1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/CmpInstAnalysis.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/LoopAnalysisManager.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/IR/ConstantRange.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalAlias.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/KnownBits.h" 42 #include <algorithm> 43 using namespace llvm; 44 using namespace llvm::PatternMatch; 45 46 #define DEBUG_TYPE "instsimplify" 47 48 enum { RecursionLimit = 3 }; 49 50 STATISTIC(NumExpand, "Number of expansions"); 51 STATISTIC(NumReassoc, "Number of reassociations"); 52 53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 54 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 55 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 56 const SimplifyQuery &, unsigned); 57 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 58 unsigned); 59 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 60 const SimplifyQuery &, unsigned); 61 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 62 unsigned); 63 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 64 const SimplifyQuery &Q, unsigned MaxRecurse); 65 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 66 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 67 static Value *SimplifyCastInst(unsigned, Value *, Type *, 68 const SimplifyQuery &, unsigned); 69 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &, 70 unsigned); 71 72 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 73 Value *FalseVal) { 74 BinaryOperator::BinaryOps BinOpCode; 75 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 76 BinOpCode = BO->getOpcode(); 77 else 78 return nullptr; 79 80 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 81 if (BinOpCode == BinaryOperator::Or) { 82 ExpectedPred = ICmpInst::ICMP_NE; 83 } else if (BinOpCode == BinaryOperator::And) { 84 ExpectedPred = ICmpInst::ICMP_EQ; 85 } else 86 return nullptr; 87 88 // %A = icmp eq %TV, %FV 89 // %B = icmp eq %X, %Y (and one of these is a select operand) 90 // %C = and %A, %B 91 // %D = select %C, %TV, %FV 92 // --> 93 // %FV 94 95 // %A = icmp ne %TV, %FV 96 // %B = icmp ne %X, %Y (and one of these is a select operand) 97 // %C = or %A, %B 98 // %D = select %C, %TV, %FV 99 // --> 100 // %TV 101 Value *X, *Y; 102 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 103 m_Specific(FalseVal)), 104 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 105 Pred1 != Pred2 || Pred1 != ExpectedPred) 106 return nullptr; 107 108 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 109 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 110 111 return nullptr; 112 } 113 114 /// For a boolean type or a vector of boolean type, return false or a vector 115 /// with every element false. 116 static Constant *getFalse(Type *Ty) { 117 return ConstantInt::getFalse(Ty); 118 } 119 120 /// For a boolean type or a vector of boolean type, return true or a vector 121 /// with every element true. 122 static Constant *getTrue(Type *Ty) { 123 return ConstantInt::getTrue(Ty); 124 } 125 126 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 127 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 128 Value *RHS) { 129 CmpInst *Cmp = dyn_cast<CmpInst>(V); 130 if (!Cmp) 131 return false; 132 CmpInst::Predicate CPred = Cmp->getPredicate(); 133 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 134 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 135 return true; 136 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 137 CRHS == LHS; 138 } 139 140 /// Simplify comparison with true or false branch of select: 141 /// %sel = select i1 %cond, i32 %tv, i32 %fv 142 /// %cmp = icmp sle i32 %sel, %rhs 143 /// Compose new comparison by substituting %sel with either %tv or %fv 144 /// and see if it simplifies. 145 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 146 Value *RHS, Value *Cond, 147 const SimplifyQuery &Q, unsigned MaxRecurse, 148 Constant *TrueOrFalse) { 149 Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 150 if (SimplifiedCmp == Cond) { 151 // %cmp simplified to the select condition (%cond). 152 return TrueOrFalse; 153 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 154 // It didn't simplify. However, if composed comparison is equivalent 155 // to the select condition (%cond) then we can replace it. 156 return TrueOrFalse; 157 } 158 return SimplifiedCmp; 159 } 160 161 /// Simplify comparison with true branch of select 162 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 163 Value *RHS, Value *Cond, 164 const SimplifyQuery &Q, 165 unsigned MaxRecurse) { 166 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 167 getTrue(Cond->getType())); 168 } 169 170 /// Simplify comparison with false branch of select 171 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 172 Value *RHS, Value *Cond, 173 const SimplifyQuery &Q, 174 unsigned MaxRecurse) { 175 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 176 getFalse(Cond->getType())); 177 } 178 179 /// We know comparison with both branches of select can be simplified, but they 180 /// are not equal. This routine handles some logical simplifications. 181 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 182 Value *Cond, 183 const SimplifyQuery &Q, 184 unsigned MaxRecurse) { 185 // If the false value simplified to false, then the result of the compare 186 // is equal to "Cond && TCmp". This also catches the case when the false 187 // value simplified to false and the true value to true, returning "Cond". 188 if (match(FCmp, m_Zero())) 189 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 190 return V; 191 // If the true value simplified to true, then the result of the compare 192 // is equal to "Cond || FCmp". 193 if (match(TCmp, m_One())) 194 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 195 return V; 196 // Finally, if the false value simplified to true and the true value to 197 // false, then the result of the compare is equal to "!Cond". 198 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 199 if (Value *V = SimplifyXorInst( 200 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 201 return V; 202 return nullptr; 203 } 204 205 /// Does the given value dominate the specified phi node? 206 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 207 Instruction *I = dyn_cast<Instruction>(V); 208 if (!I) 209 // Arguments and constants dominate all instructions. 210 return true; 211 212 // If we are processing instructions (and/or basic blocks) that have not been 213 // fully added to a function, the parent nodes may still be null. Simply 214 // return the conservative answer in these cases. 215 if (!I->getParent() || !P->getParent() || !I->getFunction()) 216 return false; 217 218 // If we have a DominatorTree then do a precise test. 219 if (DT) 220 return DT->dominates(I, P); 221 222 // Otherwise, if the instruction is in the entry block and is not an invoke, 223 // then it obviously dominates all phi nodes. 224 if (I->getParent() == &I->getFunction()->getEntryBlock() && 225 !isa<InvokeInst>(I) && !isa<CallBrInst>(I)) 226 return true; 227 228 return false; 229 } 230 231 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 232 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 233 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 234 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 235 /// Returns the simplified value, or null if no simplification was performed. 236 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 237 Instruction::BinaryOps OpcodeToExpand, 238 const SimplifyQuery &Q, unsigned MaxRecurse) { 239 // Recursion is always used, so bail out at once if we already hit the limit. 240 if (!MaxRecurse--) 241 return nullptr; 242 243 // Check whether the expression has the form "(A op' B) op C". 244 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 245 if (Op0->getOpcode() == OpcodeToExpand) { 246 // It does! Try turning it into "(A op C) op' (B op C)". 247 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 248 // Do "A op C" and "B op C" both simplify? 249 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 250 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 251 // They do! Return "L op' R" if it simplifies or is already available. 252 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 253 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 254 && L == B && R == A)) { 255 ++NumExpand; 256 return LHS; 257 } 258 // Otherwise return "L op' R" if it simplifies. 259 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 260 ++NumExpand; 261 return V; 262 } 263 } 264 } 265 266 // Check whether the expression has the form "A op (B op' C)". 267 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 268 if (Op1->getOpcode() == OpcodeToExpand) { 269 // It does! Try turning it into "(A op B) op' (A op C)". 270 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 271 // Do "A op B" and "A op C" both simplify? 272 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 273 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 274 // They do! Return "L op' R" if it simplifies or is already available. 275 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 276 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 277 && L == C && R == B)) { 278 ++NumExpand; 279 return RHS; 280 } 281 // Otherwise return "L op' R" if it simplifies. 282 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 283 ++NumExpand; 284 return V; 285 } 286 } 287 } 288 289 return nullptr; 290 } 291 292 /// Generic simplifications for associative binary operations. 293 /// Returns the simpler value, or null if none was found. 294 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 295 Value *LHS, Value *RHS, 296 const SimplifyQuery &Q, 297 unsigned MaxRecurse) { 298 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 299 300 // Recursion is always used, so bail out at once if we already hit the limit. 301 if (!MaxRecurse--) 302 return nullptr; 303 304 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 305 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 306 307 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 308 if (Op0 && Op0->getOpcode() == Opcode) { 309 Value *A = Op0->getOperand(0); 310 Value *B = Op0->getOperand(1); 311 Value *C = RHS; 312 313 // Does "B op C" simplify? 314 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 315 // It does! Return "A op V" if it simplifies or is already available. 316 // If V equals B then "A op V" is just the LHS. 317 if (V == B) return LHS; 318 // Otherwise return "A op V" if it simplifies. 319 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 320 ++NumReassoc; 321 return W; 322 } 323 } 324 } 325 326 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 327 if (Op1 && Op1->getOpcode() == Opcode) { 328 Value *A = LHS; 329 Value *B = Op1->getOperand(0); 330 Value *C = Op1->getOperand(1); 331 332 // Does "A op B" simplify? 333 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 334 // It does! Return "V op C" if it simplifies or is already available. 335 // If V equals B then "V op C" is just the RHS. 336 if (V == B) return RHS; 337 // Otherwise return "V op C" if it simplifies. 338 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 339 ++NumReassoc; 340 return W; 341 } 342 } 343 } 344 345 // The remaining transforms require commutativity as well as associativity. 346 if (!Instruction::isCommutative(Opcode)) 347 return nullptr; 348 349 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 350 if (Op0 && Op0->getOpcode() == Opcode) { 351 Value *A = Op0->getOperand(0); 352 Value *B = Op0->getOperand(1); 353 Value *C = RHS; 354 355 // Does "C op A" simplify? 356 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 357 // It does! Return "V op B" if it simplifies or is already available. 358 // If V equals A then "V op B" is just the LHS. 359 if (V == A) return LHS; 360 // Otherwise return "V op B" if it simplifies. 361 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 362 ++NumReassoc; 363 return W; 364 } 365 } 366 } 367 368 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 369 if (Op1 && Op1->getOpcode() == Opcode) { 370 Value *A = LHS; 371 Value *B = Op1->getOperand(0); 372 Value *C = Op1->getOperand(1); 373 374 // Does "C op A" simplify? 375 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 376 // It does! Return "B op V" if it simplifies or is already available. 377 // If V equals C then "B op V" is just the RHS. 378 if (V == C) return RHS; 379 // Otherwise return "B op V" if it simplifies. 380 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 381 ++NumReassoc; 382 return W; 383 } 384 } 385 } 386 387 return nullptr; 388 } 389 390 /// In the case of a binary operation with a select instruction as an operand, 391 /// try to simplify the binop by seeing whether evaluating it on both branches 392 /// of the select results in the same value. Returns the common value if so, 393 /// otherwise returns null. 394 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 395 Value *RHS, const SimplifyQuery &Q, 396 unsigned MaxRecurse) { 397 // Recursion is always used, so bail out at once if we already hit the limit. 398 if (!MaxRecurse--) 399 return nullptr; 400 401 SelectInst *SI; 402 if (isa<SelectInst>(LHS)) { 403 SI = cast<SelectInst>(LHS); 404 } else { 405 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 406 SI = cast<SelectInst>(RHS); 407 } 408 409 // Evaluate the BinOp on the true and false branches of the select. 410 Value *TV; 411 Value *FV; 412 if (SI == LHS) { 413 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 414 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 415 } else { 416 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 417 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 418 } 419 420 // If they simplified to the same value, then return the common value. 421 // If they both failed to simplify then return null. 422 if (TV == FV) 423 return TV; 424 425 // If one branch simplified to undef, return the other one. 426 if (TV && isa<UndefValue>(TV)) 427 return FV; 428 if (FV && isa<UndefValue>(FV)) 429 return TV; 430 431 // If applying the operation did not change the true and false select values, 432 // then the result of the binop is the select itself. 433 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 434 return SI; 435 436 // If one branch simplified and the other did not, and the simplified 437 // value is equal to the unsimplified one, return the simplified value. 438 // For example, select (cond, X, X & Z) & Z -> X & Z. 439 if ((FV && !TV) || (TV && !FV)) { 440 // Check that the simplified value has the form "X op Y" where "op" is the 441 // same as the original operation. 442 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 443 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 444 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 445 // We already know that "op" is the same as for the simplified value. See 446 // if the operands match too. If so, return the simplified value. 447 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 448 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 449 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 450 if (Simplified->getOperand(0) == UnsimplifiedLHS && 451 Simplified->getOperand(1) == UnsimplifiedRHS) 452 return Simplified; 453 if (Simplified->isCommutative() && 454 Simplified->getOperand(1) == UnsimplifiedLHS && 455 Simplified->getOperand(0) == UnsimplifiedRHS) 456 return Simplified; 457 } 458 } 459 460 return nullptr; 461 } 462 463 /// In the case of a comparison with a select instruction, try to simplify the 464 /// comparison by seeing whether both branches of the select result in the same 465 /// value. Returns the common value if so, otherwise returns null. 466 /// For example, if we have: 467 /// %tmp = select i1 %cmp, i32 1, i32 2 468 /// %cmp1 = icmp sle i32 %tmp, 3 469 /// We can simplify %cmp1 to true, because both branches of select are 470 /// less than 3. We compose new comparison by substituting %tmp with both 471 /// branches of select and see if it can be simplified. 472 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 473 Value *RHS, const SimplifyQuery &Q, 474 unsigned MaxRecurse) { 475 // Recursion is always used, so bail out at once if we already hit the limit. 476 if (!MaxRecurse--) 477 return nullptr; 478 479 // Make sure the select is on the LHS. 480 if (!isa<SelectInst>(LHS)) { 481 std::swap(LHS, RHS); 482 Pred = CmpInst::getSwappedPredicate(Pred); 483 } 484 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 485 SelectInst *SI = cast<SelectInst>(LHS); 486 Value *Cond = SI->getCondition(); 487 Value *TV = SI->getTrueValue(); 488 Value *FV = SI->getFalseValue(); 489 490 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 491 // Does "cmp TV, RHS" simplify? 492 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 493 if (!TCmp) 494 return nullptr; 495 496 // Does "cmp FV, RHS" simplify? 497 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 498 if (!FCmp) 499 return nullptr; 500 501 // If both sides simplified to the same value, then use it as the result of 502 // the original comparison. 503 if (TCmp == FCmp) 504 return TCmp; 505 506 // The remaining cases only make sense if the select condition has the same 507 // type as the result of the comparison, so bail out if this is not so. 508 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 509 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 510 511 return nullptr; 512 } 513 514 /// In the case of a binary operation with an operand that is a PHI instruction, 515 /// try to simplify the binop by seeing whether evaluating it on the incoming 516 /// phi values yields the same result for every value. If so returns the common 517 /// value, otherwise returns null. 518 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 519 Value *RHS, const SimplifyQuery &Q, 520 unsigned MaxRecurse) { 521 // Recursion is always used, so bail out at once if we already hit the limit. 522 if (!MaxRecurse--) 523 return nullptr; 524 525 PHINode *PI; 526 if (isa<PHINode>(LHS)) { 527 PI = cast<PHINode>(LHS); 528 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 529 if (!valueDominatesPHI(RHS, PI, Q.DT)) 530 return nullptr; 531 } else { 532 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 533 PI = cast<PHINode>(RHS); 534 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 535 if (!valueDominatesPHI(LHS, PI, Q.DT)) 536 return nullptr; 537 } 538 539 // Evaluate the BinOp on the incoming phi values. 540 Value *CommonValue = nullptr; 541 for (Value *Incoming : PI->incoming_values()) { 542 // If the incoming value is the phi node itself, it can safely be skipped. 543 if (Incoming == PI) continue; 544 Value *V = PI == LHS ? 545 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 546 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 547 // If the operation failed to simplify, or simplified to a different value 548 // to previously, then give up. 549 if (!V || (CommonValue && V != CommonValue)) 550 return nullptr; 551 CommonValue = V; 552 } 553 554 return CommonValue; 555 } 556 557 /// In the case of a comparison with a PHI instruction, try to simplify the 558 /// comparison by seeing whether comparing with all of the incoming phi values 559 /// yields the same result every time. If so returns the common result, 560 /// otherwise returns null. 561 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 562 const SimplifyQuery &Q, unsigned MaxRecurse) { 563 // Recursion is always used, so bail out at once if we already hit the limit. 564 if (!MaxRecurse--) 565 return nullptr; 566 567 // Make sure the phi is on the LHS. 568 if (!isa<PHINode>(LHS)) { 569 std::swap(LHS, RHS); 570 Pred = CmpInst::getSwappedPredicate(Pred); 571 } 572 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 573 PHINode *PI = cast<PHINode>(LHS); 574 575 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 576 if (!valueDominatesPHI(RHS, PI, Q.DT)) 577 return nullptr; 578 579 // Evaluate the BinOp on the incoming phi values. 580 Value *CommonValue = nullptr; 581 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 582 Value *Incoming = PI->getIncomingValue(u); 583 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 584 // If the incoming value is the phi node itself, it can safely be skipped. 585 if (Incoming == PI) continue; 586 // Change the context instruction to the "edge" that flows into the phi. 587 // This is important because that is where incoming is actually "evaluated" 588 // even though it is used later somewhere else. 589 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 590 MaxRecurse); 591 // If the operation failed to simplify, or simplified to a different value 592 // to previously, then give up. 593 if (!V || (CommonValue && V != CommonValue)) 594 return nullptr; 595 CommonValue = V; 596 } 597 598 return CommonValue; 599 } 600 601 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 602 Value *&Op0, Value *&Op1, 603 const SimplifyQuery &Q) { 604 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 605 if (auto *CRHS = dyn_cast<Constant>(Op1)) 606 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 607 608 // Canonicalize the constant to the RHS if this is a commutative operation. 609 if (Instruction::isCommutative(Opcode)) 610 std::swap(Op0, Op1); 611 } 612 return nullptr; 613 } 614 615 /// Given operands for an Add, see if we can fold the result. 616 /// If not, this returns null. 617 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 618 const SimplifyQuery &Q, unsigned MaxRecurse) { 619 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 620 return C; 621 622 // X + undef -> undef 623 if (match(Op1, m_Undef())) 624 return Op1; 625 626 // X + 0 -> X 627 if (match(Op1, m_Zero())) 628 return Op0; 629 630 // If two operands are negative, return 0. 631 if (isKnownNegation(Op0, Op1)) 632 return Constant::getNullValue(Op0->getType()); 633 634 // X + (Y - X) -> Y 635 // (Y - X) + X -> Y 636 // Eg: X + -X -> 0 637 Value *Y = nullptr; 638 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 639 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 640 return Y; 641 642 // X + ~X -> -1 since ~X = -X-1 643 Type *Ty = Op0->getType(); 644 if (match(Op0, m_Not(m_Specific(Op1))) || 645 match(Op1, m_Not(m_Specific(Op0)))) 646 return Constant::getAllOnesValue(Ty); 647 648 // add nsw/nuw (xor Y, signmask), signmask --> Y 649 // The no-wrapping add guarantees that the top bit will be set by the add. 650 // Therefore, the xor must be clearing the already set sign bit of Y. 651 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 652 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 653 return Y; 654 655 // add nuw %x, -1 -> -1, because %x can only be 0. 656 if (IsNUW && match(Op1, m_AllOnes())) 657 return Op1; // Which is -1. 658 659 /// i1 add -> xor. 660 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 661 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 662 return V; 663 664 // Try some generic simplifications for associative operations. 665 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 666 MaxRecurse)) 667 return V; 668 669 // Threading Add over selects and phi nodes is pointless, so don't bother. 670 // Threading over the select in "A + select(cond, B, C)" means evaluating 671 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 672 // only if B and C are equal. If B and C are equal then (since we assume 673 // that operands have already been simplified) "select(cond, B, C)" should 674 // have been simplified to the common value of B and C already. Analysing 675 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 676 // for threading over phi nodes. 677 678 return nullptr; 679 } 680 681 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 682 const SimplifyQuery &Query) { 683 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 684 } 685 686 /// Compute the base pointer and cumulative constant offsets for V. 687 /// 688 /// This strips all constant offsets off of V, leaving it the base pointer, and 689 /// accumulates the total constant offset applied in the returned constant. It 690 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 691 /// no constant offsets applied. 692 /// 693 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 694 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 695 /// folding. 696 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 697 bool AllowNonInbounds = false) { 698 assert(V->getType()->isPtrOrPtrVectorTy()); 699 700 Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 701 APInt Offset = APInt::getNullValue(IntIdxTy->getIntegerBitWidth()); 702 703 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 704 // As that strip may trace through `addrspacecast`, need to sext or trunc 705 // the offset calculated. 706 IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 707 Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth()); 708 709 Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset); 710 if (VectorType *VecTy = dyn_cast<VectorType>(V->getType())) 711 return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr); 712 return OffsetIntPtr; 713 } 714 715 /// Compute the constant difference between two pointer values. 716 /// If the difference is not a constant, returns zero. 717 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 718 Value *RHS) { 719 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 720 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 721 722 // If LHS and RHS are not related via constant offsets to the same base 723 // value, there is nothing we can do here. 724 if (LHS != RHS) 725 return nullptr; 726 727 // Otherwise, the difference of LHS - RHS can be computed as: 728 // LHS - RHS 729 // = (LHSOffset + Base) - (RHSOffset + Base) 730 // = LHSOffset - RHSOffset 731 return ConstantExpr::getSub(LHSOffset, RHSOffset); 732 } 733 734 /// Given operands for a Sub, see if we can fold the result. 735 /// If not, this returns null. 736 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 737 const SimplifyQuery &Q, unsigned MaxRecurse) { 738 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 739 return C; 740 741 // X - undef -> undef 742 // undef - X -> undef 743 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 744 return UndefValue::get(Op0->getType()); 745 746 // X - 0 -> X 747 if (match(Op1, m_Zero())) 748 return Op0; 749 750 // X - X -> 0 751 if (Op0 == Op1) 752 return Constant::getNullValue(Op0->getType()); 753 754 // Is this a negation? 755 if (match(Op0, m_Zero())) { 756 // 0 - X -> 0 if the sub is NUW. 757 if (isNUW) 758 return Constant::getNullValue(Op0->getType()); 759 760 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 761 if (Known.Zero.isMaxSignedValue()) { 762 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 763 // Op1 must be 0 because negating the minimum signed value is undefined. 764 if (isNSW) 765 return Constant::getNullValue(Op0->getType()); 766 767 // 0 - X -> X if X is 0 or the minimum signed value. 768 return Op1; 769 } 770 } 771 772 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 773 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 774 Value *X = nullptr, *Y = nullptr, *Z = Op1; 775 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 776 // See if "V === Y - Z" simplifies. 777 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 778 // It does! Now see if "X + V" simplifies. 779 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 780 // It does, we successfully reassociated! 781 ++NumReassoc; 782 return W; 783 } 784 // See if "V === X - Z" simplifies. 785 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 786 // It does! Now see if "Y + V" simplifies. 787 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 788 // It does, we successfully reassociated! 789 ++NumReassoc; 790 return W; 791 } 792 } 793 794 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 795 // For example, X - (X + 1) -> -1 796 X = Op0; 797 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 798 // See if "V === X - Y" simplifies. 799 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 800 // It does! Now see if "V - Z" simplifies. 801 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 802 // It does, we successfully reassociated! 803 ++NumReassoc; 804 return W; 805 } 806 // See if "V === X - Z" simplifies. 807 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 808 // It does! Now see if "V - Y" simplifies. 809 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 810 // It does, we successfully reassociated! 811 ++NumReassoc; 812 return W; 813 } 814 } 815 816 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 817 // For example, X - (X - Y) -> Y. 818 Z = Op0; 819 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 820 // See if "V === Z - X" simplifies. 821 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 822 // It does! Now see if "V + Y" simplifies. 823 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 824 // It does, we successfully reassociated! 825 ++NumReassoc; 826 return W; 827 } 828 829 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 830 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 831 match(Op1, m_Trunc(m_Value(Y)))) 832 if (X->getType() == Y->getType()) 833 // See if "V === X - Y" simplifies. 834 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 835 // It does! Now see if "trunc V" simplifies. 836 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 837 Q, MaxRecurse - 1)) 838 // It does, return the simplified "trunc V". 839 return W; 840 841 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 842 if (match(Op0, m_PtrToInt(m_Value(X))) && 843 match(Op1, m_PtrToInt(m_Value(Y)))) 844 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 845 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 846 847 // i1 sub -> xor. 848 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 849 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 850 return V; 851 852 // Threading Sub over selects and phi nodes is pointless, so don't bother. 853 // Threading over the select in "A - select(cond, B, C)" means evaluating 854 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 855 // only if B and C are equal. If B and C are equal then (since we assume 856 // that operands have already been simplified) "select(cond, B, C)" should 857 // have been simplified to the common value of B and C already. Analysing 858 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 859 // for threading over phi nodes. 860 861 return nullptr; 862 } 863 864 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 865 const SimplifyQuery &Q) { 866 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 867 } 868 869 /// Given operands for a Mul, see if we can fold the result. 870 /// If not, this returns null. 871 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 872 unsigned MaxRecurse) { 873 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 874 return C; 875 876 // X * undef -> 0 877 // X * 0 -> 0 878 if (match(Op1, m_CombineOr(m_Undef(), m_Zero()))) 879 return Constant::getNullValue(Op0->getType()); 880 881 // X * 1 -> X 882 if (match(Op1, m_One())) 883 return Op0; 884 885 // (X / Y) * Y -> X if the division is exact. 886 Value *X = nullptr; 887 if (Q.IIQ.UseInstrInfo && 888 (match(Op0, 889 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 890 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 891 return X; 892 893 // i1 mul -> and. 894 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 895 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 896 return V; 897 898 // Try some generic simplifications for associative operations. 899 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 900 MaxRecurse)) 901 return V; 902 903 // Mul distributes over Add. Try some generic simplifications based on this. 904 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 905 Q, MaxRecurse)) 906 return V; 907 908 // If the operation is with the result of a select instruction, check whether 909 // operating on either branch of the select always yields the same value. 910 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 911 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 912 MaxRecurse)) 913 return V; 914 915 // If the operation is with the result of a phi instruction, check whether 916 // operating on all incoming values of the phi always yields the same value. 917 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 918 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 919 MaxRecurse)) 920 return V; 921 922 return nullptr; 923 } 924 925 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 926 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 927 } 928 929 /// Check for common or similar folds of integer division or integer remainder. 930 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 931 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { 932 Type *Ty = Op0->getType(); 933 934 // X / undef -> undef 935 // X % undef -> undef 936 if (match(Op1, m_Undef())) 937 return Op1; 938 939 // X / 0 -> undef 940 // X % 0 -> undef 941 // We don't need to preserve faults! 942 if (match(Op1, m_Zero())) 943 return UndefValue::get(Ty); 944 945 // If any element of a constant divisor fixed width vector is zero or undef, 946 // the whole op is undef. 947 auto *Op1C = dyn_cast<Constant>(Op1); 948 auto *VTy = dyn_cast<FixedVectorType>(Ty); 949 if (Op1C && VTy) { 950 unsigned NumElts = VTy->getNumElements(); 951 for (unsigned i = 0; i != NumElts; ++i) { 952 Constant *Elt = Op1C->getAggregateElement(i); 953 if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt))) 954 return UndefValue::get(Ty); 955 } 956 } 957 958 // undef / X -> 0 959 // undef % X -> 0 960 if (match(Op0, m_Undef())) 961 return Constant::getNullValue(Ty); 962 963 // 0 / X -> 0 964 // 0 % X -> 0 965 if (match(Op0, m_Zero())) 966 return Constant::getNullValue(Op0->getType()); 967 968 // X / X -> 1 969 // X % X -> 0 970 if (Op0 == Op1) 971 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 972 973 // X / 1 -> X 974 // X % 1 -> 0 975 // If this is a boolean op (single-bit element type), we can't have 976 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 977 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 978 Value *X; 979 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 980 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 981 return IsDiv ? Op0 : Constant::getNullValue(Ty); 982 983 return nullptr; 984 } 985 986 /// Given a predicate and two operands, return true if the comparison is true. 987 /// This is a helper for div/rem simplification where we return some other value 988 /// when we can prove a relationship between the operands. 989 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 990 const SimplifyQuery &Q, unsigned MaxRecurse) { 991 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 992 Constant *C = dyn_cast_or_null<Constant>(V); 993 return (C && C->isAllOnesValue()); 994 } 995 996 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 997 /// to simplify X % Y to X. 998 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 999 unsigned MaxRecurse, bool IsSigned) { 1000 // Recursion is always used, so bail out at once if we already hit the limit. 1001 if (!MaxRecurse--) 1002 return false; 1003 1004 if (IsSigned) { 1005 // |X| / |Y| --> 0 1006 // 1007 // We require that 1 operand is a simple constant. That could be extended to 1008 // 2 variables if we computed the sign bit for each. 1009 // 1010 // Make sure that a constant is not the minimum signed value because taking 1011 // the abs() of that is undefined. 1012 Type *Ty = X->getType(); 1013 const APInt *C; 1014 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1015 // Is the variable divisor magnitude always greater than the constant 1016 // dividend magnitude? 1017 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1018 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1019 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1020 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1021 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1022 return true; 1023 } 1024 if (match(Y, m_APInt(C))) { 1025 // Special-case: we can't take the abs() of a minimum signed value. If 1026 // that's the divisor, then all we have to do is prove that the dividend 1027 // is also not the minimum signed value. 1028 if (C->isMinSignedValue()) 1029 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1030 1031 // Is the variable dividend magnitude always less than the constant 1032 // divisor magnitude? 1033 // |X| < |C| --> X > -abs(C) and X < abs(C) 1034 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1035 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1036 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1037 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1038 return true; 1039 } 1040 return false; 1041 } 1042 1043 // IsSigned == false. 1044 // Is the dividend unsigned less than the divisor? 1045 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1046 } 1047 1048 /// These are simplifications common to SDiv and UDiv. 1049 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1050 const SimplifyQuery &Q, unsigned MaxRecurse) { 1051 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1052 return C; 1053 1054 if (Value *V = simplifyDivRem(Op0, Op1, true)) 1055 return V; 1056 1057 bool IsSigned = Opcode == Instruction::SDiv; 1058 1059 // (X * Y) / Y -> X if the multiplication does not overflow. 1060 Value *X; 1061 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1062 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1063 // If the Mul does not overflow, then we are good to go. 1064 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1065 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul))) 1066 return X; 1067 // If X has the form X = A / Y, then X * Y cannot overflow. 1068 if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1069 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) 1070 return X; 1071 } 1072 1073 // (X rem Y) / Y -> 0 1074 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1075 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1076 return Constant::getNullValue(Op0->getType()); 1077 1078 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1079 ConstantInt *C1, *C2; 1080 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1081 match(Op1, m_ConstantInt(C2))) { 1082 bool Overflow; 1083 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1084 if (Overflow) 1085 return Constant::getNullValue(Op0->getType()); 1086 } 1087 1088 // If the operation is with the result of a select instruction, check whether 1089 // operating on either branch of the select always yields the same value. 1090 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1091 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1092 return V; 1093 1094 // If the operation is with the result of a phi instruction, check whether 1095 // operating on all incoming values of the phi always yields the same value. 1096 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1097 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1098 return V; 1099 1100 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1101 return Constant::getNullValue(Op0->getType()); 1102 1103 return nullptr; 1104 } 1105 1106 /// These are simplifications common to SRem and URem. 1107 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1108 const SimplifyQuery &Q, unsigned MaxRecurse) { 1109 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1110 return C; 1111 1112 if (Value *V = simplifyDivRem(Op0, Op1, false)) 1113 return V; 1114 1115 // (X % Y) % Y -> X % Y 1116 if ((Opcode == Instruction::SRem && 1117 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1118 (Opcode == Instruction::URem && 1119 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1120 return Op0; 1121 1122 // (X << Y) % X -> 0 1123 if (Q.IIQ.UseInstrInfo && 1124 ((Opcode == Instruction::SRem && 1125 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1126 (Opcode == Instruction::URem && 1127 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1128 return Constant::getNullValue(Op0->getType()); 1129 1130 // If the operation is with the result of a select instruction, check whether 1131 // operating on either branch of the select always yields the same value. 1132 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1133 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1134 return V; 1135 1136 // If the operation is with the result of a phi instruction, check whether 1137 // operating on all incoming values of the phi always yields the same value. 1138 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1139 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1140 return V; 1141 1142 // If X / Y == 0, then X % Y == X. 1143 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1144 return Op0; 1145 1146 return nullptr; 1147 } 1148 1149 /// Given operands for an SDiv, see if we can fold the result. 1150 /// If not, this returns null. 1151 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1152 unsigned MaxRecurse) { 1153 // If two operands are negated and no signed overflow, return -1. 1154 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1155 return Constant::getAllOnesValue(Op0->getType()); 1156 1157 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1158 } 1159 1160 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1161 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1162 } 1163 1164 /// Given operands for a UDiv, see if we can fold the result. 1165 /// If not, this returns null. 1166 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1167 unsigned MaxRecurse) { 1168 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1169 } 1170 1171 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1172 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1173 } 1174 1175 /// Given operands for an SRem, see if we can fold the result. 1176 /// If not, this returns null. 1177 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1178 unsigned MaxRecurse) { 1179 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1180 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1181 Value *X; 1182 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1183 return ConstantInt::getNullValue(Op0->getType()); 1184 1185 // If the two operands are negated, return 0. 1186 if (isKnownNegation(Op0, Op1)) 1187 return ConstantInt::getNullValue(Op0->getType()); 1188 1189 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1190 } 1191 1192 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1193 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1194 } 1195 1196 /// Given operands for a URem, see if we can fold the result. 1197 /// If not, this returns null. 1198 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1199 unsigned MaxRecurse) { 1200 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1201 } 1202 1203 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1204 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1205 } 1206 1207 /// Returns true if a shift by \c Amount always yields undef. 1208 static bool isUndefShift(Value *Amount) { 1209 Constant *C = dyn_cast<Constant>(Amount); 1210 if (!C) 1211 return false; 1212 1213 // X shift by undef -> undef because it may shift by the bitwidth. 1214 if (isa<UndefValue>(C)) 1215 return true; 1216 1217 // Shifting by the bitwidth or more is undefined. 1218 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1219 if (CI->getValue().getLimitedValue() >= 1220 CI->getType()->getScalarSizeInBits()) 1221 return true; 1222 1223 // If all lanes of a vector shift are undefined the whole shift is. 1224 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1225 for (unsigned I = 0, E = cast<VectorType>(C->getType())->getNumElements(); 1226 I != E; ++I) 1227 if (!isUndefShift(C->getAggregateElement(I))) 1228 return false; 1229 return true; 1230 } 1231 1232 return false; 1233 } 1234 1235 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1236 /// If not, this returns null. 1237 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1238 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1239 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1240 return C; 1241 1242 // 0 shift by X -> 0 1243 if (match(Op0, m_Zero())) 1244 return Constant::getNullValue(Op0->getType()); 1245 1246 // X shift by 0 -> X 1247 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1248 // would be poison. 1249 Value *X; 1250 if (match(Op1, m_Zero()) || 1251 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1252 return Op0; 1253 1254 // Fold undefined shifts. 1255 if (isUndefShift(Op1)) 1256 return UndefValue::get(Op0->getType()); 1257 1258 // If the operation is with the result of a select instruction, check whether 1259 // operating on either branch of the select always yields the same value. 1260 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1261 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1262 return V; 1263 1264 // If the operation is with the result of a phi instruction, check whether 1265 // operating on all incoming values of the phi always yields the same value. 1266 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1267 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1268 return V; 1269 1270 // If any bits in the shift amount make that value greater than or equal to 1271 // the number of bits in the type, the shift is undefined. 1272 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1273 if (Known.One.getLimitedValue() >= Known.getBitWidth()) 1274 return UndefValue::get(Op0->getType()); 1275 1276 // If all valid bits in the shift amount are known zero, the first operand is 1277 // unchanged. 1278 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1279 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1280 return Op0; 1281 1282 return nullptr; 1283 } 1284 1285 /// Given operands for an Shl, LShr or AShr, see if we can 1286 /// fold the result. If not, this returns null. 1287 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1288 Value *Op1, bool isExact, const SimplifyQuery &Q, 1289 unsigned MaxRecurse) { 1290 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1291 return V; 1292 1293 // X >> X -> 0 1294 if (Op0 == Op1) 1295 return Constant::getNullValue(Op0->getType()); 1296 1297 // undef >> X -> 0 1298 // undef >> X -> undef (if it's exact) 1299 if (match(Op0, m_Undef())) 1300 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1301 1302 // The low bit cannot be shifted out of an exact shift if it is set. 1303 if (isExact) { 1304 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1305 if (Op0Known.One[0]) 1306 return Op0; 1307 } 1308 1309 return nullptr; 1310 } 1311 1312 /// Given operands for an Shl, see if we can fold the result. 1313 /// If not, this returns null. 1314 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1315 const SimplifyQuery &Q, unsigned MaxRecurse) { 1316 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1317 return V; 1318 1319 // undef << X -> 0 1320 // undef << X -> undef if (if it's NSW/NUW) 1321 if (match(Op0, m_Undef())) 1322 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1323 1324 // (X >> A) << A -> X 1325 Value *X; 1326 if (Q.IIQ.UseInstrInfo && 1327 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1328 return X; 1329 1330 // shl nuw i8 C, %x -> C iff C has sign bit set. 1331 if (isNUW && match(Op0, m_Negative())) 1332 return Op0; 1333 // NOTE: could use computeKnownBits() / LazyValueInfo, 1334 // but the cost-benefit analysis suggests it isn't worth it. 1335 1336 return nullptr; 1337 } 1338 1339 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1340 const SimplifyQuery &Q) { 1341 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1342 } 1343 1344 /// Given operands for an LShr, see if we can fold the result. 1345 /// If not, this returns null. 1346 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1347 const SimplifyQuery &Q, unsigned MaxRecurse) { 1348 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1349 MaxRecurse)) 1350 return V; 1351 1352 // (X << A) >> A -> X 1353 Value *X; 1354 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1355 return X; 1356 1357 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1358 // We can return X as we do in the above case since OR alters no bits in X. 1359 // SimplifyDemandedBits in InstCombine can do more general optimization for 1360 // bit manipulation. This pattern aims to provide opportunities for other 1361 // optimizers by supporting a simple but common case in InstSimplify. 1362 Value *Y; 1363 const APInt *ShRAmt, *ShLAmt; 1364 if (match(Op1, m_APInt(ShRAmt)) && 1365 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1366 *ShRAmt == *ShLAmt) { 1367 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1368 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1369 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1370 if (ShRAmt->uge(EffWidthY)) 1371 return X; 1372 } 1373 1374 return nullptr; 1375 } 1376 1377 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1378 const SimplifyQuery &Q) { 1379 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1380 } 1381 1382 /// Given operands for an AShr, see if we can fold the result. 1383 /// If not, this returns null. 1384 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1385 const SimplifyQuery &Q, unsigned MaxRecurse) { 1386 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1387 MaxRecurse)) 1388 return V; 1389 1390 // all ones >>a X -> -1 1391 // Do not return Op0 because it may contain undef elements if it's a vector. 1392 if (match(Op0, m_AllOnes())) 1393 return Constant::getAllOnesValue(Op0->getType()); 1394 1395 // (X << A) >> A -> X 1396 Value *X; 1397 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1398 return X; 1399 1400 // Arithmetic shifting an all-sign-bit value is a no-op. 1401 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1402 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1403 return Op0; 1404 1405 return nullptr; 1406 } 1407 1408 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1409 const SimplifyQuery &Q) { 1410 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1411 } 1412 1413 /// Commuted variants are assumed to be handled by calling this function again 1414 /// with the parameters swapped. 1415 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1416 ICmpInst *UnsignedICmp, bool IsAnd, 1417 const SimplifyQuery &Q) { 1418 Value *X, *Y; 1419 1420 ICmpInst::Predicate EqPred; 1421 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1422 !ICmpInst::isEquality(EqPred)) 1423 return nullptr; 1424 1425 ICmpInst::Predicate UnsignedPred; 1426 1427 Value *A, *B; 1428 // Y = (A - B); 1429 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1430 if (match(UnsignedICmp, 1431 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1432 ICmpInst::isUnsigned(UnsignedPred)) { 1433 // A >=/<= B || (A - B) != 0 <--> true 1434 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1435 UnsignedPred == ICmpInst::ICMP_ULE) && 1436 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1437 return ConstantInt::getTrue(UnsignedICmp->getType()); 1438 // A </> B && (A - B) == 0 <--> false 1439 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1440 UnsignedPred == ICmpInst::ICMP_UGT) && 1441 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1442 return ConstantInt::getFalse(UnsignedICmp->getType()); 1443 1444 // A </> B && (A - B) != 0 <--> A </> B 1445 // A </> B || (A - B) != 0 <--> (A - B) != 0 1446 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1447 UnsignedPred == ICmpInst::ICMP_UGT)) 1448 return IsAnd ? UnsignedICmp : ZeroICmp; 1449 1450 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1451 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1452 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1453 UnsignedPred == ICmpInst::ICMP_UGE)) 1454 return IsAnd ? ZeroICmp : UnsignedICmp; 1455 } 1456 1457 // Given Y = (A - B) 1458 // Y >= A && Y != 0 --> Y >= A iff B != 0 1459 // Y < A || Y == 0 --> Y < A iff B != 0 1460 if (match(UnsignedICmp, 1461 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1462 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1463 EqPred == ICmpInst::ICMP_NE && 1464 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1465 return UnsignedICmp; 1466 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1467 EqPred == ICmpInst::ICMP_EQ && 1468 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1469 return UnsignedICmp; 1470 } 1471 } 1472 1473 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1474 ICmpInst::isUnsigned(UnsignedPred)) 1475 ; 1476 else if (match(UnsignedICmp, 1477 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1478 ICmpInst::isUnsigned(UnsignedPred)) 1479 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1480 else 1481 return nullptr; 1482 1483 // X > Y && Y == 0 --> Y == 0 iff X != 0 1484 // X > Y || Y == 0 --> X > Y iff X != 0 1485 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1486 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1487 return IsAnd ? ZeroICmp : UnsignedICmp; 1488 1489 // X <= Y && Y != 0 --> X <= Y iff X != 0 1490 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1491 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1492 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1493 return IsAnd ? UnsignedICmp : ZeroICmp; 1494 1495 // The transforms below here are expected to be handled more generally with 1496 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1497 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1498 // these are candidates for removal. 1499 1500 // X < Y && Y != 0 --> X < Y 1501 // X < Y || Y != 0 --> Y != 0 1502 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1503 return IsAnd ? UnsignedICmp : ZeroICmp; 1504 1505 // X >= Y && Y == 0 --> Y == 0 1506 // X >= Y || Y == 0 --> X >= Y 1507 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1508 return IsAnd ? ZeroICmp : UnsignedICmp; 1509 1510 // X < Y && Y == 0 --> false 1511 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1512 IsAnd) 1513 return getFalse(UnsignedICmp->getType()); 1514 1515 // X >= Y || Y != 0 --> true 1516 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1517 !IsAnd) 1518 return getTrue(UnsignedICmp->getType()); 1519 1520 return nullptr; 1521 } 1522 1523 /// Commuted variants are assumed to be handled by calling this function again 1524 /// with the parameters swapped. 1525 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1526 ICmpInst::Predicate Pred0, Pred1; 1527 Value *A ,*B; 1528 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1529 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1530 return nullptr; 1531 1532 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1533 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1534 // can eliminate Op1 from this 'and'. 1535 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1536 return Op0; 1537 1538 // Check for any combination of predicates that are guaranteed to be disjoint. 1539 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1540 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1541 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1542 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1543 return getFalse(Op0->getType()); 1544 1545 return nullptr; 1546 } 1547 1548 /// Commuted variants are assumed to be handled by calling this function again 1549 /// with the parameters swapped. 1550 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1551 ICmpInst::Predicate Pred0, Pred1; 1552 Value *A ,*B; 1553 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1554 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1555 return nullptr; 1556 1557 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1558 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1559 // can eliminate Op0 from this 'or'. 1560 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1561 return Op1; 1562 1563 // Check for any combination of predicates that cover the entire range of 1564 // possibilities. 1565 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1566 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1567 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1568 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1569 return getTrue(Op0->getType()); 1570 1571 return nullptr; 1572 } 1573 1574 /// Test if a pair of compares with a shared operand and 2 constants has an 1575 /// empty set intersection, full set union, or if one compare is a superset of 1576 /// the other. 1577 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1578 bool IsAnd) { 1579 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1580 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1581 return nullptr; 1582 1583 const APInt *C0, *C1; 1584 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1585 !match(Cmp1->getOperand(1), m_APInt(C1))) 1586 return nullptr; 1587 1588 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1589 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1590 1591 // For and-of-compares, check if the intersection is empty: 1592 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1593 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1594 return getFalse(Cmp0->getType()); 1595 1596 // For or-of-compares, check if the union is full: 1597 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1598 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1599 return getTrue(Cmp0->getType()); 1600 1601 // Is one range a superset of the other? 1602 // If this is and-of-compares, take the smaller set: 1603 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1604 // If this is or-of-compares, take the larger set: 1605 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1606 if (Range0.contains(Range1)) 1607 return IsAnd ? Cmp1 : Cmp0; 1608 if (Range1.contains(Range0)) 1609 return IsAnd ? Cmp0 : Cmp1; 1610 1611 return nullptr; 1612 } 1613 1614 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1615 bool IsAnd) { 1616 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1617 if (!match(Cmp0->getOperand(1), m_Zero()) || 1618 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1619 return nullptr; 1620 1621 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1622 return nullptr; 1623 1624 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1625 Value *X = Cmp0->getOperand(0); 1626 Value *Y = Cmp1->getOperand(0); 1627 1628 // If one of the compares is a masked version of a (not) null check, then 1629 // that compare implies the other, so we eliminate the other. Optionally, look 1630 // through a pointer-to-int cast to match a null check of a pointer type. 1631 1632 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1633 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1634 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1635 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1636 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1637 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1638 return Cmp1; 1639 1640 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1641 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1642 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1643 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1644 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1645 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1646 return Cmp0; 1647 1648 return nullptr; 1649 } 1650 1651 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1652 const InstrInfoQuery &IIQ) { 1653 // (icmp (add V, C0), C1) & (icmp V, C0) 1654 ICmpInst::Predicate Pred0, Pred1; 1655 const APInt *C0, *C1; 1656 Value *V; 1657 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1658 return nullptr; 1659 1660 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1661 return nullptr; 1662 1663 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1664 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1665 return nullptr; 1666 1667 Type *ITy = Op0->getType(); 1668 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1669 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1670 1671 const APInt Delta = *C1 - *C0; 1672 if (C0->isStrictlyPositive()) { 1673 if (Delta == 2) { 1674 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1675 return getFalse(ITy); 1676 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1677 return getFalse(ITy); 1678 } 1679 if (Delta == 1) { 1680 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1681 return getFalse(ITy); 1682 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1683 return getFalse(ITy); 1684 } 1685 } 1686 if (C0->getBoolValue() && isNUW) { 1687 if (Delta == 2) 1688 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1689 return getFalse(ITy); 1690 if (Delta == 1) 1691 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1692 return getFalse(ITy); 1693 } 1694 1695 return nullptr; 1696 } 1697 1698 /// Try to eliminate compares with signed or unsigned min/max constants. 1699 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, 1700 bool IsAnd) { 1701 // Canonicalize an equality compare as Cmp0. 1702 if (Cmp1->isEquality()) 1703 std::swap(Cmp0, Cmp1); 1704 if (!Cmp0->isEquality()) 1705 return nullptr; 1706 1707 // The equality compare must be against a constant. Convert the 'null' pointer 1708 // constant to an integer zero value. 1709 APInt MinMaxC; 1710 const APInt *C; 1711 if (match(Cmp0->getOperand(1), m_APInt(C))) 1712 MinMaxC = *C; 1713 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) 1714 MinMaxC = APInt::getNullValue(8); 1715 else 1716 return nullptr; 1717 1718 // The non-equality compare must include a common operand (X). Canonicalize 1719 // the common operand as operand 0 (the predicate is swapped if the common 1720 // operand was operand 1). 1721 ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); 1722 Value *X = Cmp0->getOperand(0); 1723 ICmpInst::Predicate Pred1; 1724 if (!match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value())) || 1725 ICmpInst::isEquality(Pred1)) 1726 return nullptr; 1727 1728 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. 1729 if (!IsAnd) { 1730 Pred0 = ICmpInst::getInversePredicate(Pred0); 1731 Pred1 = ICmpInst::getInversePredicate(Pred1); 1732 } 1733 1734 // Normalize to unsigned compare and unsigned min/max value. 1735 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 1736 if (ICmpInst::isSigned(Pred1)) { 1737 Pred1 = ICmpInst::getUnsignedPredicate(Pred1); 1738 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); 1739 } 1740 1741 // (X != MAX) && (X < Y) --> X < Y 1742 // (X == MAX) || (X >= Y) --> X >= Y 1743 if (MinMaxC.isMaxValue()) 1744 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) 1745 return Cmp1; 1746 1747 // (X != MIN) && (X > Y) --> X > Y 1748 // (X == MIN) || (X <= Y) --> X <= Y 1749 if (MinMaxC.isMinValue()) 1750 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) 1751 return Cmp1; 1752 1753 return nullptr; 1754 } 1755 1756 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1757 const SimplifyQuery &Q) { 1758 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1759 return X; 1760 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1761 return X; 1762 1763 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1764 return X; 1765 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1766 return X; 1767 1768 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1769 return X; 1770 1771 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) 1772 return X; 1773 1774 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1775 return X; 1776 1777 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1778 return X; 1779 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1780 return X; 1781 1782 return nullptr; 1783 } 1784 1785 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1786 const InstrInfoQuery &IIQ) { 1787 // (icmp (add V, C0), C1) | (icmp V, C0) 1788 ICmpInst::Predicate Pred0, Pred1; 1789 const APInt *C0, *C1; 1790 Value *V; 1791 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1792 return nullptr; 1793 1794 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1795 return nullptr; 1796 1797 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1798 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1799 return nullptr; 1800 1801 Type *ITy = Op0->getType(); 1802 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1803 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1804 1805 const APInt Delta = *C1 - *C0; 1806 if (C0->isStrictlyPositive()) { 1807 if (Delta == 2) { 1808 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1809 return getTrue(ITy); 1810 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1811 return getTrue(ITy); 1812 } 1813 if (Delta == 1) { 1814 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1815 return getTrue(ITy); 1816 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1817 return getTrue(ITy); 1818 } 1819 } 1820 if (C0->getBoolValue() && isNUW) { 1821 if (Delta == 2) 1822 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1823 return getTrue(ITy); 1824 if (Delta == 1) 1825 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1826 return getTrue(ITy); 1827 } 1828 1829 return nullptr; 1830 } 1831 1832 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1833 const SimplifyQuery &Q) { 1834 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1835 return X; 1836 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1837 return X; 1838 1839 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1840 return X; 1841 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1842 return X; 1843 1844 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1845 return X; 1846 1847 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) 1848 return X; 1849 1850 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1851 return X; 1852 1853 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1854 return X; 1855 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1856 return X; 1857 1858 return nullptr; 1859 } 1860 1861 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1862 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1863 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1864 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1865 if (LHS0->getType() != RHS0->getType()) 1866 return nullptr; 1867 1868 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1869 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1870 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1871 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1872 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1873 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1874 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1875 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1876 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1877 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1878 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1879 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1880 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1881 return RHS; 1882 1883 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1884 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1885 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1886 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1887 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1888 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1889 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1890 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1891 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1892 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1893 return LHS; 1894 } 1895 1896 return nullptr; 1897 } 1898 1899 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1900 Value *Op0, Value *Op1, bool IsAnd) { 1901 // Look through casts of the 'and' operands to find compares. 1902 auto *Cast0 = dyn_cast<CastInst>(Op0); 1903 auto *Cast1 = dyn_cast<CastInst>(Op1); 1904 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1905 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1906 Op0 = Cast0->getOperand(0); 1907 Op1 = Cast1->getOperand(0); 1908 } 1909 1910 Value *V = nullptr; 1911 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1912 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1913 if (ICmp0 && ICmp1) 1914 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1915 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1916 1917 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1918 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1919 if (FCmp0 && FCmp1) 1920 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1921 1922 if (!V) 1923 return nullptr; 1924 if (!Cast0) 1925 return V; 1926 1927 // If we looked through casts, we can only handle a constant simplification 1928 // because we are not allowed to create a cast instruction here. 1929 if (auto *C = dyn_cast<Constant>(V)) 1930 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1931 1932 return nullptr; 1933 } 1934 1935 /// Check that the Op1 is in expected form, i.e.: 1936 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1937 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1938 static bool omitCheckForZeroBeforeMulWithOverflowInternal(Value *Op1, 1939 Value *X) { 1940 auto *Extract = dyn_cast<ExtractValueInst>(Op1); 1941 // We should only be extracting the overflow bit. 1942 if (!Extract || !Extract->getIndices().equals(1)) 1943 return false; 1944 Value *Agg = Extract->getAggregateOperand(); 1945 // This should be a multiplication-with-overflow intrinsic. 1946 if (!match(Agg, m_CombineOr(m_Intrinsic<Intrinsic::umul_with_overflow>(), 1947 m_Intrinsic<Intrinsic::smul_with_overflow>()))) 1948 return false; 1949 // One of its multipliers should be the value we checked for zero before. 1950 if (!match(Agg, m_CombineOr(m_Argument<0>(m_Specific(X)), 1951 m_Argument<1>(m_Specific(X))))) 1952 return false; 1953 return true; 1954 } 1955 1956 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some 1957 /// other form of check, e.g. one that was using division; it may have been 1958 /// guarded against division-by-zero. We can drop that check now. 1959 /// Look for: 1960 /// %Op0 = icmp ne i4 %X, 0 1961 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1962 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1963 /// %??? = and i1 %Op0, %Op1 1964 /// We can just return %Op1 1965 static Value *omitCheckForZeroBeforeMulWithOverflow(Value *Op0, Value *Op1) { 1966 ICmpInst::Predicate Pred; 1967 Value *X; 1968 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) || 1969 Pred != ICmpInst::Predicate::ICMP_NE) 1970 return nullptr; 1971 // Is Op1 in expected form? 1972 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X)) 1973 return nullptr; 1974 // Can omit 'and', and just return the overflow bit. 1975 return Op1; 1976 } 1977 1978 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some 1979 /// other form of check, e.g. one that was using division; it may have been 1980 /// guarded against division-by-zero. We can drop that check now. 1981 /// Look for: 1982 /// %Op0 = icmp eq i4 %X, 0 1983 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1984 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1985 /// %NotOp1 = xor i1 %Op1, true 1986 /// %or = or i1 %Op0, %NotOp1 1987 /// We can just return %NotOp1 1988 static Value *omitCheckForZeroBeforeInvertedMulWithOverflow(Value *Op0, 1989 Value *NotOp1) { 1990 ICmpInst::Predicate Pred; 1991 Value *X; 1992 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) || 1993 Pred != ICmpInst::Predicate::ICMP_EQ) 1994 return nullptr; 1995 // We expect the other hand of an 'or' to be a 'not'. 1996 Value *Op1; 1997 if (!match(NotOp1, m_Not(m_Value(Op1)))) 1998 return nullptr; 1999 // Is Op1 in expected form? 2000 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X)) 2001 return nullptr; 2002 // Can omit 'and', and just return the inverted overflow bit. 2003 return NotOp1; 2004 } 2005 2006 /// Given operands for an And, see if we can fold the result. 2007 /// If not, this returns null. 2008 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2009 unsigned MaxRecurse) { 2010 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2011 return C; 2012 2013 // X & undef -> 0 2014 if (match(Op1, m_Undef())) 2015 return Constant::getNullValue(Op0->getType()); 2016 2017 // X & X = X 2018 if (Op0 == Op1) 2019 return Op0; 2020 2021 // X & 0 = 0 2022 if (match(Op1, m_Zero())) 2023 return Constant::getNullValue(Op0->getType()); 2024 2025 // X & -1 = X 2026 if (match(Op1, m_AllOnes())) 2027 return Op0; 2028 2029 // A & ~A = ~A & A = 0 2030 if (match(Op0, m_Not(m_Specific(Op1))) || 2031 match(Op1, m_Not(m_Specific(Op0)))) 2032 return Constant::getNullValue(Op0->getType()); 2033 2034 // (A | ?) & A = A 2035 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2036 return Op1; 2037 2038 // A & (A | ?) = A 2039 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 2040 return Op0; 2041 2042 // A mask that only clears known zeros of a shifted value is a no-op. 2043 Value *X; 2044 const APInt *Mask; 2045 const APInt *ShAmt; 2046 if (match(Op1, m_APInt(Mask))) { 2047 // If all bits in the inverted and shifted mask are clear: 2048 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2049 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2050 (~(*Mask)).lshr(*ShAmt).isNullValue()) 2051 return Op0; 2052 2053 // If all bits in the inverted and shifted mask are clear: 2054 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2055 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2056 (~(*Mask)).shl(*ShAmt).isNullValue()) 2057 return Op0; 2058 } 2059 2060 // If we have a multiplication overflow check that is being 'and'ed with a 2061 // check that one of the multipliers is not zero, we can omit the 'and', and 2062 // only keep the overflow check. 2063 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op0, Op1)) 2064 return V; 2065 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op1, Op0)) 2066 return V; 2067 2068 // A & (-A) = A if A is a power of two or zero. 2069 if (match(Op0, m_Neg(m_Specific(Op1))) || 2070 match(Op1, m_Neg(m_Specific(Op0)))) { 2071 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2072 Q.DT)) 2073 return Op0; 2074 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2075 Q.DT)) 2076 return Op1; 2077 } 2078 2079 // This is a similar pattern used for checking if a value is a power-of-2: 2080 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2081 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 2082 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2083 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2084 return Constant::getNullValue(Op1->getType()); 2085 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 2086 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2087 return Constant::getNullValue(Op0->getType()); 2088 2089 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2090 return V; 2091 2092 // Try some generic simplifications for associative operations. 2093 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 2094 MaxRecurse)) 2095 return V; 2096 2097 // And distributes over Or. Try some generic simplifications based on this. 2098 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 2099 Q, MaxRecurse)) 2100 return V; 2101 2102 // And distributes over Xor. Try some generic simplifications based on this. 2103 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 2104 Q, MaxRecurse)) 2105 return V; 2106 2107 // If the operation is with the result of a select instruction, check whether 2108 // operating on either branch of the select always yields the same value. 2109 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 2110 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 2111 MaxRecurse)) 2112 return V; 2113 2114 // If the operation is with the result of a phi instruction, check whether 2115 // operating on all incoming values of the phi always yields the same value. 2116 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2117 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 2118 MaxRecurse)) 2119 return V; 2120 2121 // Assuming the effective width of Y is not larger than A, i.e. all bits 2122 // from X and Y are disjoint in (X << A) | Y, 2123 // if the mask of this AND op covers all bits of X or Y, while it covers 2124 // no bits from the other, we can bypass this AND op. E.g., 2125 // ((X << A) | Y) & Mask -> Y, 2126 // if Mask = ((1 << effective_width_of(Y)) - 1) 2127 // ((X << A) | Y) & Mask -> X << A, 2128 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2129 // SimplifyDemandedBits in InstCombine can optimize the general case. 2130 // This pattern aims to help other passes for a common case. 2131 Value *Y, *XShifted; 2132 if (match(Op1, m_APInt(Mask)) && 2133 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2134 m_Value(XShifted)), 2135 m_Value(Y)))) { 2136 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2137 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2138 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2139 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 2140 if (EffWidthY <= ShftCnt) { 2141 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 2142 Q.DT); 2143 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros(); 2144 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2145 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2146 // If the mask is extracting all bits from X or Y as is, we can skip 2147 // this AND op. 2148 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2149 return Y; 2150 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2151 return XShifted; 2152 } 2153 } 2154 2155 return nullptr; 2156 } 2157 2158 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2159 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 2160 } 2161 2162 /// Given operands for an Or, see if we can fold the result. 2163 /// If not, this returns null. 2164 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2165 unsigned MaxRecurse) { 2166 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2167 return C; 2168 2169 // X | undef -> -1 2170 // X | -1 = -1 2171 // Do not return Op1 because it may contain undef elements if it's a vector. 2172 if (match(Op1, m_Undef()) || match(Op1, m_AllOnes())) 2173 return Constant::getAllOnesValue(Op0->getType()); 2174 2175 // X | X = X 2176 // X | 0 = X 2177 if (Op0 == Op1 || match(Op1, m_Zero())) 2178 return Op0; 2179 2180 // A | ~A = ~A | A = -1 2181 if (match(Op0, m_Not(m_Specific(Op1))) || 2182 match(Op1, m_Not(m_Specific(Op0)))) 2183 return Constant::getAllOnesValue(Op0->getType()); 2184 2185 // (A & ?) | A = A 2186 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 2187 return Op1; 2188 2189 // A | (A & ?) = A 2190 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 2191 return Op0; 2192 2193 // ~(A & ?) | A = -1 2194 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 2195 return Constant::getAllOnesValue(Op1->getType()); 2196 2197 // A | ~(A & ?) = -1 2198 if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value())))) 2199 return Constant::getAllOnesValue(Op0->getType()); 2200 2201 Value *A, *B; 2202 // (A & ~B) | (A ^ B) -> (A ^ B) 2203 // (~B & A) | (A ^ B) -> (A ^ B) 2204 // (A & ~B) | (B ^ A) -> (B ^ A) 2205 // (~B & A) | (B ^ A) -> (B ^ A) 2206 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2207 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2208 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2209 return Op1; 2210 2211 // Commute the 'or' operands. 2212 // (A ^ B) | (A & ~B) -> (A ^ B) 2213 // (A ^ B) | (~B & A) -> (A ^ B) 2214 // (B ^ A) | (A & ~B) -> (B ^ A) 2215 // (B ^ A) | (~B & A) -> (B ^ A) 2216 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2217 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2218 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2219 return Op0; 2220 2221 // (A & B) | (~A ^ B) -> (~A ^ B) 2222 // (B & A) | (~A ^ B) -> (~A ^ B) 2223 // (A & B) | (B ^ ~A) -> (B ^ ~A) 2224 // (B & A) | (B ^ ~A) -> (B ^ ~A) 2225 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2226 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2227 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2228 return Op1; 2229 2230 // (~A ^ B) | (A & B) -> (~A ^ B) 2231 // (~A ^ B) | (B & A) -> (~A ^ B) 2232 // (B ^ ~A) | (A & B) -> (B ^ ~A) 2233 // (B ^ ~A) | (B & A) -> (B ^ ~A) 2234 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 2235 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2236 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2237 return Op0; 2238 2239 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2240 return V; 2241 2242 // If we have a multiplication overflow check that is being 'and'ed with a 2243 // check that one of the multipliers is not zero, we can omit the 'and', and 2244 // only keep the overflow check. 2245 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op0, Op1)) 2246 return V; 2247 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op1, Op0)) 2248 return V; 2249 2250 // Try some generic simplifications for associative operations. 2251 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2252 MaxRecurse)) 2253 return V; 2254 2255 // Or distributes over And. Try some generic simplifications based on this. 2256 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 2257 MaxRecurse)) 2258 return V; 2259 2260 // If the operation is with the result of a select instruction, check whether 2261 // operating on either branch of the select always yields the same value. 2262 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 2263 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2264 MaxRecurse)) 2265 return V; 2266 2267 // (A & C1)|(B & C2) 2268 const APInt *C1, *C2; 2269 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2270 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2271 if (*C1 == ~*C2) { 2272 // (A & C1)|(B & C2) 2273 // If we have: ((V + N) & C1) | (V & C2) 2274 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2275 // replace with V+N. 2276 Value *N; 2277 if (C2->isMask() && // C2 == 0+1+ 2278 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2279 // Add commutes, try both ways. 2280 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2281 return A; 2282 } 2283 // Or commutes, try both ways. 2284 if (C1->isMask() && 2285 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2286 // Add commutes, try both ways. 2287 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2288 return B; 2289 } 2290 } 2291 } 2292 2293 // If the operation is with the result of a phi instruction, check whether 2294 // operating on all incoming values of the phi always yields the same value. 2295 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2296 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2297 return V; 2298 2299 return nullptr; 2300 } 2301 2302 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2303 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2304 } 2305 2306 /// Given operands for a Xor, see if we can fold the result. 2307 /// If not, this returns null. 2308 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2309 unsigned MaxRecurse) { 2310 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2311 return C; 2312 2313 // A ^ undef -> undef 2314 if (match(Op1, m_Undef())) 2315 return Op1; 2316 2317 // A ^ 0 = A 2318 if (match(Op1, m_Zero())) 2319 return Op0; 2320 2321 // A ^ A = 0 2322 if (Op0 == Op1) 2323 return Constant::getNullValue(Op0->getType()); 2324 2325 // A ^ ~A = ~A ^ A = -1 2326 if (match(Op0, m_Not(m_Specific(Op1))) || 2327 match(Op1, m_Not(m_Specific(Op0)))) 2328 return Constant::getAllOnesValue(Op0->getType()); 2329 2330 // Try some generic simplifications for associative operations. 2331 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2332 MaxRecurse)) 2333 return V; 2334 2335 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2336 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2337 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2338 // only if B and C are equal. If B and C are equal then (since we assume 2339 // that operands have already been simplified) "select(cond, B, C)" should 2340 // have been simplified to the common value of B and C already. Analysing 2341 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2342 // for threading over phi nodes. 2343 2344 return nullptr; 2345 } 2346 2347 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2348 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2349 } 2350 2351 2352 static Type *GetCompareTy(Value *Op) { 2353 return CmpInst::makeCmpResultType(Op->getType()); 2354 } 2355 2356 /// Rummage around inside V looking for something equivalent to the comparison 2357 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2358 /// Helper function for analyzing max/min idioms. 2359 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2360 Value *LHS, Value *RHS) { 2361 SelectInst *SI = dyn_cast<SelectInst>(V); 2362 if (!SI) 2363 return nullptr; 2364 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2365 if (!Cmp) 2366 return nullptr; 2367 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2368 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2369 return Cmp; 2370 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2371 LHS == CmpRHS && RHS == CmpLHS) 2372 return Cmp; 2373 return nullptr; 2374 } 2375 2376 // A significant optimization not implemented here is assuming that alloca 2377 // addresses are not equal to incoming argument values. They don't *alias*, 2378 // as we say, but that doesn't mean they aren't equal, so we take a 2379 // conservative approach. 2380 // 2381 // This is inspired in part by C++11 5.10p1: 2382 // "Two pointers of the same type compare equal if and only if they are both 2383 // null, both point to the same function, or both represent the same 2384 // address." 2385 // 2386 // This is pretty permissive. 2387 // 2388 // It's also partly due to C11 6.5.9p6: 2389 // "Two pointers compare equal if and only if both are null pointers, both are 2390 // pointers to the same object (including a pointer to an object and a 2391 // subobject at its beginning) or function, both are pointers to one past the 2392 // last element of the same array object, or one is a pointer to one past the 2393 // end of one array object and the other is a pointer to the start of a 2394 // different array object that happens to immediately follow the first array 2395 // object in the address space.) 2396 // 2397 // C11's version is more restrictive, however there's no reason why an argument 2398 // couldn't be a one-past-the-end value for a stack object in the caller and be 2399 // equal to the beginning of a stack object in the callee. 2400 // 2401 // If the C and C++ standards are ever made sufficiently restrictive in this 2402 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2403 // this optimization. 2404 static Constant * 2405 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2406 const DominatorTree *DT, CmpInst::Predicate Pred, 2407 AssumptionCache *AC, const Instruction *CxtI, 2408 const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) { 2409 // First, skip past any trivial no-ops. 2410 LHS = LHS->stripPointerCasts(); 2411 RHS = RHS->stripPointerCasts(); 2412 2413 // A non-null pointer is not equal to a null pointer. 2414 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && 2415 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2416 IIQ.UseInstrInfo)) 2417 return ConstantInt::get(GetCompareTy(LHS), 2418 !CmpInst::isTrueWhenEqual(Pred)); 2419 2420 // We can only fold certain predicates on pointer comparisons. 2421 switch (Pred) { 2422 default: 2423 return nullptr; 2424 2425 // Equality comaprisons are easy to fold. 2426 case CmpInst::ICMP_EQ: 2427 case CmpInst::ICMP_NE: 2428 break; 2429 2430 // We can only handle unsigned relational comparisons because 'inbounds' on 2431 // a GEP only protects against unsigned wrapping. 2432 case CmpInst::ICMP_UGT: 2433 case CmpInst::ICMP_UGE: 2434 case CmpInst::ICMP_ULT: 2435 case CmpInst::ICMP_ULE: 2436 // However, we have to switch them to their signed variants to handle 2437 // negative indices from the base pointer. 2438 Pred = ICmpInst::getSignedPredicate(Pred); 2439 break; 2440 } 2441 2442 // Strip off any constant offsets so that we can reason about them. 2443 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2444 // here and compare base addresses like AliasAnalysis does, however there are 2445 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2446 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2447 // doesn't need to guarantee pointer inequality when it says NoAlias. 2448 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2449 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2450 2451 // If LHS and RHS are related via constant offsets to the same base 2452 // value, we can replace it with an icmp which just compares the offsets. 2453 if (LHS == RHS) 2454 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2455 2456 // Various optimizations for (in)equality comparisons. 2457 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2458 // Different non-empty allocations that exist at the same time have 2459 // different addresses (if the program can tell). Global variables always 2460 // exist, so they always exist during the lifetime of each other and all 2461 // allocas. Two different allocas usually have different addresses... 2462 // 2463 // However, if there's an @llvm.stackrestore dynamically in between two 2464 // allocas, they may have the same address. It's tempting to reduce the 2465 // scope of the problem by only looking at *static* allocas here. That would 2466 // cover the majority of allocas while significantly reducing the likelihood 2467 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2468 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2469 // an entry block. Also, if we have a block that's not attached to a 2470 // function, we can't tell if it's "static" under the current definition. 2471 // Theoretically, this problem could be fixed by creating a new kind of 2472 // instruction kind specifically for static allocas. Such a new instruction 2473 // could be required to be at the top of the entry block, thus preventing it 2474 // from being subject to a @llvm.stackrestore. Instcombine could even 2475 // convert regular allocas into these special allocas. It'd be nifty. 2476 // However, until then, this problem remains open. 2477 // 2478 // So, we'll assume that two non-empty allocas have different addresses 2479 // for now. 2480 // 2481 // With all that, if the offsets are within the bounds of their allocations 2482 // (and not one-past-the-end! so we can't use inbounds!), and their 2483 // allocations aren't the same, the pointers are not equal. 2484 // 2485 // Note that it's not necessary to check for LHS being a global variable 2486 // address, due to canonicalization and constant folding. 2487 if (isa<AllocaInst>(LHS) && 2488 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2489 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2490 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2491 uint64_t LHSSize, RHSSize; 2492 ObjectSizeOpts Opts; 2493 Opts.NullIsUnknownSize = 2494 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2495 if (LHSOffsetCI && RHSOffsetCI && 2496 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2497 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2498 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2499 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2500 if (!LHSOffsetValue.isNegative() && 2501 !RHSOffsetValue.isNegative() && 2502 LHSOffsetValue.ult(LHSSize) && 2503 RHSOffsetValue.ult(RHSSize)) { 2504 return ConstantInt::get(GetCompareTy(LHS), 2505 !CmpInst::isTrueWhenEqual(Pred)); 2506 } 2507 } 2508 2509 // Repeat the above check but this time without depending on DataLayout 2510 // or being able to compute a precise size. 2511 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2512 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2513 LHSOffset->isNullValue() && 2514 RHSOffset->isNullValue()) 2515 return ConstantInt::get(GetCompareTy(LHS), 2516 !CmpInst::isTrueWhenEqual(Pred)); 2517 } 2518 2519 // Even if an non-inbounds GEP occurs along the path we can still optimize 2520 // equality comparisons concerning the result. We avoid walking the whole 2521 // chain again by starting where the last calls to 2522 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2523 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2524 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2525 if (LHS == RHS) 2526 return ConstantExpr::getICmp(Pred, 2527 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2528 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2529 2530 // If one side of the equality comparison must come from a noalias call 2531 // (meaning a system memory allocation function), and the other side must 2532 // come from a pointer that cannot overlap with dynamically-allocated 2533 // memory within the lifetime of the current function (allocas, byval 2534 // arguments, globals), then determine the comparison result here. 2535 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2536 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2537 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2538 2539 // Is the set of underlying objects all noalias calls? 2540 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2541 return all_of(Objects, isNoAliasCall); 2542 }; 2543 2544 // Is the set of underlying objects all things which must be disjoint from 2545 // noalias calls. For allocas, we consider only static ones (dynamic 2546 // allocas might be transformed into calls to malloc not simultaneously 2547 // live with the compared-to allocation). For globals, we exclude symbols 2548 // that might be resolve lazily to symbols in another dynamically-loaded 2549 // library (and, thus, could be malloc'ed by the implementation). 2550 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2551 return all_of(Objects, [](const Value *V) { 2552 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2553 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2554 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2555 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2556 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2557 !GV->isThreadLocal(); 2558 if (const Argument *A = dyn_cast<Argument>(V)) 2559 return A->hasByValAttr(); 2560 return false; 2561 }); 2562 }; 2563 2564 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2565 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2566 return ConstantInt::get(GetCompareTy(LHS), 2567 !CmpInst::isTrueWhenEqual(Pred)); 2568 2569 // Fold comparisons for non-escaping pointer even if the allocation call 2570 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2571 // dynamic allocation call could be either of the operands. 2572 Value *MI = nullptr; 2573 if (isAllocLikeFn(LHS, TLI) && 2574 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2575 MI = LHS; 2576 else if (isAllocLikeFn(RHS, TLI) && 2577 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2578 MI = RHS; 2579 // FIXME: We should also fold the compare when the pointer escapes, but the 2580 // compare dominates the pointer escape 2581 if (MI && !PointerMayBeCaptured(MI, true, true)) 2582 return ConstantInt::get(GetCompareTy(LHS), 2583 CmpInst::isFalseWhenEqual(Pred)); 2584 } 2585 2586 // Otherwise, fail. 2587 return nullptr; 2588 } 2589 2590 /// Fold an icmp when its operands have i1 scalar type. 2591 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2592 Value *RHS, const SimplifyQuery &Q) { 2593 Type *ITy = GetCompareTy(LHS); // The return type. 2594 Type *OpTy = LHS->getType(); // The operand type. 2595 if (!OpTy->isIntOrIntVectorTy(1)) 2596 return nullptr; 2597 2598 // A boolean compared to true/false can be simplified in 14 out of the 20 2599 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2600 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2601 if (match(RHS, m_Zero())) { 2602 switch (Pred) { 2603 case CmpInst::ICMP_NE: // X != 0 -> X 2604 case CmpInst::ICMP_UGT: // X >u 0 -> X 2605 case CmpInst::ICMP_SLT: // X <s 0 -> X 2606 return LHS; 2607 2608 case CmpInst::ICMP_ULT: // X <u 0 -> false 2609 case CmpInst::ICMP_SGT: // X >s 0 -> false 2610 return getFalse(ITy); 2611 2612 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2613 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2614 return getTrue(ITy); 2615 2616 default: break; 2617 } 2618 } else if (match(RHS, m_One())) { 2619 switch (Pred) { 2620 case CmpInst::ICMP_EQ: // X == 1 -> X 2621 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2622 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2623 return LHS; 2624 2625 case CmpInst::ICMP_UGT: // X >u 1 -> false 2626 case CmpInst::ICMP_SLT: // X <s -1 -> false 2627 return getFalse(ITy); 2628 2629 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2630 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2631 return getTrue(ITy); 2632 2633 default: break; 2634 } 2635 } 2636 2637 switch (Pred) { 2638 default: 2639 break; 2640 case ICmpInst::ICMP_UGE: 2641 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2642 return getTrue(ITy); 2643 break; 2644 case ICmpInst::ICMP_SGE: 2645 /// For signed comparison, the values for an i1 are 0 and -1 2646 /// respectively. This maps into a truth table of: 2647 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2648 /// 0 | 0 | 1 (0 >= 0) | 1 2649 /// 0 | 1 | 1 (0 >= -1) | 1 2650 /// 1 | 0 | 0 (-1 >= 0) | 0 2651 /// 1 | 1 | 1 (-1 >= -1) | 1 2652 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2653 return getTrue(ITy); 2654 break; 2655 case ICmpInst::ICMP_ULE: 2656 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2657 return getTrue(ITy); 2658 break; 2659 } 2660 2661 return nullptr; 2662 } 2663 2664 /// Try hard to fold icmp with zero RHS because this is a common case. 2665 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2666 Value *RHS, const SimplifyQuery &Q) { 2667 if (!match(RHS, m_Zero())) 2668 return nullptr; 2669 2670 Type *ITy = GetCompareTy(LHS); // The return type. 2671 switch (Pred) { 2672 default: 2673 llvm_unreachable("Unknown ICmp predicate!"); 2674 case ICmpInst::ICMP_ULT: 2675 return getFalse(ITy); 2676 case ICmpInst::ICMP_UGE: 2677 return getTrue(ITy); 2678 case ICmpInst::ICMP_EQ: 2679 case ICmpInst::ICMP_ULE: 2680 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2681 return getFalse(ITy); 2682 break; 2683 case ICmpInst::ICMP_NE: 2684 case ICmpInst::ICMP_UGT: 2685 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2686 return getTrue(ITy); 2687 break; 2688 case ICmpInst::ICMP_SLT: { 2689 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2690 if (LHSKnown.isNegative()) 2691 return getTrue(ITy); 2692 if (LHSKnown.isNonNegative()) 2693 return getFalse(ITy); 2694 break; 2695 } 2696 case ICmpInst::ICMP_SLE: { 2697 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2698 if (LHSKnown.isNegative()) 2699 return getTrue(ITy); 2700 if (LHSKnown.isNonNegative() && 2701 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2702 return getFalse(ITy); 2703 break; 2704 } 2705 case ICmpInst::ICMP_SGE: { 2706 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2707 if (LHSKnown.isNegative()) 2708 return getFalse(ITy); 2709 if (LHSKnown.isNonNegative()) 2710 return getTrue(ITy); 2711 break; 2712 } 2713 case ICmpInst::ICMP_SGT: { 2714 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2715 if (LHSKnown.isNegative()) 2716 return getFalse(ITy); 2717 if (LHSKnown.isNonNegative() && 2718 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2719 return getTrue(ITy); 2720 break; 2721 } 2722 } 2723 2724 return nullptr; 2725 } 2726 2727 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2728 Value *RHS, const InstrInfoQuery &IIQ) { 2729 Type *ITy = GetCompareTy(RHS); // The return type. 2730 2731 Value *X; 2732 // Sign-bit checks can be optimized to true/false after unsigned 2733 // floating-point casts: 2734 // icmp slt (bitcast (uitofp X)), 0 --> false 2735 // icmp sgt (bitcast (uitofp X)), -1 --> true 2736 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2737 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2738 return ConstantInt::getFalse(ITy); 2739 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2740 return ConstantInt::getTrue(ITy); 2741 } 2742 2743 const APInt *C; 2744 if (!match(RHS, m_APInt(C))) 2745 return nullptr; 2746 2747 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2748 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2749 if (RHS_CR.isEmptySet()) 2750 return ConstantInt::getFalse(ITy); 2751 if (RHS_CR.isFullSet()) 2752 return ConstantInt::getTrue(ITy); 2753 2754 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo); 2755 if (!LHS_CR.isFullSet()) { 2756 if (RHS_CR.contains(LHS_CR)) 2757 return ConstantInt::getTrue(ITy); 2758 if (RHS_CR.inverse().contains(LHS_CR)) 2759 return ConstantInt::getFalse(ITy); 2760 } 2761 2762 return nullptr; 2763 } 2764 2765 /// TODO: A large part of this logic is duplicated in InstCombine's 2766 /// foldICmpBinOp(). We should be able to share that and avoid the code 2767 /// duplication. 2768 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2769 Value *RHS, const SimplifyQuery &Q, 2770 unsigned MaxRecurse) { 2771 Type *ITy = GetCompareTy(LHS); // The return type. 2772 2773 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2774 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2775 if (MaxRecurse && (LBO || RBO)) { 2776 // Analyze the case when either LHS or RHS is an add instruction. 2777 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2778 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2779 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2780 if (LBO && LBO->getOpcode() == Instruction::Add) { 2781 A = LBO->getOperand(0); 2782 B = LBO->getOperand(1); 2783 NoLHSWrapProblem = 2784 ICmpInst::isEquality(Pred) || 2785 (CmpInst::isUnsigned(Pred) && 2786 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 2787 (CmpInst::isSigned(Pred) && 2788 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 2789 } 2790 if (RBO && RBO->getOpcode() == Instruction::Add) { 2791 C = RBO->getOperand(0); 2792 D = RBO->getOperand(1); 2793 NoRHSWrapProblem = 2794 ICmpInst::isEquality(Pred) || 2795 (CmpInst::isUnsigned(Pred) && 2796 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 2797 (CmpInst::isSigned(Pred) && 2798 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 2799 } 2800 2801 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2802 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2803 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2804 Constant::getNullValue(RHS->getType()), Q, 2805 MaxRecurse - 1)) 2806 return V; 2807 2808 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2809 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2810 if (Value *V = 2811 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2812 C == LHS ? D : C, Q, MaxRecurse - 1)) 2813 return V; 2814 2815 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2816 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2817 NoRHSWrapProblem) { 2818 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2819 Value *Y, *Z; 2820 if (A == C) { 2821 // C + B == C + D -> B == D 2822 Y = B; 2823 Z = D; 2824 } else if (A == D) { 2825 // D + B == C + D -> B == C 2826 Y = B; 2827 Z = C; 2828 } else if (B == C) { 2829 // A + C == C + D -> A == D 2830 Y = A; 2831 Z = D; 2832 } else { 2833 assert(B == D); 2834 // A + D == C + D -> A == C 2835 Y = A; 2836 Z = C; 2837 } 2838 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2839 return V; 2840 } 2841 } 2842 2843 { 2844 Value *Y = nullptr; 2845 // icmp pred (or X, Y), X 2846 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2847 if (Pred == ICmpInst::ICMP_ULT) 2848 return getFalse(ITy); 2849 if (Pred == ICmpInst::ICMP_UGE) 2850 return getTrue(ITy); 2851 2852 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2853 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2854 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2855 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2856 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2857 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2858 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2859 } 2860 } 2861 // icmp pred X, (or X, Y) 2862 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2863 if (Pred == ICmpInst::ICMP_ULE) 2864 return getTrue(ITy); 2865 if (Pred == ICmpInst::ICMP_UGT) 2866 return getFalse(ITy); 2867 2868 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2869 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2870 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2871 if (LHSKnown.isNonNegative() && YKnown.isNegative()) 2872 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2873 if (LHSKnown.isNegative() || YKnown.isNonNegative()) 2874 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2875 } 2876 } 2877 } 2878 2879 // icmp pred (and X, Y), X 2880 if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2881 if (Pred == ICmpInst::ICMP_UGT) 2882 return getFalse(ITy); 2883 if (Pred == ICmpInst::ICMP_ULE) 2884 return getTrue(ITy); 2885 } 2886 // icmp pred X, (and X, Y) 2887 if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) { 2888 if (Pred == ICmpInst::ICMP_UGE) 2889 return getTrue(ITy); 2890 if (Pred == ICmpInst::ICMP_ULT) 2891 return getFalse(ITy); 2892 } 2893 2894 // 0 - (zext X) pred C 2895 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2896 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2897 if (RHSC->getValue().isStrictlyPositive()) { 2898 if (Pred == ICmpInst::ICMP_SLT) 2899 return ConstantInt::getTrue(RHSC->getContext()); 2900 if (Pred == ICmpInst::ICMP_SGE) 2901 return ConstantInt::getFalse(RHSC->getContext()); 2902 if (Pred == ICmpInst::ICMP_EQ) 2903 return ConstantInt::getFalse(RHSC->getContext()); 2904 if (Pred == ICmpInst::ICMP_NE) 2905 return ConstantInt::getTrue(RHSC->getContext()); 2906 } 2907 if (RHSC->getValue().isNonNegative()) { 2908 if (Pred == ICmpInst::ICMP_SLE) 2909 return ConstantInt::getTrue(RHSC->getContext()); 2910 if (Pred == ICmpInst::ICMP_SGT) 2911 return ConstantInt::getFalse(RHSC->getContext()); 2912 } 2913 } 2914 } 2915 2916 // icmp pred (urem X, Y), Y 2917 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2918 switch (Pred) { 2919 default: 2920 break; 2921 case ICmpInst::ICMP_SGT: 2922 case ICmpInst::ICMP_SGE: { 2923 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2924 if (!Known.isNonNegative()) 2925 break; 2926 LLVM_FALLTHROUGH; 2927 } 2928 case ICmpInst::ICMP_EQ: 2929 case ICmpInst::ICMP_UGT: 2930 case ICmpInst::ICMP_UGE: 2931 return getFalse(ITy); 2932 case ICmpInst::ICMP_SLT: 2933 case ICmpInst::ICMP_SLE: { 2934 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2935 if (!Known.isNonNegative()) 2936 break; 2937 LLVM_FALLTHROUGH; 2938 } 2939 case ICmpInst::ICMP_NE: 2940 case ICmpInst::ICMP_ULT: 2941 case ICmpInst::ICMP_ULE: 2942 return getTrue(ITy); 2943 } 2944 } 2945 2946 // icmp pred X, (urem Y, X) 2947 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2948 switch (Pred) { 2949 default: 2950 break; 2951 case ICmpInst::ICMP_SGT: 2952 case ICmpInst::ICMP_SGE: { 2953 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2954 if (!Known.isNonNegative()) 2955 break; 2956 LLVM_FALLTHROUGH; 2957 } 2958 case ICmpInst::ICMP_NE: 2959 case ICmpInst::ICMP_UGT: 2960 case ICmpInst::ICMP_UGE: 2961 return getTrue(ITy); 2962 case ICmpInst::ICMP_SLT: 2963 case ICmpInst::ICMP_SLE: { 2964 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2965 if (!Known.isNonNegative()) 2966 break; 2967 LLVM_FALLTHROUGH; 2968 } 2969 case ICmpInst::ICMP_EQ: 2970 case ICmpInst::ICMP_ULT: 2971 case ICmpInst::ICMP_ULE: 2972 return getFalse(ITy); 2973 } 2974 } 2975 2976 // x >> y <=u x 2977 // x udiv y <=u x. 2978 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2979 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2980 // icmp pred (X op Y), X 2981 if (Pred == ICmpInst::ICMP_UGT) 2982 return getFalse(ITy); 2983 if (Pred == ICmpInst::ICMP_ULE) 2984 return getTrue(ITy); 2985 } 2986 2987 // x >=u x >> y 2988 // x >=u x udiv y. 2989 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2990 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2991 // icmp pred X, (X op Y) 2992 if (Pred == ICmpInst::ICMP_ULT) 2993 return getFalse(ITy); 2994 if (Pred == ICmpInst::ICMP_UGE) 2995 return getTrue(ITy); 2996 } 2997 2998 // handle: 2999 // CI2 << X == CI 3000 // CI2 << X != CI 3001 // 3002 // where CI2 is a power of 2 and CI isn't 3003 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 3004 const APInt *CI2Val, *CIVal = &CI->getValue(); 3005 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 3006 CI2Val->isPowerOf2()) { 3007 if (!CIVal->isPowerOf2()) { 3008 // CI2 << X can equal zero in some circumstances, 3009 // this simplification is unsafe if CI is zero. 3010 // 3011 // We know it is safe if: 3012 // - The shift is nsw, we can't shift out the one bit. 3013 // - The shift is nuw, we can't shift out the one bit. 3014 // - CI2 is one 3015 // - CI isn't zero 3016 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3017 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3018 CI2Val->isOneValue() || !CI->isZero()) { 3019 if (Pred == ICmpInst::ICMP_EQ) 3020 return ConstantInt::getFalse(RHS->getContext()); 3021 if (Pred == ICmpInst::ICMP_NE) 3022 return ConstantInt::getTrue(RHS->getContext()); 3023 } 3024 } 3025 if (CIVal->isSignMask() && CI2Val->isOneValue()) { 3026 if (Pred == ICmpInst::ICMP_UGT) 3027 return ConstantInt::getFalse(RHS->getContext()); 3028 if (Pred == ICmpInst::ICMP_ULE) 3029 return ConstantInt::getTrue(RHS->getContext()); 3030 } 3031 } 3032 } 3033 3034 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 3035 LBO->getOperand(1) == RBO->getOperand(1)) { 3036 switch (LBO->getOpcode()) { 3037 default: 3038 break; 3039 case Instruction::UDiv: 3040 case Instruction::LShr: 3041 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3042 !Q.IIQ.isExact(RBO)) 3043 break; 3044 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3045 RBO->getOperand(0), Q, MaxRecurse - 1)) 3046 return V; 3047 break; 3048 case Instruction::SDiv: 3049 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3050 !Q.IIQ.isExact(RBO)) 3051 break; 3052 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3053 RBO->getOperand(0), Q, MaxRecurse - 1)) 3054 return V; 3055 break; 3056 case Instruction::AShr: 3057 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3058 break; 3059 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3060 RBO->getOperand(0), Q, MaxRecurse - 1)) 3061 return V; 3062 break; 3063 case Instruction::Shl: { 3064 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3065 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3066 if (!NUW && !NSW) 3067 break; 3068 if (!NSW && ICmpInst::isSigned(Pred)) 3069 break; 3070 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3071 RBO->getOperand(0), Q, MaxRecurse - 1)) 3072 return V; 3073 break; 3074 } 3075 } 3076 } 3077 return nullptr; 3078 } 3079 3080 /// Simplify integer comparisons where at least one operand of the compare 3081 /// matches an integer min/max idiom. 3082 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3083 Value *RHS, const SimplifyQuery &Q, 3084 unsigned MaxRecurse) { 3085 Type *ITy = GetCompareTy(LHS); // The return type. 3086 Value *A, *B; 3087 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3088 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3089 3090 // Signed variants on "max(a,b)>=a -> true". 3091 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3092 if (A != RHS) 3093 std::swap(A, B); // smax(A, B) pred A. 3094 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3095 // We analyze this as smax(A, B) pred A. 3096 P = Pred; 3097 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3098 (A == LHS || B == LHS)) { 3099 if (A != LHS) 3100 std::swap(A, B); // A pred smax(A, B). 3101 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3102 // We analyze this as smax(A, B) swapped-pred A. 3103 P = CmpInst::getSwappedPredicate(Pred); 3104 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3105 (A == RHS || B == RHS)) { 3106 if (A != RHS) 3107 std::swap(A, B); // smin(A, B) pred A. 3108 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3109 // We analyze this as smax(-A, -B) swapped-pred -A. 3110 // Note that we do not need to actually form -A or -B thanks to EqP. 3111 P = CmpInst::getSwappedPredicate(Pred); 3112 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3113 (A == LHS || B == LHS)) { 3114 if (A != LHS) 3115 std::swap(A, B); // A pred smin(A, B). 3116 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3117 // We analyze this as smax(-A, -B) pred -A. 3118 // Note that we do not need to actually form -A or -B thanks to EqP. 3119 P = Pred; 3120 } 3121 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3122 // Cases correspond to "max(A, B) p A". 3123 switch (P) { 3124 default: 3125 break; 3126 case CmpInst::ICMP_EQ: 3127 case CmpInst::ICMP_SLE: 3128 // Equivalent to "A EqP B". This may be the same as the condition tested 3129 // in the max/min; if so, we can just return that. 3130 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3131 return V; 3132 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3133 return V; 3134 // Otherwise, see if "A EqP B" simplifies. 3135 if (MaxRecurse) 3136 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3137 return V; 3138 break; 3139 case CmpInst::ICMP_NE: 3140 case CmpInst::ICMP_SGT: { 3141 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3142 // Equivalent to "A InvEqP B". This may be the same as the condition 3143 // tested in the max/min; if so, we can just return that. 3144 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3145 return V; 3146 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3147 return V; 3148 // Otherwise, see if "A InvEqP B" simplifies. 3149 if (MaxRecurse) 3150 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3151 return V; 3152 break; 3153 } 3154 case CmpInst::ICMP_SGE: 3155 // Always true. 3156 return getTrue(ITy); 3157 case CmpInst::ICMP_SLT: 3158 // Always false. 3159 return getFalse(ITy); 3160 } 3161 } 3162 3163 // Unsigned variants on "max(a,b)>=a -> true". 3164 P = CmpInst::BAD_ICMP_PREDICATE; 3165 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3166 if (A != RHS) 3167 std::swap(A, B); // umax(A, B) pred A. 3168 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3169 // We analyze this as umax(A, B) pred A. 3170 P = Pred; 3171 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3172 (A == LHS || B == LHS)) { 3173 if (A != LHS) 3174 std::swap(A, B); // A pred umax(A, B). 3175 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3176 // We analyze this as umax(A, B) swapped-pred A. 3177 P = CmpInst::getSwappedPredicate(Pred); 3178 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3179 (A == RHS || B == RHS)) { 3180 if (A != RHS) 3181 std::swap(A, B); // umin(A, B) pred A. 3182 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3183 // We analyze this as umax(-A, -B) swapped-pred -A. 3184 // Note that we do not need to actually form -A or -B thanks to EqP. 3185 P = CmpInst::getSwappedPredicate(Pred); 3186 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3187 (A == LHS || B == LHS)) { 3188 if (A != LHS) 3189 std::swap(A, B); // A pred umin(A, B). 3190 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3191 // We analyze this as umax(-A, -B) pred -A. 3192 // Note that we do not need to actually form -A or -B thanks to EqP. 3193 P = Pred; 3194 } 3195 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3196 // Cases correspond to "max(A, B) p A". 3197 switch (P) { 3198 default: 3199 break; 3200 case CmpInst::ICMP_EQ: 3201 case CmpInst::ICMP_ULE: 3202 // Equivalent to "A EqP B". This may be the same as the condition tested 3203 // in the max/min; if so, we can just return that. 3204 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3205 return V; 3206 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3207 return V; 3208 // Otherwise, see if "A EqP B" simplifies. 3209 if (MaxRecurse) 3210 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3211 return V; 3212 break; 3213 case CmpInst::ICMP_NE: 3214 case CmpInst::ICMP_UGT: { 3215 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3216 // Equivalent to "A InvEqP B". This may be the same as the condition 3217 // tested in the max/min; if so, we can just return that. 3218 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3219 return V; 3220 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3221 return V; 3222 // Otherwise, see if "A InvEqP B" simplifies. 3223 if (MaxRecurse) 3224 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3225 return V; 3226 break; 3227 } 3228 case CmpInst::ICMP_UGE: 3229 // Always true. 3230 return getTrue(ITy); 3231 case CmpInst::ICMP_ULT: 3232 // Always false. 3233 return getFalse(ITy); 3234 } 3235 } 3236 3237 // Variants on "max(x,y) >= min(x,z)". 3238 Value *C, *D; 3239 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3240 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3241 (A == C || A == D || B == C || B == D)) { 3242 // max(x, ?) pred min(x, ?). 3243 if (Pred == CmpInst::ICMP_SGE) 3244 // Always true. 3245 return getTrue(ITy); 3246 if (Pred == CmpInst::ICMP_SLT) 3247 // Always false. 3248 return getFalse(ITy); 3249 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3250 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3251 (A == C || A == D || B == C || B == D)) { 3252 // min(x, ?) pred max(x, ?). 3253 if (Pred == CmpInst::ICMP_SLE) 3254 // Always true. 3255 return getTrue(ITy); 3256 if (Pred == CmpInst::ICMP_SGT) 3257 // Always false. 3258 return getFalse(ITy); 3259 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3260 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3261 (A == C || A == D || B == C || B == D)) { 3262 // max(x, ?) pred min(x, ?). 3263 if (Pred == CmpInst::ICMP_UGE) 3264 // Always true. 3265 return getTrue(ITy); 3266 if (Pred == CmpInst::ICMP_ULT) 3267 // Always false. 3268 return getFalse(ITy); 3269 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3270 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3271 (A == C || A == D || B == C || B == D)) { 3272 // min(x, ?) pred max(x, ?). 3273 if (Pred == CmpInst::ICMP_ULE) 3274 // Always true. 3275 return getTrue(ITy); 3276 if (Pred == CmpInst::ICMP_UGT) 3277 // Always false. 3278 return getFalse(ITy); 3279 } 3280 3281 return nullptr; 3282 } 3283 3284 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3285 Value *LHS, Value *RHS, 3286 const SimplifyQuery &Q) { 3287 // Gracefully handle instructions that have not been inserted yet. 3288 if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) 3289 return nullptr; 3290 3291 for (Value *AssumeBaseOp : {LHS, RHS}) { 3292 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3293 if (!AssumeVH) 3294 continue; 3295 3296 CallInst *Assume = cast<CallInst>(AssumeVH); 3297 if (Optional<bool> Imp = 3298 isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS, 3299 Q.DL)) 3300 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3301 return ConstantInt::get(GetCompareTy(LHS), *Imp); 3302 } 3303 } 3304 3305 return nullptr; 3306 } 3307 3308 /// Given operands for an ICmpInst, see if we can fold the result. 3309 /// If not, this returns null. 3310 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3311 const SimplifyQuery &Q, unsigned MaxRecurse) { 3312 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3313 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3314 3315 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3316 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3317 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3318 3319 // If we have a constant, make sure it is on the RHS. 3320 std::swap(LHS, RHS); 3321 Pred = CmpInst::getSwappedPredicate(Pred); 3322 } 3323 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3324 3325 Type *ITy = GetCompareTy(LHS); // The return type. 3326 3327 // For EQ and NE, we can always pick a value for the undef to make the 3328 // predicate pass or fail, so we can return undef. 3329 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3330 if (isa<UndefValue>(RHS) && ICmpInst::isEquality(Pred)) 3331 return UndefValue::get(ITy); 3332 3333 // icmp X, X -> true/false 3334 // icmp X, undef -> true/false because undef could be X. 3335 if (LHS == RHS || isa<UndefValue>(RHS)) 3336 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3337 3338 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3339 return V; 3340 3341 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3342 return V; 3343 3344 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3345 return V; 3346 3347 // If both operands have range metadata, use the metadata 3348 // to simplify the comparison. 3349 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3350 auto RHS_Instr = cast<Instruction>(RHS); 3351 auto LHS_Instr = cast<Instruction>(LHS); 3352 3353 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3354 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3355 auto RHS_CR = getConstantRangeFromMetadata( 3356 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3357 auto LHS_CR = getConstantRangeFromMetadata( 3358 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3359 3360 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3361 if (Satisfied_CR.contains(LHS_CR)) 3362 return ConstantInt::getTrue(RHS->getContext()); 3363 3364 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3365 CmpInst::getInversePredicate(Pred), RHS_CR); 3366 if (InversedSatisfied_CR.contains(LHS_CR)) 3367 return ConstantInt::getFalse(RHS->getContext()); 3368 } 3369 } 3370 3371 // Compare of cast, for example (zext X) != 0 -> X != 0 3372 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3373 Instruction *LI = cast<CastInst>(LHS); 3374 Value *SrcOp = LI->getOperand(0); 3375 Type *SrcTy = SrcOp->getType(); 3376 Type *DstTy = LI->getType(); 3377 3378 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3379 // if the integer type is the same size as the pointer type. 3380 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3381 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3382 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3383 // Transfer the cast to the constant. 3384 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3385 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3386 Q, MaxRecurse-1)) 3387 return V; 3388 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3389 if (RI->getOperand(0)->getType() == SrcTy) 3390 // Compare without the cast. 3391 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3392 Q, MaxRecurse-1)) 3393 return V; 3394 } 3395 } 3396 3397 if (isa<ZExtInst>(LHS)) { 3398 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3399 // same type. 3400 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3401 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3402 // Compare X and Y. Note that signed predicates become unsigned. 3403 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3404 SrcOp, RI->getOperand(0), Q, 3405 MaxRecurse-1)) 3406 return V; 3407 } 3408 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3409 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3410 if (SrcOp == RI->getOperand(0)) { 3411 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3412 return ConstantInt::getTrue(ITy); 3413 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3414 return ConstantInt::getFalse(ITy); 3415 } 3416 } 3417 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3418 // too. If not, then try to deduce the result of the comparison. 3419 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3420 // Compute the constant that would happen if we truncated to SrcTy then 3421 // reextended to DstTy. 3422 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3423 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3424 3425 // If the re-extended constant didn't change then this is effectively 3426 // also a case of comparing two zero-extended values. 3427 if (RExt == CI && MaxRecurse) 3428 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3429 SrcOp, Trunc, Q, MaxRecurse-1)) 3430 return V; 3431 3432 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3433 // there. Use this to work out the result of the comparison. 3434 if (RExt != CI) { 3435 switch (Pred) { 3436 default: llvm_unreachable("Unknown ICmp predicate!"); 3437 // LHS <u RHS. 3438 case ICmpInst::ICMP_EQ: 3439 case ICmpInst::ICMP_UGT: 3440 case ICmpInst::ICMP_UGE: 3441 return ConstantInt::getFalse(CI->getContext()); 3442 3443 case ICmpInst::ICMP_NE: 3444 case ICmpInst::ICMP_ULT: 3445 case ICmpInst::ICMP_ULE: 3446 return ConstantInt::getTrue(CI->getContext()); 3447 3448 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3449 // is non-negative then LHS <s RHS. 3450 case ICmpInst::ICMP_SGT: 3451 case ICmpInst::ICMP_SGE: 3452 return CI->getValue().isNegative() ? 3453 ConstantInt::getTrue(CI->getContext()) : 3454 ConstantInt::getFalse(CI->getContext()); 3455 3456 case ICmpInst::ICMP_SLT: 3457 case ICmpInst::ICMP_SLE: 3458 return CI->getValue().isNegative() ? 3459 ConstantInt::getFalse(CI->getContext()) : 3460 ConstantInt::getTrue(CI->getContext()); 3461 } 3462 } 3463 } 3464 } 3465 3466 if (isa<SExtInst>(LHS)) { 3467 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3468 // same type. 3469 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3470 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3471 // Compare X and Y. Note that the predicate does not change. 3472 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3473 Q, MaxRecurse-1)) 3474 return V; 3475 } 3476 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3477 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3478 if (SrcOp == RI->getOperand(0)) { 3479 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3480 return ConstantInt::getTrue(ITy); 3481 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3482 return ConstantInt::getFalse(ITy); 3483 } 3484 } 3485 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3486 // too. If not, then try to deduce the result of the comparison. 3487 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3488 // Compute the constant that would happen if we truncated to SrcTy then 3489 // reextended to DstTy. 3490 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3491 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3492 3493 // If the re-extended constant didn't change then this is effectively 3494 // also a case of comparing two sign-extended values. 3495 if (RExt == CI && MaxRecurse) 3496 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3497 return V; 3498 3499 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3500 // bits there. Use this to work out the result of the comparison. 3501 if (RExt != CI) { 3502 switch (Pred) { 3503 default: llvm_unreachable("Unknown ICmp predicate!"); 3504 case ICmpInst::ICMP_EQ: 3505 return ConstantInt::getFalse(CI->getContext()); 3506 case ICmpInst::ICMP_NE: 3507 return ConstantInt::getTrue(CI->getContext()); 3508 3509 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3510 // LHS >s RHS. 3511 case ICmpInst::ICMP_SGT: 3512 case ICmpInst::ICMP_SGE: 3513 return CI->getValue().isNegative() ? 3514 ConstantInt::getTrue(CI->getContext()) : 3515 ConstantInt::getFalse(CI->getContext()); 3516 case ICmpInst::ICMP_SLT: 3517 case ICmpInst::ICMP_SLE: 3518 return CI->getValue().isNegative() ? 3519 ConstantInt::getFalse(CI->getContext()) : 3520 ConstantInt::getTrue(CI->getContext()); 3521 3522 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3523 // LHS >u RHS. 3524 case ICmpInst::ICMP_UGT: 3525 case ICmpInst::ICMP_UGE: 3526 // Comparison is true iff the LHS <s 0. 3527 if (MaxRecurse) 3528 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3529 Constant::getNullValue(SrcTy), 3530 Q, MaxRecurse-1)) 3531 return V; 3532 break; 3533 case ICmpInst::ICMP_ULT: 3534 case ICmpInst::ICMP_ULE: 3535 // Comparison is true iff the LHS >=s 0. 3536 if (MaxRecurse) 3537 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3538 Constant::getNullValue(SrcTy), 3539 Q, MaxRecurse-1)) 3540 return V; 3541 break; 3542 } 3543 } 3544 } 3545 } 3546 } 3547 3548 // icmp eq|ne X, Y -> false|true if X != Y 3549 if (ICmpInst::isEquality(Pred) && 3550 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3551 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3552 } 3553 3554 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3555 return V; 3556 3557 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3558 return V; 3559 3560 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3561 return V; 3562 3563 // Simplify comparisons of related pointers using a powerful, recursive 3564 // GEP-walk when we have target data available.. 3565 if (LHS->getType()->isPointerTy()) 3566 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3567 Q.IIQ, LHS, RHS)) 3568 return C; 3569 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3570 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3571 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3572 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3573 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3574 Q.DL.getTypeSizeInBits(CRHS->getType())) 3575 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3576 Q.IIQ, CLHS->getPointerOperand(), 3577 CRHS->getPointerOperand())) 3578 return C; 3579 3580 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3581 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3582 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3583 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3584 (ICmpInst::isEquality(Pred) || 3585 (GLHS->isInBounds() && GRHS->isInBounds() && 3586 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3587 // The bases are equal and the indices are constant. Build a constant 3588 // expression GEP with the same indices and a null base pointer to see 3589 // what constant folding can make out of it. 3590 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3591 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3592 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3593 GLHS->getSourceElementType(), Null, IndicesLHS); 3594 3595 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3596 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3597 GLHS->getSourceElementType(), Null, IndicesRHS); 3598 Constant *NewICmp = ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3599 return ConstantFoldConstant(NewICmp, Q.DL); 3600 } 3601 } 3602 } 3603 3604 // If the comparison is with the result of a select instruction, check whether 3605 // comparing with either branch of the select always yields the same value. 3606 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3607 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3608 return V; 3609 3610 // If the comparison is with the result of a phi instruction, check whether 3611 // doing the compare with each incoming phi value yields a common result. 3612 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3613 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3614 return V; 3615 3616 return nullptr; 3617 } 3618 3619 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3620 const SimplifyQuery &Q) { 3621 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3622 } 3623 3624 /// Given operands for an FCmpInst, see if we can fold the result. 3625 /// If not, this returns null. 3626 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3627 FastMathFlags FMF, const SimplifyQuery &Q, 3628 unsigned MaxRecurse) { 3629 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3630 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3631 3632 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3633 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3634 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3635 3636 // If we have a constant, make sure it is on the RHS. 3637 std::swap(LHS, RHS); 3638 Pred = CmpInst::getSwappedPredicate(Pred); 3639 } 3640 3641 // Fold trivial predicates. 3642 Type *RetTy = GetCompareTy(LHS); 3643 if (Pred == FCmpInst::FCMP_FALSE) 3644 return getFalse(RetTy); 3645 if (Pred == FCmpInst::FCMP_TRUE) 3646 return getTrue(RetTy); 3647 3648 // Fold (un)ordered comparison if we can determine there are no NaNs. 3649 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3650 if (FMF.noNaNs() || 3651 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3652 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3653 3654 // NaN is unordered; NaN is not ordered. 3655 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3656 "Comparison must be either ordered or unordered"); 3657 if (match(RHS, m_NaN())) 3658 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3659 3660 // fcmp pred x, undef and fcmp pred undef, x 3661 // fold to true if unordered, false if ordered 3662 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3663 // Choosing NaN for the undef will always make unordered comparison succeed 3664 // and ordered comparison fail. 3665 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3666 } 3667 3668 // fcmp x,x -> true/false. Not all compares are foldable. 3669 if (LHS == RHS) { 3670 if (CmpInst::isTrueWhenEqual(Pred)) 3671 return getTrue(RetTy); 3672 if (CmpInst::isFalseWhenEqual(Pred)) 3673 return getFalse(RetTy); 3674 } 3675 3676 // Handle fcmp with constant RHS. 3677 // TODO: Use match with a specific FP value, so these work with vectors with 3678 // undef lanes. 3679 const APFloat *C; 3680 if (match(RHS, m_APFloat(C))) { 3681 // Check whether the constant is an infinity. 3682 if (C->isInfinity()) { 3683 if (C->isNegative()) { 3684 switch (Pred) { 3685 case FCmpInst::FCMP_OLT: 3686 // No value is ordered and less than negative infinity. 3687 return getFalse(RetTy); 3688 case FCmpInst::FCMP_UGE: 3689 // All values are unordered with or at least negative infinity. 3690 return getTrue(RetTy); 3691 default: 3692 break; 3693 } 3694 } else { 3695 switch (Pred) { 3696 case FCmpInst::FCMP_OGT: 3697 // No value is ordered and greater than infinity. 3698 return getFalse(RetTy); 3699 case FCmpInst::FCMP_ULE: 3700 // All values are unordered with and at most infinity. 3701 return getTrue(RetTy); 3702 default: 3703 break; 3704 } 3705 } 3706 } 3707 if (C->isNegative() && !C->isNegZero()) { 3708 assert(!C->isNaN() && "Unexpected NaN constant!"); 3709 // TODO: We can catch more cases by using a range check rather than 3710 // relying on CannotBeOrderedLessThanZero. 3711 switch (Pred) { 3712 case FCmpInst::FCMP_UGE: 3713 case FCmpInst::FCMP_UGT: 3714 case FCmpInst::FCMP_UNE: 3715 // (X >= 0) implies (X > C) when (C < 0) 3716 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3717 return getTrue(RetTy); 3718 break; 3719 case FCmpInst::FCMP_OEQ: 3720 case FCmpInst::FCMP_OLE: 3721 case FCmpInst::FCMP_OLT: 3722 // (X >= 0) implies !(X < C) when (C < 0) 3723 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3724 return getFalse(RetTy); 3725 break; 3726 default: 3727 break; 3728 } 3729 } 3730 3731 // Check comparison of [minnum/maxnum with constant] with other constant. 3732 const APFloat *C2; 3733 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 3734 *C2 < *C) || 3735 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 3736 *C2 > *C)) { 3737 bool IsMaxNum = 3738 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 3739 // The ordered relationship and minnum/maxnum guarantee that we do not 3740 // have NaN constants, so ordered/unordered preds are handled the same. 3741 switch (Pred) { 3742 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 3743 // minnum(X, LesserC) == C --> false 3744 // maxnum(X, GreaterC) == C --> false 3745 return getFalse(RetTy); 3746 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 3747 // minnum(X, LesserC) != C --> true 3748 // maxnum(X, GreaterC) != C --> true 3749 return getTrue(RetTy); 3750 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 3751 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 3752 // minnum(X, LesserC) >= C --> false 3753 // minnum(X, LesserC) > C --> false 3754 // maxnum(X, GreaterC) >= C --> true 3755 // maxnum(X, GreaterC) > C --> true 3756 return ConstantInt::get(RetTy, IsMaxNum); 3757 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 3758 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 3759 // minnum(X, LesserC) <= C --> true 3760 // minnum(X, LesserC) < C --> true 3761 // maxnum(X, GreaterC) <= C --> false 3762 // maxnum(X, GreaterC) < C --> false 3763 return ConstantInt::get(RetTy, !IsMaxNum); 3764 default: 3765 // TRUE/FALSE/ORD/UNO should be handled before this. 3766 llvm_unreachable("Unexpected fcmp predicate"); 3767 } 3768 } 3769 } 3770 3771 if (match(RHS, m_AnyZeroFP())) { 3772 switch (Pred) { 3773 case FCmpInst::FCMP_OGE: 3774 case FCmpInst::FCMP_ULT: 3775 // Positive or zero X >= 0.0 --> true 3776 // Positive or zero X < 0.0 --> false 3777 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 3778 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3779 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 3780 break; 3781 case FCmpInst::FCMP_UGE: 3782 case FCmpInst::FCMP_OLT: 3783 // Positive or zero or nan X >= 0.0 --> true 3784 // Positive or zero or nan X < 0.0 --> false 3785 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3786 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 3787 break; 3788 default: 3789 break; 3790 } 3791 } 3792 3793 // If the comparison is with the result of a select instruction, check whether 3794 // comparing with either branch of the select always yields the same value. 3795 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3796 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3797 return V; 3798 3799 // If the comparison is with the result of a phi instruction, check whether 3800 // doing the compare with each incoming phi value yields a common result. 3801 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3802 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3803 return V; 3804 3805 return nullptr; 3806 } 3807 3808 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3809 FastMathFlags FMF, const SimplifyQuery &Q) { 3810 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3811 } 3812 3813 static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3814 const SimplifyQuery &Q, 3815 bool AllowRefinement, 3816 unsigned MaxRecurse) { 3817 // Trivial replacement. 3818 if (V == Op) 3819 return RepOp; 3820 3821 // We cannot replace a constant, and shouldn't even try. 3822 if (isa<Constant>(Op)) 3823 return nullptr; 3824 3825 auto *I = dyn_cast<Instruction>(V); 3826 if (!I) 3827 return nullptr; 3828 3829 // Consider: 3830 // %cmp = icmp eq i32 %x, 2147483647 3831 // %add = add nsw i32 %x, 1 3832 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3833 // 3834 // We can't replace %sel with %add unless we strip away the flags (which will 3835 // be done in InstCombine). 3836 // TODO: This is unsound, because it only catches some forms of refinement. 3837 if (!AllowRefinement && canCreatePoison(I)) 3838 return nullptr; 3839 3840 // If this is a binary operator, try to simplify it with the replaced op. 3841 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3842 if (MaxRecurse) { 3843 if (B->getOperand(0) == Op) 3844 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3845 MaxRecurse - 1); 3846 if (B->getOperand(1) == Op) 3847 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3848 MaxRecurse - 1); 3849 } 3850 } 3851 3852 // Same for CmpInsts. 3853 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3854 if (MaxRecurse) { 3855 if (C->getOperand(0) == Op) 3856 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3857 MaxRecurse - 1); 3858 if (C->getOperand(1) == Op) 3859 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3860 MaxRecurse - 1); 3861 } 3862 } 3863 3864 // Same for GEPs. 3865 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3866 if (MaxRecurse) { 3867 SmallVector<Value *, 8> NewOps(GEP->getNumOperands()); 3868 transform(GEP->operands(), NewOps.begin(), 3869 [&](Value *V) { return V == Op ? RepOp : V; }); 3870 return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q, 3871 MaxRecurse - 1); 3872 } 3873 } 3874 3875 // TODO: We could hand off more cases to instsimplify here. 3876 3877 // If all operands are constant after substituting Op for RepOp then we can 3878 // constant fold the instruction. 3879 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3880 // Build a list of all constant operands. 3881 SmallVector<Constant *, 8> ConstOps; 3882 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3883 if (I->getOperand(i) == Op) 3884 ConstOps.push_back(CRepOp); 3885 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3886 ConstOps.push_back(COp); 3887 else 3888 break; 3889 } 3890 3891 // All operands were constants, fold it. 3892 if (ConstOps.size() == I->getNumOperands()) { 3893 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3894 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3895 ConstOps[1], Q.DL, Q.TLI); 3896 3897 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3898 if (!LI->isVolatile()) 3899 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3900 3901 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3902 } 3903 } 3904 3905 return nullptr; 3906 } 3907 3908 Value *llvm::SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3909 const SimplifyQuery &Q, 3910 bool AllowRefinement) { 3911 return ::SimplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, 3912 RecursionLimit); 3913 } 3914 3915 /// Try to simplify a select instruction when its condition operand is an 3916 /// integer comparison where one operand of the compare is a constant. 3917 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3918 const APInt *Y, bool TrueWhenUnset) { 3919 const APInt *C; 3920 3921 // (X & Y) == 0 ? X & ~Y : X --> X 3922 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3923 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3924 *Y == ~*C) 3925 return TrueWhenUnset ? FalseVal : TrueVal; 3926 3927 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3928 // (X & Y) != 0 ? X : X & ~Y --> X 3929 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3930 *Y == ~*C) 3931 return TrueWhenUnset ? FalseVal : TrueVal; 3932 3933 if (Y->isPowerOf2()) { 3934 // (X & Y) == 0 ? X | Y : X --> X | Y 3935 // (X & Y) != 0 ? X | Y : X --> X 3936 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3937 *Y == *C) 3938 return TrueWhenUnset ? TrueVal : FalseVal; 3939 3940 // (X & Y) == 0 ? X : X | Y --> X 3941 // (X & Y) != 0 ? X : X | Y --> X | Y 3942 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3943 *Y == *C) 3944 return TrueWhenUnset ? TrueVal : FalseVal; 3945 } 3946 3947 return nullptr; 3948 } 3949 3950 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3951 /// eq/ne. 3952 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 3953 ICmpInst::Predicate Pred, 3954 Value *TrueVal, Value *FalseVal) { 3955 Value *X; 3956 APInt Mask; 3957 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 3958 return nullptr; 3959 3960 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 3961 Pred == ICmpInst::ICMP_EQ); 3962 } 3963 3964 /// Try to simplify a select instruction when its condition operand is an 3965 /// integer comparison. 3966 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3967 Value *FalseVal, const SimplifyQuery &Q, 3968 unsigned MaxRecurse) { 3969 ICmpInst::Predicate Pred; 3970 Value *CmpLHS, *CmpRHS; 3971 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3972 return nullptr; 3973 3974 // Canonicalize ne to eq predicate. 3975 if (Pred == ICmpInst::ICMP_NE) { 3976 Pred = ICmpInst::ICMP_EQ; 3977 std::swap(TrueVal, FalseVal); 3978 } 3979 3980 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 3981 Value *X; 3982 const APInt *Y; 3983 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3984 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3985 /*TrueWhenUnset=*/true)) 3986 return V; 3987 3988 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 3989 Value *ShAmt; 3990 auto isFsh = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), 3991 m_Value(ShAmt)), 3992 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), 3993 m_Value(ShAmt))); 3994 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 3995 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 3996 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 3997 return X; 3998 3999 // Test for a zero-shift-guard-op around rotates. These are used to 4000 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4001 // intrinsics do not have that problem. 4002 // We do not allow this transform for the general funnel shift case because 4003 // that would not preserve the poison safety of the original code. 4004 auto isRotate = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), 4005 m_Deferred(X), 4006 m_Value(ShAmt)), 4007 m_Intrinsic<Intrinsic::fshr>(m_Value(X), 4008 m_Deferred(X), 4009 m_Value(ShAmt))); 4010 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4011 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4012 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4013 Pred == ICmpInst::ICMP_EQ) 4014 return FalseVal; 4015 } 4016 4017 // Check for other compares that behave like bit test. 4018 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 4019 TrueVal, FalseVal)) 4020 return V; 4021 4022 // If we have an equality comparison, then we know the value in one of the 4023 // arms of the select. See if substituting this value into the arm and 4024 // simplifying the result yields the same value as the other arm. 4025 if (Pred == ICmpInst::ICMP_EQ) { 4026 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, 4027 /* AllowRefinement */ false, MaxRecurse) == 4028 TrueVal || 4029 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, 4030 /* AllowRefinement */ false, MaxRecurse) == 4031 TrueVal) 4032 return FalseVal; 4033 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4034 /* AllowRefinement */ true, MaxRecurse) == 4035 FalseVal || 4036 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, 4037 /* AllowRefinement */ true, MaxRecurse) == 4038 FalseVal) 4039 return FalseVal; 4040 } 4041 4042 return nullptr; 4043 } 4044 4045 /// Try to simplify a select instruction when its condition operand is a 4046 /// floating-point comparison. 4047 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4048 const SimplifyQuery &Q) { 4049 FCmpInst::Predicate Pred; 4050 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4051 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4052 return nullptr; 4053 4054 // This transform is safe if we do not have (do not care about) -0.0 or if 4055 // at least one operand is known to not be -0.0. Otherwise, the select can 4056 // change the sign of a zero operand. 4057 bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) && 4058 Q.CxtI->hasNoSignedZeros(); 4059 const APFloat *C; 4060 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4061 (match(F, m_APFloat(C)) && C->isNonZero())) { 4062 // (T == F) ? T : F --> F 4063 // (F == T) ? T : F --> F 4064 if (Pred == FCmpInst::FCMP_OEQ) 4065 return F; 4066 4067 // (T != F) ? T : F --> T 4068 // (F != T) ? T : F --> T 4069 if (Pred == FCmpInst::FCMP_UNE) 4070 return T; 4071 } 4072 4073 return nullptr; 4074 } 4075 4076 /// Given operands for a SelectInst, see if we can fold the result. 4077 /// If not, this returns null. 4078 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4079 const SimplifyQuery &Q, unsigned MaxRecurse) { 4080 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4081 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4082 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4083 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4084 4085 // select undef, X, Y -> X or Y 4086 if (isa<UndefValue>(CondC)) 4087 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4088 4089 // TODO: Vector constants with undef elements don't simplify. 4090 4091 // select true, X, Y -> X 4092 if (CondC->isAllOnesValue()) 4093 return TrueVal; 4094 // select false, X, Y -> Y 4095 if (CondC->isNullValue()) 4096 return FalseVal; 4097 } 4098 4099 // select i1 Cond, i1 true, i1 false --> i1 Cond 4100 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4101 "Select must have bool or bool vector condition"); 4102 assert(TrueVal->getType() == FalseVal->getType() && 4103 "Select must have same types for true/false ops"); 4104 if (Cond->getType() == TrueVal->getType() && 4105 match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4106 return Cond; 4107 4108 // select ?, X, X -> X 4109 if (TrueVal == FalseVal) 4110 return TrueVal; 4111 4112 if (isa<UndefValue>(TrueVal)) // select ?, undef, X -> X 4113 return FalseVal; 4114 if (isa<UndefValue>(FalseVal)) // select ?, X, undef -> X 4115 return TrueVal; 4116 4117 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4118 Constant *TrueC, *FalseC; 4119 if (TrueVal->getType()->isVectorTy() && match(TrueVal, m_Constant(TrueC)) && 4120 match(FalseVal, m_Constant(FalseC))) { 4121 unsigned NumElts = cast<VectorType>(TrueC->getType())->getNumElements(); 4122 SmallVector<Constant *, 16> NewC; 4123 for (unsigned i = 0; i != NumElts; ++i) { 4124 // Bail out on incomplete vector constants. 4125 Constant *TEltC = TrueC->getAggregateElement(i); 4126 Constant *FEltC = FalseC->getAggregateElement(i); 4127 if (!TEltC || !FEltC) 4128 break; 4129 4130 // If the elements match (undef or not), that value is the result. If only 4131 // one element is undef, choose the defined element as the safe result. 4132 if (TEltC == FEltC) 4133 NewC.push_back(TEltC); 4134 else if (isa<UndefValue>(TEltC)) 4135 NewC.push_back(FEltC); 4136 else if (isa<UndefValue>(FEltC)) 4137 NewC.push_back(TEltC); 4138 else 4139 break; 4140 } 4141 if (NewC.size() == NumElts) 4142 return ConstantVector::get(NewC); 4143 } 4144 4145 if (Value *V = 4146 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4147 return V; 4148 4149 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4150 return V; 4151 4152 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4153 return V; 4154 4155 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4156 if (Imp) 4157 return *Imp ? TrueVal : FalseVal; 4158 4159 return nullptr; 4160 } 4161 4162 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4163 const SimplifyQuery &Q) { 4164 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4165 } 4166 4167 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4168 /// If not, this returns null. 4169 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4170 const SimplifyQuery &Q, unsigned) { 4171 // The type of the GEP pointer operand. 4172 unsigned AS = 4173 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 4174 4175 // getelementptr P -> P. 4176 if (Ops.size() == 1) 4177 return Ops[0]; 4178 4179 // Compute the (pointer) type returned by the GEP instruction. 4180 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 4181 Type *GEPTy = PointerType::get(LastType, AS); 4182 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 4183 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4184 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 4185 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4186 4187 if (isa<UndefValue>(Ops[0])) 4188 return UndefValue::get(GEPTy); 4189 4190 bool IsScalableVec = isa<ScalableVectorType>(SrcTy); 4191 4192 if (Ops.size() == 2) { 4193 // getelementptr P, 0 -> P. 4194 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 4195 return Ops[0]; 4196 4197 Type *Ty = SrcTy; 4198 if (!IsScalableVec && Ty->isSized()) { 4199 Value *P; 4200 uint64_t C; 4201 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4202 // getelementptr P, N -> P if P points to a type of zero size. 4203 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 4204 return Ops[0]; 4205 4206 // The following transforms are only safe if the ptrtoint cast 4207 // doesn't truncate the pointers. 4208 if (Ops[1]->getType()->getScalarSizeInBits() == 4209 Q.DL.getPointerSizeInBits(AS)) { 4210 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 4211 if (match(P, m_Zero())) 4212 return Constant::getNullValue(GEPTy); 4213 Value *Temp; 4214 if (match(P, m_PtrToInt(m_Value(Temp)))) 4215 if (Temp->getType() == GEPTy) 4216 return Temp; 4217 return nullptr; 4218 }; 4219 4220 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4221 if (TyAllocSize == 1 && 4222 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 4223 if (Value *R = PtrToIntOrZero(P)) 4224 return R; 4225 4226 // getelementptr V, (ashr (sub P, V), C) -> Q 4227 // if P points to a type of size 1 << C. 4228 if (match(Ops[1], 4229 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 4230 m_ConstantInt(C))) && 4231 TyAllocSize == 1ULL << C) 4232 if (Value *R = PtrToIntOrZero(P)) 4233 return R; 4234 4235 // getelementptr V, (sdiv (sub P, V), C) -> Q 4236 // if P points to a type of size C. 4237 if (match(Ops[1], 4238 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 4239 m_SpecificInt(TyAllocSize)))) 4240 if (Value *R = PtrToIntOrZero(P)) 4241 return R; 4242 } 4243 } 4244 } 4245 4246 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 4247 all_of(Ops.slice(1).drop_back(1), 4248 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4249 unsigned IdxWidth = 4250 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 4251 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 4252 APInt BasePtrOffset(IdxWidth, 0); 4253 Value *StrippedBasePtr = 4254 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 4255 BasePtrOffset); 4256 4257 // gep (gep V, C), (sub 0, V) -> C 4258 if (match(Ops.back(), 4259 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 4260 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4261 return ConstantExpr::getIntToPtr(CI, GEPTy); 4262 } 4263 // gep (gep V, C), (xor V, -1) -> C-1 4264 if (match(Ops.back(), 4265 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 4266 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4267 return ConstantExpr::getIntToPtr(CI, GEPTy); 4268 } 4269 } 4270 } 4271 4272 // Check to see if this is constant foldable. 4273 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 4274 return nullptr; 4275 4276 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 4277 Ops.slice(1)); 4278 return ConstantFoldConstant(CE, Q.DL); 4279 } 4280 4281 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4282 const SimplifyQuery &Q) { 4283 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 4284 } 4285 4286 /// Given operands for an InsertValueInst, see if we can fold the result. 4287 /// If not, this returns null. 4288 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 4289 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 4290 unsigned) { 4291 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4292 if (Constant *CVal = dyn_cast<Constant>(Val)) 4293 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4294 4295 // insertvalue x, undef, n -> x 4296 if (match(Val, m_Undef())) 4297 return Agg; 4298 4299 // insertvalue x, (extractvalue y, n), n 4300 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4301 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4302 EV->getIndices() == Idxs) { 4303 // insertvalue undef, (extractvalue y, n), n -> y 4304 if (match(Agg, m_Undef())) 4305 return EV->getAggregateOperand(); 4306 4307 // insertvalue y, (extractvalue y, n), n -> y 4308 if (Agg == EV->getAggregateOperand()) 4309 return Agg; 4310 } 4311 4312 return nullptr; 4313 } 4314 4315 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4316 ArrayRef<unsigned> Idxs, 4317 const SimplifyQuery &Q) { 4318 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4319 } 4320 4321 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4322 const SimplifyQuery &Q) { 4323 // Try to constant fold. 4324 auto *VecC = dyn_cast<Constant>(Vec); 4325 auto *ValC = dyn_cast<Constant>(Val); 4326 auto *IdxC = dyn_cast<Constant>(Idx); 4327 if (VecC && ValC && IdxC) 4328 return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC); 4329 4330 // For fixed-length vector, fold into undef if index is out of bounds. 4331 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4332 if (isa<FixedVectorType>(Vec->getType()) && 4333 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 4334 return UndefValue::get(Vec->getType()); 4335 } 4336 4337 // If index is undef, it might be out of bounds (see above case) 4338 if (isa<UndefValue>(Idx)) 4339 return UndefValue::get(Vec->getType()); 4340 4341 // If the scalar is undef, and there is no risk of propagating poison from the 4342 // vector value, simplify to the vector value. 4343 if (isa<UndefValue>(Val) && isGuaranteedNotToBeUndefOrPoison(Vec)) 4344 return Vec; 4345 4346 // If we are extracting a value from a vector, then inserting it into the same 4347 // place, that's the input vector: 4348 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4349 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 4350 return Vec; 4351 4352 return nullptr; 4353 } 4354 4355 /// Given operands for an ExtractValueInst, see if we can fold the result. 4356 /// If not, this returns null. 4357 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4358 const SimplifyQuery &, unsigned) { 4359 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4360 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4361 4362 // extractvalue x, (insertvalue y, elt, n), n -> elt 4363 unsigned NumIdxs = Idxs.size(); 4364 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4365 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4366 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4367 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4368 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4369 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4370 Idxs.slice(0, NumCommonIdxs)) { 4371 if (NumIdxs == NumInsertValueIdxs) 4372 return IVI->getInsertedValueOperand(); 4373 break; 4374 } 4375 } 4376 4377 return nullptr; 4378 } 4379 4380 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4381 const SimplifyQuery &Q) { 4382 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4383 } 4384 4385 /// Given operands for an ExtractElementInst, see if we can fold the result. 4386 /// If not, this returns null. 4387 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &, 4388 unsigned) { 4389 auto *VecVTy = cast<VectorType>(Vec->getType()); 4390 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4391 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4392 return ConstantFoldExtractElementInstruction(CVec, CIdx); 4393 4394 // The index is not relevant if our vector is a splat. 4395 if (auto *Splat = CVec->getSplatValue()) 4396 return Splat; 4397 4398 if (isa<UndefValue>(Vec)) 4399 return UndefValue::get(VecVTy->getElementType()); 4400 } 4401 4402 // If extracting a specified index from the vector, see if we can recursively 4403 // find a previously computed scalar that was inserted into the vector. 4404 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4405 // For fixed-length vector, fold into undef if index is out of bounds. 4406 if (isa<FixedVectorType>(VecVTy) && 4407 IdxC->getValue().uge(VecVTy->getNumElements())) 4408 return UndefValue::get(VecVTy->getElementType()); 4409 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4410 return Elt; 4411 } 4412 4413 // An undef extract index can be arbitrarily chosen to be an out-of-range 4414 // index value, which would result in the instruction being undef. 4415 if (isa<UndefValue>(Idx)) 4416 return UndefValue::get(VecVTy->getElementType()); 4417 4418 return nullptr; 4419 } 4420 4421 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4422 const SimplifyQuery &Q) { 4423 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4424 } 4425 4426 /// See if we can fold the given phi. If not, returns null. 4427 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 4428 // If all of the PHI's incoming values are the same then replace the PHI node 4429 // with the common value. 4430 Value *CommonValue = nullptr; 4431 bool HasUndefInput = false; 4432 for (Value *Incoming : PN->incoming_values()) { 4433 // If the incoming value is the phi node itself, it can safely be skipped. 4434 if (Incoming == PN) continue; 4435 if (isa<UndefValue>(Incoming)) { 4436 // Remember that we saw an undef value, but otherwise ignore them. 4437 HasUndefInput = true; 4438 continue; 4439 } 4440 if (CommonValue && Incoming != CommonValue) 4441 return nullptr; // Not the same, bail out. 4442 CommonValue = Incoming; 4443 } 4444 4445 // If CommonValue is null then all of the incoming values were either undef or 4446 // equal to the phi node itself. 4447 if (!CommonValue) 4448 return UndefValue::get(PN->getType()); 4449 4450 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4451 // instruction, we cannot return X as the result of the PHI node unless it 4452 // dominates the PHI block. 4453 if (HasUndefInput) 4454 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4455 4456 return CommonValue; 4457 } 4458 4459 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4460 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4461 if (auto *C = dyn_cast<Constant>(Op)) 4462 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4463 4464 if (auto *CI = dyn_cast<CastInst>(Op)) { 4465 auto *Src = CI->getOperand(0); 4466 Type *SrcTy = Src->getType(); 4467 Type *MidTy = CI->getType(); 4468 Type *DstTy = Ty; 4469 if (Src->getType() == Ty) { 4470 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4471 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4472 Type *SrcIntPtrTy = 4473 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4474 Type *MidIntPtrTy = 4475 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4476 Type *DstIntPtrTy = 4477 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4478 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4479 SrcIntPtrTy, MidIntPtrTy, 4480 DstIntPtrTy) == Instruction::BitCast) 4481 return Src; 4482 } 4483 } 4484 4485 // bitcast x -> x 4486 if (CastOpc == Instruction::BitCast) 4487 if (Op->getType() == Ty) 4488 return Op; 4489 4490 return nullptr; 4491 } 4492 4493 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4494 const SimplifyQuery &Q) { 4495 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4496 } 4497 4498 /// For the given destination element of a shuffle, peek through shuffles to 4499 /// match a root vector source operand that contains that element in the same 4500 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4501 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4502 int MaskVal, Value *RootVec, 4503 unsigned MaxRecurse) { 4504 if (!MaxRecurse--) 4505 return nullptr; 4506 4507 // Bail out if any mask value is undefined. That kind of shuffle may be 4508 // simplified further based on demanded bits or other folds. 4509 if (MaskVal == -1) 4510 return nullptr; 4511 4512 // The mask value chooses which source operand we need to look at next. 4513 int InVecNumElts = cast<VectorType>(Op0->getType())->getNumElements(); 4514 int RootElt = MaskVal; 4515 Value *SourceOp = Op0; 4516 if (MaskVal >= InVecNumElts) { 4517 RootElt = MaskVal - InVecNumElts; 4518 SourceOp = Op1; 4519 } 4520 4521 // If the source operand is a shuffle itself, look through it to find the 4522 // matching root vector. 4523 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4524 return foldIdentityShuffles( 4525 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4526 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4527 } 4528 4529 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4530 // size? 4531 4532 // The source operand is not a shuffle. Initialize the root vector value for 4533 // this shuffle if that has not been done yet. 4534 if (!RootVec) 4535 RootVec = SourceOp; 4536 4537 // Give up as soon as a source operand does not match the existing root value. 4538 if (RootVec != SourceOp) 4539 return nullptr; 4540 4541 // The element must be coming from the same lane in the source vector 4542 // (although it may have crossed lanes in intermediate shuffles). 4543 if (RootElt != DestElt) 4544 return nullptr; 4545 4546 return RootVec; 4547 } 4548 4549 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4550 ArrayRef<int> Mask, Type *RetTy, 4551 const SimplifyQuery &Q, 4552 unsigned MaxRecurse) { 4553 if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) 4554 return UndefValue::get(RetTy); 4555 4556 auto *InVecTy = cast<VectorType>(Op0->getType()); 4557 unsigned MaskNumElts = Mask.size(); 4558 ElementCount InVecEltCount = InVecTy->getElementCount(); 4559 4560 bool Scalable = InVecEltCount.Scalable; 4561 4562 SmallVector<int, 32> Indices; 4563 Indices.assign(Mask.begin(), Mask.end()); 4564 4565 // Canonicalization: If mask does not select elements from an input vector, 4566 // replace that input vector with undef. 4567 if (!Scalable) { 4568 bool MaskSelects0 = false, MaskSelects1 = false; 4569 unsigned InVecNumElts = InVecEltCount.Min; 4570 for (unsigned i = 0; i != MaskNumElts; ++i) { 4571 if (Indices[i] == -1) 4572 continue; 4573 if ((unsigned)Indices[i] < InVecNumElts) 4574 MaskSelects0 = true; 4575 else 4576 MaskSelects1 = true; 4577 } 4578 if (!MaskSelects0) 4579 Op0 = UndefValue::get(InVecTy); 4580 if (!MaskSelects1) 4581 Op1 = UndefValue::get(InVecTy); 4582 } 4583 4584 auto *Op0Const = dyn_cast<Constant>(Op0); 4585 auto *Op1Const = dyn_cast<Constant>(Op1); 4586 4587 // If all operands are constant, constant fold the shuffle. This 4588 // transformation depends on the value of the mask which is not known at 4589 // compile time for scalable vectors 4590 if (!Scalable && Op0Const && Op1Const) 4591 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); 4592 4593 // Canonicalization: if only one input vector is constant, it shall be the 4594 // second one. This transformation depends on the value of the mask which 4595 // is not known at compile time for scalable vectors 4596 if (!Scalable && Op0Const && !Op1Const) { 4597 std::swap(Op0, Op1); 4598 ShuffleVectorInst::commuteShuffleMask(Indices, InVecEltCount.Min); 4599 } 4600 4601 // A splat of an inserted scalar constant becomes a vector constant: 4602 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 4603 // NOTE: We may have commuted above, so analyze the updated Indices, not the 4604 // original mask constant. 4605 // NOTE: This transformation depends on the value of the mask which is not 4606 // known at compile time for scalable vectors 4607 Constant *C; 4608 ConstantInt *IndexC; 4609 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 4610 m_ConstantInt(IndexC)))) { 4611 // Match a splat shuffle mask of the insert index allowing undef elements. 4612 int InsertIndex = IndexC->getZExtValue(); 4613 if (all_of(Indices, [InsertIndex](int MaskElt) { 4614 return MaskElt == InsertIndex || MaskElt == -1; 4615 })) { 4616 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 4617 4618 // Shuffle mask undefs become undefined constant result elements. 4619 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 4620 for (unsigned i = 0; i != MaskNumElts; ++i) 4621 if (Indices[i] == -1) 4622 VecC[i] = UndefValue::get(C->getType()); 4623 return ConstantVector::get(VecC); 4624 } 4625 } 4626 4627 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4628 // value type is same as the input vectors' type. 4629 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4630 if (isa<UndefValue>(Op1) && RetTy == InVecTy && 4631 is_splat(OpShuf->getShuffleMask())) 4632 return Op0; 4633 4634 // All remaining transformation depend on the value of the mask, which is 4635 // not known at compile time for scalable vectors. 4636 if (Scalable) 4637 return nullptr; 4638 4639 // Don't fold a shuffle with undef mask elements. This may get folded in a 4640 // better way using demanded bits or other analysis. 4641 // TODO: Should we allow this? 4642 if (find(Indices, -1) != Indices.end()) 4643 return nullptr; 4644 4645 // Check if every element of this shuffle can be mapped back to the 4646 // corresponding element of a single root vector. If so, we don't need this 4647 // shuffle. This handles simple identity shuffles as well as chains of 4648 // shuffles that may widen/narrow and/or move elements across lanes and back. 4649 Value *RootVec = nullptr; 4650 for (unsigned i = 0; i != MaskNumElts; ++i) { 4651 // Note that recursion is limited for each vector element, so if any element 4652 // exceeds the limit, this will fail to simplify. 4653 RootVec = 4654 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4655 4656 // We can't replace a widening/narrowing shuffle with one of its operands. 4657 if (!RootVec || RootVec->getType() != RetTy) 4658 return nullptr; 4659 } 4660 return RootVec; 4661 } 4662 4663 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4664 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4665 ArrayRef<int> Mask, Type *RetTy, 4666 const SimplifyQuery &Q) { 4667 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4668 } 4669 4670 static Constant *foldConstant(Instruction::UnaryOps Opcode, 4671 Value *&Op, const SimplifyQuery &Q) { 4672 if (auto *C = dyn_cast<Constant>(Op)) 4673 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 4674 return nullptr; 4675 } 4676 4677 /// Given the operand for an FNeg, see if we can fold the result. If not, this 4678 /// returns null. 4679 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 4680 const SimplifyQuery &Q, unsigned MaxRecurse) { 4681 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 4682 return C; 4683 4684 Value *X; 4685 // fneg (fneg X) ==> X 4686 if (match(Op, m_FNeg(m_Value(X)))) 4687 return X; 4688 4689 return nullptr; 4690 } 4691 4692 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 4693 const SimplifyQuery &Q) { 4694 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 4695 } 4696 4697 static Constant *propagateNaN(Constant *In) { 4698 // If the input is a vector with undef elements, just return a default NaN. 4699 if (!In->isNaN()) 4700 return ConstantFP::getNaN(In->getType()); 4701 4702 // Propagate the existing NaN constant when possible. 4703 // TODO: Should we quiet a signaling NaN? 4704 return In; 4705 } 4706 4707 /// Perform folds that are common to any floating-point operation. This implies 4708 /// transforms based on undef/NaN because the operation itself makes no 4709 /// difference to the result. 4710 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, 4711 FastMathFlags FMF = FastMathFlags()) { 4712 for (Value *V : Ops) { 4713 bool IsNan = match(V, m_NaN()); 4714 bool IsInf = match(V, m_Inf()); 4715 bool IsUndef = match(V, m_Undef()); 4716 4717 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 4718 // (an undef operand can be chosen to be Nan/Inf), then the result of 4719 // this operation is poison. That result can be relaxed to undef. 4720 if (FMF.noNaNs() && (IsNan || IsUndef)) 4721 return UndefValue::get(V->getType()); 4722 if (FMF.noInfs() && (IsInf || IsUndef)) 4723 return UndefValue::get(V->getType()); 4724 4725 if (IsUndef || IsNan) 4726 return propagateNaN(cast<Constant>(V)); 4727 } 4728 return nullptr; 4729 } 4730 4731 /// Given operands for an FAdd, see if we can fold the result. If not, this 4732 /// returns null. 4733 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4734 const SimplifyQuery &Q, unsigned MaxRecurse) { 4735 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4736 return C; 4737 4738 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF)) 4739 return C; 4740 4741 // fadd X, -0 ==> X 4742 if (match(Op1, m_NegZeroFP())) 4743 return Op0; 4744 4745 // fadd X, 0 ==> X, when we know X is not -0 4746 if (match(Op1, m_PosZeroFP()) && 4747 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4748 return Op0; 4749 4750 // With nnan: -X + X --> 0.0 (and commuted variant) 4751 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 4752 // Negative zeros are allowed because we always end up with positive zero: 4753 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4754 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4755 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 4756 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 4757 if (FMF.noNaNs()) { 4758 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 4759 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 4760 return ConstantFP::getNullValue(Op0->getType()); 4761 4762 if (match(Op0, m_FNeg(m_Specific(Op1))) || 4763 match(Op1, m_FNeg(m_Specific(Op0)))) 4764 return ConstantFP::getNullValue(Op0->getType()); 4765 } 4766 4767 // (X - Y) + Y --> X 4768 // Y + (X - Y) --> X 4769 Value *X; 4770 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4771 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 4772 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 4773 return X; 4774 4775 return nullptr; 4776 } 4777 4778 /// Given operands for an FSub, see if we can fold the result. If not, this 4779 /// returns null. 4780 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4781 const SimplifyQuery &Q, unsigned MaxRecurse) { 4782 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4783 return C; 4784 4785 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF)) 4786 return C; 4787 4788 // fsub X, +0 ==> X 4789 if (match(Op1, m_PosZeroFP())) 4790 return Op0; 4791 4792 // fsub X, -0 ==> X, when we know X is not -0 4793 if (match(Op1, m_NegZeroFP()) && 4794 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4795 return Op0; 4796 4797 // fsub -0.0, (fsub -0.0, X) ==> X 4798 // fsub -0.0, (fneg X) ==> X 4799 Value *X; 4800 if (match(Op0, m_NegZeroFP()) && 4801 match(Op1, m_FNeg(m_Value(X)))) 4802 return X; 4803 4804 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4805 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 4806 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 4807 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 4808 match(Op1, m_FNeg(m_Value(X))))) 4809 return X; 4810 4811 // fsub nnan x, x ==> 0.0 4812 if (FMF.noNaNs() && Op0 == Op1) 4813 return Constant::getNullValue(Op0->getType()); 4814 4815 // Y - (Y - X) --> X 4816 // (X + Y) - Y --> X 4817 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4818 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 4819 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 4820 return X; 4821 4822 return nullptr; 4823 } 4824 4825 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 4826 const SimplifyQuery &Q, unsigned MaxRecurse) { 4827 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF)) 4828 return C; 4829 4830 // fmul X, 1.0 ==> X 4831 if (match(Op1, m_FPOne())) 4832 return Op0; 4833 4834 // fmul 1.0, X ==> X 4835 if (match(Op0, m_FPOne())) 4836 return Op1; 4837 4838 // fmul nnan nsz X, 0 ==> 0 4839 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 4840 return ConstantFP::getNullValue(Op0->getType()); 4841 4842 // fmul nnan nsz 0, X ==> 0 4843 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4844 return ConstantFP::getNullValue(Op1->getType()); 4845 4846 // sqrt(X) * sqrt(X) --> X, if we can: 4847 // 1. Remove the intermediate rounding (reassociate). 4848 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 4849 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 4850 Value *X; 4851 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 4852 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 4853 return X; 4854 4855 return nullptr; 4856 } 4857 4858 /// Given the operands for an FMul, see if we can fold the result 4859 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4860 const SimplifyQuery &Q, unsigned MaxRecurse) { 4861 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 4862 return C; 4863 4864 // Now apply simplifications that do not require rounding. 4865 return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse); 4866 } 4867 4868 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4869 const SimplifyQuery &Q) { 4870 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 4871 } 4872 4873 4874 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4875 const SimplifyQuery &Q) { 4876 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 4877 } 4878 4879 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4880 const SimplifyQuery &Q) { 4881 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 4882 } 4883 4884 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 4885 const SimplifyQuery &Q) { 4886 return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit); 4887 } 4888 4889 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4890 const SimplifyQuery &Q, unsigned) { 4891 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 4892 return C; 4893 4894 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF)) 4895 return C; 4896 4897 // X / 1.0 -> X 4898 if (match(Op1, m_FPOne())) 4899 return Op0; 4900 4901 // 0 / X -> 0 4902 // Requires that NaNs are off (X could be zero) and signed zeroes are 4903 // ignored (X could be positive or negative, so the output sign is unknown). 4904 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4905 return ConstantFP::getNullValue(Op0->getType()); 4906 4907 if (FMF.noNaNs()) { 4908 // X / X -> 1.0 is legal when NaNs are ignored. 4909 // We can ignore infinities because INF/INF is NaN. 4910 if (Op0 == Op1) 4911 return ConstantFP::get(Op0->getType(), 1.0); 4912 4913 // (X * Y) / Y --> X if we can reassociate to the above form. 4914 Value *X; 4915 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 4916 return X; 4917 4918 // -X / X -> -1.0 and 4919 // X / -X -> -1.0 are legal when NaNs are ignored. 4920 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 4921 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 4922 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 4923 return ConstantFP::get(Op0->getType(), -1.0); 4924 } 4925 4926 return nullptr; 4927 } 4928 4929 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4930 const SimplifyQuery &Q) { 4931 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 4932 } 4933 4934 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4935 const SimplifyQuery &Q, unsigned) { 4936 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 4937 return C; 4938 4939 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF)) 4940 return C; 4941 4942 // Unlike fdiv, the result of frem always matches the sign of the dividend. 4943 // The constant match may include undef elements in a vector, so return a full 4944 // zero constant as the result. 4945 if (FMF.noNaNs()) { 4946 // +0 % X -> 0 4947 if (match(Op0, m_PosZeroFP())) 4948 return ConstantFP::getNullValue(Op0->getType()); 4949 // -0 % X -> -0 4950 if (match(Op0, m_NegZeroFP())) 4951 return ConstantFP::getNegativeZero(Op0->getType()); 4952 } 4953 4954 return nullptr; 4955 } 4956 4957 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4958 const SimplifyQuery &Q) { 4959 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 4960 } 4961 4962 //=== Helper functions for higher up the class hierarchy. 4963 4964 /// Given the operand for a UnaryOperator, see if we can fold the result. 4965 /// If not, this returns null. 4966 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 4967 unsigned MaxRecurse) { 4968 switch (Opcode) { 4969 case Instruction::FNeg: 4970 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 4971 default: 4972 llvm_unreachable("Unexpected opcode"); 4973 } 4974 } 4975 4976 /// Given the operand for a UnaryOperator, see if we can fold the result. 4977 /// If not, this returns null. 4978 /// Try to use FastMathFlags when folding the result. 4979 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 4980 const FastMathFlags &FMF, 4981 const SimplifyQuery &Q, unsigned MaxRecurse) { 4982 switch (Opcode) { 4983 case Instruction::FNeg: 4984 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 4985 default: 4986 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 4987 } 4988 } 4989 4990 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 4991 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 4992 } 4993 4994 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 4995 const SimplifyQuery &Q) { 4996 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 4997 } 4998 4999 /// Given operands for a BinaryOperator, see if we can fold the result. 5000 /// If not, this returns null. 5001 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5002 const SimplifyQuery &Q, unsigned MaxRecurse) { 5003 switch (Opcode) { 5004 case Instruction::Add: 5005 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 5006 case Instruction::Sub: 5007 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 5008 case Instruction::Mul: 5009 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 5010 case Instruction::SDiv: 5011 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 5012 case Instruction::UDiv: 5013 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 5014 case Instruction::SRem: 5015 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 5016 case Instruction::URem: 5017 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 5018 case Instruction::Shl: 5019 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 5020 case Instruction::LShr: 5021 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 5022 case Instruction::AShr: 5023 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 5024 case Instruction::And: 5025 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 5026 case Instruction::Or: 5027 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 5028 case Instruction::Xor: 5029 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 5030 case Instruction::FAdd: 5031 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5032 case Instruction::FSub: 5033 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5034 case Instruction::FMul: 5035 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5036 case Instruction::FDiv: 5037 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5038 case Instruction::FRem: 5039 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5040 default: 5041 llvm_unreachable("Unexpected opcode"); 5042 } 5043 } 5044 5045 /// Given operands for a BinaryOperator, see if we can fold the result. 5046 /// If not, this returns null. 5047 /// Try to use FastMathFlags when folding the result. 5048 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5049 const FastMathFlags &FMF, const SimplifyQuery &Q, 5050 unsigned MaxRecurse) { 5051 switch (Opcode) { 5052 case Instruction::FAdd: 5053 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 5054 case Instruction::FSub: 5055 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 5056 case Instruction::FMul: 5057 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 5058 case Instruction::FDiv: 5059 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 5060 default: 5061 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 5062 } 5063 } 5064 5065 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5066 const SimplifyQuery &Q) { 5067 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 5068 } 5069 5070 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5071 FastMathFlags FMF, const SimplifyQuery &Q) { 5072 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 5073 } 5074 5075 /// Given operands for a CmpInst, see if we can fold the result. 5076 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5077 const SimplifyQuery &Q, unsigned MaxRecurse) { 5078 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 5079 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 5080 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5081 } 5082 5083 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5084 const SimplifyQuery &Q) { 5085 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 5086 } 5087 5088 static bool IsIdempotent(Intrinsic::ID ID) { 5089 switch (ID) { 5090 default: return false; 5091 5092 // Unary idempotent: f(f(x)) = f(x) 5093 case Intrinsic::fabs: 5094 case Intrinsic::floor: 5095 case Intrinsic::ceil: 5096 case Intrinsic::trunc: 5097 case Intrinsic::rint: 5098 case Intrinsic::nearbyint: 5099 case Intrinsic::round: 5100 case Intrinsic::roundeven: 5101 case Intrinsic::canonicalize: 5102 return true; 5103 } 5104 } 5105 5106 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 5107 const DataLayout &DL) { 5108 GlobalValue *PtrSym; 5109 APInt PtrOffset; 5110 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 5111 return nullptr; 5112 5113 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 5114 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 5115 Type *Int32PtrTy = Int32Ty->getPointerTo(); 5116 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 5117 5118 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 5119 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 5120 return nullptr; 5121 5122 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 5123 if (OffsetInt % 4 != 0) 5124 return nullptr; 5125 5126 Constant *C = ConstantExpr::getGetElementPtr( 5127 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 5128 ConstantInt::get(Int64Ty, OffsetInt / 4)); 5129 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 5130 if (!Loaded) 5131 return nullptr; 5132 5133 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 5134 if (!LoadedCE) 5135 return nullptr; 5136 5137 if (LoadedCE->getOpcode() == Instruction::Trunc) { 5138 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5139 if (!LoadedCE) 5140 return nullptr; 5141 } 5142 5143 if (LoadedCE->getOpcode() != Instruction::Sub) 5144 return nullptr; 5145 5146 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5147 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 5148 return nullptr; 5149 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 5150 5151 Constant *LoadedRHS = LoadedCE->getOperand(1); 5152 GlobalValue *LoadedRHSSym; 5153 APInt LoadedRHSOffset; 5154 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 5155 DL) || 5156 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 5157 return nullptr; 5158 5159 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 5160 } 5161 5162 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 5163 const SimplifyQuery &Q) { 5164 // Idempotent functions return the same result when called repeatedly. 5165 Intrinsic::ID IID = F->getIntrinsicID(); 5166 if (IsIdempotent(IID)) 5167 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 5168 if (II->getIntrinsicID() == IID) 5169 return II; 5170 5171 Value *X; 5172 switch (IID) { 5173 case Intrinsic::fabs: 5174 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 5175 break; 5176 case Intrinsic::bswap: 5177 // bswap(bswap(x)) -> x 5178 if (match(Op0, m_BSwap(m_Value(X)))) return X; 5179 break; 5180 case Intrinsic::bitreverse: 5181 // bitreverse(bitreverse(x)) -> x 5182 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 5183 break; 5184 case Intrinsic::exp: 5185 // exp(log(x)) -> x 5186 if (Q.CxtI->hasAllowReassoc() && 5187 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 5188 break; 5189 case Intrinsic::exp2: 5190 // exp2(log2(x)) -> x 5191 if (Q.CxtI->hasAllowReassoc() && 5192 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 5193 break; 5194 case Intrinsic::log: 5195 // log(exp(x)) -> x 5196 if (Q.CxtI->hasAllowReassoc() && 5197 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 5198 break; 5199 case Intrinsic::log2: 5200 // log2(exp2(x)) -> x 5201 if (Q.CxtI->hasAllowReassoc() && 5202 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 5203 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 5204 m_Value(X))))) return X; 5205 break; 5206 case Intrinsic::log10: 5207 // log10(pow(10.0, x)) -> x 5208 if (Q.CxtI->hasAllowReassoc() && 5209 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 5210 m_Value(X)))) return X; 5211 break; 5212 case Intrinsic::floor: 5213 case Intrinsic::trunc: 5214 case Intrinsic::ceil: 5215 case Intrinsic::round: 5216 case Intrinsic::roundeven: 5217 case Intrinsic::nearbyint: 5218 case Intrinsic::rint: { 5219 // floor (sitofp x) -> sitofp x 5220 // floor (uitofp x) -> uitofp x 5221 // 5222 // Converting from int always results in a finite integral number or 5223 // infinity. For either of those inputs, these rounding functions always 5224 // return the same value, so the rounding can be eliminated. 5225 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 5226 return Op0; 5227 break; 5228 } 5229 default: 5230 break; 5231 } 5232 5233 return nullptr; 5234 } 5235 5236 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 5237 const SimplifyQuery &Q) { 5238 Intrinsic::ID IID = F->getIntrinsicID(); 5239 Type *ReturnType = F->getReturnType(); 5240 switch (IID) { 5241 case Intrinsic::usub_with_overflow: 5242 case Intrinsic::ssub_with_overflow: 5243 // X - X -> { 0, false } 5244 if (Op0 == Op1) 5245 return Constant::getNullValue(ReturnType); 5246 LLVM_FALLTHROUGH; 5247 case Intrinsic::uadd_with_overflow: 5248 case Intrinsic::sadd_with_overflow: 5249 // X - undef -> { undef, false } 5250 // undef - X -> { undef, false } 5251 // X + undef -> { undef, false } 5252 // undef + x -> { undef, false } 5253 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) { 5254 return ConstantStruct::get( 5255 cast<StructType>(ReturnType), 5256 {UndefValue::get(ReturnType->getStructElementType(0)), 5257 Constant::getNullValue(ReturnType->getStructElementType(1))}); 5258 } 5259 break; 5260 case Intrinsic::umul_with_overflow: 5261 case Intrinsic::smul_with_overflow: 5262 // 0 * X -> { 0, false } 5263 // X * 0 -> { 0, false } 5264 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 5265 return Constant::getNullValue(ReturnType); 5266 // undef * X -> { 0, false } 5267 // X * undef -> { 0, false } 5268 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 5269 return Constant::getNullValue(ReturnType); 5270 break; 5271 case Intrinsic::uadd_sat: 5272 // sat(MAX + X) -> MAX 5273 // sat(X + MAX) -> MAX 5274 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 5275 return Constant::getAllOnesValue(ReturnType); 5276 LLVM_FALLTHROUGH; 5277 case Intrinsic::sadd_sat: 5278 // sat(X + undef) -> -1 5279 // sat(undef + X) -> -1 5280 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5281 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5282 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 5283 return Constant::getAllOnesValue(ReturnType); 5284 5285 // X + 0 -> X 5286 if (match(Op1, m_Zero())) 5287 return Op0; 5288 // 0 + X -> X 5289 if (match(Op0, m_Zero())) 5290 return Op1; 5291 break; 5292 case Intrinsic::usub_sat: 5293 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5294 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5295 return Constant::getNullValue(ReturnType); 5296 LLVM_FALLTHROUGH; 5297 case Intrinsic::ssub_sat: 5298 // X - X -> 0, X - undef -> 0, undef - X -> 0 5299 if (Op0 == Op1 || match(Op0, m_Undef()) || match(Op1, m_Undef())) 5300 return Constant::getNullValue(ReturnType); 5301 // X - 0 -> X 5302 if (match(Op1, m_Zero())) 5303 return Op0; 5304 break; 5305 case Intrinsic::load_relative: 5306 if (auto *C0 = dyn_cast<Constant>(Op0)) 5307 if (auto *C1 = dyn_cast<Constant>(Op1)) 5308 return SimplifyRelativeLoad(C0, C1, Q.DL); 5309 break; 5310 case Intrinsic::powi: 5311 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5312 // powi(x, 0) -> 1.0 5313 if (Power->isZero()) 5314 return ConstantFP::get(Op0->getType(), 1.0); 5315 // powi(x, 1) -> x 5316 if (Power->isOne()) 5317 return Op0; 5318 } 5319 break; 5320 case Intrinsic::copysign: 5321 // copysign X, X --> X 5322 if (Op0 == Op1) 5323 return Op0; 5324 // copysign -X, X --> X 5325 // copysign X, -X --> -X 5326 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5327 match(Op1, m_FNeg(m_Specific(Op0)))) 5328 return Op1; 5329 break; 5330 case Intrinsic::maxnum: 5331 case Intrinsic::minnum: 5332 case Intrinsic::maximum: 5333 case Intrinsic::minimum: { 5334 // If the arguments are the same, this is a no-op. 5335 if (Op0 == Op1) return Op0; 5336 5337 // If one argument is undef, return the other argument. 5338 if (match(Op0, m_Undef())) 5339 return Op1; 5340 if (match(Op1, m_Undef())) 5341 return Op0; 5342 5343 // If one argument is NaN, return other or NaN appropriately. 5344 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5345 if (match(Op0, m_NaN())) 5346 return PropagateNaN ? Op0 : Op1; 5347 if (match(Op1, m_NaN())) 5348 return PropagateNaN ? Op1 : Op0; 5349 5350 // Min/max of the same operation with common operand: 5351 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5352 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5353 if (M0->getIntrinsicID() == IID && 5354 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5355 return Op0; 5356 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5357 if (M1->getIntrinsicID() == IID && 5358 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5359 return Op1; 5360 5361 // min(X, -Inf) --> -Inf (and commuted variant) 5362 // max(X, +Inf) --> +Inf (and commuted variant) 5363 bool UseNegInf = IID == Intrinsic::minnum || IID == Intrinsic::minimum; 5364 const APFloat *C; 5365 if ((match(Op0, m_APFloat(C)) && C->isInfinity() && 5366 C->isNegative() == UseNegInf) || 5367 (match(Op1, m_APFloat(C)) && C->isInfinity() && 5368 C->isNegative() == UseNegInf)) 5369 return ConstantFP::getInfinity(ReturnType, UseNegInf); 5370 5371 // TODO: minnum(nnan x, inf) -> x 5372 // TODO: minnum(nnan ninf x, flt_max) -> x 5373 // TODO: maxnum(nnan x, -inf) -> x 5374 // TODO: maxnum(nnan ninf x, -flt_max) -> x 5375 break; 5376 } 5377 default: 5378 break; 5379 } 5380 5381 return nullptr; 5382 } 5383 5384 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 5385 5386 // Intrinsics with no operands have some kind of side effect. Don't simplify. 5387 unsigned NumOperands = Call->getNumArgOperands(); 5388 if (!NumOperands) 5389 return nullptr; 5390 5391 Function *F = cast<Function>(Call->getCalledFunction()); 5392 Intrinsic::ID IID = F->getIntrinsicID(); 5393 if (NumOperands == 1) 5394 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 5395 5396 if (NumOperands == 2) 5397 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 5398 Call->getArgOperand(1), Q); 5399 5400 // Handle intrinsics with 3 or more arguments. 5401 switch (IID) { 5402 case Intrinsic::masked_load: 5403 case Intrinsic::masked_gather: { 5404 Value *MaskArg = Call->getArgOperand(2); 5405 Value *PassthruArg = Call->getArgOperand(3); 5406 // If the mask is all zeros or undef, the "passthru" argument is the result. 5407 if (maskIsAllZeroOrUndef(MaskArg)) 5408 return PassthruArg; 5409 return nullptr; 5410 } 5411 case Intrinsic::fshl: 5412 case Intrinsic::fshr: { 5413 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 5414 *ShAmtArg = Call->getArgOperand(2); 5415 5416 // If both operands are undef, the result is undef. 5417 if (match(Op0, m_Undef()) && match(Op1, m_Undef())) 5418 return UndefValue::get(F->getReturnType()); 5419 5420 // If shift amount is undef, assume it is zero. 5421 if (match(ShAmtArg, m_Undef())) 5422 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5423 5424 const APInt *ShAmtC; 5425 if (match(ShAmtArg, m_APInt(ShAmtC))) { 5426 // If there's effectively no shift, return the 1st arg or 2nd arg. 5427 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 5428 if (ShAmtC->urem(BitWidth).isNullValue()) 5429 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5430 } 5431 return nullptr; 5432 } 5433 case Intrinsic::fma: 5434 case Intrinsic::fmuladd: { 5435 Value *Op0 = Call->getArgOperand(0); 5436 Value *Op1 = Call->getArgOperand(1); 5437 Value *Op2 = Call->getArgOperand(2); 5438 if (Value *V = simplifyFPOp({ Op0, Op1, Op2 })) 5439 return V; 5440 return nullptr; 5441 } 5442 default: 5443 return nullptr; 5444 } 5445 } 5446 5447 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 5448 Value *Callee = Call->getCalledOperand(); 5449 5450 // musttail calls can only be simplified if they are also DCEd. 5451 // As we can't guarantee this here, don't simplify them. 5452 if (Call->isMustTailCall()) 5453 return nullptr; 5454 5455 // call undef -> undef 5456 // call null -> undef 5457 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 5458 return UndefValue::get(Call->getType()); 5459 5460 Function *F = dyn_cast<Function>(Callee); 5461 if (!F) 5462 return nullptr; 5463 5464 if (F->isIntrinsic()) 5465 if (Value *Ret = simplifyIntrinsic(Call, Q)) 5466 return Ret; 5467 5468 if (!canConstantFoldCallTo(Call, F)) 5469 return nullptr; 5470 5471 SmallVector<Constant *, 4> ConstantArgs; 5472 unsigned NumArgs = Call->getNumArgOperands(); 5473 ConstantArgs.reserve(NumArgs); 5474 for (auto &Arg : Call->args()) { 5475 Constant *C = dyn_cast<Constant>(&Arg); 5476 if (!C) { 5477 if (isa<MetadataAsValue>(Arg.get())) 5478 continue; 5479 return nullptr; 5480 } 5481 ConstantArgs.push_back(C); 5482 } 5483 5484 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 5485 } 5486 5487 /// Given operands for a Freeze, see if we can fold the result. 5488 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 5489 // Use a utility function defined in ValueTracking. 5490 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.CxtI, Q.DT)) 5491 return Op0; 5492 // We have room for improvement. 5493 return nullptr; 5494 } 5495 5496 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 5497 return ::SimplifyFreezeInst(Op0, Q); 5498 } 5499 5500 /// See if we can compute a simplified version of this instruction. 5501 /// If not, this returns null. 5502 5503 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 5504 OptimizationRemarkEmitter *ORE) { 5505 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 5506 Value *Result; 5507 5508 switch (I->getOpcode()) { 5509 default: 5510 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 5511 break; 5512 case Instruction::FNeg: 5513 Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q); 5514 break; 5515 case Instruction::FAdd: 5516 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 5517 I->getFastMathFlags(), Q); 5518 break; 5519 case Instruction::Add: 5520 Result = 5521 SimplifyAddInst(I->getOperand(0), I->getOperand(1), 5522 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5523 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5524 break; 5525 case Instruction::FSub: 5526 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 5527 I->getFastMathFlags(), Q); 5528 break; 5529 case Instruction::Sub: 5530 Result = 5531 SimplifySubInst(I->getOperand(0), I->getOperand(1), 5532 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5533 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5534 break; 5535 case Instruction::FMul: 5536 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 5537 I->getFastMathFlags(), Q); 5538 break; 5539 case Instruction::Mul: 5540 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 5541 break; 5542 case Instruction::SDiv: 5543 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 5544 break; 5545 case Instruction::UDiv: 5546 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 5547 break; 5548 case Instruction::FDiv: 5549 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 5550 I->getFastMathFlags(), Q); 5551 break; 5552 case Instruction::SRem: 5553 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 5554 break; 5555 case Instruction::URem: 5556 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 5557 break; 5558 case Instruction::FRem: 5559 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 5560 I->getFastMathFlags(), Q); 5561 break; 5562 case Instruction::Shl: 5563 Result = 5564 SimplifyShlInst(I->getOperand(0), I->getOperand(1), 5565 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5566 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5567 break; 5568 case Instruction::LShr: 5569 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 5570 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5571 break; 5572 case Instruction::AShr: 5573 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 5574 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5575 break; 5576 case Instruction::And: 5577 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 5578 break; 5579 case Instruction::Or: 5580 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 5581 break; 5582 case Instruction::Xor: 5583 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 5584 break; 5585 case Instruction::ICmp: 5586 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 5587 I->getOperand(0), I->getOperand(1), Q); 5588 break; 5589 case Instruction::FCmp: 5590 Result = 5591 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 5592 I->getOperand(1), I->getFastMathFlags(), Q); 5593 break; 5594 case Instruction::Select: 5595 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 5596 I->getOperand(2), Q); 5597 break; 5598 case Instruction::GetElementPtr: { 5599 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); 5600 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 5601 Ops, Q); 5602 break; 5603 } 5604 case Instruction::InsertValue: { 5605 InsertValueInst *IV = cast<InsertValueInst>(I); 5606 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 5607 IV->getInsertedValueOperand(), 5608 IV->getIndices(), Q); 5609 break; 5610 } 5611 case Instruction::InsertElement: { 5612 auto *IE = cast<InsertElementInst>(I); 5613 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), 5614 IE->getOperand(2), Q); 5615 break; 5616 } 5617 case Instruction::ExtractValue: { 5618 auto *EVI = cast<ExtractValueInst>(I); 5619 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 5620 EVI->getIndices(), Q); 5621 break; 5622 } 5623 case Instruction::ExtractElement: { 5624 auto *EEI = cast<ExtractElementInst>(I); 5625 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 5626 EEI->getIndexOperand(), Q); 5627 break; 5628 } 5629 case Instruction::ShuffleVector: { 5630 auto *SVI = cast<ShuffleVectorInst>(I); 5631 Result = 5632 SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5633 SVI->getShuffleMask(), SVI->getType(), Q); 5634 break; 5635 } 5636 case Instruction::PHI: 5637 Result = SimplifyPHINode(cast<PHINode>(I), Q); 5638 break; 5639 case Instruction::Call: { 5640 Result = SimplifyCall(cast<CallInst>(I), Q); 5641 break; 5642 } 5643 case Instruction::Freeze: 5644 Result = SimplifyFreezeInst(I->getOperand(0), Q); 5645 break; 5646 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 5647 #include "llvm/IR/Instruction.def" 5648 #undef HANDLE_CAST_INST 5649 Result = 5650 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 5651 break; 5652 case Instruction::Alloca: 5653 // No simplifications for Alloca and it can't be constant folded. 5654 Result = nullptr; 5655 break; 5656 } 5657 5658 /// If called on unreachable code, the above logic may report that the 5659 /// instruction simplified to itself. Make life easier for users by 5660 /// detecting that case here, returning a safe value instead. 5661 return Result == I ? UndefValue::get(I->getType()) : Result; 5662 } 5663 5664 /// Implementation of recursive simplification through an instruction's 5665 /// uses. 5666 /// 5667 /// This is the common implementation of the recursive simplification routines. 5668 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 5669 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 5670 /// instructions to process and attempt to simplify it using 5671 /// InstructionSimplify. Recursively visited users which could not be 5672 /// simplified themselves are to the optional UnsimplifiedUsers set for 5673 /// further processing by the caller. 5674 /// 5675 /// This routine returns 'true' only when *it* simplifies something. The passed 5676 /// in simplified value does not count toward this. 5677 static bool replaceAndRecursivelySimplifyImpl( 5678 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 5679 const DominatorTree *DT, AssumptionCache *AC, 5680 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 5681 bool Simplified = false; 5682 SmallSetVector<Instruction *, 8> Worklist; 5683 const DataLayout &DL = I->getModule()->getDataLayout(); 5684 5685 // If we have an explicit value to collapse to, do that round of the 5686 // simplification loop by hand initially. 5687 if (SimpleV) { 5688 for (User *U : I->users()) 5689 if (U != I) 5690 Worklist.insert(cast<Instruction>(U)); 5691 5692 // Replace the instruction with its simplified value. 5693 I->replaceAllUsesWith(SimpleV); 5694 5695 // Gracefully handle edge cases where the instruction is not wired into any 5696 // parent block. 5697 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5698 !I->mayHaveSideEffects()) 5699 I->eraseFromParent(); 5700 } else { 5701 Worklist.insert(I); 5702 } 5703 5704 // Note that we must test the size on each iteration, the worklist can grow. 5705 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 5706 I = Worklist[Idx]; 5707 5708 // See if this instruction simplifies. 5709 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 5710 if (!SimpleV) { 5711 if (UnsimplifiedUsers) 5712 UnsimplifiedUsers->insert(I); 5713 continue; 5714 } 5715 5716 Simplified = true; 5717 5718 // Stash away all the uses of the old instruction so we can check them for 5719 // recursive simplifications after a RAUW. This is cheaper than checking all 5720 // uses of To on the recursive step in most cases. 5721 for (User *U : I->users()) 5722 Worklist.insert(cast<Instruction>(U)); 5723 5724 // Replace the instruction with its simplified value. 5725 I->replaceAllUsesWith(SimpleV); 5726 5727 // Gracefully handle edge cases where the instruction is not wired into any 5728 // parent block. 5729 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5730 !I->mayHaveSideEffects()) 5731 I->eraseFromParent(); 5732 } 5733 return Simplified; 5734 } 5735 5736 bool llvm::recursivelySimplifyInstruction(Instruction *I, 5737 const TargetLibraryInfo *TLI, 5738 const DominatorTree *DT, 5739 AssumptionCache *AC) { 5740 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC, nullptr); 5741 } 5742 5743 bool llvm::replaceAndRecursivelySimplify( 5744 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 5745 const DominatorTree *DT, AssumptionCache *AC, 5746 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 5747 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 5748 assert(SimpleV && "Must provide a simplified value."); 5749 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 5750 UnsimplifiedUsers); 5751 } 5752 5753 namespace llvm { 5754 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 5755 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 5756 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 5757 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5758 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 5759 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 5760 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 5761 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5762 } 5763 5764 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 5765 const DataLayout &DL) { 5766 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 5767 } 5768 5769 template <class T, class... TArgs> 5770 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 5771 Function &F) { 5772 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 5773 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 5774 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 5775 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5776 } 5777 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 5778 Function &); 5779 } 5780