xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/InstructionSimplify.cpp (revision 99282790b7d01ec3c4072621d46a0d7302517ad4)
1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions.  This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/CmpInstAnalysis.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/LoopAnalysisManager.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/IR/ConstantRange.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalAlias.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/PatternMatch.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/KnownBits.h"
42 #include <algorithm>
43 using namespace llvm;
44 using namespace llvm::PatternMatch;
45 
46 #define DEBUG_TYPE "instsimplify"
47 
48 enum { RecursionLimit = 3 };
49 
50 STATISTIC(NumExpand,  "Number of expansions");
51 STATISTIC(NumReassoc, "Number of reassociations");
52 
53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
54 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
55 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
56                              const SimplifyQuery &, unsigned);
57 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
58                             unsigned);
59 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
60                             const SimplifyQuery &, unsigned);
61 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
62                               unsigned);
63 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
64                                const SimplifyQuery &Q, unsigned MaxRecurse);
65 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
66 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
67 static Value *SimplifyCastInst(unsigned, Value *, Type *,
68                                const SimplifyQuery &, unsigned);
69 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &,
70                               unsigned);
71 
72 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
73                                      Value *FalseVal) {
74   BinaryOperator::BinaryOps BinOpCode;
75   if (auto *BO = dyn_cast<BinaryOperator>(Cond))
76     BinOpCode = BO->getOpcode();
77   else
78     return nullptr;
79 
80   CmpInst::Predicate ExpectedPred, Pred1, Pred2;
81   if (BinOpCode == BinaryOperator::Or) {
82     ExpectedPred = ICmpInst::ICMP_NE;
83   } else if (BinOpCode == BinaryOperator::And) {
84     ExpectedPred = ICmpInst::ICMP_EQ;
85   } else
86     return nullptr;
87 
88   // %A = icmp eq %TV, %FV
89   // %B = icmp eq %X, %Y (and one of these is a select operand)
90   // %C = and %A, %B
91   // %D = select %C, %TV, %FV
92   // -->
93   // %FV
94 
95   // %A = icmp ne %TV, %FV
96   // %B = icmp ne %X, %Y (and one of these is a select operand)
97   // %C = or %A, %B
98   // %D = select %C, %TV, %FV
99   // -->
100   // %TV
101   Value *X, *Y;
102   if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
103                                       m_Specific(FalseVal)),
104                              m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
105       Pred1 != Pred2 || Pred1 != ExpectedPred)
106     return nullptr;
107 
108   if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
109     return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
110 
111   return nullptr;
112 }
113 
114 /// For a boolean type or a vector of boolean type, return false or a vector
115 /// with every element false.
116 static Constant *getFalse(Type *Ty) {
117   return ConstantInt::getFalse(Ty);
118 }
119 
120 /// For a boolean type or a vector of boolean type, return true or a vector
121 /// with every element true.
122 static Constant *getTrue(Type *Ty) {
123   return ConstantInt::getTrue(Ty);
124 }
125 
126 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
127 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
128                           Value *RHS) {
129   CmpInst *Cmp = dyn_cast<CmpInst>(V);
130   if (!Cmp)
131     return false;
132   CmpInst::Predicate CPred = Cmp->getPredicate();
133   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
134   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
135     return true;
136   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
137     CRHS == LHS;
138 }
139 
140 /// Simplify comparison with true or false branch of select:
141 ///  %sel = select i1 %cond, i32 %tv, i32 %fv
142 ///  %cmp = icmp sle i32 %sel, %rhs
143 /// Compose new comparison by substituting %sel with either %tv or %fv
144 /// and see if it simplifies.
145 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS,
146                                  Value *RHS, Value *Cond,
147                                  const SimplifyQuery &Q, unsigned MaxRecurse,
148                                  Constant *TrueOrFalse) {
149   Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse);
150   if (SimplifiedCmp == Cond) {
151     // %cmp simplified to the select condition (%cond).
152     return TrueOrFalse;
153   } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) {
154     // It didn't simplify. However, if composed comparison is equivalent
155     // to the select condition (%cond) then we can replace it.
156     return TrueOrFalse;
157   }
158   return SimplifiedCmp;
159 }
160 
161 /// Simplify comparison with true branch of select
162 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS,
163                                      Value *RHS, Value *Cond,
164                                      const SimplifyQuery &Q,
165                                      unsigned MaxRecurse) {
166   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
167                             getTrue(Cond->getType()));
168 }
169 
170 /// Simplify comparison with false branch of select
171 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS,
172                                       Value *RHS, Value *Cond,
173                                       const SimplifyQuery &Q,
174                                       unsigned MaxRecurse) {
175   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
176                             getFalse(Cond->getType()));
177 }
178 
179 /// We know comparison with both branches of select can be simplified, but they
180 /// are not equal. This routine handles some logical simplifications.
181 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp,
182                                                Value *Cond,
183                                                const SimplifyQuery &Q,
184                                                unsigned MaxRecurse) {
185   // If the false value simplified to false, then the result of the compare
186   // is equal to "Cond && TCmp".  This also catches the case when the false
187   // value simplified to false and the true value to true, returning "Cond".
188   if (match(FCmp, m_Zero()))
189     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
190       return V;
191   // If the true value simplified to true, then the result of the compare
192   // is equal to "Cond || FCmp".
193   if (match(TCmp, m_One()))
194     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
195       return V;
196   // Finally, if the false value simplified to true and the true value to
197   // false, then the result of the compare is equal to "!Cond".
198   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
199     if (Value *V = SimplifyXorInst(
200             Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse))
201       return V;
202   return nullptr;
203 }
204 
205 /// Does the given value dominate the specified phi node?
206 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
207   Instruction *I = dyn_cast<Instruction>(V);
208   if (!I)
209     // Arguments and constants dominate all instructions.
210     return true;
211 
212   // If we are processing instructions (and/or basic blocks) that have not been
213   // fully added to a function, the parent nodes may still be null. Simply
214   // return the conservative answer in these cases.
215   if (!I->getParent() || !P->getParent() || !I->getFunction())
216     return false;
217 
218   // If we have a DominatorTree then do a precise test.
219   if (DT)
220     return DT->dominates(I, P);
221 
222   // Otherwise, if the instruction is in the entry block and is not an invoke,
223   // then it obviously dominates all phi nodes.
224   if (I->getParent() == &I->getFunction()->getEntryBlock() &&
225       !isa<InvokeInst>(I))
226     return true;
227 
228   return false;
229 }
230 
231 /// Simplify "A op (B op' C)" by distributing op over op', turning it into
232 /// "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
233 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
234 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
235 /// Returns the simplified value, or null if no simplification was performed.
236 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
237                           Instruction::BinaryOps OpcodeToExpand,
238                           const SimplifyQuery &Q, unsigned MaxRecurse) {
239   // Recursion is always used, so bail out at once if we already hit the limit.
240   if (!MaxRecurse--)
241     return nullptr;
242 
243   // Check whether the expression has the form "(A op' B) op C".
244   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
245     if (Op0->getOpcode() == OpcodeToExpand) {
246       // It does!  Try turning it into "(A op C) op' (B op C)".
247       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
248       // Do "A op C" and "B op C" both simplify?
249       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
250         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
251           // They do! Return "L op' R" if it simplifies or is already available.
252           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
253           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
254                                      && L == B && R == A)) {
255             ++NumExpand;
256             return LHS;
257           }
258           // Otherwise return "L op' R" if it simplifies.
259           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
260             ++NumExpand;
261             return V;
262           }
263         }
264     }
265 
266   // Check whether the expression has the form "A op (B op' C)".
267   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
268     if (Op1->getOpcode() == OpcodeToExpand) {
269       // It does!  Try turning it into "(A op B) op' (A op C)".
270       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
271       // Do "A op B" and "A op C" both simplify?
272       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
273         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
274           // They do! Return "L op' R" if it simplifies or is already available.
275           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
276           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
277                                      && L == C && R == B)) {
278             ++NumExpand;
279             return RHS;
280           }
281           // Otherwise return "L op' R" if it simplifies.
282           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
283             ++NumExpand;
284             return V;
285           }
286         }
287     }
288 
289   return nullptr;
290 }
291 
292 /// Generic simplifications for associative binary operations.
293 /// Returns the simpler value, or null if none was found.
294 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
295                                        Value *LHS, Value *RHS,
296                                        const SimplifyQuery &Q,
297                                        unsigned MaxRecurse) {
298   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
299 
300   // Recursion is always used, so bail out at once if we already hit the limit.
301   if (!MaxRecurse--)
302     return nullptr;
303 
304   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
305   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
306 
307   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
308   if (Op0 && Op0->getOpcode() == Opcode) {
309     Value *A = Op0->getOperand(0);
310     Value *B = Op0->getOperand(1);
311     Value *C = RHS;
312 
313     // Does "B op C" simplify?
314     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
315       // It does!  Return "A op V" if it simplifies or is already available.
316       // If V equals B then "A op V" is just the LHS.
317       if (V == B) return LHS;
318       // Otherwise return "A op V" if it simplifies.
319       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
320         ++NumReassoc;
321         return W;
322       }
323     }
324   }
325 
326   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
327   if (Op1 && Op1->getOpcode() == Opcode) {
328     Value *A = LHS;
329     Value *B = Op1->getOperand(0);
330     Value *C = Op1->getOperand(1);
331 
332     // Does "A op B" simplify?
333     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
334       // It does!  Return "V op C" if it simplifies or is already available.
335       // If V equals B then "V op C" is just the RHS.
336       if (V == B) return RHS;
337       // Otherwise return "V op C" if it simplifies.
338       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
339         ++NumReassoc;
340         return W;
341       }
342     }
343   }
344 
345   // The remaining transforms require commutativity as well as associativity.
346   if (!Instruction::isCommutative(Opcode))
347     return nullptr;
348 
349   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
350   if (Op0 && Op0->getOpcode() == Opcode) {
351     Value *A = Op0->getOperand(0);
352     Value *B = Op0->getOperand(1);
353     Value *C = RHS;
354 
355     // Does "C op A" simplify?
356     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
357       // It does!  Return "V op B" if it simplifies or is already available.
358       // If V equals A then "V op B" is just the LHS.
359       if (V == A) return LHS;
360       // Otherwise return "V op B" if it simplifies.
361       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
362         ++NumReassoc;
363         return W;
364       }
365     }
366   }
367 
368   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
369   if (Op1 && Op1->getOpcode() == Opcode) {
370     Value *A = LHS;
371     Value *B = Op1->getOperand(0);
372     Value *C = Op1->getOperand(1);
373 
374     // Does "C op A" simplify?
375     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
376       // It does!  Return "B op V" if it simplifies or is already available.
377       // If V equals C then "B op V" is just the RHS.
378       if (V == C) return RHS;
379       // Otherwise return "B op V" if it simplifies.
380       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
381         ++NumReassoc;
382         return W;
383       }
384     }
385   }
386 
387   return nullptr;
388 }
389 
390 /// In the case of a binary operation with a select instruction as an operand,
391 /// try to simplify the binop by seeing whether evaluating it on both branches
392 /// of the select results in the same value. Returns the common value if so,
393 /// otherwise returns null.
394 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
395                                     Value *RHS, const SimplifyQuery &Q,
396                                     unsigned MaxRecurse) {
397   // Recursion is always used, so bail out at once if we already hit the limit.
398   if (!MaxRecurse--)
399     return nullptr;
400 
401   SelectInst *SI;
402   if (isa<SelectInst>(LHS)) {
403     SI = cast<SelectInst>(LHS);
404   } else {
405     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
406     SI = cast<SelectInst>(RHS);
407   }
408 
409   // Evaluate the BinOp on the true and false branches of the select.
410   Value *TV;
411   Value *FV;
412   if (SI == LHS) {
413     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
414     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
415   } else {
416     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
417     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
418   }
419 
420   // If they simplified to the same value, then return the common value.
421   // If they both failed to simplify then return null.
422   if (TV == FV)
423     return TV;
424 
425   // If one branch simplified to undef, return the other one.
426   if (TV && isa<UndefValue>(TV))
427     return FV;
428   if (FV && isa<UndefValue>(FV))
429     return TV;
430 
431   // If applying the operation did not change the true and false select values,
432   // then the result of the binop is the select itself.
433   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
434     return SI;
435 
436   // If one branch simplified and the other did not, and the simplified
437   // value is equal to the unsimplified one, return the simplified value.
438   // For example, select (cond, X, X & Z) & Z -> X & Z.
439   if ((FV && !TV) || (TV && !FV)) {
440     // Check that the simplified value has the form "X op Y" where "op" is the
441     // same as the original operation.
442     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
443     if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
444       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
445       // We already know that "op" is the same as for the simplified value.  See
446       // if the operands match too.  If so, return the simplified value.
447       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
448       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
449       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
450       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
451           Simplified->getOperand(1) == UnsimplifiedRHS)
452         return Simplified;
453       if (Simplified->isCommutative() &&
454           Simplified->getOperand(1) == UnsimplifiedLHS &&
455           Simplified->getOperand(0) == UnsimplifiedRHS)
456         return Simplified;
457     }
458   }
459 
460   return nullptr;
461 }
462 
463 /// In the case of a comparison with a select instruction, try to simplify the
464 /// comparison by seeing whether both branches of the select result in the same
465 /// value. Returns the common value if so, otherwise returns null.
466 /// For example, if we have:
467 ///  %tmp = select i1 %cmp, i32 1, i32 2
468 ///  %cmp1 = icmp sle i32 %tmp, 3
469 /// We can simplify %cmp1 to true, because both branches of select are
470 /// less than 3. We compose new comparison by substituting %tmp with both
471 /// branches of select and see if it can be simplified.
472 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
473                                   Value *RHS, const SimplifyQuery &Q,
474                                   unsigned MaxRecurse) {
475   // Recursion is always used, so bail out at once if we already hit the limit.
476   if (!MaxRecurse--)
477     return nullptr;
478 
479   // Make sure the select is on the LHS.
480   if (!isa<SelectInst>(LHS)) {
481     std::swap(LHS, RHS);
482     Pred = CmpInst::getSwappedPredicate(Pred);
483   }
484   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
485   SelectInst *SI = cast<SelectInst>(LHS);
486   Value *Cond = SI->getCondition();
487   Value *TV = SI->getTrueValue();
488   Value *FV = SI->getFalseValue();
489 
490   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
491   // Does "cmp TV, RHS" simplify?
492   Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse);
493   if (!TCmp)
494     return nullptr;
495 
496   // Does "cmp FV, RHS" simplify?
497   Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse);
498   if (!FCmp)
499     return nullptr;
500 
501   // If both sides simplified to the same value, then use it as the result of
502   // the original comparison.
503   if (TCmp == FCmp)
504     return TCmp;
505 
506   // The remaining cases only make sense if the select condition has the same
507   // type as the result of the comparison, so bail out if this is not so.
508   if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy())
509     return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse);
510 
511   return nullptr;
512 }
513 
514 /// In the case of a binary operation with an operand that is a PHI instruction,
515 /// try to simplify the binop by seeing whether evaluating it on the incoming
516 /// phi values yields the same result for every value. If so returns the common
517 /// value, otherwise returns null.
518 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
519                                  Value *RHS, const SimplifyQuery &Q,
520                                  unsigned MaxRecurse) {
521   // Recursion is always used, so bail out at once if we already hit the limit.
522   if (!MaxRecurse--)
523     return nullptr;
524 
525   PHINode *PI;
526   if (isa<PHINode>(LHS)) {
527     PI = cast<PHINode>(LHS);
528     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
529     if (!valueDominatesPHI(RHS, PI, Q.DT))
530       return nullptr;
531   } else {
532     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
533     PI = cast<PHINode>(RHS);
534     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
535     if (!valueDominatesPHI(LHS, PI, Q.DT))
536       return nullptr;
537   }
538 
539   // Evaluate the BinOp on the incoming phi values.
540   Value *CommonValue = nullptr;
541   for (Value *Incoming : PI->incoming_values()) {
542     // If the incoming value is the phi node itself, it can safely be skipped.
543     if (Incoming == PI) continue;
544     Value *V = PI == LHS ?
545       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
546       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
547     // If the operation failed to simplify, or simplified to a different value
548     // to previously, then give up.
549     if (!V || (CommonValue && V != CommonValue))
550       return nullptr;
551     CommonValue = V;
552   }
553 
554   return CommonValue;
555 }
556 
557 /// In the case of a comparison with a PHI instruction, try to simplify the
558 /// comparison by seeing whether comparing with all of the incoming phi values
559 /// yields the same result every time. If so returns the common result,
560 /// otherwise returns null.
561 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
562                                const SimplifyQuery &Q, unsigned MaxRecurse) {
563   // Recursion is always used, so bail out at once if we already hit the limit.
564   if (!MaxRecurse--)
565     return nullptr;
566 
567   // Make sure the phi is on the LHS.
568   if (!isa<PHINode>(LHS)) {
569     std::swap(LHS, RHS);
570     Pred = CmpInst::getSwappedPredicate(Pred);
571   }
572   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
573   PHINode *PI = cast<PHINode>(LHS);
574 
575   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
576   if (!valueDominatesPHI(RHS, PI, Q.DT))
577     return nullptr;
578 
579   // Evaluate the BinOp on the incoming phi values.
580   Value *CommonValue = nullptr;
581   for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) {
582     Value *Incoming = PI->getIncomingValue(u);
583     Instruction *InTI = PI->getIncomingBlock(u)->getTerminator();
584     // If the incoming value is the phi node itself, it can safely be skipped.
585     if (Incoming == PI) continue;
586     // Change the context instruction to the "edge" that flows into the phi.
587     // This is important because that is where incoming is actually "evaluated"
588     // even though it is used later somewhere else.
589     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI),
590                                MaxRecurse);
591     // If the operation failed to simplify, or simplified to a different value
592     // to previously, then give up.
593     if (!V || (CommonValue && V != CommonValue))
594       return nullptr;
595     CommonValue = V;
596   }
597 
598   return CommonValue;
599 }
600 
601 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
602                                        Value *&Op0, Value *&Op1,
603                                        const SimplifyQuery &Q) {
604   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
605     if (auto *CRHS = dyn_cast<Constant>(Op1))
606       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
607 
608     // Canonicalize the constant to the RHS if this is a commutative operation.
609     if (Instruction::isCommutative(Opcode))
610       std::swap(Op0, Op1);
611   }
612   return nullptr;
613 }
614 
615 /// Given operands for an Add, see if we can fold the result.
616 /// If not, this returns null.
617 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
618                               const SimplifyQuery &Q, unsigned MaxRecurse) {
619   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
620     return C;
621 
622   // X + undef -> undef
623   if (match(Op1, m_Undef()))
624     return Op1;
625 
626   // X + 0 -> X
627   if (match(Op1, m_Zero()))
628     return Op0;
629 
630   // If two operands are negative, return 0.
631   if (isKnownNegation(Op0, Op1))
632     return Constant::getNullValue(Op0->getType());
633 
634   // X + (Y - X) -> Y
635   // (Y - X) + X -> Y
636   // Eg: X + -X -> 0
637   Value *Y = nullptr;
638   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
639       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
640     return Y;
641 
642   // X + ~X -> -1   since   ~X = -X-1
643   Type *Ty = Op0->getType();
644   if (match(Op0, m_Not(m_Specific(Op1))) ||
645       match(Op1, m_Not(m_Specific(Op0))))
646     return Constant::getAllOnesValue(Ty);
647 
648   // add nsw/nuw (xor Y, signmask), signmask --> Y
649   // The no-wrapping add guarantees that the top bit will be set by the add.
650   // Therefore, the xor must be clearing the already set sign bit of Y.
651   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
652       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
653     return Y;
654 
655   // add nuw %x, -1  ->  -1, because %x can only be 0.
656   if (IsNUW && match(Op1, m_AllOnes()))
657     return Op1; // Which is -1.
658 
659   /// i1 add -> xor.
660   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
661     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
662       return V;
663 
664   // Try some generic simplifications for associative operations.
665   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
666                                           MaxRecurse))
667     return V;
668 
669   // Threading Add over selects and phi nodes is pointless, so don't bother.
670   // Threading over the select in "A + select(cond, B, C)" means evaluating
671   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
672   // only if B and C are equal.  If B and C are equal then (since we assume
673   // that operands have already been simplified) "select(cond, B, C)" should
674   // have been simplified to the common value of B and C already.  Analysing
675   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
676   // for threading over phi nodes.
677 
678   return nullptr;
679 }
680 
681 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
682                              const SimplifyQuery &Query) {
683   return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
684 }
685 
686 /// Compute the base pointer and cumulative constant offsets for V.
687 ///
688 /// This strips all constant offsets off of V, leaving it the base pointer, and
689 /// accumulates the total constant offset applied in the returned constant. It
690 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
691 /// no constant offsets applied.
692 ///
693 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
694 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
695 /// folding.
696 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
697                                                 bool AllowNonInbounds = false) {
698   assert(V->getType()->isPtrOrPtrVectorTy());
699 
700   Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
701   APInt Offset = APInt::getNullValue(IntIdxTy->getIntegerBitWidth());
702 
703   V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
704   // As that strip may trace through `addrspacecast`, need to sext or trunc
705   // the offset calculated.
706   IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
707   Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth());
708 
709   Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset);
710   if (V->getType()->isVectorTy())
711     return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
712                                     OffsetIntPtr);
713   return OffsetIntPtr;
714 }
715 
716 /// Compute the constant difference between two pointer values.
717 /// If the difference is not a constant, returns zero.
718 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
719                                           Value *RHS) {
720   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
721   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
722 
723   // If LHS and RHS are not related via constant offsets to the same base
724   // value, there is nothing we can do here.
725   if (LHS != RHS)
726     return nullptr;
727 
728   // Otherwise, the difference of LHS - RHS can be computed as:
729   //    LHS - RHS
730   //  = (LHSOffset + Base) - (RHSOffset + Base)
731   //  = LHSOffset - RHSOffset
732   return ConstantExpr::getSub(LHSOffset, RHSOffset);
733 }
734 
735 /// Given operands for a Sub, see if we can fold the result.
736 /// If not, this returns null.
737 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
738                               const SimplifyQuery &Q, unsigned MaxRecurse) {
739   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
740     return C;
741 
742   // X - undef -> undef
743   // undef - X -> undef
744   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
745     return UndefValue::get(Op0->getType());
746 
747   // X - 0 -> X
748   if (match(Op1, m_Zero()))
749     return Op0;
750 
751   // X - X -> 0
752   if (Op0 == Op1)
753     return Constant::getNullValue(Op0->getType());
754 
755   // Is this a negation?
756   if (match(Op0, m_Zero())) {
757     // 0 - X -> 0 if the sub is NUW.
758     if (isNUW)
759       return Constant::getNullValue(Op0->getType());
760 
761     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
762     if (Known.Zero.isMaxSignedValue()) {
763       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
764       // Op1 must be 0 because negating the minimum signed value is undefined.
765       if (isNSW)
766         return Constant::getNullValue(Op0->getType());
767 
768       // 0 - X -> X if X is 0 or the minimum signed value.
769       return Op1;
770     }
771   }
772 
773   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
774   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
775   Value *X = nullptr, *Y = nullptr, *Z = Op1;
776   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
777     // See if "V === Y - Z" simplifies.
778     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
779       // It does!  Now see if "X + V" simplifies.
780       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
781         // It does, we successfully reassociated!
782         ++NumReassoc;
783         return W;
784       }
785     // See if "V === X - Z" simplifies.
786     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
787       // It does!  Now see if "Y + V" simplifies.
788       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
789         // It does, we successfully reassociated!
790         ++NumReassoc;
791         return W;
792       }
793   }
794 
795   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
796   // For example, X - (X + 1) -> -1
797   X = Op0;
798   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
799     // See if "V === X - Y" simplifies.
800     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
801       // It does!  Now see if "V - Z" simplifies.
802       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
803         // It does, we successfully reassociated!
804         ++NumReassoc;
805         return W;
806       }
807     // See if "V === X - Z" simplifies.
808     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
809       // It does!  Now see if "V - Y" simplifies.
810       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
811         // It does, we successfully reassociated!
812         ++NumReassoc;
813         return W;
814       }
815   }
816 
817   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
818   // For example, X - (X - Y) -> Y.
819   Z = Op0;
820   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
821     // See if "V === Z - X" simplifies.
822     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
823       // It does!  Now see if "V + Y" simplifies.
824       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
825         // It does, we successfully reassociated!
826         ++NumReassoc;
827         return W;
828       }
829 
830   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
831   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
832       match(Op1, m_Trunc(m_Value(Y))))
833     if (X->getType() == Y->getType())
834       // See if "V === X - Y" simplifies.
835       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
836         // It does!  Now see if "trunc V" simplifies.
837         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
838                                         Q, MaxRecurse - 1))
839           // It does, return the simplified "trunc V".
840           return W;
841 
842   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
843   if (match(Op0, m_PtrToInt(m_Value(X))) &&
844       match(Op1, m_PtrToInt(m_Value(Y))))
845     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
846       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
847 
848   // i1 sub -> xor.
849   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
850     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
851       return V;
852 
853   // Threading Sub over selects and phi nodes is pointless, so don't bother.
854   // Threading over the select in "A - select(cond, B, C)" means evaluating
855   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
856   // only if B and C are equal.  If B and C are equal then (since we assume
857   // that operands have already been simplified) "select(cond, B, C)" should
858   // have been simplified to the common value of B and C already.  Analysing
859   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
860   // for threading over phi nodes.
861 
862   return nullptr;
863 }
864 
865 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
866                              const SimplifyQuery &Q) {
867   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
868 }
869 
870 /// Given operands for a Mul, see if we can fold the result.
871 /// If not, this returns null.
872 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
873                               unsigned MaxRecurse) {
874   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
875     return C;
876 
877   // X * undef -> 0
878   // X * 0 -> 0
879   if (match(Op1, m_CombineOr(m_Undef(), m_Zero())))
880     return Constant::getNullValue(Op0->getType());
881 
882   // X * 1 -> X
883   if (match(Op1, m_One()))
884     return Op0;
885 
886   // (X / Y) * Y -> X if the division is exact.
887   Value *X = nullptr;
888   if (Q.IIQ.UseInstrInfo &&
889       (match(Op0,
890              m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y
891        match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
892     return X;
893 
894   // i1 mul -> and.
895   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
896     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
897       return V;
898 
899   // Try some generic simplifications for associative operations.
900   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
901                                           MaxRecurse))
902     return V;
903 
904   // Mul distributes over Add. Try some generic simplifications based on this.
905   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
906                              Q, MaxRecurse))
907     return V;
908 
909   // If the operation is with the result of a select instruction, check whether
910   // operating on either branch of the select always yields the same value.
911   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
912     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
913                                          MaxRecurse))
914       return V;
915 
916   // If the operation is with the result of a phi instruction, check whether
917   // operating on all incoming values of the phi always yields the same value.
918   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
919     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
920                                       MaxRecurse))
921       return V;
922 
923   return nullptr;
924 }
925 
926 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
927   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
928 }
929 
930 /// Check for common or similar folds of integer division or integer remainder.
931 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
932 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) {
933   Type *Ty = Op0->getType();
934 
935   // X / undef -> undef
936   // X % undef -> undef
937   if (match(Op1, m_Undef()))
938     return Op1;
939 
940   // X / 0 -> undef
941   // X % 0 -> undef
942   // We don't need to preserve faults!
943   if (match(Op1, m_Zero()))
944     return UndefValue::get(Ty);
945 
946   // If any element of a constant divisor vector is zero or undef, the whole op
947   // is undef.
948   auto *Op1C = dyn_cast<Constant>(Op1);
949   if (Op1C && Ty->isVectorTy()) {
950     unsigned NumElts = Ty->getVectorNumElements();
951     for (unsigned i = 0; i != NumElts; ++i) {
952       Constant *Elt = Op1C->getAggregateElement(i);
953       if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt)))
954         return UndefValue::get(Ty);
955     }
956   }
957 
958   // undef / X -> 0
959   // undef % X -> 0
960   if (match(Op0, m_Undef()))
961     return Constant::getNullValue(Ty);
962 
963   // 0 / X -> 0
964   // 0 % X -> 0
965   if (match(Op0, m_Zero()))
966     return Constant::getNullValue(Op0->getType());
967 
968   // X / X -> 1
969   // X % X -> 0
970   if (Op0 == Op1)
971     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
972 
973   // X / 1 -> X
974   // X % 1 -> 0
975   // If this is a boolean op (single-bit element type), we can't have
976   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
977   // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
978   Value *X;
979   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
980       (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
981     return IsDiv ? Op0 : Constant::getNullValue(Ty);
982 
983   return nullptr;
984 }
985 
986 /// Given a predicate and two operands, return true if the comparison is true.
987 /// This is a helper for div/rem simplification where we return some other value
988 /// when we can prove a relationship between the operands.
989 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
990                        const SimplifyQuery &Q, unsigned MaxRecurse) {
991   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
992   Constant *C = dyn_cast_or_null<Constant>(V);
993   return (C && C->isAllOnesValue());
994 }
995 
996 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
997 /// to simplify X % Y to X.
998 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
999                       unsigned MaxRecurse, bool IsSigned) {
1000   // Recursion is always used, so bail out at once if we already hit the limit.
1001   if (!MaxRecurse--)
1002     return false;
1003 
1004   if (IsSigned) {
1005     // |X| / |Y| --> 0
1006     //
1007     // We require that 1 operand is a simple constant. That could be extended to
1008     // 2 variables if we computed the sign bit for each.
1009     //
1010     // Make sure that a constant is not the minimum signed value because taking
1011     // the abs() of that is undefined.
1012     Type *Ty = X->getType();
1013     const APInt *C;
1014     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
1015       // Is the variable divisor magnitude always greater than the constant
1016       // dividend magnitude?
1017       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
1018       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
1019       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
1020       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
1021           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
1022         return true;
1023     }
1024     if (match(Y, m_APInt(C))) {
1025       // Special-case: we can't take the abs() of a minimum signed value. If
1026       // that's the divisor, then all we have to do is prove that the dividend
1027       // is also not the minimum signed value.
1028       if (C->isMinSignedValue())
1029         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
1030 
1031       // Is the variable dividend magnitude always less than the constant
1032       // divisor magnitude?
1033       // |X| < |C| --> X > -abs(C) and X < abs(C)
1034       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
1035       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
1036       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
1037           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
1038         return true;
1039     }
1040     return false;
1041   }
1042 
1043   // IsSigned == false.
1044   // Is the dividend unsigned less than the divisor?
1045   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1046 }
1047 
1048 /// These are simplifications common to SDiv and UDiv.
1049 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1050                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1051   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1052     return C;
1053 
1054   if (Value *V = simplifyDivRem(Op0, Op1, true))
1055     return V;
1056 
1057   bool IsSigned = Opcode == Instruction::SDiv;
1058 
1059   // (X * Y) / Y -> X if the multiplication does not overflow.
1060   Value *X;
1061   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1062     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1063     // If the Mul does not overflow, then we are good to go.
1064     if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1065         (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)))
1066       return X;
1067     // If X has the form X = A / Y, then X * Y cannot overflow.
1068     if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1069         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1)))))
1070       return X;
1071   }
1072 
1073   // (X rem Y) / Y -> 0
1074   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1075       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1076     return Constant::getNullValue(Op0->getType());
1077 
1078   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1079   ConstantInt *C1, *C2;
1080   if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1081       match(Op1, m_ConstantInt(C2))) {
1082     bool Overflow;
1083     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1084     if (Overflow)
1085       return Constant::getNullValue(Op0->getType());
1086   }
1087 
1088   // If the operation is with the result of a select instruction, check whether
1089   // operating on either branch of the select always yields the same value.
1090   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1091     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1092       return V;
1093 
1094   // If the operation is with the result of a phi instruction, check whether
1095   // operating on all incoming values of the phi always yields the same value.
1096   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1097     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1098       return V;
1099 
1100   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1101     return Constant::getNullValue(Op0->getType());
1102 
1103   return nullptr;
1104 }
1105 
1106 /// These are simplifications common to SRem and URem.
1107 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1108                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1109   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1110     return C;
1111 
1112   if (Value *V = simplifyDivRem(Op0, Op1, false))
1113     return V;
1114 
1115   // (X % Y) % Y -> X % Y
1116   if ((Opcode == Instruction::SRem &&
1117        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1118       (Opcode == Instruction::URem &&
1119        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1120     return Op0;
1121 
1122   // (X << Y) % X -> 0
1123   if (Q.IIQ.UseInstrInfo &&
1124       ((Opcode == Instruction::SRem &&
1125         match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1126        (Opcode == Instruction::URem &&
1127         match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1128     return Constant::getNullValue(Op0->getType());
1129 
1130   // If the operation is with the result of a select instruction, check whether
1131   // operating on either branch of the select always yields the same value.
1132   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1133     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1134       return V;
1135 
1136   // If the operation is with the result of a phi instruction, check whether
1137   // operating on all incoming values of the phi always yields the same value.
1138   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1139     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1140       return V;
1141 
1142   // If X / Y == 0, then X % Y == X.
1143   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1144     return Op0;
1145 
1146   return nullptr;
1147 }
1148 
1149 /// Given operands for an SDiv, see if we can fold the result.
1150 /// If not, this returns null.
1151 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1152                                unsigned MaxRecurse) {
1153   // If two operands are negated and no signed overflow, return -1.
1154   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1155     return Constant::getAllOnesValue(Op0->getType());
1156 
1157   return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1158 }
1159 
1160 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1161   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1162 }
1163 
1164 /// Given operands for a UDiv, see if we can fold the result.
1165 /// If not, this returns null.
1166 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1167                                unsigned MaxRecurse) {
1168   return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1169 }
1170 
1171 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1172   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1173 }
1174 
1175 /// Given operands for an SRem, see if we can fold the result.
1176 /// If not, this returns null.
1177 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1178                                unsigned MaxRecurse) {
1179   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1180   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1181   Value *X;
1182   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1183     return ConstantInt::getNullValue(Op0->getType());
1184 
1185   // If the two operands are negated, return 0.
1186   if (isKnownNegation(Op0, Op1))
1187     return ConstantInt::getNullValue(Op0->getType());
1188 
1189   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1190 }
1191 
1192 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1193   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1194 }
1195 
1196 /// Given operands for a URem, see if we can fold the result.
1197 /// If not, this returns null.
1198 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1199                                unsigned MaxRecurse) {
1200   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1201 }
1202 
1203 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1204   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1205 }
1206 
1207 /// Returns true if a shift by \c Amount always yields undef.
1208 static bool isUndefShift(Value *Amount) {
1209   Constant *C = dyn_cast<Constant>(Amount);
1210   if (!C)
1211     return false;
1212 
1213   // X shift by undef -> undef because it may shift by the bitwidth.
1214   if (isa<UndefValue>(C))
1215     return true;
1216 
1217   // Shifting by the bitwidth or more is undefined.
1218   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1219     if (CI->getValue().getLimitedValue() >=
1220         CI->getType()->getScalarSizeInBits())
1221       return true;
1222 
1223   // If all lanes of a vector shift are undefined the whole shift is.
1224   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1225     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
1226       if (!isUndefShift(C->getAggregateElement(I)))
1227         return false;
1228     return true;
1229   }
1230 
1231   return false;
1232 }
1233 
1234 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1235 /// If not, this returns null.
1236 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1237                             Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) {
1238   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1239     return C;
1240 
1241   // 0 shift by X -> 0
1242   if (match(Op0, m_Zero()))
1243     return Constant::getNullValue(Op0->getType());
1244 
1245   // X shift by 0 -> X
1246   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1247   // would be poison.
1248   Value *X;
1249   if (match(Op1, m_Zero()) ||
1250       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1251     return Op0;
1252 
1253   // Fold undefined shifts.
1254   if (isUndefShift(Op1))
1255     return UndefValue::get(Op0->getType());
1256 
1257   // If the operation is with the result of a select instruction, check whether
1258   // operating on either branch of the select always yields the same value.
1259   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1260     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1261       return V;
1262 
1263   // If the operation is with the result of a phi instruction, check whether
1264   // operating on all incoming values of the phi always yields the same value.
1265   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1266     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1267       return V;
1268 
1269   // If any bits in the shift amount make that value greater than or equal to
1270   // the number of bits in the type, the shift is undefined.
1271   KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1272   if (Known.One.getLimitedValue() >= Known.getBitWidth())
1273     return UndefValue::get(Op0->getType());
1274 
1275   // If all valid bits in the shift amount are known zero, the first operand is
1276   // unchanged.
1277   unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth());
1278   if (Known.countMinTrailingZeros() >= NumValidShiftBits)
1279     return Op0;
1280 
1281   return nullptr;
1282 }
1283 
1284 /// Given operands for an Shl, LShr or AShr, see if we can
1285 /// fold the result.  If not, this returns null.
1286 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1287                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
1288                                  unsigned MaxRecurse) {
1289   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1290     return V;
1291 
1292   // X >> X -> 0
1293   if (Op0 == Op1)
1294     return Constant::getNullValue(Op0->getType());
1295 
1296   // undef >> X -> 0
1297   // undef >> X -> undef (if it's exact)
1298   if (match(Op0, m_Undef()))
1299     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1300 
1301   // The low bit cannot be shifted out of an exact shift if it is set.
1302   if (isExact) {
1303     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1304     if (Op0Known.One[0])
1305       return Op0;
1306   }
1307 
1308   return nullptr;
1309 }
1310 
1311 /// Given operands for an Shl, see if we can fold the result.
1312 /// If not, this returns null.
1313 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1314                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1315   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1316     return V;
1317 
1318   // undef << X -> 0
1319   // undef << X -> undef if (if it's NSW/NUW)
1320   if (match(Op0, m_Undef()))
1321     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1322 
1323   // (X >> A) << A -> X
1324   Value *X;
1325   if (Q.IIQ.UseInstrInfo &&
1326       match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1327     return X;
1328 
1329   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
1330   if (isNUW && match(Op0, m_Negative()))
1331     return Op0;
1332   // NOTE: could use computeKnownBits() / LazyValueInfo,
1333   // but the cost-benefit analysis suggests it isn't worth it.
1334 
1335   return nullptr;
1336 }
1337 
1338 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1339                              const SimplifyQuery &Q) {
1340   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1341 }
1342 
1343 /// Given operands for an LShr, see if we can fold the result.
1344 /// If not, this returns null.
1345 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1346                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1347   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1348                                     MaxRecurse))
1349       return V;
1350 
1351   // (X << A) >> A -> X
1352   Value *X;
1353   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1354     return X;
1355 
1356   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
1357   // We can return X as we do in the above case since OR alters no bits in X.
1358   // SimplifyDemandedBits in InstCombine can do more general optimization for
1359   // bit manipulation. This pattern aims to provide opportunities for other
1360   // optimizers by supporting a simple but common case in InstSimplify.
1361   Value *Y;
1362   const APInt *ShRAmt, *ShLAmt;
1363   if (match(Op1, m_APInt(ShRAmt)) &&
1364       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1365       *ShRAmt == *ShLAmt) {
1366     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1367     const unsigned Width = Op0->getType()->getScalarSizeInBits();
1368     const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
1369     if (ShRAmt->uge(EffWidthY))
1370       return X;
1371   }
1372 
1373   return nullptr;
1374 }
1375 
1376 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1377                               const SimplifyQuery &Q) {
1378   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1379 }
1380 
1381 /// Given operands for an AShr, see if we can fold the result.
1382 /// If not, this returns null.
1383 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1384                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1385   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1386                                     MaxRecurse))
1387     return V;
1388 
1389   // all ones >>a X -> -1
1390   // Do not return Op0 because it may contain undef elements if it's a vector.
1391   if (match(Op0, m_AllOnes()))
1392     return Constant::getAllOnesValue(Op0->getType());
1393 
1394   // (X << A) >> A -> X
1395   Value *X;
1396   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1397     return X;
1398 
1399   // Arithmetic shifting an all-sign-bit value is a no-op.
1400   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1401   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1402     return Op0;
1403 
1404   return nullptr;
1405 }
1406 
1407 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1408                               const SimplifyQuery &Q) {
1409   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1410 }
1411 
1412 /// Commuted variants are assumed to be handled by calling this function again
1413 /// with the parameters swapped.
1414 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1415                                          ICmpInst *UnsignedICmp, bool IsAnd,
1416                                          const SimplifyQuery &Q) {
1417   Value *X, *Y;
1418 
1419   ICmpInst::Predicate EqPred;
1420   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1421       !ICmpInst::isEquality(EqPred))
1422     return nullptr;
1423 
1424   ICmpInst::Predicate UnsignedPred;
1425 
1426   Value *A, *B;
1427   // Y = (A - B);
1428   if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
1429     if (match(UnsignedICmp,
1430               m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
1431         ICmpInst::isUnsigned(UnsignedPred)) {
1432       if (UnsignedICmp->getOperand(0) != A)
1433         UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1434 
1435       // A >=/<= B || (A - B) != 0  <-->  true
1436       if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1437            UnsignedPred == ICmpInst::ICMP_ULE) &&
1438           EqPred == ICmpInst::ICMP_NE && !IsAnd)
1439         return ConstantInt::getTrue(UnsignedICmp->getType());
1440       // A </> B && (A - B) == 0  <-->  false
1441       if ((UnsignedPred == ICmpInst::ICMP_ULT ||
1442            UnsignedPred == ICmpInst::ICMP_UGT) &&
1443           EqPred == ICmpInst::ICMP_EQ && IsAnd)
1444         return ConstantInt::getFalse(UnsignedICmp->getType());
1445 
1446       // A </> B && (A - B) != 0  <-->  A </> B
1447       // A </> B || (A - B) != 0  <-->  (A - B) != 0
1448       if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT ||
1449                                           UnsignedPred == ICmpInst::ICMP_UGT))
1450         return IsAnd ? UnsignedICmp : ZeroICmp;
1451 
1452       // A <=/>= B && (A - B) == 0  <-->  (A - B) == 0
1453       // A <=/>= B || (A - B) == 0  <-->  A <=/>= B
1454       if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE ||
1455                                           UnsignedPred == ICmpInst::ICMP_UGE))
1456         return IsAnd ? ZeroICmp : UnsignedICmp;
1457     }
1458 
1459     // Given  Y = (A - B)
1460     //   Y >= A && Y != 0  --> Y >= A  iff B != 0
1461     //   Y <  A || Y == 0  --> Y <  A  iff B != 0
1462     if (match(UnsignedICmp,
1463               m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
1464       if (UnsignedICmp->getOperand(0) != Y)
1465         UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1466 
1467       if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
1468           EqPred == ICmpInst::ICMP_NE &&
1469           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1470         return UnsignedICmp;
1471       if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
1472           EqPred == ICmpInst::ICMP_EQ &&
1473           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1474         return UnsignedICmp;
1475     }
1476   }
1477 
1478   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1479       ICmpInst::isUnsigned(UnsignedPred))
1480     ;
1481   else if (match(UnsignedICmp,
1482                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1483            ICmpInst::isUnsigned(UnsignedPred))
1484     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1485   else
1486     return nullptr;
1487 
1488   // X < Y && Y != 0  -->  X < Y
1489   // X < Y || Y != 0  -->  Y != 0
1490   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1491     return IsAnd ? UnsignedICmp : ZeroICmp;
1492 
1493   // X <= Y && Y != 0  -->  X <= Y  iff X != 0
1494   // X <= Y || Y != 0  -->  Y != 0  iff X != 0
1495   if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1496       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1497     return IsAnd ? UnsignedICmp : ZeroICmp;
1498 
1499   // X >= Y && Y == 0  -->  Y == 0
1500   // X >= Y || Y == 0  -->  X >= Y
1501   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
1502     return IsAnd ? ZeroICmp : UnsignedICmp;
1503 
1504   // X > Y && Y == 0  -->  Y == 0  iff X != 0
1505   // X > Y || Y == 0  -->  X > Y   iff X != 0
1506   if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1507       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1508     return IsAnd ? ZeroICmp : UnsignedICmp;
1509 
1510   // X < Y && Y == 0  -->  false
1511   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1512       IsAnd)
1513     return getFalse(UnsignedICmp->getType());
1514 
1515   // X >= Y || Y != 0  -->  true
1516   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
1517       !IsAnd)
1518     return getTrue(UnsignedICmp->getType());
1519 
1520   return nullptr;
1521 }
1522 
1523 /// Commuted variants are assumed to be handled by calling this function again
1524 /// with the parameters swapped.
1525 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1526   ICmpInst::Predicate Pred0, Pred1;
1527   Value *A ,*B;
1528   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1529       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1530     return nullptr;
1531 
1532   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1533   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1534   // can eliminate Op1 from this 'and'.
1535   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1536     return Op0;
1537 
1538   // Check for any combination of predicates that are guaranteed to be disjoint.
1539   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1540       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1541       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1542       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1543     return getFalse(Op0->getType());
1544 
1545   return nullptr;
1546 }
1547 
1548 /// Commuted variants are assumed to be handled by calling this function again
1549 /// with the parameters swapped.
1550 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1551   ICmpInst::Predicate Pred0, Pred1;
1552   Value *A ,*B;
1553   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1554       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1555     return nullptr;
1556 
1557   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1558   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1559   // can eliminate Op0 from this 'or'.
1560   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1561     return Op1;
1562 
1563   // Check for any combination of predicates that cover the entire range of
1564   // possibilities.
1565   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1566       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1567       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1568       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1569     return getTrue(Op0->getType());
1570 
1571   return nullptr;
1572 }
1573 
1574 /// Test if a pair of compares with a shared operand and 2 constants has an
1575 /// empty set intersection, full set union, or if one compare is a superset of
1576 /// the other.
1577 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1578                                                 bool IsAnd) {
1579   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1580   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1581     return nullptr;
1582 
1583   const APInt *C0, *C1;
1584   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1585       !match(Cmp1->getOperand(1), m_APInt(C1)))
1586     return nullptr;
1587 
1588   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1589   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1590 
1591   // For and-of-compares, check if the intersection is empty:
1592   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1593   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1594     return getFalse(Cmp0->getType());
1595 
1596   // For or-of-compares, check if the union is full:
1597   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1598   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1599     return getTrue(Cmp0->getType());
1600 
1601   // Is one range a superset of the other?
1602   // If this is and-of-compares, take the smaller set:
1603   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1604   // If this is or-of-compares, take the larger set:
1605   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1606   if (Range0.contains(Range1))
1607     return IsAnd ? Cmp1 : Cmp0;
1608   if (Range1.contains(Range0))
1609     return IsAnd ? Cmp0 : Cmp1;
1610 
1611   return nullptr;
1612 }
1613 
1614 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1615                                            bool IsAnd) {
1616   ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1617   if (!match(Cmp0->getOperand(1), m_Zero()) ||
1618       !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1619     return nullptr;
1620 
1621   if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1622     return nullptr;
1623 
1624   // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1625   Value *X = Cmp0->getOperand(0);
1626   Value *Y = Cmp1->getOperand(0);
1627 
1628   // If one of the compares is a masked version of a (not) null check, then
1629   // that compare implies the other, so we eliminate the other. Optionally, look
1630   // through a pointer-to-int cast to match a null check of a pointer type.
1631 
1632   // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1633   // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1634   // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1635   // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1636   if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1637       match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1638     return Cmp1;
1639 
1640   // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1641   // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1642   // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1643   // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1644   if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1645       match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1646     return Cmp0;
1647 
1648   return nullptr;
1649 }
1650 
1651 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1652                                         const InstrInfoQuery &IIQ) {
1653   // (icmp (add V, C0), C1) & (icmp V, C0)
1654   ICmpInst::Predicate Pred0, Pred1;
1655   const APInt *C0, *C1;
1656   Value *V;
1657   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1658     return nullptr;
1659 
1660   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1661     return nullptr;
1662 
1663   auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1664   if (AddInst->getOperand(1) != Op1->getOperand(1))
1665     return nullptr;
1666 
1667   Type *ITy = Op0->getType();
1668   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1669   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1670 
1671   const APInt Delta = *C1 - *C0;
1672   if (C0->isStrictlyPositive()) {
1673     if (Delta == 2) {
1674       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1675         return getFalse(ITy);
1676       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1677         return getFalse(ITy);
1678     }
1679     if (Delta == 1) {
1680       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1681         return getFalse(ITy);
1682       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1683         return getFalse(ITy);
1684     }
1685   }
1686   if (C0->getBoolValue() && isNUW) {
1687     if (Delta == 2)
1688       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1689         return getFalse(ITy);
1690     if (Delta == 1)
1691       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1692         return getFalse(ITy);
1693   }
1694 
1695   return nullptr;
1696 }
1697 
1698 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1699                                  const SimplifyQuery &Q) {
1700   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
1701     return X;
1702   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
1703     return X;
1704 
1705   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1706     return X;
1707   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1708     return X;
1709 
1710   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1711     return X;
1712 
1713   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1714     return X;
1715 
1716   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1717     return X;
1718   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1719     return X;
1720 
1721   return nullptr;
1722 }
1723 
1724 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1725                                        const InstrInfoQuery &IIQ) {
1726   // (icmp (add V, C0), C1) | (icmp V, C0)
1727   ICmpInst::Predicate Pred0, Pred1;
1728   const APInt *C0, *C1;
1729   Value *V;
1730   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1731     return nullptr;
1732 
1733   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1734     return nullptr;
1735 
1736   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1737   if (AddInst->getOperand(1) != Op1->getOperand(1))
1738     return nullptr;
1739 
1740   Type *ITy = Op0->getType();
1741   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1742   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1743 
1744   const APInt Delta = *C1 - *C0;
1745   if (C0->isStrictlyPositive()) {
1746     if (Delta == 2) {
1747       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1748         return getTrue(ITy);
1749       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1750         return getTrue(ITy);
1751     }
1752     if (Delta == 1) {
1753       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1754         return getTrue(ITy);
1755       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1756         return getTrue(ITy);
1757     }
1758   }
1759   if (C0->getBoolValue() && isNUW) {
1760     if (Delta == 2)
1761       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1762         return getTrue(ITy);
1763     if (Delta == 1)
1764       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1765         return getTrue(ITy);
1766   }
1767 
1768   return nullptr;
1769 }
1770 
1771 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1772                                 const SimplifyQuery &Q) {
1773   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
1774     return X;
1775   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
1776     return X;
1777 
1778   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1779     return X;
1780   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1781     return X;
1782 
1783   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1784     return X;
1785 
1786   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1787     return X;
1788 
1789   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1790     return X;
1791   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1792     return X;
1793 
1794   return nullptr;
1795 }
1796 
1797 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
1798                                    FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1799   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1800   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1801   if (LHS0->getType() != RHS0->getType())
1802     return nullptr;
1803 
1804   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1805   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1806       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1807     // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1808     // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1809     // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1810     // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1811     // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1812     // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1813     // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1814     // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1815     if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1816         (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1817       return RHS;
1818 
1819     // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1820     // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1821     // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1822     // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1823     // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1824     // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1825     // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1826     // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1827     if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1828         (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1829       return LHS;
1830   }
1831 
1832   return nullptr;
1833 }
1834 
1835 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
1836                                   Value *Op0, Value *Op1, bool IsAnd) {
1837   // Look through casts of the 'and' operands to find compares.
1838   auto *Cast0 = dyn_cast<CastInst>(Op0);
1839   auto *Cast1 = dyn_cast<CastInst>(Op1);
1840   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1841       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1842     Op0 = Cast0->getOperand(0);
1843     Op1 = Cast1->getOperand(0);
1844   }
1845 
1846   Value *V = nullptr;
1847   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1848   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1849   if (ICmp0 && ICmp1)
1850     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
1851               : simplifyOrOfICmps(ICmp0, ICmp1, Q);
1852 
1853   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1854   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1855   if (FCmp0 && FCmp1)
1856     V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
1857 
1858   if (!V)
1859     return nullptr;
1860   if (!Cast0)
1861     return V;
1862 
1863   // If we looked through casts, we can only handle a constant simplification
1864   // because we are not allowed to create a cast instruction here.
1865   if (auto *C = dyn_cast<Constant>(V))
1866     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1867 
1868   return nullptr;
1869 }
1870 
1871 /// Check that the Op1 is in expected form, i.e.:
1872 ///   %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
1873 ///   %Op1 = extractvalue { i4, i1 } %Agg, 1
1874 static bool omitCheckForZeroBeforeMulWithOverflowInternal(Value *Op1,
1875                                                           Value *X) {
1876   auto *Extract = dyn_cast<ExtractValueInst>(Op1);
1877   // We should only be extracting the overflow bit.
1878   if (!Extract || !Extract->getIndices().equals(1))
1879     return false;
1880   Value *Agg = Extract->getAggregateOperand();
1881   // This should be a multiplication-with-overflow intrinsic.
1882   if (!match(Agg, m_CombineOr(m_Intrinsic<Intrinsic::umul_with_overflow>(),
1883                               m_Intrinsic<Intrinsic::smul_with_overflow>())))
1884     return false;
1885   // One of its multipliers should be the value we checked for zero before.
1886   if (!match(Agg, m_CombineOr(m_Argument<0>(m_Specific(X)),
1887                               m_Argument<1>(m_Specific(X)))))
1888     return false;
1889   return true;
1890 }
1891 
1892 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some
1893 /// other form of check, e.g. one that was using division; it may have been
1894 /// guarded against division-by-zero. We can drop that check now.
1895 /// Look for:
1896 ///   %Op0 = icmp ne i4 %X, 0
1897 ///   %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
1898 ///   %Op1 = extractvalue { i4, i1 } %Agg, 1
1899 ///   %??? = and i1 %Op0, %Op1
1900 /// We can just return  %Op1
1901 static Value *omitCheckForZeroBeforeMulWithOverflow(Value *Op0, Value *Op1) {
1902   ICmpInst::Predicate Pred;
1903   Value *X;
1904   if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) ||
1905       Pred != ICmpInst::Predicate::ICMP_NE)
1906     return nullptr;
1907   // Is Op1 in expected form?
1908   if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X))
1909     return nullptr;
1910   // Can omit 'and', and just return the overflow bit.
1911   return Op1;
1912 }
1913 
1914 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some
1915 /// other form of check, e.g. one that was using division; it may have been
1916 /// guarded against division-by-zero. We can drop that check now.
1917 /// Look for:
1918 ///   %Op0 = icmp eq i4 %X, 0
1919 ///   %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
1920 ///   %Op1 = extractvalue { i4, i1 } %Agg, 1
1921 ///   %NotOp1 = xor i1 %Op1, true
1922 ///   %or = or i1 %Op0, %NotOp1
1923 /// We can just return  %NotOp1
1924 static Value *omitCheckForZeroBeforeInvertedMulWithOverflow(Value *Op0,
1925                                                             Value *NotOp1) {
1926   ICmpInst::Predicate Pred;
1927   Value *X;
1928   if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) ||
1929       Pred != ICmpInst::Predicate::ICMP_EQ)
1930     return nullptr;
1931   // We expect the other hand of an 'or' to be a 'not'.
1932   Value *Op1;
1933   if (!match(NotOp1, m_Not(m_Value(Op1))))
1934     return nullptr;
1935   // Is Op1 in expected form?
1936   if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X))
1937     return nullptr;
1938   // Can omit 'and', and just return the inverted overflow bit.
1939   return NotOp1;
1940 }
1941 
1942 /// Given operands for an And, see if we can fold the result.
1943 /// If not, this returns null.
1944 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1945                               unsigned MaxRecurse) {
1946   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
1947     return C;
1948 
1949   // X & undef -> 0
1950   if (match(Op1, m_Undef()))
1951     return Constant::getNullValue(Op0->getType());
1952 
1953   // X & X = X
1954   if (Op0 == Op1)
1955     return Op0;
1956 
1957   // X & 0 = 0
1958   if (match(Op1, m_Zero()))
1959     return Constant::getNullValue(Op0->getType());
1960 
1961   // X & -1 = X
1962   if (match(Op1, m_AllOnes()))
1963     return Op0;
1964 
1965   // A & ~A  =  ~A & A  =  0
1966   if (match(Op0, m_Not(m_Specific(Op1))) ||
1967       match(Op1, m_Not(m_Specific(Op0))))
1968     return Constant::getNullValue(Op0->getType());
1969 
1970   // (A | ?) & A = A
1971   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
1972     return Op1;
1973 
1974   // A & (A | ?) = A
1975   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
1976     return Op0;
1977 
1978   // A mask that only clears known zeros of a shifted value is a no-op.
1979   Value *X;
1980   const APInt *Mask;
1981   const APInt *ShAmt;
1982   if (match(Op1, m_APInt(Mask))) {
1983     // If all bits in the inverted and shifted mask are clear:
1984     // and (shl X, ShAmt), Mask --> shl X, ShAmt
1985     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
1986         (~(*Mask)).lshr(*ShAmt).isNullValue())
1987       return Op0;
1988 
1989     // If all bits in the inverted and shifted mask are clear:
1990     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
1991     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1992         (~(*Mask)).shl(*ShAmt).isNullValue())
1993       return Op0;
1994   }
1995 
1996   // If we have a multiplication overflow check that is being 'and'ed with a
1997   // check that one of the multipliers is not zero, we can omit the 'and', and
1998   // only keep the overflow check.
1999   if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op0, Op1))
2000     return V;
2001   if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op1, Op0))
2002     return V;
2003 
2004   // A & (-A) = A if A is a power of two or zero.
2005   if (match(Op0, m_Neg(m_Specific(Op1))) ||
2006       match(Op1, m_Neg(m_Specific(Op0)))) {
2007     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2008                                Q.DT))
2009       return Op0;
2010     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2011                                Q.DT))
2012       return Op1;
2013   }
2014 
2015   // This is a similar pattern used for checking if a value is a power-of-2:
2016   // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
2017   // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
2018   if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
2019       isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2020     return Constant::getNullValue(Op1->getType());
2021   if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
2022       isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2023     return Constant::getNullValue(Op0->getType());
2024 
2025   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
2026     return V;
2027 
2028   // Try some generic simplifications for associative operations.
2029   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
2030                                           MaxRecurse))
2031     return V;
2032 
2033   // And distributes over Or.  Try some generic simplifications based on this.
2034   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
2035                              Q, MaxRecurse))
2036     return V;
2037 
2038   // And distributes over Xor.  Try some generic simplifications based on this.
2039   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
2040                              Q, MaxRecurse))
2041     return V;
2042 
2043   // If the operation is with the result of a select instruction, check whether
2044   // operating on either branch of the select always yields the same value.
2045   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
2046     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
2047                                          MaxRecurse))
2048       return V;
2049 
2050   // If the operation is with the result of a phi instruction, check whether
2051   // operating on all incoming values of the phi always yields the same value.
2052   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2053     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
2054                                       MaxRecurse))
2055       return V;
2056 
2057   // Assuming the effective width of Y is not larger than A, i.e. all bits
2058   // from X and Y are disjoint in (X << A) | Y,
2059   // if the mask of this AND op covers all bits of X or Y, while it covers
2060   // no bits from the other, we can bypass this AND op. E.g.,
2061   // ((X << A) | Y) & Mask -> Y,
2062   //     if Mask = ((1 << effective_width_of(Y)) - 1)
2063   // ((X << A) | Y) & Mask -> X << A,
2064   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
2065   // SimplifyDemandedBits in InstCombine can optimize the general case.
2066   // This pattern aims to help other passes for a common case.
2067   Value *Y, *XShifted;
2068   if (match(Op1, m_APInt(Mask)) &&
2069       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
2070                                      m_Value(XShifted)),
2071                         m_Value(Y)))) {
2072     const unsigned Width = Op0->getType()->getScalarSizeInBits();
2073     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
2074     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2075     const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
2076     if (EffWidthY <= ShftCnt) {
2077       const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
2078                                                 Q.DT);
2079       const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros();
2080       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
2081       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
2082       // If the mask is extracting all bits from X or Y as is, we can skip
2083       // this AND op.
2084       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
2085         return Y;
2086       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
2087         return XShifted;
2088     }
2089   }
2090 
2091   return nullptr;
2092 }
2093 
2094 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2095   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
2096 }
2097 
2098 /// Given operands for an Or, see if we can fold the result.
2099 /// If not, this returns null.
2100 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2101                              unsigned MaxRecurse) {
2102   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
2103     return C;
2104 
2105   // X | undef -> -1
2106   // X | -1 = -1
2107   // Do not return Op1 because it may contain undef elements if it's a vector.
2108   if (match(Op1, m_Undef()) || match(Op1, m_AllOnes()))
2109     return Constant::getAllOnesValue(Op0->getType());
2110 
2111   // X | X = X
2112   // X | 0 = X
2113   if (Op0 == Op1 || match(Op1, m_Zero()))
2114     return Op0;
2115 
2116   // A | ~A  =  ~A | A  =  -1
2117   if (match(Op0, m_Not(m_Specific(Op1))) ||
2118       match(Op1, m_Not(m_Specific(Op0))))
2119     return Constant::getAllOnesValue(Op0->getType());
2120 
2121   // (A & ?) | A = A
2122   if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
2123     return Op1;
2124 
2125   // A | (A & ?) = A
2126   if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
2127     return Op0;
2128 
2129   // ~(A & ?) | A = -1
2130   if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
2131     return Constant::getAllOnesValue(Op1->getType());
2132 
2133   // A | ~(A & ?) = -1
2134   if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
2135     return Constant::getAllOnesValue(Op0->getType());
2136 
2137   Value *A, *B;
2138   // (A & ~B) | (A ^ B) -> (A ^ B)
2139   // (~B & A) | (A ^ B) -> (A ^ B)
2140   // (A & ~B) | (B ^ A) -> (B ^ A)
2141   // (~B & A) | (B ^ A) -> (B ^ A)
2142   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2143       (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2144        match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2145     return Op1;
2146 
2147   // Commute the 'or' operands.
2148   // (A ^ B) | (A & ~B) -> (A ^ B)
2149   // (A ^ B) | (~B & A) -> (A ^ B)
2150   // (B ^ A) | (A & ~B) -> (B ^ A)
2151   // (B ^ A) | (~B & A) -> (B ^ A)
2152   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2153       (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2154        match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2155     return Op0;
2156 
2157   // (A & B) | (~A ^ B) -> (~A ^ B)
2158   // (B & A) | (~A ^ B) -> (~A ^ B)
2159   // (A & B) | (B ^ ~A) -> (B ^ ~A)
2160   // (B & A) | (B ^ ~A) -> (B ^ ~A)
2161   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2162       (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2163        match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2164     return Op1;
2165 
2166   // (~A ^ B) | (A & B) -> (~A ^ B)
2167   // (~A ^ B) | (B & A) -> (~A ^ B)
2168   // (B ^ ~A) | (A & B) -> (B ^ ~A)
2169   // (B ^ ~A) | (B & A) -> (B ^ ~A)
2170   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
2171       (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2172        match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2173     return Op0;
2174 
2175   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
2176     return V;
2177 
2178   // If we have a multiplication overflow check that is being 'and'ed with a
2179   // check that one of the multipliers is not zero, we can omit the 'and', and
2180   // only keep the overflow check.
2181   if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op0, Op1))
2182     return V;
2183   if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op1, Op0))
2184     return V;
2185 
2186   // Try some generic simplifications for associative operations.
2187   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
2188                                           MaxRecurse))
2189     return V;
2190 
2191   // Or distributes over And.  Try some generic simplifications based on this.
2192   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
2193                              MaxRecurse))
2194     return V;
2195 
2196   // If the operation is with the result of a select instruction, check whether
2197   // operating on either branch of the select always yields the same value.
2198   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
2199     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
2200                                          MaxRecurse))
2201       return V;
2202 
2203   // (A & C1)|(B & C2)
2204   const APInt *C1, *C2;
2205   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2206       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2207     if (*C1 == ~*C2) {
2208       // (A & C1)|(B & C2)
2209       // If we have: ((V + N) & C1) | (V & C2)
2210       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2211       // replace with V+N.
2212       Value *N;
2213       if (C2->isMask() && // C2 == 0+1+
2214           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2215         // Add commutes, try both ways.
2216         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2217           return A;
2218       }
2219       // Or commutes, try both ways.
2220       if (C1->isMask() &&
2221           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2222         // Add commutes, try both ways.
2223         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2224           return B;
2225       }
2226     }
2227   }
2228 
2229   // If the operation is with the result of a phi instruction, check whether
2230   // operating on all incoming values of the phi always yields the same value.
2231   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2232     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2233       return V;
2234 
2235   return nullptr;
2236 }
2237 
2238 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2239   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
2240 }
2241 
2242 /// Given operands for a Xor, see if we can fold the result.
2243 /// If not, this returns null.
2244 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2245                               unsigned MaxRecurse) {
2246   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2247     return C;
2248 
2249   // A ^ undef -> undef
2250   if (match(Op1, m_Undef()))
2251     return Op1;
2252 
2253   // A ^ 0 = A
2254   if (match(Op1, m_Zero()))
2255     return Op0;
2256 
2257   // A ^ A = 0
2258   if (Op0 == Op1)
2259     return Constant::getNullValue(Op0->getType());
2260 
2261   // A ^ ~A  =  ~A ^ A  =  -1
2262   if (match(Op0, m_Not(m_Specific(Op1))) ||
2263       match(Op1, m_Not(m_Specific(Op0))))
2264     return Constant::getAllOnesValue(Op0->getType());
2265 
2266   // Try some generic simplifications for associative operations.
2267   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2268                                           MaxRecurse))
2269     return V;
2270 
2271   // Threading Xor over selects and phi nodes is pointless, so don't bother.
2272   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2273   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2274   // only if B and C are equal.  If B and C are equal then (since we assume
2275   // that operands have already been simplified) "select(cond, B, C)" should
2276   // have been simplified to the common value of B and C already.  Analysing
2277   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2278   // for threading over phi nodes.
2279 
2280   return nullptr;
2281 }
2282 
2283 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2284   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2285 }
2286 
2287 
2288 static Type *GetCompareTy(Value *Op) {
2289   return CmpInst::makeCmpResultType(Op->getType());
2290 }
2291 
2292 /// Rummage around inside V looking for something equivalent to the comparison
2293 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2294 /// Helper function for analyzing max/min idioms.
2295 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2296                                          Value *LHS, Value *RHS) {
2297   SelectInst *SI = dyn_cast<SelectInst>(V);
2298   if (!SI)
2299     return nullptr;
2300   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2301   if (!Cmp)
2302     return nullptr;
2303   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2304   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2305     return Cmp;
2306   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2307       LHS == CmpRHS && RHS == CmpLHS)
2308     return Cmp;
2309   return nullptr;
2310 }
2311 
2312 // A significant optimization not implemented here is assuming that alloca
2313 // addresses are not equal to incoming argument values. They don't *alias*,
2314 // as we say, but that doesn't mean they aren't equal, so we take a
2315 // conservative approach.
2316 //
2317 // This is inspired in part by C++11 5.10p1:
2318 //   "Two pointers of the same type compare equal if and only if they are both
2319 //    null, both point to the same function, or both represent the same
2320 //    address."
2321 //
2322 // This is pretty permissive.
2323 //
2324 // It's also partly due to C11 6.5.9p6:
2325 //   "Two pointers compare equal if and only if both are null pointers, both are
2326 //    pointers to the same object (including a pointer to an object and a
2327 //    subobject at its beginning) or function, both are pointers to one past the
2328 //    last element of the same array object, or one is a pointer to one past the
2329 //    end of one array object and the other is a pointer to the start of a
2330 //    different array object that happens to immediately follow the first array
2331 //    object in the address space.)
2332 //
2333 // C11's version is more restrictive, however there's no reason why an argument
2334 // couldn't be a one-past-the-end value for a stack object in the caller and be
2335 // equal to the beginning of a stack object in the callee.
2336 //
2337 // If the C and C++ standards are ever made sufficiently restrictive in this
2338 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2339 // this optimization.
2340 static Constant *
2341 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
2342                    const DominatorTree *DT, CmpInst::Predicate Pred,
2343                    AssumptionCache *AC, const Instruction *CxtI,
2344                    const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) {
2345   // First, skip past any trivial no-ops.
2346   LHS = LHS->stripPointerCasts();
2347   RHS = RHS->stripPointerCasts();
2348 
2349   // A non-null pointer is not equal to a null pointer.
2350   if (llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2351                            IIQ.UseInstrInfo) &&
2352       isa<ConstantPointerNull>(RHS) &&
2353       (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
2354     return ConstantInt::get(GetCompareTy(LHS),
2355                             !CmpInst::isTrueWhenEqual(Pred));
2356 
2357   // We can only fold certain predicates on pointer comparisons.
2358   switch (Pred) {
2359   default:
2360     return nullptr;
2361 
2362     // Equality comaprisons are easy to fold.
2363   case CmpInst::ICMP_EQ:
2364   case CmpInst::ICMP_NE:
2365     break;
2366 
2367     // We can only handle unsigned relational comparisons because 'inbounds' on
2368     // a GEP only protects against unsigned wrapping.
2369   case CmpInst::ICMP_UGT:
2370   case CmpInst::ICMP_UGE:
2371   case CmpInst::ICMP_ULT:
2372   case CmpInst::ICMP_ULE:
2373     // However, we have to switch them to their signed variants to handle
2374     // negative indices from the base pointer.
2375     Pred = ICmpInst::getSignedPredicate(Pred);
2376     break;
2377   }
2378 
2379   // Strip off any constant offsets so that we can reason about them.
2380   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2381   // here and compare base addresses like AliasAnalysis does, however there are
2382   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2383   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2384   // doesn't need to guarantee pointer inequality when it says NoAlias.
2385   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2386   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2387 
2388   // If LHS and RHS are related via constant offsets to the same base
2389   // value, we can replace it with an icmp which just compares the offsets.
2390   if (LHS == RHS)
2391     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2392 
2393   // Various optimizations for (in)equality comparisons.
2394   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2395     // Different non-empty allocations that exist at the same time have
2396     // different addresses (if the program can tell). Global variables always
2397     // exist, so they always exist during the lifetime of each other and all
2398     // allocas. Two different allocas usually have different addresses...
2399     //
2400     // However, if there's an @llvm.stackrestore dynamically in between two
2401     // allocas, they may have the same address. It's tempting to reduce the
2402     // scope of the problem by only looking at *static* allocas here. That would
2403     // cover the majority of allocas while significantly reducing the likelihood
2404     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2405     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2406     // an entry block. Also, if we have a block that's not attached to a
2407     // function, we can't tell if it's "static" under the current definition.
2408     // Theoretically, this problem could be fixed by creating a new kind of
2409     // instruction kind specifically for static allocas. Such a new instruction
2410     // could be required to be at the top of the entry block, thus preventing it
2411     // from being subject to a @llvm.stackrestore. Instcombine could even
2412     // convert regular allocas into these special allocas. It'd be nifty.
2413     // However, until then, this problem remains open.
2414     //
2415     // So, we'll assume that two non-empty allocas have different addresses
2416     // for now.
2417     //
2418     // With all that, if the offsets are within the bounds of their allocations
2419     // (and not one-past-the-end! so we can't use inbounds!), and their
2420     // allocations aren't the same, the pointers are not equal.
2421     //
2422     // Note that it's not necessary to check for LHS being a global variable
2423     // address, due to canonicalization and constant folding.
2424     if (isa<AllocaInst>(LHS) &&
2425         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2426       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2427       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2428       uint64_t LHSSize, RHSSize;
2429       ObjectSizeOpts Opts;
2430       Opts.NullIsUnknownSize =
2431           NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
2432       if (LHSOffsetCI && RHSOffsetCI &&
2433           getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2434           getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
2435         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2436         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2437         if (!LHSOffsetValue.isNegative() &&
2438             !RHSOffsetValue.isNegative() &&
2439             LHSOffsetValue.ult(LHSSize) &&
2440             RHSOffsetValue.ult(RHSSize)) {
2441           return ConstantInt::get(GetCompareTy(LHS),
2442                                   !CmpInst::isTrueWhenEqual(Pred));
2443         }
2444       }
2445 
2446       // Repeat the above check but this time without depending on DataLayout
2447       // or being able to compute a precise size.
2448       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2449           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2450           LHSOffset->isNullValue() &&
2451           RHSOffset->isNullValue())
2452         return ConstantInt::get(GetCompareTy(LHS),
2453                                 !CmpInst::isTrueWhenEqual(Pred));
2454     }
2455 
2456     // Even if an non-inbounds GEP occurs along the path we can still optimize
2457     // equality comparisons concerning the result. We avoid walking the whole
2458     // chain again by starting where the last calls to
2459     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2460     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2461     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2462     if (LHS == RHS)
2463       return ConstantExpr::getICmp(Pred,
2464                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2465                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2466 
2467     // If one side of the equality comparison must come from a noalias call
2468     // (meaning a system memory allocation function), and the other side must
2469     // come from a pointer that cannot overlap with dynamically-allocated
2470     // memory within the lifetime of the current function (allocas, byval
2471     // arguments, globals), then determine the comparison result here.
2472     SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2473     GetUnderlyingObjects(LHS, LHSUObjs, DL);
2474     GetUnderlyingObjects(RHS, RHSUObjs, DL);
2475 
2476     // Is the set of underlying objects all noalias calls?
2477     auto IsNAC = [](ArrayRef<const Value *> Objects) {
2478       return all_of(Objects, isNoAliasCall);
2479     };
2480 
2481     // Is the set of underlying objects all things which must be disjoint from
2482     // noalias calls. For allocas, we consider only static ones (dynamic
2483     // allocas might be transformed into calls to malloc not simultaneously
2484     // live with the compared-to allocation). For globals, we exclude symbols
2485     // that might be resolve lazily to symbols in another dynamically-loaded
2486     // library (and, thus, could be malloc'ed by the implementation).
2487     auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2488       return all_of(Objects, [](const Value *V) {
2489         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2490           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2491         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2492           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2493                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2494                  !GV->isThreadLocal();
2495         if (const Argument *A = dyn_cast<Argument>(V))
2496           return A->hasByValAttr();
2497         return false;
2498       });
2499     };
2500 
2501     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2502         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2503         return ConstantInt::get(GetCompareTy(LHS),
2504                                 !CmpInst::isTrueWhenEqual(Pred));
2505 
2506     // Fold comparisons for non-escaping pointer even if the allocation call
2507     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2508     // dynamic allocation call could be either of the operands.
2509     Value *MI = nullptr;
2510     if (isAllocLikeFn(LHS, TLI) &&
2511         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2512       MI = LHS;
2513     else if (isAllocLikeFn(RHS, TLI) &&
2514              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2515       MI = RHS;
2516     // FIXME: We should also fold the compare when the pointer escapes, but the
2517     // compare dominates the pointer escape
2518     if (MI && !PointerMayBeCaptured(MI, true, true))
2519       return ConstantInt::get(GetCompareTy(LHS),
2520                               CmpInst::isFalseWhenEqual(Pred));
2521   }
2522 
2523   // Otherwise, fail.
2524   return nullptr;
2525 }
2526 
2527 /// Fold an icmp when its operands have i1 scalar type.
2528 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2529                                   Value *RHS, const SimplifyQuery &Q) {
2530   Type *ITy = GetCompareTy(LHS); // The return type.
2531   Type *OpTy = LHS->getType();   // The operand type.
2532   if (!OpTy->isIntOrIntVectorTy(1))
2533     return nullptr;
2534 
2535   // A boolean compared to true/false can be simplified in 14 out of the 20
2536   // (10 predicates * 2 constants) possible combinations. Cases not handled here
2537   // require a 'not' of the LHS, so those must be transformed in InstCombine.
2538   if (match(RHS, m_Zero())) {
2539     switch (Pred) {
2540     case CmpInst::ICMP_NE:  // X !=  0 -> X
2541     case CmpInst::ICMP_UGT: // X >u  0 -> X
2542     case CmpInst::ICMP_SLT: // X <s  0 -> X
2543       return LHS;
2544 
2545     case CmpInst::ICMP_ULT: // X <u  0 -> false
2546     case CmpInst::ICMP_SGT: // X >s  0 -> false
2547       return getFalse(ITy);
2548 
2549     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2550     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2551       return getTrue(ITy);
2552 
2553     default: break;
2554     }
2555   } else if (match(RHS, m_One())) {
2556     switch (Pred) {
2557     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2558     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2559     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2560       return LHS;
2561 
2562     case CmpInst::ICMP_UGT: // X >u   1 -> false
2563     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2564       return getFalse(ITy);
2565 
2566     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2567     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2568       return getTrue(ITy);
2569 
2570     default: break;
2571     }
2572   }
2573 
2574   switch (Pred) {
2575   default:
2576     break;
2577   case ICmpInst::ICMP_UGE:
2578     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2579       return getTrue(ITy);
2580     break;
2581   case ICmpInst::ICMP_SGE:
2582     /// For signed comparison, the values for an i1 are 0 and -1
2583     /// respectively. This maps into a truth table of:
2584     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2585     ///  0  |  0  |  1 (0 >= 0)   |  1
2586     ///  0  |  1  |  1 (0 >= -1)  |  1
2587     ///  1  |  0  |  0 (-1 >= 0)  |  0
2588     ///  1  |  1  |  1 (-1 >= -1) |  1
2589     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2590       return getTrue(ITy);
2591     break;
2592   case ICmpInst::ICMP_ULE:
2593     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2594       return getTrue(ITy);
2595     break;
2596   }
2597 
2598   return nullptr;
2599 }
2600 
2601 /// Try hard to fold icmp with zero RHS because this is a common case.
2602 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2603                                    Value *RHS, const SimplifyQuery &Q) {
2604   if (!match(RHS, m_Zero()))
2605     return nullptr;
2606 
2607   Type *ITy = GetCompareTy(LHS); // The return type.
2608   switch (Pred) {
2609   default:
2610     llvm_unreachable("Unknown ICmp predicate!");
2611   case ICmpInst::ICMP_ULT:
2612     return getFalse(ITy);
2613   case ICmpInst::ICMP_UGE:
2614     return getTrue(ITy);
2615   case ICmpInst::ICMP_EQ:
2616   case ICmpInst::ICMP_ULE:
2617     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2618       return getFalse(ITy);
2619     break;
2620   case ICmpInst::ICMP_NE:
2621   case ICmpInst::ICMP_UGT:
2622     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2623       return getTrue(ITy);
2624     break;
2625   case ICmpInst::ICMP_SLT: {
2626     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2627     if (LHSKnown.isNegative())
2628       return getTrue(ITy);
2629     if (LHSKnown.isNonNegative())
2630       return getFalse(ITy);
2631     break;
2632   }
2633   case ICmpInst::ICMP_SLE: {
2634     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2635     if (LHSKnown.isNegative())
2636       return getTrue(ITy);
2637     if (LHSKnown.isNonNegative() &&
2638         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2639       return getFalse(ITy);
2640     break;
2641   }
2642   case ICmpInst::ICMP_SGE: {
2643     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2644     if (LHSKnown.isNegative())
2645       return getFalse(ITy);
2646     if (LHSKnown.isNonNegative())
2647       return getTrue(ITy);
2648     break;
2649   }
2650   case ICmpInst::ICMP_SGT: {
2651     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2652     if (LHSKnown.isNegative())
2653       return getFalse(ITy);
2654     if (LHSKnown.isNonNegative() &&
2655         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2656       return getTrue(ITy);
2657     break;
2658   }
2659   }
2660 
2661   return nullptr;
2662 }
2663 
2664 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2665                                        Value *RHS, const InstrInfoQuery &IIQ) {
2666   Type *ITy = GetCompareTy(RHS); // The return type.
2667 
2668   Value *X;
2669   // Sign-bit checks can be optimized to true/false after unsigned
2670   // floating-point casts:
2671   // icmp slt (bitcast (uitofp X)),  0 --> false
2672   // icmp sgt (bitcast (uitofp X)), -1 --> true
2673   if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2674     if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2675       return ConstantInt::getFalse(ITy);
2676     if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2677       return ConstantInt::getTrue(ITy);
2678   }
2679 
2680   const APInt *C;
2681   if (!match(RHS, m_APInt(C)))
2682     return nullptr;
2683 
2684   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2685   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2686   if (RHS_CR.isEmptySet())
2687     return ConstantInt::getFalse(ITy);
2688   if (RHS_CR.isFullSet())
2689     return ConstantInt::getTrue(ITy);
2690 
2691   ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo);
2692   if (!LHS_CR.isFullSet()) {
2693     if (RHS_CR.contains(LHS_CR))
2694       return ConstantInt::getTrue(ITy);
2695     if (RHS_CR.inverse().contains(LHS_CR))
2696       return ConstantInt::getFalse(ITy);
2697   }
2698 
2699   return nullptr;
2700 }
2701 
2702 /// TODO: A large part of this logic is duplicated in InstCombine's
2703 /// foldICmpBinOp(). We should be able to share that and avoid the code
2704 /// duplication.
2705 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
2706                                     Value *RHS, const SimplifyQuery &Q,
2707                                     unsigned MaxRecurse) {
2708   Type *ITy = GetCompareTy(LHS); // The return type.
2709 
2710   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2711   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2712   if (MaxRecurse && (LBO || RBO)) {
2713     // Analyze the case when either LHS or RHS is an add instruction.
2714     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2715     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2716     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2717     if (LBO && LBO->getOpcode() == Instruction::Add) {
2718       A = LBO->getOperand(0);
2719       B = LBO->getOperand(1);
2720       NoLHSWrapProblem =
2721           ICmpInst::isEquality(Pred) ||
2722           (CmpInst::isUnsigned(Pred) &&
2723            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
2724           (CmpInst::isSigned(Pred) &&
2725            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
2726     }
2727     if (RBO && RBO->getOpcode() == Instruction::Add) {
2728       C = RBO->getOperand(0);
2729       D = RBO->getOperand(1);
2730       NoRHSWrapProblem =
2731           ICmpInst::isEquality(Pred) ||
2732           (CmpInst::isUnsigned(Pred) &&
2733            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
2734           (CmpInst::isSigned(Pred) &&
2735            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
2736     }
2737 
2738     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2739     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2740       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2741                                       Constant::getNullValue(RHS->getType()), Q,
2742                                       MaxRecurse - 1))
2743         return V;
2744 
2745     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2746     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2747       if (Value *V =
2748               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
2749                                C == LHS ? D : C, Q, MaxRecurse - 1))
2750         return V;
2751 
2752     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2753     if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem &&
2754         NoRHSWrapProblem) {
2755       // Determine Y and Z in the form icmp (X+Y), (X+Z).
2756       Value *Y, *Z;
2757       if (A == C) {
2758         // C + B == C + D  ->  B == D
2759         Y = B;
2760         Z = D;
2761       } else if (A == D) {
2762         // D + B == C + D  ->  B == C
2763         Y = B;
2764         Z = C;
2765       } else if (B == C) {
2766         // A + C == C + D  ->  A == D
2767         Y = A;
2768         Z = D;
2769       } else {
2770         assert(B == D);
2771         // A + D == C + D  ->  A == C
2772         Y = A;
2773         Z = C;
2774       }
2775       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
2776         return V;
2777     }
2778   }
2779 
2780   {
2781     Value *Y = nullptr;
2782     // icmp pred (or X, Y), X
2783     if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2784       if (Pred == ICmpInst::ICMP_ULT)
2785         return getFalse(ITy);
2786       if (Pred == ICmpInst::ICMP_UGE)
2787         return getTrue(ITy);
2788 
2789       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2790         KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2791         KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2792         if (RHSKnown.isNonNegative() && YKnown.isNegative())
2793           return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2794         if (RHSKnown.isNegative() || YKnown.isNonNegative())
2795           return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2796       }
2797     }
2798     // icmp pred X, (or X, Y)
2799     if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
2800       if (Pred == ICmpInst::ICMP_ULE)
2801         return getTrue(ITy);
2802       if (Pred == ICmpInst::ICMP_UGT)
2803         return getFalse(ITy);
2804 
2805       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
2806         KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2807         KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2808         if (LHSKnown.isNonNegative() && YKnown.isNegative())
2809           return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
2810         if (LHSKnown.isNegative() || YKnown.isNonNegative())
2811           return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
2812       }
2813     }
2814   }
2815 
2816   // icmp pred (and X, Y), X
2817   if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2818     if (Pred == ICmpInst::ICMP_UGT)
2819       return getFalse(ITy);
2820     if (Pred == ICmpInst::ICMP_ULE)
2821       return getTrue(ITy);
2822   }
2823   // icmp pred X, (and X, Y)
2824   if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) {
2825     if (Pred == ICmpInst::ICMP_UGE)
2826       return getTrue(ITy);
2827     if (Pred == ICmpInst::ICMP_ULT)
2828       return getFalse(ITy);
2829   }
2830 
2831   // 0 - (zext X) pred C
2832   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
2833     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2834       if (RHSC->getValue().isStrictlyPositive()) {
2835         if (Pred == ICmpInst::ICMP_SLT)
2836           return ConstantInt::getTrue(RHSC->getContext());
2837         if (Pred == ICmpInst::ICMP_SGE)
2838           return ConstantInt::getFalse(RHSC->getContext());
2839         if (Pred == ICmpInst::ICMP_EQ)
2840           return ConstantInt::getFalse(RHSC->getContext());
2841         if (Pred == ICmpInst::ICMP_NE)
2842           return ConstantInt::getTrue(RHSC->getContext());
2843       }
2844       if (RHSC->getValue().isNonNegative()) {
2845         if (Pred == ICmpInst::ICMP_SLE)
2846           return ConstantInt::getTrue(RHSC->getContext());
2847         if (Pred == ICmpInst::ICMP_SGT)
2848           return ConstantInt::getFalse(RHSC->getContext());
2849       }
2850     }
2851   }
2852 
2853   // icmp pred (urem X, Y), Y
2854   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2855     switch (Pred) {
2856     default:
2857       break;
2858     case ICmpInst::ICMP_SGT:
2859     case ICmpInst::ICMP_SGE: {
2860       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2861       if (!Known.isNonNegative())
2862         break;
2863       LLVM_FALLTHROUGH;
2864     }
2865     case ICmpInst::ICMP_EQ:
2866     case ICmpInst::ICMP_UGT:
2867     case ICmpInst::ICMP_UGE:
2868       return getFalse(ITy);
2869     case ICmpInst::ICMP_SLT:
2870     case ICmpInst::ICMP_SLE: {
2871       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2872       if (!Known.isNonNegative())
2873         break;
2874       LLVM_FALLTHROUGH;
2875     }
2876     case ICmpInst::ICMP_NE:
2877     case ICmpInst::ICMP_ULT:
2878     case ICmpInst::ICMP_ULE:
2879       return getTrue(ITy);
2880     }
2881   }
2882 
2883   // icmp pred X, (urem Y, X)
2884   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2885     switch (Pred) {
2886     default:
2887       break;
2888     case ICmpInst::ICMP_SGT:
2889     case ICmpInst::ICMP_SGE: {
2890       KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2891       if (!Known.isNonNegative())
2892         break;
2893       LLVM_FALLTHROUGH;
2894     }
2895     case ICmpInst::ICMP_NE:
2896     case ICmpInst::ICMP_UGT:
2897     case ICmpInst::ICMP_UGE:
2898       return getTrue(ITy);
2899     case ICmpInst::ICMP_SLT:
2900     case ICmpInst::ICMP_SLE: {
2901       KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2902       if (!Known.isNonNegative())
2903         break;
2904       LLVM_FALLTHROUGH;
2905     }
2906     case ICmpInst::ICMP_EQ:
2907     case ICmpInst::ICMP_ULT:
2908     case ICmpInst::ICMP_ULE:
2909       return getFalse(ITy);
2910     }
2911   }
2912 
2913   // x >> y <=u x
2914   // x udiv y <=u x.
2915   if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2916               match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
2917     // icmp pred (X op Y), X
2918     if (Pred == ICmpInst::ICMP_UGT)
2919       return getFalse(ITy);
2920     if (Pred == ICmpInst::ICMP_ULE)
2921       return getTrue(ITy);
2922   }
2923 
2924   // x >=u x >> y
2925   // x >=u x udiv y.
2926   if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) ||
2927               match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) {
2928     // icmp pred X, (X op Y)
2929     if (Pred == ICmpInst::ICMP_ULT)
2930       return getFalse(ITy);
2931     if (Pred == ICmpInst::ICMP_UGE)
2932       return getTrue(ITy);
2933   }
2934 
2935   // handle:
2936   //   CI2 << X == CI
2937   //   CI2 << X != CI
2938   //
2939   //   where CI2 is a power of 2 and CI isn't
2940   if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
2941     const APInt *CI2Val, *CIVal = &CI->getValue();
2942     if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
2943         CI2Val->isPowerOf2()) {
2944       if (!CIVal->isPowerOf2()) {
2945         // CI2 << X can equal zero in some circumstances,
2946         // this simplification is unsafe if CI is zero.
2947         //
2948         // We know it is safe if:
2949         // - The shift is nsw, we can't shift out the one bit.
2950         // - The shift is nuw, we can't shift out the one bit.
2951         // - CI2 is one
2952         // - CI isn't zero
2953         if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
2954             Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
2955             CI2Val->isOneValue() || !CI->isZero()) {
2956           if (Pred == ICmpInst::ICMP_EQ)
2957             return ConstantInt::getFalse(RHS->getContext());
2958           if (Pred == ICmpInst::ICMP_NE)
2959             return ConstantInt::getTrue(RHS->getContext());
2960         }
2961       }
2962       if (CIVal->isSignMask() && CI2Val->isOneValue()) {
2963         if (Pred == ICmpInst::ICMP_UGT)
2964           return ConstantInt::getFalse(RHS->getContext());
2965         if (Pred == ICmpInst::ICMP_ULE)
2966           return ConstantInt::getTrue(RHS->getContext());
2967       }
2968     }
2969   }
2970 
2971   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2972       LBO->getOperand(1) == RBO->getOperand(1)) {
2973     switch (LBO->getOpcode()) {
2974     default:
2975       break;
2976     case Instruction::UDiv:
2977     case Instruction::LShr:
2978       if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
2979           !Q.IIQ.isExact(RBO))
2980         break;
2981       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2982                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2983           return V;
2984       break;
2985     case Instruction::SDiv:
2986       if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
2987           !Q.IIQ.isExact(RBO))
2988         break;
2989       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2990                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2991         return V;
2992       break;
2993     case Instruction::AShr:
2994       if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
2995         break;
2996       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2997                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2998         return V;
2999       break;
3000     case Instruction::Shl: {
3001       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
3002       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
3003       if (!NUW && !NSW)
3004         break;
3005       if (!NSW && ICmpInst::isSigned(Pred))
3006         break;
3007       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3008                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3009         return V;
3010       break;
3011     }
3012     }
3013   }
3014   return nullptr;
3015 }
3016 
3017 /// Simplify integer comparisons where at least one operand of the compare
3018 /// matches an integer min/max idiom.
3019 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
3020                                      Value *RHS, const SimplifyQuery &Q,
3021                                      unsigned MaxRecurse) {
3022   Type *ITy = GetCompareTy(LHS); // The return type.
3023   Value *A, *B;
3024   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
3025   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
3026 
3027   // Signed variants on "max(a,b)>=a -> true".
3028   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3029     if (A != RHS)
3030       std::swap(A, B);       // smax(A, B) pred A.
3031     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3032     // We analyze this as smax(A, B) pred A.
3033     P = Pred;
3034   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
3035              (A == LHS || B == LHS)) {
3036     if (A != LHS)
3037       std::swap(A, B);       // A pred smax(A, B).
3038     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3039     // We analyze this as smax(A, B) swapped-pred A.
3040     P = CmpInst::getSwappedPredicate(Pred);
3041   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3042              (A == RHS || B == RHS)) {
3043     if (A != RHS)
3044       std::swap(A, B);       // smin(A, B) pred A.
3045     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3046     // We analyze this as smax(-A, -B) swapped-pred -A.
3047     // Note that we do not need to actually form -A or -B thanks to EqP.
3048     P = CmpInst::getSwappedPredicate(Pred);
3049   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
3050              (A == LHS || B == LHS)) {
3051     if (A != LHS)
3052       std::swap(A, B);       // A pred smin(A, B).
3053     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3054     // We analyze this as smax(-A, -B) pred -A.
3055     // Note that we do not need to actually form -A or -B thanks to EqP.
3056     P = Pred;
3057   }
3058   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3059     // Cases correspond to "max(A, B) p A".
3060     switch (P) {
3061     default:
3062       break;
3063     case CmpInst::ICMP_EQ:
3064     case CmpInst::ICMP_SLE:
3065       // Equivalent to "A EqP B".  This may be the same as the condition tested
3066       // in the max/min; if so, we can just return that.
3067       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3068         return V;
3069       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3070         return V;
3071       // Otherwise, see if "A EqP B" simplifies.
3072       if (MaxRecurse)
3073         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3074           return V;
3075       break;
3076     case CmpInst::ICMP_NE:
3077     case CmpInst::ICMP_SGT: {
3078       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3079       // Equivalent to "A InvEqP B".  This may be the same as the condition
3080       // tested in the max/min; if so, we can just return that.
3081       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3082         return V;
3083       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3084         return V;
3085       // Otherwise, see if "A InvEqP B" simplifies.
3086       if (MaxRecurse)
3087         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3088           return V;
3089       break;
3090     }
3091     case CmpInst::ICMP_SGE:
3092       // Always true.
3093       return getTrue(ITy);
3094     case CmpInst::ICMP_SLT:
3095       // Always false.
3096       return getFalse(ITy);
3097     }
3098   }
3099 
3100   // Unsigned variants on "max(a,b)>=a -> true".
3101   P = CmpInst::BAD_ICMP_PREDICATE;
3102   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3103     if (A != RHS)
3104       std::swap(A, B);       // umax(A, B) pred A.
3105     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3106     // We analyze this as umax(A, B) pred A.
3107     P = Pred;
3108   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3109              (A == LHS || B == LHS)) {
3110     if (A != LHS)
3111       std::swap(A, B);       // A pred umax(A, B).
3112     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3113     // We analyze this as umax(A, B) swapped-pred A.
3114     P = CmpInst::getSwappedPredicate(Pred);
3115   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3116              (A == RHS || B == RHS)) {
3117     if (A != RHS)
3118       std::swap(A, B);       // umin(A, B) pred A.
3119     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3120     // We analyze this as umax(-A, -B) swapped-pred -A.
3121     // Note that we do not need to actually form -A or -B thanks to EqP.
3122     P = CmpInst::getSwappedPredicate(Pred);
3123   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3124              (A == LHS || B == LHS)) {
3125     if (A != LHS)
3126       std::swap(A, B);       // A pred umin(A, B).
3127     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3128     // We analyze this as umax(-A, -B) pred -A.
3129     // Note that we do not need to actually form -A or -B thanks to EqP.
3130     P = Pred;
3131   }
3132   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3133     // Cases correspond to "max(A, B) p A".
3134     switch (P) {
3135     default:
3136       break;
3137     case CmpInst::ICMP_EQ:
3138     case CmpInst::ICMP_ULE:
3139       // Equivalent to "A EqP B".  This may be the same as the condition tested
3140       // in the max/min; if so, we can just return that.
3141       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3142         return V;
3143       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3144         return V;
3145       // Otherwise, see if "A EqP B" simplifies.
3146       if (MaxRecurse)
3147         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3148           return V;
3149       break;
3150     case CmpInst::ICMP_NE:
3151     case CmpInst::ICMP_UGT: {
3152       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3153       // Equivalent to "A InvEqP B".  This may be the same as the condition
3154       // tested in the max/min; if so, we can just return that.
3155       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3156         return V;
3157       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3158         return V;
3159       // Otherwise, see if "A InvEqP B" simplifies.
3160       if (MaxRecurse)
3161         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3162           return V;
3163       break;
3164     }
3165     case CmpInst::ICMP_UGE:
3166       // Always true.
3167       return getTrue(ITy);
3168     case CmpInst::ICMP_ULT:
3169       // Always false.
3170       return getFalse(ITy);
3171     }
3172   }
3173 
3174   // Variants on "max(x,y) >= min(x,z)".
3175   Value *C, *D;
3176   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3177       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3178       (A == C || A == D || B == C || B == D)) {
3179     // max(x, ?) pred min(x, ?).
3180     if (Pred == CmpInst::ICMP_SGE)
3181       // Always true.
3182       return getTrue(ITy);
3183     if (Pred == CmpInst::ICMP_SLT)
3184       // Always false.
3185       return getFalse(ITy);
3186   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3187              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
3188              (A == C || A == D || B == C || B == D)) {
3189     // min(x, ?) pred max(x, ?).
3190     if (Pred == CmpInst::ICMP_SLE)
3191       // Always true.
3192       return getTrue(ITy);
3193     if (Pred == CmpInst::ICMP_SGT)
3194       // Always false.
3195       return getFalse(ITy);
3196   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3197              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3198              (A == C || A == D || B == C || B == D)) {
3199     // max(x, ?) pred min(x, ?).
3200     if (Pred == CmpInst::ICMP_UGE)
3201       // Always true.
3202       return getTrue(ITy);
3203     if (Pred == CmpInst::ICMP_ULT)
3204       // Always false.
3205       return getFalse(ITy);
3206   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3207              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
3208              (A == C || A == D || B == C || B == D)) {
3209     // min(x, ?) pred max(x, ?).
3210     if (Pred == CmpInst::ICMP_ULE)
3211       // Always true.
3212       return getTrue(ITy);
3213     if (Pred == CmpInst::ICMP_UGT)
3214       // Always false.
3215       return getFalse(ITy);
3216   }
3217 
3218   return nullptr;
3219 }
3220 
3221 /// Given operands for an ICmpInst, see if we can fold the result.
3222 /// If not, this returns null.
3223 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3224                                const SimplifyQuery &Q, unsigned MaxRecurse) {
3225   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3226   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3227 
3228   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3229     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3230       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3231 
3232     // If we have a constant, make sure it is on the RHS.
3233     std::swap(LHS, RHS);
3234     Pred = CmpInst::getSwappedPredicate(Pred);
3235   }
3236   assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3237 
3238   Type *ITy = GetCompareTy(LHS); // The return type.
3239 
3240   // For EQ and NE, we can always pick a value for the undef to make the
3241   // predicate pass or fail, so we can return undef.
3242   // Matches behavior in llvm::ConstantFoldCompareInstruction.
3243   if (isa<UndefValue>(RHS) && ICmpInst::isEquality(Pred))
3244     return UndefValue::get(ITy);
3245 
3246   // icmp X, X -> true/false
3247   // icmp X, undef -> true/false because undef could be X.
3248   if (LHS == RHS || isa<UndefValue>(RHS))
3249     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3250 
3251   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3252     return V;
3253 
3254   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3255     return V;
3256 
3257   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3258     return V;
3259 
3260   // If both operands have range metadata, use the metadata
3261   // to simplify the comparison.
3262   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3263     auto RHS_Instr = cast<Instruction>(RHS);
3264     auto LHS_Instr = cast<Instruction>(LHS);
3265 
3266     if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3267         Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3268       auto RHS_CR = getConstantRangeFromMetadata(
3269           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3270       auto LHS_CR = getConstantRangeFromMetadata(
3271           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3272 
3273       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
3274       if (Satisfied_CR.contains(LHS_CR))
3275         return ConstantInt::getTrue(RHS->getContext());
3276 
3277       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
3278                 CmpInst::getInversePredicate(Pred), RHS_CR);
3279       if (InversedSatisfied_CR.contains(LHS_CR))
3280         return ConstantInt::getFalse(RHS->getContext());
3281     }
3282   }
3283 
3284   // Compare of cast, for example (zext X) != 0 -> X != 0
3285   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3286     Instruction *LI = cast<CastInst>(LHS);
3287     Value *SrcOp = LI->getOperand(0);
3288     Type *SrcTy = SrcOp->getType();
3289     Type *DstTy = LI->getType();
3290 
3291     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3292     // if the integer type is the same size as the pointer type.
3293     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3294         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3295       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3296         // Transfer the cast to the constant.
3297         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3298                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3299                                         Q, MaxRecurse-1))
3300           return V;
3301       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3302         if (RI->getOperand(0)->getType() == SrcTy)
3303           // Compare without the cast.
3304           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3305                                           Q, MaxRecurse-1))
3306             return V;
3307       }
3308     }
3309 
3310     if (isa<ZExtInst>(LHS)) {
3311       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3312       // same type.
3313       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3314         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3315           // Compare X and Y.  Note that signed predicates become unsigned.
3316           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3317                                           SrcOp, RI->getOperand(0), Q,
3318                                           MaxRecurse-1))
3319             return V;
3320       }
3321       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3322       // too.  If not, then try to deduce the result of the comparison.
3323       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3324         // Compute the constant that would happen if we truncated to SrcTy then
3325         // reextended to DstTy.
3326         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3327         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3328 
3329         // If the re-extended constant didn't change then this is effectively
3330         // also a case of comparing two zero-extended values.
3331         if (RExt == CI && MaxRecurse)
3332           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3333                                         SrcOp, Trunc, Q, MaxRecurse-1))
3334             return V;
3335 
3336         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3337         // there.  Use this to work out the result of the comparison.
3338         if (RExt != CI) {
3339           switch (Pred) {
3340           default: llvm_unreachable("Unknown ICmp predicate!");
3341           // LHS <u RHS.
3342           case ICmpInst::ICMP_EQ:
3343           case ICmpInst::ICMP_UGT:
3344           case ICmpInst::ICMP_UGE:
3345             return ConstantInt::getFalse(CI->getContext());
3346 
3347           case ICmpInst::ICMP_NE:
3348           case ICmpInst::ICMP_ULT:
3349           case ICmpInst::ICMP_ULE:
3350             return ConstantInt::getTrue(CI->getContext());
3351 
3352           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3353           // is non-negative then LHS <s RHS.
3354           case ICmpInst::ICMP_SGT:
3355           case ICmpInst::ICMP_SGE:
3356             return CI->getValue().isNegative() ?
3357               ConstantInt::getTrue(CI->getContext()) :
3358               ConstantInt::getFalse(CI->getContext());
3359 
3360           case ICmpInst::ICMP_SLT:
3361           case ICmpInst::ICMP_SLE:
3362             return CI->getValue().isNegative() ?
3363               ConstantInt::getFalse(CI->getContext()) :
3364               ConstantInt::getTrue(CI->getContext());
3365           }
3366         }
3367       }
3368     }
3369 
3370     if (isa<SExtInst>(LHS)) {
3371       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3372       // same type.
3373       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3374         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3375           // Compare X and Y.  Note that the predicate does not change.
3376           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3377                                           Q, MaxRecurse-1))
3378             return V;
3379       }
3380       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3381       // too.  If not, then try to deduce the result of the comparison.
3382       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3383         // Compute the constant that would happen if we truncated to SrcTy then
3384         // reextended to DstTy.
3385         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3386         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3387 
3388         // If the re-extended constant didn't change then this is effectively
3389         // also a case of comparing two sign-extended values.
3390         if (RExt == CI && MaxRecurse)
3391           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3392             return V;
3393 
3394         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3395         // bits there.  Use this to work out the result of the comparison.
3396         if (RExt != CI) {
3397           switch (Pred) {
3398           default: llvm_unreachable("Unknown ICmp predicate!");
3399           case ICmpInst::ICMP_EQ:
3400             return ConstantInt::getFalse(CI->getContext());
3401           case ICmpInst::ICMP_NE:
3402             return ConstantInt::getTrue(CI->getContext());
3403 
3404           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3405           // LHS >s RHS.
3406           case ICmpInst::ICMP_SGT:
3407           case ICmpInst::ICMP_SGE:
3408             return CI->getValue().isNegative() ?
3409               ConstantInt::getTrue(CI->getContext()) :
3410               ConstantInt::getFalse(CI->getContext());
3411           case ICmpInst::ICMP_SLT:
3412           case ICmpInst::ICMP_SLE:
3413             return CI->getValue().isNegative() ?
3414               ConstantInt::getFalse(CI->getContext()) :
3415               ConstantInt::getTrue(CI->getContext());
3416 
3417           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3418           // LHS >u RHS.
3419           case ICmpInst::ICMP_UGT:
3420           case ICmpInst::ICMP_UGE:
3421             // Comparison is true iff the LHS <s 0.
3422             if (MaxRecurse)
3423               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3424                                               Constant::getNullValue(SrcTy),
3425                                               Q, MaxRecurse-1))
3426                 return V;
3427             break;
3428           case ICmpInst::ICMP_ULT:
3429           case ICmpInst::ICMP_ULE:
3430             // Comparison is true iff the LHS >=s 0.
3431             if (MaxRecurse)
3432               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3433                                               Constant::getNullValue(SrcTy),
3434                                               Q, MaxRecurse-1))
3435                 return V;
3436             break;
3437           }
3438         }
3439       }
3440     }
3441   }
3442 
3443   // icmp eq|ne X, Y -> false|true if X != Y
3444   if (ICmpInst::isEquality(Pred) &&
3445       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3446     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3447   }
3448 
3449   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3450     return V;
3451 
3452   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3453     return V;
3454 
3455   // Simplify comparisons of related pointers using a powerful, recursive
3456   // GEP-walk when we have target data available..
3457   if (LHS->getType()->isPointerTy())
3458     if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3459                                      Q.IIQ, LHS, RHS))
3460       return C;
3461   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3462     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3463       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3464               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3465           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3466               Q.DL.getTypeSizeInBits(CRHS->getType()))
3467         if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3468                                          Q.IIQ, CLHS->getPointerOperand(),
3469                                          CRHS->getPointerOperand()))
3470           return C;
3471 
3472   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3473     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3474       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3475           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3476           (ICmpInst::isEquality(Pred) ||
3477            (GLHS->isInBounds() && GRHS->isInBounds() &&
3478             Pred == ICmpInst::getSignedPredicate(Pred)))) {
3479         // The bases are equal and the indices are constant.  Build a constant
3480         // expression GEP with the same indices and a null base pointer to see
3481         // what constant folding can make out of it.
3482         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3483         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
3484         Constant *NewLHS = ConstantExpr::getGetElementPtr(
3485             GLHS->getSourceElementType(), Null, IndicesLHS);
3486 
3487         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3488         Constant *NewRHS = ConstantExpr::getGetElementPtr(
3489             GLHS->getSourceElementType(), Null, IndicesRHS);
3490         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3491       }
3492     }
3493   }
3494 
3495   // If the comparison is with the result of a select instruction, check whether
3496   // comparing with either branch of the select always yields the same value.
3497   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3498     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3499       return V;
3500 
3501   // If the comparison is with the result of a phi instruction, check whether
3502   // doing the compare with each incoming phi value yields a common result.
3503   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3504     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3505       return V;
3506 
3507   return nullptr;
3508 }
3509 
3510 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3511                               const SimplifyQuery &Q) {
3512   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3513 }
3514 
3515 /// Given operands for an FCmpInst, see if we can fold the result.
3516 /// If not, this returns null.
3517 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3518                                FastMathFlags FMF, const SimplifyQuery &Q,
3519                                unsigned MaxRecurse) {
3520   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3521   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3522 
3523   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3524     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3525       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3526 
3527     // If we have a constant, make sure it is on the RHS.
3528     std::swap(LHS, RHS);
3529     Pred = CmpInst::getSwappedPredicate(Pred);
3530   }
3531 
3532   // Fold trivial predicates.
3533   Type *RetTy = GetCompareTy(LHS);
3534   if (Pred == FCmpInst::FCMP_FALSE)
3535     return getFalse(RetTy);
3536   if (Pred == FCmpInst::FCMP_TRUE)
3537     return getTrue(RetTy);
3538 
3539   // Fold (un)ordered comparison if we can determine there are no NaNs.
3540   if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
3541     if (FMF.noNaNs() ||
3542         (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3543       return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3544 
3545   // NaN is unordered; NaN is not ordered.
3546   assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3547          "Comparison must be either ordered or unordered");
3548   if (match(RHS, m_NaN()))
3549     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3550 
3551   // fcmp pred x, undef  and  fcmp pred undef, x
3552   // fold to true if unordered, false if ordered
3553   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
3554     // Choosing NaN for the undef will always make unordered comparison succeed
3555     // and ordered comparison fail.
3556     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3557   }
3558 
3559   // fcmp x,x -> true/false.  Not all compares are foldable.
3560   if (LHS == RHS) {
3561     if (CmpInst::isTrueWhenEqual(Pred))
3562       return getTrue(RetTy);
3563     if (CmpInst::isFalseWhenEqual(Pred))
3564       return getFalse(RetTy);
3565   }
3566 
3567   // Handle fcmp with constant RHS.
3568   // TODO: Use match with a specific FP value, so these work with vectors with
3569   // undef lanes.
3570   const APFloat *C;
3571   if (match(RHS, m_APFloat(C))) {
3572     // Check whether the constant is an infinity.
3573     if (C->isInfinity()) {
3574       if (C->isNegative()) {
3575         switch (Pred) {
3576         case FCmpInst::FCMP_OLT:
3577           // No value is ordered and less than negative infinity.
3578           return getFalse(RetTy);
3579         case FCmpInst::FCMP_UGE:
3580           // All values are unordered with or at least negative infinity.
3581           return getTrue(RetTy);
3582         default:
3583           break;
3584         }
3585       } else {
3586         switch (Pred) {
3587         case FCmpInst::FCMP_OGT:
3588           // No value is ordered and greater than infinity.
3589           return getFalse(RetTy);
3590         case FCmpInst::FCMP_ULE:
3591           // All values are unordered with and at most infinity.
3592           return getTrue(RetTy);
3593         default:
3594           break;
3595         }
3596       }
3597     }
3598     if (C->isNegative() && !C->isNegZero()) {
3599       assert(!C->isNaN() && "Unexpected NaN constant!");
3600       // TODO: We can catch more cases by using a range check rather than
3601       //       relying on CannotBeOrderedLessThanZero.
3602       switch (Pred) {
3603       case FCmpInst::FCMP_UGE:
3604       case FCmpInst::FCMP_UGT:
3605       case FCmpInst::FCMP_UNE:
3606         // (X >= 0) implies (X > C) when (C < 0)
3607         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3608           return getTrue(RetTy);
3609         break;
3610       case FCmpInst::FCMP_OEQ:
3611       case FCmpInst::FCMP_OLE:
3612       case FCmpInst::FCMP_OLT:
3613         // (X >= 0) implies !(X < C) when (C < 0)
3614         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3615           return getFalse(RetTy);
3616         break;
3617       default:
3618         break;
3619       }
3620     }
3621 
3622     // Check comparison of [minnum/maxnum with constant] with other constant.
3623     const APFloat *C2;
3624     if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
3625          C2->compare(*C) == APFloat::cmpLessThan) ||
3626         (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
3627          C2->compare(*C) == APFloat::cmpGreaterThan)) {
3628       bool IsMaxNum =
3629           cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
3630       // The ordered relationship and minnum/maxnum guarantee that we do not
3631       // have NaN constants, so ordered/unordered preds are handled the same.
3632       switch (Pred) {
3633       case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ:
3634         // minnum(X, LesserC)  == C --> false
3635         // maxnum(X, GreaterC) == C --> false
3636         return getFalse(RetTy);
3637       case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE:
3638         // minnum(X, LesserC)  != C --> true
3639         // maxnum(X, GreaterC) != C --> true
3640         return getTrue(RetTy);
3641       case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE:
3642       case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT:
3643         // minnum(X, LesserC)  >= C --> false
3644         // minnum(X, LesserC)  >  C --> false
3645         // maxnum(X, GreaterC) >= C --> true
3646         // maxnum(X, GreaterC) >  C --> true
3647         return ConstantInt::get(RetTy, IsMaxNum);
3648       case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE:
3649       case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT:
3650         // minnum(X, LesserC)  <= C --> true
3651         // minnum(X, LesserC)  <  C --> true
3652         // maxnum(X, GreaterC) <= C --> false
3653         // maxnum(X, GreaterC) <  C --> false
3654         return ConstantInt::get(RetTy, !IsMaxNum);
3655       default:
3656         // TRUE/FALSE/ORD/UNO should be handled before this.
3657         llvm_unreachable("Unexpected fcmp predicate");
3658       }
3659     }
3660   }
3661 
3662   if (match(RHS, m_AnyZeroFP())) {
3663     switch (Pred) {
3664     case FCmpInst::FCMP_OGE:
3665     case FCmpInst::FCMP_ULT:
3666       // Positive or zero X >= 0.0 --> true
3667       // Positive or zero X <  0.0 --> false
3668       if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
3669           CannotBeOrderedLessThanZero(LHS, Q.TLI))
3670         return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
3671       break;
3672     case FCmpInst::FCMP_UGE:
3673     case FCmpInst::FCMP_OLT:
3674       // Positive or zero or nan X >= 0.0 --> true
3675       // Positive or zero or nan X <  0.0 --> false
3676       if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3677         return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
3678       break;
3679     default:
3680       break;
3681     }
3682   }
3683 
3684   // If the comparison is with the result of a select instruction, check whether
3685   // comparing with either branch of the select always yields the same value.
3686   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3687     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3688       return V;
3689 
3690   // If the comparison is with the result of a phi instruction, check whether
3691   // doing the compare with each incoming phi value yields a common result.
3692   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3693     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3694       return V;
3695 
3696   return nullptr;
3697 }
3698 
3699 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3700                               FastMathFlags FMF, const SimplifyQuery &Q) {
3701   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3702 }
3703 
3704 /// See if V simplifies when its operand Op is replaced with RepOp.
3705 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3706                                            const SimplifyQuery &Q,
3707                                            unsigned MaxRecurse) {
3708   // Trivial replacement.
3709   if (V == Op)
3710     return RepOp;
3711 
3712   // We cannot replace a constant, and shouldn't even try.
3713   if (isa<Constant>(Op))
3714     return nullptr;
3715 
3716   auto *I = dyn_cast<Instruction>(V);
3717   if (!I)
3718     return nullptr;
3719 
3720   // If this is a binary operator, try to simplify it with the replaced op.
3721   if (auto *B = dyn_cast<BinaryOperator>(I)) {
3722     // Consider:
3723     //   %cmp = icmp eq i32 %x, 2147483647
3724     //   %add = add nsw i32 %x, 1
3725     //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
3726     //
3727     // We can't replace %sel with %add unless we strip away the flags.
3728     // TODO: This is an unusual limitation because better analysis results in
3729     //       worse simplification. InstCombine can do this fold more generally
3730     //       by dropping the flags. Remove this fold to save compile-time?
3731     if (isa<OverflowingBinaryOperator>(B))
3732       if (Q.IIQ.hasNoSignedWrap(B) || Q.IIQ.hasNoUnsignedWrap(B))
3733         return nullptr;
3734     if (isa<PossiblyExactOperator>(B) && Q.IIQ.isExact(B))
3735       return nullptr;
3736 
3737     if (MaxRecurse) {
3738       if (B->getOperand(0) == Op)
3739         return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
3740                              MaxRecurse - 1);
3741       if (B->getOperand(1) == Op)
3742         return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
3743                              MaxRecurse - 1);
3744     }
3745   }
3746 
3747   // Same for CmpInsts.
3748   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3749     if (MaxRecurse) {
3750       if (C->getOperand(0) == Op)
3751         return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
3752                                MaxRecurse - 1);
3753       if (C->getOperand(1) == Op)
3754         return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
3755                                MaxRecurse - 1);
3756     }
3757   }
3758 
3759   // Same for GEPs.
3760   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
3761     if (MaxRecurse) {
3762       SmallVector<Value *, 8> NewOps(GEP->getNumOperands());
3763       transform(GEP->operands(), NewOps.begin(),
3764                 [&](Value *V) { return V == Op ? RepOp : V; });
3765       return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q,
3766                              MaxRecurse - 1);
3767     }
3768   }
3769 
3770   // TODO: We could hand off more cases to instsimplify here.
3771 
3772   // If all operands are constant after substituting Op for RepOp then we can
3773   // constant fold the instruction.
3774   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3775     // Build a list of all constant operands.
3776     SmallVector<Constant *, 8> ConstOps;
3777     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3778       if (I->getOperand(i) == Op)
3779         ConstOps.push_back(CRepOp);
3780       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3781         ConstOps.push_back(COp);
3782       else
3783         break;
3784     }
3785 
3786     // All operands were constants, fold it.
3787     if (ConstOps.size() == I->getNumOperands()) {
3788       if (CmpInst *C = dyn_cast<CmpInst>(I))
3789         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3790                                                ConstOps[1], Q.DL, Q.TLI);
3791 
3792       if (LoadInst *LI = dyn_cast<LoadInst>(I))
3793         if (!LI->isVolatile())
3794           return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
3795 
3796       return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
3797     }
3798   }
3799 
3800   return nullptr;
3801 }
3802 
3803 /// Try to simplify a select instruction when its condition operand is an
3804 /// integer comparison where one operand of the compare is a constant.
3805 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
3806                                     const APInt *Y, bool TrueWhenUnset) {
3807   const APInt *C;
3808 
3809   // (X & Y) == 0 ? X & ~Y : X  --> X
3810   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
3811   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3812       *Y == ~*C)
3813     return TrueWhenUnset ? FalseVal : TrueVal;
3814 
3815   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
3816   // (X & Y) != 0 ? X : X & ~Y  --> X
3817   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3818       *Y == ~*C)
3819     return TrueWhenUnset ? FalseVal : TrueVal;
3820 
3821   if (Y->isPowerOf2()) {
3822     // (X & Y) == 0 ? X | Y : X  --> X | Y
3823     // (X & Y) != 0 ? X | Y : X  --> X
3824     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3825         *Y == *C)
3826       return TrueWhenUnset ? TrueVal : FalseVal;
3827 
3828     // (X & Y) == 0 ? X : X | Y  --> X
3829     // (X & Y) != 0 ? X : X | Y  --> X | Y
3830     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3831         *Y == *C)
3832       return TrueWhenUnset ? TrueVal : FalseVal;
3833   }
3834 
3835   return nullptr;
3836 }
3837 
3838 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
3839 /// eq/ne.
3840 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
3841                                            ICmpInst::Predicate Pred,
3842                                            Value *TrueVal, Value *FalseVal) {
3843   Value *X;
3844   APInt Mask;
3845   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
3846     return nullptr;
3847 
3848   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
3849                                Pred == ICmpInst::ICMP_EQ);
3850 }
3851 
3852 /// Try to simplify a select instruction when its condition operand is an
3853 /// integer comparison.
3854 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
3855                                          Value *FalseVal, const SimplifyQuery &Q,
3856                                          unsigned MaxRecurse) {
3857   ICmpInst::Predicate Pred;
3858   Value *CmpLHS, *CmpRHS;
3859   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
3860     return nullptr;
3861 
3862   if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) {
3863     Value *X;
3864     const APInt *Y;
3865     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
3866       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
3867                                            Pred == ICmpInst::ICMP_EQ))
3868         return V;
3869 
3870     // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
3871     Value *ShAmt;
3872     auto isFsh = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(),
3873                                                           m_Value(ShAmt)),
3874                              m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X),
3875                                                           m_Value(ShAmt)));
3876     // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
3877     // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
3878     if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt &&
3879         Pred == ICmpInst::ICMP_EQ)
3880       return X;
3881     // (ShAmt != 0) ? X : fshl(X, *, ShAmt) --> X
3882     // (ShAmt != 0) ? X : fshr(*, X, ShAmt) --> X
3883     if (match(FalseVal, isFsh) && TrueVal == X && CmpLHS == ShAmt &&
3884         Pred == ICmpInst::ICMP_NE)
3885       return X;
3886 
3887     // Test for a zero-shift-guard-op around rotates. These are used to
3888     // avoid UB from oversized shifts in raw IR rotate patterns, but the
3889     // intrinsics do not have that problem.
3890     // We do not allow this transform for the general funnel shift case because
3891     // that would not preserve the poison safety of the original code.
3892     auto isRotate = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X),
3893                                                              m_Deferred(X),
3894                                                              m_Value(ShAmt)),
3895                                 m_Intrinsic<Intrinsic::fshr>(m_Value(X),
3896                                                              m_Deferred(X),
3897                                                              m_Value(ShAmt)));
3898     // (ShAmt != 0) ? fshl(X, X, ShAmt) : X --> fshl(X, X, ShAmt)
3899     // (ShAmt != 0) ? fshr(X, X, ShAmt) : X --> fshr(X, X, ShAmt)
3900     if (match(TrueVal, isRotate) && FalseVal == X && CmpLHS == ShAmt &&
3901         Pred == ICmpInst::ICMP_NE)
3902       return TrueVal;
3903     // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
3904     // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
3905     if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
3906         Pred == ICmpInst::ICMP_EQ)
3907       return FalseVal;
3908   }
3909 
3910   // Check for other compares that behave like bit test.
3911   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
3912                                               TrueVal, FalseVal))
3913     return V;
3914 
3915   // If we have an equality comparison, then we know the value in one of the
3916   // arms of the select. See if substituting this value into the arm and
3917   // simplifying the result yields the same value as the other arm.
3918   if (Pred == ICmpInst::ICMP_EQ) {
3919     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3920             TrueVal ||
3921         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3922             TrueVal)
3923       return FalseVal;
3924     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3925             FalseVal ||
3926         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3927             FalseVal)
3928       return FalseVal;
3929   } else if (Pred == ICmpInst::ICMP_NE) {
3930     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3931             FalseVal ||
3932         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3933             FalseVal)
3934       return TrueVal;
3935     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3936             TrueVal ||
3937         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3938             TrueVal)
3939       return TrueVal;
3940   }
3941 
3942   return nullptr;
3943 }
3944 
3945 /// Try to simplify a select instruction when its condition operand is a
3946 /// floating-point comparison.
3947 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F,
3948                                      const SimplifyQuery &Q) {
3949   FCmpInst::Predicate Pred;
3950   if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
3951       !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
3952     return nullptr;
3953 
3954   // This transform is safe if we do not have (do not care about) -0.0 or if
3955   // at least one operand is known to not be -0.0. Otherwise, the select can
3956   // change the sign of a zero operand.
3957   bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) &&
3958                           Q.CxtI->hasNoSignedZeros();
3959   const APFloat *C;
3960   if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) ||
3961                           (match(F, m_APFloat(C)) && C->isNonZero())) {
3962     // (T == F) ? T : F --> F
3963     // (F == T) ? T : F --> F
3964     if (Pred == FCmpInst::FCMP_OEQ)
3965       return F;
3966 
3967     // (T != F) ? T : F --> T
3968     // (F != T) ? T : F --> T
3969     if (Pred == FCmpInst::FCMP_UNE)
3970       return T;
3971   }
3972 
3973   return nullptr;
3974 }
3975 
3976 /// Given operands for a SelectInst, see if we can fold the result.
3977 /// If not, this returns null.
3978 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3979                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
3980   if (auto *CondC = dyn_cast<Constant>(Cond)) {
3981     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
3982       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
3983         return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
3984 
3985     // select undef, X, Y -> X or Y
3986     if (isa<UndefValue>(CondC))
3987       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
3988 
3989     // TODO: Vector constants with undef elements don't simplify.
3990 
3991     // select true, X, Y  -> X
3992     if (CondC->isAllOnesValue())
3993       return TrueVal;
3994     // select false, X, Y -> Y
3995     if (CondC->isNullValue())
3996       return FalseVal;
3997   }
3998 
3999   // select i1 Cond, i1 true, i1 false --> i1 Cond
4000   assert(Cond->getType()->isIntOrIntVectorTy(1) &&
4001          "Select must have bool or bool vector condition");
4002   assert(TrueVal->getType() == FalseVal->getType() &&
4003          "Select must have same types for true/false ops");
4004   if (Cond->getType() == TrueVal->getType() &&
4005       match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt()))
4006     return Cond;
4007 
4008   // select ?, X, X -> X
4009   if (TrueVal == FalseVal)
4010     return TrueVal;
4011 
4012   if (isa<UndefValue>(TrueVal))   // select ?, undef, X -> X
4013     return FalseVal;
4014   if (isa<UndefValue>(FalseVal))   // select ?, X, undef -> X
4015     return TrueVal;
4016 
4017   if (Value *V =
4018           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
4019     return V;
4020 
4021   if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q))
4022     return V;
4023 
4024   if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
4025     return V;
4026 
4027   Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
4028   if (Imp)
4029     return *Imp ? TrueVal : FalseVal;
4030 
4031   return nullptr;
4032 }
4033 
4034 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4035                                 const SimplifyQuery &Q) {
4036   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
4037 }
4038 
4039 /// Given operands for an GetElementPtrInst, see if we can fold the result.
4040 /// If not, this returns null.
4041 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
4042                               const SimplifyQuery &Q, unsigned) {
4043   // The type of the GEP pointer operand.
4044   unsigned AS =
4045       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
4046 
4047   // getelementptr P -> P.
4048   if (Ops.size() == 1)
4049     return Ops[0];
4050 
4051   // Compute the (pointer) type returned by the GEP instruction.
4052   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
4053   Type *GEPTy = PointerType::get(LastType, AS);
4054   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
4055     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
4056   else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType()))
4057     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
4058 
4059   if (isa<UndefValue>(Ops[0]))
4060     return UndefValue::get(GEPTy);
4061 
4062   if (Ops.size() == 2) {
4063     // getelementptr P, 0 -> P.
4064     if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
4065       return Ops[0];
4066 
4067     Type *Ty = SrcTy;
4068     if (Ty->isSized()) {
4069       Value *P;
4070       uint64_t C;
4071       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
4072       // getelementptr P, N -> P if P points to a type of zero size.
4073       if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
4074         return Ops[0];
4075 
4076       // The following transforms are only safe if the ptrtoint cast
4077       // doesn't truncate the pointers.
4078       if (Ops[1]->getType()->getScalarSizeInBits() ==
4079           Q.DL.getPointerSizeInBits(AS)) {
4080         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
4081           if (match(P, m_Zero()))
4082             return Constant::getNullValue(GEPTy);
4083           Value *Temp;
4084           if (match(P, m_PtrToInt(m_Value(Temp))))
4085             if (Temp->getType() == GEPTy)
4086               return Temp;
4087           return nullptr;
4088         };
4089 
4090         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
4091         if (TyAllocSize == 1 &&
4092             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
4093           if (Value *R = PtrToIntOrZero(P))
4094             return R;
4095 
4096         // getelementptr V, (ashr (sub P, V), C) -> Q
4097         // if P points to a type of size 1 << C.
4098         if (match(Ops[1],
4099                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
4100                          m_ConstantInt(C))) &&
4101             TyAllocSize == 1ULL << C)
4102           if (Value *R = PtrToIntOrZero(P))
4103             return R;
4104 
4105         // getelementptr V, (sdiv (sub P, V), C) -> Q
4106         // if P points to a type of size C.
4107         if (match(Ops[1],
4108                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
4109                          m_SpecificInt(TyAllocSize))))
4110           if (Value *R = PtrToIntOrZero(P))
4111             return R;
4112       }
4113     }
4114   }
4115 
4116   if (Q.DL.getTypeAllocSize(LastType) == 1 &&
4117       all_of(Ops.slice(1).drop_back(1),
4118              [](Value *Idx) { return match(Idx, m_Zero()); })) {
4119     unsigned IdxWidth =
4120         Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
4121     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
4122       APInt BasePtrOffset(IdxWidth, 0);
4123       Value *StrippedBasePtr =
4124           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
4125                                                             BasePtrOffset);
4126 
4127       // gep (gep V, C), (sub 0, V) -> C
4128       if (match(Ops.back(),
4129                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
4130         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
4131         return ConstantExpr::getIntToPtr(CI, GEPTy);
4132       }
4133       // gep (gep V, C), (xor V, -1) -> C-1
4134       if (match(Ops.back(),
4135                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
4136         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
4137         return ConstantExpr::getIntToPtr(CI, GEPTy);
4138       }
4139     }
4140   }
4141 
4142   // Check to see if this is constant foldable.
4143   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
4144     return nullptr;
4145 
4146   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
4147                                             Ops.slice(1));
4148   if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL))
4149     return CEFolded;
4150   return CE;
4151 }
4152 
4153 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
4154                              const SimplifyQuery &Q) {
4155   return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit);
4156 }
4157 
4158 /// Given operands for an InsertValueInst, see if we can fold the result.
4159 /// If not, this returns null.
4160 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
4161                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
4162                                       unsigned) {
4163   if (Constant *CAgg = dyn_cast<Constant>(Agg))
4164     if (Constant *CVal = dyn_cast<Constant>(Val))
4165       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
4166 
4167   // insertvalue x, undef, n -> x
4168   if (match(Val, m_Undef()))
4169     return Agg;
4170 
4171   // insertvalue x, (extractvalue y, n), n
4172   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
4173     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
4174         EV->getIndices() == Idxs) {
4175       // insertvalue undef, (extractvalue y, n), n -> y
4176       if (match(Agg, m_Undef()))
4177         return EV->getAggregateOperand();
4178 
4179       // insertvalue y, (extractvalue y, n), n -> y
4180       if (Agg == EV->getAggregateOperand())
4181         return Agg;
4182     }
4183 
4184   return nullptr;
4185 }
4186 
4187 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
4188                                      ArrayRef<unsigned> Idxs,
4189                                      const SimplifyQuery &Q) {
4190   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
4191 }
4192 
4193 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
4194                                        const SimplifyQuery &Q) {
4195   // Try to constant fold.
4196   auto *VecC = dyn_cast<Constant>(Vec);
4197   auto *ValC = dyn_cast<Constant>(Val);
4198   auto *IdxC = dyn_cast<Constant>(Idx);
4199   if (VecC && ValC && IdxC)
4200     return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC);
4201 
4202   // Fold into undef if index is out of bounds.
4203   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
4204     uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements();
4205     if (CI->uge(NumElements))
4206       return UndefValue::get(Vec->getType());
4207   }
4208 
4209   // If index is undef, it might be out of bounds (see above case)
4210   if (isa<UndefValue>(Idx))
4211     return UndefValue::get(Vec->getType());
4212 
4213   // Inserting an undef scalar? Assume it is the same value as the existing
4214   // vector element.
4215   if (isa<UndefValue>(Val))
4216     return Vec;
4217 
4218   // If we are extracting a value from a vector, then inserting it into the same
4219   // place, that's the input vector:
4220   // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
4221   if (match(Val, m_ExtractElement(m_Specific(Vec), m_Specific(Idx))))
4222     return Vec;
4223 
4224   return nullptr;
4225 }
4226 
4227 /// Given operands for an ExtractValueInst, see if we can fold the result.
4228 /// If not, this returns null.
4229 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4230                                        const SimplifyQuery &, unsigned) {
4231   if (auto *CAgg = dyn_cast<Constant>(Agg))
4232     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4233 
4234   // extractvalue x, (insertvalue y, elt, n), n -> elt
4235   unsigned NumIdxs = Idxs.size();
4236   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4237        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4238     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4239     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4240     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4241     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4242         Idxs.slice(0, NumCommonIdxs)) {
4243       if (NumIdxs == NumInsertValueIdxs)
4244         return IVI->getInsertedValueOperand();
4245       break;
4246     }
4247   }
4248 
4249   return nullptr;
4250 }
4251 
4252 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4253                                       const SimplifyQuery &Q) {
4254   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4255 }
4256 
4257 /// Given operands for an ExtractElementInst, see if we can fold the result.
4258 /// If not, this returns null.
4259 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &,
4260                                          unsigned) {
4261   if (auto *CVec = dyn_cast<Constant>(Vec)) {
4262     if (auto *CIdx = dyn_cast<Constant>(Idx))
4263       return ConstantFoldExtractElementInstruction(CVec, CIdx);
4264 
4265     // The index is not relevant if our vector is a splat.
4266     if (auto *Splat = CVec->getSplatValue())
4267       return Splat;
4268 
4269     if (isa<UndefValue>(Vec))
4270       return UndefValue::get(Vec->getType()->getVectorElementType());
4271   }
4272 
4273   // If extracting a specified index from the vector, see if we can recursively
4274   // find a previously computed scalar that was inserted into the vector.
4275   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4276     if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements()))
4277       // definitely out of bounds, thus undefined result
4278       return UndefValue::get(Vec->getType()->getVectorElementType());
4279     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4280       return Elt;
4281   }
4282 
4283   // An undef extract index can be arbitrarily chosen to be an out-of-range
4284   // index value, which would result in the instruction being undef.
4285   if (isa<UndefValue>(Idx))
4286     return UndefValue::get(Vec->getType()->getVectorElementType());
4287 
4288   return nullptr;
4289 }
4290 
4291 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
4292                                         const SimplifyQuery &Q) {
4293   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4294 }
4295 
4296 /// See if we can fold the given phi. If not, returns null.
4297 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) {
4298   // If all of the PHI's incoming values are the same then replace the PHI node
4299   // with the common value.
4300   Value *CommonValue = nullptr;
4301   bool HasUndefInput = false;
4302   for (Value *Incoming : PN->incoming_values()) {
4303     // If the incoming value is the phi node itself, it can safely be skipped.
4304     if (Incoming == PN) continue;
4305     if (isa<UndefValue>(Incoming)) {
4306       // Remember that we saw an undef value, but otherwise ignore them.
4307       HasUndefInput = true;
4308       continue;
4309     }
4310     if (CommonValue && Incoming != CommonValue)
4311       return nullptr;  // Not the same, bail out.
4312     CommonValue = Incoming;
4313   }
4314 
4315   // If CommonValue is null then all of the incoming values were either undef or
4316   // equal to the phi node itself.
4317   if (!CommonValue)
4318     return UndefValue::get(PN->getType());
4319 
4320   // If we have a PHI node like phi(X, undef, X), where X is defined by some
4321   // instruction, we cannot return X as the result of the PHI node unless it
4322   // dominates the PHI block.
4323   if (HasUndefInput)
4324     return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4325 
4326   return CommonValue;
4327 }
4328 
4329 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4330                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
4331   if (auto *C = dyn_cast<Constant>(Op))
4332     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4333 
4334   if (auto *CI = dyn_cast<CastInst>(Op)) {
4335     auto *Src = CI->getOperand(0);
4336     Type *SrcTy = Src->getType();
4337     Type *MidTy = CI->getType();
4338     Type *DstTy = Ty;
4339     if (Src->getType() == Ty) {
4340       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4341       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4342       Type *SrcIntPtrTy =
4343           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4344       Type *MidIntPtrTy =
4345           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4346       Type *DstIntPtrTy =
4347           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4348       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4349                                          SrcIntPtrTy, MidIntPtrTy,
4350                                          DstIntPtrTy) == Instruction::BitCast)
4351         return Src;
4352     }
4353   }
4354 
4355   // bitcast x -> x
4356   if (CastOpc == Instruction::BitCast)
4357     if (Op->getType() == Ty)
4358       return Op;
4359 
4360   return nullptr;
4361 }
4362 
4363 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4364                               const SimplifyQuery &Q) {
4365   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4366 }
4367 
4368 /// For the given destination element of a shuffle, peek through shuffles to
4369 /// match a root vector source operand that contains that element in the same
4370 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4371 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4372                                    int MaskVal, Value *RootVec,
4373                                    unsigned MaxRecurse) {
4374   if (!MaxRecurse--)
4375     return nullptr;
4376 
4377   // Bail out if any mask value is undefined. That kind of shuffle may be
4378   // simplified further based on demanded bits or other folds.
4379   if (MaskVal == -1)
4380     return nullptr;
4381 
4382   // The mask value chooses which source operand we need to look at next.
4383   int InVecNumElts = Op0->getType()->getVectorNumElements();
4384   int RootElt = MaskVal;
4385   Value *SourceOp = Op0;
4386   if (MaskVal >= InVecNumElts) {
4387     RootElt = MaskVal - InVecNumElts;
4388     SourceOp = Op1;
4389   }
4390 
4391   // If the source operand is a shuffle itself, look through it to find the
4392   // matching root vector.
4393   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4394     return foldIdentityShuffles(
4395         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4396         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4397   }
4398 
4399   // TODO: Look through bitcasts? What if the bitcast changes the vector element
4400   // size?
4401 
4402   // The source operand is not a shuffle. Initialize the root vector value for
4403   // this shuffle if that has not been done yet.
4404   if (!RootVec)
4405     RootVec = SourceOp;
4406 
4407   // Give up as soon as a source operand does not match the existing root value.
4408   if (RootVec != SourceOp)
4409     return nullptr;
4410 
4411   // The element must be coming from the same lane in the source vector
4412   // (although it may have crossed lanes in intermediate shuffles).
4413   if (RootElt != DestElt)
4414     return nullptr;
4415 
4416   return RootVec;
4417 }
4418 
4419 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4420                                         Type *RetTy, const SimplifyQuery &Q,
4421                                         unsigned MaxRecurse) {
4422   if (isa<UndefValue>(Mask))
4423     return UndefValue::get(RetTy);
4424 
4425   Type *InVecTy = Op0->getType();
4426   unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
4427   unsigned InVecNumElts = InVecTy->getVectorNumElements();
4428 
4429   SmallVector<int, 32> Indices;
4430   ShuffleVectorInst::getShuffleMask(Mask, Indices);
4431   assert(MaskNumElts == Indices.size() &&
4432          "Size of Indices not same as number of mask elements?");
4433 
4434   // Canonicalization: If mask does not select elements from an input vector,
4435   // replace that input vector with undef.
4436   bool MaskSelects0 = false, MaskSelects1 = false;
4437   for (unsigned i = 0; i != MaskNumElts; ++i) {
4438     if (Indices[i] == -1)
4439       continue;
4440     if ((unsigned)Indices[i] < InVecNumElts)
4441       MaskSelects0 = true;
4442     else
4443       MaskSelects1 = true;
4444   }
4445   if (!MaskSelects0)
4446     Op0 = UndefValue::get(InVecTy);
4447   if (!MaskSelects1)
4448     Op1 = UndefValue::get(InVecTy);
4449 
4450   auto *Op0Const = dyn_cast<Constant>(Op0);
4451   auto *Op1Const = dyn_cast<Constant>(Op1);
4452 
4453   // If all operands are constant, constant fold the shuffle.
4454   if (Op0Const && Op1Const)
4455     return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask);
4456 
4457   // Canonicalization: if only one input vector is constant, it shall be the
4458   // second one.
4459   if (Op0Const && !Op1Const) {
4460     std::swap(Op0, Op1);
4461     ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts);
4462   }
4463 
4464   // A splat of an inserted scalar constant becomes a vector constant:
4465   // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...>
4466   // NOTE: We may have commuted above, so analyze the updated Indices, not the
4467   //       original mask constant.
4468   Constant *C;
4469   ConstantInt *IndexC;
4470   if (match(Op0, m_InsertElement(m_Value(), m_Constant(C),
4471                                  m_ConstantInt(IndexC)))) {
4472     // Match a splat shuffle mask of the insert index allowing undef elements.
4473     int InsertIndex = IndexC->getZExtValue();
4474     if (all_of(Indices, [InsertIndex](int MaskElt) {
4475           return MaskElt == InsertIndex || MaskElt == -1;
4476         })) {
4477       assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat");
4478 
4479       // Shuffle mask undefs become undefined constant result elements.
4480       SmallVector<Constant *, 16> VecC(MaskNumElts, C);
4481       for (unsigned i = 0; i != MaskNumElts; ++i)
4482         if (Indices[i] == -1)
4483           VecC[i] = UndefValue::get(C->getType());
4484       return ConstantVector::get(VecC);
4485     }
4486   }
4487 
4488   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4489   // value type is same as the input vectors' type.
4490   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4491     if (isa<UndefValue>(Op1) && RetTy == InVecTy &&
4492         OpShuf->getMask()->getSplatValue())
4493       return Op0;
4494 
4495   // Don't fold a shuffle with undef mask elements. This may get folded in a
4496   // better way using demanded bits or other analysis.
4497   // TODO: Should we allow this?
4498   if (find(Indices, -1) != Indices.end())
4499     return nullptr;
4500 
4501   // Check if every element of this shuffle can be mapped back to the
4502   // corresponding element of a single root vector. If so, we don't need this
4503   // shuffle. This handles simple identity shuffles as well as chains of
4504   // shuffles that may widen/narrow and/or move elements across lanes and back.
4505   Value *RootVec = nullptr;
4506   for (unsigned i = 0; i != MaskNumElts; ++i) {
4507     // Note that recursion is limited for each vector element, so if any element
4508     // exceeds the limit, this will fail to simplify.
4509     RootVec =
4510         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4511 
4512     // We can't replace a widening/narrowing shuffle with one of its operands.
4513     if (!RootVec || RootVec->getType() != RetTy)
4514       return nullptr;
4515   }
4516   return RootVec;
4517 }
4518 
4519 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4520 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4521                                        Type *RetTy, const SimplifyQuery &Q) {
4522   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4523 }
4524 
4525 static Constant *foldConstant(Instruction::UnaryOps Opcode,
4526                               Value *&Op, const SimplifyQuery &Q) {
4527   if (auto *C = dyn_cast<Constant>(Op))
4528     return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
4529   return nullptr;
4530 }
4531 
4532 /// Given the operand for an FNeg, see if we can fold the result.  If not, this
4533 /// returns null.
4534 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
4535                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4536   if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
4537     return C;
4538 
4539   Value *X;
4540   // fneg (fneg X) ==> X
4541   if (match(Op, m_FNeg(m_Value(X))))
4542     return X;
4543 
4544   return nullptr;
4545 }
4546 
4547 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF,
4548                               const SimplifyQuery &Q) {
4549   return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
4550 }
4551 
4552 static Constant *propagateNaN(Constant *In) {
4553   // If the input is a vector with undef elements, just return a default NaN.
4554   if (!In->isNaN())
4555     return ConstantFP::getNaN(In->getType());
4556 
4557   // Propagate the existing NaN constant when possible.
4558   // TODO: Should we quiet a signaling NaN?
4559   return In;
4560 }
4561 
4562 /// Perform folds that are common to any floating-point operation. This implies
4563 /// transforms based on undef/NaN because the operation itself makes no
4564 /// difference to the result.
4565 static Constant *simplifyFPOp(ArrayRef<Value *> Ops) {
4566   if (any_of(Ops, [](Value *V) { return isa<UndefValue>(V); }))
4567     return ConstantFP::getNaN(Ops[0]->getType());
4568 
4569   for (Value *V : Ops)
4570     if (match(V, m_NaN()))
4571       return propagateNaN(cast<Constant>(V));
4572 
4573   return nullptr;
4574 }
4575 
4576 /// Given operands for an FAdd, see if we can fold the result.  If not, this
4577 /// returns null.
4578 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4579                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4580   if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
4581     return C;
4582 
4583   if (Constant *C = simplifyFPOp({Op0, Op1}))
4584     return C;
4585 
4586   // fadd X, -0 ==> X
4587   if (match(Op1, m_NegZeroFP()))
4588     return Op0;
4589 
4590   // fadd X, 0 ==> X, when we know X is not -0
4591   if (match(Op1, m_PosZeroFP()) &&
4592       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4593     return Op0;
4594 
4595   // With nnan: -X + X --> 0.0 (and commuted variant)
4596   // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
4597   // Negative zeros are allowed because we always end up with positive zero:
4598   // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4599   // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4600   // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
4601   // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
4602   if (FMF.noNaNs()) {
4603     if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
4604         match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
4605       return ConstantFP::getNullValue(Op0->getType());
4606 
4607     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
4608         match(Op1, m_FNeg(m_Specific(Op0))))
4609       return ConstantFP::getNullValue(Op0->getType());
4610   }
4611 
4612   // (X - Y) + Y --> X
4613   // Y + (X - Y) --> X
4614   Value *X;
4615   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4616       (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
4617        match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
4618     return X;
4619 
4620   return nullptr;
4621 }
4622 
4623 /// Given operands for an FSub, see if we can fold the result.  If not, this
4624 /// returns null.
4625 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4626                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4627   if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
4628     return C;
4629 
4630   if (Constant *C = simplifyFPOp({Op0, Op1}))
4631     return C;
4632 
4633   // fsub X, +0 ==> X
4634   if (match(Op1, m_PosZeroFP()))
4635     return Op0;
4636 
4637   // fsub X, -0 ==> X, when we know X is not -0
4638   if (match(Op1, m_NegZeroFP()) &&
4639       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4640     return Op0;
4641 
4642   // fsub -0.0, (fsub -0.0, X) ==> X
4643   // fsub -0.0, (fneg X) ==> X
4644   Value *X;
4645   if (match(Op0, m_NegZeroFP()) &&
4646       match(Op1, m_FNeg(m_Value(X))))
4647     return X;
4648 
4649   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
4650   // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
4651   if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
4652       (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
4653        match(Op1, m_FNeg(m_Value(X)))))
4654     return X;
4655 
4656   // fsub nnan x, x ==> 0.0
4657   if (FMF.noNaNs() && Op0 == Op1)
4658     return Constant::getNullValue(Op0->getType());
4659 
4660   // Y - (Y - X) --> X
4661   // (X + Y) - Y --> X
4662   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4663       (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
4664        match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
4665     return X;
4666 
4667   return nullptr;
4668 }
4669 
4670 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
4671                               const SimplifyQuery &Q, unsigned MaxRecurse) {
4672   if (Constant *C = simplifyFPOp({Op0, Op1}))
4673     return C;
4674 
4675   // fmul X, 1.0 ==> X
4676   if (match(Op1, m_FPOne()))
4677     return Op0;
4678 
4679   // fmul 1.0, X ==> X
4680   if (match(Op0, m_FPOne()))
4681     return Op1;
4682 
4683   // fmul nnan nsz X, 0 ==> 0
4684   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
4685     return ConstantFP::getNullValue(Op0->getType());
4686 
4687   // fmul nnan nsz 0, X ==> 0
4688   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
4689     return ConstantFP::getNullValue(Op1->getType());
4690 
4691   // sqrt(X) * sqrt(X) --> X, if we can:
4692   // 1. Remove the intermediate rounding (reassociate).
4693   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
4694   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
4695   Value *X;
4696   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
4697       FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
4698     return X;
4699 
4700   return nullptr;
4701 }
4702 
4703 /// Given the operands for an FMul, see if we can fold the result
4704 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4705                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4706   if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
4707     return C;
4708 
4709   // Now apply simplifications that do not require rounding.
4710   return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse);
4711 }
4712 
4713 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4714                               const SimplifyQuery &Q) {
4715   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit);
4716 }
4717 
4718 
4719 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4720                               const SimplifyQuery &Q) {
4721   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit);
4722 }
4723 
4724 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4725                               const SimplifyQuery &Q) {
4726   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit);
4727 }
4728 
4729 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
4730                              const SimplifyQuery &Q) {
4731   return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit);
4732 }
4733 
4734 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4735                                const SimplifyQuery &Q, unsigned) {
4736   if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
4737     return C;
4738 
4739   if (Constant *C = simplifyFPOp({Op0, Op1}))
4740     return C;
4741 
4742   // X / 1.0 -> X
4743   if (match(Op1, m_FPOne()))
4744     return Op0;
4745 
4746   // 0 / X -> 0
4747   // Requires that NaNs are off (X could be zero) and signed zeroes are
4748   // ignored (X could be positive or negative, so the output sign is unknown).
4749   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
4750     return ConstantFP::getNullValue(Op0->getType());
4751 
4752   if (FMF.noNaNs()) {
4753     // X / X -> 1.0 is legal when NaNs are ignored.
4754     // We can ignore infinities because INF/INF is NaN.
4755     if (Op0 == Op1)
4756       return ConstantFP::get(Op0->getType(), 1.0);
4757 
4758     // (X * Y) / Y --> X if we can reassociate to the above form.
4759     Value *X;
4760     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
4761       return X;
4762 
4763     // -X /  X -> -1.0 and
4764     //  X / -X -> -1.0 are legal when NaNs are ignored.
4765     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
4766     if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
4767         match(Op1, m_FNegNSZ(m_Specific(Op0))))
4768       return ConstantFP::get(Op0->getType(), -1.0);
4769   }
4770 
4771   return nullptr;
4772 }
4773 
4774 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4775                               const SimplifyQuery &Q) {
4776   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit);
4777 }
4778 
4779 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4780                                const SimplifyQuery &Q, unsigned) {
4781   if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
4782     return C;
4783 
4784   if (Constant *C = simplifyFPOp({Op0, Op1}))
4785     return C;
4786 
4787   // Unlike fdiv, the result of frem always matches the sign of the dividend.
4788   // The constant match may include undef elements in a vector, so return a full
4789   // zero constant as the result.
4790   if (FMF.noNaNs()) {
4791     // +0 % X -> 0
4792     if (match(Op0, m_PosZeroFP()))
4793       return ConstantFP::getNullValue(Op0->getType());
4794     // -0 % X -> -0
4795     if (match(Op0, m_NegZeroFP()))
4796       return ConstantFP::getNegativeZero(Op0->getType());
4797   }
4798 
4799   return nullptr;
4800 }
4801 
4802 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4803                               const SimplifyQuery &Q) {
4804   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit);
4805 }
4806 
4807 //=== Helper functions for higher up the class hierarchy.
4808 
4809 /// Given the operand for a UnaryOperator, see if we can fold the result.
4810 /// If not, this returns null.
4811 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
4812                            unsigned MaxRecurse) {
4813   switch (Opcode) {
4814   case Instruction::FNeg:
4815     return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
4816   default:
4817     llvm_unreachable("Unexpected opcode");
4818   }
4819 }
4820 
4821 /// Given the operand for a UnaryOperator, see if we can fold the result.
4822 /// If not, this returns null.
4823 /// Try to use FastMathFlags when folding the result.
4824 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
4825                              const FastMathFlags &FMF,
4826                              const SimplifyQuery &Q, unsigned MaxRecurse) {
4827   switch (Opcode) {
4828   case Instruction::FNeg:
4829     return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
4830   default:
4831     return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
4832   }
4833 }
4834 
4835 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
4836   return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
4837 }
4838 
4839 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
4840                           const SimplifyQuery &Q) {
4841   return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
4842 }
4843 
4844 /// Given operands for a BinaryOperator, see if we can fold the result.
4845 /// If not, this returns null.
4846 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4847                             const SimplifyQuery &Q, unsigned MaxRecurse) {
4848   switch (Opcode) {
4849   case Instruction::Add:
4850     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
4851   case Instruction::Sub:
4852     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
4853   case Instruction::Mul:
4854     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
4855   case Instruction::SDiv:
4856     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
4857   case Instruction::UDiv:
4858     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
4859   case Instruction::SRem:
4860     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
4861   case Instruction::URem:
4862     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
4863   case Instruction::Shl:
4864     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
4865   case Instruction::LShr:
4866     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
4867   case Instruction::AShr:
4868     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
4869   case Instruction::And:
4870     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
4871   case Instruction::Or:
4872     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
4873   case Instruction::Xor:
4874     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
4875   case Instruction::FAdd:
4876     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4877   case Instruction::FSub:
4878     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4879   case Instruction::FMul:
4880     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4881   case Instruction::FDiv:
4882     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4883   case Instruction::FRem:
4884     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4885   default:
4886     llvm_unreachable("Unexpected opcode");
4887   }
4888 }
4889 
4890 /// Given operands for a BinaryOperator, see if we can fold the result.
4891 /// If not, this returns null.
4892 /// Try to use FastMathFlags when folding the result.
4893 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4894                             const FastMathFlags &FMF, const SimplifyQuery &Q,
4895                             unsigned MaxRecurse) {
4896   switch (Opcode) {
4897   case Instruction::FAdd:
4898     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
4899   case Instruction::FSub:
4900     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
4901   case Instruction::FMul:
4902     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
4903   case Instruction::FDiv:
4904     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
4905   default:
4906     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
4907   }
4908 }
4909 
4910 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4911                            const SimplifyQuery &Q) {
4912   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
4913 }
4914 
4915 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4916                            FastMathFlags FMF, const SimplifyQuery &Q) {
4917   return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
4918 }
4919 
4920 /// Given operands for a CmpInst, see if we can fold the result.
4921 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4922                               const SimplifyQuery &Q, unsigned MaxRecurse) {
4923   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
4924     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
4925   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4926 }
4927 
4928 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4929                              const SimplifyQuery &Q) {
4930   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
4931 }
4932 
4933 static bool IsIdempotent(Intrinsic::ID ID) {
4934   switch (ID) {
4935   default: return false;
4936 
4937   // Unary idempotent: f(f(x)) = f(x)
4938   case Intrinsic::fabs:
4939   case Intrinsic::floor:
4940   case Intrinsic::ceil:
4941   case Intrinsic::trunc:
4942   case Intrinsic::rint:
4943   case Intrinsic::nearbyint:
4944   case Intrinsic::round:
4945   case Intrinsic::canonicalize:
4946     return true;
4947   }
4948 }
4949 
4950 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
4951                                    const DataLayout &DL) {
4952   GlobalValue *PtrSym;
4953   APInt PtrOffset;
4954   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
4955     return nullptr;
4956 
4957   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
4958   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
4959   Type *Int32PtrTy = Int32Ty->getPointerTo();
4960   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
4961 
4962   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
4963   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
4964     return nullptr;
4965 
4966   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
4967   if (OffsetInt % 4 != 0)
4968     return nullptr;
4969 
4970   Constant *C = ConstantExpr::getGetElementPtr(
4971       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
4972       ConstantInt::get(Int64Ty, OffsetInt / 4));
4973   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
4974   if (!Loaded)
4975     return nullptr;
4976 
4977   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
4978   if (!LoadedCE)
4979     return nullptr;
4980 
4981   if (LoadedCE->getOpcode() == Instruction::Trunc) {
4982     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4983     if (!LoadedCE)
4984       return nullptr;
4985   }
4986 
4987   if (LoadedCE->getOpcode() != Instruction::Sub)
4988     return nullptr;
4989 
4990   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4991   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
4992     return nullptr;
4993   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
4994 
4995   Constant *LoadedRHS = LoadedCE->getOperand(1);
4996   GlobalValue *LoadedRHSSym;
4997   APInt LoadedRHSOffset;
4998   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
4999                                   DL) ||
5000       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
5001     return nullptr;
5002 
5003   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
5004 }
5005 
5006 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
5007                                      const SimplifyQuery &Q) {
5008   // Idempotent functions return the same result when called repeatedly.
5009   Intrinsic::ID IID = F->getIntrinsicID();
5010   if (IsIdempotent(IID))
5011     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
5012       if (II->getIntrinsicID() == IID)
5013         return II;
5014 
5015   Value *X;
5016   switch (IID) {
5017   case Intrinsic::fabs:
5018     if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
5019     break;
5020   case Intrinsic::bswap:
5021     // bswap(bswap(x)) -> x
5022     if (match(Op0, m_BSwap(m_Value(X)))) return X;
5023     break;
5024   case Intrinsic::bitreverse:
5025     // bitreverse(bitreverse(x)) -> x
5026     if (match(Op0, m_BitReverse(m_Value(X)))) return X;
5027     break;
5028   case Intrinsic::exp:
5029     // exp(log(x)) -> x
5030     if (Q.CxtI->hasAllowReassoc() &&
5031         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
5032     break;
5033   case Intrinsic::exp2:
5034     // exp2(log2(x)) -> x
5035     if (Q.CxtI->hasAllowReassoc() &&
5036         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
5037     break;
5038   case Intrinsic::log:
5039     // log(exp(x)) -> x
5040     if (Q.CxtI->hasAllowReassoc() &&
5041         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
5042     break;
5043   case Intrinsic::log2:
5044     // log2(exp2(x)) -> x
5045     if (Q.CxtI->hasAllowReassoc() &&
5046         (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
5047          match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0),
5048                                                 m_Value(X))))) return X;
5049     break;
5050   case Intrinsic::log10:
5051     // log10(pow(10.0, x)) -> x
5052     if (Q.CxtI->hasAllowReassoc() &&
5053         match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0),
5054                                                m_Value(X)))) return X;
5055     break;
5056   case Intrinsic::floor:
5057   case Intrinsic::trunc:
5058   case Intrinsic::ceil:
5059   case Intrinsic::round:
5060   case Intrinsic::nearbyint:
5061   case Intrinsic::rint: {
5062     // floor (sitofp x) -> sitofp x
5063     // floor (uitofp x) -> uitofp x
5064     //
5065     // Converting from int always results in a finite integral number or
5066     // infinity. For either of those inputs, these rounding functions always
5067     // return the same value, so the rounding can be eliminated.
5068     if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
5069       return Op0;
5070     break;
5071   }
5072   default:
5073     break;
5074   }
5075 
5076   return nullptr;
5077 }
5078 
5079 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
5080                                       const SimplifyQuery &Q) {
5081   Intrinsic::ID IID = F->getIntrinsicID();
5082   Type *ReturnType = F->getReturnType();
5083   switch (IID) {
5084   case Intrinsic::usub_with_overflow:
5085   case Intrinsic::ssub_with_overflow:
5086     // X - X -> { 0, false }
5087     if (Op0 == Op1)
5088       return Constant::getNullValue(ReturnType);
5089     LLVM_FALLTHROUGH;
5090   case Intrinsic::uadd_with_overflow:
5091   case Intrinsic::sadd_with_overflow:
5092     // X - undef -> { undef, false }
5093     // undef - X -> { undef, false }
5094     // X + undef -> { undef, false }
5095     // undef + x -> { undef, false }
5096     if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) {
5097       return ConstantStruct::get(
5098           cast<StructType>(ReturnType),
5099           {UndefValue::get(ReturnType->getStructElementType(0)),
5100            Constant::getNullValue(ReturnType->getStructElementType(1))});
5101     }
5102     break;
5103   case Intrinsic::umul_with_overflow:
5104   case Intrinsic::smul_with_overflow:
5105     // 0 * X -> { 0, false }
5106     // X * 0 -> { 0, false }
5107     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
5108       return Constant::getNullValue(ReturnType);
5109     // undef * X -> { 0, false }
5110     // X * undef -> { 0, false }
5111     if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
5112       return Constant::getNullValue(ReturnType);
5113     break;
5114   case Intrinsic::uadd_sat:
5115     // sat(MAX + X) -> MAX
5116     // sat(X + MAX) -> MAX
5117     if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
5118       return Constant::getAllOnesValue(ReturnType);
5119     LLVM_FALLTHROUGH;
5120   case Intrinsic::sadd_sat:
5121     // sat(X + undef) -> -1
5122     // sat(undef + X) -> -1
5123     // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
5124     // For signed: Assume undef is ~X, in which case X + ~X = -1.
5125     if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
5126       return Constant::getAllOnesValue(ReturnType);
5127 
5128     // X + 0 -> X
5129     if (match(Op1, m_Zero()))
5130       return Op0;
5131     // 0 + X -> X
5132     if (match(Op0, m_Zero()))
5133       return Op1;
5134     break;
5135   case Intrinsic::usub_sat:
5136     // sat(0 - X) -> 0, sat(X - MAX) -> 0
5137     if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
5138       return Constant::getNullValue(ReturnType);
5139     LLVM_FALLTHROUGH;
5140   case Intrinsic::ssub_sat:
5141     // X - X -> 0, X - undef -> 0, undef - X -> 0
5142     if (Op0 == Op1 || match(Op0, m_Undef()) || match(Op1, m_Undef()))
5143       return Constant::getNullValue(ReturnType);
5144     // X - 0 -> X
5145     if (match(Op1, m_Zero()))
5146       return Op0;
5147     break;
5148   case Intrinsic::load_relative:
5149     if (auto *C0 = dyn_cast<Constant>(Op0))
5150       if (auto *C1 = dyn_cast<Constant>(Op1))
5151         return SimplifyRelativeLoad(C0, C1, Q.DL);
5152     break;
5153   case Intrinsic::powi:
5154     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
5155       // powi(x, 0) -> 1.0
5156       if (Power->isZero())
5157         return ConstantFP::get(Op0->getType(), 1.0);
5158       // powi(x, 1) -> x
5159       if (Power->isOne())
5160         return Op0;
5161     }
5162     break;
5163   case Intrinsic::copysign:
5164     // copysign X, X --> X
5165     if (Op0 == Op1)
5166       return Op0;
5167     // copysign -X, X --> X
5168     // copysign X, -X --> -X
5169     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5170         match(Op1, m_FNeg(m_Specific(Op0))))
5171       return Op1;
5172     break;
5173   case Intrinsic::maxnum:
5174   case Intrinsic::minnum:
5175   case Intrinsic::maximum:
5176   case Intrinsic::minimum: {
5177     // If the arguments are the same, this is a no-op.
5178     if (Op0 == Op1) return Op0;
5179 
5180     // If one argument is undef, return the other argument.
5181     if (match(Op0, m_Undef()))
5182       return Op1;
5183     if (match(Op1, m_Undef()))
5184       return Op0;
5185 
5186     // If one argument is NaN, return other or NaN appropriately.
5187     bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
5188     if (match(Op0, m_NaN()))
5189       return PropagateNaN ? Op0 : Op1;
5190     if (match(Op1, m_NaN()))
5191       return PropagateNaN ? Op1 : Op0;
5192 
5193     // Min/max of the same operation with common operand:
5194     // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
5195     if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
5196       if (M0->getIntrinsicID() == IID &&
5197           (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
5198         return Op0;
5199     if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
5200       if (M1->getIntrinsicID() == IID &&
5201           (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
5202         return Op1;
5203 
5204     // min(X, -Inf) --> -Inf (and commuted variant)
5205     // max(X, +Inf) --> +Inf (and commuted variant)
5206     bool UseNegInf = IID == Intrinsic::minnum || IID == Intrinsic::minimum;
5207     const APFloat *C;
5208     if ((match(Op0, m_APFloat(C)) && C->isInfinity() &&
5209          C->isNegative() == UseNegInf) ||
5210         (match(Op1, m_APFloat(C)) && C->isInfinity() &&
5211          C->isNegative() == UseNegInf))
5212       return ConstantFP::getInfinity(ReturnType, UseNegInf);
5213 
5214     // TODO: minnum(nnan x, inf) -> x
5215     // TODO: minnum(nnan ninf x, flt_max) -> x
5216     // TODO: maxnum(nnan x, -inf) -> x
5217     // TODO: maxnum(nnan ninf x, -flt_max) -> x
5218     break;
5219   }
5220   default:
5221     break;
5222   }
5223 
5224   return nullptr;
5225 }
5226 
5227 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
5228 
5229   // Intrinsics with no operands have some kind of side effect. Don't simplify.
5230   unsigned NumOperands = Call->getNumArgOperands();
5231   if (!NumOperands)
5232     return nullptr;
5233 
5234   Function *F = cast<Function>(Call->getCalledFunction());
5235   Intrinsic::ID IID = F->getIntrinsicID();
5236   if (NumOperands == 1)
5237     return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
5238 
5239   if (NumOperands == 2)
5240     return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
5241                                    Call->getArgOperand(1), Q);
5242 
5243   // Handle intrinsics with 3 or more arguments.
5244   switch (IID) {
5245   case Intrinsic::masked_load:
5246   case Intrinsic::masked_gather: {
5247     Value *MaskArg = Call->getArgOperand(2);
5248     Value *PassthruArg = Call->getArgOperand(3);
5249     // If the mask is all zeros or undef, the "passthru" argument is the result.
5250     if (maskIsAllZeroOrUndef(MaskArg))
5251       return PassthruArg;
5252     return nullptr;
5253   }
5254   case Intrinsic::fshl:
5255   case Intrinsic::fshr: {
5256     Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
5257           *ShAmtArg = Call->getArgOperand(2);
5258 
5259     // If both operands are undef, the result is undef.
5260     if (match(Op0, m_Undef()) && match(Op1, m_Undef()))
5261       return UndefValue::get(F->getReturnType());
5262 
5263     // If shift amount is undef, assume it is zero.
5264     if (match(ShAmtArg, m_Undef()))
5265       return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5266 
5267     const APInt *ShAmtC;
5268     if (match(ShAmtArg, m_APInt(ShAmtC))) {
5269       // If there's effectively no shift, return the 1st arg or 2nd arg.
5270       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
5271       if (ShAmtC->urem(BitWidth).isNullValue())
5272         return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5273     }
5274     return nullptr;
5275   }
5276   case Intrinsic::fma:
5277   case Intrinsic::fmuladd: {
5278     Value *Op0 = Call->getArgOperand(0);
5279     Value *Op1 = Call->getArgOperand(1);
5280     Value *Op2 = Call->getArgOperand(2);
5281     if (Value *V = simplifyFPOp({ Op0, Op1, Op2 }))
5282       return V;
5283     return nullptr;
5284   }
5285   default:
5286     return nullptr;
5287   }
5288 }
5289 
5290 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) {
5291   Value *Callee = Call->getCalledValue();
5292 
5293   // call undef -> undef
5294   // call null -> undef
5295   if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
5296     return UndefValue::get(Call->getType());
5297 
5298   Function *F = dyn_cast<Function>(Callee);
5299   if (!F)
5300     return nullptr;
5301 
5302   if (F->isIntrinsic())
5303     if (Value *Ret = simplifyIntrinsic(Call, Q))
5304       return Ret;
5305 
5306   if (!canConstantFoldCallTo(Call, F))
5307     return nullptr;
5308 
5309   SmallVector<Constant *, 4> ConstantArgs;
5310   unsigned NumArgs = Call->getNumArgOperands();
5311   ConstantArgs.reserve(NumArgs);
5312   for (auto &Arg : Call->args()) {
5313     Constant *C = dyn_cast<Constant>(&Arg);
5314     if (!C)
5315       return nullptr;
5316     ConstantArgs.push_back(C);
5317   }
5318 
5319   return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
5320 }
5321 
5322 /// Given operands for a Freeze, see if we can fold the result.
5323 static Value *SimplifyFreezeInst(Value *Op0) {
5324   // Use a utility function defined in ValueTracking.
5325   if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0))
5326     return Op0;
5327   // We have room for improvement.
5328   return nullptr;
5329 }
5330 
5331 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
5332   return ::SimplifyFreezeInst(Op0);
5333 }
5334 
5335 /// See if we can compute a simplified version of this instruction.
5336 /// If not, this returns null.
5337 
5338 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
5339                                  OptimizationRemarkEmitter *ORE) {
5340   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
5341   Value *Result;
5342 
5343   switch (I->getOpcode()) {
5344   default:
5345     Result = ConstantFoldInstruction(I, Q.DL, Q.TLI);
5346     break;
5347   case Instruction::FNeg:
5348     Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q);
5349     break;
5350   case Instruction::FAdd:
5351     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
5352                               I->getFastMathFlags(), Q);
5353     break;
5354   case Instruction::Add:
5355     Result =
5356         SimplifyAddInst(I->getOperand(0), I->getOperand(1),
5357                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5358                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5359     break;
5360   case Instruction::FSub:
5361     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
5362                               I->getFastMathFlags(), Q);
5363     break;
5364   case Instruction::Sub:
5365     Result =
5366         SimplifySubInst(I->getOperand(0), I->getOperand(1),
5367                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5368                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5369     break;
5370   case Instruction::FMul:
5371     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
5372                               I->getFastMathFlags(), Q);
5373     break;
5374   case Instruction::Mul:
5375     Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q);
5376     break;
5377   case Instruction::SDiv:
5378     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q);
5379     break;
5380   case Instruction::UDiv:
5381     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q);
5382     break;
5383   case Instruction::FDiv:
5384     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
5385                               I->getFastMathFlags(), Q);
5386     break;
5387   case Instruction::SRem:
5388     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q);
5389     break;
5390   case Instruction::URem:
5391     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q);
5392     break;
5393   case Instruction::FRem:
5394     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
5395                               I->getFastMathFlags(), Q);
5396     break;
5397   case Instruction::Shl:
5398     Result =
5399         SimplifyShlInst(I->getOperand(0), I->getOperand(1),
5400                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5401                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5402     break;
5403   case Instruction::LShr:
5404     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
5405                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
5406     break;
5407   case Instruction::AShr:
5408     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
5409                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
5410     break;
5411   case Instruction::And:
5412     Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q);
5413     break;
5414   case Instruction::Or:
5415     Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q);
5416     break;
5417   case Instruction::Xor:
5418     Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q);
5419     break;
5420   case Instruction::ICmp:
5421     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
5422                               I->getOperand(0), I->getOperand(1), Q);
5423     break;
5424   case Instruction::FCmp:
5425     Result =
5426         SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
5427                          I->getOperand(1), I->getFastMathFlags(), Q);
5428     break;
5429   case Instruction::Select:
5430     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
5431                                 I->getOperand(2), Q);
5432     break;
5433   case Instruction::GetElementPtr: {
5434     SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end());
5435     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
5436                              Ops, Q);
5437     break;
5438   }
5439   case Instruction::InsertValue: {
5440     InsertValueInst *IV = cast<InsertValueInst>(I);
5441     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
5442                                      IV->getInsertedValueOperand(),
5443                                      IV->getIndices(), Q);
5444     break;
5445   }
5446   case Instruction::InsertElement: {
5447     auto *IE = cast<InsertElementInst>(I);
5448     Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1),
5449                                        IE->getOperand(2), Q);
5450     break;
5451   }
5452   case Instruction::ExtractValue: {
5453     auto *EVI = cast<ExtractValueInst>(I);
5454     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
5455                                       EVI->getIndices(), Q);
5456     break;
5457   }
5458   case Instruction::ExtractElement: {
5459     auto *EEI = cast<ExtractElementInst>(I);
5460     Result = SimplifyExtractElementInst(EEI->getVectorOperand(),
5461                                         EEI->getIndexOperand(), Q);
5462     break;
5463   }
5464   case Instruction::ShuffleVector: {
5465     auto *SVI = cast<ShuffleVectorInst>(I);
5466     Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5467                                        SVI->getMask(), SVI->getType(), Q);
5468     break;
5469   }
5470   case Instruction::PHI:
5471     Result = SimplifyPHINode(cast<PHINode>(I), Q);
5472     break;
5473   case Instruction::Call: {
5474     Result = SimplifyCall(cast<CallInst>(I), Q);
5475     break;
5476   }
5477   case Instruction::Freeze:
5478     Result = SimplifyFreezeInst(I->getOperand(0), Q);
5479     break;
5480 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
5481 #include "llvm/IR/Instruction.def"
5482 #undef HANDLE_CAST_INST
5483     Result =
5484         SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q);
5485     break;
5486   case Instruction::Alloca:
5487     // No simplifications for Alloca and it can't be constant folded.
5488     Result = nullptr;
5489     break;
5490   }
5491 
5492   // In general, it is possible for computeKnownBits to determine all bits in a
5493   // value even when the operands are not all constants.
5494   if (!Result && I->getType()->isIntOrIntVectorTy()) {
5495     KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE);
5496     if (Known.isConstant())
5497       Result = ConstantInt::get(I->getType(), Known.getConstant());
5498   }
5499 
5500   /// If called on unreachable code, the above logic may report that the
5501   /// instruction simplified to itself.  Make life easier for users by
5502   /// detecting that case here, returning a safe value instead.
5503   return Result == I ? UndefValue::get(I->getType()) : Result;
5504 }
5505 
5506 /// Implementation of recursive simplification through an instruction's
5507 /// uses.
5508 ///
5509 /// This is the common implementation of the recursive simplification routines.
5510 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
5511 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
5512 /// instructions to process and attempt to simplify it using
5513 /// InstructionSimplify. Recursively visited users which could not be
5514 /// simplified themselves are to the optional UnsimplifiedUsers set for
5515 /// further processing by the caller.
5516 ///
5517 /// This routine returns 'true' only when *it* simplifies something. The passed
5518 /// in simplified value does not count toward this.
5519 static bool replaceAndRecursivelySimplifyImpl(
5520     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
5521     const DominatorTree *DT, AssumptionCache *AC,
5522     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
5523   bool Simplified = false;
5524   SmallSetVector<Instruction *, 8> Worklist;
5525   const DataLayout &DL = I->getModule()->getDataLayout();
5526 
5527   // If we have an explicit value to collapse to, do that round of the
5528   // simplification loop by hand initially.
5529   if (SimpleV) {
5530     for (User *U : I->users())
5531       if (U != I)
5532         Worklist.insert(cast<Instruction>(U));
5533 
5534     // Replace the instruction with its simplified value.
5535     I->replaceAllUsesWith(SimpleV);
5536 
5537     // Gracefully handle edge cases where the instruction is not wired into any
5538     // parent block.
5539     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
5540         !I->mayHaveSideEffects())
5541       I->eraseFromParent();
5542   } else {
5543     Worklist.insert(I);
5544   }
5545 
5546   // Note that we must test the size on each iteration, the worklist can grow.
5547   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
5548     I = Worklist[Idx];
5549 
5550     // See if this instruction simplifies.
5551     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
5552     if (!SimpleV) {
5553       if (UnsimplifiedUsers)
5554         UnsimplifiedUsers->insert(I);
5555       continue;
5556     }
5557 
5558     Simplified = true;
5559 
5560     // Stash away all the uses of the old instruction so we can check them for
5561     // recursive simplifications after a RAUW. This is cheaper than checking all
5562     // uses of To on the recursive step in most cases.
5563     for (User *U : I->users())
5564       Worklist.insert(cast<Instruction>(U));
5565 
5566     // Replace the instruction with its simplified value.
5567     I->replaceAllUsesWith(SimpleV);
5568 
5569     // Gracefully handle edge cases where the instruction is not wired into any
5570     // parent block.
5571     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
5572         !I->mayHaveSideEffects())
5573       I->eraseFromParent();
5574   }
5575   return Simplified;
5576 }
5577 
5578 bool llvm::recursivelySimplifyInstruction(Instruction *I,
5579                                           const TargetLibraryInfo *TLI,
5580                                           const DominatorTree *DT,
5581                                           AssumptionCache *AC) {
5582   return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC, nullptr);
5583 }
5584 
5585 bool llvm::replaceAndRecursivelySimplify(
5586     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
5587     const DominatorTree *DT, AssumptionCache *AC,
5588     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
5589   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
5590   assert(SimpleV && "Must provide a simplified value.");
5591   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
5592                                            UnsimplifiedUsers);
5593 }
5594 
5595 namespace llvm {
5596 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
5597   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
5598   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
5599   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
5600   auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
5601   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
5602   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
5603   return {F.getParent()->getDataLayout(), TLI, DT, AC};
5604 }
5605 
5606 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
5607                                          const DataLayout &DL) {
5608   return {DL, &AR.TLI, &AR.DT, &AR.AC};
5609 }
5610 
5611 template <class T, class... TArgs>
5612 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
5613                                          Function &F) {
5614   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
5615   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
5616   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
5617   return {F.getParent()->getDataLayout(), TLI, DT, AC};
5618 }
5619 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
5620                                                   Function &);
5621 }
5622