xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/InstructionSimplify.cpp (revision ba3c1f5972d7b90feb6e6da47905ff2757e0fe57)
1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions.  This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/InstructionSimplify.h"
20 
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/CmpInstAnalysis.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/InstSimplifyFolder.h"
30 #include "llvm/Analysis/LoopAnalysisManager.h"
31 #include "llvm/Analysis/MemoryBuiltins.h"
32 #include "llvm/Analysis/OverflowInstAnalysis.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/ConstantRange.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/PatternMatch.h"
42 #include "llvm/Support/KnownBits.h"
43 #include <algorithm>
44 #include <optional>
45 using namespace llvm;
46 using namespace llvm::PatternMatch;
47 
48 #define DEBUG_TYPE "instsimplify"
49 
50 enum { RecursionLimit = 3 };
51 
52 STATISTIC(NumExpand, "Number of expansions");
53 STATISTIC(NumReassoc, "Number of reassociations");
54 
55 static Value *simplifyAndInst(Value *, Value *, const SimplifyQuery &,
56                               unsigned);
57 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
58 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
59                              const SimplifyQuery &, unsigned);
60 static Value *simplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
61                             unsigned);
62 static Value *simplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
63                             const SimplifyQuery &, unsigned);
64 static Value *simplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
65                               unsigned);
66 static Value *simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
67                                const SimplifyQuery &Q, unsigned MaxRecurse);
68 static Value *simplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
69 static Value *simplifyXorInst(Value *, Value *, const SimplifyQuery &,
70                               unsigned);
71 static Value *simplifyCastInst(unsigned, Value *, Type *, const SimplifyQuery &,
72                                unsigned);
73 static Value *simplifyGEPInst(Type *, Value *, ArrayRef<Value *>, bool,
74                               const SimplifyQuery &, unsigned);
75 static Value *simplifySelectInst(Value *, Value *, Value *,
76                                  const SimplifyQuery &, unsigned);
77 
78 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
79                                      Value *FalseVal) {
80   BinaryOperator::BinaryOps BinOpCode;
81   if (auto *BO = dyn_cast<BinaryOperator>(Cond))
82     BinOpCode = BO->getOpcode();
83   else
84     return nullptr;
85 
86   CmpInst::Predicate ExpectedPred, Pred1, Pred2;
87   if (BinOpCode == BinaryOperator::Or) {
88     ExpectedPred = ICmpInst::ICMP_NE;
89   } else if (BinOpCode == BinaryOperator::And) {
90     ExpectedPred = ICmpInst::ICMP_EQ;
91   } else
92     return nullptr;
93 
94   // %A = icmp eq %TV, %FV
95   // %B = icmp eq %X, %Y (and one of these is a select operand)
96   // %C = and %A, %B
97   // %D = select %C, %TV, %FV
98   // -->
99   // %FV
100 
101   // %A = icmp ne %TV, %FV
102   // %B = icmp ne %X, %Y (and one of these is a select operand)
103   // %C = or %A, %B
104   // %D = select %C, %TV, %FV
105   // -->
106   // %TV
107   Value *X, *Y;
108   if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
109                                       m_Specific(FalseVal)),
110                              m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
111       Pred1 != Pred2 || Pred1 != ExpectedPred)
112     return nullptr;
113 
114   if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
115     return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
116 
117   return nullptr;
118 }
119 
120 /// For a boolean type or a vector of boolean type, return false or a vector
121 /// with every element false.
122 static Constant *getFalse(Type *Ty) { return ConstantInt::getFalse(Ty); }
123 
124 /// For a boolean type or a vector of boolean type, return true or a vector
125 /// with every element true.
126 static Constant *getTrue(Type *Ty) { return ConstantInt::getTrue(Ty); }
127 
128 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
129 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
130                           Value *RHS) {
131   CmpInst *Cmp = dyn_cast<CmpInst>(V);
132   if (!Cmp)
133     return false;
134   CmpInst::Predicate CPred = Cmp->getPredicate();
135   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
136   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
137     return true;
138   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
139          CRHS == LHS;
140 }
141 
142 /// Simplify comparison with true or false branch of select:
143 ///  %sel = select i1 %cond, i32 %tv, i32 %fv
144 ///  %cmp = icmp sle i32 %sel, %rhs
145 /// Compose new comparison by substituting %sel with either %tv or %fv
146 /// and see if it simplifies.
147 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS,
148                                  Value *RHS, Value *Cond,
149                                  const SimplifyQuery &Q, unsigned MaxRecurse,
150                                  Constant *TrueOrFalse) {
151   Value *SimplifiedCmp = simplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse);
152   if (SimplifiedCmp == Cond) {
153     // %cmp simplified to the select condition (%cond).
154     return TrueOrFalse;
155   } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) {
156     // It didn't simplify. However, if composed comparison is equivalent
157     // to the select condition (%cond) then we can replace it.
158     return TrueOrFalse;
159   }
160   return SimplifiedCmp;
161 }
162 
163 /// Simplify comparison with true branch of select
164 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS,
165                                      Value *RHS, Value *Cond,
166                                      const SimplifyQuery &Q,
167                                      unsigned MaxRecurse) {
168   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
169                             getTrue(Cond->getType()));
170 }
171 
172 /// Simplify comparison with false branch of select
173 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS,
174                                       Value *RHS, Value *Cond,
175                                       const SimplifyQuery &Q,
176                                       unsigned MaxRecurse) {
177   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
178                             getFalse(Cond->getType()));
179 }
180 
181 /// We know comparison with both branches of select can be simplified, but they
182 /// are not equal. This routine handles some logical simplifications.
183 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp,
184                                                Value *Cond,
185                                                const SimplifyQuery &Q,
186                                                unsigned MaxRecurse) {
187   // If the false value simplified to false, then the result of the compare
188   // is equal to "Cond && TCmp".  This also catches the case when the false
189   // value simplified to false and the true value to true, returning "Cond".
190   // Folding select to and/or isn't poison-safe in general; impliesPoison
191   // checks whether folding it does not convert a well-defined value into
192   // poison.
193   if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond))
194     if (Value *V = simplifyAndInst(Cond, TCmp, Q, MaxRecurse))
195       return V;
196   // If the true value simplified to true, then the result of the compare
197   // is equal to "Cond || FCmp".
198   if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond))
199     if (Value *V = simplifyOrInst(Cond, FCmp, Q, MaxRecurse))
200       return V;
201   // Finally, if the false value simplified to true and the true value to
202   // false, then the result of the compare is equal to "!Cond".
203   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
204     if (Value *V = simplifyXorInst(
205             Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse))
206       return V;
207   return nullptr;
208 }
209 
210 /// Does the given value dominate the specified phi node?
211 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
212   Instruction *I = dyn_cast<Instruction>(V);
213   if (!I)
214     // Arguments and constants dominate all instructions.
215     return true;
216 
217   // If we are processing instructions (and/or basic blocks) that have not been
218   // fully added to a function, the parent nodes may still be null. Simply
219   // return the conservative answer in these cases.
220   if (!I->getParent() || !P->getParent() || !I->getFunction())
221     return false;
222 
223   // If we have a DominatorTree then do a precise test.
224   if (DT)
225     return DT->dominates(I, P);
226 
227   // Otherwise, if the instruction is in the entry block and is not an invoke,
228   // then it obviously dominates all phi nodes.
229   if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) &&
230       !isa<CallBrInst>(I))
231     return true;
232 
233   return false;
234 }
235 
236 /// Try to simplify a binary operator of form "V op OtherOp" where V is
237 /// "(B0 opex B1)" by distributing 'op' across 'opex' as
238 /// "(B0 op OtherOp) opex (B1 op OtherOp)".
239 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V,
240                           Value *OtherOp, Instruction::BinaryOps OpcodeToExpand,
241                           const SimplifyQuery &Q, unsigned MaxRecurse) {
242   auto *B = dyn_cast<BinaryOperator>(V);
243   if (!B || B->getOpcode() != OpcodeToExpand)
244     return nullptr;
245   Value *B0 = B->getOperand(0), *B1 = B->getOperand(1);
246   Value *L =
247       simplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), MaxRecurse);
248   if (!L)
249     return nullptr;
250   Value *R =
251       simplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), MaxRecurse);
252   if (!R)
253     return nullptr;
254 
255   // Does the expanded pair of binops simplify to the existing binop?
256   if ((L == B0 && R == B1) ||
257       (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) {
258     ++NumExpand;
259     return B;
260   }
261 
262   // Otherwise, return "L op' R" if it simplifies.
263   Value *S = simplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse);
264   if (!S)
265     return nullptr;
266 
267   ++NumExpand;
268   return S;
269 }
270 
271 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by
272 /// distributing op over op'.
273 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, Value *L,
274                                      Value *R,
275                                      Instruction::BinaryOps OpcodeToExpand,
276                                      const SimplifyQuery &Q,
277                                      unsigned MaxRecurse) {
278   // Recursion is always used, so bail out at once if we already hit the limit.
279   if (!MaxRecurse--)
280     return nullptr;
281 
282   if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse))
283     return V;
284   if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse))
285     return V;
286   return nullptr;
287 }
288 
289 /// Generic simplifications for associative binary operations.
290 /// Returns the simpler value, or null if none was found.
291 static Value *simplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
292                                        Value *LHS, Value *RHS,
293                                        const SimplifyQuery &Q,
294                                        unsigned MaxRecurse) {
295   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
296 
297   // Recursion is always used, so bail out at once if we already hit the limit.
298   if (!MaxRecurse--)
299     return nullptr;
300 
301   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
302   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
303 
304   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
305   if (Op0 && Op0->getOpcode() == Opcode) {
306     Value *A = Op0->getOperand(0);
307     Value *B = Op0->getOperand(1);
308     Value *C = RHS;
309 
310     // Does "B op C" simplify?
311     if (Value *V = simplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
312       // It does!  Return "A op V" if it simplifies or is already available.
313       // If V equals B then "A op V" is just the LHS.
314       if (V == B)
315         return LHS;
316       // Otherwise return "A op V" if it simplifies.
317       if (Value *W = simplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
318         ++NumReassoc;
319         return W;
320       }
321     }
322   }
323 
324   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
325   if (Op1 && Op1->getOpcode() == Opcode) {
326     Value *A = LHS;
327     Value *B = Op1->getOperand(0);
328     Value *C = Op1->getOperand(1);
329 
330     // Does "A op B" simplify?
331     if (Value *V = simplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
332       // It does!  Return "V op C" if it simplifies or is already available.
333       // If V equals B then "V op C" is just the RHS.
334       if (V == B)
335         return RHS;
336       // Otherwise return "V op C" if it simplifies.
337       if (Value *W = simplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
338         ++NumReassoc;
339         return W;
340       }
341     }
342   }
343 
344   // The remaining transforms require commutativity as well as associativity.
345   if (!Instruction::isCommutative(Opcode))
346     return nullptr;
347 
348   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
349   if (Op0 && Op0->getOpcode() == Opcode) {
350     Value *A = Op0->getOperand(0);
351     Value *B = Op0->getOperand(1);
352     Value *C = RHS;
353 
354     // Does "C op A" simplify?
355     if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
356       // It does!  Return "V op B" if it simplifies or is already available.
357       // If V equals A then "V op B" is just the LHS.
358       if (V == A)
359         return LHS;
360       // Otherwise return "V op B" if it simplifies.
361       if (Value *W = simplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
362         ++NumReassoc;
363         return W;
364       }
365     }
366   }
367 
368   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
369   if (Op1 && Op1->getOpcode() == Opcode) {
370     Value *A = LHS;
371     Value *B = Op1->getOperand(0);
372     Value *C = Op1->getOperand(1);
373 
374     // Does "C op A" simplify?
375     if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
376       // It does!  Return "B op V" if it simplifies or is already available.
377       // If V equals C then "B op V" is just the RHS.
378       if (V == C)
379         return RHS;
380       // Otherwise return "B op V" if it simplifies.
381       if (Value *W = simplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
382         ++NumReassoc;
383         return W;
384       }
385     }
386   }
387 
388   return nullptr;
389 }
390 
391 /// In the case of a binary operation with a select instruction as an operand,
392 /// try to simplify the binop by seeing whether evaluating it on both branches
393 /// of the select results in the same value. Returns the common value if so,
394 /// otherwise returns null.
395 static Value *threadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
396                                     Value *RHS, const SimplifyQuery &Q,
397                                     unsigned MaxRecurse) {
398   // Recursion is always used, so bail out at once if we already hit the limit.
399   if (!MaxRecurse--)
400     return nullptr;
401 
402   SelectInst *SI;
403   if (isa<SelectInst>(LHS)) {
404     SI = cast<SelectInst>(LHS);
405   } else {
406     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
407     SI = cast<SelectInst>(RHS);
408   }
409 
410   // Evaluate the BinOp on the true and false branches of the select.
411   Value *TV;
412   Value *FV;
413   if (SI == LHS) {
414     TV = simplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
415     FV = simplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
416   } else {
417     TV = simplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
418     FV = simplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
419   }
420 
421   // If they simplified to the same value, then return the common value.
422   // If they both failed to simplify then return null.
423   if (TV == FV)
424     return TV;
425 
426   // If one branch simplified to undef, return the other one.
427   if (TV && Q.isUndefValue(TV))
428     return FV;
429   if (FV && Q.isUndefValue(FV))
430     return TV;
431 
432   // If applying the operation did not change the true and false select values,
433   // then the result of the binop is the select itself.
434   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
435     return SI;
436 
437   // If one branch simplified and the other did not, and the simplified
438   // value is equal to the unsimplified one, return the simplified value.
439   // For example, select (cond, X, X & Z) & Z -> X & Z.
440   if ((FV && !TV) || (TV && !FV)) {
441     // Check that the simplified value has the form "X op Y" where "op" is the
442     // same as the original operation.
443     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
444     if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
445       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
446       // We already know that "op" is the same as for the simplified value.  See
447       // if the operands match too.  If so, return the simplified value.
448       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
449       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
450       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
451       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
452           Simplified->getOperand(1) == UnsimplifiedRHS)
453         return Simplified;
454       if (Simplified->isCommutative() &&
455           Simplified->getOperand(1) == UnsimplifiedLHS &&
456           Simplified->getOperand(0) == UnsimplifiedRHS)
457         return Simplified;
458     }
459   }
460 
461   return nullptr;
462 }
463 
464 /// In the case of a comparison with a select instruction, try to simplify the
465 /// comparison by seeing whether both branches of the select result in the same
466 /// value. Returns the common value if so, otherwise returns null.
467 /// For example, if we have:
468 ///  %tmp = select i1 %cmp, i32 1, i32 2
469 ///  %cmp1 = icmp sle i32 %tmp, 3
470 /// We can simplify %cmp1 to true, because both branches of select are
471 /// less than 3. We compose new comparison by substituting %tmp with both
472 /// branches of select and see if it can be simplified.
473 static Value *threadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
474                                   Value *RHS, const SimplifyQuery &Q,
475                                   unsigned MaxRecurse) {
476   // Recursion is always used, so bail out at once if we already hit the limit.
477   if (!MaxRecurse--)
478     return nullptr;
479 
480   // Make sure the select is on the LHS.
481   if (!isa<SelectInst>(LHS)) {
482     std::swap(LHS, RHS);
483     Pred = CmpInst::getSwappedPredicate(Pred);
484   }
485   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
486   SelectInst *SI = cast<SelectInst>(LHS);
487   Value *Cond = SI->getCondition();
488   Value *TV = SI->getTrueValue();
489   Value *FV = SI->getFalseValue();
490 
491   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
492   // Does "cmp TV, RHS" simplify?
493   Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse);
494   if (!TCmp)
495     return nullptr;
496 
497   // Does "cmp FV, RHS" simplify?
498   Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse);
499   if (!FCmp)
500     return nullptr;
501 
502   // If both sides simplified to the same value, then use it as the result of
503   // the original comparison.
504   if (TCmp == FCmp)
505     return TCmp;
506 
507   // The remaining cases only make sense if the select condition has the same
508   // type as the result of the comparison, so bail out if this is not so.
509   if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy())
510     return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse);
511 
512   return nullptr;
513 }
514 
515 /// In the case of a binary operation with an operand that is a PHI instruction,
516 /// try to simplify the binop by seeing whether evaluating it on the incoming
517 /// phi values yields the same result for every value. If so returns the common
518 /// value, otherwise returns null.
519 static Value *threadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
520                                  Value *RHS, const SimplifyQuery &Q,
521                                  unsigned MaxRecurse) {
522   // Recursion is always used, so bail out at once if we already hit the limit.
523   if (!MaxRecurse--)
524     return nullptr;
525 
526   PHINode *PI;
527   if (isa<PHINode>(LHS)) {
528     PI = cast<PHINode>(LHS);
529     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
530     if (!valueDominatesPHI(RHS, PI, Q.DT))
531       return nullptr;
532   } else {
533     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
534     PI = cast<PHINode>(RHS);
535     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
536     if (!valueDominatesPHI(LHS, PI, Q.DT))
537       return nullptr;
538   }
539 
540   // Evaluate the BinOp on the incoming phi values.
541   Value *CommonValue = nullptr;
542   for (Value *Incoming : PI->incoming_values()) {
543     // If the incoming value is the phi node itself, it can safely be skipped.
544     if (Incoming == PI)
545       continue;
546     Value *V = PI == LHS ? simplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse)
547                          : simplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
548     // If the operation failed to simplify, or simplified to a different value
549     // to previously, then give up.
550     if (!V || (CommonValue && V != CommonValue))
551       return nullptr;
552     CommonValue = V;
553   }
554 
555   return CommonValue;
556 }
557 
558 /// In the case of a comparison with a PHI instruction, try to simplify the
559 /// comparison by seeing whether comparing with all of the incoming phi values
560 /// yields the same result every time. If so returns the common result,
561 /// otherwise returns null.
562 static Value *threadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
563                                const SimplifyQuery &Q, unsigned MaxRecurse) {
564   // Recursion is always used, so bail out at once if we already hit the limit.
565   if (!MaxRecurse--)
566     return nullptr;
567 
568   // Make sure the phi is on the LHS.
569   if (!isa<PHINode>(LHS)) {
570     std::swap(LHS, RHS);
571     Pred = CmpInst::getSwappedPredicate(Pred);
572   }
573   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
574   PHINode *PI = cast<PHINode>(LHS);
575 
576   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
577   if (!valueDominatesPHI(RHS, PI, Q.DT))
578     return nullptr;
579 
580   // Evaluate the BinOp on the incoming phi values.
581   Value *CommonValue = nullptr;
582   for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) {
583     Value *Incoming = PI->getIncomingValue(u);
584     Instruction *InTI = PI->getIncomingBlock(u)->getTerminator();
585     // If the incoming value is the phi node itself, it can safely be skipped.
586     if (Incoming == PI)
587       continue;
588     // Change the context instruction to the "edge" that flows into the phi.
589     // This is important because that is where incoming is actually "evaluated"
590     // even though it is used later somewhere else.
591     Value *V = simplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI),
592                                MaxRecurse);
593     // If the operation failed to simplify, or simplified to a different value
594     // to previously, then give up.
595     if (!V || (CommonValue && V != CommonValue))
596       return nullptr;
597     CommonValue = V;
598   }
599 
600   return CommonValue;
601 }
602 
603 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
604                                        Value *&Op0, Value *&Op1,
605                                        const SimplifyQuery &Q) {
606   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
607     if (auto *CRHS = dyn_cast<Constant>(Op1)) {
608       switch (Opcode) {
609       default:
610         break;
611       case Instruction::FAdd:
612       case Instruction::FSub:
613       case Instruction::FMul:
614       case Instruction::FDiv:
615       case Instruction::FRem:
616         if (Q.CxtI != nullptr)
617           return ConstantFoldFPInstOperands(Opcode, CLHS, CRHS, Q.DL, Q.CxtI);
618       }
619       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
620     }
621 
622     // Canonicalize the constant to the RHS if this is a commutative operation.
623     if (Instruction::isCommutative(Opcode))
624       std::swap(Op0, Op1);
625   }
626   return nullptr;
627 }
628 
629 /// Given operands for an Add, see if we can fold the result.
630 /// If not, this returns null.
631 static Value *simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
632                               const SimplifyQuery &Q, unsigned MaxRecurse) {
633   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
634     return C;
635 
636   // X + poison -> poison
637   if (isa<PoisonValue>(Op1))
638     return Op1;
639 
640   // X + undef -> undef
641   if (Q.isUndefValue(Op1))
642     return Op1;
643 
644   // X + 0 -> X
645   if (match(Op1, m_Zero()))
646     return Op0;
647 
648   // If two operands are negative, return 0.
649   if (isKnownNegation(Op0, Op1))
650     return Constant::getNullValue(Op0->getType());
651 
652   // X + (Y - X) -> Y
653   // (Y - X) + X -> Y
654   // Eg: X + -X -> 0
655   Value *Y = nullptr;
656   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
657       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
658     return Y;
659 
660   // X + ~X -> -1   since   ~X = -X-1
661   Type *Ty = Op0->getType();
662   if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0))))
663     return Constant::getAllOnesValue(Ty);
664 
665   // add nsw/nuw (xor Y, signmask), signmask --> Y
666   // The no-wrapping add guarantees that the top bit will be set by the add.
667   // Therefore, the xor must be clearing the already set sign bit of Y.
668   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
669       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
670     return Y;
671 
672   // add nuw %x, -1  ->  -1, because %x can only be 0.
673   if (IsNUW && match(Op1, m_AllOnes()))
674     return Op1; // Which is -1.
675 
676   /// i1 add -> xor.
677   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
678     if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1))
679       return V;
680 
681   // Try some generic simplifications for associative operations.
682   if (Value *V =
683           simplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, MaxRecurse))
684     return V;
685 
686   // Threading Add over selects and phi nodes is pointless, so don't bother.
687   // Threading over the select in "A + select(cond, B, C)" means evaluating
688   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
689   // only if B and C are equal.  If B and C are equal then (since we assume
690   // that operands have already been simplified) "select(cond, B, C)" should
691   // have been simplified to the common value of B and C already.  Analysing
692   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
693   // for threading over phi nodes.
694 
695   return nullptr;
696 }
697 
698 Value *llvm::simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
699                              const SimplifyQuery &Query) {
700   return ::simplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
701 }
702 
703 /// Compute the base pointer and cumulative constant offsets for V.
704 ///
705 /// This strips all constant offsets off of V, leaving it the base pointer, and
706 /// accumulates the total constant offset applied in the returned constant.
707 /// It returns zero if there are no constant offsets applied.
708 ///
709 /// This is very similar to stripAndAccumulateConstantOffsets(), except it
710 /// normalizes the offset bitwidth to the stripped pointer type, not the
711 /// original pointer type.
712 static APInt stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
713                                             bool AllowNonInbounds = false) {
714   assert(V->getType()->isPtrOrPtrVectorTy());
715 
716   APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType()));
717   V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
718   // As that strip may trace through `addrspacecast`, need to sext or trunc
719   // the offset calculated.
720   return Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(V->getType()));
721 }
722 
723 /// Compute the constant difference between two pointer values.
724 /// If the difference is not a constant, returns zero.
725 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
726                                           Value *RHS) {
727   APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
728   APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
729 
730   // If LHS and RHS are not related via constant offsets to the same base
731   // value, there is nothing we can do here.
732   if (LHS != RHS)
733     return nullptr;
734 
735   // Otherwise, the difference of LHS - RHS can be computed as:
736   //    LHS - RHS
737   //  = (LHSOffset + Base) - (RHSOffset + Base)
738   //  = LHSOffset - RHSOffset
739   Constant *Res = ConstantInt::get(LHS->getContext(), LHSOffset - RHSOffset);
740   if (auto *VecTy = dyn_cast<VectorType>(LHS->getType()))
741     Res = ConstantVector::getSplat(VecTy->getElementCount(), Res);
742   return Res;
743 }
744 
745 /// Test if there is a dominating equivalence condition for the
746 /// two operands. If there is, try to reduce the binary operation
747 /// between the two operands.
748 /// Example: Op0 - Op1 --> 0 when Op0 == Op1
749 static Value *simplifyByDomEq(unsigned Opcode, Value *Op0, Value *Op1,
750                               const SimplifyQuery &Q, unsigned MaxRecurse) {
751   // Recursive run it can not get any benefit
752   if (MaxRecurse != RecursionLimit)
753     return nullptr;
754 
755   std::optional<bool> Imp =
756       isImpliedByDomCondition(CmpInst::ICMP_EQ, Op0, Op1, Q.CxtI, Q.DL);
757   if (Imp && *Imp) {
758     Type *Ty = Op0->getType();
759     switch (Opcode) {
760     case Instruction::Sub:
761     case Instruction::Xor:
762     case Instruction::URem:
763     case Instruction::SRem:
764       return Constant::getNullValue(Ty);
765 
766     case Instruction::SDiv:
767     case Instruction::UDiv:
768       return ConstantInt::get(Ty, 1);
769 
770     case Instruction::And:
771     case Instruction::Or:
772       // Could be either one - choose Op1 since that's more likely a constant.
773       return Op1;
774     default:
775       break;
776     }
777   }
778   return nullptr;
779 }
780 
781 /// Given operands for a Sub, see if we can fold the result.
782 /// If not, this returns null.
783 static Value *simplifySubInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
784                               const SimplifyQuery &Q, unsigned MaxRecurse) {
785   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
786     return C;
787 
788   // X - poison -> poison
789   // poison - X -> poison
790   if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1))
791     return PoisonValue::get(Op0->getType());
792 
793   // X - undef -> undef
794   // undef - X -> undef
795   if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
796     return UndefValue::get(Op0->getType());
797 
798   // X - 0 -> X
799   if (match(Op1, m_Zero()))
800     return Op0;
801 
802   // X - X -> 0
803   if (Op0 == Op1)
804     return Constant::getNullValue(Op0->getType());
805 
806   // Is this a negation?
807   if (match(Op0, m_Zero())) {
808     // 0 - X -> 0 if the sub is NUW.
809     if (IsNUW)
810       return Constant::getNullValue(Op0->getType());
811 
812     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
813     if (Known.Zero.isMaxSignedValue()) {
814       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
815       // Op1 must be 0 because negating the minimum signed value is undefined.
816       if (IsNSW)
817         return Constant::getNullValue(Op0->getType());
818 
819       // 0 - X -> X if X is 0 or the minimum signed value.
820       return Op1;
821     }
822   }
823 
824   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
825   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
826   Value *X = nullptr, *Y = nullptr, *Z = Op1;
827   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
828     // See if "V === Y - Z" simplifies.
829     if (Value *V = simplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse - 1))
830       // It does!  Now see if "X + V" simplifies.
831       if (Value *W = simplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse - 1)) {
832         // It does, we successfully reassociated!
833         ++NumReassoc;
834         return W;
835       }
836     // See if "V === X - Z" simplifies.
837     if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1))
838       // It does!  Now see if "Y + V" simplifies.
839       if (Value *W = simplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse - 1)) {
840         // It does, we successfully reassociated!
841         ++NumReassoc;
842         return W;
843       }
844   }
845 
846   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
847   // For example, X - (X + 1) -> -1
848   X = Op0;
849   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
850     // See if "V === X - Y" simplifies.
851     if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1))
852       // It does!  Now see if "V - Z" simplifies.
853       if (Value *W = simplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse - 1)) {
854         // It does, we successfully reassociated!
855         ++NumReassoc;
856         return W;
857       }
858     // See if "V === X - Z" simplifies.
859     if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1))
860       // It does!  Now see if "V - Y" simplifies.
861       if (Value *W = simplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse - 1)) {
862         // It does, we successfully reassociated!
863         ++NumReassoc;
864         return W;
865       }
866   }
867 
868   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
869   // For example, X - (X - Y) -> Y.
870   Z = Op0;
871   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
872     // See if "V === Z - X" simplifies.
873     if (Value *V = simplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse - 1))
874       // It does!  Now see if "V + Y" simplifies.
875       if (Value *W = simplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse - 1)) {
876         // It does, we successfully reassociated!
877         ++NumReassoc;
878         return W;
879       }
880 
881   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
882   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
883       match(Op1, m_Trunc(m_Value(Y))))
884     if (X->getType() == Y->getType())
885       // See if "V === X - Y" simplifies.
886       if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1))
887         // It does!  Now see if "trunc V" simplifies.
888         if (Value *W = simplifyCastInst(Instruction::Trunc, V, Op0->getType(),
889                                         Q, MaxRecurse - 1))
890           // It does, return the simplified "trunc V".
891           return W;
892 
893   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
894   if (match(Op0, m_PtrToInt(m_Value(X))) && match(Op1, m_PtrToInt(m_Value(Y))))
895     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
896       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
897 
898   // i1 sub -> xor.
899   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
900     if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1))
901       return V;
902 
903   // Threading Sub over selects and phi nodes is pointless, so don't bother.
904   // Threading over the select in "A - select(cond, B, C)" means evaluating
905   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
906   // only if B and C are equal.  If B and C are equal then (since we assume
907   // that operands have already been simplified) "select(cond, B, C)" should
908   // have been simplified to the common value of B and C already.  Analysing
909   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
910   // for threading over phi nodes.
911 
912   if (Value *V = simplifyByDomEq(Instruction::Sub, Op0, Op1, Q, MaxRecurse))
913     return V;
914 
915   return nullptr;
916 }
917 
918 Value *llvm::simplifySubInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
919                              const SimplifyQuery &Q) {
920   return ::simplifySubInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit);
921 }
922 
923 /// Given operands for a Mul, see if we can fold the result.
924 /// If not, this returns null.
925 static Value *simplifyMulInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
926                               const SimplifyQuery &Q, unsigned MaxRecurse) {
927   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
928     return C;
929 
930   // X * poison -> poison
931   if (isa<PoisonValue>(Op1))
932     return Op1;
933 
934   // X * undef -> 0
935   // X * 0 -> 0
936   if (Q.isUndefValue(Op1) || match(Op1, m_Zero()))
937     return Constant::getNullValue(Op0->getType());
938 
939   // X * 1 -> X
940   if (match(Op1, m_One()))
941     return Op0;
942 
943   // (X / Y) * Y -> X if the division is exact.
944   Value *X = nullptr;
945   if (Q.IIQ.UseInstrInfo &&
946       (match(Op0,
947              m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y
948        match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
949     return X;
950 
951    if (Op0->getType()->isIntOrIntVectorTy(1)) {
952     // mul i1 nsw is a special-case because -1 * -1 is poison (+1 is not
953     // representable). All other cases reduce to 0, so just return 0.
954     if (IsNSW)
955       return ConstantInt::getNullValue(Op0->getType());
956 
957     // Treat "mul i1" as "and i1".
958     if (MaxRecurse)
959       if (Value *V = simplifyAndInst(Op0, Op1, Q, MaxRecurse - 1))
960         return V;
961   }
962 
963   // Try some generic simplifications for associative operations.
964   if (Value *V =
965           simplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, MaxRecurse))
966     return V;
967 
968   // Mul distributes over Add. Try some generic simplifications based on this.
969   if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1,
970                                         Instruction::Add, Q, MaxRecurse))
971     return V;
972 
973   // If the operation is with the result of a select instruction, check whether
974   // operating on either branch of the select always yields the same value.
975   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
976     if (Value *V =
977             threadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, MaxRecurse))
978       return V;
979 
980   // If the operation is with the result of a phi instruction, check whether
981   // operating on all incoming values of the phi always yields the same value.
982   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
983     if (Value *V =
984             threadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, MaxRecurse))
985       return V;
986 
987   return nullptr;
988 }
989 
990 Value *llvm::simplifyMulInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
991                              const SimplifyQuery &Q) {
992   return ::simplifyMulInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit);
993 }
994 
995 /// Check for common or similar folds of integer division or integer remainder.
996 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
997 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0,
998                              Value *Op1, const SimplifyQuery &Q,
999                              unsigned MaxRecurse) {
1000   bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv);
1001   bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem);
1002 
1003   Type *Ty = Op0->getType();
1004 
1005   // X / undef -> poison
1006   // X % undef -> poison
1007   if (Q.isUndefValue(Op1) || isa<PoisonValue>(Op1))
1008     return PoisonValue::get(Ty);
1009 
1010   // X / 0 -> poison
1011   // X % 0 -> poison
1012   // We don't need to preserve faults!
1013   if (match(Op1, m_Zero()))
1014     return PoisonValue::get(Ty);
1015 
1016   // If any element of a constant divisor fixed width vector is zero or undef
1017   // the behavior is undefined and we can fold the whole op to poison.
1018   auto *Op1C = dyn_cast<Constant>(Op1);
1019   auto *VTy = dyn_cast<FixedVectorType>(Ty);
1020   if (Op1C && VTy) {
1021     unsigned NumElts = VTy->getNumElements();
1022     for (unsigned i = 0; i != NumElts; ++i) {
1023       Constant *Elt = Op1C->getAggregateElement(i);
1024       if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt)))
1025         return PoisonValue::get(Ty);
1026     }
1027   }
1028 
1029   // poison / X -> poison
1030   // poison % X -> poison
1031   if (isa<PoisonValue>(Op0))
1032     return Op0;
1033 
1034   // undef / X -> 0
1035   // undef % X -> 0
1036   if (Q.isUndefValue(Op0))
1037     return Constant::getNullValue(Ty);
1038 
1039   // 0 / X -> 0
1040   // 0 % X -> 0
1041   if (match(Op0, m_Zero()))
1042     return Constant::getNullValue(Op0->getType());
1043 
1044   // X / X -> 1
1045   // X % X -> 0
1046   if (Op0 == Op1)
1047     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
1048 
1049   // X / 1 -> X
1050   // X % 1 -> 0
1051   // If this is a boolean op (single-bit element type), we can't have
1052   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
1053   // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
1054   Value *X;
1055   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
1056       (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1057     return IsDiv ? Op0 : Constant::getNullValue(Ty);
1058 
1059   // If X * Y does not overflow, then:
1060   //   X * Y / Y -> X
1061   //   X * Y % Y -> 0
1062   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1063     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1064     // The multiplication can't overflow if it is defined not to, or if
1065     // X == A / Y for some A.
1066     if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1067         (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) ||
1068         (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1069         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) {
1070       return IsDiv ? X : Constant::getNullValue(Op0->getType());
1071     }
1072   }
1073 
1074   if (Value *V = simplifyByDomEq(Opcode, Op0, Op1, Q, MaxRecurse))
1075     return V;
1076 
1077   return nullptr;
1078 }
1079 
1080 /// Given a predicate and two operands, return true if the comparison is true.
1081 /// This is a helper for div/rem simplification where we return some other value
1082 /// when we can prove a relationship between the operands.
1083 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
1084                        const SimplifyQuery &Q, unsigned MaxRecurse) {
1085   Value *V = simplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
1086   Constant *C = dyn_cast_or_null<Constant>(V);
1087   return (C && C->isAllOnesValue());
1088 }
1089 
1090 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
1091 /// to simplify X % Y to X.
1092 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
1093                       unsigned MaxRecurse, bool IsSigned) {
1094   // Recursion is always used, so bail out at once if we already hit the limit.
1095   if (!MaxRecurse--)
1096     return false;
1097 
1098   if (IsSigned) {
1099     // |X| / |Y| --> 0
1100     //
1101     // We require that 1 operand is a simple constant. That could be extended to
1102     // 2 variables if we computed the sign bit for each.
1103     //
1104     // Make sure that a constant is not the minimum signed value because taking
1105     // the abs() of that is undefined.
1106     Type *Ty = X->getType();
1107     const APInt *C;
1108     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
1109       // Is the variable divisor magnitude always greater than the constant
1110       // dividend magnitude?
1111       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
1112       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
1113       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
1114       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
1115           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
1116         return true;
1117     }
1118     if (match(Y, m_APInt(C))) {
1119       // Special-case: we can't take the abs() of a minimum signed value. If
1120       // that's the divisor, then all we have to do is prove that the dividend
1121       // is also not the minimum signed value.
1122       if (C->isMinSignedValue())
1123         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
1124 
1125       // Is the variable dividend magnitude always less than the constant
1126       // divisor magnitude?
1127       // |X| < |C| --> X > -abs(C) and X < abs(C)
1128       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
1129       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
1130       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
1131           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
1132         return true;
1133     }
1134     return false;
1135   }
1136 
1137   // IsSigned == false.
1138 
1139   // Is the unsigned dividend known to be less than a constant divisor?
1140   // TODO: Convert this (and above) to range analysis
1141   //      ("computeConstantRangeIncludingKnownBits")?
1142   const APInt *C;
1143   if (match(Y, m_APInt(C)) &&
1144       computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, Q.DT).getMaxValue().ult(*C))
1145     return true;
1146 
1147   // Try again for any divisor:
1148   // Is the dividend unsigned less than the divisor?
1149   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1150 }
1151 
1152 /// These are simplifications common to SDiv and UDiv.
1153 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1154                           bool IsExact, const SimplifyQuery &Q,
1155                           unsigned MaxRecurse) {
1156   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1157     return C;
1158 
1159   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q, MaxRecurse))
1160     return V;
1161 
1162   // If this is an exact divide by a constant, then the dividend (Op0) must have
1163   // at least as many trailing zeros as the divisor to divide evenly. If it has
1164   // less trailing zeros, then the result must be poison.
1165   const APInt *DivC;
1166   if (IsExact && match(Op1, m_APInt(DivC)) && DivC->countTrailingZeros()) {
1167     KnownBits KnownOp0 = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1168     if (KnownOp0.countMaxTrailingZeros() < DivC->countTrailingZeros())
1169       return PoisonValue::get(Op0->getType());
1170   }
1171 
1172   bool IsSigned = Opcode == Instruction::SDiv;
1173 
1174   // (X rem Y) / Y -> 0
1175   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1176       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1177     return Constant::getNullValue(Op0->getType());
1178 
1179   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1180   ConstantInt *C1, *C2;
1181   if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) &&
1182       match(Op1, m_ConstantInt(C2))) {
1183     bool Overflow;
1184     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1185     if (Overflow)
1186       return Constant::getNullValue(Op0->getType());
1187   }
1188 
1189   // If the operation is with the result of a select instruction, check whether
1190   // operating on either branch of the select always yields the same value.
1191   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1192     if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1193       return V;
1194 
1195   // If the operation is with the result of a phi instruction, check whether
1196   // operating on all incoming values of the phi always yields the same value.
1197   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1198     if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1199       return V;
1200 
1201   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1202     return Constant::getNullValue(Op0->getType());
1203 
1204   return nullptr;
1205 }
1206 
1207 /// These are simplifications common to SRem and URem.
1208 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1209                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1210   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1211     return C;
1212 
1213   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q, MaxRecurse))
1214     return V;
1215 
1216   // (X % Y) % Y -> X % Y
1217   if ((Opcode == Instruction::SRem &&
1218        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1219       (Opcode == Instruction::URem &&
1220        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1221     return Op0;
1222 
1223   // (X << Y) % X -> 0
1224   if (Q.IIQ.UseInstrInfo &&
1225       ((Opcode == Instruction::SRem &&
1226         match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1227        (Opcode == Instruction::URem &&
1228         match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1229     return Constant::getNullValue(Op0->getType());
1230 
1231   // If the operation is with the result of a select instruction, check whether
1232   // operating on either branch of the select always yields the same value.
1233   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1234     if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1235       return V;
1236 
1237   // If the operation is with the result of a phi instruction, check whether
1238   // operating on all incoming values of the phi always yields the same value.
1239   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1240     if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1241       return V;
1242 
1243   // If X / Y == 0, then X % Y == X.
1244   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1245     return Op0;
1246 
1247   return nullptr;
1248 }
1249 
1250 /// Given operands for an SDiv, see if we can fold the result.
1251 /// If not, this returns null.
1252 static Value *simplifySDivInst(Value *Op0, Value *Op1, bool IsExact,
1253                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1254   // If two operands are negated and no signed overflow, return -1.
1255   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1256     return Constant::getAllOnesValue(Op0->getType());
1257 
1258   return simplifyDiv(Instruction::SDiv, Op0, Op1, IsExact, Q, MaxRecurse);
1259 }
1260 
1261 Value *llvm::simplifySDivInst(Value *Op0, Value *Op1, bool IsExact,
1262                               const SimplifyQuery &Q) {
1263   return ::simplifySDivInst(Op0, Op1, IsExact, Q, RecursionLimit);
1264 }
1265 
1266 /// Given operands for a UDiv, see if we can fold the result.
1267 /// If not, this returns null.
1268 static Value *simplifyUDivInst(Value *Op0, Value *Op1, bool IsExact,
1269                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1270   return simplifyDiv(Instruction::UDiv, Op0, Op1, IsExact, Q, MaxRecurse);
1271 }
1272 
1273 Value *llvm::simplifyUDivInst(Value *Op0, Value *Op1, bool IsExact,
1274                               const SimplifyQuery &Q) {
1275   return ::simplifyUDivInst(Op0, Op1, IsExact, Q, RecursionLimit);
1276 }
1277 
1278 /// Given operands for an SRem, see if we can fold the result.
1279 /// If not, this returns null.
1280 static Value *simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1281                                unsigned MaxRecurse) {
1282   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1283   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1284   Value *X;
1285   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1286     return ConstantInt::getNullValue(Op0->getType());
1287 
1288   // If the two operands are negated, return 0.
1289   if (isKnownNegation(Op0, Op1))
1290     return ConstantInt::getNullValue(Op0->getType());
1291 
1292   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1293 }
1294 
1295 Value *llvm::simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1296   return ::simplifySRemInst(Op0, Op1, Q, RecursionLimit);
1297 }
1298 
1299 /// Given operands for a URem, see if we can fold the result.
1300 /// If not, this returns null.
1301 static Value *simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1302                                unsigned MaxRecurse) {
1303   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1304 }
1305 
1306 Value *llvm::simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1307   return ::simplifyURemInst(Op0, Op1, Q, RecursionLimit);
1308 }
1309 
1310 /// Returns true if a shift by \c Amount always yields poison.
1311 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) {
1312   Constant *C = dyn_cast<Constant>(Amount);
1313   if (!C)
1314     return false;
1315 
1316   // X shift by undef -> poison because it may shift by the bitwidth.
1317   if (Q.isUndefValue(C))
1318     return true;
1319 
1320   // Shifting by the bitwidth or more is poison. This covers scalars and
1321   // fixed/scalable vectors with splat constants.
1322   const APInt *AmountC;
1323   if (match(C, m_APInt(AmountC)) && AmountC->uge(AmountC->getBitWidth()))
1324     return true;
1325 
1326   // Try harder for fixed-length vectors:
1327   // If all lanes of a vector shift are poison, the whole shift is poison.
1328   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1329     for (unsigned I = 0,
1330                   E = cast<FixedVectorType>(C->getType())->getNumElements();
1331          I != E; ++I)
1332       if (!isPoisonShift(C->getAggregateElement(I), Q))
1333         return false;
1334     return true;
1335   }
1336 
1337   return false;
1338 }
1339 
1340 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1341 /// If not, this returns null.
1342 static Value *simplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1343                             Value *Op1, bool IsNSW, const SimplifyQuery &Q,
1344                             unsigned MaxRecurse) {
1345   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1346     return C;
1347 
1348   // poison shift by X -> poison
1349   if (isa<PoisonValue>(Op0))
1350     return Op0;
1351 
1352   // 0 shift by X -> 0
1353   if (match(Op0, m_Zero()))
1354     return Constant::getNullValue(Op0->getType());
1355 
1356   // X shift by 0 -> X
1357   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1358   // would be poison.
1359   Value *X;
1360   if (match(Op1, m_Zero()) ||
1361       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1362     return Op0;
1363 
1364   // Fold undefined shifts.
1365   if (isPoisonShift(Op1, Q))
1366     return PoisonValue::get(Op0->getType());
1367 
1368   // If the operation is with the result of a select instruction, check whether
1369   // operating on either branch of the select always yields the same value.
1370   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1371     if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1372       return V;
1373 
1374   // If the operation is with the result of a phi instruction, check whether
1375   // operating on all incoming values of the phi always yields the same value.
1376   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1377     if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1378       return V;
1379 
1380   // If any bits in the shift amount make that value greater than or equal to
1381   // the number of bits in the type, the shift is undefined.
1382   KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1383   if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth()))
1384     return PoisonValue::get(Op0->getType());
1385 
1386   // If all valid bits in the shift amount are known zero, the first operand is
1387   // unchanged.
1388   unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth());
1389   if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits)
1390     return Op0;
1391 
1392   // Check for nsw shl leading to a poison value.
1393   if (IsNSW) {
1394     assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction");
1395     KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1396     KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt);
1397 
1398     if (KnownVal.Zero.isSignBitSet())
1399       KnownShl.Zero.setSignBit();
1400     if (KnownVal.One.isSignBitSet())
1401       KnownShl.One.setSignBit();
1402 
1403     if (KnownShl.hasConflict())
1404       return PoisonValue::get(Op0->getType());
1405   }
1406 
1407   return nullptr;
1408 }
1409 
1410 /// Given operands for an Shl, LShr or AShr, see if we can
1411 /// fold the result.  If not, this returns null.
1412 static Value *simplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1413                                  Value *Op1, bool IsExact,
1414                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
1415   if (Value *V =
1416           simplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse))
1417     return V;
1418 
1419   // X >> X -> 0
1420   if (Op0 == Op1)
1421     return Constant::getNullValue(Op0->getType());
1422 
1423   // undef >> X -> 0
1424   // undef >> X -> undef (if it's exact)
1425   if (Q.isUndefValue(Op0))
1426     return IsExact ? Op0 : Constant::getNullValue(Op0->getType());
1427 
1428   // The low bit cannot be shifted out of an exact shift if it is set.
1429   // TODO: Generalize by counting trailing zeros (see fold for exact division).
1430   if (IsExact) {
1431     KnownBits Op0Known =
1432         computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1433     if (Op0Known.One[0])
1434       return Op0;
1435   }
1436 
1437   return nullptr;
1438 }
1439 
1440 /// Given operands for an Shl, see if we can fold the result.
1441 /// If not, this returns null.
1442 static Value *simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
1443                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1444   if (Value *V =
1445           simplifyShift(Instruction::Shl, Op0, Op1, IsNSW, Q, MaxRecurse))
1446     return V;
1447 
1448   // undef << X -> 0
1449   // undef << X -> undef if (if it's NSW/NUW)
1450   if (Q.isUndefValue(Op0))
1451     return IsNSW || IsNUW ? Op0 : Constant::getNullValue(Op0->getType());
1452 
1453   // (X >> A) << A -> X
1454   Value *X;
1455   if (Q.IIQ.UseInstrInfo &&
1456       match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1457     return X;
1458 
1459   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
1460   if (IsNUW && match(Op0, m_Negative()))
1461     return Op0;
1462   // NOTE: could use computeKnownBits() / LazyValueInfo,
1463   // but the cost-benefit analysis suggests it isn't worth it.
1464 
1465   return nullptr;
1466 }
1467 
1468 Value *llvm::simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
1469                              const SimplifyQuery &Q) {
1470   return ::simplifyShlInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit);
1471 }
1472 
1473 /// Given operands for an LShr, see if we can fold the result.
1474 /// If not, this returns null.
1475 static Value *simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact,
1476                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1477   if (Value *V = simplifyRightShift(Instruction::LShr, Op0, Op1, IsExact, Q,
1478                                     MaxRecurse))
1479     return V;
1480 
1481   // (X << A) >> A -> X
1482   Value *X;
1483   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1484     return X;
1485 
1486   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
1487   // We can return X as we do in the above case since OR alters no bits in X.
1488   // SimplifyDemandedBits in InstCombine can do more general optimization for
1489   // bit manipulation. This pattern aims to provide opportunities for other
1490   // optimizers by supporting a simple but common case in InstSimplify.
1491   Value *Y;
1492   const APInt *ShRAmt, *ShLAmt;
1493   if (match(Op1, m_APInt(ShRAmt)) &&
1494       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1495       *ShRAmt == *ShLAmt) {
1496     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1497     const unsigned EffWidthY = YKnown.countMaxActiveBits();
1498     if (ShRAmt->uge(EffWidthY))
1499       return X;
1500   }
1501 
1502   return nullptr;
1503 }
1504 
1505 Value *llvm::simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact,
1506                               const SimplifyQuery &Q) {
1507   return ::simplifyLShrInst(Op0, Op1, IsExact, Q, RecursionLimit);
1508 }
1509 
1510 /// Given operands for an AShr, see if we can fold the result.
1511 /// If not, this returns null.
1512 static Value *simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact,
1513                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1514   if (Value *V = simplifyRightShift(Instruction::AShr, Op0, Op1, IsExact, Q,
1515                                     MaxRecurse))
1516     return V;
1517 
1518   // -1 >>a X --> -1
1519   // (-1 << X) a>> X --> -1
1520   // Do not return Op0 because it may contain undef elements if it's a vector.
1521   if (match(Op0, m_AllOnes()) ||
1522       match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1))))
1523     return Constant::getAllOnesValue(Op0->getType());
1524 
1525   // (X << A) >> A -> X
1526   Value *X;
1527   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1528     return X;
1529 
1530   // Arithmetic shifting an all-sign-bit value is a no-op.
1531   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1532   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1533     return Op0;
1534 
1535   return nullptr;
1536 }
1537 
1538 Value *llvm::simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact,
1539                               const SimplifyQuery &Q) {
1540   return ::simplifyAShrInst(Op0, Op1, IsExact, Q, RecursionLimit);
1541 }
1542 
1543 /// Commuted variants are assumed to be handled by calling this function again
1544 /// with the parameters swapped.
1545 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1546                                          ICmpInst *UnsignedICmp, bool IsAnd,
1547                                          const SimplifyQuery &Q) {
1548   Value *X, *Y;
1549 
1550   ICmpInst::Predicate EqPred;
1551   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1552       !ICmpInst::isEquality(EqPred))
1553     return nullptr;
1554 
1555   ICmpInst::Predicate UnsignedPred;
1556 
1557   Value *A, *B;
1558   // Y = (A - B);
1559   if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
1560     if (match(UnsignedICmp,
1561               m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
1562         ICmpInst::isUnsigned(UnsignedPred)) {
1563       // A >=/<= B || (A - B) != 0  <-->  true
1564       if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1565            UnsignedPred == ICmpInst::ICMP_ULE) &&
1566           EqPred == ICmpInst::ICMP_NE && !IsAnd)
1567         return ConstantInt::getTrue(UnsignedICmp->getType());
1568       // A </> B && (A - B) == 0  <-->  false
1569       if ((UnsignedPred == ICmpInst::ICMP_ULT ||
1570            UnsignedPred == ICmpInst::ICMP_UGT) &&
1571           EqPred == ICmpInst::ICMP_EQ && IsAnd)
1572         return ConstantInt::getFalse(UnsignedICmp->getType());
1573 
1574       // A </> B && (A - B) != 0  <-->  A </> B
1575       // A </> B || (A - B) != 0  <-->  (A - B) != 0
1576       if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT ||
1577                                           UnsignedPred == ICmpInst::ICMP_UGT))
1578         return IsAnd ? UnsignedICmp : ZeroICmp;
1579 
1580       // A <=/>= B && (A - B) == 0  <-->  (A - B) == 0
1581       // A <=/>= B || (A - B) == 0  <-->  A <=/>= B
1582       if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE ||
1583                                           UnsignedPred == ICmpInst::ICMP_UGE))
1584         return IsAnd ? ZeroICmp : UnsignedICmp;
1585     }
1586 
1587     // Given  Y = (A - B)
1588     //   Y >= A && Y != 0  --> Y >= A  iff B != 0
1589     //   Y <  A || Y == 0  --> Y <  A  iff B != 0
1590     if (match(UnsignedICmp,
1591               m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
1592       if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
1593           EqPred == ICmpInst::ICMP_NE &&
1594           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1595         return UnsignedICmp;
1596       if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
1597           EqPred == ICmpInst::ICMP_EQ &&
1598           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1599         return UnsignedICmp;
1600     }
1601   }
1602 
1603   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1604       ICmpInst::isUnsigned(UnsignedPred))
1605     ;
1606   else if (match(UnsignedICmp,
1607                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1608            ICmpInst::isUnsigned(UnsignedPred))
1609     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1610   else
1611     return nullptr;
1612 
1613   // X > Y && Y == 0  -->  Y == 0  iff X != 0
1614   // X > Y || Y == 0  -->  X > Y   iff X != 0
1615   if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1616       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1617     return IsAnd ? ZeroICmp : UnsignedICmp;
1618 
1619   // X <= Y && Y != 0  -->  X <= Y  iff X != 0
1620   // X <= Y || Y != 0  -->  Y != 0  iff X != 0
1621   if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1622       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1623     return IsAnd ? UnsignedICmp : ZeroICmp;
1624 
1625   // The transforms below here are expected to be handled more generally with
1626   // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's
1627   // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap,
1628   // these are candidates for removal.
1629 
1630   // X < Y && Y != 0  -->  X < Y
1631   // X < Y || Y != 0  -->  Y != 0
1632   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1633     return IsAnd ? UnsignedICmp : ZeroICmp;
1634 
1635   // X >= Y && Y == 0  -->  Y == 0
1636   // X >= Y || Y == 0  -->  X >= Y
1637   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
1638     return IsAnd ? ZeroICmp : UnsignedICmp;
1639 
1640   // X < Y && Y == 0  -->  false
1641   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1642       IsAnd)
1643     return getFalse(UnsignedICmp->getType());
1644 
1645   // X >= Y || Y != 0  -->  true
1646   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
1647       !IsAnd)
1648     return getTrue(UnsignedICmp->getType());
1649 
1650   return nullptr;
1651 }
1652 
1653 /// Test if a pair of compares with a shared operand and 2 constants has an
1654 /// empty set intersection, full set union, or if one compare is a superset of
1655 /// the other.
1656 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1657                                                 bool IsAnd) {
1658   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1659   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1660     return nullptr;
1661 
1662   const APInt *C0, *C1;
1663   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1664       !match(Cmp1->getOperand(1), m_APInt(C1)))
1665     return nullptr;
1666 
1667   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1668   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1669 
1670   // For and-of-compares, check if the intersection is empty:
1671   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1672   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1673     return getFalse(Cmp0->getType());
1674 
1675   // For or-of-compares, check if the union is full:
1676   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1677   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1678     return getTrue(Cmp0->getType());
1679 
1680   // Is one range a superset of the other?
1681   // If this is and-of-compares, take the smaller set:
1682   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1683   // If this is or-of-compares, take the larger set:
1684   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1685   if (Range0.contains(Range1))
1686     return IsAnd ? Cmp1 : Cmp0;
1687   if (Range1.contains(Range0))
1688     return IsAnd ? Cmp0 : Cmp1;
1689 
1690   return nullptr;
1691 }
1692 
1693 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1694                                            bool IsAnd) {
1695   ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1696   if (!match(Cmp0->getOperand(1), m_Zero()) ||
1697       !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1698     return nullptr;
1699 
1700   if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1701     return nullptr;
1702 
1703   // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1704   Value *X = Cmp0->getOperand(0);
1705   Value *Y = Cmp1->getOperand(0);
1706 
1707   // If one of the compares is a masked version of a (not) null check, then
1708   // that compare implies the other, so we eliminate the other. Optionally, look
1709   // through a pointer-to-int cast to match a null check of a pointer type.
1710 
1711   // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1712   // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1713   // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1714   // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1715   if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1716       match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1717     return Cmp1;
1718 
1719   // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1720   // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1721   // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1722   // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1723   if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1724       match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1725     return Cmp0;
1726 
1727   return nullptr;
1728 }
1729 
1730 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1731                                         const InstrInfoQuery &IIQ) {
1732   // (icmp (add V, C0), C1) & (icmp V, C0)
1733   ICmpInst::Predicate Pred0, Pred1;
1734   const APInt *C0, *C1;
1735   Value *V;
1736   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1737     return nullptr;
1738 
1739   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1740     return nullptr;
1741 
1742   auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1743   if (AddInst->getOperand(1) != Op1->getOperand(1))
1744     return nullptr;
1745 
1746   Type *ITy = Op0->getType();
1747   bool IsNSW = IIQ.hasNoSignedWrap(AddInst);
1748   bool IsNUW = IIQ.hasNoUnsignedWrap(AddInst);
1749 
1750   const APInt Delta = *C1 - *C0;
1751   if (C0->isStrictlyPositive()) {
1752     if (Delta == 2) {
1753       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1754         return getFalse(ITy);
1755       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && IsNSW)
1756         return getFalse(ITy);
1757     }
1758     if (Delta == 1) {
1759       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1760         return getFalse(ITy);
1761       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && IsNSW)
1762         return getFalse(ITy);
1763     }
1764   }
1765   if (C0->getBoolValue() && IsNUW) {
1766     if (Delta == 2)
1767       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1768         return getFalse(ITy);
1769     if (Delta == 1)
1770       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1771         return getFalse(ITy);
1772   }
1773 
1774   return nullptr;
1775 }
1776 
1777 /// Try to eliminate compares with signed or unsigned min/max constants.
1778 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1,
1779                                                  bool IsAnd) {
1780   // Canonicalize an equality compare as Cmp0.
1781   if (Cmp1->isEquality())
1782     std::swap(Cmp0, Cmp1);
1783   if (!Cmp0->isEquality())
1784     return nullptr;
1785 
1786   // The non-equality compare must include a common operand (X). Canonicalize
1787   // the common operand as operand 0 (the predicate is swapped if the common
1788   // operand was operand 1).
1789   ICmpInst::Predicate Pred0 = Cmp0->getPredicate();
1790   Value *X = Cmp0->getOperand(0);
1791   ICmpInst::Predicate Pred1;
1792   bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value()));
1793   if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value())))
1794     return nullptr;
1795   if (ICmpInst::isEquality(Pred1))
1796     return nullptr;
1797 
1798   // The equality compare must be against a constant. Flip bits if we matched
1799   // a bitwise not. Convert a null pointer constant to an integer zero value.
1800   APInt MinMaxC;
1801   const APInt *C;
1802   if (match(Cmp0->getOperand(1), m_APInt(C)))
1803     MinMaxC = HasNotOp ? ~*C : *C;
1804   else if (isa<ConstantPointerNull>(Cmp0->getOperand(1)))
1805     MinMaxC = APInt::getZero(8);
1806   else
1807     return nullptr;
1808 
1809   // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1.
1810   if (!IsAnd) {
1811     Pred0 = ICmpInst::getInversePredicate(Pred0);
1812     Pred1 = ICmpInst::getInversePredicate(Pred1);
1813   }
1814 
1815   // Normalize to unsigned compare and unsigned min/max value.
1816   // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255
1817   if (ICmpInst::isSigned(Pred1)) {
1818     Pred1 = ICmpInst::getUnsignedPredicate(Pred1);
1819     MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth());
1820   }
1821 
1822   // (X != MAX) && (X < Y) --> X < Y
1823   // (X == MAX) || (X >= Y) --> X >= Y
1824   if (MinMaxC.isMaxValue())
1825     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT)
1826       return Cmp1;
1827 
1828   // (X != MIN) && (X > Y) -->  X > Y
1829   // (X == MIN) || (X <= Y) --> X <= Y
1830   if (MinMaxC.isMinValue())
1831     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT)
1832       return Cmp1;
1833 
1834   return nullptr;
1835 }
1836 
1837 /// Try to simplify and/or of icmp with ctpop intrinsic.
1838 static Value *simplifyAndOrOfICmpsWithCtpop(ICmpInst *Cmp0, ICmpInst *Cmp1,
1839                                             bool IsAnd) {
1840   ICmpInst::Predicate Pred0, Pred1;
1841   Value *X;
1842   const APInt *C;
1843   if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)),
1844                           m_APInt(C))) ||
1845       !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt())) || C->isZero())
1846     return nullptr;
1847 
1848   // (ctpop(X) == C) || (X != 0) --> X != 0 where C > 0
1849   if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_NE)
1850     return Cmp1;
1851   // (ctpop(X) != C) && (X == 0) --> X == 0 where C > 0
1852   if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_EQ)
1853     return Cmp1;
1854 
1855   return nullptr;
1856 }
1857 
1858 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1859                                  const SimplifyQuery &Q) {
1860   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
1861     return X;
1862   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
1863     return X;
1864 
1865   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1866     return X;
1867 
1868   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true))
1869     return X;
1870 
1871   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1872     return X;
1873 
1874   if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, true))
1875     return X;
1876   if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, true))
1877     return X;
1878 
1879   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1880     return X;
1881   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1882     return X;
1883 
1884   return nullptr;
1885 }
1886 
1887 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1888                                        const InstrInfoQuery &IIQ) {
1889   // (icmp (add V, C0), C1) | (icmp V, C0)
1890   ICmpInst::Predicate Pred0, Pred1;
1891   const APInt *C0, *C1;
1892   Value *V;
1893   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1894     return nullptr;
1895 
1896   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1897     return nullptr;
1898 
1899   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1900   if (AddInst->getOperand(1) != Op1->getOperand(1))
1901     return nullptr;
1902 
1903   Type *ITy = Op0->getType();
1904   bool IsNSW = IIQ.hasNoSignedWrap(AddInst);
1905   bool IsNUW = IIQ.hasNoUnsignedWrap(AddInst);
1906 
1907   const APInt Delta = *C1 - *C0;
1908   if (C0->isStrictlyPositive()) {
1909     if (Delta == 2) {
1910       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1911         return getTrue(ITy);
1912       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && IsNSW)
1913         return getTrue(ITy);
1914     }
1915     if (Delta == 1) {
1916       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1917         return getTrue(ITy);
1918       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && IsNSW)
1919         return getTrue(ITy);
1920     }
1921   }
1922   if (C0->getBoolValue() && IsNUW) {
1923     if (Delta == 2)
1924       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1925         return getTrue(ITy);
1926     if (Delta == 1)
1927       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1928         return getTrue(ITy);
1929   }
1930 
1931   return nullptr;
1932 }
1933 
1934 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1935                                 const SimplifyQuery &Q) {
1936   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
1937     return X;
1938   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
1939     return X;
1940 
1941   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1942     return X;
1943 
1944   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false))
1945     return X;
1946 
1947   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1948     return X;
1949 
1950   if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, false))
1951     return X;
1952   if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, false))
1953     return X;
1954 
1955   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1956     return X;
1957   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1958     return X;
1959 
1960   return nullptr;
1961 }
1962 
1963 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, FCmpInst *LHS,
1964                                    FCmpInst *RHS, bool IsAnd) {
1965   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1966   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1967   if (LHS0->getType() != RHS0->getType())
1968     return nullptr;
1969 
1970   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1971   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1972       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1973     // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1974     // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1975     // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1976     // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1977     // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1978     // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1979     // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1980     // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1981     if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1982         (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1983       return RHS;
1984 
1985     // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1986     // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1987     // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1988     // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1989     // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1990     // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1991     // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1992     // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1993     if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1994         (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1995       return LHS;
1996   }
1997 
1998   return nullptr;
1999 }
2000 
2001 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, Value *Op0,
2002                                   Value *Op1, bool IsAnd) {
2003   // Look through casts of the 'and' operands to find compares.
2004   auto *Cast0 = dyn_cast<CastInst>(Op0);
2005   auto *Cast1 = dyn_cast<CastInst>(Op1);
2006   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
2007       Cast0->getSrcTy() == Cast1->getSrcTy()) {
2008     Op0 = Cast0->getOperand(0);
2009     Op1 = Cast1->getOperand(0);
2010   }
2011 
2012   Value *V = nullptr;
2013   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
2014   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
2015   if (ICmp0 && ICmp1)
2016     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
2017               : simplifyOrOfICmps(ICmp0, ICmp1, Q);
2018 
2019   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
2020   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
2021   if (FCmp0 && FCmp1)
2022     V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
2023 
2024   if (!V)
2025     return nullptr;
2026   if (!Cast0)
2027     return V;
2028 
2029   // If we looked through casts, we can only handle a constant simplification
2030   // because we are not allowed to create a cast instruction here.
2031   if (auto *C = dyn_cast<Constant>(V))
2032     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
2033 
2034   return nullptr;
2035 }
2036 
2037 /// Given a bitwise logic op, check if the operands are add/sub with a common
2038 /// source value and inverted constant (identity: C - X -> ~(X + ~C)).
2039 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1,
2040                                     Instruction::BinaryOps Opcode) {
2041   assert(Op0->getType() == Op1->getType() && "Mismatched binop types");
2042   assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op");
2043   Value *X;
2044   Constant *C1, *C2;
2045   if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) &&
2046        match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) ||
2047       (match(Op1, m_Add(m_Value(X), m_Constant(C1))) &&
2048        match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) {
2049     if (ConstantExpr::getNot(C1) == C2) {
2050       // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0
2051       // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1
2052       // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1
2053       Type *Ty = Op0->getType();
2054       return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty)
2055                                         : ConstantInt::getAllOnesValue(Ty);
2056     }
2057   }
2058   return nullptr;
2059 }
2060 
2061 /// Given operands for an And, see if we can fold the result.
2062 /// If not, this returns null.
2063 static Value *simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2064                               unsigned MaxRecurse) {
2065   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
2066     return C;
2067 
2068   // X & poison -> poison
2069   if (isa<PoisonValue>(Op1))
2070     return Op1;
2071 
2072   // X & undef -> 0
2073   if (Q.isUndefValue(Op1))
2074     return Constant::getNullValue(Op0->getType());
2075 
2076   // X & X = X
2077   if (Op0 == Op1)
2078     return Op0;
2079 
2080   // X & 0 = 0
2081   if (match(Op1, m_Zero()))
2082     return Constant::getNullValue(Op0->getType());
2083 
2084   // X & -1 = X
2085   if (match(Op1, m_AllOnes()))
2086     return Op0;
2087 
2088   // A & ~A  =  ~A & A  =  0
2089   if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0))))
2090     return Constant::getNullValue(Op0->getType());
2091 
2092   // (A | ?) & A = A
2093   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
2094     return Op1;
2095 
2096   // A & (A | ?) = A
2097   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
2098     return Op0;
2099 
2100   // (X | Y) & (X | ~Y) --> X (commuted 8 ways)
2101   Value *X, *Y;
2102   if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2103       match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y))))
2104     return X;
2105   if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2106       match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y))))
2107     return X;
2108 
2109   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And))
2110     return V;
2111 
2112   // A mask that only clears known zeros of a shifted value is a no-op.
2113   const APInt *Mask;
2114   const APInt *ShAmt;
2115   if (match(Op1, m_APInt(Mask))) {
2116     // If all bits in the inverted and shifted mask are clear:
2117     // and (shl X, ShAmt), Mask --> shl X, ShAmt
2118     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
2119         (~(*Mask)).lshr(*ShAmt).isZero())
2120       return Op0;
2121 
2122     // If all bits in the inverted and shifted mask are clear:
2123     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
2124     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
2125         (~(*Mask)).shl(*ShAmt).isZero())
2126       return Op0;
2127   }
2128 
2129   // If we have a multiplication overflow check that is being 'and'ed with a
2130   // check that one of the multipliers is not zero, we can omit the 'and', and
2131   // only keep the overflow check.
2132   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true))
2133     return Op1;
2134   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true))
2135     return Op0;
2136 
2137   // A & (-A) = A if A is a power of two or zero.
2138   if (match(Op0, m_Neg(m_Specific(Op1))) ||
2139       match(Op1, m_Neg(m_Specific(Op0)))) {
2140     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2141                                Q.DT))
2142       return Op0;
2143     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2144                                Q.DT))
2145       return Op1;
2146   }
2147 
2148   // This is a similar pattern used for checking if a value is a power-of-2:
2149   // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
2150   // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
2151   if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
2152       isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2153     return Constant::getNullValue(Op1->getType());
2154   if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
2155       isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2156     return Constant::getNullValue(Op0->getType());
2157 
2158   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
2159     return V;
2160 
2161   // Try some generic simplifications for associative operations.
2162   if (Value *V =
2163           simplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, MaxRecurse))
2164     return V;
2165 
2166   // And distributes over Or.  Try some generic simplifications based on this.
2167   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2168                                         Instruction::Or, Q, MaxRecurse))
2169     return V;
2170 
2171   // And distributes over Xor.  Try some generic simplifications based on this.
2172   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2173                                         Instruction::Xor, Q, MaxRecurse))
2174     return V;
2175 
2176   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2177     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2178       // A & (A && B) -> A && B
2179       if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero())))
2180         return Op1;
2181       else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero())))
2182         return Op0;
2183     }
2184     // If the operation is with the result of a select instruction, check
2185     // whether operating on either branch of the select always yields the same
2186     // value.
2187     if (Value *V =
2188             threadBinOpOverSelect(Instruction::And, Op0, Op1, Q, MaxRecurse))
2189       return V;
2190   }
2191 
2192   // If the operation is with the result of a phi instruction, check whether
2193   // operating on all incoming values of the phi always yields the same value.
2194   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2195     if (Value *V =
2196             threadBinOpOverPHI(Instruction::And, Op0, Op1, Q, MaxRecurse))
2197       return V;
2198 
2199   // Assuming the effective width of Y is not larger than A, i.e. all bits
2200   // from X and Y are disjoint in (X << A) | Y,
2201   // if the mask of this AND op covers all bits of X or Y, while it covers
2202   // no bits from the other, we can bypass this AND op. E.g.,
2203   // ((X << A) | Y) & Mask -> Y,
2204   //     if Mask = ((1 << effective_width_of(Y)) - 1)
2205   // ((X << A) | Y) & Mask -> X << A,
2206   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
2207   // SimplifyDemandedBits in InstCombine can optimize the general case.
2208   // This pattern aims to help other passes for a common case.
2209   Value *XShifted;
2210   if (match(Op1, m_APInt(Mask)) &&
2211       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
2212                                      m_Value(XShifted)),
2213                         m_Value(Y)))) {
2214     const unsigned Width = Op0->getType()->getScalarSizeInBits();
2215     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
2216     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2217     const unsigned EffWidthY = YKnown.countMaxActiveBits();
2218     if (EffWidthY <= ShftCnt) {
2219       const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2220       const unsigned EffWidthX = XKnown.countMaxActiveBits();
2221       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
2222       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
2223       // If the mask is extracting all bits from X or Y as is, we can skip
2224       // this AND op.
2225       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
2226         return Y;
2227       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
2228         return XShifted;
2229     }
2230   }
2231 
2232   // ((X | Y) ^ X ) & ((X | Y) ^ Y) --> 0
2233   // ((X | Y) ^ Y ) & ((X | Y) ^ X) --> 0
2234   BinaryOperator *Or;
2235   if (match(Op0, m_c_Xor(m_Value(X),
2236                          m_CombineAnd(m_BinOp(Or),
2237                                       m_c_Or(m_Deferred(X), m_Value(Y))))) &&
2238       match(Op1, m_c_Xor(m_Specific(Or), m_Specific(Y))))
2239     return Constant::getNullValue(Op0->getType());
2240 
2241   if (Op0->getType()->isIntOrIntVectorTy(1)) {
2242     if (std::optional<bool> Implied = isImpliedCondition(Op0, Op1, Q.DL)) {
2243       // If Op0 is true implies Op1 is true, then Op0 is a subset of Op1.
2244       if (*Implied == true)
2245         return Op0;
2246       // If Op0 is true implies Op1 is false, then they are not true together.
2247       if (*Implied == false)
2248         return ConstantInt::getFalse(Op0->getType());
2249     }
2250     if (std::optional<bool> Implied = isImpliedCondition(Op1, Op0, Q.DL)) {
2251       // If Op1 is true implies Op0 is true, then Op1 is a subset of Op0.
2252       if (*Implied)
2253         return Op1;
2254       // If Op1 is true implies Op0 is false, then they are not true together.
2255       if (!*Implied)
2256         return ConstantInt::getFalse(Op1->getType());
2257     }
2258   }
2259 
2260   if (Value *V = simplifyByDomEq(Instruction::And, Op0, Op1, Q, MaxRecurse))
2261     return V;
2262 
2263   return nullptr;
2264 }
2265 
2266 Value *llvm::simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2267   return ::simplifyAndInst(Op0, Op1, Q, RecursionLimit);
2268 }
2269 
2270 // TODO: Many of these folds could use LogicalAnd/LogicalOr.
2271 static Value *simplifyOrLogic(Value *X, Value *Y) {
2272   assert(X->getType() == Y->getType() && "Expected same type for 'or' ops");
2273   Type *Ty = X->getType();
2274 
2275   // X | ~X --> -1
2276   if (match(Y, m_Not(m_Specific(X))))
2277     return ConstantInt::getAllOnesValue(Ty);
2278 
2279   // X | ~(X & ?) = -1
2280   if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value()))))
2281     return ConstantInt::getAllOnesValue(Ty);
2282 
2283   // X | (X & ?) --> X
2284   if (match(Y, m_c_And(m_Specific(X), m_Value())))
2285     return X;
2286 
2287   Value *A, *B;
2288 
2289   // (A ^ B) | (A | B) --> A | B
2290   // (A ^ B) | (B | A) --> B | A
2291   if (match(X, m_Xor(m_Value(A), m_Value(B))) &&
2292       match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2293     return Y;
2294 
2295   // ~(A ^ B) | (A | B) --> -1
2296   // ~(A ^ B) | (B | A) --> -1
2297   if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) &&
2298       match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2299     return ConstantInt::getAllOnesValue(Ty);
2300 
2301   // (A & ~B) | (A ^ B) --> A ^ B
2302   // (~B & A) | (A ^ B) --> A ^ B
2303   // (A & ~B) | (B ^ A) --> B ^ A
2304   // (~B & A) | (B ^ A) --> B ^ A
2305   if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
2306       match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2307     return Y;
2308 
2309   // (~A ^ B) | (A & B) --> ~A ^ B
2310   // (B ^ ~A) | (A & B) --> B ^ ~A
2311   // (~A ^ B) | (B & A) --> ~A ^ B
2312   // (B ^ ~A) | (B & A) --> B ^ ~A
2313   if (match(X, m_c_Xor(m_NotForbidUndef(m_Value(A)), m_Value(B))) &&
2314       match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2315     return X;
2316 
2317   // (~A | B) | (A ^ B) --> -1
2318   // (~A | B) | (B ^ A) --> -1
2319   // (B | ~A) | (A ^ B) --> -1
2320   // (B | ~A) | (B ^ A) --> -1
2321   if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2322       match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2323     return ConstantInt::getAllOnesValue(Ty);
2324 
2325   // (~A & B) | ~(A | B) --> ~A
2326   // (~A & B) | ~(B | A) --> ~A
2327   // (B & ~A) | ~(A | B) --> ~A
2328   // (B & ~A) | ~(B | A) --> ~A
2329   Value *NotA;
2330   if (match(X,
2331             m_c_And(m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))),
2332                     m_Value(B))) &&
2333       match(Y, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
2334     return NotA;
2335   // The same is true of Logical And
2336   // TODO: This could share the logic of the version above if there was a
2337   // version of LogicalAnd that allowed more than just i1 types.
2338   if (match(X, m_c_LogicalAnd(
2339                    m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))),
2340                    m_Value(B))) &&
2341       match(Y, m_Not(m_c_LogicalOr(m_Specific(A), m_Specific(B)))))
2342     return NotA;
2343 
2344   // ~(A ^ B) | (A & B) --> ~(A ^ B)
2345   // ~(A ^ B) | (B & A) --> ~(A ^ B)
2346   Value *NotAB;
2347   if (match(X, m_CombineAnd(m_NotForbidUndef(m_Xor(m_Value(A), m_Value(B))),
2348                             m_Value(NotAB))) &&
2349       match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2350     return NotAB;
2351 
2352   // ~(A & B) | (A ^ B) --> ~(A & B)
2353   // ~(A & B) | (B ^ A) --> ~(A & B)
2354   if (match(X, m_CombineAnd(m_NotForbidUndef(m_And(m_Value(A), m_Value(B))),
2355                             m_Value(NotAB))) &&
2356       match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2357     return NotAB;
2358 
2359   return nullptr;
2360 }
2361 
2362 /// Given operands for an Or, see if we can fold the result.
2363 /// If not, this returns null.
2364 static Value *simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2365                              unsigned MaxRecurse) {
2366   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
2367     return C;
2368 
2369   // X | poison -> poison
2370   if (isa<PoisonValue>(Op1))
2371     return Op1;
2372 
2373   // X | undef -> -1
2374   // X | -1 = -1
2375   // Do not return Op1 because it may contain undef elements if it's a vector.
2376   if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes()))
2377     return Constant::getAllOnesValue(Op0->getType());
2378 
2379   // X | X = X
2380   // X | 0 = X
2381   if (Op0 == Op1 || match(Op1, m_Zero()))
2382     return Op0;
2383 
2384   if (Value *R = simplifyOrLogic(Op0, Op1))
2385     return R;
2386   if (Value *R = simplifyOrLogic(Op1, Op0))
2387     return R;
2388 
2389   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or))
2390     return V;
2391 
2392   // Rotated -1 is still -1:
2393   // (-1 << X) | (-1 >> (C - X)) --> -1
2394   // (-1 >> X) | (-1 << (C - X)) --> -1
2395   // ...with C <= bitwidth (and commuted variants).
2396   Value *X, *Y;
2397   if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) &&
2398        match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) ||
2399       (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) &&
2400        match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) {
2401     const APInt *C;
2402     if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) ||
2403          match(Y, m_Sub(m_APInt(C), m_Specific(X)))) &&
2404         C->ule(X->getType()->getScalarSizeInBits())) {
2405       return ConstantInt::getAllOnesValue(X->getType());
2406     }
2407   }
2408 
2409   // A funnel shift (rotate) can be decomposed into simpler shifts. See if we
2410   // are mixing in another shift that is redundant with the funnel shift.
2411 
2412   // (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y
2413   // (shl X, Y) | (fshl X, ?, Y) --> fshl X, ?, Y
2414   if (match(Op0,
2415             m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) &&
2416       match(Op1, m_Shl(m_Specific(X), m_Specific(Y))))
2417     return Op0;
2418   if (match(Op1,
2419             m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) &&
2420       match(Op0, m_Shl(m_Specific(X), m_Specific(Y))))
2421     return Op1;
2422 
2423   // (fshr ?, X, Y) | (lshr X, Y) --> fshr ?, X, Y
2424   // (lshr X, Y) | (fshr ?, X, Y) --> fshr ?, X, Y
2425   if (match(Op0,
2426             m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) &&
2427       match(Op1, m_LShr(m_Specific(X), m_Specific(Y))))
2428     return Op0;
2429   if (match(Op1,
2430             m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) &&
2431       match(Op0, m_LShr(m_Specific(X), m_Specific(Y))))
2432     return Op1;
2433 
2434   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
2435     return V;
2436 
2437   // If we have a multiplication overflow check that is being 'and'ed with a
2438   // check that one of the multipliers is not zero, we can omit the 'and', and
2439   // only keep the overflow check.
2440   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false))
2441     return Op1;
2442   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false))
2443     return Op0;
2444 
2445   // Try some generic simplifications for associative operations.
2446   if (Value *V =
2447           simplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2448     return V;
2449 
2450   // Or distributes over And.  Try some generic simplifications based on this.
2451   if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1,
2452                                         Instruction::And, Q, MaxRecurse))
2453     return V;
2454 
2455   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2456     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2457       // A | (A || B) -> A || B
2458       if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value())))
2459         return Op1;
2460       else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value())))
2461         return Op0;
2462     }
2463     // If the operation is with the result of a select instruction, check
2464     // whether operating on either branch of the select always yields the same
2465     // value.
2466     if (Value *V =
2467             threadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2468       return V;
2469   }
2470 
2471   // (A & C1)|(B & C2)
2472   Value *A, *B;
2473   const APInt *C1, *C2;
2474   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2475       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2476     if (*C1 == ~*C2) {
2477       // (A & C1)|(B & C2)
2478       // If we have: ((V + N) & C1) | (V & C2)
2479       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2480       // replace with V+N.
2481       Value *N;
2482       if (C2->isMask() && // C2 == 0+1+
2483           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2484         // Add commutes, try both ways.
2485         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2486           return A;
2487       }
2488       // Or commutes, try both ways.
2489       if (C1->isMask() && match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2490         // Add commutes, try both ways.
2491         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2492           return B;
2493       }
2494     }
2495   }
2496 
2497   // If the operation is with the result of a phi instruction, check whether
2498   // operating on all incoming values of the phi always yields the same value.
2499   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2500     if (Value *V = threadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2501       return V;
2502 
2503   if (Op0->getType()->isIntOrIntVectorTy(1)) {
2504     if (std::optional<bool> Implied =
2505             isImpliedCondition(Op0, Op1, Q.DL, false)) {
2506       // If Op0 is false implies Op1 is false, then Op1 is a subset of Op0.
2507       if (*Implied == false)
2508         return Op0;
2509       // If Op0 is false implies Op1 is true, then at least one is always true.
2510       if (*Implied == true)
2511         return ConstantInt::getTrue(Op0->getType());
2512     }
2513     if (std::optional<bool> Implied =
2514             isImpliedCondition(Op1, Op0, Q.DL, false)) {
2515       // If Op1 is false implies Op0 is false, then Op0 is a subset of Op1.
2516       if (*Implied == false)
2517         return Op1;
2518       // If Op1 is false implies Op0 is true, then at least one is always true.
2519       if (*Implied == true)
2520         return ConstantInt::getTrue(Op1->getType());
2521     }
2522   }
2523 
2524   if (Value *V = simplifyByDomEq(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2525     return V;
2526 
2527   return nullptr;
2528 }
2529 
2530 Value *llvm::simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2531   return ::simplifyOrInst(Op0, Op1, Q, RecursionLimit);
2532 }
2533 
2534 /// Given operands for a Xor, see if we can fold the result.
2535 /// If not, this returns null.
2536 static Value *simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2537                               unsigned MaxRecurse) {
2538   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2539     return C;
2540 
2541   // X ^ poison -> poison
2542   if (isa<PoisonValue>(Op1))
2543     return Op1;
2544 
2545   // A ^ undef -> undef
2546   if (Q.isUndefValue(Op1))
2547     return Op1;
2548 
2549   // A ^ 0 = A
2550   if (match(Op1, m_Zero()))
2551     return Op0;
2552 
2553   // A ^ A = 0
2554   if (Op0 == Op1)
2555     return Constant::getNullValue(Op0->getType());
2556 
2557   // A ^ ~A  =  ~A ^ A  =  -1
2558   if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0))))
2559     return Constant::getAllOnesValue(Op0->getType());
2560 
2561   auto foldAndOrNot = [](Value *X, Value *Y) -> Value * {
2562     Value *A, *B;
2563     // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants.
2564     if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) &&
2565         match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2566       return A;
2567 
2568     // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants.
2569     // The 'not' op must contain a complete -1 operand (no undef elements for
2570     // vector) for the transform to be safe.
2571     Value *NotA;
2572     if (match(X,
2573               m_c_Or(m_CombineAnd(m_NotForbidUndef(m_Value(A)), m_Value(NotA)),
2574                      m_Value(B))) &&
2575         match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2576       return NotA;
2577 
2578     return nullptr;
2579   };
2580   if (Value *R = foldAndOrNot(Op0, Op1))
2581     return R;
2582   if (Value *R = foldAndOrNot(Op1, Op0))
2583     return R;
2584 
2585   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor))
2586     return V;
2587 
2588   // Try some generic simplifications for associative operations.
2589   if (Value *V =
2590           simplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, MaxRecurse))
2591     return V;
2592 
2593   // Threading Xor over selects and phi nodes is pointless, so don't bother.
2594   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2595   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2596   // only if B and C are equal.  If B and C are equal then (since we assume
2597   // that operands have already been simplified) "select(cond, B, C)" should
2598   // have been simplified to the common value of B and C already.  Analysing
2599   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2600   // for threading over phi nodes.
2601 
2602   if (Value *V = simplifyByDomEq(Instruction::Xor, Op0, Op1, Q, MaxRecurse))
2603     return V;
2604 
2605   return nullptr;
2606 }
2607 
2608 Value *llvm::simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2609   return ::simplifyXorInst(Op0, Op1, Q, RecursionLimit);
2610 }
2611 
2612 static Type *getCompareTy(Value *Op) {
2613   return CmpInst::makeCmpResultType(Op->getType());
2614 }
2615 
2616 /// Rummage around inside V looking for something equivalent to the comparison
2617 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2618 /// Helper function for analyzing max/min idioms.
2619 static Value *extractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2620                                          Value *LHS, Value *RHS) {
2621   SelectInst *SI = dyn_cast<SelectInst>(V);
2622   if (!SI)
2623     return nullptr;
2624   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2625   if (!Cmp)
2626     return nullptr;
2627   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2628   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2629     return Cmp;
2630   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2631       LHS == CmpRHS && RHS == CmpLHS)
2632     return Cmp;
2633   return nullptr;
2634 }
2635 
2636 /// Return true if the underlying object (storage) must be disjoint from
2637 /// storage returned by any noalias return call.
2638 static bool isAllocDisjoint(const Value *V) {
2639   // For allocas, we consider only static ones (dynamic
2640   // allocas might be transformed into calls to malloc not simultaneously
2641   // live with the compared-to allocation). For globals, we exclude symbols
2642   // that might be resolve lazily to symbols in another dynamically-loaded
2643   // library (and, thus, could be malloc'ed by the implementation).
2644   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2645     return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2646   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2647     return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2648             GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2649            !GV->isThreadLocal();
2650   if (const Argument *A = dyn_cast<Argument>(V))
2651     return A->hasByValAttr();
2652   return false;
2653 }
2654 
2655 /// Return true if V1 and V2 are each the base of some distict storage region
2656 /// [V, object_size(V)] which do not overlap.  Note that zero sized regions
2657 /// *are* possible, and that zero sized regions do not overlap with any other.
2658 static bool haveNonOverlappingStorage(const Value *V1, const Value *V2) {
2659   // Global variables always exist, so they always exist during the lifetime
2660   // of each other and all allocas.  Global variables themselves usually have
2661   // non-overlapping storage, but since their addresses are constants, the
2662   // case involving two globals does not reach here and is instead handled in
2663   // constant folding.
2664   //
2665   // Two different allocas usually have different addresses...
2666   //
2667   // However, if there's an @llvm.stackrestore dynamically in between two
2668   // allocas, they may have the same address. It's tempting to reduce the
2669   // scope of the problem by only looking at *static* allocas here. That would
2670   // cover the majority of allocas while significantly reducing the likelihood
2671   // of having an @llvm.stackrestore pop up in the middle. However, it's not
2672   // actually impossible for an @llvm.stackrestore to pop up in the middle of
2673   // an entry block. Also, if we have a block that's not attached to a
2674   // function, we can't tell if it's "static" under the current definition.
2675   // Theoretically, this problem could be fixed by creating a new kind of
2676   // instruction kind specifically for static allocas. Such a new instruction
2677   // could be required to be at the top of the entry block, thus preventing it
2678   // from being subject to a @llvm.stackrestore. Instcombine could even
2679   // convert regular allocas into these special allocas. It'd be nifty.
2680   // However, until then, this problem remains open.
2681   //
2682   // So, we'll assume that two non-empty allocas have different addresses
2683   // for now.
2684   auto isByValArg = [](const Value *V) {
2685     const Argument *A = dyn_cast<Argument>(V);
2686     return A && A->hasByValAttr();
2687   };
2688 
2689   // Byval args are backed by store which does not overlap with each other,
2690   // allocas, or globals.
2691   if (isByValArg(V1))
2692     return isa<AllocaInst>(V2) || isa<GlobalVariable>(V2) || isByValArg(V2);
2693   if (isByValArg(V2))
2694     return isa<AllocaInst>(V1) || isa<GlobalVariable>(V1) || isByValArg(V1);
2695 
2696   return isa<AllocaInst>(V1) &&
2697          (isa<AllocaInst>(V2) || isa<GlobalVariable>(V2));
2698 }
2699 
2700 // A significant optimization not implemented here is assuming that alloca
2701 // addresses are not equal to incoming argument values. They don't *alias*,
2702 // as we say, but that doesn't mean they aren't equal, so we take a
2703 // conservative approach.
2704 //
2705 // This is inspired in part by C++11 5.10p1:
2706 //   "Two pointers of the same type compare equal if and only if they are both
2707 //    null, both point to the same function, or both represent the same
2708 //    address."
2709 //
2710 // This is pretty permissive.
2711 //
2712 // It's also partly due to C11 6.5.9p6:
2713 //   "Two pointers compare equal if and only if both are null pointers, both are
2714 //    pointers to the same object (including a pointer to an object and a
2715 //    subobject at its beginning) or function, both are pointers to one past the
2716 //    last element of the same array object, or one is a pointer to one past the
2717 //    end of one array object and the other is a pointer to the start of a
2718 //    different array object that happens to immediately follow the first array
2719 //    object in the address space.)
2720 //
2721 // C11's version is more restrictive, however there's no reason why an argument
2722 // couldn't be a one-past-the-end value for a stack object in the caller and be
2723 // equal to the beginning of a stack object in the callee.
2724 //
2725 // If the C and C++ standards are ever made sufficiently restrictive in this
2726 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2727 // this optimization.
2728 static Constant *computePointerICmp(CmpInst::Predicate Pred, Value *LHS,
2729                                     Value *RHS, const SimplifyQuery &Q) {
2730   const DataLayout &DL = Q.DL;
2731   const TargetLibraryInfo *TLI = Q.TLI;
2732   const DominatorTree *DT = Q.DT;
2733   const Instruction *CxtI = Q.CxtI;
2734   const InstrInfoQuery &IIQ = Q.IIQ;
2735 
2736   // First, skip past any trivial no-ops.
2737   LHS = LHS->stripPointerCasts();
2738   RHS = RHS->stripPointerCasts();
2739 
2740   // A non-null pointer is not equal to a null pointer.
2741   if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) &&
2742       llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2743                            IIQ.UseInstrInfo))
2744     return ConstantInt::get(getCompareTy(LHS), !CmpInst::isTrueWhenEqual(Pred));
2745 
2746   // We can only fold certain predicates on pointer comparisons.
2747   switch (Pred) {
2748   default:
2749     return nullptr;
2750 
2751     // Equality comparisons are easy to fold.
2752   case CmpInst::ICMP_EQ:
2753   case CmpInst::ICMP_NE:
2754     break;
2755 
2756     // We can only handle unsigned relational comparisons because 'inbounds' on
2757     // a GEP only protects against unsigned wrapping.
2758   case CmpInst::ICMP_UGT:
2759   case CmpInst::ICMP_UGE:
2760   case CmpInst::ICMP_ULT:
2761   case CmpInst::ICMP_ULE:
2762     // However, we have to switch them to their signed variants to handle
2763     // negative indices from the base pointer.
2764     Pred = ICmpInst::getSignedPredicate(Pred);
2765     break;
2766   }
2767 
2768   // Strip off any constant offsets so that we can reason about them.
2769   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2770   // here and compare base addresses like AliasAnalysis does, however there are
2771   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2772   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2773   // doesn't need to guarantee pointer inequality when it says NoAlias.
2774 
2775   // Even if an non-inbounds GEP occurs along the path we can still optimize
2776   // equality comparisons concerning the result.
2777   bool AllowNonInbounds = ICmpInst::isEquality(Pred);
2778   APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS, AllowNonInbounds);
2779   APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS, AllowNonInbounds);
2780 
2781   // If LHS and RHS are related via constant offsets to the same base
2782   // value, we can replace it with an icmp which just compares the offsets.
2783   if (LHS == RHS)
2784     return ConstantInt::get(getCompareTy(LHS),
2785                             ICmpInst::compare(LHSOffset, RHSOffset, Pred));
2786 
2787   // Various optimizations for (in)equality comparisons.
2788   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2789     // Different non-empty allocations that exist at the same time have
2790     // different addresses (if the program can tell). If the offsets are
2791     // within the bounds of their allocations (and not one-past-the-end!
2792     // so we can't use inbounds!), and their allocations aren't the same,
2793     // the pointers are not equal.
2794     if (haveNonOverlappingStorage(LHS, RHS)) {
2795       uint64_t LHSSize, RHSSize;
2796       ObjectSizeOpts Opts;
2797       Opts.EvalMode = ObjectSizeOpts::Mode::Min;
2798       auto *F = [](Value *V) -> Function * {
2799         if (auto *I = dyn_cast<Instruction>(V))
2800           return I->getFunction();
2801         if (auto *A = dyn_cast<Argument>(V))
2802           return A->getParent();
2803         return nullptr;
2804       }(LHS);
2805       Opts.NullIsUnknownSize = F ? NullPointerIsDefined(F) : true;
2806       if (getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2807           getObjectSize(RHS, RHSSize, DL, TLI, Opts) &&
2808           !LHSOffset.isNegative() && !RHSOffset.isNegative() &&
2809           LHSOffset.ult(LHSSize) && RHSOffset.ult(RHSSize)) {
2810         return ConstantInt::get(getCompareTy(LHS),
2811                                 !CmpInst::isTrueWhenEqual(Pred));
2812       }
2813     }
2814 
2815     // If one side of the equality comparison must come from a noalias call
2816     // (meaning a system memory allocation function), and the other side must
2817     // come from a pointer that cannot overlap with dynamically-allocated
2818     // memory within the lifetime of the current function (allocas, byval
2819     // arguments, globals), then determine the comparison result here.
2820     SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2821     getUnderlyingObjects(LHS, LHSUObjs);
2822     getUnderlyingObjects(RHS, RHSUObjs);
2823 
2824     // Is the set of underlying objects all noalias calls?
2825     auto IsNAC = [](ArrayRef<const Value *> Objects) {
2826       return all_of(Objects, isNoAliasCall);
2827     };
2828 
2829     // Is the set of underlying objects all things which must be disjoint from
2830     // noalias calls.  We assume that indexing from such disjoint storage
2831     // into the heap is undefined, and thus offsets can be safely ignored.
2832     auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2833       return all_of(Objects, ::isAllocDisjoint);
2834     };
2835 
2836     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2837         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2838       return ConstantInt::get(getCompareTy(LHS),
2839                               !CmpInst::isTrueWhenEqual(Pred));
2840 
2841     // Fold comparisons for non-escaping pointer even if the allocation call
2842     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2843     // dynamic allocation call could be either of the operands.  Note that
2844     // the other operand can not be based on the alloc - if it were, then
2845     // the cmp itself would be a capture.
2846     Value *MI = nullptr;
2847     if (isAllocLikeFn(LHS, TLI) &&
2848         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2849       MI = LHS;
2850     else if (isAllocLikeFn(RHS, TLI) &&
2851              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2852       MI = RHS;
2853     // FIXME: We should also fold the compare when the pointer escapes, but the
2854     // compare dominates the pointer escape
2855     if (MI && !PointerMayBeCaptured(MI, true, true))
2856       return ConstantInt::get(getCompareTy(LHS),
2857                               CmpInst::isFalseWhenEqual(Pred));
2858   }
2859 
2860   // Otherwise, fail.
2861   return nullptr;
2862 }
2863 
2864 /// Fold an icmp when its operands have i1 scalar type.
2865 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2866                                   Value *RHS, const SimplifyQuery &Q) {
2867   Type *ITy = getCompareTy(LHS); // The return type.
2868   Type *OpTy = LHS->getType();   // The operand type.
2869   if (!OpTy->isIntOrIntVectorTy(1))
2870     return nullptr;
2871 
2872   // A boolean compared to true/false can be reduced in 14 out of the 20
2873   // (10 predicates * 2 constants) possible combinations. The other
2874   // 6 cases require a 'not' of the LHS.
2875 
2876   auto ExtractNotLHS = [](Value *V) -> Value * {
2877     Value *X;
2878     if (match(V, m_Not(m_Value(X))))
2879       return X;
2880     return nullptr;
2881   };
2882 
2883   if (match(RHS, m_Zero())) {
2884     switch (Pred) {
2885     case CmpInst::ICMP_NE:  // X !=  0 -> X
2886     case CmpInst::ICMP_UGT: // X >u  0 -> X
2887     case CmpInst::ICMP_SLT: // X <s  0 -> X
2888       return LHS;
2889 
2890     case CmpInst::ICMP_EQ:  // not(X) ==  0 -> X != 0 -> X
2891     case CmpInst::ICMP_ULE: // not(X) <=u 0 -> X >u 0 -> X
2892     case CmpInst::ICMP_SGE: // not(X) >=s 0 -> X <s 0 -> X
2893       if (Value *X = ExtractNotLHS(LHS))
2894         return X;
2895       break;
2896 
2897     case CmpInst::ICMP_ULT: // X <u  0 -> false
2898     case CmpInst::ICMP_SGT: // X >s  0 -> false
2899       return getFalse(ITy);
2900 
2901     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2902     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2903       return getTrue(ITy);
2904 
2905     default:
2906       break;
2907     }
2908   } else if (match(RHS, m_One())) {
2909     switch (Pred) {
2910     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2911     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2912     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2913       return LHS;
2914 
2915     case CmpInst::ICMP_NE:  // not(X) !=  1 -> X ==   1 -> X
2916     case CmpInst::ICMP_ULT: // not(X) <=u 1 -> X >=u  1 -> X
2917     case CmpInst::ICMP_SGT: // not(X) >s  1 -> X <=s -1 -> X
2918       if (Value *X = ExtractNotLHS(LHS))
2919         return X;
2920       break;
2921 
2922     case CmpInst::ICMP_UGT: // X >u   1 -> false
2923     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2924       return getFalse(ITy);
2925 
2926     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2927     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2928       return getTrue(ITy);
2929 
2930     default:
2931       break;
2932     }
2933   }
2934 
2935   switch (Pred) {
2936   default:
2937     break;
2938   case ICmpInst::ICMP_UGE:
2939     if (isImpliedCondition(RHS, LHS, Q.DL).value_or(false))
2940       return getTrue(ITy);
2941     break;
2942   case ICmpInst::ICMP_SGE:
2943     /// For signed comparison, the values for an i1 are 0 and -1
2944     /// respectively. This maps into a truth table of:
2945     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2946     ///  0  |  0  |  1 (0 >= 0)   |  1
2947     ///  0  |  1  |  1 (0 >= -1)  |  1
2948     ///  1  |  0  |  0 (-1 >= 0)  |  0
2949     ///  1  |  1  |  1 (-1 >= -1) |  1
2950     if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false))
2951       return getTrue(ITy);
2952     break;
2953   case ICmpInst::ICMP_ULE:
2954     if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false))
2955       return getTrue(ITy);
2956     break;
2957   case ICmpInst::ICMP_SLE:
2958     /// SLE follows the same logic as SGE with the LHS and RHS swapped.
2959     if (isImpliedCondition(RHS, LHS, Q.DL).value_or(false))
2960       return getTrue(ITy);
2961     break;
2962   }
2963 
2964   return nullptr;
2965 }
2966 
2967 /// Try hard to fold icmp with zero RHS because this is a common case.
2968 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2969                                    Value *RHS, const SimplifyQuery &Q) {
2970   if (!match(RHS, m_Zero()))
2971     return nullptr;
2972 
2973   Type *ITy = getCompareTy(LHS); // The return type.
2974   switch (Pred) {
2975   default:
2976     llvm_unreachable("Unknown ICmp predicate!");
2977   case ICmpInst::ICMP_ULT:
2978     return getFalse(ITy);
2979   case ICmpInst::ICMP_UGE:
2980     return getTrue(ITy);
2981   case ICmpInst::ICMP_EQ:
2982   case ICmpInst::ICMP_ULE:
2983     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2984       return getFalse(ITy);
2985     break;
2986   case ICmpInst::ICMP_NE:
2987   case ICmpInst::ICMP_UGT:
2988     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2989       return getTrue(ITy);
2990     break;
2991   case ICmpInst::ICMP_SLT: {
2992     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2993     if (LHSKnown.isNegative())
2994       return getTrue(ITy);
2995     if (LHSKnown.isNonNegative())
2996       return getFalse(ITy);
2997     break;
2998   }
2999   case ICmpInst::ICMP_SLE: {
3000     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
3001     if (LHSKnown.isNegative())
3002       return getTrue(ITy);
3003     if (LHSKnown.isNonNegative() &&
3004         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
3005       return getFalse(ITy);
3006     break;
3007   }
3008   case ICmpInst::ICMP_SGE: {
3009     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
3010     if (LHSKnown.isNegative())
3011       return getFalse(ITy);
3012     if (LHSKnown.isNonNegative())
3013       return getTrue(ITy);
3014     break;
3015   }
3016   case ICmpInst::ICMP_SGT: {
3017     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
3018     if (LHSKnown.isNegative())
3019       return getFalse(ITy);
3020     if (LHSKnown.isNonNegative() &&
3021         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
3022       return getTrue(ITy);
3023     break;
3024   }
3025   }
3026 
3027   return nullptr;
3028 }
3029 
3030 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
3031                                        Value *RHS, const InstrInfoQuery &IIQ) {
3032   Type *ITy = getCompareTy(RHS); // The return type.
3033 
3034   Value *X;
3035   // Sign-bit checks can be optimized to true/false after unsigned
3036   // floating-point casts:
3037   // icmp slt (bitcast (uitofp X)),  0 --> false
3038   // icmp sgt (bitcast (uitofp X)), -1 --> true
3039   if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
3040     if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
3041       return ConstantInt::getFalse(ITy);
3042     if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
3043       return ConstantInt::getTrue(ITy);
3044   }
3045 
3046   const APInt *C;
3047   if (!match(RHS, m_APIntAllowUndef(C)))
3048     return nullptr;
3049 
3050   // Rule out tautological comparisons (eg., ult 0 or uge 0).
3051   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
3052   if (RHS_CR.isEmptySet())
3053     return ConstantInt::getFalse(ITy);
3054   if (RHS_CR.isFullSet())
3055     return ConstantInt::getTrue(ITy);
3056 
3057   ConstantRange LHS_CR =
3058       computeConstantRange(LHS, CmpInst::isSigned(Pred), IIQ.UseInstrInfo);
3059   if (!LHS_CR.isFullSet()) {
3060     if (RHS_CR.contains(LHS_CR))
3061       return ConstantInt::getTrue(ITy);
3062     if (RHS_CR.inverse().contains(LHS_CR))
3063       return ConstantInt::getFalse(ITy);
3064   }
3065 
3066   // (mul nuw/nsw X, MulC) != C --> true  (if C is not a multiple of MulC)
3067   // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC)
3068   const APInt *MulC;
3069   if (ICmpInst::isEquality(Pred) &&
3070       ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
3071         *MulC != 0 && C->urem(*MulC) != 0) ||
3072        (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
3073         *MulC != 0 && C->srem(*MulC) != 0)))
3074     return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE);
3075 
3076   return nullptr;
3077 }
3078 
3079 static Value *simplifyICmpWithBinOpOnLHS(CmpInst::Predicate Pred,
3080                                          BinaryOperator *LBO, Value *RHS,
3081                                          const SimplifyQuery &Q,
3082                                          unsigned MaxRecurse) {
3083   Type *ITy = getCompareTy(RHS); // The return type.
3084 
3085   Value *Y = nullptr;
3086   // icmp pred (or X, Y), X
3087   if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
3088     if (Pred == ICmpInst::ICMP_ULT)
3089       return getFalse(ITy);
3090     if (Pred == ICmpInst::ICMP_UGE)
3091       return getTrue(ITy);
3092 
3093     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
3094       KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
3095       KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
3096       if (RHSKnown.isNonNegative() && YKnown.isNegative())
3097         return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
3098       if (RHSKnown.isNegative() || YKnown.isNonNegative())
3099         return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
3100     }
3101   }
3102 
3103   // icmp pred (and X, Y), X
3104   if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
3105     if (Pred == ICmpInst::ICMP_UGT)
3106       return getFalse(ITy);
3107     if (Pred == ICmpInst::ICMP_ULE)
3108       return getTrue(ITy);
3109   }
3110 
3111   // icmp pred (urem X, Y), Y
3112   if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
3113     switch (Pred) {
3114     default:
3115       break;
3116     case ICmpInst::ICMP_SGT:
3117     case ICmpInst::ICMP_SGE: {
3118       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
3119       if (!Known.isNonNegative())
3120         break;
3121       [[fallthrough]];
3122     }
3123     case ICmpInst::ICMP_EQ:
3124     case ICmpInst::ICMP_UGT:
3125     case ICmpInst::ICMP_UGE:
3126       return getFalse(ITy);
3127     case ICmpInst::ICMP_SLT:
3128     case ICmpInst::ICMP_SLE: {
3129       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
3130       if (!Known.isNonNegative())
3131         break;
3132       [[fallthrough]];
3133     }
3134     case ICmpInst::ICMP_NE:
3135     case ICmpInst::ICMP_ULT:
3136     case ICmpInst::ICMP_ULE:
3137       return getTrue(ITy);
3138     }
3139   }
3140 
3141   // icmp pred (urem X, Y), X
3142   if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) {
3143     if (Pred == ICmpInst::ICMP_ULE)
3144       return getTrue(ITy);
3145     if (Pred == ICmpInst::ICMP_UGT)
3146       return getFalse(ITy);
3147   }
3148 
3149   // x >>u y <=u x --> true.
3150   // x >>u y >u  x --> false.
3151   // x udiv y <=u x --> true.
3152   // x udiv y >u  x --> false.
3153   if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
3154       match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
3155     // icmp pred (X op Y), X
3156     if (Pred == ICmpInst::ICMP_UGT)
3157       return getFalse(ITy);
3158     if (Pred == ICmpInst::ICMP_ULE)
3159       return getTrue(ITy);
3160   }
3161 
3162   // If x is nonzero:
3163   // x >>u C <u  x --> true  for C != 0.
3164   // x >>u C !=  x --> true  for C != 0.
3165   // x >>u C >=u x --> false for C != 0.
3166   // x >>u C ==  x --> false for C != 0.
3167   // x udiv C <u  x --> true  for C != 1.
3168   // x udiv C !=  x --> true  for C != 1.
3169   // x udiv C >=u x --> false for C != 1.
3170   // x udiv C ==  x --> false for C != 1.
3171   // TODO: allow non-constant shift amount/divisor
3172   const APInt *C;
3173   if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) ||
3174       (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) {
3175     if (isKnownNonZero(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) {
3176       switch (Pred) {
3177       default:
3178         break;
3179       case ICmpInst::ICMP_EQ:
3180       case ICmpInst::ICMP_UGE:
3181         return getFalse(ITy);
3182       case ICmpInst::ICMP_NE:
3183       case ICmpInst::ICMP_ULT:
3184         return getTrue(ITy);
3185       case ICmpInst::ICMP_UGT:
3186       case ICmpInst::ICMP_ULE:
3187         // UGT/ULE are handled by the more general case just above
3188         llvm_unreachable("Unexpected UGT/ULE, should have been handled");
3189       }
3190     }
3191   }
3192 
3193   // (x*C1)/C2 <= x for C1 <= C2.
3194   // This holds even if the multiplication overflows: Assume that x != 0 and
3195   // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and
3196   // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x.
3197   //
3198   // Additionally, either the multiplication and division might be represented
3199   // as shifts:
3200   // (x*C1)>>C2 <= x for C1 < 2**C2.
3201   // (x<<C1)/C2 <= x for 2**C1 < C2.
3202   const APInt *C1, *C2;
3203   if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3204        C1->ule(*C2)) ||
3205       (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3206        C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) ||
3207       (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3208        (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) {
3209     if (Pred == ICmpInst::ICMP_UGT)
3210       return getFalse(ITy);
3211     if (Pred == ICmpInst::ICMP_ULE)
3212       return getTrue(ITy);
3213   }
3214 
3215   // (sub C, X) == X, C is odd  --> false
3216   // (sub C, X) != X, C is odd  --> true
3217   if (match(LBO, m_Sub(m_APIntAllowUndef(C), m_Specific(RHS))) &&
3218       (*C & 1) == 1 && ICmpInst::isEquality(Pred))
3219     return (Pred == ICmpInst::ICMP_EQ) ? getFalse(ITy) : getTrue(ITy);
3220 
3221   return nullptr;
3222 }
3223 
3224 // If only one of the icmp's operands has NSW flags, try to prove that:
3225 //
3226 //   icmp slt (x + C1), (x +nsw C2)
3227 //
3228 // is equivalent to:
3229 //
3230 //   icmp slt C1, C2
3231 //
3232 // which is true if x + C2 has the NSW flags set and:
3233 // *) C1 < C2 && C1 >= 0, or
3234 // *) C2 < C1 && C1 <= 0.
3235 //
3236 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS,
3237                                     Value *RHS) {
3238   // TODO: only support icmp slt for now.
3239   if (Pred != CmpInst::ICMP_SLT)
3240     return false;
3241 
3242   // Canonicalize nsw add as RHS.
3243   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
3244     std::swap(LHS, RHS);
3245   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
3246     return false;
3247 
3248   Value *X;
3249   const APInt *C1, *C2;
3250   if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) ||
3251       !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2))))
3252     return false;
3253 
3254   return (C1->slt(*C2) && C1->isNonNegative()) ||
3255          (C2->slt(*C1) && C1->isNonPositive());
3256 }
3257 
3258 /// TODO: A large part of this logic is duplicated in InstCombine's
3259 /// foldICmpBinOp(). We should be able to share that and avoid the code
3260 /// duplication.
3261 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
3262                                     Value *RHS, const SimplifyQuery &Q,
3263                                     unsigned MaxRecurse) {
3264   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
3265   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
3266   if (MaxRecurse && (LBO || RBO)) {
3267     // Analyze the case when either LHS or RHS is an add instruction.
3268     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3269     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
3270     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
3271     if (LBO && LBO->getOpcode() == Instruction::Add) {
3272       A = LBO->getOperand(0);
3273       B = LBO->getOperand(1);
3274       NoLHSWrapProblem =
3275           ICmpInst::isEquality(Pred) ||
3276           (CmpInst::isUnsigned(Pred) &&
3277            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
3278           (CmpInst::isSigned(Pred) &&
3279            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
3280     }
3281     if (RBO && RBO->getOpcode() == Instruction::Add) {
3282       C = RBO->getOperand(0);
3283       D = RBO->getOperand(1);
3284       NoRHSWrapProblem =
3285           ICmpInst::isEquality(Pred) ||
3286           (CmpInst::isUnsigned(Pred) &&
3287            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
3288           (CmpInst::isSigned(Pred) &&
3289            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
3290     }
3291 
3292     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3293     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
3294       if (Value *V = simplifyICmpInst(Pred, A == RHS ? B : A,
3295                                       Constant::getNullValue(RHS->getType()), Q,
3296                                       MaxRecurse - 1))
3297         return V;
3298 
3299     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3300     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
3301       if (Value *V =
3302               simplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
3303                                C == LHS ? D : C, Q, MaxRecurse - 1))
3304         return V;
3305 
3306     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
3307     bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
3308                        trySimplifyICmpWithAdds(Pred, LHS, RHS);
3309     if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) {
3310       // Determine Y and Z in the form icmp (X+Y), (X+Z).
3311       Value *Y, *Z;
3312       if (A == C) {
3313         // C + B == C + D  ->  B == D
3314         Y = B;
3315         Z = D;
3316       } else if (A == D) {
3317         // D + B == C + D  ->  B == C
3318         Y = B;
3319         Z = C;
3320       } else if (B == C) {
3321         // A + C == C + D  ->  A == D
3322         Y = A;
3323         Z = D;
3324       } else {
3325         assert(B == D);
3326         // A + D == C + D  ->  A == C
3327         Y = A;
3328         Z = C;
3329       }
3330       if (Value *V = simplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
3331         return V;
3332     }
3333   }
3334 
3335   if (LBO)
3336     if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse))
3337       return V;
3338 
3339   if (RBO)
3340     if (Value *V = simplifyICmpWithBinOpOnLHS(
3341             ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse))
3342       return V;
3343 
3344   // 0 - (zext X) pred C
3345   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
3346     const APInt *C;
3347     if (match(RHS, m_APInt(C))) {
3348       if (C->isStrictlyPositive()) {
3349         if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE)
3350           return ConstantInt::getTrue(getCompareTy(RHS));
3351         if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ)
3352           return ConstantInt::getFalse(getCompareTy(RHS));
3353       }
3354       if (C->isNonNegative()) {
3355         if (Pred == ICmpInst::ICMP_SLE)
3356           return ConstantInt::getTrue(getCompareTy(RHS));
3357         if (Pred == ICmpInst::ICMP_SGT)
3358           return ConstantInt::getFalse(getCompareTy(RHS));
3359       }
3360     }
3361   }
3362 
3363   //   If C2 is a power-of-2 and C is not:
3364   //   (C2 << X) == C --> false
3365   //   (C2 << X) != C --> true
3366   const APInt *C;
3367   if (match(LHS, m_Shl(m_Power2(), m_Value())) &&
3368       match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) {
3369     // C2 << X can equal zero in some circumstances.
3370     // This simplification might be unsafe if C is zero.
3371     //
3372     // We know it is safe if:
3373     // - The shift is nsw. We can't shift out the one bit.
3374     // - The shift is nuw. We can't shift out the one bit.
3375     // - C2 is one.
3376     // - C isn't zero.
3377     if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3378         Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3379         match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) {
3380       if (Pred == ICmpInst::ICMP_EQ)
3381         return ConstantInt::getFalse(getCompareTy(RHS));
3382       if (Pred == ICmpInst::ICMP_NE)
3383         return ConstantInt::getTrue(getCompareTy(RHS));
3384     }
3385   }
3386 
3387   // TODO: This is overly constrained. LHS can be any power-of-2.
3388   // (1 << X)  >u 0x8000 --> false
3389   // (1 << X) <=u 0x8000 --> true
3390   if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) {
3391     if (Pred == ICmpInst::ICMP_UGT)
3392       return ConstantInt::getFalse(getCompareTy(RHS));
3393     if (Pred == ICmpInst::ICMP_ULE)
3394       return ConstantInt::getTrue(getCompareTy(RHS));
3395   }
3396 
3397   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
3398       LBO->getOperand(1) == RBO->getOperand(1)) {
3399     switch (LBO->getOpcode()) {
3400     default:
3401       break;
3402     case Instruction::UDiv:
3403     case Instruction::LShr:
3404       if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
3405           !Q.IIQ.isExact(RBO))
3406         break;
3407       if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0),
3408                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3409         return V;
3410       break;
3411     case Instruction::SDiv:
3412       if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
3413           !Q.IIQ.isExact(RBO))
3414         break;
3415       if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0),
3416                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3417         return V;
3418       break;
3419     case Instruction::AShr:
3420       if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
3421         break;
3422       if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0),
3423                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3424         return V;
3425       break;
3426     case Instruction::Shl: {
3427       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
3428       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
3429       if (!NUW && !NSW)
3430         break;
3431       if (!NSW && ICmpInst::isSigned(Pred))
3432         break;
3433       if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0),
3434                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3435         return V;
3436       break;
3437     }
3438     }
3439   }
3440   return nullptr;
3441 }
3442 
3443 /// simplify integer comparisons where at least one operand of the compare
3444 /// matches an integer min/max idiom.
3445 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
3446                                      Value *RHS, const SimplifyQuery &Q,
3447                                      unsigned MaxRecurse) {
3448   Type *ITy = getCompareTy(LHS); // The return type.
3449   Value *A, *B;
3450   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
3451   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
3452 
3453   // Signed variants on "max(a,b)>=a -> true".
3454   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3455     if (A != RHS)
3456       std::swap(A, B);       // smax(A, B) pred A.
3457     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3458     // We analyze this as smax(A, B) pred A.
3459     P = Pred;
3460   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
3461              (A == LHS || B == LHS)) {
3462     if (A != LHS)
3463       std::swap(A, B);       // A pred smax(A, B).
3464     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3465     // We analyze this as smax(A, B) swapped-pred A.
3466     P = CmpInst::getSwappedPredicate(Pred);
3467   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3468              (A == RHS || B == RHS)) {
3469     if (A != RHS)
3470       std::swap(A, B);       // smin(A, B) pred A.
3471     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3472     // We analyze this as smax(-A, -B) swapped-pred -A.
3473     // Note that we do not need to actually form -A or -B thanks to EqP.
3474     P = CmpInst::getSwappedPredicate(Pred);
3475   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
3476              (A == LHS || B == LHS)) {
3477     if (A != LHS)
3478       std::swap(A, B);       // A pred smin(A, B).
3479     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3480     // We analyze this as smax(-A, -B) pred -A.
3481     // Note that we do not need to actually form -A or -B thanks to EqP.
3482     P = Pred;
3483   }
3484   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3485     // Cases correspond to "max(A, B) p A".
3486     switch (P) {
3487     default:
3488       break;
3489     case CmpInst::ICMP_EQ:
3490     case CmpInst::ICMP_SLE:
3491       // Equivalent to "A EqP B".  This may be the same as the condition tested
3492       // in the max/min; if so, we can just return that.
3493       if (Value *V = extractEquivalentCondition(LHS, EqP, A, B))
3494         return V;
3495       if (Value *V = extractEquivalentCondition(RHS, EqP, A, B))
3496         return V;
3497       // Otherwise, see if "A EqP B" simplifies.
3498       if (MaxRecurse)
3499         if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3500           return V;
3501       break;
3502     case CmpInst::ICMP_NE:
3503     case CmpInst::ICMP_SGT: {
3504       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3505       // Equivalent to "A InvEqP B".  This may be the same as the condition
3506       // tested in the max/min; if so, we can just return that.
3507       if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B))
3508         return V;
3509       if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B))
3510         return V;
3511       // Otherwise, see if "A InvEqP B" simplifies.
3512       if (MaxRecurse)
3513         if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3514           return V;
3515       break;
3516     }
3517     case CmpInst::ICMP_SGE:
3518       // Always true.
3519       return getTrue(ITy);
3520     case CmpInst::ICMP_SLT:
3521       // Always false.
3522       return getFalse(ITy);
3523     }
3524   }
3525 
3526   // Unsigned variants on "max(a,b)>=a -> true".
3527   P = CmpInst::BAD_ICMP_PREDICATE;
3528   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3529     if (A != RHS)
3530       std::swap(A, B);       // umax(A, B) pred A.
3531     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3532     // We analyze this as umax(A, B) pred A.
3533     P = Pred;
3534   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3535              (A == LHS || B == LHS)) {
3536     if (A != LHS)
3537       std::swap(A, B);       // A pred umax(A, B).
3538     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3539     // We analyze this as umax(A, B) swapped-pred A.
3540     P = CmpInst::getSwappedPredicate(Pred);
3541   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3542              (A == RHS || B == RHS)) {
3543     if (A != RHS)
3544       std::swap(A, B);       // umin(A, B) pred A.
3545     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3546     // We analyze this as umax(-A, -B) swapped-pred -A.
3547     // Note that we do not need to actually form -A or -B thanks to EqP.
3548     P = CmpInst::getSwappedPredicate(Pred);
3549   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3550              (A == LHS || B == LHS)) {
3551     if (A != LHS)
3552       std::swap(A, B);       // A pred umin(A, B).
3553     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3554     // We analyze this as umax(-A, -B) pred -A.
3555     // Note that we do not need to actually form -A or -B thanks to EqP.
3556     P = Pred;
3557   }
3558   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3559     // Cases correspond to "max(A, B) p A".
3560     switch (P) {
3561     default:
3562       break;
3563     case CmpInst::ICMP_EQ:
3564     case CmpInst::ICMP_ULE:
3565       // Equivalent to "A EqP B".  This may be the same as the condition tested
3566       // in the max/min; if so, we can just return that.
3567       if (Value *V = extractEquivalentCondition(LHS, EqP, A, B))
3568         return V;
3569       if (Value *V = extractEquivalentCondition(RHS, EqP, A, B))
3570         return V;
3571       // Otherwise, see if "A EqP B" simplifies.
3572       if (MaxRecurse)
3573         if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3574           return V;
3575       break;
3576     case CmpInst::ICMP_NE:
3577     case CmpInst::ICMP_UGT: {
3578       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3579       // Equivalent to "A InvEqP B".  This may be the same as the condition
3580       // tested in the max/min; if so, we can just return that.
3581       if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B))
3582         return V;
3583       if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B))
3584         return V;
3585       // Otherwise, see if "A InvEqP B" simplifies.
3586       if (MaxRecurse)
3587         if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3588           return V;
3589       break;
3590     }
3591     case CmpInst::ICMP_UGE:
3592       return getTrue(ITy);
3593     case CmpInst::ICMP_ULT:
3594       return getFalse(ITy);
3595     }
3596   }
3597 
3598   // Comparing 1 each of min/max with a common operand?
3599   // Canonicalize min operand to RHS.
3600   if (match(LHS, m_UMin(m_Value(), m_Value())) ||
3601       match(LHS, m_SMin(m_Value(), m_Value()))) {
3602     std::swap(LHS, RHS);
3603     Pred = ICmpInst::getSwappedPredicate(Pred);
3604   }
3605 
3606   Value *C, *D;
3607   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3608       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3609       (A == C || A == D || B == C || B == D)) {
3610     // smax(A, B) >=s smin(A, D) --> true
3611     if (Pred == CmpInst::ICMP_SGE)
3612       return getTrue(ITy);
3613     // smax(A, B) <s smin(A, D) --> false
3614     if (Pred == CmpInst::ICMP_SLT)
3615       return getFalse(ITy);
3616   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3617              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3618              (A == C || A == D || B == C || B == D)) {
3619     // umax(A, B) >=u umin(A, D) --> true
3620     if (Pred == CmpInst::ICMP_UGE)
3621       return getTrue(ITy);
3622     // umax(A, B) <u umin(A, D) --> false
3623     if (Pred == CmpInst::ICMP_ULT)
3624       return getFalse(ITy);
3625   }
3626 
3627   return nullptr;
3628 }
3629 
3630 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate,
3631                                                Value *LHS, Value *RHS,
3632                                                const SimplifyQuery &Q) {
3633   // Gracefully handle instructions that have not been inserted yet.
3634   if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent())
3635     return nullptr;
3636 
3637   for (Value *AssumeBaseOp : {LHS, RHS}) {
3638     for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) {
3639       if (!AssumeVH)
3640         continue;
3641 
3642       CallInst *Assume = cast<CallInst>(AssumeVH);
3643       if (std::optional<bool> Imp = isImpliedCondition(
3644               Assume->getArgOperand(0), Predicate, LHS, RHS, Q.DL))
3645         if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT))
3646           return ConstantInt::get(getCompareTy(LHS), *Imp);
3647     }
3648   }
3649 
3650   return nullptr;
3651 }
3652 
3653 /// Given operands for an ICmpInst, see if we can fold the result.
3654 /// If not, this returns null.
3655 static Value *simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3656                                const SimplifyQuery &Q, unsigned MaxRecurse) {
3657   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3658   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3659 
3660   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3661     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3662       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3663 
3664     // If we have a constant, make sure it is on the RHS.
3665     std::swap(LHS, RHS);
3666     Pred = CmpInst::getSwappedPredicate(Pred);
3667   }
3668   assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3669 
3670   Type *ITy = getCompareTy(LHS); // The return type.
3671 
3672   // icmp poison, X -> poison
3673   if (isa<PoisonValue>(RHS))
3674     return PoisonValue::get(ITy);
3675 
3676   // For EQ and NE, we can always pick a value for the undef to make the
3677   // predicate pass or fail, so we can return undef.
3678   // Matches behavior in llvm::ConstantFoldCompareInstruction.
3679   if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred))
3680     return UndefValue::get(ITy);
3681 
3682   // icmp X, X -> true/false
3683   // icmp X, undef -> true/false because undef could be X.
3684   if (LHS == RHS || Q.isUndefValue(RHS))
3685     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3686 
3687   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3688     return V;
3689 
3690   // TODO: Sink/common this with other potentially expensive calls that use
3691   //       ValueTracking? See comment below for isKnownNonEqual().
3692   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3693     return V;
3694 
3695   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3696     return V;
3697 
3698   // If both operands have range metadata, use the metadata
3699   // to simplify the comparison.
3700   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3701     auto RHS_Instr = cast<Instruction>(RHS);
3702     auto LHS_Instr = cast<Instruction>(LHS);
3703 
3704     if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3705         Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3706       auto RHS_CR = getConstantRangeFromMetadata(
3707           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3708       auto LHS_CR = getConstantRangeFromMetadata(
3709           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3710 
3711       if (LHS_CR.icmp(Pred, RHS_CR))
3712         return ConstantInt::getTrue(RHS->getContext());
3713 
3714       if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR))
3715         return ConstantInt::getFalse(RHS->getContext());
3716     }
3717   }
3718 
3719   // Compare of cast, for example (zext X) != 0 -> X != 0
3720   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3721     Instruction *LI = cast<CastInst>(LHS);
3722     Value *SrcOp = LI->getOperand(0);
3723     Type *SrcTy = SrcOp->getType();
3724     Type *DstTy = LI->getType();
3725 
3726     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3727     // if the integer type is the same size as the pointer type.
3728     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3729         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3730       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3731         // Transfer the cast to the constant.
3732         if (Value *V = simplifyICmpInst(Pred, SrcOp,
3733                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3734                                         Q, MaxRecurse - 1))
3735           return V;
3736       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3737         if (RI->getOperand(0)->getType() == SrcTy)
3738           // Compare without the cast.
3739           if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q,
3740                                           MaxRecurse - 1))
3741             return V;
3742       }
3743     }
3744 
3745     if (isa<ZExtInst>(LHS)) {
3746       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3747       // same type.
3748       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3749         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3750           // Compare X and Y.  Note that signed predicates become unsigned.
3751           if (Value *V =
3752                   simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), SrcOp,
3753                                    RI->getOperand(0), Q, MaxRecurse - 1))
3754             return V;
3755       }
3756       // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true.
3757       else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3758         if (SrcOp == RI->getOperand(0)) {
3759           if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE)
3760             return ConstantInt::getTrue(ITy);
3761           if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT)
3762             return ConstantInt::getFalse(ITy);
3763         }
3764       }
3765       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3766       // too.  If not, then try to deduce the result of the comparison.
3767       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3768         // Compute the constant that would happen if we truncated to SrcTy then
3769         // reextended to DstTy.
3770         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3771         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3772 
3773         // If the re-extended constant didn't change then this is effectively
3774         // also a case of comparing two zero-extended values.
3775         if (RExt == CI && MaxRecurse)
3776           if (Value *V = simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3777                                           SrcOp, Trunc, Q, MaxRecurse - 1))
3778             return V;
3779 
3780         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3781         // there.  Use this to work out the result of the comparison.
3782         if (RExt != CI) {
3783           switch (Pred) {
3784           default:
3785             llvm_unreachable("Unknown ICmp predicate!");
3786           // LHS <u RHS.
3787           case ICmpInst::ICMP_EQ:
3788           case ICmpInst::ICMP_UGT:
3789           case ICmpInst::ICMP_UGE:
3790             return ConstantInt::getFalse(CI->getContext());
3791 
3792           case ICmpInst::ICMP_NE:
3793           case ICmpInst::ICMP_ULT:
3794           case ICmpInst::ICMP_ULE:
3795             return ConstantInt::getTrue(CI->getContext());
3796 
3797           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3798           // is non-negative then LHS <s RHS.
3799           case ICmpInst::ICMP_SGT:
3800           case ICmpInst::ICMP_SGE:
3801             return CI->getValue().isNegative()
3802                        ? ConstantInt::getTrue(CI->getContext())
3803                        : ConstantInt::getFalse(CI->getContext());
3804 
3805           case ICmpInst::ICMP_SLT:
3806           case ICmpInst::ICMP_SLE:
3807             return CI->getValue().isNegative()
3808                        ? ConstantInt::getFalse(CI->getContext())
3809                        : ConstantInt::getTrue(CI->getContext());
3810           }
3811         }
3812       }
3813     }
3814 
3815     if (isa<SExtInst>(LHS)) {
3816       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3817       // same type.
3818       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3819         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3820           // Compare X and Y.  Note that the predicate does not change.
3821           if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q,
3822                                           MaxRecurse - 1))
3823             return V;
3824       }
3825       // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true.
3826       else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3827         if (SrcOp == RI->getOperand(0)) {
3828           if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE)
3829             return ConstantInt::getTrue(ITy);
3830           if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT)
3831             return ConstantInt::getFalse(ITy);
3832         }
3833       }
3834       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3835       // too.  If not, then try to deduce the result of the comparison.
3836       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3837         // Compute the constant that would happen if we truncated to SrcTy then
3838         // reextended to DstTy.
3839         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3840         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3841 
3842         // If the re-extended constant didn't change then this is effectively
3843         // also a case of comparing two sign-extended values.
3844         if (RExt == CI && MaxRecurse)
3845           if (Value *V =
3846                   simplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse - 1))
3847             return V;
3848 
3849         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3850         // bits there.  Use this to work out the result of the comparison.
3851         if (RExt != CI) {
3852           switch (Pred) {
3853           default:
3854             llvm_unreachable("Unknown ICmp predicate!");
3855           case ICmpInst::ICMP_EQ:
3856             return ConstantInt::getFalse(CI->getContext());
3857           case ICmpInst::ICMP_NE:
3858             return ConstantInt::getTrue(CI->getContext());
3859 
3860           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3861           // LHS >s RHS.
3862           case ICmpInst::ICMP_SGT:
3863           case ICmpInst::ICMP_SGE:
3864             return CI->getValue().isNegative()
3865                        ? ConstantInt::getTrue(CI->getContext())
3866                        : ConstantInt::getFalse(CI->getContext());
3867           case ICmpInst::ICMP_SLT:
3868           case ICmpInst::ICMP_SLE:
3869             return CI->getValue().isNegative()
3870                        ? ConstantInt::getFalse(CI->getContext())
3871                        : ConstantInt::getTrue(CI->getContext());
3872 
3873           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3874           // LHS >u RHS.
3875           case ICmpInst::ICMP_UGT:
3876           case ICmpInst::ICMP_UGE:
3877             // Comparison is true iff the LHS <s 0.
3878             if (MaxRecurse)
3879               if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3880                                               Constant::getNullValue(SrcTy), Q,
3881                                               MaxRecurse - 1))
3882                 return V;
3883             break;
3884           case ICmpInst::ICMP_ULT:
3885           case ICmpInst::ICMP_ULE:
3886             // Comparison is true iff the LHS >=s 0.
3887             if (MaxRecurse)
3888               if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3889                                               Constant::getNullValue(SrcTy), Q,
3890                                               MaxRecurse - 1))
3891                 return V;
3892             break;
3893           }
3894         }
3895       }
3896     }
3897   }
3898 
3899   // icmp eq|ne X, Y -> false|true if X != Y
3900   // This is potentially expensive, and we have already computedKnownBits for
3901   // compares with 0 above here, so only try this for a non-zero compare.
3902   if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) &&
3903       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3904     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3905   }
3906 
3907   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3908     return V;
3909 
3910   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3911     return V;
3912 
3913   if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q))
3914     return V;
3915 
3916   // Simplify comparisons of related pointers using a powerful, recursive
3917   // GEP-walk when we have target data available..
3918   if (LHS->getType()->isPointerTy())
3919     if (auto *C = computePointerICmp(Pred, LHS, RHS, Q))
3920       return C;
3921   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3922     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3923       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3924               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3925           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3926               Q.DL.getTypeSizeInBits(CRHS->getType()))
3927         if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(),
3928                                          CRHS->getPointerOperand(), Q))
3929           return C;
3930 
3931   // If the comparison is with the result of a select instruction, check whether
3932   // comparing with either branch of the select always yields the same value.
3933   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3934     if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3935       return V;
3936 
3937   // If the comparison is with the result of a phi instruction, check whether
3938   // doing the compare with each incoming phi value yields a common result.
3939   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3940     if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3941       return V;
3942 
3943   return nullptr;
3944 }
3945 
3946 Value *llvm::simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3947                               const SimplifyQuery &Q) {
3948   return ::simplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3949 }
3950 
3951 /// Given operands for an FCmpInst, see if we can fold the result.
3952 /// If not, this returns null.
3953 static Value *simplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3954                                FastMathFlags FMF, const SimplifyQuery &Q,
3955                                unsigned MaxRecurse) {
3956   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3957   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3958 
3959   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3960     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3961       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI,
3962                                              Q.CxtI);
3963 
3964     // If we have a constant, make sure it is on the RHS.
3965     std::swap(LHS, RHS);
3966     Pred = CmpInst::getSwappedPredicate(Pred);
3967   }
3968 
3969   // Fold trivial predicates.
3970   Type *RetTy = getCompareTy(LHS);
3971   if (Pred == FCmpInst::FCMP_FALSE)
3972     return getFalse(RetTy);
3973   if (Pred == FCmpInst::FCMP_TRUE)
3974     return getTrue(RetTy);
3975 
3976   // Fold (un)ordered comparison if we can determine there are no NaNs.
3977   if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
3978     if (FMF.noNaNs() ||
3979         (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3980       return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3981 
3982   // NaN is unordered; NaN is not ordered.
3983   assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3984          "Comparison must be either ordered or unordered");
3985   if (match(RHS, m_NaN()))
3986     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3987 
3988   // fcmp pred x, poison and  fcmp pred poison, x
3989   // fold to poison
3990   if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS))
3991     return PoisonValue::get(RetTy);
3992 
3993   // fcmp pred x, undef  and  fcmp pred undef, x
3994   // fold to true if unordered, false if ordered
3995   if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) {
3996     // Choosing NaN for the undef will always make unordered comparison succeed
3997     // and ordered comparison fail.
3998     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3999   }
4000 
4001   // fcmp x,x -> true/false.  Not all compares are foldable.
4002   if (LHS == RHS) {
4003     if (CmpInst::isTrueWhenEqual(Pred))
4004       return getTrue(RetTy);
4005     if (CmpInst::isFalseWhenEqual(Pred))
4006       return getFalse(RetTy);
4007   }
4008 
4009   // Handle fcmp with constant RHS.
4010   // TODO: Use match with a specific FP value, so these work with vectors with
4011   // undef lanes.
4012   const APFloat *C;
4013   if (match(RHS, m_APFloat(C))) {
4014     // Check whether the constant is an infinity.
4015     if (C->isInfinity()) {
4016       if (C->isNegative()) {
4017         switch (Pred) {
4018         case FCmpInst::FCMP_OLT:
4019           // No value is ordered and less than negative infinity.
4020           return getFalse(RetTy);
4021         case FCmpInst::FCMP_UGE:
4022           // All values are unordered with or at least negative infinity.
4023           return getTrue(RetTy);
4024         default:
4025           break;
4026         }
4027       } else {
4028         switch (Pred) {
4029         case FCmpInst::FCMP_OGT:
4030           // No value is ordered and greater than infinity.
4031           return getFalse(RetTy);
4032         case FCmpInst::FCMP_ULE:
4033           // All values are unordered with and at most infinity.
4034           return getTrue(RetTy);
4035         default:
4036           break;
4037         }
4038       }
4039 
4040       // LHS == Inf
4041       if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI))
4042         return getFalse(RetTy);
4043       // LHS != Inf
4044       if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI))
4045         return getTrue(RetTy);
4046       // LHS == Inf || LHS == NaN
4047       if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) &&
4048           isKnownNeverNaN(LHS, Q.TLI))
4049         return getFalse(RetTy);
4050       // LHS != Inf && LHS != NaN
4051       if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) &&
4052           isKnownNeverNaN(LHS, Q.TLI))
4053         return getTrue(RetTy);
4054     }
4055     if (C->isNegative() && !C->isNegZero()) {
4056       assert(!C->isNaN() && "Unexpected NaN constant!");
4057       // TODO: We can catch more cases by using a range check rather than
4058       //       relying on CannotBeOrderedLessThanZero.
4059       switch (Pred) {
4060       case FCmpInst::FCMP_UGE:
4061       case FCmpInst::FCMP_UGT:
4062       case FCmpInst::FCMP_UNE:
4063         // (X >= 0) implies (X > C) when (C < 0)
4064         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
4065           return getTrue(RetTy);
4066         break;
4067       case FCmpInst::FCMP_OEQ:
4068       case FCmpInst::FCMP_OLE:
4069       case FCmpInst::FCMP_OLT:
4070         // (X >= 0) implies !(X < C) when (C < 0)
4071         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
4072           return getFalse(RetTy);
4073         break;
4074       default:
4075         break;
4076       }
4077     }
4078 
4079     // Check comparison of [minnum/maxnum with constant] with other constant.
4080     const APFloat *C2;
4081     if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
4082          *C2 < *C) ||
4083         (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
4084          *C2 > *C)) {
4085       bool IsMaxNum =
4086           cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
4087       // The ordered relationship and minnum/maxnum guarantee that we do not
4088       // have NaN constants, so ordered/unordered preds are handled the same.
4089       switch (Pred) {
4090       case FCmpInst::FCMP_OEQ:
4091       case FCmpInst::FCMP_UEQ:
4092         // minnum(X, LesserC)  == C --> false
4093         // maxnum(X, GreaterC) == C --> false
4094         return getFalse(RetTy);
4095       case FCmpInst::FCMP_ONE:
4096       case FCmpInst::FCMP_UNE:
4097         // minnum(X, LesserC)  != C --> true
4098         // maxnum(X, GreaterC) != C --> true
4099         return getTrue(RetTy);
4100       case FCmpInst::FCMP_OGE:
4101       case FCmpInst::FCMP_UGE:
4102       case FCmpInst::FCMP_OGT:
4103       case FCmpInst::FCMP_UGT:
4104         // minnum(X, LesserC)  >= C --> false
4105         // minnum(X, LesserC)  >  C --> false
4106         // maxnum(X, GreaterC) >= C --> true
4107         // maxnum(X, GreaterC) >  C --> true
4108         return ConstantInt::get(RetTy, IsMaxNum);
4109       case FCmpInst::FCMP_OLE:
4110       case FCmpInst::FCMP_ULE:
4111       case FCmpInst::FCMP_OLT:
4112       case FCmpInst::FCMP_ULT:
4113         // minnum(X, LesserC)  <= C --> true
4114         // minnum(X, LesserC)  <  C --> true
4115         // maxnum(X, GreaterC) <= C --> false
4116         // maxnum(X, GreaterC) <  C --> false
4117         return ConstantInt::get(RetTy, !IsMaxNum);
4118       default:
4119         // TRUE/FALSE/ORD/UNO should be handled before this.
4120         llvm_unreachable("Unexpected fcmp predicate");
4121       }
4122     }
4123   }
4124 
4125   if (match(RHS, m_AnyZeroFP())) {
4126     switch (Pred) {
4127     case FCmpInst::FCMP_OGE:
4128     case FCmpInst::FCMP_ULT:
4129       // Positive or zero X >= 0.0 --> true
4130       // Positive or zero X <  0.0 --> false
4131       if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
4132           CannotBeOrderedLessThanZero(LHS, Q.TLI))
4133         return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
4134       break;
4135     case FCmpInst::FCMP_UGE:
4136     case FCmpInst::FCMP_OLT:
4137       // Positive or zero or nan X >= 0.0 --> true
4138       // Positive or zero or nan X <  0.0 --> false
4139       if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
4140         return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
4141       break;
4142     default:
4143       break;
4144     }
4145   }
4146 
4147   // If the comparison is with the result of a select instruction, check whether
4148   // comparing with either branch of the select always yields the same value.
4149   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
4150     if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
4151       return V;
4152 
4153   // If the comparison is with the result of a phi instruction, check whether
4154   // doing the compare with each incoming phi value yields a common result.
4155   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
4156     if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
4157       return V;
4158 
4159   return nullptr;
4160 }
4161 
4162 Value *llvm::simplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4163                               FastMathFlags FMF, const SimplifyQuery &Q) {
4164   return ::simplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
4165 }
4166 
4167 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
4168                                      const SimplifyQuery &Q,
4169                                      bool AllowRefinement,
4170                                      unsigned MaxRecurse) {
4171   // Trivial replacement.
4172   if (V == Op)
4173     return RepOp;
4174 
4175   // We cannot replace a constant, and shouldn't even try.
4176   if (isa<Constant>(Op))
4177     return nullptr;
4178 
4179   auto *I = dyn_cast<Instruction>(V);
4180   if (!I || !is_contained(I->operands(), Op))
4181     return nullptr;
4182 
4183   if (Op->getType()->isVectorTy()) {
4184     // For vector types, the simplification must hold per-lane, so forbid
4185     // potentially cross-lane operations like shufflevector.
4186     assert(I->getType()->isVectorTy() && "Vector type mismatch");
4187     if (isa<ShuffleVectorInst>(I) || isa<CallBase>(I))
4188       return nullptr;
4189   }
4190 
4191   // Replace Op with RepOp in instruction operands.
4192   SmallVector<Value *, 8> NewOps(I->getNumOperands());
4193   transform(I->operands(), NewOps.begin(),
4194             [&](Value *V) { return V == Op ? RepOp : V; });
4195 
4196   if (!AllowRefinement) {
4197     // General InstSimplify functions may refine the result, e.g. by returning
4198     // a constant for a potentially poison value. To avoid this, implement only
4199     // a few non-refining but profitable transforms here.
4200 
4201     if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4202       unsigned Opcode = BO->getOpcode();
4203       // id op x -> x, x op id -> x
4204       if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType()))
4205         return NewOps[1];
4206       if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(),
4207                                                       /* RHS */ true))
4208         return NewOps[0];
4209 
4210       // x & x -> x, x | x -> x
4211       if ((Opcode == Instruction::And || Opcode == Instruction::Or) &&
4212           NewOps[0] == NewOps[1])
4213         return NewOps[0];
4214     }
4215 
4216     if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
4217       // getelementptr x, 0 -> x
4218       if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) &&
4219           !GEP->isInBounds())
4220         return NewOps[0];
4221     }
4222   } else if (MaxRecurse) {
4223     // The simplification queries below may return the original value. Consider:
4224     //   %div = udiv i32 %arg, %arg2
4225     //   %mul = mul nsw i32 %div, %arg2
4226     //   %cmp = icmp eq i32 %mul, %arg
4227     //   %sel = select i1 %cmp, i32 %div, i32 undef
4228     // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which
4229     // simplifies back to %arg. This can only happen because %mul does not
4230     // dominate %div. To ensure a consistent return value contract, we make sure
4231     // that this case returns nullptr as well.
4232     auto PreventSelfSimplify = [V](Value *Simplified) {
4233       return Simplified != V ? Simplified : nullptr;
4234     };
4235 
4236     if (auto *B = dyn_cast<BinaryOperator>(I))
4237       return PreventSelfSimplify(simplifyBinOp(B->getOpcode(), NewOps[0],
4238                                                NewOps[1], Q, MaxRecurse - 1));
4239 
4240     if (CmpInst *C = dyn_cast<CmpInst>(I))
4241       return PreventSelfSimplify(simplifyCmpInst(C->getPredicate(), NewOps[0],
4242                                                  NewOps[1], Q, MaxRecurse - 1));
4243 
4244     if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
4245       return PreventSelfSimplify(simplifyGEPInst(
4246           GEP->getSourceElementType(), NewOps[0], ArrayRef(NewOps).slice(1),
4247           GEP->isInBounds(), Q, MaxRecurse - 1));
4248 
4249     if (isa<SelectInst>(I))
4250       return PreventSelfSimplify(simplifySelectInst(
4251           NewOps[0], NewOps[1], NewOps[2], Q, MaxRecurse - 1));
4252     // TODO: We could hand off more cases to instsimplify here.
4253   }
4254 
4255   // If all operands are constant after substituting Op for RepOp then we can
4256   // constant fold the instruction.
4257   SmallVector<Constant *, 8> ConstOps;
4258   for (Value *NewOp : NewOps) {
4259     if (Constant *ConstOp = dyn_cast<Constant>(NewOp))
4260       ConstOps.push_back(ConstOp);
4261     else
4262       return nullptr;
4263   }
4264 
4265   // Consider:
4266   //   %cmp = icmp eq i32 %x, 2147483647
4267   //   %add = add nsw i32 %x, 1
4268   //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
4269   //
4270   // We can't replace %sel with %add unless we strip away the flags (which
4271   // will be done in InstCombine).
4272   // TODO: This may be unsound, because it only catches some forms of
4273   // refinement.
4274   if (!AllowRefinement && canCreatePoison(cast<Operator>(I)))
4275     return nullptr;
4276 
4277   return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
4278 }
4279 
4280 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
4281                                     const SimplifyQuery &Q,
4282                                     bool AllowRefinement) {
4283   return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement,
4284                                   RecursionLimit);
4285 }
4286 
4287 /// Try to simplify a select instruction when its condition operand is an
4288 /// integer comparison where one operand of the compare is a constant.
4289 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
4290                                     const APInt *Y, bool TrueWhenUnset) {
4291   const APInt *C;
4292 
4293   // (X & Y) == 0 ? X & ~Y : X  --> X
4294   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
4295   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
4296       *Y == ~*C)
4297     return TrueWhenUnset ? FalseVal : TrueVal;
4298 
4299   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
4300   // (X & Y) != 0 ? X : X & ~Y  --> X
4301   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
4302       *Y == ~*C)
4303     return TrueWhenUnset ? FalseVal : TrueVal;
4304 
4305   if (Y->isPowerOf2()) {
4306     // (X & Y) == 0 ? X | Y : X  --> X | Y
4307     // (X & Y) != 0 ? X | Y : X  --> X
4308     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
4309         *Y == *C)
4310       return TrueWhenUnset ? TrueVal : FalseVal;
4311 
4312     // (X & Y) == 0 ? X : X | Y  --> X
4313     // (X & Y) != 0 ? X : X | Y  --> X | Y
4314     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
4315         *Y == *C)
4316       return TrueWhenUnset ? TrueVal : FalseVal;
4317   }
4318 
4319   return nullptr;
4320 }
4321 
4322 static Value *simplifyCmpSelOfMaxMin(Value *CmpLHS, Value *CmpRHS,
4323                                      ICmpInst::Predicate Pred, Value *TVal,
4324                                      Value *FVal) {
4325   // Canonicalize common cmp+sel operand as CmpLHS.
4326   if (CmpRHS == TVal || CmpRHS == FVal) {
4327     std::swap(CmpLHS, CmpRHS);
4328     Pred = ICmpInst::getSwappedPredicate(Pred);
4329   }
4330 
4331   // Canonicalize common cmp+sel operand as TVal.
4332   if (CmpLHS == FVal) {
4333     std::swap(TVal, FVal);
4334     Pred = ICmpInst::getInversePredicate(Pred);
4335   }
4336 
4337   // A vector select may be shuffling together elements that are equivalent
4338   // based on the max/min/select relationship.
4339   Value *X = CmpLHS, *Y = CmpRHS;
4340   bool PeekedThroughSelectShuffle = false;
4341   auto *Shuf = dyn_cast<ShuffleVectorInst>(FVal);
4342   if (Shuf && Shuf->isSelect()) {
4343     if (Shuf->getOperand(0) == Y)
4344       FVal = Shuf->getOperand(1);
4345     else if (Shuf->getOperand(1) == Y)
4346       FVal = Shuf->getOperand(0);
4347     else
4348       return nullptr;
4349     PeekedThroughSelectShuffle = true;
4350   }
4351 
4352   // (X pred Y) ? X : max/min(X, Y)
4353   auto *MMI = dyn_cast<MinMaxIntrinsic>(FVal);
4354   if (!MMI || TVal != X ||
4355       !match(FVal, m_c_MaxOrMin(m_Specific(X), m_Specific(Y))))
4356     return nullptr;
4357 
4358   // (X >  Y) ? X : max(X, Y) --> max(X, Y)
4359   // (X >= Y) ? X : max(X, Y) --> max(X, Y)
4360   // (X <  Y) ? X : min(X, Y) --> min(X, Y)
4361   // (X <= Y) ? X : min(X, Y) --> min(X, Y)
4362   //
4363   // The equivalence allows a vector select (shuffle) of max/min and Y. Ex:
4364   // (X > Y) ? X : (Z ? max(X, Y) : Y)
4365   // If Z is true, this reduces as above, and if Z is false:
4366   // (X > Y) ? X : Y --> max(X, Y)
4367   ICmpInst::Predicate MMPred = MMI->getPredicate();
4368   if (MMPred == CmpInst::getStrictPredicate(Pred))
4369     return MMI;
4370 
4371   // Other transforms are not valid with a shuffle.
4372   if (PeekedThroughSelectShuffle)
4373     return nullptr;
4374 
4375   // (X == Y) ? X : max/min(X, Y) --> max/min(X, Y)
4376   if (Pred == CmpInst::ICMP_EQ)
4377     return MMI;
4378 
4379   // (X != Y) ? X : max/min(X, Y) --> X
4380   if (Pred == CmpInst::ICMP_NE)
4381     return X;
4382 
4383   // (X <  Y) ? X : max(X, Y) --> X
4384   // (X <= Y) ? X : max(X, Y) --> X
4385   // (X >  Y) ? X : min(X, Y) --> X
4386   // (X >= Y) ? X : min(X, Y) --> X
4387   ICmpInst::Predicate InvPred = CmpInst::getInversePredicate(Pred);
4388   if (MMPred == CmpInst::getStrictPredicate(InvPred))
4389     return X;
4390 
4391   return nullptr;
4392 }
4393 
4394 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
4395 /// eq/ne.
4396 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
4397                                            ICmpInst::Predicate Pred,
4398                                            Value *TrueVal, Value *FalseVal) {
4399   Value *X;
4400   APInt Mask;
4401   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
4402     return nullptr;
4403 
4404   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
4405                                Pred == ICmpInst::ICMP_EQ);
4406 }
4407 
4408 /// Try to simplify a select instruction when its condition operand is an
4409 /// integer comparison.
4410 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
4411                                          Value *FalseVal,
4412                                          const SimplifyQuery &Q,
4413                                          unsigned MaxRecurse) {
4414   ICmpInst::Predicate Pred;
4415   Value *CmpLHS, *CmpRHS;
4416   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
4417     return nullptr;
4418 
4419   if (Value *V = simplifyCmpSelOfMaxMin(CmpLHS, CmpRHS, Pred, TrueVal, FalseVal))
4420     return V;
4421 
4422   // Canonicalize ne to eq predicate.
4423   if (Pred == ICmpInst::ICMP_NE) {
4424     Pred = ICmpInst::ICMP_EQ;
4425     std::swap(TrueVal, FalseVal);
4426   }
4427 
4428   // Check for integer min/max with a limit constant:
4429   // X > MIN_INT ? X : MIN_INT --> X
4430   // X < MAX_INT ? X : MAX_INT --> X
4431   if (TrueVal->getType()->isIntOrIntVectorTy()) {
4432     Value *X, *Y;
4433     SelectPatternFlavor SPF =
4434         matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal,
4435                                      X, Y)
4436             .Flavor;
4437     if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) {
4438       APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF),
4439                                     X->getType()->getScalarSizeInBits());
4440       if (match(Y, m_SpecificInt(LimitC)))
4441         return X;
4442     }
4443   }
4444 
4445   if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) {
4446     Value *X;
4447     const APInt *Y;
4448     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
4449       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
4450                                            /*TrueWhenUnset=*/true))
4451         return V;
4452 
4453     // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
4454     Value *ShAmt;
4455     auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)),
4456                              m_FShr(m_Value(), m_Value(X), m_Value(ShAmt)));
4457     // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
4458     // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
4459     if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt)
4460       return X;
4461 
4462     // Test for a zero-shift-guard-op around rotates. These are used to
4463     // avoid UB from oversized shifts in raw IR rotate patterns, but the
4464     // intrinsics do not have that problem.
4465     // We do not allow this transform for the general funnel shift case because
4466     // that would not preserve the poison safety of the original code.
4467     auto isRotate =
4468         m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)),
4469                     m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt)));
4470     // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
4471     // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
4472     if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
4473         Pred == ICmpInst::ICMP_EQ)
4474       return FalseVal;
4475 
4476     // X == 0 ? abs(X) : -abs(X) --> -abs(X)
4477     // X == 0 ? -abs(X) : abs(X) --> abs(X)
4478     if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) &&
4479         match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))))
4480       return FalseVal;
4481     if (match(TrueVal,
4482               m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) &&
4483         match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))
4484       return FalseVal;
4485   }
4486 
4487   // Check for other compares that behave like bit test.
4488   if (Value *V =
4489           simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, TrueVal, FalseVal))
4490     return V;
4491 
4492   // If we have a scalar equality comparison, then we know the value in one of
4493   // the arms of the select. See if substituting this value into the arm and
4494   // simplifying the result yields the same value as the other arm.
4495   if (Pred == ICmpInst::ICMP_EQ) {
4496     if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q,
4497                                /* AllowRefinement */ false,
4498                                MaxRecurse) == TrueVal ||
4499         simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q,
4500                                /* AllowRefinement */ false,
4501                                MaxRecurse) == TrueVal)
4502       return FalseVal;
4503     if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q,
4504                                /* AllowRefinement */ true,
4505                                MaxRecurse) == FalseVal ||
4506         simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q,
4507                                /* AllowRefinement */ true,
4508                                MaxRecurse) == FalseVal)
4509       return FalseVal;
4510   }
4511 
4512   return nullptr;
4513 }
4514 
4515 /// Try to simplify a select instruction when its condition operand is a
4516 /// floating-point comparison.
4517 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F,
4518                                      const SimplifyQuery &Q) {
4519   FCmpInst::Predicate Pred;
4520   if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
4521       !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
4522     return nullptr;
4523 
4524   // This transform is safe if we do not have (do not care about) -0.0 or if
4525   // at least one operand is known to not be -0.0. Otherwise, the select can
4526   // change the sign of a zero operand.
4527   bool HasNoSignedZeros =
4528       Q.CxtI && isa<FPMathOperator>(Q.CxtI) && Q.CxtI->hasNoSignedZeros();
4529   const APFloat *C;
4530   if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) ||
4531       (match(F, m_APFloat(C)) && C->isNonZero())) {
4532     // (T == F) ? T : F --> F
4533     // (F == T) ? T : F --> F
4534     if (Pred == FCmpInst::FCMP_OEQ)
4535       return F;
4536 
4537     // (T != F) ? T : F --> T
4538     // (F != T) ? T : F --> T
4539     if (Pred == FCmpInst::FCMP_UNE)
4540       return T;
4541   }
4542 
4543   return nullptr;
4544 }
4545 
4546 /// Given operands for a SelectInst, see if we can fold the result.
4547 /// If not, this returns null.
4548 static Value *simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4549                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
4550   if (auto *CondC = dyn_cast<Constant>(Cond)) {
4551     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
4552       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
4553         return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
4554 
4555     // select poison, X, Y -> poison
4556     if (isa<PoisonValue>(CondC))
4557       return PoisonValue::get(TrueVal->getType());
4558 
4559     // select undef, X, Y -> X or Y
4560     if (Q.isUndefValue(CondC))
4561       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
4562 
4563     // select true,  X, Y --> X
4564     // select false, X, Y --> Y
4565     // For vectors, allow undef/poison elements in the condition to match the
4566     // defined elements, so we can eliminate the select.
4567     if (match(CondC, m_One()))
4568       return TrueVal;
4569     if (match(CondC, m_Zero()))
4570       return FalseVal;
4571   }
4572 
4573   assert(Cond->getType()->isIntOrIntVectorTy(1) &&
4574          "Select must have bool or bool vector condition");
4575   assert(TrueVal->getType() == FalseVal->getType() &&
4576          "Select must have same types for true/false ops");
4577 
4578   if (Cond->getType() == TrueVal->getType()) {
4579     // select i1 Cond, i1 true, i1 false --> i1 Cond
4580     if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt()))
4581       return Cond;
4582 
4583     // (X && Y) ? X : Y --> Y (commuted 2 ways)
4584     if (match(Cond, m_c_LogicalAnd(m_Specific(TrueVal), m_Specific(FalseVal))))
4585       return FalseVal;
4586 
4587     // (X || Y) ? X : Y --> X (commuted 2 ways)
4588     if (match(Cond, m_c_LogicalOr(m_Specific(TrueVal), m_Specific(FalseVal))))
4589       return TrueVal;
4590 
4591     // (X || Y) ? false : X --> false (commuted 2 ways)
4592     if (match(Cond, m_c_LogicalOr(m_Specific(FalseVal), m_Value())) &&
4593         match(TrueVal, m_ZeroInt()))
4594       return ConstantInt::getFalse(Cond->getType());
4595 
4596     // Match patterns that end in logical-and.
4597     if (match(FalseVal, m_ZeroInt())) {
4598       // !(X || Y) && X --> false (commuted 2 ways)
4599       if (match(Cond, m_Not(m_c_LogicalOr(m_Specific(TrueVal), m_Value()))))
4600         return ConstantInt::getFalse(Cond->getType());
4601 
4602       // (X || Y) && Y --> Y (commuted 2 ways)
4603       if (match(Cond, m_c_LogicalOr(m_Specific(TrueVal), m_Value())))
4604         return TrueVal;
4605       // Y && (X || Y) --> Y (commuted 2 ways)
4606       if (match(TrueVal, m_c_LogicalOr(m_Specific(Cond), m_Value())))
4607         return Cond;
4608 
4609       // (X || Y) && (X || !Y) --> X (commuted 8 ways)
4610       Value *X, *Y;
4611       if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4612           match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4613         return X;
4614       if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4615           match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4616         return X;
4617     }
4618 
4619     // Match patterns that end in logical-or.
4620     if (match(TrueVal, m_One())) {
4621       // (X && Y) || Y --> Y (commuted 2 ways)
4622       if (match(Cond, m_c_LogicalAnd(m_Specific(FalseVal), m_Value())))
4623         return FalseVal;
4624       // Y || (X && Y) --> Y (commuted 2 ways)
4625       if (match(FalseVal, m_c_LogicalAnd(m_Specific(Cond), m_Value())))
4626         return Cond;
4627     }
4628   }
4629 
4630   // select ?, X, X -> X
4631   if (TrueVal == FalseVal)
4632     return TrueVal;
4633 
4634   if (Cond == TrueVal) {
4635     // select i1 X, i1 X, i1 false --> X (logical-and)
4636     if (match(FalseVal, m_ZeroInt()))
4637       return Cond;
4638     // select i1 X, i1 X, i1 true --> true
4639     if (match(FalseVal, m_One()))
4640       return ConstantInt::getTrue(Cond->getType());
4641   }
4642   if (Cond == FalseVal) {
4643     // select i1 X, i1 true, i1 X --> X (logical-or)
4644     if (match(TrueVal, m_One()))
4645       return Cond;
4646     // select i1 X, i1 false, i1 X --> false
4647     if (match(TrueVal, m_ZeroInt()))
4648       return ConstantInt::getFalse(Cond->getType());
4649   }
4650 
4651   // If the true or false value is poison, we can fold to the other value.
4652   // If the true or false value is undef, we can fold to the other value as
4653   // long as the other value isn't poison.
4654   // select ?, poison, X -> X
4655   // select ?, undef,  X -> X
4656   if (isa<PoisonValue>(TrueVal) ||
4657       (Q.isUndefValue(TrueVal) &&
4658        isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT)))
4659     return FalseVal;
4660   // select ?, X, poison -> X
4661   // select ?, X, undef  -> X
4662   if (isa<PoisonValue>(FalseVal) ||
4663       (Q.isUndefValue(FalseVal) &&
4664        isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT)))
4665     return TrueVal;
4666 
4667   // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC''
4668   Constant *TrueC, *FalseC;
4669   if (isa<FixedVectorType>(TrueVal->getType()) &&
4670       match(TrueVal, m_Constant(TrueC)) &&
4671       match(FalseVal, m_Constant(FalseC))) {
4672     unsigned NumElts =
4673         cast<FixedVectorType>(TrueC->getType())->getNumElements();
4674     SmallVector<Constant *, 16> NewC;
4675     for (unsigned i = 0; i != NumElts; ++i) {
4676       // Bail out on incomplete vector constants.
4677       Constant *TEltC = TrueC->getAggregateElement(i);
4678       Constant *FEltC = FalseC->getAggregateElement(i);
4679       if (!TEltC || !FEltC)
4680         break;
4681 
4682       // If the elements match (undef or not), that value is the result. If only
4683       // one element is undef, choose the defined element as the safe result.
4684       if (TEltC == FEltC)
4685         NewC.push_back(TEltC);
4686       else if (isa<PoisonValue>(TEltC) ||
4687                (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC)))
4688         NewC.push_back(FEltC);
4689       else if (isa<PoisonValue>(FEltC) ||
4690                (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC)))
4691         NewC.push_back(TEltC);
4692       else
4693         break;
4694     }
4695     if (NewC.size() == NumElts)
4696       return ConstantVector::get(NewC);
4697   }
4698 
4699   if (Value *V =
4700           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
4701     return V;
4702 
4703   if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q))
4704     return V;
4705 
4706   if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
4707     return V;
4708 
4709   std::optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
4710   if (Imp)
4711     return *Imp ? TrueVal : FalseVal;
4712 
4713   return nullptr;
4714 }
4715 
4716 Value *llvm::simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4717                                 const SimplifyQuery &Q) {
4718   return ::simplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
4719 }
4720 
4721 /// Given operands for an GetElementPtrInst, see if we can fold the result.
4722 /// If not, this returns null.
4723 static Value *simplifyGEPInst(Type *SrcTy, Value *Ptr,
4724                               ArrayRef<Value *> Indices, bool InBounds,
4725                               const SimplifyQuery &Q, unsigned) {
4726   // The type of the GEP pointer operand.
4727   unsigned AS =
4728       cast<PointerType>(Ptr->getType()->getScalarType())->getAddressSpace();
4729 
4730   // getelementptr P -> P.
4731   if (Indices.empty())
4732     return Ptr;
4733 
4734   // Compute the (pointer) type returned by the GEP instruction.
4735   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Indices);
4736   Type *GEPTy = PointerType::get(LastType, AS);
4737   if (VectorType *VT = dyn_cast<VectorType>(Ptr->getType()))
4738     GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4739   else {
4740     for (Value *Op : Indices) {
4741       // If one of the operands is a vector, the result type is a vector of
4742       // pointers. All vector operands must have the same number of elements.
4743       if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) {
4744         GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4745         break;
4746       }
4747     }
4748   }
4749 
4750   // For opaque pointers an all-zero GEP is a no-op. For typed pointers,
4751   // it may be equivalent to a bitcast.
4752   if (Ptr->getType()->getScalarType()->isOpaquePointerTy() &&
4753       Ptr->getType() == GEPTy &&
4754       all_of(Indices, [](const auto *V) { return match(V, m_Zero()); }))
4755     return Ptr;
4756 
4757   // getelementptr poison, idx -> poison
4758   // getelementptr baseptr, poison -> poison
4759   if (isa<PoisonValue>(Ptr) ||
4760       any_of(Indices, [](const auto *V) { return isa<PoisonValue>(V); }))
4761     return PoisonValue::get(GEPTy);
4762 
4763   if (Q.isUndefValue(Ptr))
4764     // If inbounds, we can choose an out-of-bounds pointer as a base pointer.
4765     return InBounds ? PoisonValue::get(GEPTy) : UndefValue::get(GEPTy);
4766 
4767   bool IsScalableVec =
4768       isa<ScalableVectorType>(SrcTy) || any_of(Indices, [](const Value *V) {
4769         return isa<ScalableVectorType>(V->getType());
4770       });
4771 
4772   if (Indices.size() == 1) {
4773     // getelementptr P, 0 -> P.
4774     if (match(Indices[0], m_Zero()) && Ptr->getType() == GEPTy)
4775       return Ptr;
4776 
4777     Type *Ty = SrcTy;
4778     if (!IsScalableVec && Ty->isSized()) {
4779       Value *P;
4780       uint64_t C;
4781       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
4782       // getelementptr P, N -> P if P points to a type of zero size.
4783       if (TyAllocSize == 0 && Ptr->getType() == GEPTy)
4784         return Ptr;
4785 
4786       // The following transforms are only safe if the ptrtoint cast
4787       // doesn't truncate the pointers.
4788       if (Indices[0]->getType()->getScalarSizeInBits() ==
4789           Q.DL.getPointerSizeInBits(AS)) {
4790         auto CanSimplify = [GEPTy, &P, Ptr]() -> bool {
4791           return P->getType() == GEPTy &&
4792                  getUnderlyingObject(P) == getUnderlyingObject(Ptr);
4793         };
4794         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
4795         if (TyAllocSize == 1 &&
4796             match(Indices[0],
4797                   m_Sub(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Specific(Ptr)))) &&
4798             CanSimplify())
4799           return P;
4800 
4801         // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of
4802         // size 1 << C.
4803         if (match(Indices[0], m_AShr(m_Sub(m_PtrToInt(m_Value(P)),
4804                                            m_PtrToInt(m_Specific(Ptr))),
4805                                      m_ConstantInt(C))) &&
4806             TyAllocSize == 1ULL << C && CanSimplify())
4807           return P;
4808 
4809         // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of
4810         // size C.
4811         if (match(Indices[0], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)),
4812                                            m_PtrToInt(m_Specific(Ptr))),
4813                                      m_SpecificInt(TyAllocSize))) &&
4814             CanSimplify())
4815           return P;
4816       }
4817     }
4818   }
4819 
4820   if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 &&
4821       all_of(Indices.drop_back(1),
4822              [](Value *Idx) { return match(Idx, m_Zero()); })) {
4823     unsigned IdxWidth =
4824         Q.DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace());
4825     if (Q.DL.getTypeSizeInBits(Indices.back()->getType()) == IdxWidth) {
4826       APInt BasePtrOffset(IdxWidth, 0);
4827       Value *StrippedBasePtr =
4828           Ptr->stripAndAccumulateInBoundsConstantOffsets(Q.DL, BasePtrOffset);
4829 
4830       // Avoid creating inttoptr of zero here: While LLVMs treatment of
4831       // inttoptr is generally conservative, this particular case is folded to
4832       // a null pointer, which will have incorrect provenance.
4833 
4834       // gep (gep V, C), (sub 0, V) -> C
4835       if (match(Indices.back(),
4836                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) &&
4837           !BasePtrOffset.isZero()) {
4838         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
4839         return ConstantExpr::getIntToPtr(CI, GEPTy);
4840       }
4841       // gep (gep V, C), (xor V, -1) -> C-1
4842       if (match(Indices.back(),
4843                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) &&
4844           !BasePtrOffset.isOne()) {
4845         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
4846         return ConstantExpr::getIntToPtr(CI, GEPTy);
4847       }
4848     }
4849   }
4850 
4851   // Check to see if this is constant foldable.
4852   if (!isa<Constant>(Ptr) ||
4853       !all_of(Indices, [](Value *V) { return isa<Constant>(V); }))
4854     return nullptr;
4855 
4856   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ptr), Indices,
4857                                             InBounds);
4858   return ConstantFoldConstant(CE, Q.DL);
4859 }
4860 
4861 Value *llvm::simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef<Value *> Indices,
4862                              bool InBounds, const SimplifyQuery &Q) {
4863   return ::simplifyGEPInst(SrcTy, Ptr, Indices, InBounds, Q, RecursionLimit);
4864 }
4865 
4866 /// Given operands for an InsertValueInst, see if we can fold the result.
4867 /// If not, this returns null.
4868 static Value *simplifyInsertValueInst(Value *Agg, Value *Val,
4869                                       ArrayRef<unsigned> Idxs,
4870                                       const SimplifyQuery &Q, unsigned) {
4871   if (Constant *CAgg = dyn_cast<Constant>(Agg))
4872     if (Constant *CVal = dyn_cast<Constant>(Val))
4873       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
4874 
4875   // insertvalue x, poison, n -> x
4876   // insertvalue x, undef, n -> x if x cannot be poison
4877   if (isa<PoisonValue>(Val) ||
4878       (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Agg)))
4879     return Agg;
4880 
4881   // insertvalue x, (extractvalue y, n), n
4882   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
4883     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
4884         EV->getIndices() == Idxs) {
4885       // insertvalue undef, (extractvalue y, n), n -> y
4886       if (Q.isUndefValue(Agg))
4887         return EV->getAggregateOperand();
4888 
4889       // insertvalue y, (extractvalue y, n), n -> y
4890       if (Agg == EV->getAggregateOperand())
4891         return Agg;
4892     }
4893 
4894   return nullptr;
4895 }
4896 
4897 Value *llvm::simplifyInsertValueInst(Value *Agg, Value *Val,
4898                                      ArrayRef<unsigned> Idxs,
4899                                      const SimplifyQuery &Q) {
4900   return ::simplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
4901 }
4902 
4903 Value *llvm::simplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
4904                                        const SimplifyQuery &Q) {
4905   // Try to constant fold.
4906   auto *VecC = dyn_cast<Constant>(Vec);
4907   auto *ValC = dyn_cast<Constant>(Val);
4908   auto *IdxC = dyn_cast<Constant>(Idx);
4909   if (VecC && ValC && IdxC)
4910     return ConstantExpr::getInsertElement(VecC, ValC, IdxC);
4911 
4912   // For fixed-length vector, fold into poison if index is out of bounds.
4913   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
4914     if (isa<FixedVectorType>(Vec->getType()) &&
4915         CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements()))
4916       return PoisonValue::get(Vec->getType());
4917   }
4918 
4919   // If index is undef, it might be out of bounds (see above case)
4920   if (Q.isUndefValue(Idx))
4921     return PoisonValue::get(Vec->getType());
4922 
4923   // If the scalar is poison, or it is undef and there is no risk of
4924   // propagating poison from the vector value, simplify to the vector value.
4925   if (isa<PoisonValue>(Val) ||
4926       (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec)))
4927     return Vec;
4928 
4929   // If we are extracting a value from a vector, then inserting it into the same
4930   // place, that's the input vector:
4931   // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
4932   if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx))))
4933     return Vec;
4934 
4935   return nullptr;
4936 }
4937 
4938 /// Given operands for an ExtractValueInst, see if we can fold the result.
4939 /// If not, this returns null.
4940 static Value *simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4941                                        const SimplifyQuery &, unsigned) {
4942   if (auto *CAgg = dyn_cast<Constant>(Agg))
4943     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4944 
4945   // extractvalue x, (insertvalue y, elt, n), n -> elt
4946   unsigned NumIdxs = Idxs.size();
4947   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4948        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4949     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4950     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4951     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4952     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4953         Idxs.slice(0, NumCommonIdxs)) {
4954       if (NumIdxs == NumInsertValueIdxs)
4955         return IVI->getInsertedValueOperand();
4956       break;
4957     }
4958   }
4959 
4960   return nullptr;
4961 }
4962 
4963 Value *llvm::simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4964                                       const SimplifyQuery &Q) {
4965   return ::simplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4966 }
4967 
4968 /// Given operands for an ExtractElementInst, see if we can fold the result.
4969 /// If not, this returns null.
4970 static Value *simplifyExtractElementInst(Value *Vec, Value *Idx,
4971                                          const SimplifyQuery &Q, unsigned) {
4972   auto *VecVTy = cast<VectorType>(Vec->getType());
4973   if (auto *CVec = dyn_cast<Constant>(Vec)) {
4974     if (auto *CIdx = dyn_cast<Constant>(Idx))
4975       return ConstantExpr::getExtractElement(CVec, CIdx);
4976 
4977     if (Q.isUndefValue(Vec))
4978       return UndefValue::get(VecVTy->getElementType());
4979   }
4980 
4981   // An undef extract index can be arbitrarily chosen to be an out-of-range
4982   // index value, which would result in the instruction being poison.
4983   if (Q.isUndefValue(Idx))
4984     return PoisonValue::get(VecVTy->getElementType());
4985 
4986   // If extracting a specified index from the vector, see if we can recursively
4987   // find a previously computed scalar that was inserted into the vector.
4988   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4989     // For fixed-length vector, fold into undef if index is out of bounds.
4990     unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue();
4991     if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts))
4992       return PoisonValue::get(VecVTy->getElementType());
4993     // Handle case where an element is extracted from a splat.
4994     if (IdxC->getValue().ult(MinNumElts))
4995       if (auto *Splat = getSplatValue(Vec))
4996         return Splat;
4997     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4998       return Elt;
4999   } else {
5000     // extractelt x, (insertelt y, elt, n), n -> elt
5001     // If the possibly-variable indices are trivially known to be equal
5002     // (because they are the same operand) then use the value that was
5003     // inserted directly.
5004     auto *IE = dyn_cast<InsertElementInst>(Vec);
5005     if (IE && IE->getOperand(2) == Idx)
5006       return IE->getOperand(1);
5007 
5008     // The index is not relevant if our vector is a splat.
5009     if (Value *Splat = getSplatValue(Vec))
5010       return Splat;
5011   }
5012   return nullptr;
5013 }
5014 
5015 Value *llvm::simplifyExtractElementInst(Value *Vec, Value *Idx,
5016                                         const SimplifyQuery &Q) {
5017   return ::simplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
5018 }
5019 
5020 /// See if we can fold the given phi. If not, returns null.
5021 static Value *simplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues,
5022                               const SimplifyQuery &Q) {
5023   // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE
5024   //          here, because the PHI we may succeed simplifying to was not
5025   //          def-reachable from the original PHI!
5026 
5027   // If all of the PHI's incoming values are the same then replace the PHI node
5028   // with the common value.
5029   Value *CommonValue = nullptr;
5030   bool HasUndefInput = false;
5031   for (Value *Incoming : IncomingValues) {
5032     // If the incoming value is the phi node itself, it can safely be skipped.
5033     if (Incoming == PN)
5034       continue;
5035     if (Q.isUndefValue(Incoming)) {
5036       // Remember that we saw an undef value, but otherwise ignore them.
5037       HasUndefInput = true;
5038       continue;
5039     }
5040     if (CommonValue && Incoming != CommonValue)
5041       return nullptr; // Not the same, bail out.
5042     CommonValue = Incoming;
5043   }
5044 
5045   // If CommonValue is null then all of the incoming values were either undef or
5046   // equal to the phi node itself.
5047   if (!CommonValue)
5048     return UndefValue::get(PN->getType());
5049 
5050   if (HasUndefInput) {
5051     // If we have a PHI node like phi(X, undef, X), where X is defined by some
5052     // instruction, we cannot return X as the result of the PHI node unless it
5053     // dominates the PHI block.
5054     return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
5055   }
5056 
5057   return CommonValue;
5058 }
5059 
5060 static Value *simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
5061                                const SimplifyQuery &Q, unsigned MaxRecurse) {
5062   if (auto *C = dyn_cast<Constant>(Op))
5063     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
5064 
5065   if (auto *CI = dyn_cast<CastInst>(Op)) {
5066     auto *Src = CI->getOperand(0);
5067     Type *SrcTy = Src->getType();
5068     Type *MidTy = CI->getType();
5069     Type *DstTy = Ty;
5070     if (Src->getType() == Ty) {
5071       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
5072       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
5073       Type *SrcIntPtrTy =
5074           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
5075       Type *MidIntPtrTy =
5076           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
5077       Type *DstIntPtrTy =
5078           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
5079       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
5080                                          SrcIntPtrTy, MidIntPtrTy,
5081                                          DstIntPtrTy) == Instruction::BitCast)
5082         return Src;
5083     }
5084   }
5085 
5086   // bitcast x -> x
5087   if (CastOpc == Instruction::BitCast)
5088     if (Op->getType() == Ty)
5089       return Op;
5090 
5091   return nullptr;
5092 }
5093 
5094 Value *llvm::simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
5095                               const SimplifyQuery &Q) {
5096   return ::simplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
5097 }
5098 
5099 /// For the given destination element of a shuffle, peek through shuffles to
5100 /// match a root vector source operand that contains that element in the same
5101 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
5102 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
5103                                    int MaskVal, Value *RootVec,
5104                                    unsigned MaxRecurse) {
5105   if (!MaxRecurse--)
5106     return nullptr;
5107 
5108   // Bail out if any mask value is undefined. That kind of shuffle may be
5109   // simplified further based on demanded bits or other folds.
5110   if (MaskVal == -1)
5111     return nullptr;
5112 
5113   // The mask value chooses which source operand we need to look at next.
5114   int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements();
5115   int RootElt = MaskVal;
5116   Value *SourceOp = Op0;
5117   if (MaskVal >= InVecNumElts) {
5118     RootElt = MaskVal - InVecNumElts;
5119     SourceOp = Op1;
5120   }
5121 
5122   // If the source operand is a shuffle itself, look through it to find the
5123   // matching root vector.
5124   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
5125     return foldIdentityShuffles(
5126         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
5127         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
5128   }
5129 
5130   // TODO: Look through bitcasts? What if the bitcast changes the vector element
5131   // size?
5132 
5133   // The source operand is not a shuffle. Initialize the root vector value for
5134   // this shuffle if that has not been done yet.
5135   if (!RootVec)
5136     RootVec = SourceOp;
5137 
5138   // Give up as soon as a source operand does not match the existing root value.
5139   if (RootVec != SourceOp)
5140     return nullptr;
5141 
5142   // The element must be coming from the same lane in the source vector
5143   // (although it may have crossed lanes in intermediate shuffles).
5144   if (RootElt != DestElt)
5145     return nullptr;
5146 
5147   return RootVec;
5148 }
5149 
5150 static Value *simplifyShuffleVectorInst(Value *Op0, Value *Op1,
5151                                         ArrayRef<int> Mask, Type *RetTy,
5152                                         const SimplifyQuery &Q,
5153                                         unsigned MaxRecurse) {
5154   if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; }))
5155     return UndefValue::get(RetTy);
5156 
5157   auto *InVecTy = cast<VectorType>(Op0->getType());
5158   unsigned MaskNumElts = Mask.size();
5159   ElementCount InVecEltCount = InVecTy->getElementCount();
5160 
5161   bool Scalable = InVecEltCount.isScalable();
5162 
5163   SmallVector<int, 32> Indices;
5164   Indices.assign(Mask.begin(), Mask.end());
5165 
5166   // Canonicalization: If mask does not select elements from an input vector,
5167   // replace that input vector with poison.
5168   if (!Scalable) {
5169     bool MaskSelects0 = false, MaskSelects1 = false;
5170     unsigned InVecNumElts = InVecEltCount.getKnownMinValue();
5171     for (unsigned i = 0; i != MaskNumElts; ++i) {
5172       if (Indices[i] == -1)
5173         continue;
5174       if ((unsigned)Indices[i] < InVecNumElts)
5175         MaskSelects0 = true;
5176       else
5177         MaskSelects1 = true;
5178     }
5179     if (!MaskSelects0)
5180       Op0 = PoisonValue::get(InVecTy);
5181     if (!MaskSelects1)
5182       Op1 = PoisonValue::get(InVecTy);
5183   }
5184 
5185   auto *Op0Const = dyn_cast<Constant>(Op0);
5186   auto *Op1Const = dyn_cast<Constant>(Op1);
5187 
5188   // If all operands are constant, constant fold the shuffle. This
5189   // transformation depends on the value of the mask which is not known at
5190   // compile time for scalable vectors
5191   if (Op0Const && Op1Const)
5192     return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask);
5193 
5194   // Canonicalization: if only one input vector is constant, it shall be the
5195   // second one. This transformation depends on the value of the mask which
5196   // is not known at compile time for scalable vectors
5197   if (!Scalable && Op0Const && !Op1Const) {
5198     std::swap(Op0, Op1);
5199     ShuffleVectorInst::commuteShuffleMask(Indices,
5200                                           InVecEltCount.getKnownMinValue());
5201   }
5202 
5203   // A splat of an inserted scalar constant becomes a vector constant:
5204   // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...>
5205   // NOTE: We may have commuted above, so analyze the updated Indices, not the
5206   //       original mask constant.
5207   // NOTE: This transformation depends on the value of the mask which is not
5208   // known at compile time for scalable vectors
5209   Constant *C;
5210   ConstantInt *IndexC;
5211   if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C),
5212                                           m_ConstantInt(IndexC)))) {
5213     // Match a splat shuffle mask of the insert index allowing undef elements.
5214     int InsertIndex = IndexC->getZExtValue();
5215     if (all_of(Indices, [InsertIndex](int MaskElt) {
5216           return MaskElt == InsertIndex || MaskElt == -1;
5217         })) {
5218       assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat");
5219 
5220       // Shuffle mask undefs become undefined constant result elements.
5221       SmallVector<Constant *, 16> VecC(MaskNumElts, C);
5222       for (unsigned i = 0; i != MaskNumElts; ++i)
5223         if (Indices[i] == -1)
5224           VecC[i] = UndefValue::get(C->getType());
5225       return ConstantVector::get(VecC);
5226     }
5227   }
5228 
5229   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
5230   // value type is same as the input vectors' type.
5231   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
5232     if (Q.isUndefValue(Op1) && RetTy == InVecTy &&
5233         all_equal(OpShuf->getShuffleMask()))
5234       return Op0;
5235 
5236   // All remaining transformation depend on the value of the mask, which is
5237   // not known at compile time for scalable vectors.
5238   if (Scalable)
5239     return nullptr;
5240 
5241   // Don't fold a shuffle with undef mask elements. This may get folded in a
5242   // better way using demanded bits or other analysis.
5243   // TODO: Should we allow this?
5244   if (is_contained(Indices, -1))
5245     return nullptr;
5246 
5247   // Check if every element of this shuffle can be mapped back to the
5248   // corresponding element of a single root vector. If so, we don't need this
5249   // shuffle. This handles simple identity shuffles as well as chains of
5250   // shuffles that may widen/narrow and/or move elements across lanes and back.
5251   Value *RootVec = nullptr;
5252   for (unsigned i = 0; i != MaskNumElts; ++i) {
5253     // Note that recursion is limited for each vector element, so if any element
5254     // exceeds the limit, this will fail to simplify.
5255     RootVec =
5256         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
5257 
5258     // We can't replace a widening/narrowing shuffle with one of its operands.
5259     if (!RootVec || RootVec->getType() != RetTy)
5260       return nullptr;
5261   }
5262   return RootVec;
5263 }
5264 
5265 /// Given operands for a ShuffleVectorInst, fold the result or return null.
5266 Value *llvm::simplifyShuffleVectorInst(Value *Op0, Value *Op1,
5267                                        ArrayRef<int> Mask, Type *RetTy,
5268                                        const SimplifyQuery &Q) {
5269   return ::simplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
5270 }
5271 
5272 static Constant *foldConstant(Instruction::UnaryOps Opcode, Value *&Op,
5273                               const SimplifyQuery &Q) {
5274   if (auto *C = dyn_cast<Constant>(Op))
5275     return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
5276   return nullptr;
5277 }
5278 
5279 /// Given the operand for an FNeg, see if we can fold the result.  If not, this
5280 /// returns null.
5281 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
5282                                const SimplifyQuery &Q, unsigned MaxRecurse) {
5283   if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
5284     return C;
5285 
5286   Value *X;
5287   // fneg (fneg X) ==> X
5288   if (match(Op, m_FNeg(m_Value(X))))
5289     return X;
5290 
5291   return nullptr;
5292 }
5293 
5294 Value *llvm::simplifyFNegInst(Value *Op, FastMathFlags FMF,
5295                               const SimplifyQuery &Q) {
5296   return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
5297 }
5298 
5299 /// Try to propagate existing NaN values when possible. If not, replace the
5300 /// constant or elements in the constant with a canonical NaN.
5301 static Constant *propagateNaN(Constant *In) {
5302   if (auto *VecTy = dyn_cast<FixedVectorType>(In->getType())) {
5303     unsigned NumElts = VecTy->getNumElements();
5304     SmallVector<Constant *, 32> NewC(NumElts);
5305     for (unsigned i = 0; i != NumElts; ++i) {
5306       Constant *EltC = In->getAggregateElement(i);
5307       // Poison and existing NaN elements propagate.
5308       // Replace unknown or undef elements with canonical NaN.
5309       if (EltC && (isa<PoisonValue>(EltC) || EltC->isNaN()))
5310         NewC[i] = EltC;
5311       else
5312         NewC[i] = (ConstantFP::getNaN(VecTy->getElementType()));
5313     }
5314     return ConstantVector::get(NewC);
5315   }
5316 
5317   // It is not a fixed vector, but not a simple NaN either?
5318   if (!In->isNaN())
5319     return ConstantFP::getNaN(In->getType());
5320 
5321   // Propagate the existing NaN constant when possible.
5322   // TODO: Should we quiet a signaling NaN?
5323   return In;
5324 }
5325 
5326 /// Perform folds that are common to any floating-point operation. This implies
5327 /// transforms based on poison/undef/NaN because the operation itself makes no
5328 /// difference to the result.
5329 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF,
5330                               const SimplifyQuery &Q,
5331                               fp::ExceptionBehavior ExBehavior,
5332                               RoundingMode Rounding) {
5333   // Poison is independent of anything else. It always propagates from an
5334   // operand to a math result.
5335   if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); }))
5336     return PoisonValue::get(Ops[0]->getType());
5337 
5338   for (Value *V : Ops) {
5339     bool IsNan = match(V, m_NaN());
5340     bool IsInf = match(V, m_Inf());
5341     bool IsUndef = Q.isUndefValue(V);
5342 
5343     // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
5344     // (an undef operand can be chosen to be Nan/Inf), then the result of
5345     // this operation is poison.
5346     if (FMF.noNaNs() && (IsNan || IsUndef))
5347       return PoisonValue::get(V->getType());
5348     if (FMF.noInfs() && (IsInf || IsUndef))
5349       return PoisonValue::get(V->getType());
5350 
5351     if (isDefaultFPEnvironment(ExBehavior, Rounding)) {
5352       // Undef does not propagate because undef means that all bits can take on
5353       // any value. If this is undef * NaN for example, then the result values
5354       // (at least the exponent bits) are limited. Assume the undef is a
5355       // canonical NaN and propagate that.
5356       if (IsUndef)
5357         return ConstantFP::getNaN(V->getType());
5358       if (IsNan)
5359         return propagateNaN(cast<Constant>(V));
5360     } else if (ExBehavior != fp::ebStrict) {
5361       if (IsNan)
5362         return propagateNaN(cast<Constant>(V));
5363     }
5364   }
5365   return nullptr;
5366 }
5367 
5368 /// Given operands for an FAdd, see if we can fold the result.  If not, this
5369 /// returns null.
5370 static Value *
5371 simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5372                  const SimplifyQuery &Q, unsigned MaxRecurse,
5373                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5374                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5375   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5376     if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
5377       return C;
5378 
5379   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5380     return C;
5381 
5382   // fadd X, -0 ==> X
5383   // With strict/constrained FP, we have these possible edge cases that do
5384   // not simplify to Op0:
5385   // fadd SNaN, -0.0 --> QNaN
5386   // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative)
5387   if (canIgnoreSNaN(ExBehavior, FMF) &&
5388       (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) ||
5389        FMF.noSignedZeros()))
5390     if (match(Op1, m_NegZeroFP()))
5391       return Op0;
5392 
5393   // fadd X, 0 ==> X, when we know X is not -0
5394   if (canIgnoreSNaN(ExBehavior, FMF))
5395     if (match(Op1, m_PosZeroFP()) &&
5396         (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
5397       return Op0;
5398 
5399   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5400     return nullptr;
5401 
5402   if (FMF.noNaNs()) {
5403     // With nnan: X + {+/-}Inf --> {+/-}Inf
5404     if (match(Op1, m_Inf()))
5405       return Op1;
5406 
5407     // With nnan: -X + X --> 0.0 (and commuted variant)
5408     // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
5409     // Negative zeros are allowed because we always end up with positive zero:
5410     // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
5411     // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
5412     // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
5413     // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
5414     if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
5415         match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
5416       return ConstantFP::getNullValue(Op0->getType());
5417 
5418     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5419         match(Op1, m_FNeg(m_Specific(Op0))))
5420       return ConstantFP::getNullValue(Op0->getType());
5421   }
5422 
5423   // (X - Y) + Y --> X
5424   // Y + (X - Y) --> X
5425   Value *X;
5426   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5427       (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
5428        match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
5429     return X;
5430 
5431   return nullptr;
5432 }
5433 
5434 /// Given operands for an FSub, see if we can fold the result.  If not, this
5435 /// returns null.
5436 static Value *
5437 simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5438                  const SimplifyQuery &Q, unsigned MaxRecurse,
5439                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5440                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5441   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5442     if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
5443       return C;
5444 
5445   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5446     return C;
5447 
5448   // fsub X, +0 ==> X
5449   if (canIgnoreSNaN(ExBehavior, FMF) &&
5450       (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) ||
5451        FMF.noSignedZeros()))
5452     if (match(Op1, m_PosZeroFP()))
5453       return Op0;
5454 
5455   // fsub X, -0 ==> X, when we know X is not -0
5456   if (canIgnoreSNaN(ExBehavior, FMF))
5457     if (match(Op1, m_NegZeroFP()) &&
5458         (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
5459       return Op0;
5460 
5461   // fsub -0.0, (fsub -0.0, X) ==> X
5462   // fsub -0.0, (fneg X) ==> X
5463   Value *X;
5464   if (canIgnoreSNaN(ExBehavior, FMF))
5465     if (match(Op0, m_NegZeroFP()) && match(Op1, m_FNeg(m_Value(X))))
5466       return X;
5467 
5468   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
5469   // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
5470   if (canIgnoreSNaN(ExBehavior, FMF))
5471     if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
5472         (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
5473          match(Op1, m_FNeg(m_Value(X)))))
5474       return X;
5475 
5476   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5477     return nullptr;
5478 
5479   if (FMF.noNaNs()) {
5480     // fsub nnan x, x ==> 0.0
5481     if (Op0 == Op1)
5482       return Constant::getNullValue(Op0->getType());
5483 
5484     // With nnan: {+/-}Inf - X --> {+/-}Inf
5485     if (match(Op0, m_Inf()))
5486       return Op0;
5487 
5488     // With nnan: X - {+/-}Inf --> {-/+}Inf
5489     if (match(Op1, m_Inf()))
5490       return foldConstant(Instruction::FNeg, Op1, Q);
5491   }
5492 
5493   // Y - (Y - X) --> X
5494   // (X + Y) - Y --> X
5495   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5496       (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
5497        match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
5498     return X;
5499 
5500   return nullptr;
5501 }
5502 
5503 static Value *simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5504                               const SimplifyQuery &Q, unsigned MaxRecurse,
5505                               fp::ExceptionBehavior ExBehavior,
5506                               RoundingMode Rounding) {
5507   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5508     return C;
5509 
5510   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5511     return nullptr;
5512 
5513   // Canonicalize special constants as operand 1.
5514   if (match(Op0, m_FPOne()) || match(Op0, m_AnyZeroFP()))
5515     std::swap(Op0, Op1);
5516 
5517   // X * 1.0 --> X
5518   if (match(Op1, m_FPOne()))
5519     return Op0;
5520 
5521   if (match(Op1, m_AnyZeroFP())) {
5522     // X * 0.0 --> 0.0 (with nnan and nsz)
5523     if (FMF.noNaNs() && FMF.noSignedZeros())
5524       return ConstantFP::getNullValue(Op0->getType());
5525 
5526     // +normal number * (-)0.0 --> (-)0.0
5527     if (isKnownNeverInfinity(Op0, Q.TLI) && isKnownNeverNaN(Op0, Q.TLI) &&
5528         SignBitMustBeZero(Op0, Q.TLI))
5529       return Op1;
5530   }
5531 
5532   // sqrt(X) * sqrt(X) --> X, if we can:
5533   // 1. Remove the intermediate rounding (reassociate).
5534   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
5535   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
5536   Value *X;
5537   if (Op0 == Op1 && match(Op0, m_Sqrt(m_Value(X))) && FMF.allowReassoc() &&
5538       FMF.noNaNs() && FMF.noSignedZeros())
5539     return X;
5540 
5541   return nullptr;
5542 }
5543 
5544 /// Given the operands for an FMul, see if we can fold the result
5545 static Value *
5546 simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5547                  const SimplifyQuery &Q, unsigned MaxRecurse,
5548                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5549                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5550   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5551     if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
5552       return C;
5553 
5554   // Now apply simplifications that do not require rounding.
5555   return simplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding);
5556 }
5557 
5558 Value *llvm::simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5559                               const SimplifyQuery &Q,
5560                               fp::ExceptionBehavior ExBehavior,
5561                               RoundingMode Rounding) {
5562   return ::simplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5563                             Rounding);
5564 }
5565 
5566 Value *llvm::simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5567                               const SimplifyQuery &Q,
5568                               fp::ExceptionBehavior ExBehavior,
5569                               RoundingMode Rounding) {
5570   return ::simplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5571                             Rounding);
5572 }
5573 
5574 Value *llvm::simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5575                               const SimplifyQuery &Q,
5576                               fp::ExceptionBehavior ExBehavior,
5577                               RoundingMode Rounding) {
5578   return ::simplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5579                             Rounding);
5580 }
5581 
5582 Value *llvm::simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5583                              const SimplifyQuery &Q,
5584                              fp::ExceptionBehavior ExBehavior,
5585                              RoundingMode Rounding) {
5586   return ::simplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5587                            Rounding);
5588 }
5589 
5590 static Value *
5591 simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5592                  const SimplifyQuery &Q, unsigned,
5593                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5594                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5595   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5596     if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
5597       return C;
5598 
5599   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5600     return C;
5601 
5602   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5603     return nullptr;
5604 
5605   // X / 1.0 -> X
5606   if (match(Op1, m_FPOne()))
5607     return Op0;
5608 
5609   // 0 / X -> 0
5610   // Requires that NaNs are off (X could be zero) and signed zeroes are
5611   // ignored (X could be positive or negative, so the output sign is unknown).
5612   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5613     return ConstantFP::getNullValue(Op0->getType());
5614 
5615   if (FMF.noNaNs()) {
5616     // X / X -> 1.0 is legal when NaNs are ignored.
5617     // We can ignore infinities because INF/INF is NaN.
5618     if (Op0 == Op1)
5619       return ConstantFP::get(Op0->getType(), 1.0);
5620 
5621     // (X * Y) / Y --> X if we can reassociate to the above form.
5622     Value *X;
5623     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
5624       return X;
5625 
5626     // -X /  X -> -1.0 and
5627     //  X / -X -> -1.0 are legal when NaNs are ignored.
5628     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
5629     if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
5630         match(Op1, m_FNegNSZ(m_Specific(Op0))))
5631       return ConstantFP::get(Op0->getType(), -1.0);
5632 
5633     // nnan ninf X / [-]0.0 -> poison
5634     if (FMF.noInfs() && match(Op1, m_AnyZeroFP()))
5635       return PoisonValue::get(Op1->getType());
5636   }
5637 
5638   return nullptr;
5639 }
5640 
5641 Value *llvm::simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5642                               const SimplifyQuery &Q,
5643                               fp::ExceptionBehavior ExBehavior,
5644                               RoundingMode Rounding) {
5645   return ::simplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5646                             Rounding);
5647 }
5648 
5649 static Value *
5650 simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5651                  const SimplifyQuery &Q, unsigned,
5652                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5653                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5654   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5655     if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
5656       return C;
5657 
5658   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5659     return C;
5660 
5661   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5662     return nullptr;
5663 
5664   // Unlike fdiv, the result of frem always matches the sign of the dividend.
5665   // The constant match may include undef elements in a vector, so return a full
5666   // zero constant as the result.
5667   if (FMF.noNaNs()) {
5668     // +0 % X -> 0
5669     if (match(Op0, m_PosZeroFP()))
5670       return ConstantFP::getNullValue(Op0->getType());
5671     // -0 % X -> -0
5672     if (match(Op0, m_NegZeroFP()))
5673       return ConstantFP::getNegativeZero(Op0->getType());
5674   }
5675 
5676   return nullptr;
5677 }
5678 
5679 Value *llvm::simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5680                               const SimplifyQuery &Q,
5681                               fp::ExceptionBehavior ExBehavior,
5682                               RoundingMode Rounding) {
5683   return ::simplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5684                             Rounding);
5685 }
5686 
5687 //=== Helper functions for higher up the class hierarchy.
5688 
5689 /// Given the operand for a UnaryOperator, see if we can fold the result.
5690 /// If not, this returns null.
5691 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
5692                            unsigned MaxRecurse) {
5693   switch (Opcode) {
5694   case Instruction::FNeg:
5695     return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
5696   default:
5697     llvm_unreachable("Unexpected opcode");
5698   }
5699 }
5700 
5701 /// Given the operand for a UnaryOperator, see if we can fold the result.
5702 /// If not, this returns null.
5703 /// Try to use FastMathFlags when folding the result.
5704 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
5705                              const FastMathFlags &FMF, const SimplifyQuery &Q,
5706                              unsigned MaxRecurse) {
5707   switch (Opcode) {
5708   case Instruction::FNeg:
5709     return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
5710   default:
5711     return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
5712   }
5713 }
5714 
5715 Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
5716   return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
5717 }
5718 
5719 Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
5720                           const SimplifyQuery &Q) {
5721   return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
5722 }
5723 
5724 /// Given operands for a BinaryOperator, see if we can fold the result.
5725 /// If not, this returns null.
5726 static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5727                             const SimplifyQuery &Q, unsigned MaxRecurse) {
5728   switch (Opcode) {
5729   case Instruction::Add:
5730     return simplifyAddInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q,
5731                            MaxRecurse);
5732   case Instruction::Sub:
5733     return simplifySubInst(LHS, RHS,  /* IsNSW */ false, /* IsNUW */ false, Q,
5734                            MaxRecurse);
5735   case Instruction::Mul:
5736     return simplifyMulInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q,
5737                            MaxRecurse);
5738   case Instruction::SDiv:
5739     return simplifySDivInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse);
5740   case Instruction::UDiv:
5741     return simplifyUDivInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse);
5742   case Instruction::SRem:
5743     return simplifySRemInst(LHS, RHS, Q, MaxRecurse);
5744   case Instruction::URem:
5745     return simplifyURemInst(LHS, RHS, Q, MaxRecurse);
5746   case Instruction::Shl:
5747     return simplifyShlInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q,
5748                            MaxRecurse);
5749   case Instruction::LShr:
5750     return simplifyLShrInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse);
5751   case Instruction::AShr:
5752     return simplifyAShrInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse);
5753   case Instruction::And:
5754     return simplifyAndInst(LHS, RHS, Q, MaxRecurse);
5755   case Instruction::Or:
5756     return simplifyOrInst(LHS, RHS, Q, MaxRecurse);
5757   case Instruction::Xor:
5758     return simplifyXorInst(LHS, RHS, Q, MaxRecurse);
5759   case Instruction::FAdd:
5760     return simplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5761   case Instruction::FSub:
5762     return simplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5763   case Instruction::FMul:
5764     return simplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5765   case Instruction::FDiv:
5766     return simplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5767   case Instruction::FRem:
5768     return simplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5769   default:
5770     llvm_unreachable("Unexpected opcode");
5771   }
5772 }
5773 
5774 /// Given operands for a BinaryOperator, see if we can fold the result.
5775 /// If not, this returns null.
5776 /// Try to use FastMathFlags when folding the result.
5777 static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5778                             const FastMathFlags &FMF, const SimplifyQuery &Q,
5779                             unsigned MaxRecurse) {
5780   switch (Opcode) {
5781   case Instruction::FAdd:
5782     return simplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
5783   case Instruction::FSub:
5784     return simplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
5785   case Instruction::FMul:
5786     return simplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
5787   case Instruction::FDiv:
5788     return simplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
5789   default:
5790     return simplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
5791   }
5792 }
5793 
5794 Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5795                            const SimplifyQuery &Q) {
5796   return ::simplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
5797 }
5798 
5799 Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5800                            FastMathFlags FMF, const SimplifyQuery &Q) {
5801   return ::simplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
5802 }
5803 
5804 /// Given operands for a CmpInst, see if we can fold the result.
5805 static Value *simplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5806                               const SimplifyQuery &Q, unsigned MaxRecurse) {
5807   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
5808     return simplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
5809   return simplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5810 }
5811 
5812 Value *llvm::simplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5813                              const SimplifyQuery &Q) {
5814   return ::simplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
5815 }
5816 
5817 static bool isIdempotent(Intrinsic::ID ID) {
5818   switch (ID) {
5819   default:
5820     return false;
5821 
5822   // Unary idempotent: f(f(x)) = f(x)
5823   case Intrinsic::fabs:
5824   case Intrinsic::floor:
5825   case Intrinsic::ceil:
5826   case Intrinsic::trunc:
5827   case Intrinsic::rint:
5828   case Intrinsic::nearbyint:
5829   case Intrinsic::round:
5830   case Intrinsic::roundeven:
5831   case Intrinsic::canonicalize:
5832   case Intrinsic::arithmetic_fence:
5833     return true;
5834   }
5835 }
5836 
5837 /// Return true if the intrinsic rounds a floating-point value to an integral
5838 /// floating-point value (not an integer type).
5839 static bool removesFPFraction(Intrinsic::ID ID) {
5840   switch (ID) {
5841   default:
5842     return false;
5843 
5844   case Intrinsic::floor:
5845   case Intrinsic::ceil:
5846   case Intrinsic::trunc:
5847   case Intrinsic::rint:
5848   case Intrinsic::nearbyint:
5849   case Intrinsic::round:
5850   case Intrinsic::roundeven:
5851     return true;
5852   }
5853 }
5854 
5855 static Value *simplifyRelativeLoad(Constant *Ptr, Constant *Offset,
5856                                    const DataLayout &DL) {
5857   GlobalValue *PtrSym;
5858   APInt PtrOffset;
5859   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
5860     return nullptr;
5861 
5862   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
5863   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
5864   Type *Int32PtrTy = Int32Ty->getPointerTo();
5865   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
5866 
5867   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
5868   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
5869     return nullptr;
5870 
5871   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
5872   if (OffsetInt % 4 != 0)
5873     return nullptr;
5874 
5875   Constant *C = ConstantExpr::getGetElementPtr(
5876       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
5877       ConstantInt::get(Int64Ty, OffsetInt / 4));
5878   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
5879   if (!Loaded)
5880     return nullptr;
5881 
5882   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
5883   if (!LoadedCE)
5884     return nullptr;
5885 
5886   if (LoadedCE->getOpcode() == Instruction::Trunc) {
5887     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5888     if (!LoadedCE)
5889       return nullptr;
5890   }
5891 
5892   if (LoadedCE->getOpcode() != Instruction::Sub)
5893     return nullptr;
5894 
5895   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5896   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
5897     return nullptr;
5898   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
5899 
5900   Constant *LoadedRHS = LoadedCE->getOperand(1);
5901   GlobalValue *LoadedRHSSym;
5902   APInt LoadedRHSOffset;
5903   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
5904                                   DL) ||
5905       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
5906     return nullptr;
5907 
5908   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
5909 }
5910 
5911 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
5912                                      const SimplifyQuery &Q) {
5913   // Idempotent functions return the same result when called repeatedly.
5914   Intrinsic::ID IID = F->getIntrinsicID();
5915   if (isIdempotent(IID))
5916     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
5917       if (II->getIntrinsicID() == IID)
5918         return II;
5919 
5920   if (removesFPFraction(IID)) {
5921     // Converting from int or calling a rounding function always results in a
5922     // finite integral number or infinity. For those inputs, rounding functions
5923     // always return the same value, so the (2nd) rounding is eliminated. Ex:
5924     // floor (sitofp x) -> sitofp x
5925     // round (ceil x) -> ceil x
5926     auto *II = dyn_cast<IntrinsicInst>(Op0);
5927     if ((II && removesFPFraction(II->getIntrinsicID())) ||
5928         match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
5929       return Op0;
5930   }
5931 
5932   Value *X;
5933   switch (IID) {
5934   case Intrinsic::fabs:
5935     if (SignBitMustBeZero(Op0, Q.TLI))
5936       return Op0;
5937     break;
5938   case Intrinsic::bswap:
5939     // bswap(bswap(x)) -> x
5940     if (match(Op0, m_BSwap(m_Value(X))))
5941       return X;
5942     break;
5943   case Intrinsic::bitreverse:
5944     // bitreverse(bitreverse(x)) -> x
5945     if (match(Op0, m_BitReverse(m_Value(X))))
5946       return X;
5947     break;
5948   case Intrinsic::ctpop: {
5949     // ctpop(X) -> 1 iff X is non-zero power of 2.
5950     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ false, 0, Q.AC, Q.CxtI,
5951                                Q.DT))
5952       return ConstantInt::get(Op0->getType(), 1);
5953     // If everything but the lowest bit is zero, that bit is the pop-count. Ex:
5954     // ctpop(and X, 1) --> and X, 1
5955     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
5956     if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1),
5957                           Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
5958       return Op0;
5959     break;
5960   }
5961   case Intrinsic::exp:
5962     // exp(log(x)) -> x
5963     if (Q.CxtI->hasAllowReassoc() &&
5964         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X))))
5965       return X;
5966     break;
5967   case Intrinsic::exp2:
5968     // exp2(log2(x)) -> x
5969     if (Q.CxtI->hasAllowReassoc() &&
5970         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X))))
5971       return X;
5972     break;
5973   case Intrinsic::log:
5974     // log(exp(x)) -> x
5975     if (Q.CxtI->hasAllowReassoc() &&
5976         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))))
5977       return X;
5978     break;
5979   case Intrinsic::log2:
5980     // log2(exp2(x)) -> x
5981     if (Q.CxtI->hasAllowReassoc() &&
5982         (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
5983          match(Op0,
5984                m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), m_Value(X)))))
5985       return X;
5986     break;
5987   case Intrinsic::log10:
5988     // log10(pow(10.0, x)) -> x
5989     if (Q.CxtI->hasAllowReassoc() &&
5990         match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), m_Value(X))))
5991       return X;
5992     break;
5993   case Intrinsic::experimental_vector_reverse:
5994     // experimental.vector.reverse(experimental.vector.reverse(x)) -> x
5995     if (match(Op0, m_VecReverse(m_Value(X))))
5996       return X;
5997     // experimental.vector.reverse(splat(X)) -> splat(X)
5998     if (isSplatValue(Op0))
5999       return Op0;
6000     break;
6001   default:
6002     break;
6003   }
6004 
6005   return nullptr;
6006 }
6007 
6008 /// Given a min/max intrinsic, see if it can be removed based on having an
6009 /// operand that is another min/max intrinsic with shared operand(s). The caller
6010 /// is expected to swap the operand arguments to handle commutation.
6011 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) {
6012   Value *X, *Y;
6013   if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y))))
6014     return nullptr;
6015 
6016   auto *MM0 = dyn_cast<IntrinsicInst>(Op0);
6017   if (!MM0)
6018     return nullptr;
6019   Intrinsic::ID IID0 = MM0->getIntrinsicID();
6020 
6021   if (Op1 == X || Op1 == Y ||
6022       match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) {
6023     // max (max X, Y), X --> max X, Y
6024     if (IID0 == IID)
6025       return MM0;
6026     // max (min X, Y), X --> X
6027     if (IID0 == getInverseMinMaxIntrinsic(IID))
6028       return Op1;
6029   }
6030   return nullptr;
6031 }
6032 
6033 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
6034                                       const SimplifyQuery &Q) {
6035   Intrinsic::ID IID = F->getIntrinsicID();
6036   Type *ReturnType = F->getReturnType();
6037   unsigned BitWidth = ReturnType->getScalarSizeInBits();
6038   switch (IID) {
6039   case Intrinsic::abs:
6040     // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here.
6041     // It is always ok to pick the earlier abs. We'll just lose nsw if its only
6042     // on the outer abs.
6043     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value())))
6044       return Op0;
6045     break;
6046 
6047   case Intrinsic::cttz: {
6048     Value *X;
6049     if (match(Op0, m_Shl(m_One(), m_Value(X))))
6050       return X;
6051     break;
6052   }
6053   case Intrinsic::ctlz: {
6054     Value *X;
6055     if (match(Op0, m_LShr(m_Negative(), m_Value(X))))
6056       return X;
6057     if (match(Op0, m_AShr(m_Negative(), m_Value())))
6058       return Constant::getNullValue(ReturnType);
6059     break;
6060   }
6061   case Intrinsic::smax:
6062   case Intrinsic::smin:
6063   case Intrinsic::umax:
6064   case Intrinsic::umin: {
6065     // If the arguments are the same, this is a no-op.
6066     if (Op0 == Op1)
6067       return Op0;
6068 
6069     // Canonicalize immediate constant operand as Op1.
6070     if (match(Op0, m_ImmConstant()))
6071       std::swap(Op0, Op1);
6072 
6073     // Assume undef is the limit value.
6074     if (Q.isUndefValue(Op1))
6075       return ConstantInt::get(
6076           ReturnType, MinMaxIntrinsic::getSaturationPoint(IID, BitWidth));
6077 
6078     const APInt *C;
6079     if (match(Op1, m_APIntAllowUndef(C))) {
6080       // Clamp to limit value. For example:
6081       // umax(i8 %x, i8 255) --> 255
6082       if (*C == MinMaxIntrinsic::getSaturationPoint(IID, BitWidth))
6083         return ConstantInt::get(ReturnType, *C);
6084 
6085       // If the constant op is the opposite of the limit value, the other must
6086       // be larger/smaller or equal. For example:
6087       // umin(i8 %x, i8 255) --> %x
6088       if (*C == MinMaxIntrinsic::getSaturationPoint(
6089                     getInverseMinMaxIntrinsic(IID), BitWidth))
6090         return Op0;
6091 
6092       // Remove nested call if constant operands allow it. Example:
6093       // max (max X, 7), 5 -> max X, 7
6094       auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0);
6095       if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
6096         // TODO: loosen undef/splat restrictions for vector constants.
6097         Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
6098         const APInt *InnerC;
6099         if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) &&
6100             ICmpInst::compare(*InnerC, *C,
6101                               ICmpInst::getNonStrictPredicate(
6102                                   MinMaxIntrinsic::getPredicate(IID))))
6103           return Op0;
6104       }
6105     }
6106 
6107     if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1))
6108       return V;
6109     if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0))
6110       return V;
6111 
6112     ICmpInst::Predicate Pred =
6113         ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID));
6114     if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit))
6115       return Op0;
6116     if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit))
6117       return Op1;
6118 
6119     if (std::optional<bool> Imp =
6120             isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL))
6121       return *Imp ? Op0 : Op1;
6122     if (std::optional<bool> Imp =
6123             isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL))
6124       return *Imp ? Op1 : Op0;
6125 
6126     break;
6127   }
6128   case Intrinsic::usub_with_overflow:
6129   case Intrinsic::ssub_with_overflow:
6130     // X - X -> { 0, false }
6131     // X - undef -> { 0, false }
6132     // undef - X -> { 0, false }
6133     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
6134       return Constant::getNullValue(ReturnType);
6135     break;
6136   case Intrinsic::uadd_with_overflow:
6137   case Intrinsic::sadd_with_overflow:
6138     // X + undef -> { -1, false }
6139     // undef + x -> { -1, false }
6140     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) {
6141       return ConstantStruct::get(
6142           cast<StructType>(ReturnType),
6143           {Constant::getAllOnesValue(ReturnType->getStructElementType(0)),
6144            Constant::getNullValue(ReturnType->getStructElementType(1))});
6145     }
6146     break;
6147   case Intrinsic::umul_with_overflow:
6148   case Intrinsic::smul_with_overflow:
6149     // 0 * X -> { 0, false }
6150     // X * 0 -> { 0, false }
6151     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
6152       return Constant::getNullValue(ReturnType);
6153     // undef * X -> { 0, false }
6154     // X * undef -> { 0, false }
6155     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
6156       return Constant::getNullValue(ReturnType);
6157     break;
6158   case Intrinsic::uadd_sat:
6159     // sat(MAX + X) -> MAX
6160     // sat(X + MAX) -> MAX
6161     if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
6162       return Constant::getAllOnesValue(ReturnType);
6163     [[fallthrough]];
6164   case Intrinsic::sadd_sat:
6165     // sat(X + undef) -> -1
6166     // sat(undef + X) -> -1
6167     // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
6168     // For signed: Assume undef is ~X, in which case X + ~X = -1.
6169     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
6170       return Constant::getAllOnesValue(ReturnType);
6171 
6172     // X + 0 -> X
6173     if (match(Op1, m_Zero()))
6174       return Op0;
6175     // 0 + X -> X
6176     if (match(Op0, m_Zero()))
6177       return Op1;
6178     break;
6179   case Intrinsic::usub_sat:
6180     // sat(0 - X) -> 0, sat(X - MAX) -> 0
6181     if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
6182       return Constant::getNullValue(ReturnType);
6183     [[fallthrough]];
6184   case Intrinsic::ssub_sat:
6185     // X - X -> 0, X - undef -> 0, undef - X -> 0
6186     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
6187       return Constant::getNullValue(ReturnType);
6188     // X - 0 -> X
6189     if (match(Op1, m_Zero()))
6190       return Op0;
6191     break;
6192   case Intrinsic::load_relative:
6193     if (auto *C0 = dyn_cast<Constant>(Op0))
6194       if (auto *C1 = dyn_cast<Constant>(Op1))
6195         return simplifyRelativeLoad(C0, C1, Q.DL);
6196     break;
6197   case Intrinsic::powi:
6198     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
6199       // powi(x, 0) -> 1.0
6200       if (Power->isZero())
6201         return ConstantFP::get(Op0->getType(), 1.0);
6202       // powi(x, 1) -> x
6203       if (Power->isOne())
6204         return Op0;
6205     }
6206     break;
6207   case Intrinsic::copysign:
6208     // copysign X, X --> X
6209     if (Op0 == Op1)
6210       return Op0;
6211     // copysign -X, X --> X
6212     // copysign X, -X --> -X
6213     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
6214         match(Op1, m_FNeg(m_Specific(Op0))))
6215       return Op1;
6216     break;
6217   case Intrinsic::is_fpclass: {
6218     if (isa<PoisonValue>(Op0))
6219       return PoisonValue::get(ReturnType);
6220 
6221     uint64_t Mask = cast<ConstantInt>(Op1)->getZExtValue();
6222     // If all tests are made, it doesn't matter what the value is.
6223     if ((Mask & fcAllFlags) == fcAllFlags)
6224       return ConstantInt::get(ReturnType, true);
6225     if ((Mask & fcAllFlags) == 0)
6226       return ConstantInt::get(ReturnType, false);
6227     if (Q.isUndefValue(Op0))
6228       return UndefValue::get(ReturnType);
6229     break;
6230   }
6231   case Intrinsic::maxnum:
6232   case Intrinsic::minnum:
6233   case Intrinsic::maximum:
6234   case Intrinsic::minimum: {
6235     // If the arguments are the same, this is a no-op.
6236     if (Op0 == Op1)
6237       return Op0;
6238 
6239     // Canonicalize constant operand as Op1.
6240     if (isa<Constant>(Op0))
6241       std::swap(Op0, Op1);
6242 
6243     // If an argument is undef, return the other argument.
6244     if (Q.isUndefValue(Op1))
6245       return Op0;
6246 
6247     bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
6248     bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum;
6249 
6250     // minnum(X, nan) -> X
6251     // maxnum(X, nan) -> X
6252     // minimum(X, nan) -> nan
6253     // maximum(X, nan) -> nan
6254     if (match(Op1, m_NaN()))
6255       return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0;
6256 
6257     // In the following folds, inf can be replaced with the largest finite
6258     // float, if the ninf flag is set.
6259     const APFloat *C;
6260     if (match(Op1, m_APFloat(C)) &&
6261         (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) {
6262       // minnum(X, -inf) -> -inf
6263       // maxnum(X, +inf) -> +inf
6264       // minimum(X, -inf) -> -inf if nnan
6265       // maximum(X, +inf) -> +inf if nnan
6266       if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs()))
6267         return ConstantFP::get(ReturnType, *C);
6268 
6269       // minnum(X, +inf) -> X if nnan
6270       // maxnum(X, -inf) -> X if nnan
6271       // minimum(X, +inf) -> X
6272       // maximum(X, -inf) -> X
6273       if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs()))
6274         return Op0;
6275     }
6276 
6277     // Min/max of the same operation with common operand:
6278     // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
6279     if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
6280       if (M0->getIntrinsicID() == IID &&
6281           (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
6282         return Op0;
6283     if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
6284       if (M1->getIntrinsicID() == IID &&
6285           (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
6286         return Op1;
6287 
6288     break;
6289   }
6290   case Intrinsic::vector_extract: {
6291     Type *ReturnType = F->getReturnType();
6292 
6293     // (extract_vector (insert_vector _, X, 0), 0) -> X
6294     unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue();
6295     Value *X = nullptr;
6296     if (match(Op0, m_Intrinsic<Intrinsic::vector_insert>(m_Value(), m_Value(X),
6297                                                          m_Zero())) &&
6298         IdxN == 0 && X->getType() == ReturnType)
6299       return X;
6300 
6301     break;
6302   }
6303   default:
6304     break;
6305   }
6306 
6307   return nullptr;
6308 }
6309 
6310 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
6311 
6312   unsigned NumOperands = Call->arg_size();
6313   Function *F = cast<Function>(Call->getCalledFunction());
6314   Intrinsic::ID IID = F->getIntrinsicID();
6315 
6316   // Most of the intrinsics with no operands have some kind of side effect.
6317   // Don't simplify.
6318   if (!NumOperands) {
6319     switch (IID) {
6320     case Intrinsic::vscale: {
6321       // Call may not be inserted into the IR yet at point of calling simplify.
6322       if (!Call->getParent() || !Call->getParent()->getParent())
6323         return nullptr;
6324       auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange);
6325       if (!Attr.isValid())
6326         return nullptr;
6327       unsigned VScaleMin = Attr.getVScaleRangeMin();
6328       std::optional<unsigned> VScaleMax = Attr.getVScaleRangeMax();
6329       if (VScaleMax && VScaleMin == VScaleMax)
6330         return ConstantInt::get(F->getReturnType(), VScaleMin);
6331       return nullptr;
6332     }
6333     default:
6334       return nullptr;
6335     }
6336   }
6337 
6338   if (NumOperands == 1)
6339     return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
6340 
6341   if (NumOperands == 2)
6342     return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
6343                                    Call->getArgOperand(1), Q);
6344 
6345   // Handle intrinsics with 3 or more arguments.
6346   switch (IID) {
6347   case Intrinsic::masked_load:
6348   case Intrinsic::masked_gather: {
6349     Value *MaskArg = Call->getArgOperand(2);
6350     Value *PassthruArg = Call->getArgOperand(3);
6351     // If the mask is all zeros or undef, the "passthru" argument is the result.
6352     if (maskIsAllZeroOrUndef(MaskArg))
6353       return PassthruArg;
6354     return nullptr;
6355   }
6356   case Intrinsic::fshl:
6357   case Intrinsic::fshr: {
6358     Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
6359           *ShAmtArg = Call->getArgOperand(2);
6360 
6361     // If both operands are undef, the result is undef.
6362     if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1))
6363       return UndefValue::get(F->getReturnType());
6364 
6365     // If shift amount is undef, assume it is zero.
6366     if (Q.isUndefValue(ShAmtArg))
6367       return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
6368 
6369     const APInt *ShAmtC;
6370     if (match(ShAmtArg, m_APInt(ShAmtC))) {
6371       // If there's effectively no shift, return the 1st arg or 2nd arg.
6372       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
6373       if (ShAmtC->urem(BitWidth).isZero())
6374         return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
6375     }
6376 
6377     // Rotating zero by anything is zero.
6378     if (match(Op0, m_Zero()) && match(Op1, m_Zero()))
6379       return ConstantInt::getNullValue(F->getReturnType());
6380 
6381     // Rotating -1 by anything is -1.
6382     if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes()))
6383       return ConstantInt::getAllOnesValue(F->getReturnType());
6384 
6385     return nullptr;
6386   }
6387   case Intrinsic::experimental_constrained_fma: {
6388     Value *Op0 = Call->getArgOperand(0);
6389     Value *Op1 = Call->getArgOperand(1);
6390     Value *Op2 = Call->getArgOperand(2);
6391     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6392     if (Value *V =
6393             simplifyFPOp({Op0, Op1, Op2}, {}, Q, *FPI->getExceptionBehavior(),
6394                          *FPI->getRoundingMode()))
6395       return V;
6396     return nullptr;
6397   }
6398   case Intrinsic::fma:
6399   case Intrinsic::fmuladd: {
6400     Value *Op0 = Call->getArgOperand(0);
6401     Value *Op1 = Call->getArgOperand(1);
6402     Value *Op2 = Call->getArgOperand(2);
6403     if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore,
6404                                 RoundingMode::NearestTiesToEven))
6405       return V;
6406     return nullptr;
6407   }
6408   case Intrinsic::smul_fix:
6409   case Intrinsic::smul_fix_sat: {
6410     Value *Op0 = Call->getArgOperand(0);
6411     Value *Op1 = Call->getArgOperand(1);
6412     Value *Op2 = Call->getArgOperand(2);
6413     Type *ReturnType = F->getReturnType();
6414 
6415     // Canonicalize constant operand as Op1 (ConstantFolding handles the case
6416     // when both Op0 and Op1 are constant so we do not care about that special
6417     // case here).
6418     if (isa<Constant>(Op0))
6419       std::swap(Op0, Op1);
6420 
6421     // X * 0 -> 0
6422     if (match(Op1, m_Zero()))
6423       return Constant::getNullValue(ReturnType);
6424 
6425     // X * undef -> 0
6426     if (Q.isUndefValue(Op1))
6427       return Constant::getNullValue(ReturnType);
6428 
6429     // X * (1 << Scale) -> X
6430     APInt ScaledOne =
6431         APInt::getOneBitSet(ReturnType->getScalarSizeInBits(),
6432                             cast<ConstantInt>(Op2)->getZExtValue());
6433     if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne)))
6434       return Op0;
6435 
6436     return nullptr;
6437   }
6438   case Intrinsic::vector_insert: {
6439     Value *Vec = Call->getArgOperand(0);
6440     Value *SubVec = Call->getArgOperand(1);
6441     Value *Idx = Call->getArgOperand(2);
6442     Type *ReturnType = F->getReturnType();
6443 
6444     // (insert_vector Y, (extract_vector X, 0), 0) -> X
6445     // where: Y is X, or Y is undef
6446     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
6447     Value *X = nullptr;
6448     if (match(SubVec,
6449               m_Intrinsic<Intrinsic::vector_extract>(m_Value(X), m_Zero())) &&
6450         (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 &&
6451         X->getType() == ReturnType)
6452       return X;
6453 
6454     return nullptr;
6455   }
6456   case Intrinsic::experimental_constrained_fadd: {
6457     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6458     return simplifyFAddInst(
6459         FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(),
6460         Q, *FPI->getExceptionBehavior(), *FPI->getRoundingMode());
6461   }
6462   case Intrinsic::experimental_constrained_fsub: {
6463     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6464     return simplifyFSubInst(
6465         FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(),
6466         Q, *FPI->getExceptionBehavior(), *FPI->getRoundingMode());
6467   }
6468   case Intrinsic::experimental_constrained_fmul: {
6469     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6470     return simplifyFMulInst(
6471         FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(),
6472         Q, *FPI->getExceptionBehavior(), *FPI->getRoundingMode());
6473   }
6474   case Intrinsic::experimental_constrained_fdiv: {
6475     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6476     return simplifyFDivInst(
6477         FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(),
6478         Q, *FPI->getExceptionBehavior(), *FPI->getRoundingMode());
6479   }
6480   case Intrinsic::experimental_constrained_frem: {
6481     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6482     return simplifyFRemInst(
6483         FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(),
6484         Q, *FPI->getExceptionBehavior(), *FPI->getRoundingMode());
6485   }
6486   default:
6487     return nullptr;
6488   }
6489 }
6490 
6491 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) {
6492   auto *F = dyn_cast<Function>(Call->getCalledOperand());
6493   if (!F || !canConstantFoldCallTo(Call, F))
6494     return nullptr;
6495 
6496   SmallVector<Constant *, 4> ConstantArgs;
6497   unsigned NumArgs = Call->arg_size();
6498   ConstantArgs.reserve(NumArgs);
6499   for (auto &Arg : Call->args()) {
6500     Constant *C = dyn_cast<Constant>(&Arg);
6501     if (!C) {
6502       if (isa<MetadataAsValue>(Arg.get()))
6503         continue;
6504       return nullptr;
6505     }
6506     ConstantArgs.push_back(C);
6507   }
6508 
6509   return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
6510 }
6511 
6512 Value *llvm::simplifyCall(CallBase *Call, const SimplifyQuery &Q) {
6513   // musttail calls can only be simplified if they are also DCEd.
6514   // As we can't guarantee this here, don't simplify them.
6515   if (Call->isMustTailCall())
6516     return nullptr;
6517 
6518   // call undef -> poison
6519   // call null -> poison
6520   Value *Callee = Call->getCalledOperand();
6521   if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
6522     return PoisonValue::get(Call->getType());
6523 
6524   if (Value *V = tryConstantFoldCall(Call, Q))
6525     return V;
6526 
6527   auto *F = dyn_cast<Function>(Callee);
6528   if (F && F->isIntrinsic())
6529     if (Value *Ret = simplifyIntrinsic(Call, Q))
6530       return Ret;
6531 
6532   return nullptr;
6533 }
6534 
6535 Value *llvm::simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q) {
6536   assert(isa<ConstrainedFPIntrinsic>(Call));
6537   if (Value *V = tryConstantFoldCall(Call, Q))
6538     return V;
6539   if (Value *Ret = simplifyIntrinsic(Call, Q))
6540     return Ret;
6541   return nullptr;
6542 }
6543 
6544 /// Given operands for a Freeze, see if we can fold the result.
6545 static Value *simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
6546   // Use a utility function defined in ValueTracking.
6547   if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT))
6548     return Op0;
6549   // We have room for improvement.
6550   return nullptr;
6551 }
6552 
6553 Value *llvm::simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
6554   return ::simplifyFreezeInst(Op0, Q);
6555 }
6556 
6557 static Value *simplifyLoadInst(LoadInst *LI, Value *PtrOp,
6558                                const SimplifyQuery &Q) {
6559   if (LI->isVolatile())
6560     return nullptr;
6561 
6562   APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0);
6563   auto *PtrOpC = dyn_cast<Constant>(PtrOp);
6564   // Try to convert operand into a constant by stripping offsets while looking
6565   // through invariant.group intrinsics. Don't bother if the underlying object
6566   // is not constant, as calculating GEP offsets is expensive.
6567   if (!PtrOpC && isa<Constant>(getUnderlyingObject(PtrOp))) {
6568     PtrOp = PtrOp->stripAndAccumulateConstantOffsets(
6569         Q.DL, Offset, /* AllowNonInbounts */ true,
6570         /* AllowInvariantGroup */ true);
6571     // Index size may have changed due to address space casts.
6572     Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()));
6573     PtrOpC = dyn_cast<Constant>(PtrOp);
6574   }
6575 
6576   if (PtrOpC)
6577     return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Offset, Q.DL);
6578   return nullptr;
6579 }
6580 
6581 /// See if we can compute a simplified version of this instruction.
6582 /// If not, this returns null.
6583 
6584 static Value *simplifyInstructionWithOperands(Instruction *I,
6585                                               ArrayRef<Value *> NewOps,
6586                                               const SimplifyQuery &SQ,
6587                                               OptimizationRemarkEmitter *ORE) {
6588   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
6589 
6590   switch (I->getOpcode()) {
6591   default:
6592     if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) {
6593       SmallVector<Constant *, 8> NewConstOps(NewOps.size());
6594       transform(NewOps, NewConstOps.begin(),
6595                 [](Value *V) { return cast<Constant>(V); });
6596       return ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI);
6597     }
6598     return nullptr;
6599   case Instruction::FNeg:
6600     return simplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q);
6601   case Instruction::FAdd:
6602     return simplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6603   case Instruction::Add:
6604     return simplifyAddInst(NewOps[0], NewOps[1],
6605                            Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6606                            Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6607   case Instruction::FSub:
6608     return simplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6609   case Instruction::Sub:
6610     return simplifySubInst(NewOps[0], NewOps[1],
6611                            Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6612                            Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6613   case Instruction::FMul:
6614     return simplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6615   case Instruction::Mul:
6616     return simplifyMulInst(NewOps[0], NewOps[1],
6617                            Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6618                            Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6619   case Instruction::SDiv:
6620     return simplifySDivInst(NewOps[0], NewOps[1],
6621                             Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6622   case Instruction::UDiv:
6623     return simplifyUDivInst(NewOps[0], NewOps[1],
6624                             Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6625   case Instruction::FDiv:
6626     return simplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6627   case Instruction::SRem:
6628     return simplifySRemInst(NewOps[0], NewOps[1], Q);
6629   case Instruction::URem:
6630     return simplifyURemInst(NewOps[0], NewOps[1], Q);
6631   case Instruction::FRem:
6632     return simplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6633   case Instruction::Shl:
6634     return simplifyShlInst(NewOps[0], NewOps[1],
6635                            Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6636                            Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6637   case Instruction::LShr:
6638     return simplifyLShrInst(NewOps[0], NewOps[1],
6639                             Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6640   case Instruction::AShr:
6641     return simplifyAShrInst(NewOps[0], NewOps[1],
6642                             Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6643   case Instruction::And:
6644     return simplifyAndInst(NewOps[0], NewOps[1], Q);
6645   case Instruction::Or:
6646     return simplifyOrInst(NewOps[0], NewOps[1], Q);
6647   case Instruction::Xor:
6648     return simplifyXorInst(NewOps[0], NewOps[1], Q);
6649   case Instruction::ICmp:
6650     return simplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0],
6651                             NewOps[1], Q);
6652   case Instruction::FCmp:
6653     return simplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0],
6654                             NewOps[1], I->getFastMathFlags(), Q);
6655   case Instruction::Select:
6656     return simplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q);
6657     break;
6658   case Instruction::GetElementPtr: {
6659     auto *GEPI = cast<GetElementPtrInst>(I);
6660     return simplifyGEPInst(GEPI->getSourceElementType(), NewOps[0],
6661                            ArrayRef(NewOps).slice(1), GEPI->isInBounds(), Q);
6662   }
6663   case Instruction::InsertValue: {
6664     InsertValueInst *IV = cast<InsertValueInst>(I);
6665     return simplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q);
6666   }
6667   case Instruction::InsertElement:
6668     return simplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q);
6669   case Instruction::ExtractValue: {
6670     auto *EVI = cast<ExtractValueInst>(I);
6671     return simplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q);
6672   }
6673   case Instruction::ExtractElement:
6674     return simplifyExtractElementInst(NewOps[0], NewOps[1], Q);
6675   case Instruction::ShuffleVector: {
6676     auto *SVI = cast<ShuffleVectorInst>(I);
6677     return simplifyShuffleVectorInst(NewOps[0], NewOps[1],
6678                                      SVI->getShuffleMask(), SVI->getType(), Q);
6679   }
6680   case Instruction::PHI:
6681     return simplifyPHINode(cast<PHINode>(I), NewOps, Q);
6682   case Instruction::Call:
6683     // TODO: Use NewOps
6684     return simplifyCall(cast<CallInst>(I), Q);
6685   case Instruction::Freeze:
6686     return llvm::simplifyFreezeInst(NewOps[0], Q);
6687 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
6688 #include "llvm/IR/Instruction.def"
6689 #undef HANDLE_CAST_INST
6690     return simplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q);
6691   case Instruction::Alloca:
6692     // No simplifications for Alloca and it can't be constant folded.
6693     return nullptr;
6694   case Instruction::Load:
6695     return simplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q);
6696   }
6697 }
6698 
6699 Value *llvm::simplifyInstructionWithOperands(Instruction *I,
6700                                              ArrayRef<Value *> NewOps,
6701                                              const SimplifyQuery &SQ,
6702                                              OptimizationRemarkEmitter *ORE) {
6703   assert(NewOps.size() == I->getNumOperands() &&
6704          "Number of operands should match the instruction!");
6705   return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE);
6706 }
6707 
6708 Value *llvm::simplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
6709                                  OptimizationRemarkEmitter *ORE) {
6710   SmallVector<Value *, 8> Ops(I->operands());
6711   Value *Result = ::simplifyInstructionWithOperands(I, Ops, SQ, ORE);
6712 
6713   /// If called on unreachable code, the instruction may simplify to itself.
6714   /// Make life easier for users by detecting that case here, and returning a
6715   /// safe value instead.
6716   return Result == I ? UndefValue::get(I->getType()) : Result;
6717 }
6718 
6719 /// Implementation of recursive simplification through an instruction's
6720 /// uses.
6721 ///
6722 /// This is the common implementation of the recursive simplification routines.
6723 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
6724 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
6725 /// instructions to process and attempt to simplify it using
6726 /// InstructionSimplify. Recursively visited users which could not be
6727 /// simplified themselves are to the optional UnsimplifiedUsers set for
6728 /// further processing by the caller.
6729 ///
6730 /// This routine returns 'true' only when *it* simplifies something. The passed
6731 /// in simplified value does not count toward this.
6732 static bool replaceAndRecursivelySimplifyImpl(
6733     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6734     const DominatorTree *DT, AssumptionCache *AC,
6735     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
6736   bool Simplified = false;
6737   SmallSetVector<Instruction *, 8> Worklist;
6738   const DataLayout &DL = I->getModule()->getDataLayout();
6739 
6740   // If we have an explicit value to collapse to, do that round of the
6741   // simplification loop by hand initially.
6742   if (SimpleV) {
6743     for (User *U : I->users())
6744       if (U != I)
6745         Worklist.insert(cast<Instruction>(U));
6746 
6747     // Replace the instruction with its simplified value.
6748     I->replaceAllUsesWith(SimpleV);
6749 
6750     // Gracefully handle edge cases where the instruction is not wired into any
6751     // parent block.
6752     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6753         !I->mayHaveSideEffects())
6754       I->eraseFromParent();
6755   } else {
6756     Worklist.insert(I);
6757   }
6758 
6759   // Note that we must test the size on each iteration, the worklist can grow.
6760   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
6761     I = Worklist[Idx];
6762 
6763     // See if this instruction simplifies.
6764     SimpleV = simplifyInstruction(I, {DL, TLI, DT, AC});
6765     if (!SimpleV) {
6766       if (UnsimplifiedUsers)
6767         UnsimplifiedUsers->insert(I);
6768       continue;
6769     }
6770 
6771     Simplified = true;
6772 
6773     // Stash away all the uses of the old instruction so we can check them for
6774     // recursive simplifications after a RAUW. This is cheaper than checking all
6775     // uses of To on the recursive step in most cases.
6776     for (User *U : I->users())
6777       Worklist.insert(cast<Instruction>(U));
6778 
6779     // Replace the instruction with its simplified value.
6780     I->replaceAllUsesWith(SimpleV);
6781 
6782     // Gracefully handle edge cases where the instruction is not wired into any
6783     // parent block.
6784     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6785         !I->mayHaveSideEffects())
6786       I->eraseFromParent();
6787   }
6788   return Simplified;
6789 }
6790 
6791 bool llvm::replaceAndRecursivelySimplify(
6792     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6793     const DominatorTree *DT, AssumptionCache *AC,
6794     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
6795   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
6796   assert(SimpleV && "Must provide a simplified value.");
6797   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
6798                                            UnsimplifiedUsers);
6799 }
6800 
6801 namespace llvm {
6802 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
6803   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
6804   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
6805   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
6806   auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
6807   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
6808   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
6809   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6810 }
6811 
6812 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
6813                                          const DataLayout &DL) {
6814   return {DL, &AR.TLI, &AR.DT, &AR.AC};
6815 }
6816 
6817 template <class T, class... TArgs>
6818 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
6819                                          Function &F) {
6820   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
6821   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
6822   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
6823   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6824 }
6825 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
6826                                                   Function &);
6827 } // namespace llvm
6828 
6829 void InstSimplifyFolder::anchor() {}
6830