idxs, 4870 const SimplifyQuery &Q, unsigned) { 4871 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4872 if (Constant *CVal = dyn_cast<Constant>(Val)) 4873 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4874 4875 // insertvalue x, poison, n -> x 4876 // insertvalue x, undef, n -> x if x cannot be poison 4877 if (isa<PoisonValue>(Val) || 4878 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Agg))) 4879 return Agg; 4880 4881 // insertvalue x, (extractvalue y, n), n 4882 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4883 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4884 EV->getIndices() == Idxs) { 4885 // insertvalue undef, (extractvalue y, n), n -> y 4886 if (Q.isUndefValue(Agg)) 4887 return EV->getAggregateOperand(); 4888 4889 // insertvalue y, (extractvalue y, n), n -> y 4890 if (Agg == EV->getAggregateOperand()) 4891 return Agg; 4892 } 4893 4894 return nullptr; 4895 } 4896 4897 Value *llvm::simplifyInsertValueInst(Value *Agg, Value *Val, 4898 ArrayRef<unsigned> Idxs, 4899 const SimplifyQuery &Q) { 4900 return ::simplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4901 } 4902 4903 Value *llvm::simplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4904 const SimplifyQuery &Q) { 4905 // Try to constant fold. 4906 auto *VecC = dyn_cast<Constant>(Vec); 4907 auto *ValC = dyn_cast<Constant>(Val); 4908 auto *IdxC = dyn_cast<Constant>(Idx); 4909 if (VecC && ValC && IdxC) 4910 return ConstantExpr::getInsertElement(VecC, ValC, IdxC); 4911 4912 // For fixed-length vector, fold into poison if index is out of bounds. 4913 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4914 if (isa<FixedVectorType>(Vec->getType()) && 4915 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 4916 return PoisonValue::get(Vec->getType()); 4917 } 4918 4919 // If index is undef, it might be out of bounds (see above case) 4920 if (Q.isUndefValue(Idx)) 4921 return PoisonValue::get(Vec->getType()); 4922 4923 // If the scalar is poison, or it is undef and there is no risk of 4924 // propagating poison from the vector value, simplify to the vector value. 4925 if (isa<PoisonValue>(Val) || 4926 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec))) 4927 return Vec; 4928 4929 // If we are extracting a value from a vector, then inserting it into the same 4930 // place, that's the input vector: 4931 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4932 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 4933 return Vec; 4934 4935 return nullptr; 4936 } 4937 4938 /// Given operands for an ExtractValueInst, see if we can fold the result. 4939 /// If not, this returns null. 4940 static Value *simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4941 const SimplifyQuery &, unsigned) { 4942 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4943 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4944 4945 // extractvalue x, (insertvalue y, elt, n), n -> elt 4946 unsigned NumIdxs = Idxs.size(); 4947 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4948 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4949 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4950 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4951 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4952 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4953 Idxs.slice(0, NumCommonIdxs)) { 4954 if (NumIdxs == NumInsertValueIdxs) 4955 return IVI->getInsertedValueOperand(); 4956 break; 4957 } 4958 } 4959 4960 return nullptr; 4961 } 4962 4963 Value *llvm::simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4964 const SimplifyQuery &Q) { 4965 return ::simplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4966 } 4967 4968 /// Given operands for an ExtractElementInst, see if we can fold the result. 4969 /// If not, this returns null. 4970 static Value *simplifyExtractElementInst(Value *Vec, Value *Idx, 4971 const SimplifyQuery &Q, unsigned) { 4972 auto *VecVTy = cast<VectorType>(Vec->getType()); 4973 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4974 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4975 return ConstantExpr::getExtractElement(CVec, CIdx); 4976 4977 if (Q.isUndefValue(Vec)) 4978 return UndefValue::get(VecVTy->getElementType()); 4979 } 4980 4981 // An undef extract index can be arbitrarily chosen to be an out-of-range 4982 // index value, which would result in the instruction being poison. 4983 if (Q.isUndefValue(Idx)) 4984 return PoisonValue::get(VecVTy->getElementType()); 4985 4986 // If extracting a specified index from the vector, see if we can recursively 4987 // find a previously computed scalar that was inserted into the vector. 4988 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4989 // For fixed-length vector, fold into undef if index is out of bounds. 4990 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue(); 4991 if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts)) 4992 return PoisonValue::get(VecVTy->getElementType()); 4993 // Handle case where an element is extracted from a splat. 4994 if (IdxC->getValue().ult(MinNumElts)) 4995 if (auto *Splat = getSplatValue(Vec)) 4996 return Splat; 4997 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4998 return Elt; 4999 } else { 5000 // extractelt x, (insertelt y, elt, n), n -> elt 5001 // If the possibly-variable indices are trivially known to be equal 5002 // (because they are the same operand) then use the value that was 5003 // inserted directly. 5004 auto *IE = dyn_cast<InsertElementInst>(Vec); 5005 if (IE && IE->getOperand(2) == Idx) 5006 return IE->getOperand(1); 5007 5008 // The index is not relevant if our vector is a splat. 5009 if (Value *Splat = getSplatValue(Vec)) 5010 return Splat; 5011 } 5012 return nullptr; 5013 } 5014 5015 Value *llvm::simplifyExtractElementInst(Value *Vec, Value *Idx, 5016 const SimplifyQuery &Q) { 5017 return ::simplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 5018 } 5019 5020 /// See if we can fold the given phi. If not, returns null. 5021 static Value *simplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues, 5022 const SimplifyQuery &Q) { 5023 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE 5024 // here, because the PHI we may succeed simplifying to was not 5025 // def-reachable from the original PHI! 5026 5027 // If all of the PHI's incoming values are the same then replace the PHI node 5028 // with the common value. 5029 Value *CommonValue = nullptr; 5030 bool HasUndefInput = false; 5031 for (Value *Incoming : IncomingValues) { 5032 // If the incoming value is the phi node itself, it can safely be skipped. 5033 if (Incoming == PN) 5034 continue; 5035 if (Q.isUndefValue(Incoming)) { 5036 // Remember that we saw an undef value, but otherwise ignore them. 5037 HasUndefInput = true; 5038 continue; 5039 } 5040 if (CommonValue && Incoming != CommonValue) 5041 return nullptr; // Not the same, bail out. 5042 CommonValue = Incoming; 5043 } 5044 5045 // If CommonValue is null then all of the incoming values were either undef or 5046 // equal to the phi node itself. 5047 if (!CommonValue) 5048 return UndefValue::get(PN->getType()); 5049 5050 if (HasUndefInput) { 5051 // If we have a PHI node like phi(X, undef, X), where X is defined by some 5052 // instruction, we cannot return X as the result of the PHI node unless it 5053 // dominates the PHI block. 5054 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 5055 } 5056 5057 return CommonValue; 5058 } 5059 5060 static Value *simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 5061 const SimplifyQuery &Q, unsigned MaxRecurse) { 5062 if (auto *C = dyn_cast<Constant>(Op)) 5063 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 5064 5065 if (auto *CI = dyn_cast<CastInst>(Op)) { 5066 auto *Src = CI->getOperand(0); 5067 Type *SrcTy = Src->getType(); 5068 Type *MidTy = CI->getType(); 5069 Type *DstTy = Ty; 5070 if (Src->getType() == Ty) { 5071 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 5072 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 5073 Type *SrcIntPtrTy = 5074 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 5075 Type *MidIntPtrTy = 5076 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 5077 Type *DstIntPtrTy = 5078 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 5079 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 5080 SrcIntPtrTy, MidIntPtrTy, 5081 DstIntPtrTy) == Instruction::BitCast) 5082 return Src; 5083 } 5084 } 5085 5086 // bitcast x -> x 5087 if (CastOpc == Instruction::BitCast) 5088 if (Op->getType() == Ty) 5089 return Op; 5090 5091 return nullptr; 5092 } 5093 5094 Value *llvm::simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 5095 const SimplifyQuery &Q) { 5096 return ::simplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 5097 } 5098 5099 /// For the given destination element of a shuffle, peek through shuffles to 5100 /// match a root vector source operand that contains that element in the same 5101 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 5102 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 5103 int MaskVal, Value *RootVec, 5104 unsigned MaxRecurse) { 5105 if (!MaxRecurse--) 5106 return nullptr; 5107 5108 // Bail out if any mask value is undefined. That kind of shuffle may be 5109 // simplified further based on demanded bits or other folds. 5110 if (MaskVal == -1) 5111 return nullptr; 5112 5113 // The mask value chooses which source operand we need to look at next. 5114 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 5115 int RootElt = MaskVal; 5116 Value *SourceOp = Op0; 5117 if (MaskVal >= InVecNumElts) { 5118 RootElt = MaskVal - InVecNumElts; 5119 SourceOp = Op1; 5120 } 5121 5122 // If the source operand is a shuffle itself, look through it to find the 5123 // matching root vector. 5124 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 5125 return foldIdentityShuffles( 5126 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 5127 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 5128 } 5129 5130 // TODO: Look through bitcasts? What if the bitcast changes the vector element 5131 // size? 5132 5133 // The source operand is not a shuffle. Initialize the root vector value for 5134 // this shuffle if that has not been done yet. 5135 if (!RootVec) 5136 RootVec = SourceOp; 5137 5138 // Give up as soon as a source operand does not match the existing root value. 5139 if (RootVec != SourceOp) 5140 return nullptr; 5141 5142 // The element must be coming from the same lane in the source vector 5143 // (although it may have crossed lanes in intermediate shuffles). 5144 if (RootElt != DestElt) 5145 return nullptr; 5146 5147 return RootVec; 5148 } 5149 5150 static Value *simplifyShuffleVectorInst(Value *Op0, Value *Op1, 5151 ArrayRef<int> Mask, Type *RetTy, 5152 const SimplifyQuery &Q, 5153 unsigned MaxRecurse) { 5154 if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) 5155 return UndefValue::get(RetTy); 5156 5157 auto *InVecTy = cast<VectorType>(Op0->getType()); 5158 unsigned MaskNumElts = Mask.size(); 5159 ElementCount InVecEltCount = InVecTy->getElementCount(); 5160 5161 bool Scalable = InVecEltCount.isScalable(); 5162 5163 SmallVector<int, 32> Indices; 5164 Indices.assign(Mask.begin(), Mask.end()); 5165 5166 // Canonicalization: If mask does not select elements from an input vector, 5167 // replace that input vector with poison. 5168 if (!Scalable) { 5169 bool MaskSelects0 = false, MaskSelects1 = false; 5170 unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); 5171 for (unsigned i = 0; i != MaskNumElts; ++i) { 5172 if (Indices[i] == -1) 5173 continue; 5174 if ((unsigned)Indices[i] < InVecNumElts) 5175 MaskSelects0 = true; 5176 else 5177 MaskSelects1 = true; 5178 } 5179 if (!MaskSelects0) 5180 Op0 = PoisonValue::get(InVecTy); 5181 if (!MaskSelects1) 5182 Op1 = PoisonValue::get(InVecTy); 5183 } 5184 5185 auto *Op0Const = dyn_cast<Constant>(Op0); 5186 auto *Op1Const = dyn_cast<Constant>(Op1); 5187 5188 // If all operands are constant, constant fold the shuffle. This 5189 // transformation depends on the value of the mask which is not known at 5190 // compile time for scalable vectors 5191 if (Op0Const && Op1Const) 5192 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); 5193 5194 // Canonicalization: if only one input vector is constant, it shall be the 5195 // second one. This transformation depends on the value of the mask which 5196 // is not known at compile time for scalable vectors 5197 if (!Scalable && Op0Const && !Op1Const) { 5198 std::swap(Op0, Op1); 5199 ShuffleVectorInst::commuteShuffleMask(Indices, 5200 InVecEltCount.getKnownMinValue()); 5201 } 5202 5203 // A splat of an inserted scalar constant becomes a vector constant: 5204 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 5205 // NOTE: We may have commuted above, so analyze the updated Indices, not the 5206 // original mask constant. 5207 // NOTE: This transformation depends on the value of the mask which is not 5208 // known at compile time for scalable vectors 5209 Constant *C; 5210 ConstantInt *IndexC; 5211 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 5212 m_ConstantInt(IndexC)))) { 5213 // Match a splat shuffle mask of the insert index allowing undef elements. 5214 int InsertIndex = IndexC->getZExtValue(); 5215 if (all_of(Indices, [InsertIndex](int MaskElt) { 5216 return MaskElt == InsertIndex || MaskElt == -1; 5217 })) { 5218 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 5219 5220 // Shuffle mask undefs become undefined constant result elements. 5221 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 5222 for (unsigned i = 0; i != MaskNumElts; ++i) 5223 if (Indices[i] == -1) 5224 VecC[i] = UndefValue::get(C->getType()); 5225 return ConstantVector::get(VecC); 5226 } 5227 } 5228 5229 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 5230 // value type is same as the input vectors' type. 5231 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 5232 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 5233 all_equal(OpShuf->getShuffleMask())) 5234 return Op0; 5235 5236 // All remaining transformation depend on the value of the mask, which is 5237 // not known at compile time for scalable vectors. 5238 if (Scalable) 5239 return nullptr; 5240 5241 // Don't fold a shuffle with undef mask elements. This may get folded in a 5242 // better way using demanded bits or other analysis. 5243 // TODO: Should we allow this? 5244 if (is_contained(Indices, -1)) 5245 return nullptr; 5246 5247 // Check if every element of this shuffle can be mapped back to the 5248 // corresponding element of a single root vector. If so, we don't need this 5249 // shuffle. This handles simple identity shuffles as well as chains of 5250 // shuffles that may widen/narrow and/or move elements across lanes and back. 5251 Value *RootVec = nullptr; 5252 for (unsigned i = 0; i != MaskNumElts; ++i) { 5253 // Note that recursion is limited for each vector element, so if any element 5254 // exceeds the limit, this will fail to simplify. 5255 RootVec = 5256 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 5257 5258 // We can't replace a widening/narrowing shuffle with one of its operands. 5259 if (!RootVec || RootVec->getType() != RetTy) 5260 return nullptr; 5261 } 5262 return RootVec; 5263 } 5264 5265 /// Given operands for a ShuffleVectorInst, fold the result or return null. 5266 Value *llvm::simplifyShuffleVectorInst(Value *Op0, Value *Op1, 5267 ArrayRef<int> Mask, Type *RetTy, 5268 const SimplifyQuery &Q) { 5269 return ::simplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 5270 } 5271 5272 static Constant *foldConstant(Instruction::UnaryOps Opcode, Value *&Op, 5273 const SimplifyQuery &Q) { 5274 if (auto *C = dyn_cast<Constant>(Op)) 5275 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 5276 return nullptr; 5277 } 5278 5279 /// Given the operand for an FNeg, see if we can fold the result. If not, this 5280 /// returns null. 5281 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 5282 const SimplifyQuery &Q, unsigned MaxRecurse) { 5283 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 5284 return C; 5285 5286 Value *X; 5287 // fneg (fneg X) ==> X 5288 if (match(Op, m_FNeg(m_Value(X)))) 5289 return X; 5290 5291 return nullptr; 5292 } 5293 5294 Value *llvm::simplifyFNegInst(Value *Op, FastMathFlags FMF, 5295 const SimplifyQuery &Q) { 5296 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 5297 } 5298 5299 /// Try to propagate existing NaN values when possible. If not, replace the 5300 /// constant or elements in the constant with a canonical NaN. 5301 static Constant *propagateNaN(Constant *In) { 5302 if (auto *VecTy = dyn_cast<FixedVectorType>(In->getType())) { 5303 unsigned NumElts = VecTy->getNumElements(); 5304 SmallVector<Constant *, 32> NewC(NumElts); 5305 for (unsigned i = 0; i != NumElts; ++i) { 5306 Constant *EltC = In->getAggregateElement(i); 5307 // Poison and existing NaN elements propagate. 5308 // Replace unknown or undef elements with canonical NaN. 5309 if (EltC && (isa<PoisonValue>(EltC) || EltC->isNaN())) 5310 NewC[i] = EltC; 5311 else 5312 NewC[i] = (ConstantFP::getNaN(VecTy->getElementType())); 5313 } 5314 return ConstantVector::get(NewC); 5315 } 5316 5317 // It is not a fixed vector, but not a simple NaN either? 5318 if (!In->isNaN()) 5319 return ConstantFP::getNaN(In->getType()); 5320 5321 // Propagate the existing NaN constant when possible. 5322 // TODO: Should we quiet a signaling NaN? 5323 return In; 5324 } 5325 5326 /// Perform folds that are common to any floating-point operation. This implies 5327 /// transforms based on poison/undef/NaN because the operation itself makes no 5328 /// difference to the result. 5329 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF, 5330 const SimplifyQuery &Q, 5331 fp::ExceptionBehavior ExBehavior, 5332 RoundingMode Rounding) { 5333 // Poison is independent of anything else. It always propagates from an 5334 // operand to a math result. 5335 if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); })) 5336 return PoisonValue::get(Ops[0]->getType()); 5337 5338 for (Value *V : Ops) { 5339 bool IsNan = match(V, m_NaN()); 5340 bool IsInf = match(V, m_Inf()); 5341 bool IsUndef = Q.isUndefValue(V); 5342 5343 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 5344 // (an undef operand can be chosen to be Nan/Inf), then the result of 5345 // this operation is poison. 5346 if (FMF.noNaNs() && (IsNan || IsUndef)) 5347 return PoisonValue::get(V->getType()); 5348 if (FMF.noInfs() && (IsInf || IsUndef)) 5349 return PoisonValue::get(V->getType()); 5350 5351 if (isDefaultFPEnvironment(ExBehavior, Rounding)) { 5352 // Undef does not propagate because undef means that all bits can take on 5353 // any value. If this is undef * NaN for example, then the result values 5354 // (at least the exponent bits) are limited. Assume the undef is a 5355 // canonical NaN and propagate that. 5356 if (IsUndef) 5357 return ConstantFP::getNaN(V->getType()); 5358 if (IsNan) 5359 return propagateNaN(cast<Constant>(V)); 5360 } else if (ExBehavior != fp::ebStrict) { 5361 if (IsNan) 5362 return propagateNaN(cast<Constant>(V)); 5363 } 5364 } 5365 return nullptr; 5366 } 5367 5368 /// Given operands for an FAdd, see if we can fold the result. If not, this 5369 /// returns null. 5370 static Value * 5371 simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5372 const SimplifyQuery &Q, unsigned MaxRecurse, 5373 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5374 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5375 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5376 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 5377 return C; 5378 5379 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5380 return C; 5381 5382 // fadd X, -0 ==> X 5383 // With strict/constrained FP, we have these possible edge cases that do 5384 // not simplify to Op0: 5385 // fadd SNaN, -0.0 --> QNaN 5386 // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative) 5387 if (canIgnoreSNaN(ExBehavior, FMF) && 5388 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 5389 FMF.noSignedZeros())) 5390 if (match(Op1, m_NegZeroFP())) 5391 return Op0; 5392 5393 // fadd X, 0 ==> X, when we know X is not -0 5394 if (canIgnoreSNaN(ExBehavior, FMF)) 5395 if (match(Op1, m_PosZeroFP()) && 5396 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 5397 return Op0; 5398 5399 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5400 return nullptr; 5401 5402 if (FMF.noNaNs()) { 5403 // With nnan: X + {+/-}Inf --> {+/-}Inf 5404 if (match(Op1, m_Inf())) 5405 return Op1; 5406 5407 // With nnan: -X + X --> 0.0 (and commuted variant) 5408 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 5409 // Negative zeros are allowed because we always end up with positive zero: 5410 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5411 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5412 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 5413 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 5414 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 5415 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 5416 return ConstantFP::getNullValue(Op0->getType()); 5417 5418 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5419 match(Op1, m_FNeg(m_Specific(Op0)))) 5420 return ConstantFP::getNullValue(Op0->getType()); 5421 } 5422 5423 // (X - Y) + Y --> X 5424 // Y + (X - Y) --> X 5425 Value *X; 5426 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5427 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 5428 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 5429 return X; 5430 5431 return nullptr; 5432 } 5433 5434 /// Given operands for an FSub, see if we can fold the result. If not, this 5435 /// returns null. 5436 static Value * 5437 simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5438 const SimplifyQuery &Q, unsigned MaxRecurse, 5439 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5440 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5441 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5442 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 5443 return C; 5444 5445 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5446 return C; 5447 5448 // fsub X, +0 ==> X 5449 if (canIgnoreSNaN(ExBehavior, FMF) && 5450 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 5451 FMF.noSignedZeros())) 5452 if (match(Op1, m_PosZeroFP())) 5453 return Op0; 5454 5455 // fsub X, -0 ==> X, when we know X is not -0 5456 if (canIgnoreSNaN(ExBehavior, FMF)) 5457 if (match(Op1, m_NegZeroFP()) && 5458 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 5459 return Op0; 5460 5461 // fsub -0.0, (fsub -0.0, X) ==> X 5462 // fsub -0.0, (fneg X) ==> X 5463 Value *X; 5464 if (canIgnoreSNaN(ExBehavior, FMF)) 5465 if (match(Op0, m_NegZeroFP()) && match(Op1, m_FNeg(m_Value(X)))) 5466 return X; 5467 5468 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 5469 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 5470 if (canIgnoreSNaN(ExBehavior, FMF)) 5471 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 5472 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 5473 match(Op1, m_FNeg(m_Value(X))))) 5474 return X; 5475 5476 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5477 return nullptr; 5478 5479 if (FMF.noNaNs()) { 5480 // fsub nnan x, x ==> 0.0 5481 if (Op0 == Op1) 5482 return Constant::getNullValue(Op0->getType()); 5483 5484 // With nnan: {+/-}Inf - X --> {+/-}Inf 5485 if (match(Op0, m_Inf())) 5486 return Op0; 5487 5488 // With nnan: X - {+/-}Inf --> {-/+}Inf 5489 if (match(Op1, m_Inf())) 5490 return foldConstant(Instruction::FNeg, Op1, Q); 5491 } 5492 5493 // Y - (Y - X) --> X 5494 // (X + Y) - Y --> X 5495 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5496 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 5497 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 5498 return X; 5499 5500 return nullptr; 5501 } 5502 5503 static Value *simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5504 const SimplifyQuery &Q, unsigned MaxRecurse, 5505 fp::ExceptionBehavior ExBehavior, 5506 RoundingMode Rounding) { 5507 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5508 return C; 5509 5510 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5511 return nullptr; 5512 5513 // Canonicalize special constants as operand 1. 5514 if (match(Op0, m_FPOne()) || match(Op0, m_AnyZeroFP())) 5515 std::swap(Op0, Op1); 5516 5517 // X * 1.0 --> X 5518 if (match(Op1, m_FPOne())) 5519 return Op0; 5520 5521 if (match(Op1, m_AnyZeroFP())) { 5522 // X * 0.0 --> 0.0 (with nnan and nsz) 5523 if (FMF.noNaNs() && FMF.noSignedZeros()) 5524 return ConstantFP::getNullValue(Op0->getType()); 5525 5526 // +normal number * (-)0.0 --> (-)0.0 5527 if (isKnownNeverInfinity(Op0, Q.TLI) && isKnownNeverNaN(Op0, Q.TLI) && 5528 SignBitMustBeZero(Op0, Q.TLI)) 5529 return Op1; 5530 } 5531 5532 // sqrt(X) * sqrt(X) --> X, if we can: 5533 // 1. Remove the intermediate rounding (reassociate). 5534 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 5535 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 5536 Value *X; 5537 if (Op0 == Op1 && match(Op0, m_Sqrt(m_Value(X))) && FMF.allowReassoc() && 5538 FMF.noNaNs() && FMF.noSignedZeros()) 5539 return X; 5540 5541 return nullptr; 5542 } 5543 5544 /// Given the operands for an FMul, see if we can fold the result 5545 static Value * 5546 simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5547 const SimplifyQuery &Q, unsigned MaxRecurse, 5548 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5549 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5550 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5551 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 5552 return C; 5553 5554 // Now apply simplifications that do not require rounding. 5555 return simplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding); 5556 } 5557 5558 Value *llvm::simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5559 const SimplifyQuery &Q, 5560 fp::ExceptionBehavior ExBehavior, 5561 RoundingMode Rounding) { 5562 return ::simplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5563 Rounding); 5564 } 5565 5566 Value *llvm::simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5567 const SimplifyQuery &Q, 5568 fp::ExceptionBehavior ExBehavior, 5569 RoundingMode Rounding) { 5570 return ::simplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5571 Rounding); 5572 } 5573 5574 Value *llvm::simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5575 const SimplifyQuery &Q, 5576 fp::ExceptionBehavior ExBehavior, 5577 RoundingMode Rounding) { 5578 return ::simplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5579 Rounding); 5580 } 5581 5582 Value *llvm::simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5583 const SimplifyQuery &Q, 5584 fp::ExceptionBehavior ExBehavior, 5585 RoundingMode Rounding) { 5586 return ::simplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5587 Rounding); 5588 } 5589 5590 static Value * 5591 simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5592 const SimplifyQuery &Q, unsigned, 5593 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5594 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5595 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5596 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 5597 return C; 5598 5599 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5600 return C; 5601 5602 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5603 return nullptr; 5604 5605 // X / 1.0 -> X 5606 if (match(Op1, m_FPOne())) 5607 return Op0; 5608 5609 // 0 / X -> 0 5610 // Requires that NaNs are off (X could be zero) and signed zeroes are 5611 // ignored (X could be positive or negative, so the output sign is unknown). 5612 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5613 return ConstantFP::getNullValue(Op0->getType()); 5614 5615 if (FMF.noNaNs()) { 5616 // X / X -> 1.0 is legal when NaNs are ignored. 5617 // We can ignore infinities because INF/INF is NaN. 5618 if (Op0 == Op1) 5619 return ConstantFP::get(Op0->getType(), 1.0); 5620 5621 // (X * Y) / Y --> X if we can reassociate to the above form. 5622 Value *X; 5623 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 5624 return X; 5625 5626 // -X / X -> -1.0 and 5627 // X / -X -> -1.0 are legal when NaNs are ignored. 5628 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 5629 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 5630 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 5631 return ConstantFP::get(Op0->getType(), -1.0); 5632 5633 // nnan ninf X / [-]0.0 -> poison 5634 if (FMF.noInfs() && match(Op1, m_AnyZeroFP())) 5635 return PoisonValue::get(Op1->getType()); 5636 } 5637 5638 return nullptr; 5639 } 5640 5641 Value *llvm::simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5642 const SimplifyQuery &Q, 5643 fp::ExceptionBehavior ExBehavior, 5644 RoundingMode Rounding) { 5645 return ::simplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5646 Rounding); 5647 } 5648 5649 static Value * 5650 simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5651 const SimplifyQuery &Q, unsigned, 5652 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5653 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5654 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5655 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 5656 return C; 5657 5658 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5659 return C; 5660 5661 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5662 return nullptr; 5663 5664 // Unlike fdiv, the result of frem always matches the sign of the dividend. 5665 // The constant match may include undef elements in a vector, so return a full 5666 // zero constant as the result. 5667 if (FMF.noNaNs()) { 5668 // +0 % X -> 0 5669 if (match(Op0, m_PosZeroFP())) 5670 return ConstantFP::getNullValue(Op0->getType()); 5671 // -0 % X -> -0 5672 if (match(Op0, m_NegZeroFP())) 5673 return ConstantFP::getNegativeZero(Op0->getType()); 5674 } 5675 5676 return nullptr; 5677 } 5678 5679 Value *llvm::simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5680 const SimplifyQuery &Q, 5681 fp::ExceptionBehavior ExBehavior, 5682 RoundingMode Rounding) { 5683 return ::simplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5684 Rounding); 5685 } 5686 5687 //=== Helper functions for higher up the class hierarchy. 5688 5689 /// Given the operand for a UnaryOperator, see if we can fold the result. 5690 /// If not, this returns null. 5691 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 5692 unsigned MaxRecurse) { 5693 switch (Opcode) { 5694 case Instruction::FNeg: 5695 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 5696 default: 5697 llvm_unreachable("Unexpected opcode"); 5698 } 5699 } 5700 5701 /// Given the operand for a UnaryOperator, see if we can fold the result. 5702 /// If not, this returns null. 5703 /// Try to use FastMathFlags when folding the result. 5704 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 5705 const FastMathFlags &FMF, const SimplifyQuery &Q, 5706 unsigned MaxRecurse) { 5707 switch (Opcode) { 5708 case Instruction::FNeg: 5709 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 5710 default: 5711 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 5712 } 5713 } 5714 5715 Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 5716 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 5717 } 5718 5719 Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 5720 const SimplifyQuery &Q) { 5721 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 5722 } 5723 5724 /// Given operands for a BinaryOperator, see if we can fold the result. 5725 /// If not, this returns null. 5726 static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5727 const SimplifyQuery &Q, unsigned MaxRecurse) { 5728 switch (Opcode) { 5729 case Instruction::Add: 5730 return simplifyAddInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, 5731 MaxRecurse); 5732 case Instruction::Sub: 5733 return simplifySubInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, 5734 MaxRecurse); 5735 case Instruction::Mul: 5736 return simplifyMulInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, 5737 MaxRecurse); 5738 case Instruction::SDiv: 5739 return simplifySDivInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); 5740 case Instruction::UDiv: 5741 return simplifyUDivInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); 5742 case Instruction::SRem: 5743 return simplifySRemInst(LHS, RHS, Q, MaxRecurse); 5744 case Instruction::URem: 5745 return simplifyURemInst(LHS, RHS, Q, MaxRecurse); 5746 case Instruction::Shl: 5747 return simplifyShlInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, 5748 MaxRecurse); 5749 case Instruction::LShr: 5750 return simplifyLShrInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); 5751 case Instruction::AShr: 5752 return simplifyAShrInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); 5753 case Instruction::And: 5754 return simplifyAndInst(LHS, RHS, Q, MaxRecurse); 5755 case Instruction::Or: 5756 return simplifyOrInst(LHS, RHS, Q, MaxRecurse); 5757 case Instruction::Xor: 5758 return simplifyXorInst(LHS, RHS, Q, MaxRecurse); 5759 case Instruction::FAdd: 5760 return simplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5761 case Instruction::FSub: 5762 return simplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5763 case Instruction::FMul: 5764 return simplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5765 case Instruction::FDiv: 5766 return simplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5767 case Instruction::FRem: 5768 return simplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5769 default: 5770 llvm_unreachable("Unexpected opcode"); 5771 } 5772 } 5773 5774 /// Given operands for a BinaryOperator, see if we can fold the result. 5775 /// If not, this returns null. 5776 /// Try to use FastMathFlags when folding the result. 5777 static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5778 const FastMathFlags &FMF, const SimplifyQuery &Q, 5779 unsigned MaxRecurse) { 5780 switch (Opcode) { 5781 case Instruction::FAdd: 5782 return simplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 5783 case Instruction::FSub: 5784 return simplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 5785 case Instruction::FMul: 5786 return simplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 5787 case Instruction::FDiv: 5788 return simplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 5789 default: 5790 return simplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 5791 } 5792 } 5793 5794 Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5795 const SimplifyQuery &Q) { 5796 return ::simplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 5797 } 5798 5799 Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5800 FastMathFlags FMF, const SimplifyQuery &Q) { 5801 return ::simplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 5802 } 5803 5804 /// Given operands for a CmpInst, see if we can fold the result. 5805 static Value *simplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5806 const SimplifyQuery &Q, unsigned MaxRecurse) { 5807 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 5808 return simplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 5809 return simplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5810 } 5811 5812 Value *llvm::simplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5813 const SimplifyQuery &Q) { 5814 return ::simplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 5815 } 5816 5817 static bool isIdempotent(Intrinsic::ID ID) { 5818 switch (ID) { 5819 default: 5820 return false; 5821 5822 // Unary idempotent: f(f(x)) = f(x) 5823 case Intrinsic::fabs: 5824 case Intrinsic::floor: 5825 case Intrinsic::ceil: 5826 case Intrinsic::trunc: 5827 case Intrinsic::rint: 5828 case Intrinsic::nearbyint: 5829 case Intrinsic::round: 5830 case Intrinsic::roundeven: 5831 case Intrinsic::canonicalize: 5832 case Intrinsic::arithmetic_fence: 5833 return true; 5834 } 5835 } 5836 5837 /// Return true if the intrinsic rounds a floating-point value to an integral 5838 /// floating-point value (not an integer type). 5839 static bool removesFPFraction(Intrinsic::ID ID) { 5840 switch (ID) { 5841 default: 5842 return false; 5843 5844 case Intrinsic::floor: 5845 case Intrinsic::ceil: 5846 case Intrinsic::trunc: 5847 case Intrinsic::rint: 5848 case Intrinsic::nearbyint: 5849 case Intrinsic::round: 5850 case Intrinsic::roundeven: 5851 return true; 5852 } 5853 } 5854 5855 static Value *simplifyRelativeLoad(Constant *Ptr, Constant *Offset, 5856 const DataLayout &DL) { 5857 GlobalValue *PtrSym; 5858 APInt PtrOffset; 5859 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 5860 return nullptr; 5861 5862 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 5863 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 5864 Type *Int32PtrTy = Int32Ty->getPointerTo(); 5865 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 5866 5867 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 5868 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 5869 return nullptr; 5870 5871 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 5872 if (OffsetInt % 4 != 0) 5873 return nullptr; 5874 5875 Constant *C = ConstantExpr::getGetElementPtr( 5876 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 5877 ConstantInt::get(Int64Ty, OffsetInt / 4)); 5878 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 5879 if (!Loaded) 5880 return nullptr; 5881 5882 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 5883 if (!LoadedCE) 5884 return nullptr; 5885 5886 if (LoadedCE->getOpcode() == Instruction::Trunc) { 5887 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5888 if (!LoadedCE) 5889 return nullptr; 5890 } 5891 5892 if (LoadedCE->getOpcode() != Instruction::Sub) 5893 return nullptr; 5894 5895 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5896 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 5897 return nullptr; 5898 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 5899 5900 Constant *LoadedRHS = LoadedCE->getOperand(1); 5901 GlobalValue *LoadedRHSSym; 5902 APInt LoadedRHSOffset; 5903 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 5904 DL) || 5905 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 5906 return nullptr; 5907 5908 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 5909 } 5910 5911 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 5912 const SimplifyQuery &Q) { 5913 // Idempotent functions return the same result when called repeatedly. 5914 Intrinsic::ID IID = F->getIntrinsicID(); 5915 if (isIdempotent(IID)) 5916 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 5917 if (II->getIntrinsicID() == IID) 5918 return II; 5919 5920 if (removesFPFraction(IID)) { 5921 // Converting from int or calling a rounding function always results in a 5922 // finite integral number or infinity. For those inputs, rounding functions 5923 // always return the same value, so the (2nd) rounding is eliminated. Ex: 5924 // floor (sitofp x) -> sitofp x 5925 // round (ceil x) -> ceil x 5926 auto *II = dyn_cast<IntrinsicInst>(Op0); 5927 if ((II && removesFPFraction(II->getIntrinsicID())) || 5928 match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 5929 return Op0; 5930 } 5931 5932 Value *X; 5933 switch (IID) { 5934 case Intrinsic::fabs: 5935 if (SignBitMustBeZero(Op0, Q.TLI)) 5936 return Op0; 5937 break; 5938 case Intrinsic::bswap: 5939 // bswap(bswap(x)) -> x 5940 if (match(Op0, m_BSwap(m_Value(X)))) 5941 return X; 5942 break; 5943 case Intrinsic::bitreverse: 5944 // bitreverse(bitreverse(x)) -> x 5945 if (match(Op0, m_BitReverse(m_Value(X)))) 5946 return X; 5947 break; 5948 case Intrinsic::ctpop: { 5949 // ctpop(X) -> 1 iff X is non-zero power of 2. 5950 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ false, 0, Q.AC, Q.CxtI, 5951 Q.DT)) 5952 return ConstantInt::get(Op0->getType(), 1); 5953 // If everything but the lowest bit is zero, that bit is the pop-count. Ex: 5954 // ctpop(and X, 1) --> and X, 1 5955 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 5956 if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), 5957 Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 5958 return Op0; 5959 break; 5960 } 5961 case Intrinsic::exp: 5962 // exp(log(x)) -> x 5963 if (Q.CxtI->hasAllowReassoc() && 5964 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) 5965 return X; 5966 break; 5967 case Intrinsic::exp2: 5968 // exp2(log2(x)) -> x 5969 if (Q.CxtI->hasAllowReassoc() && 5970 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) 5971 return X; 5972 break; 5973 case Intrinsic::log: 5974 // log(exp(x)) -> x 5975 if (Q.CxtI->hasAllowReassoc() && 5976 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) 5977 return X; 5978 break; 5979 case Intrinsic::log2: 5980 // log2(exp2(x)) -> x 5981 if (Q.CxtI->hasAllowReassoc() && 5982 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 5983 match(Op0, 5984 m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), m_Value(X))))) 5985 return X; 5986 break; 5987 case Intrinsic::log10: 5988 // log10(pow(10.0, x)) -> x 5989 if (Q.CxtI->hasAllowReassoc() && 5990 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), m_Value(X)))) 5991 return X; 5992 break; 5993 case Intrinsic::experimental_vector_reverse: 5994 // experimental.vector.reverse(experimental.vector.reverse(x)) -> x 5995 if (match(Op0, m_VecReverse(m_Value(X)))) 5996 return X; 5997 // experimental.vector.reverse(splat(X)) -> splat(X) 5998 if (isSplatValue(Op0)) 5999 return Op0; 6000 break; 6001 default: 6002 break; 6003 } 6004 6005 return nullptr; 6006 } 6007 6008 /// Given a min/max intrinsic, see if it can be removed based on having an 6009 /// operand that is another min/max intrinsic with shared operand(s). The caller 6010 /// is expected to swap the operand arguments to handle commutation. 6011 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 6012 Value *X, *Y; 6013 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 6014 return nullptr; 6015 6016 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 6017 if (!MM0) 6018 return nullptr; 6019 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 6020 6021 if (Op1 == X || Op1 == Y || 6022 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 6023 // max (max X, Y), X --> max X, Y 6024 if (IID0 == IID) 6025 return MM0; 6026 // max (min X, Y), X --> X 6027 if (IID0 == getInverseMinMaxIntrinsic(IID)) 6028 return Op1; 6029 } 6030 return nullptr; 6031 } 6032 6033 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 6034 const SimplifyQuery &Q) { 6035 Intrinsic::ID IID = F->getIntrinsicID(); 6036 Type *ReturnType = F->getReturnType(); 6037 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 6038 switch (IID) { 6039 case Intrinsic::abs: 6040 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 6041 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 6042 // on the outer abs. 6043 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 6044 return Op0; 6045 break; 6046 6047 case Intrinsic::cttz: { 6048 Value *X; 6049 if (match(Op0, m_Shl(m_One(), m_Value(X)))) 6050 return X; 6051 break; 6052 } 6053 case Intrinsic::ctlz: { 6054 Value *X; 6055 if (match(Op0, m_LShr(m_Negative(), m_Value(X)))) 6056 return X; 6057 if (match(Op0, m_AShr(m_Negative(), m_Value()))) 6058 return Constant::getNullValue(ReturnType); 6059 break; 6060 } 6061 case Intrinsic::smax: 6062 case Intrinsic::smin: 6063 case Intrinsic::umax: 6064 case Intrinsic::umin: { 6065 // If the arguments are the same, this is a no-op. 6066 if (Op0 == Op1) 6067 return Op0; 6068 6069 // Canonicalize immediate constant operand as Op1. 6070 if (match(Op0, m_ImmConstant())) 6071 std::swap(Op0, Op1); 6072 6073 // Assume undef is the limit value. 6074 if (Q.isUndefValue(Op1)) 6075 return ConstantInt::get( 6076 ReturnType, MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)); 6077 6078 const APInt *C; 6079 if (match(Op1, m_APIntAllowUndef(C))) { 6080 // Clamp to limit value. For example: 6081 // umax(i8 %x, i8 255) --> 255 6082 if (*C == MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)) 6083 return ConstantInt::get(ReturnType, *C); 6084 6085 // If the constant op is the opposite of the limit value, the other must 6086 // be larger/smaller or equal. For example: 6087 // umin(i8 %x, i8 255) --> %x 6088 if (*C == MinMaxIntrinsic::getSaturationPoint( 6089 getInverseMinMaxIntrinsic(IID), BitWidth)) 6090 return Op0; 6091 6092 // Remove nested call if constant operands allow it. Example: 6093 // max (max X, 7), 5 -> max X, 7 6094 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 6095 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 6096 // TODO: loosen undef/splat restrictions for vector constants. 6097 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 6098 const APInt *InnerC; 6099 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 6100 ICmpInst::compare(*InnerC, *C, 6101 ICmpInst::getNonStrictPredicate( 6102 MinMaxIntrinsic::getPredicate(IID)))) 6103 return Op0; 6104 } 6105 } 6106 6107 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 6108 return V; 6109 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 6110 return V; 6111 6112 ICmpInst::Predicate Pred = 6113 ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID)); 6114 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) 6115 return Op0; 6116 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) 6117 return Op1; 6118 6119 if (std::optional<bool> Imp = 6120 isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL)) 6121 return *Imp ? Op0 : Op1; 6122 if (std::optional<bool> Imp = 6123 isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL)) 6124 return *Imp ? Op1 : Op0; 6125 6126 break; 6127 } 6128 case Intrinsic::usub_with_overflow: 6129 case Intrinsic::ssub_with_overflow: 6130 // X - X -> { 0, false } 6131 // X - undef -> { 0, false } 6132 // undef - X -> { 0, false } 6133 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 6134 return Constant::getNullValue(ReturnType); 6135 break; 6136 case Intrinsic::uadd_with_overflow: 6137 case Intrinsic::sadd_with_overflow: 6138 // X + undef -> { -1, false } 6139 // undef + x -> { -1, false } 6140 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 6141 return ConstantStruct::get( 6142 cast<StructType>(ReturnType), 6143 {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), 6144 Constant::getNullValue(ReturnType->getStructElementType(1))}); 6145 } 6146 break; 6147 case Intrinsic::umul_with_overflow: 6148 case Intrinsic::smul_with_overflow: 6149 // 0 * X -> { 0, false } 6150 // X * 0 -> { 0, false } 6151 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 6152 return Constant::getNullValue(ReturnType); 6153 // undef * X -> { 0, false } 6154 // X * undef -> { 0, false } 6155 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 6156 return Constant::getNullValue(ReturnType); 6157 break; 6158 case Intrinsic::uadd_sat: 6159 // sat(MAX + X) -> MAX 6160 // sat(X + MAX) -> MAX 6161 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 6162 return Constant::getAllOnesValue(ReturnType); 6163 [[fallthrough]]; 6164 case Intrinsic::sadd_sat: 6165 // sat(X + undef) -> -1 6166 // sat(undef + X) -> -1 6167 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 6168 // For signed: Assume undef is ~X, in which case X + ~X = -1. 6169 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 6170 return Constant::getAllOnesValue(ReturnType); 6171 6172 // X + 0 -> X 6173 if (match(Op1, m_Zero())) 6174 return Op0; 6175 // 0 + X -> X 6176 if (match(Op0, m_Zero())) 6177 return Op1; 6178 break; 6179 case Intrinsic::usub_sat: 6180 // sat(0 - X) -> 0, sat(X - MAX) -> 0 6181 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 6182 return Constant::getNullValue(ReturnType); 6183 [[fallthrough]]; 6184 case Intrinsic::ssub_sat: 6185 // X - X -> 0, X - undef -> 0, undef - X -> 0 6186 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 6187 return Constant::getNullValue(ReturnType); 6188 // X - 0 -> X 6189 if (match(Op1, m_Zero())) 6190 return Op0; 6191 break; 6192 case Intrinsic::load_relative: 6193 if (auto *C0 = dyn_cast<Constant>(Op0)) 6194 if (auto *C1 = dyn_cast<Constant>(Op1)) 6195 return simplifyRelativeLoad(C0, C1, Q.DL); 6196 break; 6197 case Intrinsic::powi: 6198 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 6199 // powi(x, 0) -> 1.0 6200 if (Power->isZero()) 6201 return ConstantFP::get(Op0->getType(), 1.0); 6202 // powi(x, 1) -> x 6203 if (Power->isOne()) 6204 return Op0; 6205 } 6206 break; 6207 case Intrinsic::copysign: 6208 // copysign X, X --> X 6209 if (Op0 == Op1) 6210 return Op0; 6211 // copysign -X, X --> X 6212 // copysign X, -X --> -X 6213 if (match(Op0, m_FNeg(m_Specific(Op1))) || 6214 match(Op1, m_FNeg(m_Specific(Op0)))) 6215 return Op1; 6216 break; 6217 case Intrinsic::is_fpclass: { 6218 if (isa<PoisonValue>(Op0)) 6219 return PoisonValue::get(ReturnType); 6220 6221 uint64_t Mask = cast<ConstantInt>(Op1)->getZExtValue(); 6222 // If all tests are made, it doesn't matter what the value is. 6223 if ((Mask & fcAllFlags) == fcAllFlags) 6224 return ConstantInt::get(ReturnType, true); 6225 if ((Mask & fcAllFlags) == 0) 6226 return ConstantInt::get(ReturnType, false); 6227 if (Q.isUndefValue(Op0)) 6228 return UndefValue::get(ReturnType); 6229 break; 6230 } 6231 case Intrinsic::maxnum: 6232 case Intrinsic::minnum: 6233 case Intrinsic::maximum: 6234 case Intrinsic::minimum: { 6235 // If the arguments are the same, this is a no-op. 6236 if (Op0 == Op1) 6237 return Op0; 6238 6239 // Canonicalize constant operand as Op1. 6240 if (isa<Constant>(Op0)) 6241 std::swap(Op0, Op1); 6242 6243 // If an argument is undef, return the other argument. 6244 if (Q.isUndefValue(Op1)) 6245 return Op0; 6246 6247 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 6248 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; 6249 6250 // minnum(X, nan) -> X 6251 // maxnum(X, nan) -> X 6252 // minimum(X, nan) -> nan 6253 // maximum(X, nan) -> nan 6254 if (match(Op1, m_NaN())) 6255 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; 6256 6257 // In the following folds, inf can be replaced with the largest finite 6258 // float, if the ninf flag is set. 6259 const APFloat *C; 6260 if (match(Op1, m_APFloat(C)) && 6261 (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) { 6262 // minnum(X, -inf) -> -inf 6263 // maxnum(X, +inf) -> +inf 6264 // minimum(X, -inf) -> -inf if nnan 6265 // maximum(X, +inf) -> +inf if nnan 6266 if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs())) 6267 return ConstantFP::get(ReturnType, *C); 6268 6269 // minnum(X, +inf) -> X if nnan 6270 // maxnum(X, -inf) -> X if nnan 6271 // minimum(X, +inf) -> X 6272 // maximum(X, -inf) -> X 6273 if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs())) 6274 return Op0; 6275 } 6276 6277 // Min/max of the same operation with common operand: 6278 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 6279 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 6280 if (M0->getIntrinsicID() == IID && 6281 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 6282 return Op0; 6283 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 6284 if (M1->getIntrinsicID() == IID && 6285 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 6286 return Op1; 6287 6288 break; 6289 } 6290 case Intrinsic::vector_extract: { 6291 Type *ReturnType = F->getReturnType(); 6292 6293 // (extract_vector (insert_vector _, X, 0), 0) -> X 6294 unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue(); 6295 Value *X = nullptr; 6296 if (match(Op0, m_Intrinsic<Intrinsic::vector_insert>(m_Value(), m_Value(X), 6297 m_Zero())) && 6298 IdxN == 0 && X->getType() == ReturnType) 6299 return X; 6300 6301 break; 6302 } 6303 default: 6304 break; 6305 } 6306 6307 return nullptr; 6308 } 6309 6310 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 6311 6312 unsigned NumOperands = Call->arg_size(); 6313 Function *F = cast<Function>(Call->getCalledFunction()); 6314 Intrinsic::ID IID = F->getIntrinsicID(); 6315 6316 // Most of the intrinsics with no operands have some kind of side effect. 6317 // Don't simplify. 6318 if (!NumOperands) { 6319 switch (IID) { 6320 case Intrinsic::vscale: { 6321 // Call may not be inserted into the IR yet at point of calling simplify. 6322 if (!Call->getParent() || !Call->getParent()->getParent()) 6323 return nullptr; 6324 auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange); 6325 if (!Attr.isValid()) 6326 return nullptr; 6327 unsigned VScaleMin = Attr.getVScaleRangeMin(); 6328 std::optional<unsigned> VScaleMax = Attr.getVScaleRangeMax(); 6329 if (VScaleMax && VScaleMin == VScaleMax) 6330 return ConstantInt::get(F->getReturnType(), VScaleMin); 6331 return nullptr; 6332 } 6333 default: 6334 return nullptr; 6335 } 6336 } 6337 6338 if (NumOperands == 1) 6339 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 6340 6341 if (NumOperands == 2) 6342 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 6343 Call->getArgOperand(1), Q); 6344 6345 // Handle intrinsics with 3 or more arguments. 6346 switch (IID) { 6347 case Intrinsic::masked_load: 6348 case Intrinsic::masked_gather: { 6349 Value *MaskArg = Call->getArgOperand(2); 6350 Value *PassthruArg = Call->getArgOperand(3); 6351 // If the mask is all zeros or undef, the "passthru" argument is the result. 6352 if (maskIsAllZeroOrUndef(MaskArg)) 6353 return PassthruArg; 6354 return nullptr; 6355 } 6356 case Intrinsic::fshl: 6357 case Intrinsic::fshr: { 6358 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 6359 *ShAmtArg = Call->getArgOperand(2); 6360 6361 // If both operands are undef, the result is undef. 6362 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 6363 return UndefValue::get(F->getReturnType()); 6364 6365 // If shift amount is undef, assume it is zero. 6366 if (Q.isUndefValue(ShAmtArg)) 6367 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 6368 6369 const APInt *ShAmtC; 6370 if (match(ShAmtArg, m_APInt(ShAmtC))) { 6371 // If there's effectively no shift, return the 1st arg or 2nd arg. 6372 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 6373 if (ShAmtC->urem(BitWidth).isZero()) 6374 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 6375 } 6376 6377 // Rotating zero by anything is zero. 6378 if (match(Op0, m_Zero()) && match(Op1, m_Zero())) 6379 return ConstantInt::getNullValue(F->getReturnType()); 6380 6381 // Rotating -1 by anything is -1. 6382 if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes())) 6383 return ConstantInt::getAllOnesValue(F->getReturnType()); 6384 6385 return nullptr; 6386 } 6387 case Intrinsic::experimental_constrained_fma: { 6388 Value *Op0 = Call->getArgOperand(0); 6389 Value *Op1 = Call->getArgOperand(1); 6390 Value *Op2 = Call->getArgOperand(2); 6391 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6392 if (Value *V = 6393 simplifyFPOp({Op0, Op1, Op2}, {}, Q, *FPI->getExceptionBehavior(), 6394 *FPI->getRoundingMode())) 6395 return V; 6396 return nullptr; 6397 } 6398 case Intrinsic::fma: 6399 case Intrinsic::fmuladd: { 6400 Value *Op0 = Call->getArgOperand(0); 6401 Value *Op1 = Call->getArgOperand(1); 6402 Value *Op2 = Call->getArgOperand(2); 6403 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore, 6404 RoundingMode::NearestTiesToEven)) 6405 return V; 6406 return nullptr; 6407 } 6408 case Intrinsic::smul_fix: 6409 case Intrinsic::smul_fix_sat: { 6410 Value *Op0 = Call->getArgOperand(0); 6411 Value *Op1 = Call->getArgOperand(1); 6412 Value *Op2 = Call->getArgOperand(2); 6413 Type *ReturnType = F->getReturnType(); 6414 6415 // Canonicalize constant operand as Op1 (ConstantFolding handles the case 6416 // when both Op0 and Op1 are constant so we do not care about that special 6417 // case here). 6418 if (isa<Constant>(Op0)) 6419 std::swap(Op0, Op1); 6420 6421 // X * 0 -> 0 6422 if (match(Op1, m_Zero())) 6423 return Constant::getNullValue(ReturnType); 6424 6425 // X * undef -> 0 6426 if (Q.isUndefValue(Op1)) 6427 return Constant::getNullValue(ReturnType); 6428 6429 // X * (1 << Scale) -> X 6430 APInt ScaledOne = 6431 APInt::getOneBitSet(ReturnType->getScalarSizeInBits(), 6432 cast<ConstantInt>(Op2)->getZExtValue()); 6433 if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne))) 6434 return Op0; 6435 6436 return nullptr; 6437 } 6438 case Intrinsic::vector_insert: { 6439 Value *Vec = Call->getArgOperand(0); 6440 Value *SubVec = Call->getArgOperand(1); 6441 Value *Idx = Call->getArgOperand(2); 6442 Type *ReturnType = F->getReturnType(); 6443 6444 // (insert_vector Y, (extract_vector X, 0), 0) -> X 6445 // where: Y is X, or Y is undef 6446 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 6447 Value *X = nullptr; 6448 if (match(SubVec, 6449 m_Intrinsic<Intrinsic::vector_extract>(m_Value(X), m_Zero())) && 6450 (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 && 6451 X->getType() == ReturnType) 6452 return X; 6453 6454 return nullptr; 6455 } 6456 case Intrinsic::experimental_constrained_fadd: { 6457 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6458 return simplifyFAddInst( 6459 FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(), 6460 Q, *FPI->getExceptionBehavior(), *FPI->getRoundingMode()); 6461 } 6462 case Intrinsic::experimental_constrained_fsub: { 6463 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6464 return simplifyFSubInst( 6465 FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(), 6466 Q, *FPI->getExceptionBehavior(), *FPI->getRoundingMode()); 6467 } 6468 case Intrinsic::experimental_constrained_fmul: { 6469 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6470 return simplifyFMulInst( 6471 FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(), 6472 Q, *FPI->getExceptionBehavior(), *FPI->getRoundingMode()); 6473 } 6474 case Intrinsic::experimental_constrained_fdiv: { 6475 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6476 return simplifyFDivInst( 6477 FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(), 6478 Q, *FPI->getExceptionBehavior(), *FPI->getRoundingMode()); 6479 } 6480 case Intrinsic::experimental_constrained_frem: { 6481 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6482 return simplifyFRemInst( 6483 FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(), 6484 Q, *FPI->getExceptionBehavior(), *FPI->getRoundingMode()); 6485 } 6486 default: 6487 return nullptr; 6488 } 6489 } 6490 6491 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) { 6492 auto *F = dyn_cast<Function>(Call->getCalledOperand()); 6493 if (!F || !canConstantFoldCallTo(Call, F)) 6494 return nullptr; 6495 6496 SmallVector<Constant *, 4> ConstantArgs; 6497 unsigned NumArgs = Call->arg_size(); 6498 ConstantArgs.reserve(NumArgs); 6499 for (auto &Arg : Call->args()) { 6500 Constant *C = dyn_cast<Constant>(&Arg); 6501 if (!C) { 6502 if (isa<MetadataAsValue>(Arg.get())) 6503 continue; 6504 return nullptr; 6505 } 6506 ConstantArgs.push_back(C); 6507 } 6508 6509 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 6510 } 6511 6512 Value *llvm::simplifyCall(CallBase *Call, const SimplifyQuery &Q) { 6513 // musttail calls can only be simplified if they are also DCEd. 6514 // As we can't guarantee this here, don't simplify them. 6515 if (Call->isMustTailCall()) 6516 return nullptr; 6517 6518 // call undef -> poison 6519 // call null -> poison 6520 Value *Callee = Call->getCalledOperand(); 6521 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 6522 return PoisonValue::get(Call->getType()); 6523 6524 if (Value *V = tryConstantFoldCall(Call, Q)) 6525 return V; 6526 6527 auto *F = dyn_cast<Function>(Callee); 6528 if (F && F->isIntrinsic()) 6529 if (Value *Ret = simplifyIntrinsic(Call, Q)) 6530 return Ret; 6531 6532 return nullptr; 6533 } 6534 6535 Value *llvm::simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q) { 6536 assert(isa<ConstrainedFPIntrinsic>(Call)); 6537 if (Value *V = tryConstantFoldCall(Call, Q)) 6538 return V; 6539 if (Value *Ret = simplifyIntrinsic(Call, Q)) 6540 return Ret; 6541 return nullptr; 6542 } 6543 6544 /// Given operands for a Freeze, see if we can fold the result. 6545 static Value *simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6546 // Use a utility function defined in ValueTracking. 6547 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) 6548 return Op0; 6549 // We have room for improvement. 6550 return nullptr; 6551 } 6552 6553 Value *llvm::simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6554 return ::simplifyFreezeInst(Op0, Q); 6555 } 6556 6557 static Value *simplifyLoadInst(LoadInst *LI, Value *PtrOp, 6558 const SimplifyQuery &Q) { 6559 if (LI->isVolatile()) 6560 return nullptr; 6561 6562 APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0); 6563 auto *PtrOpC = dyn_cast<Constant>(PtrOp); 6564 // Try to convert operand into a constant by stripping offsets while looking 6565 // through invariant.group intrinsics. Don't bother if the underlying object 6566 // is not constant, as calculating GEP offsets is expensive. 6567 if (!PtrOpC && isa<Constant>(getUnderlyingObject(PtrOp))) { 6568 PtrOp = PtrOp->stripAndAccumulateConstantOffsets( 6569 Q.DL, Offset, /* AllowNonInbounts */ true, 6570 /* AllowInvariantGroup */ true); 6571 // Index size may have changed due to address space casts. 6572 Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType())); 6573 PtrOpC = dyn_cast<Constant>(PtrOp); 6574 } 6575 6576 if (PtrOpC) 6577 return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Offset, Q.DL); 6578 return nullptr; 6579 } 6580 6581 /// See if we can compute a simplified version of this instruction. 6582 /// If not, this returns null. 6583 6584 static Value *simplifyInstructionWithOperands(Instruction *I, 6585 ArrayRef<Value *> NewOps, 6586 const SimplifyQuery &SQ, 6587 OptimizationRemarkEmitter *ORE) { 6588 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 6589 6590 switch (I->getOpcode()) { 6591 default: 6592 if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) { 6593 SmallVector<Constant *, 8> NewConstOps(NewOps.size()); 6594 transform(NewOps, NewConstOps.begin(), 6595 [](Value *V) { return cast<Constant>(V); }); 6596 return ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI); 6597 } 6598 return nullptr; 6599 case Instruction::FNeg: 6600 return simplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q); 6601 case Instruction::FAdd: 6602 return simplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6603 case Instruction::Add: 6604 return simplifyAddInst(NewOps[0], NewOps[1], 6605 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6606 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6607 case Instruction::FSub: 6608 return simplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6609 case Instruction::Sub: 6610 return simplifySubInst(NewOps[0], NewOps[1], 6611 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6612 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6613 case Instruction::FMul: 6614 return simplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6615 case Instruction::Mul: 6616 return simplifyMulInst(NewOps[0], NewOps[1], 6617 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6618 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6619 case Instruction::SDiv: 6620 return simplifySDivInst(NewOps[0], NewOps[1], 6621 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6622 case Instruction::UDiv: 6623 return simplifyUDivInst(NewOps[0], NewOps[1], 6624 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6625 case Instruction::FDiv: 6626 return simplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6627 case Instruction::SRem: 6628 return simplifySRemInst(NewOps[0], NewOps[1], Q); 6629 case Instruction::URem: 6630 return simplifyURemInst(NewOps[0], NewOps[1], Q); 6631 case Instruction::FRem: 6632 return simplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6633 case Instruction::Shl: 6634 return simplifyShlInst(NewOps[0], NewOps[1], 6635 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6636 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6637 case Instruction::LShr: 6638 return simplifyLShrInst(NewOps[0], NewOps[1], 6639 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6640 case Instruction::AShr: 6641 return simplifyAShrInst(NewOps[0], NewOps[1], 6642 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6643 case Instruction::And: 6644 return simplifyAndInst(NewOps[0], NewOps[1], Q); 6645 case Instruction::Or: 6646 return simplifyOrInst(NewOps[0], NewOps[1], Q); 6647 case Instruction::Xor: 6648 return simplifyXorInst(NewOps[0], NewOps[1], Q); 6649 case Instruction::ICmp: 6650 return simplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0], 6651 NewOps[1], Q); 6652 case Instruction::FCmp: 6653 return simplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0], 6654 NewOps[1], I->getFastMathFlags(), Q); 6655 case Instruction::Select: 6656 return simplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q); 6657 break; 6658 case Instruction::GetElementPtr: { 6659 auto *GEPI = cast<GetElementPtrInst>(I); 6660 return simplifyGEPInst(GEPI->getSourceElementType(), NewOps[0], 6661 ArrayRef(NewOps).slice(1), GEPI->isInBounds(), Q); 6662 } 6663 case Instruction::InsertValue: { 6664 InsertValueInst *IV = cast<InsertValueInst>(I); 6665 return simplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q); 6666 } 6667 case Instruction::InsertElement: 6668 return simplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q); 6669 case Instruction::ExtractValue: { 6670 auto *EVI = cast<ExtractValueInst>(I); 6671 return simplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q); 6672 } 6673 case Instruction::ExtractElement: 6674 return simplifyExtractElementInst(NewOps[0], NewOps[1], Q); 6675 case Instruction::ShuffleVector: { 6676 auto *SVI = cast<ShuffleVectorInst>(I); 6677 return simplifyShuffleVectorInst(NewOps[0], NewOps[1], 6678 SVI->getShuffleMask(), SVI->getType(), Q); 6679 } 6680 case Instruction::PHI: 6681 return simplifyPHINode(cast<PHINode>(I), NewOps, Q); 6682 case Instruction::Call: 6683 // TODO: Use NewOps 6684 return simplifyCall(cast<CallInst>(I), Q); 6685 case Instruction::Freeze: 6686 return llvm::simplifyFreezeInst(NewOps[0], Q); 6687 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 6688 #include "llvm/IR/Instruction.def" 6689 #undef HANDLE_CAST_INST 6690 return simplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q); 6691 case Instruction::Alloca: 6692 // No simplifications for Alloca and it can't be constant folded. 6693 return nullptr; 6694 case Instruction::Load: 6695 return simplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q); 6696 } 6697 } 6698 6699 Value *llvm::simplifyInstructionWithOperands(Instruction *I, 6700 ArrayRef<Value *> NewOps, 6701 const SimplifyQuery &SQ, 6702 OptimizationRemarkEmitter *ORE) { 6703 assert(NewOps.size() == I->getNumOperands() && 6704 "Number of operands should match the instruction!"); 6705 return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE); 6706 } 6707 6708 Value *llvm::simplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 6709 OptimizationRemarkEmitter *ORE) { 6710 SmallVector<Value *, 8> Ops(I->operands()); 6711 Value *Result = ::simplifyInstructionWithOperands(I, Ops, SQ, ORE); 6712 6713 /// If called on unreachable code, the instruction may simplify to itself. 6714 /// Make life easier for users by detecting that case here, and returning a 6715 /// safe value instead. 6716 return Result == I ? UndefValue::get(I->getType()) : Result; 6717 } 6718 6719 /// Implementation of recursive simplification through an instruction's 6720 /// uses. 6721 /// 6722 /// This is the common implementation of the recursive simplification routines. 6723 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 6724 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 6725 /// instructions to process and attempt to simplify it using 6726 /// InstructionSimplify. Recursively visited users which could not be 6727 /// simplified themselves are to the optional UnsimplifiedUsers set for 6728 /// further processing by the caller. 6729 /// 6730 /// This routine returns 'true' only when *it* simplifies something. The passed 6731 /// in simplified value does not count toward this. 6732 static bool replaceAndRecursivelySimplifyImpl( 6733 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6734 const DominatorTree *DT, AssumptionCache *AC, 6735 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 6736 bool Simplified = false; 6737 SmallSetVector<Instruction *, 8> Worklist; 6738 const DataLayout &DL = I->getModule()->getDataLayout(); 6739 6740 // If we have an explicit value to collapse to, do that round of the 6741 // simplification loop by hand initially. 6742 if (SimpleV) { 6743 for (User *U : I->users()) 6744 if (U != I) 6745 Worklist.insert(cast<Instruction>(U)); 6746 6747 // Replace the instruction with its simplified value. 6748 I->replaceAllUsesWith(SimpleV); 6749 6750 // Gracefully handle edge cases where the instruction is not wired into any 6751 // parent block. 6752 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6753 !I->mayHaveSideEffects()) 6754 I->eraseFromParent(); 6755 } else { 6756 Worklist.insert(I); 6757 } 6758 6759 // Note that we must test the size on each iteration, the worklist can grow. 6760 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 6761 I = Worklist[Idx]; 6762 6763 // See if this instruction simplifies. 6764 SimpleV = simplifyInstruction(I, {DL, TLI, DT, AC}); 6765 if (!SimpleV) { 6766 if (UnsimplifiedUsers) 6767 UnsimplifiedUsers->insert(I); 6768 continue; 6769 } 6770 6771 Simplified = true; 6772 6773 // Stash away all the uses of the old instruction so we can check them for 6774 // recursive simplifications after a RAUW. This is cheaper than checking all 6775 // uses of To on the recursive step in most cases. 6776 for (User *U : I->users()) 6777 Worklist.insert(cast<Instruction>(U)); 6778 6779 // Replace the instruction with its simplified value. 6780 I->replaceAllUsesWith(SimpleV); 6781 6782 // Gracefully handle edge cases where the instruction is not wired into any 6783 // parent block. 6784 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6785 !I->mayHaveSideEffects()) 6786 I->eraseFromParent(); 6787 } 6788 return Simplified; 6789 } 6790 6791 bool llvm::replaceAndRecursivelySimplify( 6792 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6793 const DominatorTree *DT, AssumptionCache *AC, 6794 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 6795 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 6796 assert(SimpleV && "Must provide a simplified value."); 6797 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 6798 UnsimplifiedUsers); 6799 } 6800 6801 namespace llvm { 6802 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 6803 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 6804 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 6805 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6806 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 6807 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 6808 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 6809 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6810 } 6811 6812 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 6813 const DataLayout &DL) { 6814 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 6815 } 6816 6817 template <class T, class... TArgs> 6818 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 6819 Function &F) { 6820 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 6821 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 6822 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 6823 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6824 } 6825 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 6826 Function &); 6827 } // namespace llvm 6828 6829 void InstSimplifyFolder::anchor() {} 6830