1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/CaptureTracking.h" 27 #include "llvm/Analysis/CmpInstAnalysis.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/InstSimplifyFolder.h" 30 #include "llvm/Analysis/LoopAnalysisManager.h" 31 #include "llvm/Analysis/MemoryBuiltins.h" 32 #include "llvm/Analysis/OverflowInstAnalysis.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/ConstantRange.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/IR/Statepoint.h" 43 #include "llvm/Support/KnownBits.h" 44 #include <algorithm> 45 #include <optional> 46 using namespace llvm; 47 using namespace llvm::PatternMatch; 48 49 #define DEBUG_TYPE "instsimplify" 50 51 enum { RecursionLimit = 3 }; 52 53 STATISTIC(NumExpand, "Number of expansions"); 54 STATISTIC(NumReassoc, "Number of reassociations"); 55 56 static Value *simplifyAndInst(Value *, Value *, const SimplifyQuery &, 57 unsigned); 58 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 59 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 60 const SimplifyQuery &, unsigned); 61 static Value *simplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 62 unsigned); 63 static Value *simplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 64 const SimplifyQuery &, unsigned); 65 static Value *simplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 66 unsigned); 67 static Value *simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 68 const SimplifyQuery &Q, unsigned MaxRecurse); 69 static Value *simplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 70 static Value *simplifyXorInst(Value *, Value *, const SimplifyQuery &, 71 unsigned); 72 static Value *simplifyCastInst(unsigned, Value *, Type *, const SimplifyQuery &, 73 unsigned); 74 static Value *simplifyGEPInst(Type *, Value *, ArrayRef<Value *>, 75 GEPNoWrapFlags, const SimplifyQuery &, unsigned); 76 static Value *simplifySelectInst(Value *, Value *, Value *, 77 const SimplifyQuery &, unsigned); 78 static Value *simplifyInstructionWithOperands(Instruction *I, 79 ArrayRef<Value *> NewOps, 80 const SimplifyQuery &SQ, 81 unsigned MaxRecurse); 82 83 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 84 Value *FalseVal) { 85 BinaryOperator::BinaryOps BinOpCode; 86 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 87 BinOpCode = BO->getOpcode(); 88 else 89 return nullptr; 90 91 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 92 if (BinOpCode == BinaryOperator::Or) { 93 ExpectedPred = ICmpInst::ICMP_NE; 94 } else if (BinOpCode == BinaryOperator::And) { 95 ExpectedPred = ICmpInst::ICMP_EQ; 96 } else 97 return nullptr; 98 99 // %A = icmp eq %TV, %FV 100 // %B = icmp eq %X, %Y (and one of these is a select operand) 101 // %C = and %A, %B 102 // %D = select %C, %TV, %FV 103 // --> 104 // %FV 105 106 // %A = icmp ne %TV, %FV 107 // %B = icmp ne %X, %Y (and one of these is a select operand) 108 // %C = or %A, %B 109 // %D = select %C, %TV, %FV 110 // --> 111 // %TV 112 Value *X, *Y; 113 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 114 m_Specific(FalseVal)), 115 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 116 Pred1 != Pred2 || Pred1 != ExpectedPred) 117 return nullptr; 118 119 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 120 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 121 122 return nullptr; 123 } 124 125 /// For a boolean type or a vector of boolean type, return false or a vector 126 /// with every element false. 127 static Constant *getFalse(Type *Ty) { return ConstantInt::getFalse(Ty); } 128 129 /// For a boolean type or a vector of boolean type, return true or a vector 130 /// with every element true. 131 static Constant *getTrue(Type *Ty) { return ConstantInt::getTrue(Ty); } 132 133 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 134 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 135 Value *RHS) { 136 CmpInst *Cmp = dyn_cast<CmpInst>(V); 137 if (!Cmp) 138 return false; 139 CmpInst::Predicate CPred = Cmp->getPredicate(); 140 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 141 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 142 return true; 143 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 144 CRHS == LHS; 145 } 146 147 /// Simplify comparison with true or false branch of select: 148 /// %sel = select i1 %cond, i32 %tv, i32 %fv 149 /// %cmp = icmp sle i32 %sel, %rhs 150 /// Compose new comparison by substituting %sel with either %tv or %fv 151 /// and see if it simplifies. 152 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 153 Value *RHS, Value *Cond, 154 const SimplifyQuery &Q, unsigned MaxRecurse, 155 Constant *TrueOrFalse) { 156 Value *SimplifiedCmp = simplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 157 if (SimplifiedCmp == Cond) { 158 // %cmp simplified to the select condition (%cond). 159 return TrueOrFalse; 160 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 161 // It didn't simplify. However, if composed comparison is equivalent 162 // to the select condition (%cond) then we can replace it. 163 return TrueOrFalse; 164 } 165 return SimplifiedCmp; 166 } 167 168 /// Simplify comparison with true branch of select 169 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 170 Value *RHS, Value *Cond, 171 const SimplifyQuery &Q, 172 unsigned MaxRecurse) { 173 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 174 getTrue(Cond->getType())); 175 } 176 177 /// Simplify comparison with false branch of select 178 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 179 Value *RHS, Value *Cond, 180 const SimplifyQuery &Q, 181 unsigned MaxRecurse) { 182 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 183 getFalse(Cond->getType())); 184 } 185 186 /// We know comparison with both branches of select can be simplified, but they 187 /// are not equal. This routine handles some logical simplifications. 188 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 189 Value *Cond, 190 const SimplifyQuery &Q, 191 unsigned MaxRecurse) { 192 // If the false value simplified to false, then the result of the compare 193 // is equal to "Cond && TCmp". This also catches the case when the false 194 // value simplified to false and the true value to true, returning "Cond". 195 // Folding select to and/or isn't poison-safe in general; impliesPoison 196 // checks whether folding it does not convert a well-defined value into 197 // poison. 198 if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond)) 199 if (Value *V = simplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 200 return V; 201 // If the true value simplified to true, then the result of the compare 202 // is equal to "Cond || FCmp". 203 if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond)) 204 if (Value *V = simplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 205 return V; 206 // Finally, if the false value simplified to true and the true value to 207 // false, then the result of the compare is equal to "!Cond". 208 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 209 if (Value *V = simplifyXorInst( 210 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 211 return V; 212 return nullptr; 213 } 214 215 /// Does the given value dominate the specified phi node? 216 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 217 Instruction *I = dyn_cast<Instruction>(V); 218 if (!I) 219 // Arguments and constants dominate all instructions. 220 return true; 221 222 // If we have a DominatorTree then do a precise test. 223 if (DT) 224 return DT->dominates(I, P); 225 226 // Otherwise, if the instruction is in the entry block and is not an invoke, 227 // then it obviously dominates all phi nodes. 228 if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) && 229 !isa<CallBrInst>(I)) 230 return true; 231 232 return false; 233 } 234 235 /// Try to simplify a binary operator of form "V op OtherOp" where V is 236 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 237 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 238 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 239 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 240 const SimplifyQuery &Q, unsigned MaxRecurse) { 241 auto *B = dyn_cast<BinaryOperator>(V); 242 if (!B || B->getOpcode() != OpcodeToExpand) 243 return nullptr; 244 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 245 Value *L = 246 simplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), MaxRecurse); 247 if (!L) 248 return nullptr; 249 Value *R = 250 simplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), MaxRecurse); 251 if (!R) 252 return nullptr; 253 254 // Does the expanded pair of binops simplify to the existing binop? 255 if ((L == B0 && R == B1) || 256 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 257 ++NumExpand; 258 return B; 259 } 260 261 // Otherwise, return "L op' R" if it simplifies. 262 Value *S = simplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 263 if (!S) 264 return nullptr; 265 266 ++NumExpand; 267 return S; 268 } 269 270 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 271 /// distributing op over op'. 272 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, Value *L, 273 Value *R, 274 Instruction::BinaryOps OpcodeToExpand, 275 const SimplifyQuery &Q, 276 unsigned MaxRecurse) { 277 // Recursion is always used, so bail out at once if we already hit the limit. 278 if (!MaxRecurse--) 279 return nullptr; 280 281 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 282 return V; 283 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 284 return V; 285 return nullptr; 286 } 287 288 /// Generic simplifications for associative binary operations. 289 /// Returns the simpler value, or null if none was found. 290 static Value *simplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 291 Value *LHS, Value *RHS, 292 const SimplifyQuery &Q, 293 unsigned MaxRecurse) { 294 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 295 296 // Recursion is always used, so bail out at once if we already hit the limit. 297 if (!MaxRecurse--) 298 return nullptr; 299 300 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 301 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 302 303 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 304 if (Op0 && Op0->getOpcode() == Opcode) { 305 Value *A = Op0->getOperand(0); 306 Value *B = Op0->getOperand(1); 307 Value *C = RHS; 308 309 // Does "B op C" simplify? 310 if (Value *V = simplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 311 // It does! Return "A op V" if it simplifies or is already available. 312 // If V equals B then "A op V" is just the LHS. 313 if (V == B) 314 return LHS; 315 // Otherwise return "A op V" if it simplifies. 316 if (Value *W = simplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 317 ++NumReassoc; 318 return W; 319 } 320 } 321 } 322 323 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 324 if (Op1 && Op1->getOpcode() == Opcode) { 325 Value *A = LHS; 326 Value *B = Op1->getOperand(0); 327 Value *C = Op1->getOperand(1); 328 329 // Does "A op B" simplify? 330 if (Value *V = simplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 331 // It does! Return "V op C" if it simplifies or is already available. 332 // If V equals B then "V op C" is just the RHS. 333 if (V == B) 334 return RHS; 335 // Otherwise return "V op C" if it simplifies. 336 if (Value *W = simplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 337 ++NumReassoc; 338 return W; 339 } 340 } 341 } 342 343 // The remaining transforms require commutativity as well as associativity. 344 if (!Instruction::isCommutative(Opcode)) 345 return nullptr; 346 347 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 348 if (Op0 && Op0->getOpcode() == Opcode) { 349 Value *A = Op0->getOperand(0); 350 Value *B = Op0->getOperand(1); 351 Value *C = RHS; 352 353 // Does "C op A" simplify? 354 if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 355 // It does! Return "V op B" if it simplifies or is already available. 356 // If V equals A then "V op B" is just the LHS. 357 if (V == A) 358 return LHS; 359 // Otherwise return "V op B" if it simplifies. 360 if (Value *W = simplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 361 ++NumReassoc; 362 return W; 363 } 364 } 365 } 366 367 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 368 if (Op1 && Op1->getOpcode() == Opcode) { 369 Value *A = LHS; 370 Value *B = Op1->getOperand(0); 371 Value *C = Op1->getOperand(1); 372 373 // Does "C op A" simplify? 374 if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 375 // It does! Return "B op V" if it simplifies or is already available. 376 // If V equals C then "B op V" is just the RHS. 377 if (V == C) 378 return RHS; 379 // Otherwise return "B op V" if it simplifies. 380 if (Value *W = simplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 381 ++NumReassoc; 382 return W; 383 } 384 } 385 } 386 387 return nullptr; 388 } 389 390 /// In the case of a binary operation with a select instruction as an operand, 391 /// try to simplify the binop by seeing whether evaluating it on both branches 392 /// of the select results in the same value. Returns the common value if so, 393 /// otherwise returns null. 394 static Value *threadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 395 Value *RHS, const SimplifyQuery &Q, 396 unsigned MaxRecurse) { 397 // Recursion is always used, so bail out at once if we already hit the limit. 398 if (!MaxRecurse--) 399 return nullptr; 400 401 SelectInst *SI; 402 if (isa<SelectInst>(LHS)) { 403 SI = cast<SelectInst>(LHS); 404 } else { 405 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 406 SI = cast<SelectInst>(RHS); 407 } 408 409 // Evaluate the BinOp on the true and false branches of the select. 410 Value *TV; 411 Value *FV; 412 if (SI == LHS) { 413 TV = simplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 414 FV = simplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 415 } else { 416 TV = simplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 417 FV = simplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 418 } 419 420 // If they simplified to the same value, then return the common value. 421 // If they both failed to simplify then return null. 422 if (TV == FV) 423 return TV; 424 425 // If one branch simplified to undef, return the other one. 426 if (TV && Q.isUndefValue(TV)) 427 return FV; 428 if (FV && Q.isUndefValue(FV)) 429 return TV; 430 431 // If applying the operation did not change the true and false select values, 432 // then the result of the binop is the select itself. 433 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 434 return SI; 435 436 // If one branch simplified and the other did not, and the simplified 437 // value is equal to the unsimplified one, return the simplified value. 438 // For example, select (cond, X, X & Z) & Z -> X & Z. 439 if ((FV && !TV) || (TV && !FV)) { 440 // Check that the simplified value has the form "X op Y" where "op" is the 441 // same as the original operation. 442 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 443 if (Simplified && Simplified->getOpcode() == unsigned(Opcode) && 444 !Simplified->hasPoisonGeneratingFlags()) { 445 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 446 // We already know that "op" is the same as for the simplified value. See 447 // if the operands match too. If so, return the simplified value. 448 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 449 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 450 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 451 if (Simplified->getOperand(0) == UnsimplifiedLHS && 452 Simplified->getOperand(1) == UnsimplifiedRHS) 453 return Simplified; 454 if (Simplified->isCommutative() && 455 Simplified->getOperand(1) == UnsimplifiedLHS && 456 Simplified->getOperand(0) == UnsimplifiedRHS) 457 return Simplified; 458 } 459 } 460 461 return nullptr; 462 } 463 464 /// In the case of a comparison with a select instruction, try to simplify the 465 /// comparison by seeing whether both branches of the select result in the same 466 /// value. Returns the common value if so, otherwise returns null. 467 /// For example, if we have: 468 /// %tmp = select i1 %cmp, i32 1, i32 2 469 /// %cmp1 = icmp sle i32 %tmp, 3 470 /// We can simplify %cmp1 to true, because both branches of select are 471 /// less than 3. We compose new comparison by substituting %tmp with both 472 /// branches of select and see if it can be simplified. 473 static Value *threadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 474 Value *RHS, const SimplifyQuery &Q, 475 unsigned MaxRecurse) { 476 // Recursion is always used, so bail out at once if we already hit the limit. 477 if (!MaxRecurse--) 478 return nullptr; 479 480 // Make sure the select is on the LHS. 481 if (!isa<SelectInst>(LHS)) { 482 std::swap(LHS, RHS); 483 Pred = CmpInst::getSwappedPredicate(Pred); 484 } 485 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 486 SelectInst *SI = cast<SelectInst>(LHS); 487 Value *Cond = SI->getCondition(); 488 Value *TV = SI->getTrueValue(); 489 Value *FV = SI->getFalseValue(); 490 491 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 492 // Does "cmp TV, RHS" simplify? 493 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 494 if (!TCmp) 495 return nullptr; 496 497 // Does "cmp FV, RHS" simplify? 498 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 499 if (!FCmp) 500 return nullptr; 501 502 // If both sides simplified to the same value, then use it as the result of 503 // the original comparison. 504 if (TCmp == FCmp) 505 return TCmp; 506 507 // The remaining cases only make sense if the select condition has the same 508 // type as the result of the comparison, so bail out if this is not so. 509 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 510 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 511 512 return nullptr; 513 } 514 515 /// In the case of a binary operation with an operand that is a PHI instruction, 516 /// try to simplify the binop by seeing whether evaluating it on the incoming 517 /// phi values yields the same result for every value. If so returns the common 518 /// value, otherwise returns null. 519 static Value *threadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 520 Value *RHS, const SimplifyQuery &Q, 521 unsigned MaxRecurse) { 522 // Recursion is always used, so bail out at once if we already hit the limit. 523 if (!MaxRecurse--) 524 return nullptr; 525 526 PHINode *PI; 527 if (isa<PHINode>(LHS)) { 528 PI = cast<PHINode>(LHS); 529 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 530 if (!valueDominatesPHI(RHS, PI, Q.DT)) 531 return nullptr; 532 } else { 533 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 534 PI = cast<PHINode>(RHS); 535 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 536 if (!valueDominatesPHI(LHS, PI, Q.DT)) 537 return nullptr; 538 } 539 540 // Evaluate the BinOp on the incoming phi values. 541 Value *CommonValue = nullptr; 542 for (Use &Incoming : PI->incoming_values()) { 543 // If the incoming value is the phi node itself, it can safely be skipped. 544 if (Incoming == PI) 545 continue; 546 Instruction *InTI = PI->getIncomingBlock(Incoming)->getTerminator(); 547 Value *V = PI == LHS 548 ? simplifyBinOp(Opcode, Incoming, RHS, 549 Q.getWithInstruction(InTI), MaxRecurse) 550 : simplifyBinOp(Opcode, LHS, Incoming, 551 Q.getWithInstruction(InTI), MaxRecurse); 552 // If the operation failed to simplify, or simplified to a different value 553 // to previously, then give up. 554 if (!V || (CommonValue && V != CommonValue)) 555 return nullptr; 556 CommonValue = V; 557 } 558 559 return CommonValue; 560 } 561 562 /// In the case of a comparison with a PHI instruction, try to simplify the 563 /// comparison by seeing whether comparing with all of the incoming phi values 564 /// yields the same result every time. If so returns the common result, 565 /// otherwise returns null. 566 static Value *threadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 567 const SimplifyQuery &Q, unsigned MaxRecurse) { 568 // Recursion is always used, so bail out at once if we already hit the limit. 569 if (!MaxRecurse--) 570 return nullptr; 571 572 // Make sure the phi is on the LHS. 573 if (!isa<PHINode>(LHS)) { 574 std::swap(LHS, RHS); 575 Pred = CmpInst::getSwappedPredicate(Pred); 576 } 577 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 578 PHINode *PI = cast<PHINode>(LHS); 579 580 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 581 if (!valueDominatesPHI(RHS, PI, Q.DT)) 582 return nullptr; 583 584 // Evaluate the BinOp on the incoming phi values. 585 Value *CommonValue = nullptr; 586 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 587 Value *Incoming = PI->getIncomingValue(u); 588 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 589 // If the incoming value is the phi node itself, it can safely be skipped. 590 if (Incoming == PI) 591 continue; 592 // Change the context instruction to the "edge" that flows into the phi. 593 // This is important because that is where incoming is actually "evaluated" 594 // even though it is used later somewhere else. 595 Value *V = simplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 596 MaxRecurse); 597 // If the operation failed to simplify, or simplified to a different value 598 // to previously, then give up. 599 if (!V || (CommonValue && V != CommonValue)) 600 return nullptr; 601 CommonValue = V; 602 } 603 604 return CommonValue; 605 } 606 607 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 608 Value *&Op0, Value *&Op1, 609 const SimplifyQuery &Q) { 610 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 611 if (auto *CRHS = dyn_cast<Constant>(Op1)) { 612 switch (Opcode) { 613 default: 614 break; 615 case Instruction::FAdd: 616 case Instruction::FSub: 617 case Instruction::FMul: 618 case Instruction::FDiv: 619 case Instruction::FRem: 620 if (Q.CxtI != nullptr) 621 return ConstantFoldFPInstOperands(Opcode, CLHS, CRHS, Q.DL, Q.CxtI); 622 } 623 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 624 } 625 626 // Canonicalize the constant to the RHS if this is a commutative operation. 627 if (Instruction::isCommutative(Opcode)) 628 std::swap(Op0, Op1); 629 } 630 return nullptr; 631 } 632 633 /// Given operands for an Add, see if we can fold the result. 634 /// If not, this returns null. 635 static Value *simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 636 const SimplifyQuery &Q, unsigned MaxRecurse) { 637 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 638 return C; 639 640 // X + poison -> poison 641 if (isa<PoisonValue>(Op1)) 642 return Op1; 643 644 // X + undef -> undef 645 if (Q.isUndefValue(Op1)) 646 return Op1; 647 648 // X + 0 -> X 649 if (match(Op1, m_Zero())) 650 return Op0; 651 652 // If two operands are negative, return 0. 653 if (isKnownNegation(Op0, Op1)) 654 return Constant::getNullValue(Op0->getType()); 655 656 // X + (Y - X) -> Y 657 // (Y - X) + X -> Y 658 // Eg: X + -X -> 0 659 Value *Y = nullptr; 660 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 661 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 662 return Y; 663 664 // X + ~X -> -1 since ~X = -X-1 665 Type *Ty = Op0->getType(); 666 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) 667 return Constant::getAllOnesValue(Ty); 668 669 // add nsw/nuw (xor Y, signmask), signmask --> Y 670 // The no-wrapping add guarantees that the top bit will be set by the add. 671 // Therefore, the xor must be clearing the already set sign bit of Y. 672 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 673 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 674 return Y; 675 676 // add nuw %x, -1 -> -1, because %x can only be 0. 677 if (IsNUW && match(Op1, m_AllOnes())) 678 return Op1; // Which is -1. 679 680 /// i1 add -> xor. 681 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 682 if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1)) 683 return V; 684 685 // Try some generic simplifications for associative operations. 686 if (Value *V = 687 simplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, MaxRecurse)) 688 return V; 689 690 // Threading Add over selects and phi nodes is pointless, so don't bother. 691 // Threading over the select in "A + select(cond, B, C)" means evaluating 692 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 693 // only if B and C are equal. If B and C are equal then (since we assume 694 // that operands have already been simplified) "select(cond, B, C)" should 695 // have been simplified to the common value of B and C already. Analysing 696 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 697 // for threading over phi nodes. 698 699 return nullptr; 700 } 701 702 Value *llvm::simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 703 const SimplifyQuery &Query) { 704 return ::simplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 705 } 706 707 /// Compute the base pointer and cumulative constant offsets for V. 708 /// 709 /// This strips all constant offsets off of V, leaving it the base pointer, and 710 /// accumulates the total constant offset applied in the returned constant. 711 /// It returns zero if there are no constant offsets applied. 712 /// 713 /// This is very similar to stripAndAccumulateConstantOffsets(), except it 714 /// normalizes the offset bitwidth to the stripped pointer type, not the 715 /// original pointer type. 716 static APInt stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 717 bool AllowNonInbounds = false) { 718 assert(V->getType()->isPtrOrPtrVectorTy()); 719 720 APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType())); 721 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 722 // As that strip may trace through `addrspacecast`, need to sext or trunc 723 // the offset calculated. 724 return Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(V->getType())); 725 } 726 727 /// Compute the constant difference between two pointer values. 728 /// If the difference is not a constant, returns zero. 729 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 730 Value *RHS) { 731 APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 732 APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 733 734 // If LHS and RHS are not related via constant offsets to the same base 735 // value, there is nothing we can do here. 736 if (LHS != RHS) 737 return nullptr; 738 739 // Otherwise, the difference of LHS - RHS can be computed as: 740 // LHS - RHS 741 // = (LHSOffset + Base) - (RHSOffset + Base) 742 // = LHSOffset - RHSOffset 743 Constant *Res = ConstantInt::get(LHS->getContext(), LHSOffset - RHSOffset); 744 if (auto *VecTy = dyn_cast<VectorType>(LHS->getType())) 745 Res = ConstantVector::getSplat(VecTy->getElementCount(), Res); 746 return Res; 747 } 748 749 /// Test if there is a dominating equivalence condition for the 750 /// two operands. If there is, try to reduce the binary operation 751 /// between the two operands. 752 /// Example: Op0 - Op1 --> 0 when Op0 == Op1 753 static Value *simplifyByDomEq(unsigned Opcode, Value *Op0, Value *Op1, 754 const SimplifyQuery &Q, unsigned MaxRecurse) { 755 // Recursive run it can not get any benefit 756 if (MaxRecurse != RecursionLimit) 757 return nullptr; 758 759 std::optional<bool> Imp = 760 isImpliedByDomCondition(CmpInst::ICMP_EQ, Op0, Op1, Q.CxtI, Q.DL); 761 if (Imp && *Imp) { 762 Type *Ty = Op0->getType(); 763 switch (Opcode) { 764 case Instruction::Sub: 765 case Instruction::Xor: 766 case Instruction::URem: 767 case Instruction::SRem: 768 return Constant::getNullValue(Ty); 769 770 case Instruction::SDiv: 771 case Instruction::UDiv: 772 return ConstantInt::get(Ty, 1); 773 774 case Instruction::And: 775 case Instruction::Or: 776 // Could be either one - choose Op1 since that's more likely a constant. 777 return Op1; 778 default: 779 break; 780 } 781 } 782 return nullptr; 783 } 784 785 /// Given operands for a Sub, see if we can fold the result. 786 /// If not, this returns null. 787 static Value *simplifySubInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 788 const SimplifyQuery &Q, unsigned MaxRecurse) { 789 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 790 return C; 791 792 // X - poison -> poison 793 // poison - X -> poison 794 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 795 return PoisonValue::get(Op0->getType()); 796 797 // X - undef -> undef 798 // undef - X -> undef 799 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 800 return UndefValue::get(Op0->getType()); 801 802 // X - 0 -> X 803 if (match(Op1, m_Zero())) 804 return Op0; 805 806 // X - X -> 0 807 if (Op0 == Op1) 808 return Constant::getNullValue(Op0->getType()); 809 810 // Is this a negation? 811 if (match(Op0, m_Zero())) { 812 // 0 - X -> 0 if the sub is NUW. 813 if (IsNUW) 814 return Constant::getNullValue(Op0->getType()); 815 816 KnownBits Known = computeKnownBits(Op1, /* Depth */ 0, Q); 817 if (Known.Zero.isMaxSignedValue()) { 818 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 819 // Op1 must be 0 because negating the minimum signed value is undefined. 820 if (IsNSW) 821 return Constant::getNullValue(Op0->getType()); 822 823 // 0 - X -> X if X is 0 or the minimum signed value. 824 return Op1; 825 } 826 } 827 828 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 829 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 830 Value *X = nullptr, *Y = nullptr, *Z = Op1; 831 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 832 // See if "V === Y - Z" simplifies. 833 if (Value *V = simplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse - 1)) 834 // It does! Now see if "X + V" simplifies. 835 if (Value *W = simplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse - 1)) { 836 // It does, we successfully reassociated! 837 ++NumReassoc; 838 return W; 839 } 840 // See if "V === X - Z" simplifies. 841 if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1)) 842 // It does! Now see if "Y + V" simplifies. 843 if (Value *W = simplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse - 1)) { 844 // It does, we successfully reassociated! 845 ++NumReassoc; 846 return W; 847 } 848 } 849 850 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 851 // For example, X - (X + 1) -> -1 852 X = Op0; 853 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 854 // See if "V === X - Y" simplifies. 855 if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1)) 856 // It does! Now see if "V - Z" simplifies. 857 if (Value *W = simplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse - 1)) { 858 // It does, we successfully reassociated! 859 ++NumReassoc; 860 return W; 861 } 862 // See if "V === X - Z" simplifies. 863 if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1)) 864 // It does! Now see if "V - Y" simplifies. 865 if (Value *W = simplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse - 1)) { 866 // It does, we successfully reassociated! 867 ++NumReassoc; 868 return W; 869 } 870 } 871 872 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 873 // For example, X - (X - Y) -> Y. 874 Z = Op0; 875 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 876 // See if "V === Z - X" simplifies. 877 if (Value *V = simplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse - 1)) 878 // It does! Now see if "V + Y" simplifies. 879 if (Value *W = simplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse - 1)) { 880 // It does, we successfully reassociated! 881 ++NumReassoc; 882 return W; 883 } 884 885 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 886 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 887 match(Op1, m_Trunc(m_Value(Y)))) 888 if (X->getType() == Y->getType()) 889 // See if "V === X - Y" simplifies. 890 if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1)) 891 // It does! Now see if "trunc V" simplifies. 892 if (Value *W = simplifyCastInst(Instruction::Trunc, V, Op0->getType(), 893 Q, MaxRecurse - 1)) 894 // It does, return the simplified "trunc V". 895 return W; 896 897 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 898 if (match(Op0, m_PtrToInt(m_Value(X))) && match(Op1, m_PtrToInt(m_Value(Y)))) 899 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 900 return ConstantFoldIntegerCast(Result, Op0->getType(), /*IsSigned*/ true, 901 Q.DL); 902 903 // i1 sub -> xor. 904 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 905 if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1)) 906 return V; 907 908 // Threading Sub over selects and phi nodes is pointless, so don't bother. 909 // Threading over the select in "A - select(cond, B, C)" means evaluating 910 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 911 // only if B and C are equal. If B and C are equal then (since we assume 912 // that operands have already been simplified) "select(cond, B, C)" should 913 // have been simplified to the common value of B and C already. Analysing 914 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 915 // for threading over phi nodes. 916 917 if (Value *V = simplifyByDomEq(Instruction::Sub, Op0, Op1, Q, MaxRecurse)) 918 return V; 919 920 return nullptr; 921 } 922 923 Value *llvm::simplifySubInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 924 const SimplifyQuery &Q) { 925 return ::simplifySubInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit); 926 } 927 928 /// Given operands for a Mul, see if we can fold the result. 929 /// If not, this returns null. 930 static Value *simplifyMulInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 931 const SimplifyQuery &Q, unsigned MaxRecurse) { 932 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 933 return C; 934 935 // X * poison -> poison 936 if (isa<PoisonValue>(Op1)) 937 return Op1; 938 939 // X * undef -> 0 940 // X * 0 -> 0 941 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 942 return Constant::getNullValue(Op0->getType()); 943 944 // X * 1 -> X 945 if (match(Op1, m_One())) 946 return Op0; 947 948 // (X / Y) * Y -> X if the division is exact. 949 Value *X = nullptr; 950 if (Q.IIQ.UseInstrInfo && 951 (match(Op0, 952 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 953 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 954 return X; 955 956 if (Op0->getType()->isIntOrIntVectorTy(1)) { 957 // mul i1 nsw is a special-case because -1 * -1 is poison (+1 is not 958 // representable). All other cases reduce to 0, so just return 0. 959 if (IsNSW) 960 return ConstantInt::getNullValue(Op0->getType()); 961 962 // Treat "mul i1" as "and i1". 963 if (MaxRecurse) 964 if (Value *V = simplifyAndInst(Op0, Op1, Q, MaxRecurse - 1)) 965 return V; 966 } 967 968 // Try some generic simplifications for associative operations. 969 if (Value *V = 970 simplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) 971 return V; 972 973 // Mul distributes over Add. Try some generic simplifications based on this. 974 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 975 Instruction::Add, Q, MaxRecurse)) 976 return V; 977 978 // If the operation is with the result of a select instruction, check whether 979 // operating on either branch of the select always yields the same value. 980 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 981 if (Value *V = 982 threadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) 983 return V; 984 985 // If the operation is with the result of a phi instruction, check whether 986 // operating on all incoming values of the phi always yields the same value. 987 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 988 if (Value *V = 989 threadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) 990 return V; 991 992 return nullptr; 993 } 994 995 Value *llvm::simplifyMulInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 996 const SimplifyQuery &Q) { 997 return ::simplifyMulInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit); 998 } 999 1000 /// Given a predicate and two operands, return true if the comparison is true. 1001 /// This is a helper for div/rem simplification where we return some other value 1002 /// when we can prove a relationship between the operands. 1003 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 1004 const SimplifyQuery &Q, unsigned MaxRecurse) { 1005 Value *V = simplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 1006 Constant *C = dyn_cast_or_null<Constant>(V); 1007 return (C && C->isAllOnesValue()); 1008 } 1009 1010 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 1011 /// to simplify X % Y to X. 1012 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 1013 unsigned MaxRecurse, bool IsSigned) { 1014 // Recursion is always used, so bail out at once if we already hit the limit. 1015 if (!MaxRecurse--) 1016 return false; 1017 1018 if (IsSigned) { 1019 // (X srem Y) sdiv Y --> 0 1020 if (match(X, m_SRem(m_Value(), m_Specific(Y)))) 1021 return true; 1022 1023 // |X| / |Y| --> 0 1024 // 1025 // We require that 1 operand is a simple constant. That could be extended to 1026 // 2 variables if we computed the sign bit for each. 1027 // 1028 // Make sure that a constant is not the minimum signed value because taking 1029 // the abs() of that is undefined. 1030 Type *Ty = X->getType(); 1031 const APInt *C; 1032 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1033 // Is the variable divisor magnitude always greater than the constant 1034 // dividend magnitude? 1035 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1036 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1037 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1038 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1039 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1040 return true; 1041 } 1042 if (match(Y, m_APInt(C))) { 1043 // Special-case: we can't take the abs() of a minimum signed value. If 1044 // that's the divisor, then all we have to do is prove that the dividend 1045 // is also not the minimum signed value. 1046 if (C->isMinSignedValue()) 1047 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1048 1049 // Is the variable dividend magnitude always less than the constant 1050 // divisor magnitude? 1051 // |X| < |C| --> X > -abs(C) and X < abs(C) 1052 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1053 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1054 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1055 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1056 return true; 1057 } 1058 return false; 1059 } 1060 1061 // IsSigned == false. 1062 1063 // Is the unsigned dividend known to be less than a constant divisor? 1064 // TODO: Convert this (and above) to range analysis 1065 // ("computeConstantRangeIncludingKnownBits")? 1066 const APInt *C; 1067 if (match(Y, m_APInt(C)) && 1068 computeKnownBits(X, /* Depth */ 0, Q).getMaxValue().ult(*C)) 1069 return true; 1070 1071 // Try again for any divisor: 1072 // Is the dividend unsigned less than the divisor? 1073 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1074 } 1075 1076 /// Check for common or similar folds of integer division or integer remainder. 1077 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 1078 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, 1079 Value *Op1, const SimplifyQuery &Q, 1080 unsigned MaxRecurse) { 1081 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv); 1082 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem); 1083 1084 Type *Ty = Op0->getType(); 1085 1086 // X / undef -> poison 1087 // X % undef -> poison 1088 if (Q.isUndefValue(Op1) || isa<PoisonValue>(Op1)) 1089 return PoisonValue::get(Ty); 1090 1091 // X / 0 -> poison 1092 // X % 0 -> poison 1093 // We don't need to preserve faults! 1094 if (match(Op1, m_Zero())) 1095 return PoisonValue::get(Ty); 1096 1097 // If any element of a constant divisor fixed width vector is zero or undef 1098 // the behavior is undefined and we can fold the whole op to poison. 1099 auto *Op1C = dyn_cast<Constant>(Op1); 1100 auto *VTy = dyn_cast<FixedVectorType>(Ty); 1101 if (Op1C && VTy) { 1102 unsigned NumElts = VTy->getNumElements(); 1103 for (unsigned i = 0; i != NumElts; ++i) { 1104 Constant *Elt = Op1C->getAggregateElement(i); 1105 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) 1106 return PoisonValue::get(Ty); 1107 } 1108 } 1109 1110 // poison / X -> poison 1111 // poison % X -> poison 1112 if (isa<PoisonValue>(Op0)) 1113 return Op0; 1114 1115 // undef / X -> 0 1116 // undef % X -> 0 1117 if (Q.isUndefValue(Op0)) 1118 return Constant::getNullValue(Ty); 1119 1120 // 0 / X -> 0 1121 // 0 % X -> 0 1122 if (match(Op0, m_Zero())) 1123 return Constant::getNullValue(Op0->getType()); 1124 1125 // X / X -> 1 1126 // X % X -> 0 1127 if (Op0 == Op1) 1128 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 1129 1130 KnownBits Known = computeKnownBits(Op1, /* Depth */ 0, Q); 1131 // X / 0 -> poison 1132 // X % 0 -> poison 1133 // If the divisor is known to be zero, just return poison. This can happen in 1134 // some cases where its provable indirectly the denominator is zero but it's 1135 // not trivially simplifiable (i.e known zero through a phi node). 1136 if (Known.isZero()) 1137 return PoisonValue::get(Ty); 1138 1139 // X / 1 -> X 1140 // X % 1 -> 0 1141 // If the divisor can only be zero or one, we can't have division-by-zero 1142 // or remainder-by-zero, so assume the divisor is 1. 1143 // e.g. 1, zext (i8 X), sdiv X (Y and 1) 1144 if (Known.countMinLeadingZeros() == Known.getBitWidth() - 1) 1145 return IsDiv ? Op0 : Constant::getNullValue(Ty); 1146 1147 // If X * Y does not overflow, then: 1148 // X * Y / Y -> X 1149 // X * Y % Y -> 0 1150 Value *X; 1151 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1152 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1153 // The multiplication can't overflow if it is defined not to, or if 1154 // X == A / Y for some A. 1155 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1156 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) || 1157 (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1158 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) { 1159 return IsDiv ? X : Constant::getNullValue(Op0->getType()); 1160 } 1161 } 1162 1163 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1164 return IsDiv ? Constant::getNullValue(Op0->getType()) : Op0; 1165 1166 if (Value *V = simplifyByDomEq(Opcode, Op0, Op1, Q, MaxRecurse)) 1167 return V; 1168 1169 // If the operation is with the result of a select instruction, check whether 1170 // operating on either branch of the select always yields the same value. 1171 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1172 if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1173 return V; 1174 1175 // If the operation is with the result of a phi instruction, check whether 1176 // operating on all incoming values of the phi always yields the same value. 1177 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1178 if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1179 return V; 1180 1181 return nullptr; 1182 } 1183 1184 /// These are simplifications common to SDiv and UDiv. 1185 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1186 bool IsExact, const SimplifyQuery &Q, 1187 unsigned MaxRecurse) { 1188 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1189 return C; 1190 1191 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q, MaxRecurse)) 1192 return V; 1193 1194 const APInt *DivC; 1195 if (IsExact && match(Op1, m_APInt(DivC))) { 1196 // If this is an exact divide by a constant, then the dividend (Op0) must 1197 // have at least as many trailing zeros as the divisor to divide evenly. If 1198 // it has less trailing zeros, then the result must be poison. 1199 if (DivC->countr_zero()) { 1200 KnownBits KnownOp0 = computeKnownBits(Op0, /* Depth */ 0, Q); 1201 if (KnownOp0.countMaxTrailingZeros() < DivC->countr_zero()) 1202 return PoisonValue::get(Op0->getType()); 1203 } 1204 1205 // udiv exact (mul nsw X, C), C --> X 1206 // sdiv exact (mul nuw X, C), C --> X 1207 // where C is not a power of 2. 1208 Value *X; 1209 if (!DivC->isPowerOf2() && 1210 (Opcode == Instruction::UDiv 1211 ? match(Op0, m_NSWMul(m_Value(X), m_Specific(Op1))) 1212 : match(Op0, m_NUWMul(m_Value(X), m_Specific(Op1))))) 1213 return X; 1214 } 1215 1216 return nullptr; 1217 } 1218 1219 /// These are simplifications common to SRem and URem. 1220 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1221 const SimplifyQuery &Q, unsigned MaxRecurse) { 1222 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1223 return C; 1224 1225 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q, MaxRecurse)) 1226 return V; 1227 1228 // (X << Y) % X -> 0 1229 if (Q.IIQ.UseInstrInfo) { 1230 if ((Opcode == Instruction::SRem && 1231 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1232 (Opcode == Instruction::URem && 1233 match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))) 1234 return Constant::getNullValue(Op0->getType()); 1235 1236 const APInt *C0; 1237 if (match(Op1, m_APInt(C0))) { 1238 // (srem (mul nsw X, C1), C0) -> 0 if C1 s% C0 == 0 1239 // (urem (mul nuw X, C1), C0) -> 0 if C1 u% C0 == 0 1240 if (Opcode == Instruction::SRem 1241 ? match(Op0, 1242 m_NSWMul(m_Value(), m_CheckedInt([C0](const APInt &C) { 1243 return C.srem(*C0).isZero(); 1244 }))) 1245 : match(Op0, 1246 m_NUWMul(m_Value(), m_CheckedInt([C0](const APInt &C) { 1247 return C.urem(*C0).isZero(); 1248 })))) 1249 return Constant::getNullValue(Op0->getType()); 1250 } 1251 } 1252 return nullptr; 1253 } 1254 1255 /// Given operands for an SDiv, see if we can fold the result. 1256 /// If not, this returns null. 1257 static Value *simplifySDivInst(Value *Op0, Value *Op1, bool IsExact, 1258 const SimplifyQuery &Q, unsigned MaxRecurse) { 1259 // If two operands are negated and no signed overflow, return -1. 1260 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1261 return Constant::getAllOnesValue(Op0->getType()); 1262 1263 return simplifyDiv(Instruction::SDiv, Op0, Op1, IsExact, Q, MaxRecurse); 1264 } 1265 1266 Value *llvm::simplifySDivInst(Value *Op0, Value *Op1, bool IsExact, 1267 const SimplifyQuery &Q) { 1268 return ::simplifySDivInst(Op0, Op1, IsExact, Q, RecursionLimit); 1269 } 1270 1271 /// Given operands for a UDiv, see if we can fold the result. 1272 /// If not, this returns null. 1273 static Value *simplifyUDivInst(Value *Op0, Value *Op1, bool IsExact, 1274 const SimplifyQuery &Q, unsigned MaxRecurse) { 1275 return simplifyDiv(Instruction::UDiv, Op0, Op1, IsExact, Q, MaxRecurse); 1276 } 1277 1278 Value *llvm::simplifyUDivInst(Value *Op0, Value *Op1, bool IsExact, 1279 const SimplifyQuery &Q) { 1280 return ::simplifyUDivInst(Op0, Op1, IsExact, Q, RecursionLimit); 1281 } 1282 1283 /// Given operands for an SRem, see if we can fold the result. 1284 /// If not, this returns null. 1285 static Value *simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1286 unsigned MaxRecurse) { 1287 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1288 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1289 Value *X; 1290 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1291 return ConstantInt::getNullValue(Op0->getType()); 1292 1293 // If the two operands are negated, return 0. 1294 if (isKnownNegation(Op0, Op1)) 1295 return ConstantInt::getNullValue(Op0->getType()); 1296 1297 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1298 } 1299 1300 Value *llvm::simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1301 return ::simplifySRemInst(Op0, Op1, Q, RecursionLimit); 1302 } 1303 1304 /// Given operands for a URem, see if we can fold the result. 1305 /// If not, this returns null. 1306 static Value *simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1307 unsigned MaxRecurse) { 1308 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1309 } 1310 1311 Value *llvm::simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1312 return ::simplifyURemInst(Op0, Op1, Q, RecursionLimit); 1313 } 1314 1315 /// Returns true if a shift by \c Amount always yields poison. 1316 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { 1317 Constant *C = dyn_cast<Constant>(Amount); 1318 if (!C) 1319 return false; 1320 1321 // X shift by undef -> poison because it may shift by the bitwidth. 1322 if (Q.isUndefValue(C)) 1323 return true; 1324 1325 // Shifting by the bitwidth or more is poison. This covers scalars and 1326 // fixed/scalable vectors with splat constants. 1327 const APInt *AmountC; 1328 if (match(C, m_APInt(AmountC)) && AmountC->uge(AmountC->getBitWidth())) 1329 return true; 1330 1331 // Try harder for fixed-length vectors: 1332 // If all lanes of a vector shift are poison, the whole shift is poison. 1333 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1334 for (unsigned I = 0, 1335 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1336 I != E; ++I) 1337 if (!isPoisonShift(C->getAggregateElement(I), Q)) 1338 return false; 1339 return true; 1340 } 1341 1342 return false; 1343 } 1344 1345 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1346 /// If not, this returns null. 1347 static Value *simplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1348 Value *Op1, bool IsNSW, const SimplifyQuery &Q, 1349 unsigned MaxRecurse) { 1350 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1351 return C; 1352 1353 // poison shift by X -> poison 1354 if (isa<PoisonValue>(Op0)) 1355 return Op0; 1356 1357 // 0 shift by X -> 0 1358 if (match(Op0, m_Zero())) 1359 return Constant::getNullValue(Op0->getType()); 1360 1361 // X shift by 0 -> X 1362 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1363 // would be poison. 1364 Value *X; 1365 if (match(Op1, m_Zero()) || 1366 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1367 return Op0; 1368 1369 // Fold undefined shifts. 1370 if (isPoisonShift(Op1, Q)) 1371 return PoisonValue::get(Op0->getType()); 1372 1373 // If the operation is with the result of a select instruction, check whether 1374 // operating on either branch of the select always yields the same value. 1375 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1376 if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1377 return V; 1378 1379 // If the operation is with the result of a phi instruction, check whether 1380 // operating on all incoming values of the phi always yields the same value. 1381 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1382 if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1383 return V; 1384 1385 // If any bits in the shift amount make that value greater than or equal to 1386 // the number of bits in the type, the shift is undefined. 1387 KnownBits KnownAmt = computeKnownBits(Op1, /* Depth */ 0, Q); 1388 if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth())) 1389 return PoisonValue::get(Op0->getType()); 1390 1391 // If all valid bits in the shift amount are known zero, the first operand is 1392 // unchanged. 1393 unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth()); 1394 if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits) 1395 return Op0; 1396 1397 // Check for nsw shl leading to a poison value. 1398 if (IsNSW) { 1399 assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction"); 1400 KnownBits KnownVal = computeKnownBits(Op0, /* Depth */ 0, Q); 1401 KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt); 1402 1403 if (KnownVal.Zero.isSignBitSet()) 1404 KnownShl.Zero.setSignBit(); 1405 if (KnownVal.One.isSignBitSet()) 1406 KnownShl.One.setSignBit(); 1407 1408 if (KnownShl.hasConflict()) 1409 return PoisonValue::get(Op0->getType()); 1410 } 1411 1412 return nullptr; 1413 } 1414 1415 /// Given operands for an LShr or AShr, see if we can fold the result. If not, 1416 /// this returns null. 1417 static Value *simplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1418 Value *Op1, bool IsExact, 1419 const SimplifyQuery &Q, unsigned MaxRecurse) { 1420 if (Value *V = 1421 simplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse)) 1422 return V; 1423 1424 // X >> X -> 0 1425 if (Op0 == Op1) 1426 return Constant::getNullValue(Op0->getType()); 1427 1428 // undef >> X -> 0 1429 // undef >> X -> undef (if it's exact) 1430 if (Q.isUndefValue(Op0)) 1431 return IsExact ? Op0 : Constant::getNullValue(Op0->getType()); 1432 1433 // The low bit cannot be shifted out of an exact shift if it is set. 1434 // TODO: Generalize by counting trailing zeros (see fold for exact division). 1435 if (IsExact) { 1436 KnownBits Op0Known = computeKnownBits(Op0, /* Depth */ 0, Q); 1437 if (Op0Known.One[0]) 1438 return Op0; 1439 } 1440 1441 return nullptr; 1442 } 1443 1444 /// Given operands for an Shl, see if we can fold the result. 1445 /// If not, this returns null. 1446 static Value *simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 1447 const SimplifyQuery &Q, unsigned MaxRecurse) { 1448 if (Value *V = 1449 simplifyShift(Instruction::Shl, Op0, Op1, IsNSW, Q, MaxRecurse)) 1450 return V; 1451 1452 Type *Ty = Op0->getType(); 1453 // undef << X -> 0 1454 // undef << X -> undef if (if it's NSW/NUW) 1455 if (Q.isUndefValue(Op0)) 1456 return IsNSW || IsNUW ? Op0 : Constant::getNullValue(Ty); 1457 1458 // (X >> A) << A -> X 1459 Value *X; 1460 if (Q.IIQ.UseInstrInfo && 1461 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1462 return X; 1463 1464 // shl nuw i8 C, %x -> C iff C has sign bit set. 1465 if (IsNUW && match(Op0, m_Negative())) 1466 return Op0; 1467 // NOTE: could use computeKnownBits() / LazyValueInfo, 1468 // but the cost-benefit analysis suggests it isn't worth it. 1469 1470 // "nuw" guarantees that only zeros are shifted out, and "nsw" guarantees 1471 // that the sign-bit does not change, so the only input that does not 1472 // produce poison is 0, and "0 << (bitwidth-1) --> 0". 1473 if (IsNSW && IsNUW && 1474 match(Op1, m_SpecificInt(Ty->getScalarSizeInBits() - 1))) 1475 return Constant::getNullValue(Ty); 1476 1477 return nullptr; 1478 } 1479 1480 Value *llvm::simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 1481 const SimplifyQuery &Q) { 1482 return ::simplifyShlInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit); 1483 } 1484 1485 /// Given operands for an LShr, see if we can fold the result. 1486 /// If not, this returns null. 1487 static Value *simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, 1488 const SimplifyQuery &Q, unsigned MaxRecurse) { 1489 if (Value *V = simplifyRightShift(Instruction::LShr, Op0, Op1, IsExact, Q, 1490 MaxRecurse)) 1491 return V; 1492 1493 // (X << A) >> A -> X 1494 Value *X; 1495 if (Q.IIQ.UseInstrInfo && match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1496 return X; 1497 1498 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1499 // We can return X as we do in the above case since OR alters no bits in X. 1500 // SimplifyDemandedBits in InstCombine can do more general optimization for 1501 // bit manipulation. This pattern aims to provide opportunities for other 1502 // optimizers by supporting a simple but common case in InstSimplify. 1503 Value *Y; 1504 const APInt *ShRAmt, *ShLAmt; 1505 if (Q.IIQ.UseInstrInfo && match(Op1, m_APInt(ShRAmt)) && 1506 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1507 *ShRAmt == *ShLAmt) { 1508 const KnownBits YKnown = computeKnownBits(Y, /* Depth */ 0, Q); 1509 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 1510 if (ShRAmt->uge(EffWidthY)) 1511 return X; 1512 } 1513 1514 return nullptr; 1515 } 1516 1517 Value *llvm::simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, 1518 const SimplifyQuery &Q) { 1519 return ::simplifyLShrInst(Op0, Op1, IsExact, Q, RecursionLimit); 1520 } 1521 1522 /// Given operands for an AShr, see if we can fold the result. 1523 /// If not, this returns null. 1524 static Value *simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, 1525 const SimplifyQuery &Q, unsigned MaxRecurse) { 1526 if (Value *V = simplifyRightShift(Instruction::AShr, Op0, Op1, IsExact, Q, 1527 MaxRecurse)) 1528 return V; 1529 1530 // -1 >>a X --> -1 1531 // (-1 << X) a>> X --> -1 1532 // We could return the original -1 constant to preserve poison elements. 1533 if (match(Op0, m_AllOnes()) || 1534 match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1)))) 1535 return Constant::getAllOnesValue(Op0->getType()); 1536 1537 // (X << A) >> A -> X 1538 Value *X; 1539 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1540 return X; 1541 1542 // Arithmetic shifting an all-sign-bit value is a no-op. 1543 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1544 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1545 return Op0; 1546 1547 return nullptr; 1548 } 1549 1550 Value *llvm::simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, 1551 const SimplifyQuery &Q) { 1552 return ::simplifyAShrInst(Op0, Op1, IsExact, Q, RecursionLimit); 1553 } 1554 1555 /// Commuted variants are assumed to be handled by calling this function again 1556 /// with the parameters swapped. 1557 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1558 ICmpInst *UnsignedICmp, bool IsAnd, 1559 const SimplifyQuery &Q) { 1560 Value *X, *Y; 1561 1562 ICmpInst::Predicate EqPred; 1563 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1564 !ICmpInst::isEquality(EqPred)) 1565 return nullptr; 1566 1567 ICmpInst::Predicate UnsignedPred; 1568 1569 Value *A, *B; 1570 // Y = (A - B); 1571 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1572 if (match(UnsignedICmp, 1573 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1574 ICmpInst::isUnsigned(UnsignedPred)) { 1575 // A >=/<= B || (A - B) != 0 <--> true 1576 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1577 UnsignedPred == ICmpInst::ICMP_ULE) && 1578 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1579 return ConstantInt::getTrue(UnsignedICmp->getType()); 1580 // A </> B && (A - B) == 0 <--> false 1581 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1582 UnsignedPred == ICmpInst::ICMP_UGT) && 1583 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1584 return ConstantInt::getFalse(UnsignedICmp->getType()); 1585 1586 // A </> B && (A - B) != 0 <--> A </> B 1587 // A </> B || (A - B) != 0 <--> (A - B) != 0 1588 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1589 UnsignedPred == ICmpInst::ICMP_UGT)) 1590 return IsAnd ? UnsignedICmp : ZeroICmp; 1591 1592 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1593 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1594 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1595 UnsignedPred == ICmpInst::ICMP_UGE)) 1596 return IsAnd ? ZeroICmp : UnsignedICmp; 1597 } 1598 1599 // Given Y = (A - B) 1600 // Y >= A && Y != 0 --> Y >= A iff B != 0 1601 // Y < A || Y == 0 --> Y < A iff B != 0 1602 if (match(UnsignedICmp, 1603 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1604 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1605 EqPred == ICmpInst::ICMP_NE && isKnownNonZero(B, Q)) 1606 return UnsignedICmp; 1607 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1608 EqPred == ICmpInst::ICMP_EQ && isKnownNonZero(B, Q)) 1609 return UnsignedICmp; 1610 } 1611 } 1612 1613 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1614 ICmpInst::isUnsigned(UnsignedPred)) 1615 ; 1616 else if (match(UnsignedICmp, 1617 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1618 ICmpInst::isUnsigned(UnsignedPred)) 1619 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1620 else 1621 return nullptr; 1622 1623 // X > Y && Y == 0 --> Y == 0 iff X != 0 1624 // X > Y || Y == 0 --> X > Y iff X != 0 1625 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1626 isKnownNonZero(X, Q)) 1627 return IsAnd ? ZeroICmp : UnsignedICmp; 1628 1629 // X <= Y && Y != 0 --> X <= Y iff X != 0 1630 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1631 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1632 isKnownNonZero(X, Q)) 1633 return IsAnd ? UnsignedICmp : ZeroICmp; 1634 1635 // The transforms below here are expected to be handled more generally with 1636 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1637 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1638 // these are candidates for removal. 1639 1640 // X < Y && Y != 0 --> X < Y 1641 // X < Y || Y != 0 --> Y != 0 1642 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1643 return IsAnd ? UnsignedICmp : ZeroICmp; 1644 1645 // X >= Y && Y == 0 --> Y == 0 1646 // X >= Y || Y == 0 --> X >= Y 1647 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1648 return IsAnd ? ZeroICmp : UnsignedICmp; 1649 1650 // X < Y && Y == 0 --> false 1651 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1652 IsAnd) 1653 return getFalse(UnsignedICmp->getType()); 1654 1655 // X >= Y || Y != 0 --> true 1656 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1657 !IsAnd) 1658 return getTrue(UnsignedICmp->getType()); 1659 1660 return nullptr; 1661 } 1662 1663 /// Test if a pair of compares with a shared operand and 2 constants has an 1664 /// empty set intersection, full set union, or if one compare is a superset of 1665 /// the other. 1666 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1667 bool IsAnd) { 1668 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1669 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1670 return nullptr; 1671 1672 const APInt *C0, *C1; 1673 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1674 !match(Cmp1->getOperand(1), m_APInt(C1))) 1675 return nullptr; 1676 1677 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1678 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1679 1680 // For and-of-compares, check if the intersection is empty: 1681 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1682 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1683 return getFalse(Cmp0->getType()); 1684 1685 // For or-of-compares, check if the union is full: 1686 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1687 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1688 return getTrue(Cmp0->getType()); 1689 1690 // Is one range a superset of the other? 1691 // If this is and-of-compares, take the smaller set: 1692 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1693 // If this is or-of-compares, take the larger set: 1694 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1695 if (Range0.contains(Range1)) 1696 return IsAnd ? Cmp1 : Cmp0; 1697 if (Range1.contains(Range0)) 1698 return IsAnd ? Cmp0 : Cmp1; 1699 1700 return nullptr; 1701 } 1702 1703 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1704 const InstrInfoQuery &IIQ) { 1705 // (icmp (add V, C0), C1) & (icmp V, C0) 1706 ICmpInst::Predicate Pred0, Pred1; 1707 const APInt *C0, *C1; 1708 Value *V; 1709 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1710 return nullptr; 1711 1712 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1713 return nullptr; 1714 1715 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1716 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1717 return nullptr; 1718 1719 Type *ITy = Op0->getType(); 1720 bool IsNSW = IIQ.hasNoSignedWrap(AddInst); 1721 bool IsNUW = IIQ.hasNoUnsignedWrap(AddInst); 1722 1723 const APInt Delta = *C1 - *C0; 1724 if (C0->isStrictlyPositive()) { 1725 if (Delta == 2) { 1726 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1727 return getFalse(ITy); 1728 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && IsNSW) 1729 return getFalse(ITy); 1730 } 1731 if (Delta == 1) { 1732 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1733 return getFalse(ITy); 1734 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && IsNSW) 1735 return getFalse(ITy); 1736 } 1737 } 1738 if (C0->getBoolValue() && IsNUW) { 1739 if (Delta == 2) 1740 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1741 return getFalse(ITy); 1742 if (Delta == 1) 1743 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1744 return getFalse(ITy); 1745 } 1746 1747 return nullptr; 1748 } 1749 1750 /// Try to simplify and/or of icmp with ctpop intrinsic. 1751 static Value *simplifyAndOrOfICmpsWithCtpop(ICmpInst *Cmp0, ICmpInst *Cmp1, 1752 bool IsAnd) { 1753 ICmpInst::Predicate Pred0, Pred1; 1754 Value *X; 1755 const APInt *C; 1756 if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)), 1757 m_APInt(C))) || 1758 !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt())) || C->isZero()) 1759 return nullptr; 1760 1761 // (ctpop(X) == C) || (X != 0) --> X != 0 where C > 0 1762 if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_NE) 1763 return Cmp1; 1764 // (ctpop(X) != C) && (X == 0) --> X == 0 where C > 0 1765 if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_EQ) 1766 return Cmp1; 1767 1768 return nullptr; 1769 } 1770 1771 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1772 const SimplifyQuery &Q) { 1773 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1774 return X; 1775 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1776 return X; 1777 1778 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1779 return X; 1780 1781 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, true)) 1782 return X; 1783 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, true)) 1784 return X; 1785 1786 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1787 return X; 1788 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1789 return X; 1790 1791 return nullptr; 1792 } 1793 1794 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1795 const InstrInfoQuery &IIQ) { 1796 // (icmp (add V, C0), C1) | (icmp V, C0) 1797 ICmpInst::Predicate Pred0, Pred1; 1798 const APInt *C0, *C1; 1799 Value *V; 1800 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1801 return nullptr; 1802 1803 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1804 return nullptr; 1805 1806 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1807 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1808 return nullptr; 1809 1810 Type *ITy = Op0->getType(); 1811 bool IsNSW = IIQ.hasNoSignedWrap(AddInst); 1812 bool IsNUW = IIQ.hasNoUnsignedWrap(AddInst); 1813 1814 const APInt Delta = *C1 - *C0; 1815 if (C0->isStrictlyPositive()) { 1816 if (Delta == 2) { 1817 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1818 return getTrue(ITy); 1819 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && IsNSW) 1820 return getTrue(ITy); 1821 } 1822 if (Delta == 1) { 1823 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1824 return getTrue(ITy); 1825 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && IsNSW) 1826 return getTrue(ITy); 1827 } 1828 } 1829 if (C0->getBoolValue() && IsNUW) { 1830 if (Delta == 2) 1831 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1832 return getTrue(ITy); 1833 if (Delta == 1) 1834 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1835 return getTrue(ITy); 1836 } 1837 1838 return nullptr; 1839 } 1840 1841 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1842 const SimplifyQuery &Q) { 1843 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1844 return X; 1845 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1846 return X; 1847 1848 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1849 return X; 1850 1851 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, false)) 1852 return X; 1853 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, false)) 1854 return X; 1855 1856 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1857 return X; 1858 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1859 return X; 1860 1861 return nullptr; 1862 } 1863 1864 static Value *simplifyAndOrOfFCmps(const SimplifyQuery &Q, FCmpInst *LHS, 1865 FCmpInst *RHS, bool IsAnd) { 1866 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1867 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1868 if (LHS0->getType() != RHS0->getType()) 1869 return nullptr; 1870 1871 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1872 if ((PredL == FCmpInst::FCMP_ORD || PredL == FCmpInst::FCMP_UNO) && 1873 ((FCmpInst::isOrdered(PredR) && IsAnd) || 1874 (FCmpInst::isUnordered(PredR) && !IsAnd))) { 1875 // (fcmp ord X, 0) & (fcmp o** X, Y) --> fcmp o** X, Y 1876 // (fcmp uno X, 0) & (fcmp o** X, Y) --> false 1877 // (fcmp uno X, 0) | (fcmp u** X, Y) --> fcmp u** X, Y 1878 // (fcmp ord X, 0) | (fcmp u** X, Y) --> true 1879 if ((LHS0 == RHS0 || LHS0 == RHS1) && match(LHS1, m_PosZeroFP())) 1880 return FCmpInst::isOrdered(PredL) == FCmpInst::isOrdered(PredR) 1881 ? static_cast<Value *>(RHS) 1882 : ConstantInt::getBool(LHS->getType(), !IsAnd); 1883 } 1884 1885 if ((PredR == FCmpInst::FCMP_ORD || PredR == FCmpInst::FCMP_UNO) && 1886 ((FCmpInst::isOrdered(PredL) && IsAnd) || 1887 (FCmpInst::isUnordered(PredL) && !IsAnd))) { 1888 // (fcmp o** X, Y) & (fcmp ord X, 0) --> fcmp o** X, Y 1889 // (fcmp o** X, Y) & (fcmp uno X, 0) --> false 1890 // (fcmp u** X, Y) | (fcmp uno X, 0) --> fcmp u** X, Y 1891 // (fcmp u** X, Y) | (fcmp ord X, 0) --> true 1892 if ((RHS0 == LHS0 || RHS0 == LHS1) && match(RHS1, m_PosZeroFP())) 1893 return FCmpInst::isOrdered(PredL) == FCmpInst::isOrdered(PredR) 1894 ? static_cast<Value *>(LHS) 1895 : ConstantInt::getBool(LHS->getType(), !IsAnd); 1896 } 1897 1898 return nullptr; 1899 } 1900 1901 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, Value *Op0, 1902 Value *Op1, bool IsAnd) { 1903 // Look through casts of the 'and' operands to find compares. 1904 auto *Cast0 = dyn_cast<CastInst>(Op0); 1905 auto *Cast1 = dyn_cast<CastInst>(Op1); 1906 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1907 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1908 Op0 = Cast0->getOperand(0); 1909 Op1 = Cast1->getOperand(0); 1910 } 1911 1912 Value *V = nullptr; 1913 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1914 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1915 if (ICmp0 && ICmp1) 1916 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1917 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1918 1919 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1920 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1921 if (FCmp0 && FCmp1) 1922 V = simplifyAndOrOfFCmps(Q, FCmp0, FCmp1, IsAnd); 1923 1924 if (!V) 1925 return nullptr; 1926 if (!Cast0) 1927 return V; 1928 1929 // If we looked through casts, we can only handle a constant simplification 1930 // because we are not allowed to create a cast instruction here. 1931 if (auto *C = dyn_cast<Constant>(V)) 1932 return ConstantFoldCastOperand(Cast0->getOpcode(), C, Cast0->getType(), 1933 Q.DL); 1934 1935 return nullptr; 1936 } 1937 1938 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 1939 const SimplifyQuery &Q, 1940 bool AllowRefinement, 1941 SmallVectorImpl<Instruction *> *DropFlags, 1942 unsigned MaxRecurse); 1943 1944 static Value *simplifyAndOrWithICmpEq(unsigned Opcode, Value *Op0, Value *Op1, 1945 const SimplifyQuery &Q, 1946 unsigned MaxRecurse) { 1947 assert((Opcode == Instruction::And || Opcode == Instruction::Or) && 1948 "Must be and/or"); 1949 ICmpInst::Predicate Pred; 1950 Value *A, *B; 1951 if (!match(Op0, m_ICmp(Pred, m_Value(A), m_Value(B))) || 1952 !ICmpInst::isEquality(Pred)) 1953 return nullptr; 1954 1955 auto Simplify = [&](Value *Res) -> Value * { 1956 Constant *Absorber = ConstantExpr::getBinOpAbsorber(Opcode, Res->getType()); 1957 1958 // and (icmp eq a, b), x implies (a==b) inside x. 1959 // or (icmp ne a, b), x implies (a==b) inside x. 1960 // If x simplifies to true/false, we can simplify the and/or. 1961 if (Pred == 1962 (Opcode == Instruction::And ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 1963 if (Res == Absorber) 1964 return Absorber; 1965 if (Res == ConstantExpr::getBinOpIdentity(Opcode, Res->getType())) 1966 return Op0; 1967 return nullptr; 1968 } 1969 1970 // If we have and (icmp ne a, b), x and for a==b we can simplify x to false, 1971 // then we can drop the icmp, as x will already be false in the case where 1972 // the icmp is false. Similar for or and true. 1973 if (Res == Absorber) 1974 return Op1; 1975 return nullptr; 1976 }; 1977 1978 // In the final case (Res == Absorber with inverted predicate), it is safe to 1979 // refine poison during simplification, but not undef. For simplicity always 1980 // disable undef-based folds here. 1981 if (Value *Res = simplifyWithOpReplaced(Op1, A, B, Q.getWithoutUndef(), 1982 /* AllowRefinement */ true, 1983 /* DropFlags */ nullptr, MaxRecurse)) 1984 return Simplify(Res); 1985 if (Value *Res = simplifyWithOpReplaced(Op1, B, A, Q.getWithoutUndef(), 1986 /* AllowRefinement */ true, 1987 /* DropFlags */ nullptr, MaxRecurse)) 1988 return Simplify(Res); 1989 1990 return nullptr; 1991 } 1992 1993 /// Given a bitwise logic op, check if the operands are add/sub with a common 1994 /// source value and inverted constant (identity: C - X -> ~(X + ~C)). 1995 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, 1996 Instruction::BinaryOps Opcode) { 1997 assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); 1998 assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); 1999 Value *X; 2000 Constant *C1, *C2; 2001 if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && 2002 match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || 2003 (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && 2004 match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { 2005 if (ConstantExpr::getNot(C1) == C2) { 2006 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 2007 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 2008 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 2009 Type *Ty = Op0->getType(); 2010 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) 2011 : ConstantInt::getAllOnesValue(Ty); 2012 } 2013 } 2014 return nullptr; 2015 } 2016 2017 // Commutative patterns for and that will be tried with both operand orders. 2018 static Value *simplifyAndCommutative(Value *Op0, Value *Op1, 2019 const SimplifyQuery &Q, 2020 unsigned MaxRecurse) { 2021 // ~A & A = 0 2022 if (match(Op0, m_Not(m_Specific(Op1)))) 2023 return Constant::getNullValue(Op0->getType()); 2024 2025 // (A | ?) & A = A 2026 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2027 return Op1; 2028 2029 // (X | ~Y) & (X | Y) --> X 2030 Value *X, *Y; 2031 if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2032 match(Op1, m_c_Or(m_Specific(X), m_Specific(Y)))) 2033 return X; 2034 2035 // If we have a multiplication overflow check that is being 'and'ed with a 2036 // check that one of the multipliers is not zero, we can omit the 'and', and 2037 // only keep the overflow check. 2038 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true)) 2039 return Op1; 2040 2041 // -A & A = A if A is a power of two or zero. 2042 if (match(Op0, m_Neg(m_Specific(Op1))) && 2043 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2044 return Op1; 2045 2046 // This is a similar pattern used for checking if a value is a power-of-2: 2047 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2048 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2049 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2050 return Constant::getNullValue(Op1->getType()); 2051 2052 // (x << N) & ((x << M) - 1) --> 0, where x is known to be a power of 2 and 2053 // M <= N. 2054 const APInt *Shift1, *Shift2; 2055 if (match(Op0, m_Shl(m_Value(X), m_APInt(Shift1))) && 2056 match(Op1, m_Add(m_Shl(m_Specific(X), m_APInt(Shift2)), m_AllOnes())) && 2057 isKnownToBeAPowerOfTwo(X, Q.DL, /*OrZero*/ true, /*Depth*/ 0, Q.AC, 2058 Q.CxtI) && 2059 Shift1->uge(*Shift2)) 2060 return Constant::getNullValue(Op0->getType()); 2061 2062 if (Value *V = 2063 simplifyAndOrWithICmpEq(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2064 return V; 2065 2066 return nullptr; 2067 } 2068 2069 /// Given operands for an And, see if we can fold the result. 2070 /// If not, this returns null. 2071 static Value *simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2072 unsigned MaxRecurse) { 2073 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2074 return C; 2075 2076 // X & poison -> poison 2077 if (isa<PoisonValue>(Op1)) 2078 return Op1; 2079 2080 // X & undef -> 0 2081 if (Q.isUndefValue(Op1)) 2082 return Constant::getNullValue(Op0->getType()); 2083 2084 // X & X = X 2085 if (Op0 == Op1) 2086 return Op0; 2087 2088 // X & 0 = 0 2089 if (match(Op1, m_Zero())) 2090 return Constant::getNullValue(Op0->getType()); 2091 2092 // X & -1 = X 2093 if (match(Op1, m_AllOnes())) 2094 return Op0; 2095 2096 if (Value *Res = simplifyAndCommutative(Op0, Op1, Q, MaxRecurse)) 2097 return Res; 2098 if (Value *Res = simplifyAndCommutative(Op1, Op0, Q, MaxRecurse)) 2099 return Res; 2100 2101 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) 2102 return V; 2103 2104 // A mask that only clears known zeros of a shifted value is a no-op. 2105 const APInt *Mask; 2106 const APInt *ShAmt; 2107 Value *X, *Y; 2108 if (match(Op1, m_APInt(Mask))) { 2109 // If all bits in the inverted and shifted mask are clear: 2110 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2111 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2112 (~(*Mask)).lshr(*ShAmt).isZero()) 2113 return Op0; 2114 2115 // If all bits in the inverted and shifted mask are clear: 2116 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2117 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2118 (~(*Mask)).shl(*ShAmt).isZero()) 2119 return Op0; 2120 } 2121 2122 // and 2^x-1, 2^C --> 0 where x <= C. 2123 const APInt *PowerC; 2124 Value *Shift; 2125 if (match(Op1, m_Power2(PowerC)) && 2126 match(Op0, m_Add(m_Value(Shift), m_AllOnes())) && 2127 isKnownToBeAPowerOfTwo(Shift, Q.DL, /*OrZero*/ false, 0, Q.AC, Q.CxtI, 2128 Q.DT)) { 2129 KnownBits Known = computeKnownBits(Shift, /* Depth */ 0, Q); 2130 // Use getActiveBits() to make use of the additional power of two knowledge 2131 if (PowerC->getActiveBits() >= Known.getMaxValue().getActiveBits()) 2132 return ConstantInt::getNullValue(Op1->getType()); 2133 } 2134 2135 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2136 return V; 2137 2138 // Try some generic simplifications for associative operations. 2139 if (Value *V = 2140 simplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2141 return V; 2142 2143 // And distributes over Or. Try some generic simplifications based on this. 2144 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2145 Instruction::Or, Q, MaxRecurse)) 2146 return V; 2147 2148 // And distributes over Xor. Try some generic simplifications based on this. 2149 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2150 Instruction::Xor, Q, MaxRecurse)) 2151 return V; 2152 2153 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2154 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2155 // A & (A && B) -> A && B 2156 if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero()))) 2157 return Op1; 2158 else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero()))) 2159 return Op0; 2160 } 2161 // If the operation is with the result of a select instruction, check 2162 // whether operating on either branch of the select always yields the same 2163 // value. 2164 if (Value *V = 2165 threadBinOpOverSelect(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2166 return V; 2167 } 2168 2169 // If the operation is with the result of a phi instruction, check whether 2170 // operating on all incoming values of the phi always yields the same value. 2171 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2172 if (Value *V = 2173 threadBinOpOverPHI(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2174 return V; 2175 2176 // Assuming the effective width of Y is not larger than A, i.e. all bits 2177 // from X and Y are disjoint in (X << A) | Y, 2178 // if the mask of this AND op covers all bits of X or Y, while it covers 2179 // no bits from the other, we can bypass this AND op. E.g., 2180 // ((X << A) | Y) & Mask -> Y, 2181 // if Mask = ((1 << effective_width_of(Y)) - 1) 2182 // ((X << A) | Y) & Mask -> X << A, 2183 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2184 // SimplifyDemandedBits in InstCombine can optimize the general case. 2185 // This pattern aims to help other passes for a common case. 2186 Value *XShifted; 2187 if (Q.IIQ.UseInstrInfo && match(Op1, m_APInt(Mask)) && 2188 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2189 m_Value(XShifted)), 2190 m_Value(Y)))) { 2191 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2192 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2193 const KnownBits YKnown = computeKnownBits(Y, /* Depth */ 0, Q); 2194 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 2195 if (EffWidthY <= ShftCnt) { 2196 const KnownBits XKnown = computeKnownBits(X, /* Depth */ 0, Q); 2197 const unsigned EffWidthX = XKnown.countMaxActiveBits(); 2198 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2199 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2200 // If the mask is extracting all bits from X or Y as is, we can skip 2201 // this AND op. 2202 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2203 return Y; 2204 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2205 return XShifted; 2206 } 2207 } 2208 2209 // ((X | Y) ^ X ) & ((X | Y) ^ Y) --> 0 2210 // ((X | Y) ^ Y ) & ((X | Y) ^ X) --> 0 2211 BinaryOperator *Or; 2212 if (match(Op0, m_c_Xor(m_Value(X), 2213 m_CombineAnd(m_BinOp(Or), 2214 m_c_Or(m_Deferred(X), m_Value(Y))))) && 2215 match(Op1, m_c_Xor(m_Specific(Or), m_Specific(Y)))) 2216 return Constant::getNullValue(Op0->getType()); 2217 2218 const APInt *C1; 2219 Value *A; 2220 // (A ^ C) & (A ^ ~C) -> 0 2221 if (match(Op0, m_Xor(m_Value(A), m_APInt(C1))) && 2222 match(Op1, m_Xor(m_Specific(A), m_SpecificInt(~*C1)))) 2223 return Constant::getNullValue(Op0->getType()); 2224 2225 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2226 if (std::optional<bool> Implied = isImpliedCondition(Op0, Op1, Q.DL)) { 2227 // If Op0 is true implies Op1 is true, then Op0 is a subset of Op1. 2228 if (*Implied == true) 2229 return Op0; 2230 // If Op0 is true implies Op1 is false, then they are not true together. 2231 if (*Implied == false) 2232 return ConstantInt::getFalse(Op0->getType()); 2233 } 2234 if (std::optional<bool> Implied = isImpliedCondition(Op1, Op0, Q.DL)) { 2235 // If Op1 is true implies Op0 is true, then Op1 is a subset of Op0. 2236 if (*Implied) 2237 return Op1; 2238 // If Op1 is true implies Op0 is false, then they are not true together. 2239 if (!*Implied) 2240 return ConstantInt::getFalse(Op1->getType()); 2241 } 2242 } 2243 2244 if (Value *V = simplifyByDomEq(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2245 return V; 2246 2247 return nullptr; 2248 } 2249 2250 Value *llvm::simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2251 return ::simplifyAndInst(Op0, Op1, Q, RecursionLimit); 2252 } 2253 2254 // TODO: Many of these folds could use LogicalAnd/LogicalOr. 2255 static Value *simplifyOrLogic(Value *X, Value *Y) { 2256 assert(X->getType() == Y->getType() && "Expected same type for 'or' ops"); 2257 Type *Ty = X->getType(); 2258 2259 // X | ~X --> -1 2260 if (match(Y, m_Not(m_Specific(X)))) 2261 return ConstantInt::getAllOnesValue(Ty); 2262 2263 // X | ~(X & ?) = -1 2264 if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value())))) 2265 return ConstantInt::getAllOnesValue(Ty); 2266 2267 // X | (X & ?) --> X 2268 if (match(Y, m_c_And(m_Specific(X), m_Value()))) 2269 return X; 2270 2271 Value *A, *B; 2272 2273 // (A ^ B) | (A | B) --> A | B 2274 // (A ^ B) | (B | A) --> B | A 2275 if (match(X, m_Xor(m_Value(A), m_Value(B))) && 2276 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2277 return Y; 2278 2279 // ~(A ^ B) | (A | B) --> -1 2280 // ~(A ^ B) | (B | A) --> -1 2281 if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) && 2282 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2283 return ConstantInt::getAllOnesValue(Ty); 2284 2285 // (A & ~B) | (A ^ B) --> A ^ B 2286 // (~B & A) | (A ^ B) --> A ^ B 2287 // (A & ~B) | (B ^ A) --> B ^ A 2288 // (~B & A) | (B ^ A) --> B ^ A 2289 if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) && 2290 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2291 return Y; 2292 2293 // (~A ^ B) | (A & B) --> ~A ^ B 2294 // (B ^ ~A) | (A & B) --> B ^ ~A 2295 // (~A ^ B) | (B & A) --> ~A ^ B 2296 // (B ^ ~A) | (B & A) --> B ^ ~A 2297 if (match(X, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && 2298 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2299 return X; 2300 2301 // (~A | B) | (A ^ B) --> -1 2302 // (~A | B) | (B ^ A) --> -1 2303 // (B | ~A) | (A ^ B) --> -1 2304 // (B | ~A) | (B ^ A) --> -1 2305 if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) && 2306 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2307 return ConstantInt::getAllOnesValue(Ty); 2308 2309 // (~A & B) | ~(A | B) --> ~A 2310 // (~A & B) | ~(B | A) --> ~A 2311 // (B & ~A) | ~(A | B) --> ~A 2312 // (B & ~A) | ~(B | A) --> ~A 2313 Value *NotA; 2314 if (match(X, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), 2315 m_Value(B))) && 2316 match(Y, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2317 return NotA; 2318 // The same is true of Logical And 2319 // TODO: This could share the logic of the version above if there was a 2320 // version of LogicalAnd that allowed more than just i1 types. 2321 if (match(X, m_c_LogicalAnd(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), 2322 m_Value(B))) && 2323 match(Y, m_Not(m_c_LogicalOr(m_Specific(A), m_Specific(B))))) 2324 return NotA; 2325 2326 // ~(A ^ B) | (A & B) --> ~(A ^ B) 2327 // ~(A ^ B) | (B & A) --> ~(A ^ B) 2328 Value *NotAB; 2329 if (match(X, m_CombineAnd(m_Not(m_Xor(m_Value(A), m_Value(B))), 2330 m_Value(NotAB))) && 2331 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2332 return NotAB; 2333 2334 // ~(A & B) | (A ^ B) --> ~(A & B) 2335 // ~(A & B) | (B ^ A) --> ~(A & B) 2336 if (match(X, m_CombineAnd(m_Not(m_And(m_Value(A), m_Value(B))), 2337 m_Value(NotAB))) && 2338 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2339 return NotAB; 2340 2341 return nullptr; 2342 } 2343 2344 /// Given operands for an Or, see if we can fold the result. 2345 /// If not, this returns null. 2346 static Value *simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2347 unsigned MaxRecurse) { 2348 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2349 return C; 2350 2351 // X | poison -> poison 2352 if (isa<PoisonValue>(Op1)) 2353 return Op1; 2354 2355 // X | undef -> -1 2356 // X | -1 = -1 2357 // Do not return Op1 because it may contain undef elements if it's a vector. 2358 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2359 return Constant::getAllOnesValue(Op0->getType()); 2360 2361 // X | X = X 2362 // X | 0 = X 2363 if (Op0 == Op1 || match(Op1, m_Zero())) 2364 return Op0; 2365 2366 if (Value *R = simplifyOrLogic(Op0, Op1)) 2367 return R; 2368 if (Value *R = simplifyOrLogic(Op1, Op0)) 2369 return R; 2370 2371 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) 2372 return V; 2373 2374 // Rotated -1 is still -1: 2375 // (-1 << X) | (-1 >> (C - X)) --> -1 2376 // (-1 >> X) | (-1 << (C - X)) --> -1 2377 // ...with C <= bitwidth (and commuted variants). 2378 Value *X, *Y; 2379 if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) && 2380 match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) || 2381 (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) && 2382 match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) { 2383 const APInt *C; 2384 if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) || 2385 match(Y, m_Sub(m_APInt(C), m_Specific(X)))) && 2386 C->ule(X->getType()->getScalarSizeInBits())) { 2387 return ConstantInt::getAllOnesValue(X->getType()); 2388 } 2389 } 2390 2391 // A funnel shift (rotate) can be decomposed into simpler shifts. See if we 2392 // are mixing in another shift that is redundant with the funnel shift. 2393 2394 // (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y 2395 // (shl X, Y) | (fshl X, ?, Y) --> fshl X, ?, Y 2396 if (match(Op0, 2397 m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) && 2398 match(Op1, m_Shl(m_Specific(X), m_Specific(Y)))) 2399 return Op0; 2400 if (match(Op1, 2401 m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) && 2402 match(Op0, m_Shl(m_Specific(X), m_Specific(Y)))) 2403 return Op1; 2404 2405 // (fshr ?, X, Y) | (lshr X, Y) --> fshr ?, X, Y 2406 // (lshr X, Y) | (fshr ?, X, Y) --> fshr ?, X, Y 2407 if (match(Op0, 2408 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) && 2409 match(Op1, m_LShr(m_Specific(X), m_Specific(Y)))) 2410 return Op0; 2411 if (match(Op1, 2412 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) && 2413 match(Op0, m_LShr(m_Specific(X), m_Specific(Y)))) 2414 return Op1; 2415 2416 if (Value *V = 2417 simplifyAndOrWithICmpEq(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2418 return V; 2419 if (Value *V = 2420 simplifyAndOrWithICmpEq(Instruction::Or, Op1, Op0, Q, MaxRecurse)) 2421 return V; 2422 2423 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2424 return V; 2425 2426 // If we have a multiplication overflow check that is being 'and'ed with a 2427 // check that one of the multipliers is not zero, we can omit the 'and', and 2428 // only keep the overflow check. 2429 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false)) 2430 return Op1; 2431 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false)) 2432 return Op0; 2433 2434 // Try some generic simplifications for associative operations. 2435 if (Value *V = 2436 simplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2437 return V; 2438 2439 // Or distributes over And. Try some generic simplifications based on this. 2440 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2441 Instruction::And, Q, MaxRecurse)) 2442 return V; 2443 2444 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2445 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2446 // A | (A || B) -> A || B 2447 if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value()))) 2448 return Op1; 2449 else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value()))) 2450 return Op0; 2451 } 2452 // If the operation is with the result of a select instruction, check 2453 // whether operating on either branch of the select always yields the same 2454 // value. 2455 if (Value *V = 2456 threadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2457 return V; 2458 } 2459 2460 // (A & C1)|(B & C2) 2461 Value *A, *B; 2462 const APInt *C1, *C2; 2463 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2464 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2465 if (*C1 == ~*C2) { 2466 // (A & C1)|(B & C2) 2467 // If we have: ((V + N) & C1) | (V & C2) 2468 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2469 // replace with V+N. 2470 Value *N; 2471 if (C2->isMask() && // C2 == 0+1+ 2472 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2473 // Add commutes, try both ways. 2474 if (MaskedValueIsZero(N, *C2, Q)) 2475 return A; 2476 } 2477 // Or commutes, try both ways. 2478 if (C1->isMask() && match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2479 // Add commutes, try both ways. 2480 if (MaskedValueIsZero(N, *C1, Q)) 2481 return B; 2482 } 2483 } 2484 } 2485 2486 // If the operation is with the result of a phi instruction, check whether 2487 // operating on all incoming values of the phi always yields the same value. 2488 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2489 if (Value *V = threadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2490 return V; 2491 2492 // (A ^ C) | (A ^ ~C) -> -1, i.e. all bits set to one. 2493 if (match(Op0, m_Xor(m_Value(A), m_APInt(C1))) && 2494 match(Op1, m_Xor(m_Specific(A), m_SpecificInt(~*C1)))) 2495 return Constant::getAllOnesValue(Op0->getType()); 2496 2497 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2498 if (std::optional<bool> Implied = 2499 isImpliedCondition(Op0, Op1, Q.DL, false)) { 2500 // If Op0 is false implies Op1 is false, then Op1 is a subset of Op0. 2501 if (*Implied == false) 2502 return Op0; 2503 // If Op0 is false implies Op1 is true, then at least one is always true. 2504 if (*Implied == true) 2505 return ConstantInt::getTrue(Op0->getType()); 2506 } 2507 if (std::optional<bool> Implied = 2508 isImpliedCondition(Op1, Op0, Q.DL, false)) { 2509 // If Op1 is false implies Op0 is false, then Op0 is a subset of Op1. 2510 if (*Implied == false) 2511 return Op1; 2512 // If Op1 is false implies Op0 is true, then at least one is always true. 2513 if (*Implied == true) 2514 return ConstantInt::getTrue(Op1->getType()); 2515 } 2516 } 2517 2518 if (Value *V = simplifyByDomEq(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2519 return V; 2520 2521 return nullptr; 2522 } 2523 2524 Value *llvm::simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2525 return ::simplifyOrInst(Op0, Op1, Q, RecursionLimit); 2526 } 2527 2528 /// Given operands for a Xor, see if we can fold the result. 2529 /// If not, this returns null. 2530 static Value *simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2531 unsigned MaxRecurse) { 2532 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2533 return C; 2534 2535 // X ^ poison -> poison 2536 if (isa<PoisonValue>(Op1)) 2537 return Op1; 2538 2539 // A ^ undef -> undef 2540 if (Q.isUndefValue(Op1)) 2541 return Op1; 2542 2543 // A ^ 0 = A 2544 if (match(Op1, m_Zero())) 2545 return Op0; 2546 2547 // A ^ A = 0 2548 if (Op0 == Op1) 2549 return Constant::getNullValue(Op0->getType()); 2550 2551 // A ^ ~A = ~A ^ A = -1 2552 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) 2553 return Constant::getAllOnesValue(Op0->getType()); 2554 2555 auto foldAndOrNot = [](Value *X, Value *Y) -> Value * { 2556 Value *A, *B; 2557 // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants. 2558 if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) && 2559 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2560 return A; 2561 2562 // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants. 2563 // The 'not' op must contain a complete -1 operand (no undef elements for 2564 // vector) for the transform to be safe. 2565 Value *NotA; 2566 if (match(X, m_c_Or(m_CombineAnd(m_Not(m_Value(A)), m_Value(NotA)), 2567 m_Value(B))) && 2568 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2569 return NotA; 2570 2571 return nullptr; 2572 }; 2573 if (Value *R = foldAndOrNot(Op0, Op1)) 2574 return R; 2575 if (Value *R = foldAndOrNot(Op1, Op0)) 2576 return R; 2577 2578 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) 2579 return V; 2580 2581 // Try some generic simplifications for associative operations. 2582 if (Value *V = 2583 simplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, MaxRecurse)) 2584 return V; 2585 2586 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2587 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2588 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2589 // only if B and C are equal. If B and C are equal then (since we assume 2590 // that operands have already been simplified) "select(cond, B, C)" should 2591 // have been simplified to the common value of B and C already. Analysing 2592 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2593 // for threading over phi nodes. 2594 2595 if (Value *V = simplifyByDomEq(Instruction::Xor, Op0, Op1, Q, MaxRecurse)) 2596 return V; 2597 2598 return nullptr; 2599 } 2600 2601 Value *llvm::simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2602 return ::simplifyXorInst(Op0, Op1, Q, RecursionLimit); 2603 } 2604 2605 static Type *getCompareTy(Value *Op) { 2606 return CmpInst::makeCmpResultType(Op->getType()); 2607 } 2608 2609 /// Rummage around inside V looking for something equivalent to the comparison 2610 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2611 /// Helper function for analyzing max/min idioms. 2612 static Value *extractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2613 Value *LHS, Value *RHS) { 2614 SelectInst *SI = dyn_cast<SelectInst>(V); 2615 if (!SI) 2616 return nullptr; 2617 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2618 if (!Cmp) 2619 return nullptr; 2620 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2621 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2622 return Cmp; 2623 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2624 LHS == CmpRHS && RHS == CmpLHS) 2625 return Cmp; 2626 return nullptr; 2627 } 2628 2629 /// Return true if the underlying object (storage) must be disjoint from 2630 /// storage returned by any noalias return call. 2631 static bool isAllocDisjoint(const Value *V) { 2632 // For allocas, we consider only static ones (dynamic 2633 // allocas might be transformed into calls to malloc not simultaneously 2634 // live with the compared-to allocation). For globals, we exclude symbols 2635 // that might be resolve lazily to symbols in another dynamically-loaded 2636 // library (and, thus, could be malloc'ed by the implementation). 2637 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2638 return AI->isStaticAlloca(); 2639 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2640 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2641 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2642 !GV->isThreadLocal(); 2643 if (const Argument *A = dyn_cast<Argument>(V)) 2644 return A->hasByValAttr(); 2645 return false; 2646 } 2647 2648 /// Return true if V1 and V2 are each the base of some distict storage region 2649 /// [V, object_size(V)] which do not overlap. Note that zero sized regions 2650 /// *are* possible, and that zero sized regions do not overlap with any other. 2651 static bool haveNonOverlappingStorage(const Value *V1, const Value *V2) { 2652 // Global variables always exist, so they always exist during the lifetime 2653 // of each other and all allocas. Global variables themselves usually have 2654 // non-overlapping storage, but since their addresses are constants, the 2655 // case involving two globals does not reach here and is instead handled in 2656 // constant folding. 2657 // 2658 // Two different allocas usually have different addresses... 2659 // 2660 // However, if there's an @llvm.stackrestore dynamically in between two 2661 // allocas, they may have the same address. It's tempting to reduce the 2662 // scope of the problem by only looking at *static* allocas here. That would 2663 // cover the majority of allocas while significantly reducing the likelihood 2664 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2665 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2666 // an entry block. Also, if we have a block that's not attached to a 2667 // function, we can't tell if it's "static" under the current definition. 2668 // Theoretically, this problem could be fixed by creating a new kind of 2669 // instruction kind specifically for static allocas. Such a new instruction 2670 // could be required to be at the top of the entry block, thus preventing it 2671 // from being subject to a @llvm.stackrestore. Instcombine could even 2672 // convert regular allocas into these special allocas. It'd be nifty. 2673 // However, until then, this problem remains open. 2674 // 2675 // So, we'll assume that two non-empty allocas have different addresses 2676 // for now. 2677 auto isByValArg = [](const Value *V) { 2678 const Argument *A = dyn_cast<Argument>(V); 2679 return A && A->hasByValAttr(); 2680 }; 2681 2682 // Byval args are backed by store which does not overlap with each other, 2683 // allocas, or globals. 2684 if (isByValArg(V1)) 2685 return isa<AllocaInst>(V2) || isa<GlobalVariable>(V2) || isByValArg(V2); 2686 if (isByValArg(V2)) 2687 return isa<AllocaInst>(V1) || isa<GlobalVariable>(V1) || isByValArg(V1); 2688 2689 return isa<AllocaInst>(V1) && 2690 (isa<AllocaInst>(V2) || isa<GlobalVariable>(V2)); 2691 } 2692 2693 // A significant optimization not implemented here is assuming that alloca 2694 // addresses are not equal to incoming argument values. They don't *alias*, 2695 // as we say, but that doesn't mean they aren't equal, so we take a 2696 // conservative approach. 2697 // 2698 // This is inspired in part by C++11 5.10p1: 2699 // "Two pointers of the same type compare equal if and only if they are both 2700 // null, both point to the same function, or both represent the same 2701 // address." 2702 // 2703 // This is pretty permissive. 2704 // 2705 // It's also partly due to C11 6.5.9p6: 2706 // "Two pointers compare equal if and only if both are null pointers, both are 2707 // pointers to the same object (including a pointer to an object and a 2708 // subobject at its beginning) or function, both are pointers to one past the 2709 // last element of the same array object, or one is a pointer to one past the 2710 // end of one array object and the other is a pointer to the start of a 2711 // different array object that happens to immediately follow the first array 2712 // object in the address space.) 2713 // 2714 // C11's version is more restrictive, however there's no reason why an argument 2715 // couldn't be a one-past-the-end value for a stack object in the caller and be 2716 // equal to the beginning of a stack object in the callee. 2717 // 2718 // If the C and C++ standards are ever made sufficiently restrictive in this 2719 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2720 // this optimization. 2721 static Constant *computePointerICmp(CmpInst::Predicate Pred, Value *LHS, 2722 Value *RHS, const SimplifyQuery &Q) { 2723 assert(LHS->getType() == RHS->getType() && "Must have same types"); 2724 const DataLayout &DL = Q.DL; 2725 const TargetLibraryInfo *TLI = Q.TLI; 2726 2727 // We can only fold certain predicates on pointer comparisons. 2728 switch (Pred) { 2729 default: 2730 return nullptr; 2731 2732 // Equality comparisons are easy to fold. 2733 case CmpInst::ICMP_EQ: 2734 case CmpInst::ICMP_NE: 2735 break; 2736 2737 // We can only handle unsigned relational comparisons because 'inbounds' on 2738 // a GEP only protects against unsigned wrapping. 2739 case CmpInst::ICMP_UGT: 2740 case CmpInst::ICMP_UGE: 2741 case CmpInst::ICMP_ULT: 2742 case CmpInst::ICMP_ULE: 2743 // However, we have to switch them to their signed variants to handle 2744 // negative indices from the base pointer. 2745 Pred = ICmpInst::getSignedPredicate(Pred); 2746 break; 2747 } 2748 2749 // Strip off any constant offsets so that we can reason about them. 2750 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2751 // here and compare base addresses like AliasAnalysis does, however there are 2752 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2753 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2754 // doesn't need to guarantee pointer inequality when it says NoAlias. 2755 2756 // Even if an non-inbounds GEP occurs along the path we can still optimize 2757 // equality comparisons concerning the result. 2758 bool AllowNonInbounds = ICmpInst::isEquality(Pred); 2759 unsigned IndexSize = DL.getIndexTypeSizeInBits(LHS->getType()); 2760 APInt LHSOffset(IndexSize, 0), RHSOffset(IndexSize, 0); 2761 LHS = LHS->stripAndAccumulateConstantOffsets(DL, LHSOffset, AllowNonInbounds); 2762 RHS = RHS->stripAndAccumulateConstantOffsets(DL, RHSOffset, AllowNonInbounds); 2763 2764 // If LHS and RHS are related via constant offsets to the same base 2765 // value, we can replace it with an icmp which just compares the offsets. 2766 if (LHS == RHS) 2767 return ConstantInt::get(getCompareTy(LHS), 2768 ICmpInst::compare(LHSOffset, RHSOffset, Pred)); 2769 2770 // Various optimizations for (in)equality comparisons. 2771 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2772 // Different non-empty allocations that exist at the same time have 2773 // different addresses (if the program can tell). If the offsets are 2774 // within the bounds of their allocations (and not one-past-the-end! 2775 // so we can't use inbounds!), and their allocations aren't the same, 2776 // the pointers are not equal. 2777 if (haveNonOverlappingStorage(LHS, RHS)) { 2778 uint64_t LHSSize, RHSSize; 2779 ObjectSizeOpts Opts; 2780 Opts.EvalMode = ObjectSizeOpts::Mode::Min; 2781 auto *F = [](Value *V) -> Function * { 2782 if (auto *I = dyn_cast<Instruction>(V)) 2783 return I->getFunction(); 2784 if (auto *A = dyn_cast<Argument>(V)) 2785 return A->getParent(); 2786 return nullptr; 2787 }(LHS); 2788 Opts.NullIsUnknownSize = F ? NullPointerIsDefined(F) : true; 2789 if (getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2790 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2791 APInt Dist = LHSOffset - RHSOffset; 2792 if (Dist.isNonNegative() ? Dist.ult(LHSSize) : (-Dist).ult(RHSSize)) 2793 return ConstantInt::get(getCompareTy(LHS), 2794 !CmpInst::isTrueWhenEqual(Pred)); 2795 } 2796 } 2797 2798 // If one side of the equality comparison must come from a noalias call 2799 // (meaning a system memory allocation function), and the other side must 2800 // come from a pointer that cannot overlap with dynamically-allocated 2801 // memory within the lifetime of the current function (allocas, byval 2802 // arguments, globals), then determine the comparison result here. 2803 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2804 getUnderlyingObjects(LHS, LHSUObjs); 2805 getUnderlyingObjects(RHS, RHSUObjs); 2806 2807 // Is the set of underlying objects all noalias calls? 2808 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2809 return all_of(Objects, isNoAliasCall); 2810 }; 2811 2812 // Is the set of underlying objects all things which must be disjoint from 2813 // noalias calls. We assume that indexing from such disjoint storage 2814 // into the heap is undefined, and thus offsets can be safely ignored. 2815 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2816 return all_of(Objects, ::isAllocDisjoint); 2817 }; 2818 2819 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2820 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2821 return ConstantInt::get(getCompareTy(LHS), 2822 !CmpInst::isTrueWhenEqual(Pred)); 2823 2824 // Fold comparisons for non-escaping pointer even if the allocation call 2825 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2826 // dynamic allocation call could be either of the operands. Note that 2827 // the other operand can not be based on the alloc - if it were, then 2828 // the cmp itself would be a capture. 2829 Value *MI = nullptr; 2830 if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonZero(RHS, Q)) 2831 MI = LHS; 2832 else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonZero(LHS, Q)) 2833 MI = RHS; 2834 if (MI) { 2835 // FIXME: This is incorrect, see PR54002. While we can assume that the 2836 // allocation is at an address that makes the comparison false, this 2837 // requires that *all* comparisons to that address be false, which 2838 // InstSimplify cannot guarantee. 2839 struct CustomCaptureTracker : public CaptureTracker { 2840 bool Captured = false; 2841 void tooManyUses() override { Captured = true; } 2842 bool captured(const Use *U) override { 2843 if (auto *ICmp = dyn_cast<ICmpInst>(U->getUser())) { 2844 // Comparison against value stored in global variable. Given the 2845 // pointer does not escape, its value cannot be guessed and stored 2846 // separately in a global variable. 2847 unsigned OtherIdx = 1 - U->getOperandNo(); 2848 auto *LI = dyn_cast<LoadInst>(ICmp->getOperand(OtherIdx)); 2849 if (LI && isa<GlobalVariable>(LI->getPointerOperand())) 2850 return false; 2851 } 2852 2853 Captured = true; 2854 return true; 2855 } 2856 }; 2857 CustomCaptureTracker Tracker; 2858 PointerMayBeCaptured(MI, &Tracker); 2859 if (!Tracker.Captured) 2860 return ConstantInt::get(getCompareTy(LHS), 2861 CmpInst::isFalseWhenEqual(Pred)); 2862 } 2863 } 2864 2865 // Otherwise, fail. 2866 return nullptr; 2867 } 2868 2869 /// Fold an icmp when its operands have i1 scalar type. 2870 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2871 Value *RHS, const SimplifyQuery &Q) { 2872 Type *ITy = getCompareTy(LHS); // The return type. 2873 Type *OpTy = LHS->getType(); // The operand type. 2874 if (!OpTy->isIntOrIntVectorTy(1)) 2875 return nullptr; 2876 2877 // A boolean compared to true/false can be reduced in 14 out of the 20 2878 // (10 predicates * 2 constants) possible combinations. The other 2879 // 6 cases require a 'not' of the LHS. 2880 2881 auto ExtractNotLHS = [](Value *V) -> Value * { 2882 Value *X; 2883 if (match(V, m_Not(m_Value(X)))) 2884 return X; 2885 return nullptr; 2886 }; 2887 2888 if (match(RHS, m_Zero())) { 2889 switch (Pred) { 2890 case CmpInst::ICMP_NE: // X != 0 -> X 2891 case CmpInst::ICMP_UGT: // X >u 0 -> X 2892 case CmpInst::ICMP_SLT: // X <s 0 -> X 2893 return LHS; 2894 2895 case CmpInst::ICMP_EQ: // not(X) == 0 -> X != 0 -> X 2896 case CmpInst::ICMP_ULE: // not(X) <=u 0 -> X >u 0 -> X 2897 case CmpInst::ICMP_SGE: // not(X) >=s 0 -> X <s 0 -> X 2898 if (Value *X = ExtractNotLHS(LHS)) 2899 return X; 2900 break; 2901 2902 case CmpInst::ICMP_ULT: // X <u 0 -> false 2903 case CmpInst::ICMP_SGT: // X >s 0 -> false 2904 return getFalse(ITy); 2905 2906 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2907 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2908 return getTrue(ITy); 2909 2910 default: 2911 break; 2912 } 2913 } else if (match(RHS, m_One())) { 2914 switch (Pred) { 2915 case CmpInst::ICMP_EQ: // X == 1 -> X 2916 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2917 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2918 return LHS; 2919 2920 case CmpInst::ICMP_NE: // not(X) != 1 -> X == 1 -> X 2921 case CmpInst::ICMP_ULT: // not(X) <=u 1 -> X >=u 1 -> X 2922 case CmpInst::ICMP_SGT: // not(X) >s 1 -> X <=s -1 -> X 2923 if (Value *X = ExtractNotLHS(LHS)) 2924 return X; 2925 break; 2926 2927 case CmpInst::ICMP_UGT: // X >u 1 -> false 2928 case CmpInst::ICMP_SLT: // X <s -1 -> false 2929 return getFalse(ITy); 2930 2931 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2932 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2933 return getTrue(ITy); 2934 2935 default: 2936 break; 2937 } 2938 } 2939 2940 switch (Pred) { 2941 default: 2942 break; 2943 case ICmpInst::ICMP_UGE: 2944 if (isImpliedCondition(RHS, LHS, Q.DL).value_or(false)) 2945 return getTrue(ITy); 2946 break; 2947 case ICmpInst::ICMP_SGE: 2948 /// For signed comparison, the values for an i1 are 0 and -1 2949 /// respectively. This maps into a truth table of: 2950 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2951 /// 0 | 0 | 1 (0 >= 0) | 1 2952 /// 0 | 1 | 1 (0 >= -1) | 1 2953 /// 1 | 0 | 0 (-1 >= 0) | 0 2954 /// 1 | 1 | 1 (-1 >= -1) | 1 2955 if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false)) 2956 return getTrue(ITy); 2957 break; 2958 case ICmpInst::ICMP_ULE: 2959 if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false)) 2960 return getTrue(ITy); 2961 break; 2962 case ICmpInst::ICMP_SLE: 2963 /// SLE follows the same logic as SGE with the LHS and RHS swapped. 2964 if (isImpliedCondition(RHS, LHS, Q.DL).value_or(false)) 2965 return getTrue(ITy); 2966 break; 2967 } 2968 2969 return nullptr; 2970 } 2971 2972 /// Try hard to fold icmp with zero RHS because this is a common case. 2973 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2974 Value *RHS, const SimplifyQuery &Q) { 2975 if (!match(RHS, m_Zero())) 2976 return nullptr; 2977 2978 Type *ITy = getCompareTy(LHS); // The return type. 2979 switch (Pred) { 2980 default: 2981 llvm_unreachable("Unknown ICmp predicate!"); 2982 case ICmpInst::ICMP_ULT: 2983 return getFalse(ITy); 2984 case ICmpInst::ICMP_UGE: 2985 return getTrue(ITy); 2986 case ICmpInst::ICMP_EQ: 2987 case ICmpInst::ICMP_ULE: 2988 if (isKnownNonZero(LHS, Q)) 2989 return getFalse(ITy); 2990 break; 2991 case ICmpInst::ICMP_NE: 2992 case ICmpInst::ICMP_UGT: 2993 if (isKnownNonZero(LHS, Q)) 2994 return getTrue(ITy); 2995 break; 2996 case ICmpInst::ICMP_SLT: { 2997 KnownBits LHSKnown = computeKnownBits(LHS, /* Depth */ 0, Q); 2998 if (LHSKnown.isNegative()) 2999 return getTrue(ITy); 3000 if (LHSKnown.isNonNegative()) 3001 return getFalse(ITy); 3002 break; 3003 } 3004 case ICmpInst::ICMP_SLE: { 3005 KnownBits LHSKnown = computeKnownBits(LHS, /* Depth */ 0, Q); 3006 if (LHSKnown.isNegative()) 3007 return getTrue(ITy); 3008 if (LHSKnown.isNonNegative() && isKnownNonZero(LHS, Q)) 3009 return getFalse(ITy); 3010 break; 3011 } 3012 case ICmpInst::ICMP_SGE: { 3013 KnownBits LHSKnown = computeKnownBits(LHS, /* Depth */ 0, Q); 3014 if (LHSKnown.isNegative()) 3015 return getFalse(ITy); 3016 if (LHSKnown.isNonNegative()) 3017 return getTrue(ITy); 3018 break; 3019 } 3020 case ICmpInst::ICMP_SGT: { 3021 KnownBits LHSKnown = computeKnownBits(LHS, /* Depth */ 0, Q); 3022 if (LHSKnown.isNegative()) 3023 return getFalse(ITy); 3024 if (LHSKnown.isNonNegative() && isKnownNonZero(LHS, Q)) 3025 return getTrue(ITy); 3026 break; 3027 } 3028 } 3029 3030 return nullptr; 3031 } 3032 3033 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 3034 Value *RHS, const InstrInfoQuery &IIQ) { 3035 Type *ITy = getCompareTy(RHS); // The return type. 3036 3037 Value *X; 3038 const APInt *C; 3039 if (!match(RHS, m_APIntAllowPoison(C))) 3040 return nullptr; 3041 3042 // Sign-bit checks can be optimized to true/false after unsigned 3043 // floating-point casts: 3044 // icmp slt (bitcast (uitofp X)), 0 --> false 3045 // icmp sgt (bitcast (uitofp X)), -1 --> true 3046 if (match(LHS, m_ElementWiseBitCast(m_UIToFP(m_Value(X))))) { 3047 bool TrueIfSigned; 3048 if (isSignBitCheck(Pred, *C, TrueIfSigned)) 3049 return ConstantInt::getBool(ITy, !TrueIfSigned); 3050 } 3051 3052 // Rule out tautological comparisons (eg., ult 0 or uge 0). 3053 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 3054 if (RHS_CR.isEmptySet()) 3055 return ConstantInt::getFalse(ITy); 3056 if (RHS_CR.isFullSet()) 3057 return ConstantInt::getTrue(ITy); 3058 3059 ConstantRange LHS_CR = 3060 computeConstantRange(LHS, CmpInst::isSigned(Pred), IIQ.UseInstrInfo); 3061 if (!LHS_CR.isFullSet()) { 3062 if (RHS_CR.contains(LHS_CR)) 3063 return ConstantInt::getTrue(ITy); 3064 if (RHS_CR.inverse().contains(LHS_CR)) 3065 return ConstantInt::getFalse(ITy); 3066 } 3067 3068 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 3069 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 3070 const APInt *MulC; 3071 if (IIQ.UseInstrInfo && ICmpInst::isEquality(Pred) && 3072 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowPoison(MulC))) && 3073 *MulC != 0 && C->urem(*MulC) != 0) || 3074 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowPoison(MulC))) && 3075 *MulC != 0 && C->srem(*MulC) != 0))) 3076 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 3077 3078 return nullptr; 3079 } 3080 3081 static Value *simplifyICmpWithBinOpOnLHS(CmpInst::Predicate Pred, 3082 BinaryOperator *LBO, Value *RHS, 3083 const SimplifyQuery &Q, 3084 unsigned MaxRecurse) { 3085 Type *ITy = getCompareTy(RHS); // The return type. 3086 3087 Value *Y = nullptr; 3088 // icmp pred (or X, Y), X 3089 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 3090 if (Pred == ICmpInst::ICMP_ULT) 3091 return getFalse(ITy); 3092 if (Pred == ICmpInst::ICMP_UGE) 3093 return getTrue(ITy); 3094 3095 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 3096 KnownBits RHSKnown = computeKnownBits(RHS, /* Depth */ 0, Q); 3097 KnownBits YKnown = computeKnownBits(Y, /* Depth */ 0, Q); 3098 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 3099 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 3100 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 3101 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 3102 } 3103 } 3104 3105 // icmp pred (and X, Y), X 3106 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 3107 if (Pred == ICmpInst::ICMP_UGT) 3108 return getFalse(ITy); 3109 if (Pred == ICmpInst::ICMP_ULE) 3110 return getTrue(ITy); 3111 } 3112 3113 // icmp pred (urem X, Y), Y 3114 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 3115 switch (Pred) { 3116 default: 3117 break; 3118 case ICmpInst::ICMP_SGT: 3119 case ICmpInst::ICMP_SGE: { 3120 KnownBits Known = computeKnownBits(RHS, /* Depth */ 0, Q); 3121 if (!Known.isNonNegative()) 3122 break; 3123 [[fallthrough]]; 3124 } 3125 case ICmpInst::ICMP_EQ: 3126 case ICmpInst::ICMP_UGT: 3127 case ICmpInst::ICMP_UGE: 3128 return getFalse(ITy); 3129 case ICmpInst::ICMP_SLT: 3130 case ICmpInst::ICMP_SLE: { 3131 KnownBits Known = computeKnownBits(RHS, /* Depth */ 0, Q); 3132 if (!Known.isNonNegative()) 3133 break; 3134 [[fallthrough]]; 3135 } 3136 case ICmpInst::ICMP_NE: 3137 case ICmpInst::ICMP_ULT: 3138 case ICmpInst::ICMP_ULE: 3139 return getTrue(ITy); 3140 } 3141 } 3142 3143 // icmp pred (urem X, Y), X 3144 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 3145 if (Pred == ICmpInst::ICMP_ULE) 3146 return getTrue(ITy); 3147 if (Pred == ICmpInst::ICMP_UGT) 3148 return getFalse(ITy); 3149 } 3150 3151 // x >>u y <=u x --> true. 3152 // x >>u y >u x --> false. 3153 // x udiv y <=u x --> true. 3154 // x udiv y >u x --> false. 3155 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 3156 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 3157 // icmp pred (X op Y), X 3158 if (Pred == ICmpInst::ICMP_UGT) 3159 return getFalse(ITy); 3160 if (Pred == ICmpInst::ICMP_ULE) 3161 return getTrue(ITy); 3162 } 3163 3164 // If x is nonzero: 3165 // x >>u C <u x --> true for C != 0. 3166 // x >>u C != x --> true for C != 0. 3167 // x >>u C >=u x --> false for C != 0. 3168 // x >>u C == x --> false for C != 0. 3169 // x udiv C <u x --> true for C != 1. 3170 // x udiv C != x --> true for C != 1. 3171 // x udiv C >=u x --> false for C != 1. 3172 // x udiv C == x --> false for C != 1. 3173 // TODO: allow non-constant shift amount/divisor 3174 const APInt *C; 3175 if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) || 3176 (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) { 3177 if (isKnownNonZero(RHS, Q)) { 3178 switch (Pred) { 3179 default: 3180 break; 3181 case ICmpInst::ICMP_EQ: 3182 case ICmpInst::ICMP_UGE: 3183 return getFalse(ITy); 3184 case ICmpInst::ICMP_NE: 3185 case ICmpInst::ICMP_ULT: 3186 return getTrue(ITy); 3187 case ICmpInst::ICMP_UGT: 3188 case ICmpInst::ICMP_ULE: 3189 // UGT/ULE are handled by the more general case just above 3190 llvm_unreachable("Unexpected UGT/ULE, should have been handled"); 3191 } 3192 } 3193 } 3194 3195 // (x*C1)/C2 <= x for C1 <= C2. 3196 // This holds even if the multiplication overflows: Assume that x != 0 and 3197 // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and 3198 // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. 3199 // 3200 // Additionally, either the multiplication and division might be represented 3201 // as shifts: 3202 // (x*C1)>>C2 <= x for C1 < 2**C2. 3203 // (x<<C1)/C2 <= x for 2**C1 < C2. 3204 const APInt *C1, *C2; 3205 if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3206 C1->ule(*C2)) || 3207 (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3208 C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) || 3209 (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3210 (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) { 3211 if (Pred == ICmpInst::ICMP_UGT) 3212 return getFalse(ITy); 3213 if (Pred == ICmpInst::ICMP_ULE) 3214 return getTrue(ITy); 3215 } 3216 3217 // (sub C, X) == X, C is odd --> false 3218 // (sub C, X) != X, C is odd --> true 3219 if (match(LBO, m_Sub(m_APIntAllowPoison(C), m_Specific(RHS))) && 3220 (*C & 1) == 1 && ICmpInst::isEquality(Pred)) 3221 return (Pred == ICmpInst::ICMP_EQ) ? getFalse(ITy) : getTrue(ITy); 3222 3223 return nullptr; 3224 } 3225 3226 // If only one of the icmp's operands has NSW flags, try to prove that: 3227 // 3228 // icmp slt (x + C1), (x +nsw C2) 3229 // 3230 // is equivalent to: 3231 // 3232 // icmp slt C1, C2 3233 // 3234 // which is true if x + C2 has the NSW flags set and: 3235 // *) C1 < C2 && C1 >= 0, or 3236 // *) C2 < C1 && C1 <= 0. 3237 // 3238 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, 3239 Value *RHS, const InstrInfoQuery &IIQ) { 3240 // TODO: only support icmp slt for now. 3241 if (Pred != CmpInst::ICMP_SLT || !IIQ.UseInstrInfo) 3242 return false; 3243 3244 // Canonicalize nsw add as RHS. 3245 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3246 std::swap(LHS, RHS); 3247 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3248 return false; 3249 3250 Value *X; 3251 const APInt *C1, *C2; 3252 if (!match(LHS, m_Add(m_Value(X), m_APInt(C1))) || 3253 !match(RHS, m_Add(m_Specific(X), m_APInt(C2)))) 3254 return false; 3255 3256 return (C1->slt(*C2) && C1->isNonNegative()) || 3257 (C2->slt(*C1) && C1->isNonPositive()); 3258 } 3259 3260 /// TODO: A large part of this logic is duplicated in InstCombine's 3261 /// foldICmpBinOp(). We should be able to share that and avoid the code 3262 /// duplication. 3263 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 3264 Value *RHS, const SimplifyQuery &Q, 3265 unsigned MaxRecurse) { 3266 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 3267 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 3268 if (MaxRecurse && (LBO || RBO)) { 3269 // Analyze the case when either LHS or RHS is an add instruction. 3270 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3271 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 3272 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 3273 if (LBO && LBO->getOpcode() == Instruction::Add) { 3274 A = LBO->getOperand(0); 3275 B = LBO->getOperand(1); 3276 NoLHSWrapProblem = 3277 ICmpInst::isEquality(Pred) || 3278 (CmpInst::isUnsigned(Pred) && 3279 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 3280 (CmpInst::isSigned(Pred) && 3281 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 3282 } 3283 if (RBO && RBO->getOpcode() == Instruction::Add) { 3284 C = RBO->getOperand(0); 3285 D = RBO->getOperand(1); 3286 NoRHSWrapProblem = 3287 ICmpInst::isEquality(Pred) || 3288 (CmpInst::isUnsigned(Pred) && 3289 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 3290 (CmpInst::isSigned(Pred) && 3291 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 3292 } 3293 3294 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3295 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 3296 if (Value *V = simplifyICmpInst(Pred, A == RHS ? B : A, 3297 Constant::getNullValue(RHS->getType()), Q, 3298 MaxRecurse - 1)) 3299 return V; 3300 3301 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3302 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 3303 if (Value *V = 3304 simplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 3305 C == LHS ? D : C, Q, MaxRecurse - 1)) 3306 return V; 3307 3308 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 3309 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || 3310 trySimplifyICmpWithAdds(Pred, LHS, RHS, Q.IIQ); 3311 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { 3312 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3313 Value *Y, *Z; 3314 if (A == C) { 3315 // C + B == C + D -> B == D 3316 Y = B; 3317 Z = D; 3318 } else if (A == D) { 3319 // D + B == C + D -> B == C 3320 Y = B; 3321 Z = C; 3322 } else if (B == C) { 3323 // A + C == C + D -> A == D 3324 Y = A; 3325 Z = D; 3326 } else { 3327 assert(B == D); 3328 // A + D == C + D -> A == C 3329 Y = A; 3330 Z = C; 3331 } 3332 if (Value *V = simplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 3333 return V; 3334 } 3335 } 3336 3337 if (LBO) 3338 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 3339 return V; 3340 3341 if (RBO) 3342 if (Value *V = simplifyICmpWithBinOpOnLHS( 3343 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 3344 return V; 3345 3346 // 0 - (zext X) pred C 3347 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 3348 const APInt *C; 3349 if (match(RHS, m_APInt(C))) { 3350 if (C->isStrictlyPositive()) { 3351 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) 3352 return ConstantInt::getTrue(getCompareTy(RHS)); 3353 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) 3354 return ConstantInt::getFalse(getCompareTy(RHS)); 3355 } 3356 if (C->isNonNegative()) { 3357 if (Pred == ICmpInst::ICMP_SLE) 3358 return ConstantInt::getTrue(getCompareTy(RHS)); 3359 if (Pred == ICmpInst::ICMP_SGT) 3360 return ConstantInt::getFalse(getCompareTy(RHS)); 3361 } 3362 } 3363 } 3364 3365 // If C2 is a power-of-2 and C is not: 3366 // (C2 << X) == C --> false 3367 // (C2 << X) != C --> true 3368 const APInt *C; 3369 if (match(LHS, m_Shl(m_Power2(), m_Value())) && 3370 match(RHS, m_APIntAllowPoison(C)) && !C->isPowerOf2()) { 3371 // C2 << X can equal zero in some circumstances. 3372 // This simplification might be unsafe if C is zero. 3373 // 3374 // We know it is safe if: 3375 // - The shift is nsw. We can't shift out the one bit. 3376 // - The shift is nuw. We can't shift out the one bit. 3377 // - C2 is one. 3378 // - C isn't zero. 3379 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3380 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3381 match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) { 3382 if (Pred == ICmpInst::ICMP_EQ) 3383 return ConstantInt::getFalse(getCompareTy(RHS)); 3384 if (Pred == ICmpInst::ICMP_NE) 3385 return ConstantInt::getTrue(getCompareTy(RHS)); 3386 } 3387 } 3388 3389 // If C is a power-of-2: 3390 // (C << X) >u 0x8000 --> false 3391 // (C << X) <=u 0x8000 --> true 3392 if (match(LHS, m_Shl(m_Power2(), m_Value())) && match(RHS, m_SignMask())) { 3393 if (Pred == ICmpInst::ICMP_UGT) 3394 return ConstantInt::getFalse(getCompareTy(RHS)); 3395 if (Pred == ICmpInst::ICMP_ULE) 3396 return ConstantInt::getTrue(getCompareTy(RHS)); 3397 } 3398 3399 if (!MaxRecurse || !LBO || !RBO || LBO->getOpcode() != RBO->getOpcode()) 3400 return nullptr; 3401 3402 if (LBO->getOperand(0) == RBO->getOperand(0)) { 3403 switch (LBO->getOpcode()) { 3404 default: 3405 break; 3406 case Instruction::Shl: { 3407 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3408 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3409 if (!NUW || (ICmpInst::isSigned(Pred) && !NSW) || 3410 !isKnownNonZero(LBO->getOperand(0), Q)) 3411 break; 3412 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(1), 3413 RBO->getOperand(1), Q, MaxRecurse - 1)) 3414 return V; 3415 break; 3416 } 3417 // If C1 & C2 == C1, A = X and/or C1, B = X and/or C2: 3418 // icmp ule A, B -> true 3419 // icmp ugt A, B -> false 3420 // icmp sle A, B -> true (C1 and C2 are the same sign) 3421 // icmp sgt A, B -> false (C1 and C2 are the same sign) 3422 case Instruction::And: 3423 case Instruction::Or: { 3424 const APInt *C1, *C2; 3425 if (ICmpInst::isRelational(Pred) && 3426 match(LBO->getOperand(1), m_APInt(C1)) && 3427 match(RBO->getOperand(1), m_APInt(C2))) { 3428 if (!C1->isSubsetOf(*C2)) { 3429 std::swap(C1, C2); 3430 Pred = ICmpInst::getSwappedPredicate(Pred); 3431 } 3432 if (C1->isSubsetOf(*C2)) { 3433 if (Pred == ICmpInst::ICMP_ULE) 3434 return ConstantInt::getTrue(getCompareTy(LHS)); 3435 if (Pred == ICmpInst::ICMP_UGT) 3436 return ConstantInt::getFalse(getCompareTy(LHS)); 3437 if (C1->isNonNegative() == C2->isNonNegative()) { 3438 if (Pred == ICmpInst::ICMP_SLE) 3439 return ConstantInt::getTrue(getCompareTy(LHS)); 3440 if (Pred == ICmpInst::ICMP_SGT) 3441 return ConstantInt::getFalse(getCompareTy(LHS)); 3442 } 3443 } 3444 } 3445 break; 3446 } 3447 } 3448 } 3449 3450 if (LBO->getOperand(1) == RBO->getOperand(1)) { 3451 switch (LBO->getOpcode()) { 3452 default: 3453 break; 3454 case Instruction::UDiv: 3455 case Instruction::LShr: 3456 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3457 !Q.IIQ.isExact(RBO)) 3458 break; 3459 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3460 RBO->getOperand(0), Q, MaxRecurse - 1)) 3461 return V; 3462 break; 3463 case Instruction::SDiv: 3464 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3465 !Q.IIQ.isExact(RBO)) 3466 break; 3467 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3468 RBO->getOperand(0), Q, MaxRecurse - 1)) 3469 return V; 3470 break; 3471 case Instruction::AShr: 3472 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3473 break; 3474 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3475 RBO->getOperand(0), Q, MaxRecurse - 1)) 3476 return V; 3477 break; 3478 case Instruction::Shl: { 3479 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3480 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3481 if (!NUW && !NSW) 3482 break; 3483 if (!NSW && ICmpInst::isSigned(Pred)) 3484 break; 3485 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3486 RBO->getOperand(0), Q, MaxRecurse - 1)) 3487 return V; 3488 break; 3489 } 3490 } 3491 } 3492 return nullptr; 3493 } 3494 3495 /// simplify integer comparisons where at least one operand of the compare 3496 /// matches an integer min/max idiom. 3497 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3498 Value *RHS, const SimplifyQuery &Q, 3499 unsigned MaxRecurse) { 3500 Type *ITy = getCompareTy(LHS); // The return type. 3501 Value *A, *B; 3502 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3503 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3504 3505 // Signed variants on "max(a,b)>=a -> true". 3506 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3507 if (A != RHS) 3508 std::swap(A, B); // smax(A, B) pred A. 3509 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3510 // We analyze this as smax(A, B) pred A. 3511 P = Pred; 3512 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3513 (A == LHS || B == LHS)) { 3514 if (A != LHS) 3515 std::swap(A, B); // A pred smax(A, B). 3516 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3517 // We analyze this as smax(A, B) swapped-pred A. 3518 P = CmpInst::getSwappedPredicate(Pred); 3519 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3520 (A == RHS || B == RHS)) { 3521 if (A != RHS) 3522 std::swap(A, B); // smin(A, B) pred A. 3523 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3524 // We analyze this as smax(-A, -B) swapped-pred -A. 3525 // Note that we do not need to actually form -A or -B thanks to EqP. 3526 P = CmpInst::getSwappedPredicate(Pred); 3527 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3528 (A == LHS || B == LHS)) { 3529 if (A != LHS) 3530 std::swap(A, B); // A pred smin(A, B). 3531 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3532 // We analyze this as smax(-A, -B) pred -A. 3533 // Note that we do not need to actually form -A or -B thanks to EqP. 3534 P = Pred; 3535 } 3536 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3537 // Cases correspond to "max(A, B) p A". 3538 switch (P) { 3539 default: 3540 break; 3541 case CmpInst::ICMP_EQ: 3542 case CmpInst::ICMP_SLE: 3543 // Equivalent to "A EqP B". This may be the same as the condition tested 3544 // in the max/min; if so, we can just return that. 3545 if (Value *V = extractEquivalentCondition(LHS, EqP, A, B)) 3546 return V; 3547 if (Value *V = extractEquivalentCondition(RHS, EqP, A, B)) 3548 return V; 3549 // Otherwise, see if "A EqP B" simplifies. 3550 if (MaxRecurse) 3551 if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3552 return V; 3553 break; 3554 case CmpInst::ICMP_NE: 3555 case CmpInst::ICMP_SGT: { 3556 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3557 // Equivalent to "A InvEqP B". This may be the same as the condition 3558 // tested in the max/min; if so, we can just return that. 3559 if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B)) 3560 return V; 3561 if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B)) 3562 return V; 3563 // Otherwise, see if "A InvEqP B" simplifies. 3564 if (MaxRecurse) 3565 if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3566 return V; 3567 break; 3568 } 3569 case CmpInst::ICMP_SGE: 3570 // Always true. 3571 return getTrue(ITy); 3572 case CmpInst::ICMP_SLT: 3573 // Always false. 3574 return getFalse(ITy); 3575 } 3576 } 3577 3578 // Unsigned variants on "max(a,b)>=a -> true". 3579 P = CmpInst::BAD_ICMP_PREDICATE; 3580 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3581 if (A != RHS) 3582 std::swap(A, B); // umax(A, B) pred A. 3583 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3584 // We analyze this as umax(A, B) pred A. 3585 P = Pred; 3586 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3587 (A == LHS || B == LHS)) { 3588 if (A != LHS) 3589 std::swap(A, B); // A pred umax(A, B). 3590 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3591 // We analyze this as umax(A, B) swapped-pred A. 3592 P = CmpInst::getSwappedPredicate(Pred); 3593 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3594 (A == RHS || B == RHS)) { 3595 if (A != RHS) 3596 std::swap(A, B); // umin(A, B) pred A. 3597 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3598 // We analyze this as umax(-A, -B) swapped-pred -A. 3599 // Note that we do not need to actually form -A or -B thanks to EqP. 3600 P = CmpInst::getSwappedPredicate(Pred); 3601 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3602 (A == LHS || B == LHS)) { 3603 if (A != LHS) 3604 std::swap(A, B); // A pred umin(A, B). 3605 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3606 // We analyze this as umax(-A, -B) pred -A. 3607 // Note that we do not need to actually form -A or -B thanks to EqP. 3608 P = Pred; 3609 } 3610 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3611 // Cases correspond to "max(A, B) p A". 3612 switch (P) { 3613 default: 3614 break; 3615 case CmpInst::ICMP_EQ: 3616 case CmpInst::ICMP_ULE: 3617 // Equivalent to "A EqP B". This may be the same as the condition tested 3618 // in the max/min; if so, we can just return that. 3619 if (Value *V = extractEquivalentCondition(LHS, EqP, A, B)) 3620 return V; 3621 if (Value *V = extractEquivalentCondition(RHS, EqP, A, B)) 3622 return V; 3623 // Otherwise, see if "A EqP B" simplifies. 3624 if (MaxRecurse) 3625 if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3626 return V; 3627 break; 3628 case CmpInst::ICMP_NE: 3629 case CmpInst::ICMP_UGT: { 3630 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3631 // Equivalent to "A InvEqP B". This may be the same as the condition 3632 // tested in the max/min; if so, we can just return that. 3633 if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B)) 3634 return V; 3635 if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B)) 3636 return V; 3637 // Otherwise, see if "A InvEqP B" simplifies. 3638 if (MaxRecurse) 3639 if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3640 return V; 3641 break; 3642 } 3643 case CmpInst::ICMP_UGE: 3644 return getTrue(ITy); 3645 case CmpInst::ICMP_ULT: 3646 return getFalse(ITy); 3647 } 3648 } 3649 3650 // Comparing 1 each of min/max with a common operand? 3651 // Canonicalize min operand to RHS. 3652 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3653 match(LHS, m_SMin(m_Value(), m_Value()))) { 3654 std::swap(LHS, RHS); 3655 Pred = ICmpInst::getSwappedPredicate(Pred); 3656 } 3657 3658 Value *C, *D; 3659 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3660 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3661 (A == C || A == D || B == C || B == D)) { 3662 // smax(A, B) >=s smin(A, D) --> true 3663 if (Pred == CmpInst::ICMP_SGE) 3664 return getTrue(ITy); 3665 // smax(A, B) <s smin(A, D) --> false 3666 if (Pred == CmpInst::ICMP_SLT) 3667 return getFalse(ITy); 3668 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3669 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3670 (A == C || A == D || B == C || B == D)) { 3671 // umax(A, B) >=u umin(A, D) --> true 3672 if (Pred == CmpInst::ICMP_UGE) 3673 return getTrue(ITy); 3674 // umax(A, B) <u umin(A, D) --> false 3675 if (Pred == CmpInst::ICMP_ULT) 3676 return getFalse(ITy); 3677 } 3678 3679 return nullptr; 3680 } 3681 3682 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3683 Value *LHS, Value *RHS, 3684 const SimplifyQuery &Q) { 3685 // Gracefully handle instructions that have not been inserted yet. 3686 if (!Q.AC || !Q.CxtI) 3687 return nullptr; 3688 3689 for (Value *AssumeBaseOp : {LHS, RHS}) { 3690 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3691 if (!AssumeVH) 3692 continue; 3693 3694 CallInst *Assume = cast<CallInst>(AssumeVH); 3695 if (std::optional<bool> Imp = isImpliedCondition( 3696 Assume->getArgOperand(0), Predicate, LHS, RHS, Q.DL)) 3697 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3698 return ConstantInt::get(getCompareTy(LHS), *Imp); 3699 } 3700 } 3701 3702 return nullptr; 3703 } 3704 3705 static Value *simplifyICmpWithIntrinsicOnLHS(CmpInst::Predicate Pred, 3706 Value *LHS, Value *RHS) { 3707 auto *II = dyn_cast<IntrinsicInst>(LHS); 3708 if (!II) 3709 return nullptr; 3710 3711 switch (II->getIntrinsicID()) { 3712 case Intrinsic::uadd_sat: 3713 // uadd.sat(X, Y) uge X, uadd.sat(X, Y) uge Y 3714 if (II->getArgOperand(0) == RHS || II->getArgOperand(1) == RHS) { 3715 if (Pred == ICmpInst::ICMP_UGE) 3716 return ConstantInt::getTrue(getCompareTy(II)); 3717 if (Pred == ICmpInst::ICMP_ULT) 3718 return ConstantInt::getFalse(getCompareTy(II)); 3719 } 3720 return nullptr; 3721 case Intrinsic::usub_sat: 3722 // usub.sat(X, Y) ule X 3723 if (II->getArgOperand(0) == RHS) { 3724 if (Pred == ICmpInst::ICMP_ULE) 3725 return ConstantInt::getTrue(getCompareTy(II)); 3726 if (Pred == ICmpInst::ICMP_UGT) 3727 return ConstantInt::getFalse(getCompareTy(II)); 3728 } 3729 return nullptr; 3730 default: 3731 return nullptr; 3732 } 3733 } 3734 3735 /// Helper method to get range from metadata or attribute. 3736 static std::optional<ConstantRange> getRange(Value *V, 3737 const InstrInfoQuery &IIQ) { 3738 if (Instruction *I = dyn_cast<Instruction>(V)) 3739 if (MDNode *MD = IIQ.getMetadata(I, LLVMContext::MD_range)) 3740 return getConstantRangeFromMetadata(*MD); 3741 3742 if (const Argument *A = dyn_cast<Argument>(V)) 3743 return A->getRange(); 3744 else if (const CallBase *CB = dyn_cast<CallBase>(V)) 3745 return CB->getRange(); 3746 3747 return std::nullopt; 3748 } 3749 3750 /// Given operands for an ICmpInst, see if we can fold the result. 3751 /// If not, this returns null. 3752 static Value *simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3753 const SimplifyQuery &Q, unsigned MaxRecurse) { 3754 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3755 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3756 3757 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3758 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3759 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3760 3761 // If we have a constant, make sure it is on the RHS. 3762 std::swap(LHS, RHS); 3763 Pred = CmpInst::getSwappedPredicate(Pred); 3764 } 3765 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3766 3767 Type *ITy = getCompareTy(LHS); // The return type. 3768 3769 // icmp poison, X -> poison 3770 if (isa<PoisonValue>(RHS)) 3771 return PoisonValue::get(ITy); 3772 3773 // For EQ and NE, we can always pick a value for the undef to make the 3774 // predicate pass or fail, so we can return undef. 3775 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3776 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3777 return UndefValue::get(ITy); 3778 3779 // icmp X, X -> true/false 3780 // icmp X, undef -> true/false because undef could be X. 3781 if (LHS == RHS || Q.isUndefValue(RHS)) 3782 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3783 3784 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3785 return V; 3786 3787 // TODO: Sink/common this with other potentially expensive calls that use 3788 // ValueTracking? See comment below for isKnownNonEqual(). 3789 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3790 return V; 3791 3792 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3793 return V; 3794 3795 // If both operands have range metadata, use the metadata 3796 // to simplify the comparison. 3797 if (std::optional<ConstantRange> RhsCr = getRange(RHS, Q.IIQ)) 3798 if (std::optional<ConstantRange> LhsCr = getRange(LHS, Q.IIQ)) { 3799 if (LhsCr->icmp(Pred, *RhsCr)) 3800 return ConstantInt::getTrue(ITy); 3801 3802 if (LhsCr->icmp(CmpInst::getInversePredicate(Pred), *RhsCr)) 3803 return ConstantInt::getFalse(ITy); 3804 } 3805 3806 // Compare of cast, for example (zext X) != 0 -> X != 0 3807 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3808 Instruction *LI = cast<CastInst>(LHS); 3809 Value *SrcOp = LI->getOperand(0); 3810 Type *SrcTy = SrcOp->getType(); 3811 Type *DstTy = LI->getType(); 3812 3813 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3814 // if the integer type is the same size as the pointer type. 3815 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3816 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3817 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3818 // Transfer the cast to the constant. 3819 if (Value *V = simplifyICmpInst(Pred, SrcOp, 3820 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3821 Q, MaxRecurse - 1)) 3822 return V; 3823 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3824 if (RI->getOperand(0)->getType() == SrcTy) 3825 // Compare without the cast. 3826 if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q, 3827 MaxRecurse - 1)) 3828 return V; 3829 } 3830 } 3831 3832 if (isa<ZExtInst>(LHS)) { 3833 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3834 // same type. 3835 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3836 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3837 // Compare X and Y. Note that signed predicates become unsigned. 3838 if (Value *V = 3839 simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), SrcOp, 3840 RI->getOperand(0), Q, MaxRecurse - 1)) 3841 return V; 3842 } 3843 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3844 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3845 if (SrcOp == RI->getOperand(0)) { 3846 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3847 return ConstantInt::getTrue(ITy); 3848 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3849 return ConstantInt::getFalse(ITy); 3850 } 3851 } 3852 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3853 // too. If not, then try to deduce the result of the comparison. 3854 else if (match(RHS, m_ImmConstant())) { 3855 Constant *C = dyn_cast<Constant>(RHS); 3856 assert(C != nullptr); 3857 3858 // Compute the constant that would happen if we truncated to SrcTy then 3859 // reextended to DstTy. 3860 Constant *Trunc = 3861 ConstantFoldCastOperand(Instruction::Trunc, C, SrcTy, Q.DL); 3862 assert(Trunc && "Constant-fold of ImmConstant should not fail"); 3863 Constant *RExt = 3864 ConstantFoldCastOperand(CastInst::ZExt, Trunc, DstTy, Q.DL); 3865 assert(RExt && "Constant-fold of ImmConstant should not fail"); 3866 Constant *AnyEq = 3867 ConstantFoldCompareInstOperands(ICmpInst::ICMP_EQ, RExt, C, Q.DL); 3868 assert(AnyEq && "Constant-fold of ImmConstant should not fail"); 3869 3870 // If the re-extended constant didn't change any of the elements then 3871 // this is effectively also a case of comparing two zero-extended 3872 // values. 3873 if (AnyEq->isAllOnesValue() && MaxRecurse) 3874 if (Value *V = simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3875 SrcOp, Trunc, Q, MaxRecurse - 1)) 3876 return V; 3877 3878 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3879 // there. Use this to work out the result of the comparison. 3880 if (AnyEq->isNullValue()) { 3881 switch (Pred) { 3882 default: 3883 llvm_unreachable("Unknown ICmp predicate!"); 3884 // LHS <u RHS. 3885 case ICmpInst::ICMP_EQ: 3886 case ICmpInst::ICMP_UGT: 3887 case ICmpInst::ICMP_UGE: 3888 return Constant::getNullValue(ITy); 3889 3890 case ICmpInst::ICMP_NE: 3891 case ICmpInst::ICMP_ULT: 3892 case ICmpInst::ICMP_ULE: 3893 return Constant::getAllOnesValue(ITy); 3894 3895 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3896 // is non-negative then LHS <s RHS. 3897 case ICmpInst::ICMP_SGT: 3898 case ICmpInst::ICMP_SGE: 3899 return ConstantFoldCompareInstOperands( 3900 ICmpInst::ICMP_SLT, C, Constant::getNullValue(C->getType()), 3901 Q.DL); 3902 case ICmpInst::ICMP_SLT: 3903 case ICmpInst::ICMP_SLE: 3904 return ConstantFoldCompareInstOperands( 3905 ICmpInst::ICMP_SGE, C, Constant::getNullValue(C->getType()), 3906 Q.DL); 3907 } 3908 } 3909 } 3910 } 3911 3912 if (isa<SExtInst>(LHS)) { 3913 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3914 // same type. 3915 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3916 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3917 // Compare X and Y. Note that the predicate does not change. 3918 if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q, 3919 MaxRecurse - 1)) 3920 return V; 3921 } 3922 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3923 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3924 if (SrcOp == RI->getOperand(0)) { 3925 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3926 return ConstantInt::getTrue(ITy); 3927 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3928 return ConstantInt::getFalse(ITy); 3929 } 3930 } 3931 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3932 // too. If not, then try to deduce the result of the comparison. 3933 else if (match(RHS, m_ImmConstant())) { 3934 Constant *C = cast<Constant>(RHS); 3935 3936 // Compute the constant that would happen if we truncated to SrcTy then 3937 // reextended to DstTy. 3938 Constant *Trunc = 3939 ConstantFoldCastOperand(Instruction::Trunc, C, SrcTy, Q.DL); 3940 assert(Trunc && "Constant-fold of ImmConstant should not fail"); 3941 Constant *RExt = 3942 ConstantFoldCastOperand(CastInst::SExt, Trunc, DstTy, Q.DL); 3943 assert(RExt && "Constant-fold of ImmConstant should not fail"); 3944 Constant *AnyEq = 3945 ConstantFoldCompareInstOperands(ICmpInst::ICMP_EQ, RExt, C, Q.DL); 3946 assert(AnyEq && "Constant-fold of ImmConstant should not fail"); 3947 3948 // If the re-extended constant didn't change then this is effectively 3949 // also a case of comparing two sign-extended values. 3950 if (AnyEq->isAllOnesValue() && MaxRecurse) 3951 if (Value *V = 3952 simplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse - 1)) 3953 return V; 3954 3955 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3956 // bits there. Use this to work out the result of the comparison. 3957 if (AnyEq->isNullValue()) { 3958 switch (Pred) { 3959 default: 3960 llvm_unreachable("Unknown ICmp predicate!"); 3961 case ICmpInst::ICMP_EQ: 3962 return Constant::getNullValue(ITy); 3963 case ICmpInst::ICMP_NE: 3964 return Constant::getAllOnesValue(ITy); 3965 3966 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3967 // LHS >s RHS. 3968 case ICmpInst::ICMP_SGT: 3969 case ICmpInst::ICMP_SGE: 3970 return ConstantFoldCompareInstOperands( 3971 ICmpInst::ICMP_SLT, C, Constant::getNullValue(C->getType()), 3972 Q.DL); 3973 case ICmpInst::ICMP_SLT: 3974 case ICmpInst::ICMP_SLE: 3975 return ConstantFoldCompareInstOperands( 3976 ICmpInst::ICMP_SGE, C, Constant::getNullValue(C->getType()), 3977 Q.DL); 3978 3979 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3980 // LHS >u RHS. 3981 case ICmpInst::ICMP_UGT: 3982 case ICmpInst::ICMP_UGE: 3983 // Comparison is true iff the LHS <s 0. 3984 if (MaxRecurse) 3985 if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3986 Constant::getNullValue(SrcTy), Q, 3987 MaxRecurse - 1)) 3988 return V; 3989 break; 3990 case ICmpInst::ICMP_ULT: 3991 case ICmpInst::ICMP_ULE: 3992 // Comparison is true iff the LHS >=s 0. 3993 if (MaxRecurse) 3994 if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3995 Constant::getNullValue(SrcTy), Q, 3996 MaxRecurse - 1)) 3997 return V; 3998 break; 3999 } 4000 } 4001 } 4002 } 4003 } 4004 4005 // icmp eq|ne X, Y -> false|true if X != Y 4006 // This is potentially expensive, and we have already computedKnownBits for 4007 // compares with 0 above here, so only try this for a non-zero compare. 4008 if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) && 4009 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 4010 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 4011 } 4012 4013 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 4014 return V; 4015 4016 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 4017 return V; 4018 4019 if (Value *V = simplifyICmpWithIntrinsicOnLHS(Pred, LHS, RHS)) 4020 return V; 4021 if (Value *V = simplifyICmpWithIntrinsicOnLHS( 4022 ICmpInst::getSwappedPredicate(Pred), RHS, LHS)) 4023 return V; 4024 4025 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 4026 return V; 4027 4028 if (std::optional<bool> Res = 4029 isImpliedByDomCondition(Pred, LHS, RHS, Q.CxtI, Q.DL)) 4030 return ConstantInt::getBool(ITy, *Res); 4031 4032 // Simplify comparisons of related pointers using a powerful, recursive 4033 // GEP-walk when we have target data available.. 4034 if (LHS->getType()->isPointerTy()) 4035 if (auto *C = computePointerICmp(Pred, LHS, RHS, Q)) 4036 return C; 4037 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 4038 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 4039 if (CLHS->getPointerOperandType() == CRHS->getPointerOperandType() && 4040 Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 4041 Q.DL.getTypeSizeInBits(CLHS->getType())) 4042 if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(), 4043 CRHS->getPointerOperand(), Q)) 4044 return C; 4045 4046 // If the comparison is with the result of a select instruction, check whether 4047 // comparing with either branch of the select always yields the same value. 4048 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 4049 if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 4050 return V; 4051 4052 // If the comparison is with the result of a phi instruction, check whether 4053 // doing the compare with each incoming phi value yields a common result. 4054 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 4055 if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 4056 return V; 4057 4058 return nullptr; 4059 } 4060 4061 Value *llvm::simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4062 const SimplifyQuery &Q) { 4063 return ::simplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 4064 } 4065 4066 /// Given operands for an FCmpInst, see if we can fold the result. 4067 /// If not, this returns null. 4068 static Value *simplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4069 FastMathFlags FMF, const SimplifyQuery &Q, 4070 unsigned MaxRecurse) { 4071 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 4072 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 4073 4074 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 4075 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 4076 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI, 4077 Q.CxtI); 4078 4079 // If we have a constant, make sure it is on the RHS. 4080 std::swap(LHS, RHS); 4081 Pred = CmpInst::getSwappedPredicate(Pred); 4082 } 4083 4084 // Fold trivial predicates. 4085 Type *RetTy = getCompareTy(LHS); 4086 if (Pred == FCmpInst::FCMP_FALSE) 4087 return getFalse(RetTy); 4088 if (Pred == FCmpInst::FCMP_TRUE) 4089 return getTrue(RetTy); 4090 4091 // fcmp pred x, poison and fcmp pred poison, x 4092 // fold to poison 4093 if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS)) 4094 return PoisonValue::get(RetTy); 4095 4096 // fcmp pred x, undef and fcmp pred undef, x 4097 // fold to true if unordered, false if ordered 4098 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 4099 // Choosing NaN for the undef will always make unordered comparison succeed 4100 // and ordered comparison fail. 4101 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 4102 } 4103 4104 // fcmp x,x -> true/false. Not all compares are foldable. 4105 if (LHS == RHS) { 4106 if (CmpInst::isTrueWhenEqual(Pred)) 4107 return getTrue(RetTy); 4108 if (CmpInst::isFalseWhenEqual(Pred)) 4109 return getFalse(RetTy); 4110 } 4111 4112 // Fold (un)ordered comparison if we can determine there are no NaNs. 4113 // 4114 // This catches the 2 variable input case, constants are handled below as a 4115 // class-like compare. 4116 if (Pred == FCmpInst::FCMP_ORD || Pred == FCmpInst::FCMP_UNO) { 4117 KnownFPClass RHSClass = 4118 computeKnownFPClass(RHS, fcAllFlags, /*Depth=*/0, Q); 4119 KnownFPClass LHSClass = 4120 computeKnownFPClass(LHS, fcAllFlags, /*Depth=*/0, Q); 4121 4122 if (FMF.noNaNs() || 4123 (RHSClass.isKnownNeverNaN() && LHSClass.isKnownNeverNaN())) 4124 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 4125 4126 if (RHSClass.isKnownAlwaysNaN() || LHSClass.isKnownAlwaysNaN()) 4127 return ConstantInt::get(RetTy, Pred == CmpInst::FCMP_UNO); 4128 } 4129 4130 const APFloat *C = nullptr; 4131 match(RHS, m_APFloatAllowPoison(C)); 4132 std::optional<KnownFPClass> FullKnownClassLHS; 4133 4134 // Lazily compute the possible classes for LHS. Avoid computing it twice if 4135 // RHS is a 0. 4136 auto computeLHSClass = [=, &FullKnownClassLHS](FPClassTest InterestedFlags = 4137 fcAllFlags) { 4138 if (FullKnownClassLHS) 4139 return *FullKnownClassLHS; 4140 return computeKnownFPClass(LHS, FMF, InterestedFlags, 0, Q); 4141 }; 4142 4143 if (C && Q.CxtI) { 4144 // Fold out compares that express a class test. 4145 // 4146 // FIXME: Should be able to perform folds without context 4147 // instruction. Always pass in the context function? 4148 4149 const Function *ParentF = Q.CxtI->getFunction(); 4150 auto [ClassVal, ClassTest] = fcmpToClassTest(Pred, *ParentF, LHS, C); 4151 if (ClassVal) { 4152 FullKnownClassLHS = computeLHSClass(); 4153 if ((FullKnownClassLHS->KnownFPClasses & ClassTest) == fcNone) 4154 return getFalse(RetTy); 4155 if ((FullKnownClassLHS->KnownFPClasses & ~ClassTest) == fcNone) 4156 return getTrue(RetTy); 4157 } 4158 } 4159 4160 // Handle fcmp with constant RHS. 4161 if (C) { 4162 // TODO: If we always required a context function, we wouldn't need to 4163 // special case nans. 4164 if (C->isNaN()) 4165 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 4166 4167 // TODO: Need version fcmpToClassTest which returns implied class when the 4168 // compare isn't a complete class test. e.g. > 1.0 implies fcPositive, but 4169 // isn't implementable as a class call. 4170 if (C->isNegative() && !C->isNegZero()) { 4171 FPClassTest Interested = KnownFPClass::OrderedLessThanZeroMask; 4172 4173 // TODO: We can catch more cases by using a range check rather than 4174 // relying on CannotBeOrderedLessThanZero. 4175 switch (Pred) { 4176 case FCmpInst::FCMP_UGE: 4177 case FCmpInst::FCMP_UGT: 4178 case FCmpInst::FCMP_UNE: { 4179 KnownFPClass KnownClass = computeLHSClass(Interested); 4180 4181 // (X >= 0) implies (X > C) when (C < 0) 4182 if (KnownClass.cannotBeOrderedLessThanZero()) 4183 return getTrue(RetTy); 4184 break; 4185 } 4186 case FCmpInst::FCMP_OEQ: 4187 case FCmpInst::FCMP_OLE: 4188 case FCmpInst::FCMP_OLT: { 4189 KnownFPClass KnownClass = computeLHSClass(Interested); 4190 4191 // (X >= 0) implies !(X < C) when (C < 0) 4192 if (KnownClass.cannotBeOrderedLessThanZero()) 4193 return getFalse(RetTy); 4194 break; 4195 } 4196 default: 4197 break; 4198 } 4199 } 4200 // Check comparison of [minnum/maxnum with constant] with other constant. 4201 const APFloat *C2; 4202 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 4203 *C2 < *C) || 4204 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 4205 *C2 > *C)) { 4206 bool IsMaxNum = 4207 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 4208 // The ordered relationship and minnum/maxnum guarantee that we do not 4209 // have NaN constants, so ordered/unordered preds are handled the same. 4210 switch (Pred) { 4211 case FCmpInst::FCMP_OEQ: 4212 case FCmpInst::FCMP_UEQ: 4213 // minnum(X, LesserC) == C --> false 4214 // maxnum(X, GreaterC) == C --> false 4215 return getFalse(RetTy); 4216 case FCmpInst::FCMP_ONE: 4217 case FCmpInst::FCMP_UNE: 4218 // minnum(X, LesserC) != C --> true 4219 // maxnum(X, GreaterC) != C --> true 4220 return getTrue(RetTy); 4221 case FCmpInst::FCMP_OGE: 4222 case FCmpInst::FCMP_UGE: 4223 case FCmpInst::FCMP_OGT: 4224 case FCmpInst::FCMP_UGT: 4225 // minnum(X, LesserC) >= C --> false 4226 // minnum(X, LesserC) > C --> false 4227 // maxnum(X, GreaterC) >= C --> true 4228 // maxnum(X, GreaterC) > C --> true 4229 return ConstantInt::get(RetTy, IsMaxNum); 4230 case FCmpInst::FCMP_OLE: 4231 case FCmpInst::FCMP_ULE: 4232 case FCmpInst::FCMP_OLT: 4233 case FCmpInst::FCMP_ULT: 4234 // minnum(X, LesserC) <= C --> true 4235 // minnum(X, LesserC) < C --> true 4236 // maxnum(X, GreaterC) <= C --> false 4237 // maxnum(X, GreaterC) < C --> false 4238 return ConstantInt::get(RetTy, !IsMaxNum); 4239 default: 4240 // TRUE/FALSE/ORD/UNO should be handled before this. 4241 llvm_unreachable("Unexpected fcmp predicate"); 4242 } 4243 } 4244 } 4245 4246 // TODO: Could fold this with above if there were a matcher which returned all 4247 // classes in a non-splat vector. 4248 if (match(RHS, m_AnyZeroFP())) { 4249 switch (Pred) { 4250 case FCmpInst::FCMP_OGE: 4251 case FCmpInst::FCMP_ULT: { 4252 FPClassTest Interested = KnownFPClass::OrderedLessThanZeroMask; 4253 if (!FMF.noNaNs()) 4254 Interested |= fcNan; 4255 4256 KnownFPClass Known = computeLHSClass(Interested); 4257 4258 // Positive or zero X >= 0.0 --> true 4259 // Positive or zero X < 0.0 --> false 4260 if ((FMF.noNaNs() || Known.isKnownNeverNaN()) && 4261 Known.cannotBeOrderedLessThanZero()) 4262 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 4263 break; 4264 } 4265 case FCmpInst::FCMP_UGE: 4266 case FCmpInst::FCMP_OLT: { 4267 FPClassTest Interested = KnownFPClass::OrderedLessThanZeroMask; 4268 KnownFPClass Known = computeLHSClass(Interested); 4269 4270 // Positive or zero or nan X >= 0.0 --> true 4271 // Positive or zero or nan X < 0.0 --> false 4272 if (Known.cannotBeOrderedLessThanZero()) 4273 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 4274 break; 4275 } 4276 default: 4277 break; 4278 } 4279 } 4280 4281 // If the comparison is with the result of a select instruction, check whether 4282 // comparing with either branch of the select always yields the same value. 4283 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 4284 if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 4285 return V; 4286 4287 // If the comparison is with the result of a phi instruction, check whether 4288 // doing the compare with each incoming phi value yields a common result. 4289 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 4290 if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 4291 return V; 4292 4293 return nullptr; 4294 } 4295 4296 Value *llvm::simplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4297 FastMathFlags FMF, const SimplifyQuery &Q) { 4298 return ::simplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 4299 } 4300 4301 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4302 const SimplifyQuery &Q, 4303 bool AllowRefinement, 4304 SmallVectorImpl<Instruction *> *DropFlags, 4305 unsigned MaxRecurse) { 4306 assert((AllowRefinement || !Q.CanUseUndef) && 4307 "If AllowRefinement=false then CanUseUndef=false"); 4308 4309 // Trivial replacement. 4310 if (V == Op) 4311 return RepOp; 4312 4313 if (!MaxRecurse--) 4314 return nullptr; 4315 4316 // We cannot replace a constant, and shouldn't even try. 4317 if (isa<Constant>(Op)) 4318 return nullptr; 4319 4320 auto *I = dyn_cast<Instruction>(V); 4321 if (!I) 4322 return nullptr; 4323 4324 // The arguments of a phi node might refer to a value from a previous 4325 // cycle iteration. 4326 if (isa<PHINode>(I)) 4327 return nullptr; 4328 4329 if (Op->getType()->isVectorTy()) { 4330 // For vector types, the simplification must hold per-lane, so forbid 4331 // potentially cross-lane operations like shufflevector. 4332 if (!I->getType()->isVectorTy() || isa<ShuffleVectorInst>(I) || 4333 isa<CallBase>(I) || isa<BitCastInst>(I)) 4334 return nullptr; 4335 } 4336 4337 // Don't fold away llvm.is.constant checks based on assumptions. 4338 if (match(I, m_Intrinsic<Intrinsic::is_constant>())) 4339 return nullptr; 4340 4341 // Don't simplify freeze. 4342 if (isa<FreezeInst>(I)) 4343 return nullptr; 4344 4345 // Replace Op with RepOp in instruction operands. 4346 SmallVector<Value *, 8> NewOps; 4347 bool AnyReplaced = false; 4348 for (Value *InstOp : I->operands()) { 4349 if (Value *NewInstOp = simplifyWithOpReplaced( 4350 InstOp, Op, RepOp, Q, AllowRefinement, DropFlags, MaxRecurse)) { 4351 NewOps.push_back(NewInstOp); 4352 AnyReplaced = InstOp != NewInstOp; 4353 } else { 4354 NewOps.push_back(InstOp); 4355 } 4356 4357 // Bail out if any operand is undef and SimplifyQuery disables undef 4358 // simplification. Constant folding currently doesn't respect this option. 4359 if (isa<UndefValue>(NewOps.back()) && !Q.CanUseUndef) 4360 return nullptr; 4361 } 4362 4363 if (!AnyReplaced) 4364 return nullptr; 4365 4366 if (!AllowRefinement) { 4367 // General InstSimplify functions may refine the result, e.g. by returning 4368 // a constant for a potentially poison value. To avoid this, implement only 4369 // a few non-refining but profitable transforms here. 4370 4371 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 4372 unsigned Opcode = BO->getOpcode(); 4373 // id op x -> x, x op id -> x 4374 if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType())) 4375 return NewOps[1]; 4376 if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(), 4377 /* RHS */ true)) 4378 return NewOps[0]; 4379 4380 // x & x -> x, x | x -> x 4381 if ((Opcode == Instruction::And || Opcode == Instruction::Or) && 4382 NewOps[0] == NewOps[1]) { 4383 // or disjoint x, x results in poison. 4384 if (auto *PDI = dyn_cast<PossiblyDisjointInst>(BO)) { 4385 if (PDI->isDisjoint()) { 4386 if (!DropFlags) 4387 return nullptr; 4388 DropFlags->push_back(BO); 4389 } 4390 } 4391 return NewOps[0]; 4392 } 4393 4394 // x - x -> 0, x ^ x -> 0. This is non-refining, because x is non-poison 4395 // by assumption and this case never wraps, so nowrap flags can be 4396 // ignored. 4397 if ((Opcode == Instruction::Sub || Opcode == Instruction::Xor) && 4398 NewOps[0] == RepOp && NewOps[1] == RepOp) 4399 return Constant::getNullValue(I->getType()); 4400 4401 // If we are substituting an absorber constant into a binop and extra 4402 // poison can't leak if we remove the select -- because both operands of 4403 // the binop are based on the same value -- then it may be safe to replace 4404 // the value with the absorber constant. Examples: 4405 // (Op == 0) ? 0 : (Op & -Op) --> Op & -Op 4406 // (Op == 0) ? 0 : (Op * (binop Op, C)) --> Op * (binop Op, C) 4407 // (Op == -1) ? -1 : (Op | (binop C, Op) --> Op | (binop C, Op) 4408 Constant *Absorber = 4409 ConstantExpr::getBinOpAbsorber(Opcode, I->getType()); 4410 if ((NewOps[0] == Absorber || NewOps[1] == Absorber) && 4411 impliesPoison(BO, Op)) 4412 return Absorber; 4413 } 4414 4415 if (isa<GetElementPtrInst>(I)) { 4416 // getelementptr x, 0 -> x. 4417 // This never returns poison, even if inbounds is set. 4418 if (NewOps.size() == 2 && match(NewOps[1], m_Zero())) 4419 return NewOps[0]; 4420 } 4421 } else { 4422 // The simplification queries below may return the original value. Consider: 4423 // %div = udiv i32 %arg, %arg2 4424 // %mul = mul nsw i32 %div, %arg2 4425 // %cmp = icmp eq i32 %mul, %arg 4426 // %sel = select i1 %cmp, i32 %div, i32 undef 4427 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which 4428 // simplifies back to %arg. This can only happen because %mul does not 4429 // dominate %div. To ensure a consistent return value contract, we make sure 4430 // that this case returns nullptr as well. 4431 auto PreventSelfSimplify = [V](Value *Simplified) { 4432 return Simplified != V ? Simplified : nullptr; 4433 }; 4434 4435 return PreventSelfSimplify( 4436 ::simplifyInstructionWithOperands(I, NewOps, Q, MaxRecurse)); 4437 } 4438 4439 // If all operands are constant after substituting Op for RepOp then we can 4440 // constant fold the instruction. 4441 SmallVector<Constant *, 8> ConstOps; 4442 for (Value *NewOp : NewOps) { 4443 if (Constant *ConstOp = dyn_cast<Constant>(NewOp)) 4444 ConstOps.push_back(ConstOp); 4445 else 4446 return nullptr; 4447 } 4448 4449 // Consider: 4450 // %cmp = icmp eq i32 %x, 2147483647 4451 // %add = add nsw i32 %x, 1 4452 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 4453 // 4454 // We can't replace %sel with %add unless we strip away the flags (which 4455 // will be done in InstCombine). 4456 // TODO: This may be unsound, because it only catches some forms of 4457 // refinement. 4458 if (!AllowRefinement) { 4459 if (canCreatePoison(cast<Operator>(I), !DropFlags)) { 4460 // abs cannot create poison if the value is known to never be int_min. 4461 if (auto *II = dyn_cast<IntrinsicInst>(I); 4462 II && II->getIntrinsicID() == Intrinsic::abs) { 4463 if (!ConstOps[0]->isNotMinSignedValue()) 4464 return nullptr; 4465 } else 4466 return nullptr; 4467 } 4468 Constant *Res = ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 4469 if (DropFlags && Res && I->hasPoisonGeneratingAnnotations()) 4470 DropFlags->push_back(I); 4471 return Res; 4472 } 4473 4474 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 4475 } 4476 4477 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4478 const SimplifyQuery &Q, 4479 bool AllowRefinement, 4480 SmallVectorImpl<Instruction *> *DropFlags) { 4481 // If refinement is disabled, also disable undef simplifications (which are 4482 // always refinements) in SimplifyQuery. 4483 if (!AllowRefinement) 4484 return ::simplifyWithOpReplaced(V, Op, RepOp, Q.getWithoutUndef(), 4485 AllowRefinement, DropFlags, RecursionLimit); 4486 return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, DropFlags, 4487 RecursionLimit); 4488 } 4489 4490 /// Try to simplify a select instruction when its condition operand is an 4491 /// integer comparison where one operand of the compare is a constant. 4492 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 4493 const APInt *Y, bool TrueWhenUnset) { 4494 const APInt *C; 4495 4496 // (X & Y) == 0 ? X & ~Y : X --> X 4497 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 4498 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 4499 *Y == ~*C) 4500 return TrueWhenUnset ? FalseVal : TrueVal; 4501 4502 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 4503 // (X & Y) != 0 ? X : X & ~Y --> X 4504 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 4505 *Y == ~*C) 4506 return TrueWhenUnset ? FalseVal : TrueVal; 4507 4508 if (Y->isPowerOf2()) { 4509 // (X & Y) == 0 ? X | Y : X --> X | Y 4510 // (X & Y) != 0 ? X | Y : X --> X 4511 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 4512 *Y == *C) { 4513 // We can't return the or if it has the disjoint flag. 4514 if (TrueWhenUnset && cast<PossiblyDisjointInst>(TrueVal)->isDisjoint()) 4515 return nullptr; 4516 return TrueWhenUnset ? TrueVal : FalseVal; 4517 } 4518 4519 // (X & Y) == 0 ? X : X | Y --> X 4520 // (X & Y) != 0 ? X : X | Y --> X | Y 4521 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 4522 *Y == *C) { 4523 // We can't return the or if it has the disjoint flag. 4524 if (!TrueWhenUnset && cast<PossiblyDisjointInst>(FalseVal)->isDisjoint()) 4525 return nullptr; 4526 return TrueWhenUnset ? TrueVal : FalseVal; 4527 } 4528 } 4529 4530 return nullptr; 4531 } 4532 4533 static Value *simplifyCmpSelOfMaxMin(Value *CmpLHS, Value *CmpRHS, 4534 ICmpInst::Predicate Pred, Value *TVal, 4535 Value *FVal) { 4536 // Canonicalize common cmp+sel operand as CmpLHS. 4537 if (CmpRHS == TVal || CmpRHS == FVal) { 4538 std::swap(CmpLHS, CmpRHS); 4539 Pred = ICmpInst::getSwappedPredicate(Pred); 4540 } 4541 4542 // Canonicalize common cmp+sel operand as TVal. 4543 if (CmpLHS == FVal) { 4544 std::swap(TVal, FVal); 4545 Pred = ICmpInst::getInversePredicate(Pred); 4546 } 4547 4548 // A vector select may be shuffling together elements that are equivalent 4549 // based on the max/min/select relationship. 4550 Value *X = CmpLHS, *Y = CmpRHS; 4551 bool PeekedThroughSelectShuffle = false; 4552 auto *Shuf = dyn_cast<ShuffleVectorInst>(FVal); 4553 if (Shuf && Shuf->isSelect()) { 4554 if (Shuf->getOperand(0) == Y) 4555 FVal = Shuf->getOperand(1); 4556 else if (Shuf->getOperand(1) == Y) 4557 FVal = Shuf->getOperand(0); 4558 else 4559 return nullptr; 4560 PeekedThroughSelectShuffle = true; 4561 } 4562 4563 // (X pred Y) ? X : max/min(X, Y) 4564 auto *MMI = dyn_cast<MinMaxIntrinsic>(FVal); 4565 if (!MMI || TVal != X || 4566 !match(FVal, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) 4567 return nullptr; 4568 4569 // (X > Y) ? X : max(X, Y) --> max(X, Y) 4570 // (X >= Y) ? X : max(X, Y) --> max(X, Y) 4571 // (X < Y) ? X : min(X, Y) --> min(X, Y) 4572 // (X <= Y) ? X : min(X, Y) --> min(X, Y) 4573 // 4574 // The equivalence allows a vector select (shuffle) of max/min and Y. Ex: 4575 // (X > Y) ? X : (Z ? max(X, Y) : Y) 4576 // If Z is true, this reduces as above, and if Z is false: 4577 // (X > Y) ? X : Y --> max(X, Y) 4578 ICmpInst::Predicate MMPred = MMI->getPredicate(); 4579 if (MMPred == CmpInst::getStrictPredicate(Pred)) 4580 return MMI; 4581 4582 // Other transforms are not valid with a shuffle. 4583 if (PeekedThroughSelectShuffle) 4584 return nullptr; 4585 4586 // (X == Y) ? X : max/min(X, Y) --> max/min(X, Y) 4587 if (Pred == CmpInst::ICMP_EQ) 4588 return MMI; 4589 4590 // (X != Y) ? X : max/min(X, Y) --> X 4591 if (Pred == CmpInst::ICMP_NE) 4592 return X; 4593 4594 // (X < Y) ? X : max(X, Y) --> X 4595 // (X <= Y) ? X : max(X, Y) --> X 4596 // (X > Y) ? X : min(X, Y) --> X 4597 // (X >= Y) ? X : min(X, Y) --> X 4598 ICmpInst::Predicate InvPred = CmpInst::getInversePredicate(Pred); 4599 if (MMPred == CmpInst::getStrictPredicate(InvPred)) 4600 return X; 4601 4602 return nullptr; 4603 } 4604 4605 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 4606 /// eq/ne. 4607 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 4608 ICmpInst::Predicate Pred, 4609 Value *TrueVal, Value *FalseVal) { 4610 Value *X; 4611 APInt Mask; 4612 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 4613 return nullptr; 4614 4615 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 4616 Pred == ICmpInst::ICMP_EQ); 4617 } 4618 4619 /// Try to simplify a select instruction when its condition operand is an 4620 /// integer equality comparison. 4621 static Value *simplifySelectWithICmpEq(Value *CmpLHS, Value *CmpRHS, 4622 Value *TrueVal, Value *FalseVal, 4623 const SimplifyQuery &Q, 4624 unsigned MaxRecurse) { 4625 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q.getWithoutUndef(), 4626 /* AllowRefinement */ false, 4627 /* DropFlags */ nullptr, MaxRecurse) == TrueVal) 4628 return FalseVal; 4629 if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4630 /* AllowRefinement */ true, 4631 /* DropFlags */ nullptr, MaxRecurse) == FalseVal) 4632 return FalseVal; 4633 4634 return nullptr; 4635 } 4636 4637 /// Try to simplify a select instruction when its condition operand is an 4638 /// integer comparison. 4639 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 4640 Value *FalseVal, 4641 const SimplifyQuery &Q, 4642 unsigned MaxRecurse) { 4643 ICmpInst::Predicate Pred; 4644 Value *CmpLHS, *CmpRHS; 4645 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 4646 return nullptr; 4647 4648 if (Value *V = simplifyCmpSelOfMaxMin(CmpLHS, CmpRHS, Pred, TrueVal, FalseVal)) 4649 return V; 4650 4651 // Canonicalize ne to eq predicate. 4652 if (Pred == ICmpInst::ICMP_NE) { 4653 Pred = ICmpInst::ICMP_EQ; 4654 std::swap(TrueVal, FalseVal); 4655 } 4656 4657 // Check for integer min/max with a limit constant: 4658 // X > MIN_INT ? X : MIN_INT --> X 4659 // X < MAX_INT ? X : MAX_INT --> X 4660 if (TrueVal->getType()->isIntOrIntVectorTy()) { 4661 Value *X, *Y; 4662 SelectPatternFlavor SPF = 4663 matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal, 4664 X, Y) 4665 .Flavor; 4666 if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) { 4667 APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF), 4668 X->getType()->getScalarSizeInBits()); 4669 if (match(Y, m_SpecificInt(LimitC))) 4670 return X; 4671 } 4672 } 4673 4674 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 4675 Value *X; 4676 const APInt *Y; 4677 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 4678 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 4679 /*TrueWhenUnset=*/true)) 4680 return V; 4681 4682 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 4683 Value *ShAmt; 4684 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), 4685 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); 4686 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 4687 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 4688 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 4689 return X; 4690 4691 // Test for a zero-shift-guard-op around rotates. These are used to 4692 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4693 // intrinsics do not have that problem. 4694 // We do not allow this transform for the general funnel shift case because 4695 // that would not preserve the poison safety of the original code. 4696 auto isRotate = 4697 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), 4698 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); 4699 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4700 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4701 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4702 Pred == ICmpInst::ICMP_EQ) 4703 return FalseVal; 4704 4705 // X == 0 ? abs(X) : -abs(X) --> -abs(X) 4706 // X == 0 ? -abs(X) : abs(X) --> abs(X) 4707 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) && 4708 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))) 4709 return FalseVal; 4710 if (match(TrueVal, 4711 m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) && 4712 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) 4713 return FalseVal; 4714 } 4715 4716 // Check for other compares that behave like bit test. 4717 if (Value *V = 4718 simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, TrueVal, FalseVal)) 4719 return V; 4720 4721 // If we have a scalar equality comparison, then we know the value in one of 4722 // the arms of the select. See if substituting this value into the arm and 4723 // simplifying the result yields the same value as the other arm. 4724 if (Pred == ICmpInst::ICMP_EQ) { 4725 if (Value *V = simplifySelectWithICmpEq(CmpLHS, CmpRHS, TrueVal, FalseVal, 4726 Q, MaxRecurse)) 4727 return V; 4728 if (Value *V = simplifySelectWithICmpEq(CmpRHS, CmpLHS, TrueVal, FalseVal, 4729 Q, MaxRecurse)) 4730 return V; 4731 4732 Value *X; 4733 Value *Y; 4734 // select((X | Y) == 0 ? X : 0) --> 0 (commuted 2 ways) 4735 if (match(CmpLHS, m_Or(m_Value(X), m_Value(Y))) && 4736 match(CmpRHS, m_Zero())) { 4737 // (X | Y) == 0 implies X == 0 and Y == 0. 4738 if (Value *V = simplifySelectWithICmpEq(X, CmpRHS, TrueVal, FalseVal, Q, 4739 MaxRecurse)) 4740 return V; 4741 if (Value *V = simplifySelectWithICmpEq(Y, CmpRHS, TrueVal, FalseVal, Q, 4742 MaxRecurse)) 4743 return V; 4744 } 4745 4746 // select((X & Y) == -1 ? X : -1) --> -1 (commuted 2 ways) 4747 if (match(CmpLHS, m_And(m_Value(X), m_Value(Y))) && 4748 match(CmpRHS, m_AllOnes())) { 4749 // (X & Y) == -1 implies X == -1 and Y == -1. 4750 if (Value *V = simplifySelectWithICmpEq(X, CmpRHS, TrueVal, FalseVal, Q, 4751 MaxRecurse)) 4752 return V; 4753 if (Value *V = simplifySelectWithICmpEq(Y, CmpRHS, TrueVal, FalseVal, Q, 4754 MaxRecurse)) 4755 return V; 4756 } 4757 } 4758 4759 return nullptr; 4760 } 4761 4762 /// Try to simplify a select instruction when its condition operand is a 4763 /// floating-point comparison. 4764 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4765 const SimplifyQuery &Q) { 4766 FCmpInst::Predicate Pred; 4767 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4768 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4769 return nullptr; 4770 4771 // This transform is safe if we do not have (do not care about) -0.0 or if 4772 // at least one operand is known to not be -0.0. Otherwise, the select can 4773 // change the sign of a zero operand. 4774 bool HasNoSignedZeros = 4775 Q.CxtI && isa<FPMathOperator>(Q.CxtI) && Q.CxtI->hasNoSignedZeros(); 4776 const APFloat *C; 4777 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4778 (match(F, m_APFloat(C)) && C->isNonZero())) { 4779 // (T == F) ? T : F --> F 4780 // (F == T) ? T : F --> F 4781 if (Pred == FCmpInst::FCMP_OEQ) 4782 return F; 4783 4784 // (T != F) ? T : F --> T 4785 // (F != T) ? T : F --> T 4786 if (Pred == FCmpInst::FCMP_UNE) 4787 return T; 4788 } 4789 4790 return nullptr; 4791 } 4792 4793 /// Given operands for a SelectInst, see if we can fold the result. 4794 /// If not, this returns null. 4795 static Value *simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4796 const SimplifyQuery &Q, unsigned MaxRecurse) { 4797 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4798 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4799 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4800 if (Constant *C = ConstantFoldSelectInstruction(CondC, TrueC, FalseC)) 4801 return C; 4802 4803 // select poison, X, Y -> poison 4804 if (isa<PoisonValue>(CondC)) 4805 return PoisonValue::get(TrueVal->getType()); 4806 4807 // select undef, X, Y -> X or Y 4808 if (Q.isUndefValue(CondC)) 4809 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4810 4811 // select true, X, Y --> X 4812 // select false, X, Y --> Y 4813 // For vectors, allow undef/poison elements in the condition to match the 4814 // defined elements, so we can eliminate the select. 4815 if (match(CondC, m_One())) 4816 return TrueVal; 4817 if (match(CondC, m_Zero())) 4818 return FalseVal; 4819 } 4820 4821 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4822 "Select must have bool or bool vector condition"); 4823 assert(TrueVal->getType() == FalseVal->getType() && 4824 "Select must have same types for true/false ops"); 4825 4826 if (Cond->getType() == TrueVal->getType()) { 4827 // select i1 Cond, i1 true, i1 false --> i1 Cond 4828 if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4829 return Cond; 4830 4831 // (X && Y) ? X : Y --> Y (commuted 2 ways) 4832 if (match(Cond, m_c_LogicalAnd(m_Specific(TrueVal), m_Specific(FalseVal)))) 4833 return FalseVal; 4834 4835 // (X || Y) ? X : Y --> X (commuted 2 ways) 4836 if (match(Cond, m_c_LogicalOr(m_Specific(TrueVal), m_Specific(FalseVal)))) 4837 return TrueVal; 4838 4839 // (X || Y) ? false : X --> false (commuted 2 ways) 4840 if (match(Cond, m_c_LogicalOr(m_Specific(FalseVal), m_Value())) && 4841 match(TrueVal, m_ZeroInt())) 4842 return ConstantInt::getFalse(Cond->getType()); 4843 4844 // Match patterns that end in logical-and. 4845 if (match(FalseVal, m_ZeroInt())) { 4846 // !(X || Y) && X --> false (commuted 2 ways) 4847 if (match(Cond, m_Not(m_c_LogicalOr(m_Specific(TrueVal), m_Value())))) 4848 return ConstantInt::getFalse(Cond->getType()); 4849 // X && !(X || Y) --> false (commuted 2 ways) 4850 if (match(TrueVal, m_Not(m_c_LogicalOr(m_Specific(Cond), m_Value())))) 4851 return ConstantInt::getFalse(Cond->getType()); 4852 4853 // (X || Y) && Y --> Y (commuted 2 ways) 4854 if (match(Cond, m_c_LogicalOr(m_Specific(TrueVal), m_Value()))) 4855 return TrueVal; 4856 // Y && (X || Y) --> Y (commuted 2 ways) 4857 if (match(TrueVal, m_c_LogicalOr(m_Specific(Cond), m_Value()))) 4858 return Cond; 4859 4860 // (X || Y) && (X || !Y) --> X (commuted 8 ways) 4861 Value *X, *Y; 4862 if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4863 match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4864 return X; 4865 if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4866 match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4867 return X; 4868 } 4869 4870 // Match patterns that end in logical-or. 4871 if (match(TrueVal, m_One())) { 4872 // !(X && Y) || X --> true (commuted 2 ways) 4873 if (match(Cond, m_Not(m_c_LogicalAnd(m_Specific(FalseVal), m_Value())))) 4874 return ConstantInt::getTrue(Cond->getType()); 4875 // X || !(X && Y) --> true (commuted 2 ways) 4876 if (match(FalseVal, m_Not(m_c_LogicalAnd(m_Specific(Cond), m_Value())))) 4877 return ConstantInt::getTrue(Cond->getType()); 4878 4879 // (X && Y) || Y --> Y (commuted 2 ways) 4880 if (match(Cond, m_c_LogicalAnd(m_Specific(FalseVal), m_Value()))) 4881 return FalseVal; 4882 // Y || (X && Y) --> Y (commuted 2 ways) 4883 if (match(FalseVal, m_c_LogicalAnd(m_Specific(Cond), m_Value()))) 4884 return Cond; 4885 } 4886 } 4887 4888 // select ?, X, X -> X 4889 if (TrueVal == FalseVal) 4890 return TrueVal; 4891 4892 if (Cond == TrueVal) { 4893 // select i1 X, i1 X, i1 false --> X (logical-and) 4894 if (match(FalseVal, m_ZeroInt())) 4895 return Cond; 4896 // select i1 X, i1 X, i1 true --> true 4897 if (match(FalseVal, m_One())) 4898 return ConstantInt::getTrue(Cond->getType()); 4899 } 4900 if (Cond == FalseVal) { 4901 // select i1 X, i1 true, i1 X --> X (logical-or) 4902 if (match(TrueVal, m_One())) 4903 return Cond; 4904 // select i1 X, i1 false, i1 X --> false 4905 if (match(TrueVal, m_ZeroInt())) 4906 return ConstantInt::getFalse(Cond->getType()); 4907 } 4908 4909 // If the true or false value is poison, we can fold to the other value. 4910 // If the true or false value is undef, we can fold to the other value as 4911 // long as the other value isn't poison. 4912 // select ?, poison, X -> X 4913 // select ?, undef, X -> X 4914 if (isa<PoisonValue>(TrueVal) || 4915 (Q.isUndefValue(TrueVal) && impliesPoison(FalseVal, Cond))) 4916 return FalseVal; 4917 // select ?, X, poison -> X 4918 // select ?, X, undef -> X 4919 if (isa<PoisonValue>(FalseVal) || 4920 (Q.isUndefValue(FalseVal) && impliesPoison(TrueVal, Cond))) 4921 return TrueVal; 4922 4923 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4924 Constant *TrueC, *FalseC; 4925 if (isa<FixedVectorType>(TrueVal->getType()) && 4926 match(TrueVal, m_Constant(TrueC)) && 4927 match(FalseVal, m_Constant(FalseC))) { 4928 unsigned NumElts = 4929 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4930 SmallVector<Constant *, 16> NewC; 4931 for (unsigned i = 0; i != NumElts; ++i) { 4932 // Bail out on incomplete vector constants. 4933 Constant *TEltC = TrueC->getAggregateElement(i); 4934 Constant *FEltC = FalseC->getAggregateElement(i); 4935 if (!TEltC || !FEltC) 4936 break; 4937 4938 // If the elements match (undef or not), that value is the result. If only 4939 // one element is undef, choose the defined element as the safe result. 4940 if (TEltC == FEltC) 4941 NewC.push_back(TEltC); 4942 else if (isa<PoisonValue>(TEltC) || 4943 (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC))) 4944 NewC.push_back(FEltC); 4945 else if (isa<PoisonValue>(FEltC) || 4946 (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC))) 4947 NewC.push_back(TEltC); 4948 else 4949 break; 4950 } 4951 if (NewC.size() == NumElts) 4952 return ConstantVector::get(NewC); 4953 } 4954 4955 if (Value *V = 4956 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4957 return V; 4958 4959 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4960 return V; 4961 4962 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4963 return V; 4964 4965 std::optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4966 if (Imp) 4967 return *Imp ? TrueVal : FalseVal; 4968 4969 return nullptr; 4970 } 4971 4972 Value *llvm::simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4973 const SimplifyQuery &Q) { 4974 return ::simplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4975 } 4976 4977 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4978 /// If not, this returns null. 4979 static Value *simplifyGEPInst(Type *SrcTy, Value *Ptr, 4980 ArrayRef<Value *> Indices, GEPNoWrapFlags NW, 4981 const SimplifyQuery &Q, unsigned) { 4982 // The type of the GEP pointer operand. 4983 unsigned AS = 4984 cast<PointerType>(Ptr->getType()->getScalarType())->getAddressSpace(); 4985 4986 // getelementptr P -> P. 4987 if (Indices.empty()) 4988 return Ptr; 4989 4990 // Compute the (pointer) type returned by the GEP instruction. 4991 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Indices); 4992 Type *GEPTy = Ptr->getType(); 4993 if (!GEPTy->isVectorTy()) { 4994 for (Value *Op : Indices) { 4995 // If one of the operands is a vector, the result type is a vector of 4996 // pointers. All vector operands must have the same number of elements. 4997 if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) { 4998 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4999 break; 5000 } 5001 } 5002 } 5003 5004 // All-zero GEP is a no-op, unless it performs a vector splat. 5005 if (Ptr->getType() == GEPTy && 5006 all_of(Indices, [](const auto *V) { return match(V, m_Zero()); })) 5007 return Ptr; 5008 5009 // getelementptr poison, idx -> poison 5010 // getelementptr baseptr, poison -> poison 5011 if (isa<PoisonValue>(Ptr) || 5012 any_of(Indices, [](const auto *V) { return isa<PoisonValue>(V); })) 5013 return PoisonValue::get(GEPTy); 5014 5015 // getelementptr undef, idx -> undef 5016 if (Q.isUndefValue(Ptr)) 5017 return UndefValue::get(GEPTy); 5018 5019 bool IsScalableVec = 5020 SrcTy->isScalableTy() || any_of(Indices, [](const Value *V) { 5021 return isa<ScalableVectorType>(V->getType()); 5022 }); 5023 5024 if (Indices.size() == 1) { 5025 Type *Ty = SrcTy; 5026 if (!IsScalableVec && Ty->isSized()) { 5027 Value *P; 5028 uint64_t C; 5029 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 5030 // getelementptr P, N -> P if P points to a type of zero size. 5031 if (TyAllocSize == 0 && Ptr->getType() == GEPTy) 5032 return Ptr; 5033 5034 // The following transforms are only safe if the ptrtoint cast 5035 // doesn't truncate the pointers. 5036 if (Indices[0]->getType()->getScalarSizeInBits() == 5037 Q.DL.getPointerSizeInBits(AS)) { 5038 auto CanSimplify = [GEPTy, &P, Ptr]() -> bool { 5039 return P->getType() == GEPTy && 5040 getUnderlyingObject(P) == getUnderlyingObject(Ptr); 5041 }; 5042 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 5043 if (TyAllocSize == 1 && 5044 match(Indices[0], 5045 m_Sub(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Specific(Ptr)))) && 5046 CanSimplify()) 5047 return P; 5048 5049 // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of 5050 // size 1 << C. 5051 if (match(Indices[0], m_AShr(m_Sub(m_PtrToInt(m_Value(P)), 5052 m_PtrToInt(m_Specific(Ptr))), 5053 m_ConstantInt(C))) && 5054 TyAllocSize == 1ULL << C && CanSimplify()) 5055 return P; 5056 5057 // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of 5058 // size C. 5059 if (match(Indices[0], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)), 5060 m_PtrToInt(m_Specific(Ptr))), 5061 m_SpecificInt(TyAllocSize))) && 5062 CanSimplify()) 5063 return P; 5064 } 5065 } 5066 } 5067 5068 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 5069 all_of(Indices.drop_back(1), 5070 [](Value *Idx) { return match(Idx, m_Zero()); })) { 5071 unsigned IdxWidth = 5072 Q.DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()); 5073 if (Q.DL.getTypeSizeInBits(Indices.back()->getType()) == IdxWidth) { 5074 APInt BasePtrOffset(IdxWidth, 0); 5075 Value *StrippedBasePtr = 5076 Ptr->stripAndAccumulateInBoundsConstantOffsets(Q.DL, BasePtrOffset); 5077 5078 // Avoid creating inttoptr of zero here: While LLVMs treatment of 5079 // inttoptr is generally conservative, this particular case is folded to 5080 // a null pointer, which will have incorrect provenance. 5081 5082 // gep (gep V, C), (sub 0, V) -> C 5083 if (match(Indices.back(), 5084 m_Neg(m_PtrToInt(m_Specific(StrippedBasePtr)))) && 5085 !BasePtrOffset.isZero()) { 5086 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 5087 return ConstantExpr::getIntToPtr(CI, GEPTy); 5088 } 5089 // gep (gep V, C), (xor V, -1) -> C-1 5090 if (match(Indices.back(), 5091 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) && 5092 !BasePtrOffset.isOne()) { 5093 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 5094 return ConstantExpr::getIntToPtr(CI, GEPTy); 5095 } 5096 } 5097 } 5098 5099 // Check to see if this is constant foldable. 5100 if (!isa<Constant>(Ptr) || 5101 !all_of(Indices, [](Value *V) { return isa<Constant>(V); })) 5102 return nullptr; 5103 5104 if (!ConstantExpr::isSupportedGetElementPtr(SrcTy)) 5105 return ConstantFoldGetElementPtr(SrcTy, cast<Constant>(Ptr), std::nullopt, 5106 Indices); 5107 5108 auto *CE = 5109 ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ptr), Indices, NW); 5110 return ConstantFoldConstant(CE, Q.DL); 5111 } 5112 5113 Value *llvm::simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef<Value *> Indices, 5114 GEPNoWrapFlags NW, const SimplifyQuery &Q) { 5115 return ::simplifyGEPInst(SrcTy, Ptr, Indices, NW, Q, RecursionLimit); 5116 } 5117 5118 /// Given operands for an InsertValueInst, see if we can fold the result. 5119 /// If not, this returns null. 5120 static Value *simplifyInsertValueInst(Value *Agg, Value *Val, 5121 ArrayRef<unsigned> Idxs, 5122 const SimplifyQuery &Q, unsigned) { 5123 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 5124 if (Constant *CVal = dyn_cast<Constant>(Val)) 5125 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 5126 5127 // insertvalue x, poison, n -> x 5128 // insertvalue x, undef, n -> x if x cannot be poison 5129 if (isa<PoisonValue>(Val) || 5130 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Agg))) 5131 return Agg; 5132 5133 // insertvalue x, (extractvalue y, n), n 5134 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 5135 if (EV->getAggregateOperand()->getType() == Agg->getType() && 5136 EV->getIndices() == Idxs) { 5137 // insertvalue poison, (extractvalue y, n), n -> y 5138 // insertvalue undef, (extractvalue y, n), n -> y if y cannot be poison 5139 if (isa<PoisonValue>(Agg) || 5140 (Q.isUndefValue(Agg) && 5141 isGuaranteedNotToBePoison(EV->getAggregateOperand()))) 5142 return EV->getAggregateOperand(); 5143 5144 // insertvalue y, (extractvalue y, n), n -> y 5145 if (Agg == EV->getAggregateOperand()) 5146 return Agg; 5147 } 5148 5149 return nullptr; 5150 } 5151 5152 Value *llvm::simplifyInsertValueInst(Value *Agg, Value *Val, 5153 ArrayRef<unsigned> Idxs, 5154 const SimplifyQuery &Q) { 5155 return ::simplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 5156 } 5157 5158 Value *llvm::simplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 5159 const SimplifyQuery &Q) { 5160 // Try to constant fold. 5161 auto *VecC = dyn_cast<Constant>(Vec); 5162 auto *ValC = dyn_cast<Constant>(Val); 5163 auto *IdxC = dyn_cast<Constant>(Idx); 5164 if (VecC && ValC && IdxC) 5165 return ConstantExpr::getInsertElement(VecC, ValC, IdxC); 5166 5167 // For fixed-length vector, fold into poison if index is out of bounds. 5168 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 5169 if (isa<FixedVectorType>(Vec->getType()) && 5170 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 5171 return PoisonValue::get(Vec->getType()); 5172 } 5173 5174 // If index is undef, it might be out of bounds (see above case) 5175 if (Q.isUndefValue(Idx)) 5176 return PoisonValue::get(Vec->getType()); 5177 5178 // If the scalar is poison, or it is undef and there is no risk of 5179 // propagating poison from the vector value, simplify to the vector value. 5180 if (isa<PoisonValue>(Val) || 5181 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec))) 5182 return Vec; 5183 5184 // If we are extracting a value from a vector, then inserting it into the same 5185 // place, that's the input vector: 5186 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 5187 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 5188 return Vec; 5189 5190 return nullptr; 5191 } 5192 5193 /// Given operands for an ExtractValueInst, see if we can fold the result. 5194 /// If not, this returns null. 5195 static Value *simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 5196 const SimplifyQuery &, unsigned) { 5197 if (auto *CAgg = dyn_cast<Constant>(Agg)) 5198 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 5199 5200 // extractvalue x, (insertvalue y, elt, n), n -> elt 5201 unsigned NumIdxs = Idxs.size(); 5202 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 5203 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 5204 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 5205 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 5206 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 5207 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 5208 Idxs.slice(0, NumCommonIdxs)) { 5209 if (NumIdxs == NumInsertValueIdxs) 5210 return IVI->getInsertedValueOperand(); 5211 break; 5212 } 5213 } 5214 5215 return nullptr; 5216 } 5217 5218 Value *llvm::simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 5219 const SimplifyQuery &Q) { 5220 return ::simplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 5221 } 5222 5223 /// Given operands for an ExtractElementInst, see if we can fold the result. 5224 /// If not, this returns null. 5225 static Value *simplifyExtractElementInst(Value *Vec, Value *Idx, 5226 const SimplifyQuery &Q, unsigned) { 5227 auto *VecVTy = cast<VectorType>(Vec->getType()); 5228 if (auto *CVec = dyn_cast<Constant>(Vec)) { 5229 if (auto *CIdx = dyn_cast<Constant>(Idx)) 5230 return ConstantExpr::getExtractElement(CVec, CIdx); 5231 5232 if (Q.isUndefValue(Vec)) 5233 return UndefValue::get(VecVTy->getElementType()); 5234 } 5235 5236 // An undef extract index can be arbitrarily chosen to be an out-of-range 5237 // index value, which would result in the instruction being poison. 5238 if (Q.isUndefValue(Idx)) 5239 return PoisonValue::get(VecVTy->getElementType()); 5240 5241 // If extracting a specified index from the vector, see if we can recursively 5242 // find a previously computed scalar that was inserted into the vector. 5243 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 5244 // For fixed-length vector, fold into undef if index is out of bounds. 5245 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue(); 5246 if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts)) 5247 return PoisonValue::get(VecVTy->getElementType()); 5248 // Handle case where an element is extracted from a splat. 5249 if (IdxC->getValue().ult(MinNumElts)) 5250 if (auto *Splat = getSplatValue(Vec)) 5251 return Splat; 5252 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 5253 return Elt; 5254 } else { 5255 // extractelt x, (insertelt y, elt, n), n -> elt 5256 // If the possibly-variable indices are trivially known to be equal 5257 // (because they are the same operand) then use the value that was 5258 // inserted directly. 5259 auto *IE = dyn_cast<InsertElementInst>(Vec); 5260 if (IE && IE->getOperand(2) == Idx) 5261 return IE->getOperand(1); 5262 5263 // The index is not relevant if our vector is a splat. 5264 if (Value *Splat = getSplatValue(Vec)) 5265 return Splat; 5266 } 5267 return nullptr; 5268 } 5269 5270 Value *llvm::simplifyExtractElementInst(Value *Vec, Value *Idx, 5271 const SimplifyQuery &Q) { 5272 return ::simplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 5273 } 5274 5275 /// See if we can fold the given phi. If not, returns null. 5276 static Value *simplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues, 5277 const SimplifyQuery &Q) { 5278 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE 5279 // here, because the PHI we may succeed simplifying to was not 5280 // def-reachable from the original PHI! 5281 5282 // If all of the PHI's incoming values are the same then replace the PHI node 5283 // with the common value. 5284 Value *CommonValue = nullptr; 5285 bool HasPoisonInput = false; 5286 bool HasUndefInput = false; 5287 for (Value *Incoming : IncomingValues) { 5288 // If the incoming value is the phi node itself, it can safely be skipped. 5289 if (Incoming == PN) 5290 continue; 5291 if (isa<PoisonValue>(Incoming)) { 5292 HasPoisonInput = true; 5293 continue; 5294 } 5295 if (Q.isUndefValue(Incoming)) { 5296 // Remember that we saw an undef value, but otherwise ignore them. 5297 HasUndefInput = true; 5298 continue; 5299 } 5300 if (CommonValue && Incoming != CommonValue) 5301 return nullptr; // Not the same, bail out. 5302 CommonValue = Incoming; 5303 } 5304 5305 // If CommonValue is null then all of the incoming values were either undef, 5306 // poison or equal to the phi node itself. 5307 if (!CommonValue) 5308 return HasUndefInput ? UndefValue::get(PN->getType()) 5309 : PoisonValue::get(PN->getType()); 5310 5311 if (HasPoisonInput || HasUndefInput) { 5312 // If we have a PHI node like phi(X, undef, X), where X is defined by some 5313 // instruction, we cannot return X as the result of the PHI node unless it 5314 // dominates the PHI block. 5315 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 5316 } 5317 5318 return CommonValue; 5319 } 5320 5321 static Value *simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 5322 const SimplifyQuery &Q, unsigned MaxRecurse) { 5323 if (auto *C = dyn_cast<Constant>(Op)) 5324 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 5325 5326 if (auto *CI = dyn_cast<CastInst>(Op)) { 5327 auto *Src = CI->getOperand(0); 5328 Type *SrcTy = Src->getType(); 5329 Type *MidTy = CI->getType(); 5330 Type *DstTy = Ty; 5331 if (Src->getType() == Ty) { 5332 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 5333 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 5334 Type *SrcIntPtrTy = 5335 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 5336 Type *MidIntPtrTy = 5337 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 5338 Type *DstIntPtrTy = 5339 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 5340 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 5341 SrcIntPtrTy, MidIntPtrTy, 5342 DstIntPtrTy) == Instruction::BitCast) 5343 return Src; 5344 } 5345 } 5346 5347 // bitcast x -> x 5348 if (CastOpc == Instruction::BitCast) 5349 if (Op->getType() == Ty) 5350 return Op; 5351 5352 // ptrtoint (ptradd (Ptr, X - ptrtoint(Ptr))) -> X 5353 Value *Ptr, *X; 5354 if (CastOpc == Instruction::PtrToInt && 5355 match(Op, m_PtrAdd(m_Value(Ptr), 5356 m_Sub(m_Value(X), m_PtrToInt(m_Deferred(Ptr))))) && 5357 X->getType() == Ty && Ty == Q.DL.getIndexType(Ptr->getType())) 5358 return X; 5359 5360 return nullptr; 5361 } 5362 5363 Value *llvm::simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 5364 const SimplifyQuery &Q) { 5365 return ::simplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 5366 } 5367 5368 /// For the given destination element of a shuffle, peek through shuffles to 5369 /// match a root vector source operand that contains that element in the same 5370 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 5371 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 5372 int MaskVal, Value *RootVec, 5373 unsigned MaxRecurse) { 5374 if (!MaxRecurse--) 5375 return nullptr; 5376 5377 // Bail out if any mask value is undefined. That kind of shuffle may be 5378 // simplified further based on demanded bits or other folds. 5379 if (MaskVal == -1) 5380 return nullptr; 5381 5382 // The mask value chooses which source operand we need to look at next. 5383 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 5384 int RootElt = MaskVal; 5385 Value *SourceOp = Op0; 5386 if (MaskVal >= InVecNumElts) { 5387 RootElt = MaskVal - InVecNumElts; 5388 SourceOp = Op1; 5389 } 5390 5391 // If the source operand is a shuffle itself, look through it to find the 5392 // matching root vector. 5393 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 5394 return foldIdentityShuffles( 5395 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 5396 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 5397 } 5398 5399 // The source operand is not a shuffle. Initialize the root vector value for 5400 // this shuffle if that has not been done yet. 5401 if (!RootVec) 5402 RootVec = SourceOp; 5403 5404 // Give up as soon as a source operand does not match the existing root value. 5405 if (RootVec != SourceOp) 5406 return nullptr; 5407 5408 // The element must be coming from the same lane in the source vector 5409 // (although it may have crossed lanes in intermediate shuffles). 5410 if (RootElt != DestElt) 5411 return nullptr; 5412 5413 return RootVec; 5414 } 5415 5416 static Value *simplifyShuffleVectorInst(Value *Op0, Value *Op1, 5417 ArrayRef<int> Mask, Type *RetTy, 5418 const SimplifyQuery &Q, 5419 unsigned MaxRecurse) { 5420 if (all_of(Mask, [](int Elem) { return Elem == PoisonMaskElem; })) 5421 return PoisonValue::get(RetTy); 5422 5423 auto *InVecTy = cast<VectorType>(Op0->getType()); 5424 unsigned MaskNumElts = Mask.size(); 5425 ElementCount InVecEltCount = InVecTy->getElementCount(); 5426 5427 bool Scalable = InVecEltCount.isScalable(); 5428 5429 SmallVector<int, 32> Indices; 5430 Indices.assign(Mask.begin(), Mask.end()); 5431 5432 // Canonicalization: If mask does not select elements from an input vector, 5433 // replace that input vector with poison. 5434 if (!Scalable) { 5435 bool MaskSelects0 = false, MaskSelects1 = false; 5436 unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); 5437 for (unsigned i = 0; i != MaskNumElts; ++i) { 5438 if (Indices[i] == -1) 5439 continue; 5440 if ((unsigned)Indices[i] < InVecNumElts) 5441 MaskSelects0 = true; 5442 else 5443 MaskSelects1 = true; 5444 } 5445 if (!MaskSelects0) 5446 Op0 = PoisonValue::get(InVecTy); 5447 if (!MaskSelects1) 5448 Op1 = PoisonValue::get(InVecTy); 5449 } 5450 5451 auto *Op0Const = dyn_cast<Constant>(Op0); 5452 auto *Op1Const = dyn_cast<Constant>(Op1); 5453 5454 // If all operands are constant, constant fold the shuffle. This 5455 // transformation depends on the value of the mask which is not known at 5456 // compile time for scalable vectors 5457 if (Op0Const && Op1Const) 5458 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); 5459 5460 // Canonicalization: if only one input vector is constant, it shall be the 5461 // second one. This transformation depends on the value of the mask which 5462 // is not known at compile time for scalable vectors 5463 if (!Scalable && Op0Const && !Op1Const) { 5464 std::swap(Op0, Op1); 5465 ShuffleVectorInst::commuteShuffleMask(Indices, 5466 InVecEltCount.getKnownMinValue()); 5467 } 5468 5469 // A splat of an inserted scalar constant becomes a vector constant: 5470 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 5471 // NOTE: We may have commuted above, so analyze the updated Indices, not the 5472 // original mask constant. 5473 // NOTE: This transformation depends on the value of the mask which is not 5474 // known at compile time for scalable vectors 5475 Constant *C; 5476 ConstantInt *IndexC; 5477 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 5478 m_ConstantInt(IndexC)))) { 5479 // Match a splat shuffle mask of the insert index allowing undef elements. 5480 int InsertIndex = IndexC->getZExtValue(); 5481 if (all_of(Indices, [InsertIndex](int MaskElt) { 5482 return MaskElt == InsertIndex || MaskElt == -1; 5483 })) { 5484 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 5485 5486 // Shuffle mask poisons become poison constant result elements. 5487 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 5488 for (unsigned i = 0; i != MaskNumElts; ++i) 5489 if (Indices[i] == -1) 5490 VecC[i] = PoisonValue::get(C->getType()); 5491 return ConstantVector::get(VecC); 5492 } 5493 } 5494 5495 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 5496 // value type is same as the input vectors' type. 5497 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 5498 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 5499 all_equal(OpShuf->getShuffleMask())) 5500 return Op0; 5501 5502 // All remaining transformation depend on the value of the mask, which is 5503 // not known at compile time for scalable vectors. 5504 if (Scalable) 5505 return nullptr; 5506 5507 // Don't fold a shuffle with undef mask elements. This may get folded in a 5508 // better way using demanded bits or other analysis. 5509 // TODO: Should we allow this? 5510 if (is_contained(Indices, -1)) 5511 return nullptr; 5512 5513 // Check if every element of this shuffle can be mapped back to the 5514 // corresponding element of a single root vector. If so, we don't need this 5515 // shuffle. This handles simple identity shuffles as well as chains of 5516 // shuffles that may widen/narrow and/or move elements across lanes and back. 5517 Value *RootVec = nullptr; 5518 for (unsigned i = 0; i != MaskNumElts; ++i) { 5519 // Note that recursion is limited for each vector element, so if any element 5520 // exceeds the limit, this will fail to simplify. 5521 RootVec = 5522 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 5523 5524 // We can't replace a widening/narrowing shuffle with one of its operands. 5525 if (!RootVec || RootVec->getType() != RetTy) 5526 return nullptr; 5527 } 5528 return RootVec; 5529 } 5530 5531 /// Given operands for a ShuffleVectorInst, fold the result or return null. 5532 Value *llvm::simplifyShuffleVectorInst(Value *Op0, Value *Op1, 5533 ArrayRef<int> Mask, Type *RetTy, 5534 const SimplifyQuery &Q) { 5535 return ::simplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 5536 } 5537 5538 static Constant *foldConstant(Instruction::UnaryOps Opcode, Value *&Op, 5539 const SimplifyQuery &Q) { 5540 if (auto *C = dyn_cast<Constant>(Op)) 5541 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 5542 return nullptr; 5543 } 5544 5545 /// Given the operand for an FNeg, see if we can fold the result. If not, this 5546 /// returns null. 5547 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 5548 const SimplifyQuery &Q, unsigned MaxRecurse) { 5549 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 5550 return C; 5551 5552 Value *X; 5553 // fneg (fneg X) ==> X 5554 if (match(Op, m_FNeg(m_Value(X)))) 5555 return X; 5556 5557 return nullptr; 5558 } 5559 5560 Value *llvm::simplifyFNegInst(Value *Op, FastMathFlags FMF, 5561 const SimplifyQuery &Q) { 5562 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 5563 } 5564 5565 /// Try to propagate existing NaN values when possible. If not, replace the 5566 /// constant or elements in the constant with a canonical NaN. 5567 static Constant *propagateNaN(Constant *In) { 5568 Type *Ty = In->getType(); 5569 if (auto *VecTy = dyn_cast<FixedVectorType>(Ty)) { 5570 unsigned NumElts = VecTy->getNumElements(); 5571 SmallVector<Constant *, 32> NewC(NumElts); 5572 for (unsigned i = 0; i != NumElts; ++i) { 5573 Constant *EltC = In->getAggregateElement(i); 5574 // Poison elements propagate. NaN propagates except signaling is quieted. 5575 // Replace unknown or undef elements with canonical NaN. 5576 if (EltC && isa<PoisonValue>(EltC)) 5577 NewC[i] = EltC; 5578 else if (EltC && EltC->isNaN()) 5579 NewC[i] = ConstantFP::get( 5580 EltC->getType(), cast<ConstantFP>(EltC)->getValue().makeQuiet()); 5581 else 5582 NewC[i] = ConstantFP::getNaN(VecTy->getElementType()); 5583 } 5584 return ConstantVector::get(NewC); 5585 } 5586 5587 // If it is not a fixed vector, but not a simple NaN either, return a 5588 // canonical NaN. 5589 if (!In->isNaN()) 5590 return ConstantFP::getNaN(Ty); 5591 5592 // If we known this is a NaN, and it's scalable vector, we must have a splat 5593 // on our hands. Grab that before splatting a QNaN constant. 5594 if (isa<ScalableVectorType>(Ty)) { 5595 auto *Splat = In->getSplatValue(); 5596 assert(Splat && Splat->isNaN() && 5597 "Found a scalable-vector NaN but not a splat"); 5598 In = Splat; 5599 } 5600 5601 // Propagate an existing QNaN constant. If it is an SNaN, make it quiet, but 5602 // preserve the sign/payload. 5603 return ConstantFP::get(Ty, cast<ConstantFP>(In)->getValue().makeQuiet()); 5604 } 5605 5606 /// Perform folds that are common to any floating-point operation. This implies 5607 /// transforms based on poison/undef/NaN because the operation itself makes no 5608 /// difference to the result. 5609 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF, 5610 const SimplifyQuery &Q, 5611 fp::ExceptionBehavior ExBehavior, 5612 RoundingMode Rounding) { 5613 // Poison is independent of anything else. It always propagates from an 5614 // operand to a math result. 5615 if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); })) 5616 return PoisonValue::get(Ops[0]->getType()); 5617 5618 for (Value *V : Ops) { 5619 bool IsNan = match(V, m_NaN()); 5620 bool IsInf = match(V, m_Inf()); 5621 bool IsUndef = Q.isUndefValue(V); 5622 5623 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 5624 // (an undef operand can be chosen to be Nan/Inf), then the result of 5625 // this operation is poison. 5626 if (FMF.noNaNs() && (IsNan || IsUndef)) 5627 return PoisonValue::get(V->getType()); 5628 if (FMF.noInfs() && (IsInf || IsUndef)) 5629 return PoisonValue::get(V->getType()); 5630 5631 if (isDefaultFPEnvironment(ExBehavior, Rounding)) { 5632 // Undef does not propagate because undef means that all bits can take on 5633 // any value. If this is undef * NaN for example, then the result values 5634 // (at least the exponent bits) are limited. Assume the undef is a 5635 // canonical NaN and propagate that. 5636 if (IsUndef) 5637 return ConstantFP::getNaN(V->getType()); 5638 if (IsNan) 5639 return propagateNaN(cast<Constant>(V)); 5640 } else if (ExBehavior != fp::ebStrict) { 5641 if (IsNan) 5642 return propagateNaN(cast<Constant>(V)); 5643 } 5644 } 5645 return nullptr; 5646 } 5647 5648 /// Given operands for an FAdd, see if we can fold the result. If not, this 5649 /// returns null. 5650 static Value * 5651 simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5652 const SimplifyQuery &Q, unsigned MaxRecurse, 5653 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5654 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5655 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5656 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 5657 return C; 5658 5659 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5660 return C; 5661 5662 // fadd X, -0 ==> X 5663 // With strict/constrained FP, we have these possible edge cases that do 5664 // not simplify to Op0: 5665 // fadd SNaN, -0.0 --> QNaN 5666 // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative) 5667 if (canIgnoreSNaN(ExBehavior, FMF) && 5668 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 5669 FMF.noSignedZeros())) 5670 if (match(Op1, m_NegZeroFP())) 5671 return Op0; 5672 5673 // fadd X, 0 ==> X, when we know X is not -0 5674 if (canIgnoreSNaN(ExBehavior, FMF)) 5675 if (match(Op1, m_PosZeroFP()) && 5676 (FMF.noSignedZeros() || cannotBeNegativeZero(Op0, /*Depth=*/0, Q))) 5677 return Op0; 5678 5679 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5680 return nullptr; 5681 5682 if (FMF.noNaNs()) { 5683 // With nnan: X + {+/-}Inf --> {+/-}Inf 5684 if (match(Op1, m_Inf())) 5685 return Op1; 5686 5687 // With nnan: -X + X --> 0.0 (and commuted variant) 5688 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 5689 // Negative zeros are allowed because we always end up with positive zero: 5690 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5691 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5692 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 5693 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 5694 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 5695 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 5696 return ConstantFP::getZero(Op0->getType()); 5697 5698 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5699 match(Op1, m_FNeg(m_Specific(Op0)))) 5700 return ConstantFP::getZero(Op0->getType()); 5701 } 5702 5703 // (X - Y) + Y --> X 5704 // Y + (X - Y) --> X 5705 Value *X; 5706 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5707 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 5708 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 5709 return X; 5710 5711 return nullptr; 5712 } 5713 5714 /// Given operands for an FSub, see if we can fold the result. If not, this 5715 /// returns null. 5716 static Value * 5717 simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5718 const SimplifyQuery &Q, unsigned MaxRecurse, 5719 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5720 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5721 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5722 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 5723 return C; 5724 5725 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5726 return C; 5727 5728 // fsub X, +0 ==> X 5729 if (canIgnoreSNaN(ExBehavior, FMF) && 5730 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 5731 FMF.noSignedZeros())) 5732 if (match(Op1, m_PosZeroFP())) 5733 return Op0; 5734 5735 // fsub X, -0 ==> X, when we know X is not -0 5736 if (canIgnoreSNaN(ExBehavior, FMF)) 5737 if (match(Op1, m_NegZeroFP()) && 5738 (FMF.noSignedZeros() || cannotBeNegativeZero(Op0, /*Depth=*/0, Q))) 5739 return Op0; 5740 5741 // fsub -0.0, (fsub -0.0, X) ==> X 5742 // fsub -0.0, (fneg X) ==> X 5743 Value *X; 5744 if (canIgnoreSNaN(ExBehavior, FMF)) 5745 if (match(Op0, m_NegZeroFP()) && match(Op1, m_FNeg(m_Value(X)))) 5746 return X; 5747 5748 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 5749 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 5750 if (canIgnoreSNaN(ExBehavior, FMF)) 5751 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 5752 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 5753 match(Op1, m_FNeg(m_Value(X))))) 5754 return X; 5755 5756 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5757 return nullptr; 5758 5759 if (FMF.noNaNs()) { 5760 // fsub nnan x, x ==> 0.0 5761 if (Op0 == Op1) 5762 return Constant::getNullValue(Op0->getType()); 5763 5764 // With nnan: {+/-}Inf - X --> {+/-}Inf 5765 if (match(Op0, m_Inf())) 5766 return Op0; 5767 5768 // With nnan: X - {+/-}Inf --> {-/+}Inf 5769 if (match(Op1, m_Inf())) 5770 return foldConstant(Instruction::FNeg, Op1, Q); 5771 } 5772 5773 // Y - (Y - X) --> X 5774 // (X + Y) - Y --> X 5775 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5776 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 5777 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 5778 return X; 5779 5780 return nullptr; 5781 } 5782 5783 static Value *simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5784 const SimplifyQuery &Q, unsigned MaxRecurse, 5785 fp::ExceptionBehavior ExBehavior, 5786 RoundingMode Rounding) { 5787 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5788 return C; 5789 5790 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5791 return nullptr; 5792 5793 // Canonicalize special constants as operand 1. 5794 if (match(Op0, m_FPOne()) || match(Op0, m_AnyZeroFP())) 5795 std::swap(Op0, Op1); 5796 5797 // X * 1.0 --> X 5798 if (match(Op1, m_FPOne())) 5799 return Op0; 5800 5801 if (match(Op1, m_AnyZeroFP())) { 5802 // X * 0.0 --> 0.0 (with nnan and nsz) 5803 if (FMF.noNaNs() && FMF.noSignedZeros()) 5804 return ConstantFP::getZero(Op0->getType()); 5805 5806 KnownFPClass Known = 5807 computeKnownFPClass(Op0, FMF, fcInf | fcNan, /*Depth=*/0, Q); 5808 if (Known.isKnownNever(fcInf | fcNan)) { 5809 // +normal number * (-)0.0 --> (-)0.0 5810 if (Known.SignBit == false) 5811 return Op1; 5812 // -normal number * (-)0.0 --> -(-)0.0 5813 if (Known.SignBit == true) 5814 return foldConstant(Instruction::FNeg, Op1, Q); 5815 } 5816 } 5817 5818 // sqrt(X) * sqrt(X) --> X, if we can: 5819 // 1. Remove the intermediate rounding (reassociate). 5820 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 5821 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 5822 Value *X; 5823 if (Op0 == Op1 && match(Op0, m_Sqrt(m_Value(X))) && FMF.allowReassoc() && 5824 FMF.noNaNs() && FMF.noSignedZeros()) 5825 return X; 5826 5827 return nullptr; 5828 } 5829 5830 /// Given the operands for an FMul, see if we can fold the result 5831 static Value * 5832 simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5833 const SimplifyQuery &Q, unsigned MaxRecurse, 5834 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5835 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5836 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5837 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 5838 return C; 5839 5840 // Now apply simplifications that do not require rounding. 5841 return simplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding); 5842 } 5843 5844 Value *llvm::simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5845 const SimplifyQuery &Q, 5846 fp::ExceptionBehavior ExBehavior, 5847 RoundingMode Rounding) { 5848 return ::simplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5849 Rounding); 5850 } 5851 5852 Value *llvm::simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5853 const SimplifyQuery &Q, 5854 fp::ExceptionBehavior ExBehavior, 5855 RoundingMode Rounding) { 5856 return ::simplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5857 Rounding); 5858 } 5859 5860 Value *llvm::simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5861 const SimplifyQuery &Q, 5862 fp::ExceptionBehavior ExBehavior, 5863 RoundingMode Rounding) { 5864 return ::simplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5865 Rounding); 5866 } 5867 5868 Value *llvm::simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5869 const SimplifyQuery &Q, 5870 fp::ExceptionBehavior ExBehavior, 5871 RoundingMode Rounding) { 5872 return ::simplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5873 Rounding); 5874 } 5875 5876 static Value * 5877 simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5878 const SimplifyQuery &Q, unsigned, 5879 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5880 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5881 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5882 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 5883 return C; 5884 5885 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5886 return C; 5887 5888 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5889 return nullptr; 5890 5891 // X / 1.0 -> X 5892 if (match(Op1, m_FPOne())) 5893 return Op0; 5894 5895 // 0 / X -> 0 5896 // Requires that NaNs are off (X could be zero) and signed zeroes are 5897 // ignored (X could be positive or negative, so the output sign is unknown). 5898 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5899 return ConstantFP::getZero(Op0->getType()); 5900 5901 if (FMF.noNaNs()) { 5902 // X / X -> 1.0 is legal when NaNs are ignored. 5903 // We can ignore infinities because INF/INF is NaN. 5904 if (Op0 == Op1) 5905 return ConstantFP::get(Op0->getType(), 1.0); 5906 5907 // (X * Y) / Y --> X if we can reassociate to the above form. 5908 Value *X; 5909 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 5910 return X; 5911 5912 // -X / X -> -1.0 and 5913 // X / -X -> -1.0 are legal when NaNs are ignored. 5914 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 5915 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 5916 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 5917 return ConstantFP::get(Op0->getType(), -1.0); 5918 5919 // nnan ninf X / [-]0.0 -> poison 5920 if (FMF.noInfs() && match(Op1, m_AnyZeroFP())) 5921 return PoisonValue::get(Op1->getType()); 5922 } 5923 5924 return nullptr; 5925 } 5926 5927 Value *llvm::simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5928 const SimplifyQuery &Q, 5929 fp::ExceptionBehavior ExBehavior, 5930 RoundingMode Rounding) { 5931 return ::simplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5932 Rounding); 5933 } 5934 5935 static Value * 5936 simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5937 const SimplifyQuery &Q, unsigned, 5938 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5939 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5940 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5941 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 5942 return C; 5943 5944 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5945 return C; 5946 5947 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5948 return nullptr; 5949 5950 // Unlike fdiv, the result of frem always matches the sign of the dividend. 5951 // The constant match may include undef elements in a vector, so return a full 5952 // zero constant as the result. 5953 if (FMF.noNaNs()) { 5954 // +0 % X -> 0 5955 if (match(Op0, m_PosZeroFP())) 5956 return ConstantFP::getZero(Op0->getType()); 5957 // -0 % X -> -0 5958 if (match(Op0, m_NegZeroFP())) 5959 return ConstantFP::getNegativeZero(Op0->getType()); 5960 } 5961 5962 return nullptr; 5963 } 5964 5965 Value *llvm::simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5966 const SimplifyQuery &Q, 5967 fp::ExceptionBehavior ExBehavior, 5968 RoundingMode Rounding) { 5969 return ::simplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5970 Rounding); 5971 } 5972 5973 //=== Helper functions for higher up the class hierarchy. 5974 5975 /// Given the operand for a UnaryOperator, see if we can fold the result. 5976 /// If not, this returns null. 5977 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 5978 unsigned MaxRecurse) { 5979 switch (Opcode) { 5980 case Instruction::FNeg: 5981 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 5982 default: 5983 llvm_unreachable("Unexpected opcode"); 5984 } 5985 } 5986 5987 /// Given the operand for a UnaryOperator, see if we can fold the result. 5988 /// If not, this returns null. 5989 /// Try to use FastMathFlags when folding the result. 5990 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 5991 const FastMathFlags &FMF, const SimplifyQuery &Q, 5992 unsigned MaxRecurse) { 5993 switch (Opcode) { 5994 case Instruction::FNeg: 5995 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 5996 default: 5997 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 5998 } 5999 } 6000 6001 Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 6002 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 6003 } 6004 6005 Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 6006 const SimplifyQuery &Q) { 6007 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 6008 } 6009 6010 /// Given operands for a BinaryOperator, see if we can fold the result. 6011 /// If not, this returns null. 6012 static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 6013 const SimplifyQuery &Q, unsigned MaxRecurse) { 6014 switch (Opcode) { 6015 case Instruction::Add: 6016 return simplifyAddInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, 6017 MaxRecurse); 6018 case Instruction::Sub: 6019 return simplifySubInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, 6020 MaxRecurse); 6021 case Instruction::Mul: 6022 return simplifyMulInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, 6023 MaxRecurse); 6024 case Instruction::SDiv: 6025 return simplifySDivInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); 6026 case Instruction::UDiv: 6027 return simplifyUDivInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); 6028 case Instruction::SRem: 6029 return simplifySRemInst(LHS, RHS, Q, MaxRecurse); 6030 case Instruction::URem: 6031 return simplifyURemInst(LHS, RHS, Q, MaxRecurse); 6032 case Instruction::Shl: 6033 return simplifyShlInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, 6034 MaxRecurse); 6035 case Instruction::LShr: 6036 return simplifyLShrInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); 6037 case Instruction::AShr: 6038 return simplifyAShrInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); 6039 case Instruction::And: 6040 return simplifyAndInst(LHS, RHS, Q, MaxRecurse); 6041 case Instruction::Or: 6042 return simplifyOrInst(LHS, RHS, Q, MaxRecurse); 6043 case Instruction::Xor: 6044 return simplifyXorInst(LHS, RHS, Q, MaxRecurse); 6045 case Instruction::FAdd: 6046 return simplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 6047 case Instruction::FSub: 6048 return simplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 6049 case Instruction::FMul: 6050 return simplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 6051 case Instruction::FDiv: 6052 return simplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 6053 case Instruction::FRem: 6054 return simplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 6055 default: 6056 llvm_unreachable("Unexpected opcode"); 6057 } 6058 } 6059 6060 /// Given operands for a BinaryOperator, see if we can fold the result. 6061 /// If not, this returns null. 6062 /// Try to use FastMathFlags when folding the result. 6063 static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 6064 const FastMathFlags &FMF, const SimplifyQuery &Q, 6065 unsigned MaxRecurse) { 6066 switch (Opcode) { 6067 case Instruction::FAdd: 6068 return simplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 6069 case Instruction::FSub: 6070 return simplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 6071 case Instruction::FMul: 6072 return simplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 6073 case Instruction::FDiv: 6074 return simplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 6075 default: 6076 return simplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 6077 } 6078 } 6079 6080 Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 6081 const SimplifyQuery &Q) { 6082 return ::simplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 6083 } 6084 6085 Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 6086 FastMathFlags FMF, const SimplifyQuery &Q) { 6087 return ::simplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 6088 } 6089 6090 /// Given operands for a CmpInst, see if we can fold the result. 6091 static Value *simplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 6092 const SimplifyQuery &Q, unsigned MaxRecurse) { 6093 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 6094 return simplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 6095 return simplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 6096 } 6097 6098 Value *llvm::simplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 6099 const SimplifyQuery &Q) { 6100 return ::simplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 6101 } 6102 6103 static bool isIdempotent(Intrinsic::ID ID) { 6104 switch (ID) { 6105 default: 6106 return false; 6107 6108 // Unary idempotent: f(f(x)) = f(x) 6109 case Intrinsic::fabs: 6110 case Intrinsic::floor: 6111 case Intrinsic::ceil: 6112 case Intrinsic::trunc: 6113 case Intrinsic::rint: 6114 case Intrinsic::nearbyint: 6115 case Intrinsic::round: 6116 case Intrinsic::roundeven: 6117 case Intrinsic::canonicalize: 6118 case Intrinsic::arithmetic_fence: 6119 return true; 6120 } 6121 } 6122 6123 /// Return true if the intrinsic rounds a floating-point value to an integral 6124 /// floating-point value (not an integer type). 6125 static bool removesFPFraction(Intrinsic::ID ID) { 6126 switch (ID) { 6127 default: 6128 return false; 6129 6130 case Intrinsic::floor: 6131 case Intrinsic::ceil: 6132 case Intrinsic::trunc: 6133 case Intrinsic::rint: 6134 case Intrinsic::nearbyint: 6135 case Intrinsic::round: 6136 case Intrinsic::roundeven: 6137 return true; 6138 } 6139 } 6140 6141 static Value *simplifyRelativeLoad(Constant *Ptr, Constant *Offset, 6142 const DataLayout &DL) { 6143 GlobalValue *PtrSym; 6144 APInt PtrOffset; 6145 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 6146 return nullptr; 6147 6148 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 6149 6150 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 6151 if (!OffsetConstInt || OffsetConstInt->getBitWidth() > 64) 6152 return nullptr; 6153 6154 APInt OffsetInt = OffsetConstInt->getValue().sextOrTrunc( 6155 DL.getIndexTypeSizeInBits(Ptr->getType())); 6156 if (OffsetInt.srem(4) != 0) 6157 return nullptr; 6158 6159 Constant *Loaded = 6160 ConstantFoldLoadFromConstPtr(Ptr, Int32Ty, std::move(OffsetInt), DL); 6161 if (!Loaded) 6162 return nullptr; 6163 6164 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 6165 if (!LoadedCE) 6166 return nullptr; 6167 6168 if (LoadedCE->getOpcode() == Instruction::Trunc) { 6169 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 6170 if (!LoadedCE) 6171 return nullptr; 6172 } 6173 6174 if (LoadedCE->getOpcode() != Instruction::Sub) 6175 return nullptr; 6176 6177 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 6178 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 6179 return nullptr; 6180 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 6181 6182 Constant *LoadedRHS = LoadedCE->getOperand(1); 6183 GlobalValue *LoadedRHSSym; 6184 APInt LoadedRHSOffset; 6185 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 6186 DL) || 6187 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 6188 return nullptr; 6189 6190 return LoadedLHSPtr; 6191 } 6192 6193 // TODO: Need to pass in FastMathFlags 6194 static Value *simplifyLdexp(Value *Op0, Value *Op1, const SimplifyQuery &Q, 6195 bool IsStrict) { 6196 // ldexp(poison, x) -> poison 6197 // ldexp(x, poison) -> poison 6198 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 6199 return Op0; 6200 6201 // ldexp(undef, x) -> nan 6202 if (Q.isUndefValue(Op0)) 6203 return ConstantFP::getNaN(Op0->getType()); 6204 6205 if (!IsStrict) { 6206 // TODO: Could insert a canonicalize for strict 6207 6208 // ldexp(x, undef) -> x 6209 if (Q.isUndefValue(Op1)) 6210 return Op0; 6211 } 6212 6213 const APFloat *C = nullptr; 6214 match(Op0, PatternMatch::m_APFloat(C)); 6215 6216 // These cases should be safe, even with strictfp. 6217 // ldexp(0.0, x) -> 0.0 6218 // ldexp(-0.0, x) -> -0.0 6219 // ldexp(inf, x) -> inf 6220 // ldexp(-inf, x) -> -inf 6221 if (C && (C->isZero() || C->isInfinity())) 6222 return Op0; 6223 6224 // These are canonicalization dropping, could do it if we knew how we could 6225 // ignore denormal flushes and target handling of nan payload bits. 6226 if (IsStrict) 6227 return nullptr; 6228 6229 // TODO: Could quiet this with strictfp if the exception mode isn't strict. 6230 if (C && C->isNaN()) 6231 return ConstantFP::get(Op0->getType(), C->makeQuiet()); 6232 6233 // ldexp(x, 0) -> x 6234 6235 // TODO: Could fold this if we know the exception mode isn't 6236 // strict, we know the denormal mode and other target modes. 6237 if (match(Op1, PatternMatch::m_ZeroInt())) 6238 return Op0; 6239 6240 return nullptr; 6241 } 6242 6243 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 6244 const SimplifyQuery &Q, 6245 const CallBase *Call) { 6246 // Idempotent functions return the same result when called repeatedly. 6247 Intrinsic::ID IID = F->getIntrinsicID(); 6248 if (isIdempotent(IID)) 6249 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 6250 if (II->getIntrinsicID() == IID) 6251 return II; 6252 6253 if (removesFPFraction(IID)) { 6254 // Converting from int or calling a rounding function always results in a 6255 // finite integral number or infinity. For those inputs, rounding functions 6256 // always return the same value, so the (2nd) rounding is eliminated. Ex: 6257 // floor (sitofp x) -> sitofp x 6258 // round (ceil x) -> ceil x 6259 auto *II = dyn_cast<IntrinsicInst>(Op0); 6260 if ((II && removesFPFraction(II->getIntrinsicID())) || 6261 match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 6262 return Op0; 6263 } 6264 6265 Value *X; 6266 switch (IID) { 6267 case Intrinsic::fabs: 6268 if (computeKnownFPSignBit(Op0, /*Depth=*/0, Q) == false) 6269 return Op0; 6270 break; 6271 case Intrinsic::bswap: 6272 // bswap(bswap(x)) -> x 6273 if (match(Op0, m_BSwap(m_Value(X)))) 6274 return X; 6275 break; 6276 case Intrinsic::bitreverse: 6277 // bitreverse(bitreverse(x)) -> x 6278 if (match(Op0, m_BitReverse(m_Value(X)))) 6279 return X; 6280 break; 6281 case Intrinsic::ctpop: { 6282 // ctpop(X) -> 1 iff X is non-zero power of 2. 6283 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ false, 0, Q.AC, Q.CxtI, 6284 Q.DT)) 6285 return ConstantInt::get(Op0->getType(), 1); 6286 // If everything but the lowest bit is zero, that bit is the pop-count. Ex: 6287 // ctpop(and X, 1) --> and X, 1 6288 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 6289 if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), 6290 Q)) 6291 return Op0; 6292 break; 6293 } 6294 case Intrinsic::exp: 6295 // exp(log(x)) -> x 6296 if (Call->hasAllowReassoc() && 6297 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) 6298 return X; 6299 break; 6300 case Intrinsic::exp2: 6301 // exp2(log2(x)) -> x 6302 if (Call->hasAllowReassoc() && 6303 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) 6304 return X; 6305 break; 6306 case Intrinsic::exp10: 6307 // exp10(log10(x)) -> x 6308 if (Call->hasAllowReassoc() && 6309 match(Op0, m_Intrinsic<Intrinsic::log10>(m_Value(X)))) 6310 return X; 6311 break; 6312 case Intrinsic::log: 6313 // log(exp(x)) -> x 6314 if (Call->hasAllowReassoc() && 6315 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) 6316 return X; 6317 break; 6318 case Intrinsic::log2: 6319 // log2(exp2(x)) -> x 6320 if (Call->hasAllowReassoc() && 6321 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 6322 match(Op0, 6323 m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), m_Value(X))))) 6324 return X; 6325 break; 6326 case Intrinsic::log10: 6327 // log10(pow(10.0, x)) -> x 6328 // log10(exp10(x)) -> x 6329 if (Call->hasAllowReassoc() && 6330 (match(Op0, m_Intrinsic<Intrinsic::exp10>(m_Value(X))) || 6331 match(Op0, 6332 m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), m_Value(X))))) 6333 return X; 6334 break; 6335 case Intrinsic::vector_reverse: 6336 // vector.reverse(vector.reverse(x)) -> x 6337 if (match(Op0, m_VecReverse(m_Value(X)))) 6338 return X; 6339 // vector.reverse(splat(X)) -> splat(X) 6340 if (isSplatValue(Op0)) 6341 return Op0; 6342 break; 6343 case Intrinsic::frexp: { 6344 // Frexp is idempotent with the added complication of the struct return. 6345 if (match(Op0, m_ExtractValue<0>(m_Value(X)))) { 6346 if (match(X, m_Intrinsic<Intrinsic::frexp>(m_Value()))) 6347 return X; 6348 } 6349 6350 break; 6351 } 6352 default: 6353 break; 6354 } 6355 6356 return nullptr; 6357 } 6358 6359 /// Given a min/max intrinsic, see if it can be removed based on having an 6360 /// operand that is another min/max intrinsic with shared operand(s). The caller 6361 /// is expected to swap the operand arguments to handle commutation. 6362 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 6363 Value *X, *Y; 6364 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 6365 return nullptr; 6366 6367 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 6368 if (!MM0) 6369 return nullptr; 6370 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 6371 6372 if (Op1 == X || Op1 == Y || 6373 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 6374 // max (max X, Y), X --> max X, Y 6375 if (IID0 == IID) 6376 return MM0; 6377 // max (min X, Y), X --> X 6378 if (IID0 == getInverseMinMaxIntrinsic(IID)) 6379 return Op1; 6380 } 6381 return nullptr; 6382 } 6383 6384 /// Given a min/max intrinsic, see if it can be removed based on having an 6385 /// operand that is another min/max intrinsic with shared operand(s). The caller 6386 /// is expected to swap the operand arguments to handle commutation. 6387 static Value *foldMinimumMaximumSharedOp(Intrinsic::ID IID, Value *Op0, 6388 Value *Op1) { 6389 assert((IID == Intrinsic::maxnum || IID == Intrinsic::minnum || 6390 IID == Intrinsic::maximum || IID == Intrinsic::minimum) && 6391 "Unsupported intrinsic"); 6392 6393 auto *M0 = dyn_cast<IntrinsicInst>(Op0); 6394 // If Op0 is not the same intrinsic as IID, do not process. 6395 // This is a difference with integer min/max handling. We do not process the 6396 // case like max(min(X,Y),min(X,Y)) => min(X,Y). But it can be handled by GVN. 6397 if (!M0 || M0->getIntrinsicID() != IID) 6398 return nullptr; 6399 Value *X0 = M0->getOperand(0); 6400 Value *Y0 = M0->getOperand(1); 6401 // Simple case, m(m(X,Y), X) => m(X, Y) 6402 // m(m(X,Y), Y) => m(X, Y) 6403 // For minimum/maximum, X is NaN => m(NaN, Y) == NaN and m(NaN, NaN) == NaN. 6404 // For minimum/maximum, Y is NaN => m(X, NaN) == NaN and m(NaN, NaN) == NaN. 6405 // For minnum/maxnum, X is NaN => m(NaN, Y) == Y and m(Y, Y) == Y. 6406 // For minnum/maxnum, Y is NaN => m(X, NaN) == X and m(X, NaN) == X. 6407 if (X0 == Op1 || Y0 == Op1) 6408 return M0; 6409 6410 auto *M1 = dyn_cast<IntrinsicInst>(Op1); 6411 if (!M1) 6412 return nullptr; 6413 Value *X1 = M1->getOperand(0); 6414 Value *Y1 = M1->getOperand(1); 6415 Intrinsic::ID IID1 = M1->getIntrinsicID(); 6416 // we have a case m(m(X,Y),m'(X,Y)) taking into account m' is commutative. 6417 // if m' is m or inversion of m => m(m(X,Y),m'(X,Y)) == m(X,Y). 6418 // For minimum/maximum, X is NaN => m(NaN,Y) == m'(NaN, Y) == NaN. 6419 // For minimum/maximum, Y is NaN => m(X,NaN) == m'(X, NaN) == NaN. 6420 // For minnum/maxnum, X is NaN => m(NaN,Y) == m'(NaN, Y) == Y. 6421 // For minnum/maxnum, Y is NaN => m(X,NaN) == m'(X, NaN) == X. 6422 if ((X0 == X1 && Y0 == Y1) || (X0 == Y1 && Y0 == X1)) 6423 if (IID1 == IID || getInverseMinMaxIntrinsic(IID1) == IID) 6424 return M0; 6425 6426 return nullptr; 6427 } 6428 6429 Value *llvm::simplifyBinaryIntrinsic(Intrinsic::ID IID, Type *ReturnType, 6430 Value *Op0, Value *Op1, 6431 const SimplifyQuery &Q, 6432 const CallBase *Call) { 6433 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 6434 switch (IID) { 6435 case Intrinsic::abs: 6436 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 6437 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 6438 // on the outer abs. 6439 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 6440 return Op0; 6441 break; 6442 6443 case Intrinsic::cttz: { 6444 Value *X; 6445 if (match(Op0, m_Shl(m_One(), m_Value(X)))) 6446 return X; 6447 break; 6448 } 6449 case Intrinsic::ctlz: { 6450 Value *X; 6451 if (match(Op0, m_LShr(m_Negative(), m_Value(X)))) 6452 return X; 6453 if (match(Op0, m_AShr(m_Negative(), m_Value()))) 6454 return Constant::getNullValue(ReturnType); 6455 break; 6456 } 6457 case Intrinsic::ptrmask: { 6458 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 6459 return PoisonValue::get(Op0->getType()); 6460 6461 // NOTE: We can't apply this simplifications based on the value of Op1 6462 // because we need to preserve provenance. 6463 if (Q.isUndefValue(Op0) || match(Op0, m_Zero())) 6464 return Constant::getNullValue(Op0->getType()); 6465 6466 assert(Op1->getType()->getScalarSizeInBits() == 6467 Q.DL.getIndexTypeSizeInBits(Op0->getType()) && 6468 "Invalid mask width"); 6469 // If index-width (mask size) is less than pointer-size then mask is 6470 // 1-extended. 6471 if (match(Op1, m_PtrToInt(m_Specific(Op0)))) 6472 return Op0; 6473 6474 // NOTE: We may have attributes associated with the return value of the 6475 // llvm.ptrmask intrinsic that will be lost when we just return the 6476 // operand. We should try to preserve them. 6477 if (match(Op1, m_AllOnes()) || Q.isUndefValue(Op1)) 6478 return Op0; 6479 6480 Constant *C; 6481 if (match(Op1, m_ImmConstant(C))) { 6482 KnownBits PtrKnown = computeKnownBits(Op0, /*Depth=*/0, Q); 6483 // See if we only masking off bits we know are already zero due to 6484 // alignment. 6485 APInt IrrelevantPtrBits = 6486 PtrKnown.Zero.zextOrTrunc(C->getType()->getScalarSizeInBits()); 6487 C = ConstantFoldBinaryOpOperands( 6488 Instruction::Or, C, ConstantInt::get(C->getType(), IrrelevantPtrBits), 6489 Q.DL); 6490 if (C != nullptr && C->isAllOnesValue()) 6491 return Op0; 6492 } 6493 break; 6494 } 6495 case Intrinsic::smax: 6496 case Intrinsic::smin: 6497 case Intrinsic::umax: 6498 case Intrinsic::umin: { 6499 // If the arguments are the same, this is a no-op. 6500 if (Op0 == Op1) 6501 return Op0; 6502 6503 // Canonicalize immediate constant operand as Op1. 6504 if (match(Op0, m_ImmConstant())) 6505 std::swap(Op0, Op1); 6506 6507 // Assume undef is the limit value. 6508 if (Q.isUndefValue(Op1)) 6509 return ConstantInt::get( 6510 ReturnType, MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)); 6511 6512 const APInt *C; 6513 if (match(Op1, m_APIntAllowPoison(C))) { 6514 // Clamp to limit value. For example: 6515 // umax(i8 %x, i8 255) --> 255 6516 if (*C == MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)) 6517 return ConstantInt::get(ReturnType, *C); 6518 6519 // If the constant op is the opposite of the limit value, the other must 6520 // be larger/smaller or equal. For example: 6521 // umin(i8 %x, i8 255) --> %x 6522 if (*C == MinMaxIntrinsic::getSaturationPoint( 6523 getInverseMinMaxIntrinsic(IID), BitWidth)) 6524 return Op0; 6525 6526 // Remove nested call if constant operands allow it. Example: 6527 // max (max X, 7), 5 -> max X, 7 6528 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 6529 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 6530 // TODO: loosen undef/splat restrictions for vector constants. 6531 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 6532 const APInt *InnerC; 6533 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 6534 ICmpInst::compare(*InnerC, *C, 6535 ICmpInst::getNonStrictPredicate( 6536 MinMaxIntrinsic::getPredicate(IID)))) 6537 return Op0; 6538 } 6539 } 6540 6541 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 6542 return V; 6543 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 6544 return V; 6545 6546 ICmpInst::Predicate Pred = 6547 ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID)); 6548 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) 6549 return Op0; 6550 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) 6551 return Op1; 6552 6553 break; 6554 } 6555 case Intrinsic::scmp: 6556 case Intrinsic::ucmp: { 6557 // Fold to a constant if the relationship between operands can be 6558 // established with certainty 6559 if (isICmpTrue(CmpInst::ICMP_EQ, Op0, Op1, Q, RecursionLimit)) 6560 return Constant::getNullValue(ReturnType); 6561 6562 ICmpInst::Predicate PredGT = 6563 IID == Intrinsic::scmp ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 6564 if (isICmpTrue(PredGT, Op0, Op1, Q, RecursionLimit)) 6565 return ConstantInt::get(ReturnType, 1); 6566 6567 ICmpInst::Predicate PredLT = 6568 IID == Intrinsic::scmp ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 6569 if (isICmpTrue(PredLT, Op0, Op1, Q, RecursionLimit)) 6570 return ConstantInt::getSigned(ReturnType, -1); 6571 6572 break; 6573 } 6574 case Intrinsic::usub_with_overflow: 6575 case Intrinsic::ssub_with_overflow: 6576 // X - X -> { 0, false } 6577 // X - undef -> { 0, false } 6578 // undef - X -> { 0, false } 6579 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 6580 return Constant::getNullValue(ReturnType); 6581 break; 6582 case Intrinsic::uadd_with_overflow: 6583 case Intrinsic::sadd_with_overflow: 6584 // X + undef -> { -1, false } 6585 // undef + x -> { -1, false } 6586 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 6587 return ConstantStruct::get( 6588 cast<StructType>(ReturnType), 6589 {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), 6590 Constant::getNullValue(ReturnType->getStructElementType(1))}); 6591 } 6592 break; 6593 case Intrinsic::umul_with_overflow: 6594 case Intrinsic::smul_with_overflow: 6595 // 0 * X -> { 0, false } 6596 // X * 0 -> { 0, false } 6597 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 6598 return Constant::getNullValue(ReturnType); 6599 // undef * X -> { 0, false } 6600 // X * undef -> { 0, false } 6601 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 6602 return Constant::getNullValue(ReturnType); 6603 break; 6604 case Intrinsic::uadd_sat: 6605 // sat(MAX + X) -> MAX 6606 // sat(X + MAX) -> MAX 6607 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 6608 return Constant::getAllOnesValue(ReturnType); 6609 [[fallthrough]]; 6610 case Intrinsic::sadd_sat: 6611 // sat(X + undef) -> -1 6612 // sat(undef + X) -> -1 6613 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 6614 // For signed: Assume undef is ~X, in which case X + ~X = -1. 6615 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 6616 return Constant::getAllOnesValue(ReturnType); 6617 6618 // X + 0 -> X 6619 if (match(Op1, m_Zero())) 6620 return Op0; 6621 // 0 + X -> X 6622 if (match(Op0, m_Zero())) 6623 return Op1; 6624 break; 6625 case Intrinsic::usub_sat: 6626 // sat(0 - X) -> 0, sat(X - MAX) -> 0 6627 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 6628 return Constant::getNullValue(ReturnType); 6629 [[fallthrough]]; 6630 case Intrinsic::ssub_sat: 6631 // X - X -> 0, X - undef -> 0, undef - X -> 0 6632 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 6633 return Constant::getNullValue(ReturnType); 6634 // X - 0 -> X 6635 if (match(Op1, m_Zero())) 6636 return Op0; 6637 break; 6638 case Intrinsic::load_relative: 6639 if (auto *C0 = dyn_cast<Constant>(Op0)) 6640 if (auto *C1 = dyn_cast<Constant>(Op1)) 6641 return simplifyRelativeLoad(C0, C1, Q.DL); 6642 break; 6643 case Intrinsic::powi: 6644 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 6645 // powi(x, 0) -> 1.0 6646 if (Power->isZero()) 6647 return ConstantFP::get(Op0->getType(), 1.0); 6648 // powi(x, 1) -> x 6649 if (Power->isOne()) 6650 return Op0; 6651 } 6652 break; 6653 case Intrinsic::ldexp: 6654 return simplifyLdexp(Op0, Op1, Q, false); 6655 case Intrinsic::copysign: 6656 // copysign X, X --> X 6657 if (Op0 == Op1) 6658 return Op0; 6659 // copysign -X, X --> X 6660 // copysign X, -X --> -X 6661 if (match(Op0, m_FNeg(m_Specific(Op1))) || 6662 match(Op1, m_FNeg(m_Specific(Op0)))) 6663 return Op1; 6664 break; 6665 case Intrinsic::is_fpclass: { 6666 if (isa<PoisonValue>(Op0)) 6667 return PoisonValue::get(ReturnType); 6668 6669 uint64_t Mask = cast<ConstantInt>(Op1)->getZExtValue(); 6670 // If all tests are made, it doesn't matter what the value is. 6671 if ((Mask & fcAllFlags) == fcAllFlags) 6672 return ConstantInt::get(ReturnType, true); 6673 if ((Mask & fcAllFlags) == 0) 6674 return ConstantInt::get(ReturnType, false); 6675 if (Q.isUndefValue(Op0)) 6676 return UndefValue::get(ReturnType); 6677 break; 6678 } 6679 case Intrinsic::maxnum: 6680 case Intrinsic::minnum: 6681 case Intrinsic::maximum: 6682 case Intrinsic::minimum: { 6683 // If the arguments are the same, this is a no-op. 6684 if (Op0 == Op1) 6685 return Op0; 6686 6687 // Canonicalize constant operand as Op1. 6688 if (isa<Constant>(Op0)) 6689 std::swap(Op0, Op1); 6690 6691 // If an argument is undef, return the other argument. 6692 if (Q.isUndefValue(Op1)) 6693 return Op0; 6694 6695 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 6696 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; 6697 6698 // minnum(X, nan) -> X 6699 // maxnum(X, nan) -> X 6700 // minimum(X, nan) -> nan 6701 // maximum(X, nan) -> nan 6702 if (match(Op1, m_NaN())) 6703 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; 6704 6705 // In the following folds, inf can be replaced with the largest finite 6706 // float, if the ninf flag is set. 6707 const APFloat *C; 6708 if (match(Op1, m_APFloat(C)) && 6709 (C->isInfinity() || (Call && Call->hasNoInfs() && C->isLargest()))) { 6710 // minnum(X, -inf) -> -inf 6711 // maxnum(X, +inf) -> +inf 6712 // minimum(X, -inf) -> -inf if nnan 6713 // maximum(X, +inf) -> +inf if nnan 6714 if (C->isNegative() == IsMin && 6715 (!PropagateNaN || (Call && Call->hasNoNaNs()))) 6716 return ConstantFP::get(ReturnType, *C); 6717 6718 // minnum(X, +inf) -> X if nnan 6719 // maxnum(X, -inf) -> X if nnan 6720 // minimum(X, +inf) -> X 6721 // maximum(X, -inf) -> X 6722 if (C->isNegative() != IsMin && 6723 (PropagateNaN || (Call && Call->hasNoNaNs()))) 6724 return Op0; 6725 } 6726 6727 // Min/max of the same operation with common operand: 6728 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 6729 if (Value *V = foldMinimumMaximumSharedOp(IID, Op0, Op1)) 6730 return V; 6731 if (Value *V = foldMinimumMaximumSharedOp(IID, Op1, Op0)) 6732 return V; 6733 6734 break; 6735 } 6736 case Intrinsic::vector_extract: { 6737 // (extract_vector (insert_vector _, X, 0), 0) -> X 6738 unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue(); 6739 Value *X = nullptr; 6740 if (match(Op0, m_Intrinsic<Intrinsic::vector_insert>(m_Value(), m_Value(X), 6741 m_Zero())) && 6742 IdxN == 0 && X->getType() == ReturnType) 6743 return X; 6744 6745 break; 6746 } 6747 default: 6748 break; 6749 } 6750 6751 return nullptr; 6752 } 6753 6754 static Value *simplifyIntrinsic(CallBase *Call, Value *Callee, 6755 ArrayRef<Value *> Args, 6756 const SimplifyQuery &Q) { 6757 // Operand bundles should not be in Args. 6758 assert(Call->arg_size() == Args.size()); 6759 unsigned NumOperands = Args.size(); 6760 Function *F = cast<Function>(Callee); 6761 Intrinsic::ID IID = F->getIntrinsicID(); 6762 6763 // Most of the intrinsics with no operands have some kind of side effect. 6764 // Don't simplify. 6765 if (!NumOperands) { 6766 switch (IID) { 6767 case Intrinsic::vscale: { 6768 Type *RetTy = F->getReturnType(); 6769 ConstantRange CR = getVScaleRange(Call->getFunction(), 64); 6770 if (const APInt *C = CR.getSingleElement()) 6771 return ConstantInt::get(RetTy, C->getZExtValue()); 6772 return nullptr; 6773 } 6774 default: 6775 return nullptr; 6776 } 6777 } 6778 6779 if (NumOperands == 1) 6780 return simplifyUnaryIntrinsic(F, Args[0], Q, Call); 6781 6782 if (NumOperands == 2) 6783 return simplifyBinaryIntrinsic(IID, F->getReturnType(), Args[0], Args[1], Q, 6784 Call); 6785 6786 // Handle intrinsics with 3 or more arguments. 6787 switch (IID) { 6788 case Intrinsic::masked_load: 6789 case Intrinsic::masked_gather: { 6790 Value *MaskArg = Args[2]; 6791 Value *PassthruArg = Args[3]; 6792 // If the mask is all zeros or undef, the "passthru" argument is the result. 6793 if (maskIsAllZeroOrUndef(MaskArg)) 6794 return PassthruArg; 6795 return nullptr; 6796 } 6797 case Intrinsic::fshl: 6798 case Intrinsic::fshr: { 6799 Value *Op0 = Args[0], *Op1 = Args[1], *ShAmtArg = Args[2]; 6800 6801 // If both operands are undef, the result is undef. 6802 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 6803 return UndefValue::get(F->getReturnType()); 6804 6805 // If shift amount is undef, assume it is zero. 6806 if (Q.isUndefValue(ShAmtArg)) 6807 return Args[IID == Intrinsic::fshl ? 0 : 1]; 6808 6809 const APInt *ShAmtC; 6810 if (match(ShAmtArg, m_APInt(ShAmtC))) { 6811 // If there's effectively no shift, return the 1st arg or 2nd arg. 6812 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 6813 if (ShAmtC->urem(BitWidth).isZero()) 6814 return Args[IID == Intrinsic::fshl ? 0 : 1]; 6815 } 6816 6817 // Rotating zero by anything is zero. 6818 if (match(Op0, m_Zero()) && match(Op1, m_Zero())) 6819 return ConstantInt::getNullValue(F->getReturnType()); 6820 6821 // Rotating -1 by anything is -1. 6822 if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes())) 6823 return ConstantInt::getAllOnesValue(F->getReturnType()); 6824 6825 return nullptr; 6826 } 6827 case Intrinsic::experimental_constrained_fma: { 6828 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6829 if (Value *V = simplifyFPOp(Args, {}, Q, *FPI->getExceptionBehavior(), 6830 *FPI->getRoundingMode())) 6831 return V; 6832 return nullptr; 6833 } 6834 case Intrinsic::fma: 6835 case Intrinsic::fmuladd: { 6836 if (Value *V = simplifyFPOp(Args, {}, Q, fp::ebIgnore, 6837 RoundingMode::NearestTiesToEven)) 6838 return V; 6839 return nullptr; 6840 } 6841 case Intrinsic::smul_fix: 6842 case Intrinsic::smul_fix_sat: { 6843 Value *Op0 = Args[0]; 6844 Value *Op1 = Args[1]; 6845 Value *Op2 = Args[2]; 6846 Type *ReturnType = F->getReturnType(); 6847 6848 // Canonicalize constant operand as Op1 (ConstantFolding handles the case 6849 // when both Op0 and Op1 are constant so we do not care about that special 6850 // case here). 6851 if (isa<Constant>(Op0)) 6852 std::swap(Op0, Op1); 6853 6854 // X * 0 -> 0 6855 if (match(Op1, m_Zero())) 6856 return Constant::getNullValue(ReturnType); 6857 6858 // X * undef -> 0 6859 if (Q.isUndefValue(Op1)) 6860 return Constant::getNullValue(ReturnType); 6861 6862 // X * (1 << Scale) -> X 6863 APInt ScaledOne = 6864 APInt::getOneBitSet(ReturnType->getScalarSizeInBits(), 6865 cast<ConstantInt>(Op2)->getZExtValue()); 6866 if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne))) 6867 return Op0; 6868 6869 return nullptr; 6870 } 6871 case Intrinsic::vector_insert: { 6872 Value *Vec = Args[0]; 6873 Value *SubVec = Args[1]; 6874 Value *Idx = Args[2]; 6875 Type *ReturnType = F->getReturnType(); 6876 6877 // (insert_vector Y, (extract_vector X, 0), 0) -> X 6878 // where: Y is X, or Y is undef 6879 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 6880 Value *X = nullptr; 6881 if (match(SubVec, 6882 m_Intrinsic<Intrinsic::vector_extract>(m_Value(X), m_Zero())) && 6883 (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 && 6884 X->getType() == ReturnType) 6885 return X; 6886 6887 return nullptr; 6888 } 6889 case Intrinsic::experimental_constrained_fadd: { 6890 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6891 return simplifyFAddInst(Args[0], Args[1], FPI->getFastMathFlags(), Q, 6892 *FPI->getExceptionBehavior(), 6893 *FPI->getRoundingMode()); 6894 } 6895 case Intrinsic::experimental_constrained_fsub: { 6896 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6897 return simplifyFSubInst(Args[0], Args[1], FPI->getFastMathFlags(), Q, 6898 *FPI->getExceptionBehavior(), 6899 *FPI->getRoundingMode()); 6900 } 6901 case Intrinsic::experimental_constrained_fmul: { 6902 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6903 return simplifyFMulInst(Args[0], Args[1], FPI->getFastMathFlags(), Q, 6904 *FPI->getExceptionBehavior(), 6905 *FPI->getRoundingMode()); 6906 } 6907 case Intrinsic::experimental_constrained_fdiv: { 6908 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6909 return simplifyFDivInst(Args[0], Args[1], FPI->getFastMathFlags(), Q, 6910 *FPI->getExceptionBehavior(), 6911 *FPI->getRoundingMode()); 6912 } 6913 case Intrinsic::experimental_constrained_frem: { 6914 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6915 return simplifyFRemInst(Args[0], Args[1], FPI->getFastMathFlags(), Q, 6916 *FPI->getExceptionBehavior(), 6917 *FPI->getRoundingMode()); 6918 } 6919 case Intrinsic::experimental_constrained_ldexp: 6920 return simplifyLdexp(Args[0], Args[1], Q, true); 6921 case Intrinsic::experimental_gc_relocate: { 6922 GCRelocateInst &GCR = *cast<GCRelocateInst>(Call); 6923 Value *DerivedPtr = GCR.getDerivedPtr(); 6924 Value *BasePtr = GCR.getBasePtr(); 6925 6926 // Undef is undef, even after relocation. 6927 if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) { 6928 return UndefValue::get(GCR.getType()); 6929 } 6930 6931 if (auto *PT = dyn_cast<PointerType>(GCR.getType())) { 6932 // For now, the assumption is that the relocation of null will be null 6933 // for most any collector. If this ever changes, a corresponding hook 6934 // should be added to GCStrategy and this code should check it first. 6935 if (isa<ConstantPointerNull>(DerivedPtr)) { 6936 // Use null-pointer of gc_relocate's type to replace it. 6937 return ConstantPointerNull::get(PT); 6938 } 6939 } 6940 return nullptr; 6941 } 6942 default: 6943 return nullptr; 6944 } 6945 } 6946 6947 static Value *tryConstantFoldCall(CallBase *Call, Value *Callee, 6948 ArrayRef<Value *> Args, 6949 const SimplifyQuery &Q) { 6950 auto *F = dyn_cast<Function>(Callee); 6951 if (!F || !canConstantFoldCallTo(Call, F)) 6952 return nullptr; 6953 6954 SmallVector<Constant *, 4> ConstantArgs; 6955 ConstantArgs.reserve(Args.size()); 6956 for (Value *Arg : Args) { 6957 Constant *C = dyn_cast<Constant>(Arg); 6958 if (!C) { 6959 if (isa<MetadataAsValue>(Arg)) 6960 continue; 6961 return nullptr; 6962 } 6963 ConstantArgs.push_back(C); 6964 } 6965 6966 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 6967 } 6968 6969 Value *llvm::simplifyCall(CallBase *Call, Value *Callee, ArrayRef<Value *> Args, 6970 const SimplifyQuery &Q) { 6971 // Args should not contain operand bundle operands. 6972 assert(Call->arg_size() == Args.size()); 6973 6974 // musttail calls can only be simplified if they are also DCEd. 6975 // As we can't guarantee this here, don't simplify them. 6976 if (Call->isMustTailCall()) 6977 return nullptr; 6978 6979 // call undef -> poison 6980 // call null -> poison 6981 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 6982 return PoisonValue::get(Call->getType()); 6983 6984 if (Value *V = tryConstantFoldCall(Call, Callee, Args, Q)) 6985 return V; 6986 6987 auto *F = dyn_cast<Function>(Callee); 6988 if (F && F->isIntrinsic()) 6989 if (Value *Ret = simplifyIntrinsic(Call, Callee, Args, Q)) 6990 return Ret; 6991 6992 return nullptr; 6993 } 6994 6995 Value *llvm::simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q) { 6996 assert(isa<ConstrainedFPIntrinsic>(Call)); 6997 SmallVector<Value *, 4> Args(Call->args()); 6998 if (Value *V = tryConstantFoldCall(Call, Call->getCalledOperand(), Args, Q)) 6999 return V; 7000 if (Value *Ret = simplifyIntrinsic(Call, Call->getCalledOperand(), Args, Q)) 7001 return Ret; 7002 return nullptr; 7003 } 7004 7005 /// Given operands for a Freeze, see if we can fold the result. 7006 static Value *simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 7007 // Use a utility function defined in ValueTracking. 7008 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) 7009 return Op0; 7010 // We have room for improvement. 7011 return nullptr; 7012 } 7013 7014 Value *llvm::simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 7015 return ::simplifyFreezeInst(Op0, Q); 7016 } 7017 7018 Value *llvm::simplifyLoadInst(LoadInst *LI, Value *PtrOp, 7019 const SimplifyQuery &Q) { 7020 if (LI->isVolatile()) 7021 return nullptr; 7022 7023 if (auto *PtrOpC = dyn_cast<Constant>(PtrOp)) 7024 return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Q.DL); 7025 7026 // We can only fold the load if it is from a constant global with definitive 7027 // initializer. Skip expensive logic if this is not the case. 7028 auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(PtrOp)); 7029 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 7030 return nullptr; 7031 7032 // If GlobalVariable's initializer is uniform, then return the constant 7033 // regardless of its offset. 7034 if (Constant *C = ConstantFoldLoadFromUniformValue(GV->getInitializer(), 7035 LI->getType(), Q.DL)) 7036 return C; 7037 7038 // Try to convert operand into a constant by stripping offsets while looking 7039 // through invariant.group intrinsics. 7040 APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0); 7041 PtrOp = PtrOp->stripAndAccumulateConstantOffsets( 7042 Q.DL, Offset, /* AllowNonInbounts */ true, 7043 /* AllowInvariantGroup */ true); 7044 if (PtrOp == GV) { 7045 // Index size may have changed due to address space casts. 7046 Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType())); 7047 return ConstantFoldLoadFromConstPtr(GV, LI->getType(), std::move(Offset), 7048 Q.DL); 7049 } 7050 7051 return nullptr; 7052 } 7053 7054 /// See if we can compute a simplified version of this instruction. 7055 /// If not, this returns null. 7056 7057 static Value *simplifyInstructionWithOperands(Instruction *I, 7058 ArrayRef<Value *> NewOps, 7059 const SimplifyQuery &SQ, 7060 unsigned MaxRecurse) { 7061 assert(I->getFunction() && "instruction should be inserted in a function"); 7062 assert((!SQ.CxtI || SQ.CxtI->getFunction() == I->getFunction()) && 7063 "context instruction should be in the same function"); 7064 7065 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 7066 7067 switch (I->getOpcode()) { 7068 default: 7069 if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) { 7070 SmallVector<Constant *, 8> NewConstOps(NewOps.size()); 7071 transform(NewOps, NewConstOps.begin(), 7072 [](Value *V) { return cast<Constant>(V); }); 7073 return ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI); 7074 } 7075 return nullptr; 7076 case Instruction::FNeg: 7077 return simplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q, MaxRecurse); 7078 case Instruction::FAdd: 7079 return simplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q, 7080 MaxRecurse); 7081 case Instruction::Add: 7082 return simplifyAddInst( 7083 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 7084 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse); 7085 case Instruction::FSub: 7086 return simplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q, 7087 MaxRecurse); 7088 case Instruction::Sub: 7089 return simplifySubInst( 7090 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 7091 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse); 7092 case Instruction::FMul: 7093 return simplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q, 7094 MaxRecurse); 7095 case Instruction::Mul: 7096 return simplifyMulInst( 7097 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 7098 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse); 7099 case Instruction::SDiv: 7100 return simplifySDivInst(NewOps[0], NewOps[1], 7101 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q, 7102 MaxRecurse); 7103 case Instruction::UDiv: 7104 return simplifyUDivInst(NewOps[0], NewOps[1], 7105 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q, 7106 MaxRecurse); 7107 case Instruction::FDiv: 7108 return simplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q, 7109 MaxRecurse); 7110 case Instruction::SRem: 7111 return simplifySRemInst(NewOps[0], NewOps[1], Q, MaxRecurse); 7112 case Instruction::URem: 7113 return simplifyURemInst(NewOps[0], NewOps[1], Q, MaxRecurse); 7114 case Instruction::FRem: 7115 return simplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q, 7116 MaxRecurse); 7117 case Instruction::Shl: 7118 return simplifyShlInst( 7119 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 7120 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse); 7121 case Instruction::LShr: 7122 return simplifyLShrInst(NewOps[0], NewOps[1], 7123 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q, 7124 MaxRecurse); 7125 case Instruction::AShr: 7126 return simplifyAShrInst(NewOps[0], NewOps[1], 7127 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q, 7128 MaxRecurse); 7129 case Instruction::And: 7130 return simplifyAndInst(NewOps[0], NewOps[1], Q, MaxRecurse); 7131 case Instruction::Or: 7132 return simplifyOrInst(NewOps[0], NewOps[1], Q, MaxRecurse); 7133 case Instruction::Xor: 7134 return simplifyXorInst(NewOps[0], NewOps[1], Q, MaxRecurse); 7135 case Instruction::ICmp: 7136 return simplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0], 7137 NewOps[1], Q, MaxRecurse); 7138 case Instruction::FCmp: 7139 return simplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0], 7140 NewOps[1], I->getFastMathFlags(), Q, MaxRecurse); 7141 case Instruction::Select: 7142 return simplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q, MaxRecurse); 7143 break; 7144 case Instruction::GetElementPtr: { 7145 auto *GEPI = cast<GetElementPtrInst>(I); 7146 return simplifyGEPInst(GEPI->getSourceElementType(), NewOps[0], 7147 ArrayRef(NewOps).slice(1), GEPI->getNoWrapFlags(), Q, 7148 MaxRecurse); 7149 } 7150 case Instruction::InsertValue: { 7151 InsertValueInst *IV = cast<InsertValueInst>(I); 7152 return simplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q, 7153 MaxRecurse); 7154 } 7155 case Instruction::InsertElement: 7156 return simplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q); 7157 case Instruction::ExtractValue: { 7158 auto *EVI = cast<ExtractValueInst>(I); 7159 return simplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q, 7160 MaxRecurse); 7161 } 7162 case Instruction::ExtractElement: 7163 return simplifyExtractElementInst(NewOps[0], NewOps[1], Q, MaxRecurse); 7164 case Instruction::ShuffleVector: { 7165 auto *SVI = cast<ShuffleVectorInst>(I); 7166 return simplifyShuffleVectorInst(NewOps[0], NewOps[1], 7167 SVI->getShuffleMask(), SVI->getType(), Q, 7168 MaxRecurse); 7169 } 7170 case Instruction::PHI: 7171 return simplifyPHINode(cast<PHINode>(I), NewOps, Q); 7172 case Instruction::Call: 7173 return simplifyCall( 7174 cast<CallInst>(I), NewOps.back(), 7175 NewOps.drop_back(1 + cast<CallInst>(I)->getNumTotalBundleOperands()), Q); 7176 case Instruction::Freeze: 7177 return llvm::simplifyFreezeInst(NewOps[0], Q); 7178 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 7179 #include "llvm/IR/Instruction.def" 7180 #undef HANDLE_CAST_INST 7181 return simplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q, 7182 MaxRecurse); 7183 case Instruction::Alloca: 7184 // No simplifications for Alloca and it can't be constant folded. 7185 return nullptr; 7186 case Instruction::Load: 7187 return simplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q); 7188 } 7189 } 7190 7191 Value *llvm::simplifyInstructionWithOperands(Instruction *I, 7192 ArrayRef<Value *> NewOps, 7193 const SimplifyQuery &SQ) { 7194 assert(NewOps.size() == I->getNumOperands() && 7195 "Number of operands should match the instruction!"); 7196 return ::simplifyInstructionWithOperands(I, NewOps, SQ, RecursionLimit); 7197 } 7198 7199 Value *llvm::simplifyInstruction(Instruction *I, const SimplifyQuery &SQ) { 7200 SmallVector<Value *, 8> Ops(I->operands()); 7201 Value *Result = ::simplifyInstructionWithOperands(I, Ops, SQ, RecursionLimit); 7202 7203 /// If called on unreachable code, the instruction may simplify to itself. 7204 /// Make life easier for users by detecting that case here, and returning a 7205 /// safe value instead. 7206 return Result == I ? PoisonValue::get(I->getType()) : Result; 7207 } 7208 7209 /// Implementation of recursive simplification through an instruction's 7210 /// uses. 7211 /// 7212 /// This is the common implementation of the recursive simplification routines. 7213 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 7214 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 7215 /// instructions to process and attempt to simplify it using 7216 /// InstructionSimplify. Recursively visited users which could not be 7217 /// simplified themselves are to the optional UnsimplifiedUsers set for 7218 /// further processing by the caller. 7219 /// 7220 /// This routine returns 'true' only when *it* simplifies something. The passed 7221 /// in simplified value does not count toward this. 7222 static bool replaceAndRecursivelySimplifyImpl( 7223 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 7224 const DominatorTree *DT, AssumptionCache *AC, 7225 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 7226 bool Simplified = false; 7227 SmallSetVector<Instruction *, 8> Worklist; 7228 const DataLayout &DL = I->getDataLayout(); 7229 7230 // If we have an explicit value to collapse to, do that round of the 7231 // simplification loop by hand initially. 7232 if (SimpleV) { 7233 for (User *U : I->users()) 7234 if (U != I) 7235 Worklist.insert(cast<Instruction>(U)); 7236 7237 // Replace the instruction with its simplified value. 7238 I->replaceAllUsesWith(SimpleV); 7239 7240 if (!I->isEHPad() && !I->isTerminator() && !I->mayHaveSideEffects()) 7241 I->eraseFromParent(); 7242 } else { 7243 Worklist.insert(I); 7244 } 7245 7246 // Note that we must test the size on each iteration, the worklist can grow. 7247 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 7248 I = Worklist[Idx]; 7249 7250 // See if this instruction simplifies. 7251 SimpleV = simplifyInstruction(I, {DL, TLI, DT, AC}); 7252 if (!SimpleV) { 7253 if (UnsimplifiedUsers) 7254 UnsimplifiedUsers->insert(I); 7255 continue; 7256 } 7257 7258 Simplified = true; 7259 7260 // Stash away all the uses of the old instruction so we can check them for 7261 // recursive simplifications after a RAUW. This is cheaper than checking all 7262 // uses of To on the recursive step in most cases. 7263 for (User *U : I->users()) 7264 Worklist.insert(cast<Instruction>(U)); 7265 7266 // Replace the instruction with its simplified value. 7267 I->replaceAllUsesWith(SimpleV); 7268 7269 if (!I->isEHPad() && !I->isTerminator() && !I->mayHaveSideEffects()) 7270 I->eraseFromParent(); 7271 } 7272 return Simplified; 7273 } 7274 7275 bool llvm::replaceAndRecursivelySimplify( 7276 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 7277 const DominatorTree *DT, AssumptionCache *AC, 7278 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 7279 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 7280 assert(SimpleV && "Must provide a simplified value."); 7281 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 7282 UnsimplifiedUsers); 7283 } 7284 7285 namespace llvm { 7286 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 7287 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 7288 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 7289 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 7290 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 7291 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 7292 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 7293 return {F.getDataLayout(), TLI, DT, AC}; 7294 } 7295 7296 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 7297 const DataLayout &DL) { 7298 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 7299 } 7300 7301 template <class T, class... TArgs> 7302 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 7303 Function &F) { 7304 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 7305 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 7306 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 7307 return {F.getDataLayout(), TLI, DT, AC}; 7308 } 7309 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 7310 Function &); 7311 7312 bool SimplifyQuery::isUndefValue(Value *V) const { 7313 if (!CanUseUndef) 7314 return false; 7315 7316 return match(V, m_Undef()); 7317 } 7318 7319 } // namespace llvm 7320 7321 void InstSimplifyFolder::anchor() {} 7322