1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/CaptureTracking.h" 27 #include "llvm/Analysis/CmpInstAnalysis.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/InstSimplifyFolder.h" 30 #include "llvm/Analysis/LoopAnalysisManager.h" 31 #include "llvm/Analysis/MemoryBuiltins.h" 32 #include "llvm/Analysis/OverflowInstAnalysis.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/ConstantRange.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/Support/KnownBits.h" 43 #include <algorithm> 44 #include <optional> 45 using namespace llvm; 46 using namespace llvm::PatternMatch; 47 48 #define DEBUG_TYPE "instsimplify" 49 50 enum { RecursionLimit = 3 }; 51 52 STATISTIC(NumExpand, "Number of expansions"); 53 STATISTIC(NumReassoc, "Number of reassociations"); 54 55 static Value *simplifyAndInst(Value *, Value *, const SimplifyQuery &, 56 unsigned); 57 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 58 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 59 const SimplifyQuery &, unsigned); 60 static Value *simplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 61 unsigned); 62 static Value *simplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 63 const SimplifyQuery &, unsigned); 64 static Value *simplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 65 unsigned); 66 static Value *simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 67 const SimplifyQuery &Q, unsigned MaxRecurse); 68 static Value *simplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 69 static Value *simplifyXorInst(Value *, Value *, const SimplifyQuery &, 70 unsigned); 71 static Value *simplifyCastInst(unsigned, Value *, Type *, const SimplifyQuery &, 72 unsigned); 73 static Value *simplifyGEPInst(Type *, Value *, ArrayRef<Value *>, bool, 74 const SimplifyQuery &, unsigned); 75 static Value *simplifySelectInst(Value *, Value *, Value *, 76 const SimplifyQuery &, unsigned); 77 static Value *simplifyInstructionWithOperands(Instruction *I, 78 ArrayRef<Value *> NewOps, 79 const SimplifyQuery &SQ, 80 unsigned MaxRecurse); 81 82 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 83 Value *FalseVal) { 84 BinaryOperator::BinaryOps BinOpCode; 85 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 86 BinOpCode = BO->getOpcode(); 87 else 88 return nullptr; 89 90 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 91 if (BinOpCode == BinaryOperator::Or) { 92 ExpectedPred = ICmpInst::ICMP_NE; 93 } else if (BinOpCode == BinaryOperator::And) { 94 ExpectedPred = ICmpInst::ICMP_EQ; 95 } else 96 return nullptr; 97 98 // %A = icmp eq %TV, %FV 99 // %B = icmp eq %X, %Y (and one of these is a select operand) 100 // %C = and %A, %B 101 // %D = select %C, %TV, %FV 102 // --> 103 // %FV 104 105 // %A = icmp ne %TV, %FV 106 // %B = icmp ne %X, %Y (and one of these is a select operand) 107 // %C = or %A, %B 108 // %D = select %C, %TV, %FV 109 // --> 110 // %TV 111 Value *X, *Y; 112 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 113 m_Specific(FalseVal)), 114 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 115 Pred1 != Pred2 || Pred1 != ExpectedPred) 116 return nullptr; 117 118 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 119 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 120 121 return nullptr; 122 } 123 124 /// For a boolean type or a vector of boolean type, return false or a vector 125 /// with every element false. 126 static Constant *getFalse(Type *Ty) { return ConstantInt::getFalse(Ty); } 127 128 /// For a boolean type or a vector of boolean type, return true or a vector 129 /// with every element true. 130 static Constant *getTrue(Type *Ty) { return ConstantInt::getTrue(Ty); } 131 132 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 133 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 134 Value *RHS) { 135 CmpInst *Cmp = dyn_cast<CmpInst>(V); 136 if (!Cmp) 137 return false; 138 CmpInst::Predicate CPred = Cmp->getPredicate(); 139 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 140 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 141 return true; 142 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 143 CRHS == LHS; 144 } 145 146 /// Simplify comparison with true or false branch of select: 147 /// %sel = select i1 %cond, i32 %tv, i32 %fv 148 /// %cmp = icmp sle i32 %sel, %rhs 149 /// Compose new comparison by substituting %sel with either %tv or %fv 150 /// and see if it simplifies. 151 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 152 Value *RHS, Value *Cond, 153 const SimplifyQuery &Q, unsigned MaxRecurse, 154 Constant *TrueOrFalse) { 155 Value *SimplifiedCmp = simplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 156 if (SimplifiedCmp == Cond) { 157 // %cmp simplified to the select condition (%cond). 158 return TrueOrFalse; 159 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 160 // It didn't simplify. However, if composed comparison is equivalent 161 // to the select condition (%cond) then we can replace it. 162 return TrueOrFalse; 163 } 164 return SimplifiedCmp; 165 } 166 167 /// Simplify comparison with true branch of select 168 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 169 Value *RHS, Value *Cond, 170 const SimplifyQuery &Q, 171 unsigned MaxRecurse) { 172 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 173 getTrue(Cond->getType())); 174 } 175 176 /// Simplify comparison with false branch of select 177 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 178 Value *RHS, Value *Cond, 179 const SimplifyQuery &Q, 180 unsigned MaxRecurse) { 181 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 182 getFalse(Cond->getType())); 183 } 184 185 /// We know comparison with both branches of select can be simplified, but they 186 /// are not equal. This routine handles some logical simplifications. 187 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 188 Value *Cond, 189 const SimplifyQuery &Q, 190 unsigned MaxRecurse) { 191 // If the false value simplified to false, then the result of the compare 192 // is equal to "Cond && TCmp". This also catches the case when the false 193 // value simplified to false and the true value to true, returning "Cond". 194 // Folding select to and/or isn't poison-safe in general; impliesPoison 195 // checks whether folding it does not convert a well-defined value into 196 // poison. 197 if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond)) 198 if (Value *V = simplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 199 return V; 200 // If the true value simplified to true, then the result of the compare 201 // is equal to "Cond || FCmp". 202 if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond)) 203 if (Value *V = simplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 204 return V; 205 // Finally, if the false value simplified to true and the true value to 206 // false, then the result of the compare is equal to "!Cond". 207 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 208 if (Value *V = simplifyXorInst( 209 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 210 return V; 211 return nullptr; 212 } 213 214 /// Does the given value dominate the specified phi node? 215 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 216 Instruction *I = dyn_cast<Instruction>(V); 217 if (!I) 218 // Arguments and constants dominate all instructions. 219 return true; 220 221 // If we have a DominatorTree then do a precise test. 222 if (DT) 223 return DT->dominates(I, P); 224 225 // Otherwise, if the instruction is in the entry block and is not an invoke, 226 // then it obviously dominates all phi nodes. 227 if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) && 228 !isa<CallBrInst>(I)) 229 return true; 230 231 return false; 232 } 233 234 /// Try to simplify a binary operator of form "V op OtherOp" where V is 235 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 236 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 237 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 238 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 239 const SimplifyQuery &Q, unsigned MaxRecurse) { 240 auto *B = dyn_cast<BinaryOperator>(V); 241 if (!B || B->getOpcode() != OpcodeToExpand) 242 return nullptr; 243 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 244 Value *L = 245 simplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), MaxRecurse); 246 if (!L) 247 return nullptr; 248 Value *R = 249 simplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), MaxRecurse); 250 if (!R) 251 return nullptr; 252 253 // Does the expanded pair of binops simplify to the existing binop? 254 if ((L == B0 && R == B1) || 255 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 256 ++NumExpand; 257 return B; 258 } 259 260 // Otherwise, return "L op' R" if it simplifies. 261 Value *S = simplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 262 if (!S) 263 return nullptr; 264 265 ++NumExpand; 266 return S; 267 } 268 269 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 270 /// distributing op over op'. 271 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, Value *L, 272 Value *R, 273 Instruction::BinaryOps OpcodeToExpand, 274 const SimplifyQuery &Q, 275 unsigned MaxRecurse) { 276 // Recursion is always used, so bail out at once if we already hit the limit. 277 if (!MaxRecurse--) 278 return nullptr; 279 280 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 281 return V; 282 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 283 return V; 284 return nullptr; 285 } 286 287 /// Generic simplifications for associative binary operations. 288 /// Returns the simpler value, or null if none was found. 289 static Value *simplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 290 Value *LHS, Value *RHS, 291 const SimplifyQuery &Q, 292 unsigned MaxRecurse) { 293 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 294 295 // Recursion is always used, so bail out at once if we already hit the limit. 296 if (!MaxRecurse--) 297 return nullptr; 298 299 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 300 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 301 302 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 303 if (Op0 && Op0->getOpcode() == Opcode) { 304 Value *A = Op0->getOperand(0); 305 Value *B = Op0->getOperand(1); 306 Value *C = RHS; 307 308 // Does "B op C" simplify? 309 if (Value *V = simplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 310 // It does! Return "A op V" if it simplifies or is already available. 311 // If V equals B then "A op V" is just the LHS. 312 if (V == B) 313 return LHS; 314 // Otherwise return "A op V" if it simplifies. 315 if (Value *W = simplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 316 ++NumReassoc; 317 return W; 318 } 319 } 320 } 321 322 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 323 if (Op1 && Op1->getOpcode() == Opcode) { 324 Value *A = LHS; 325 Value *B = Op1->getOperand(0); 326 Value *C = Op1->getOperand(1); 327 328 // Does "A op B" simplify? 329 if (Value *V = simplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 330 // It does! Return "V op C" if it simplifies or is already available. 331 // If V equals B then "V op C" is just the RHS. 332 if (V == B) 333 return RHS; 334 // Otherwise return "V op C" if it simplifies. 335 if (Value *W = simplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 336 ++NumReassoc; 337 return W; 338 } 339 } 340 } 341 342 // The remaining transforms require commutativity as well as associativity. 343 if (!Instruction::isCommutative(Opcode)) 344 return nullptr; 345 346 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 347 if (Op0 && Op0->getOpcode() == Opcode) { 348 Value *A = Op0->getOperand(0); 349 Value *B = Op0->getOperand(1); 350 Value *C = RHS; 351 352 // Does "C op A" simplify? 353 if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 354 // It does! Return "V op B" if it simplifies or is already available. 355 // If V equals A then "V op B" is just the LHS. 356 if (V == A) 357 return LHS; 358 // Otherwise return "V op B" if it simplifies. 359 if (Value *W = simplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 360 ++NumReassoc; 361 return W; 362 } 363 } 364 } 365 366 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 367 if (Op1 && Op1->getOpcode() == Opcode) { 368 Value *A = LHS; 369 Value *B = Op1->getOperand(0); 370 Value *C = Op1->getOperand(1); 371 372 // Does "C op A" simplify? 373 if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 374 // It does! Return "B op V" if it simplifies or is already available. 375 // If V equals C then "B op V" is just the RHS. 376 if (V == C) 377 return RHS; 378 // Otherwise return "B op V" if it simplifies. 379 if (Value *W = simplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 380 ++NumReassoc; 381 return W; 382 } 383 } 384 } 385 386 return nullptr; 387 } 388 389 /// In the case of a binary operation with a select instruction as an operand, 390 /// try to simplify the binop by seeing whether evaluating it on both branches 391 /// of the select results in the same value. Returns the common value if so, 392 /// otherwise returns null. 393 static Value *threadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 394 Value *RHS, const SimplifyQuery &Q, 395 unsigned MaxRecurse) { 396 // Recursion is always used, so bail out at once if we already hit the limit. 397 if (!MaxRecurse--) 398 return nullptr; 399 400 SelectInst *SI; 401 if (isa<SelectInst>(LHS)) { 402 SI = cast<SelectInst>(LHS); 403 } else { 404 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 405 SI = cast<SelectInst>(RHS); 406 } 407 408 // Evaluate the BinOp on the true and false branches of the select. 409 Value *TV; 410 Value *FV; 411 if (SI == LHS) { 412 TV = simplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 413 FV = simplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 414 } else { 415 TV = simplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 416 FV = simplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 417 } 418 419 // If they simplified to the same value, then return the common value. 420 // If they both failed to simplify then return null. 421 if (TV == FV) 422 return TV; 423 424 // If one branch simplified to undef, return the other one. 425 if (TV && Q.isUndefValue(TV)) 426 return FV; 427 if (FV && Q.isUndefValue(FV)) 428 return TV; 429 430 // If applying the operation did not change the true and false select values, 431 // then the result of the binop is the select itself. 432 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 433 return SI; 434 435 // If one branch simplified and the other did not, and the simplified 436 // value is equal to the unsimplified one, return the simplified value. 437 // For example, select (cond, X, X & Z) & Z -> X & Z. 438 if ((FV && !TV) || (TV && !FV)) { 439 // Check that the simplified value has the form "X op Y" where "op" is the 440 // same as the original operation. 441 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 442 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 443 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 444 // We already know that "op" is the same as for the simplified value. See 445 // if the operands match too. If so, return the simplified value. 446 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 447 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 448 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 449 if (Simplified->getOperand(0) == UnsimplifiedLHS && 450 Simplified->getOperand(1) == UnsimplifiedRHS) 451 return Simplified; 452 if (Simplified->isCommutative() && 453 Simplified->getOperand(1) == UnsimplifiedLHS && 454 Simplified->getOperand(0) == UnsimplifiedRHS) 455 return Simplified; 456 } 457 } 458 459 return nullptr; 460 } 461 462 /// In the case of a comparison with a select instruction, try to simplify the 463 /// comparison by seeing whether both branches of the select result in the same 464 /// value. Returns the common value if so, otherwise returns null. 465 /// For example, if we have: 466 /// %tmp = select i1 %cmp, i32 1, i32 2 467 /// %cmp1 = icmp sle i32 %tmp, 3 468 /// We can simplify %cmp1 to true, because both branches of select are 469 /// less than 3. We compose new comparison by substituting %tmp with both 470 /// branches of select and see if it can be simplified. 471 static Value *threadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 472 Value *RHS, const SimplifyQuery &Q, 473 unsigned MaxRecurse) { 474 // Recursion is always used, so bail out at once if we already hit the limit. 475 if (!MaxRecurse--) 476 return nullptr; 477 478 // Make sure the select is on the LHS. 479 if (!isa<SelectInst>(LHS)) { 480 std::swap(LHS, RHS); 481 Pred = CmpInst::getSwappedPredicate(Pred); 482 } 483 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 484 SelectInst *SI = cast<SelectInst>(LHS); 485 Value *Cond = SI->getCondition(); 486 Value *TV = SI->getTrueValue(); 487 Value *FV = SI->getFalseValue(); 488 489 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 490 // Does "cmp TV, RHS" simplify? 491 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 492 if (!TCmp) 493 return nullptr; 494 495 // Does "cmp FV, RHS" simplify? 496 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 497 if (!FCmp) 498 return nullptr; 499 500 // If both sides simplified to the same value, then use it as the result of 501 // the original comparison. 502 if (TCmp == FCmp) 503 return TCmp; 504 505 // The remaining cases only make sense if the select condition has the same 506 // type as the result of the comparison, so bail out if this is not so. 507 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 508 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 509 510 return nullptr; 511 } 512 513 /// In the case of a binary operation with an operand that is a PHI instruction, 514 /// try to simplify the binop by seeing whether evaluating it on the incoming 515 /// phi values yields the same result for every value. If so returns the common 516 /// value, otherwise returns null. 517 static Value *threadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 518 Value *RHS, const SimplifyQuery &Q, 519 unsigned MaxRecurse) { 520 // Recursion is always used, so bail out at once if we already hit the limit. 521 if (!MaxRecurse--) 522 return nullptr; 523 524 PHINode *PI; 525 if (isa<PHINode>(LHS)) { 526 PI = cast<PHINode>(LHS); 527 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 528 if (!valueDominatesPHI(RHS, PI, Q.DT)) 529 return nullptr; 530 } else { 531 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 532 PI = cast<PHINode>(RHS); 533 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 534 if (!valueDominatesPHI(LHS, PI, Q.DT)) 535 return nullptr; 536 } 537 538 // Evaluate the BinOp on the incoming phi values. 539 Value *CommonValue = nullptr; 540 for (Use &Incoming : PI->incoming_values()) { 541 // If the incoming value is the phi node itself, it can safely be skipped. 542 if (Incoming == PI) 543 continue; 544 Instruction *InTI = PI->getIncomingBlock(Incoming)->getTerminator(); 545 Value *V = PI == LHS 546 ? simplifyBinOp(Opcode, Incoming, RHS, 547 Q.getWithInstruction(InTI), MaxRecurse) 548 : simplifyBinOp(Opcode, LHS, Incoming, 549 Q.getWithInstruction(InTI), MaxRecurse); 550 // If the operation failed to simplify, or simplified to a different value 551 // to previously, then give up. 552 if (!V || (CommonValue && V != CommonValue)) 553 return nullptr; 554 CommonValue = V; 555 } 556 557 return CommonValue; 558 } 559 560 /// In the case of a comparison with a PHI instruction, try to simplify the 561 /// comparison by seeing whether comparing with all of the incoming phi values 562 /// yields the same result every time. If so returns the common result, 563 /// otherwise returns null. 564 static Value *threadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 565 const SimplifyQuery &Q, unsigned MaxRecurse) { 566 // Recursion is always used, so bail out at once if we already hit the limit. 567 if (!MaxRecurse--) 568 return nullptr; 569 570 // Make sure the phi is on the LHS. 571 if (!isa<PHINode>(LHS)) { 572 std::swap(LHS, RHS); 573 Pred = CmpInst::getSwappedPredicate(Pred); 574 } 575 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 576 PHINode *PI = cast<PHINode>(LHS); 577 578 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 579 if (!valueDominatesPHI(RHS, PI, Q.DT)) 580 return nullptr; 581 582 // Evaluate the BinOp on the incoming phi values. 583 Value *CommonValue = nullptr; 584 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 585 Value *Incoming = PI->getIncomingValue(u); 586 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 587 // If the incoming value is the phi node itself, it can safely be skipped. 588 if (Incoming == PI) 589 continue; 590 // Change the context instruction to the "edge" that flows into the phi. 591 // This is important because that is where incoming is actually "evaluated" 592 // even though it is used later somewhere else. 593 Value *V = simplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 594 MaxRecurse); 595 // If the operation failed to simplify, or simplified to a different value 596 // to previously, then give up. 597 if (!V || (CommonValue && V != CommonValue)) 598 return nullptr; 599 CommonValue = V; 600 } 601 602 return CommonValue; 603 } 604 605 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 606 Value *&Op0, Value *&Op1, 607 const SimplifyQuery &Q) { 608 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 609 if (auto *CRHS = dyn_cast<Constant>(Op1)) { 610 switch (Opcode) { 611 default: 612 break; 613 case Instruction::FAdd: 614 case Instruction::FSub: 615 case Instruction::FMul: 616 case Instruction::FDiv: 617 case Instruction::FRem: 618 if (Q.CxtI != nullptr) 619 return ConstantFoldFPInstOperands(Opcode, CLHS, CRHS, Q.DL, Q.CxtI); 620 } 621 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 622 } 623 624 // Canonicalize the constant to the RHS if this is a commutative operation. 625 if (Instruction::isCommutative(Opcode)) 626 std::swap(Op0, Op1); 627 } 628 return nullptr; 629 } 630 631 /// Given operands for an Add, see if we can fold the result. 632 /// If not, this returns null. 633 static Value *simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 634 const SimplifyQuery &Q, unsigned MaxRecurse) { 635 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 636 return C; 637 638 // X + poison -> poison 639 if (isa<PoisonValue>(Op1)) 640 return Op1; 641 642 // X + undef -> undef 643 if (Q.isUndefValue(Op1)) 644 return Op1; 645 646 // X + 0 -> X 647 if (match(Op1, m_Zero())) 648 return Op0; 649 650 // If two operands are negative, return 0. 651 if (isKnownNegation(Op0, Op1)) 652 return Constant::getNullValue(Op0->getType()); 653 654 // X + (Y - X) -> Y 655 // (Y - X) + X -> Y 656 // Eg: X + -X -> 0 657 Value *Y = nullptr; 658 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 659 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 660 return Y; 661 662 // X + ~X -> -1 since ~X = -X-1 663 Type *Ty = Op0->getType(); 664 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) 665 return Constant::getAllOnesValue(Ty); 666 667 // add nsw/nuw (xor Y, signmask), signmask --> Y 668 // The no-wrapping add guarantees that the top bit will be set by the add. 669 // Therefore, the xor must be clearing the already set sign bit of Y. 670 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 671 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 672 return Y; 673 674 // add nuw %x, -1 -> -1, because %x can only be 0. 675 if (IsNUW && match(Op1, m_AllOnes())) 676 return Op1; // Which is -1. 677 678 /// i1 add -> xor. 679 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 680 if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1)) 681 return V; 682 683 // Try some generic simplifications for associative operations. 684 if (Value *V = 685 simplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, MaxRecurse)) 686 return V; 687 688 // Threading Add over selects and phi nodes is pointless, so don't bother. 689 // Threading over the select in "A + select(cond, B, C)" means evaluating 690 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 691 // only if B and C are equal. If B and C are equal then (since we assume 692 // that operands have already been simplified) "select(cond, B, C)" should 693 // have been simplified to the common value of B and C already. Analysing 694 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 695 // for threading over phi nodes. 696 697 return nullptr; 698 } 699 700 Value *llvm::simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 701 const SimplifyQuery &Query) { 702 return ::simplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 703 } 704 705 /// Compute the base pointer and cumulative constant offsets for V. 706 /// 707 /// This strips all constant offsets off of V, leaving it the base pointer, and 708 /// accumulates the total constant offset applied in the returned constant. 709 /// It returns zero if there are no constant offsets applied. 710 /// 711 /// This is very similar to stripAndAccumulateConstantOffsets(), except it 712 /// normalizes the offset bitwidth to the stripped pointer type, not the 713 /// original pointer type. 714 static APInt stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 715 bool AllowNonInbounds = false) { 716 assert(V->getType()->isPtrOrPtrVectorTy()); 717 718 APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType())); 719 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 720 // As that strip may trace through `addrspacecast`, need to sext or trunc 721 // the offset calculated. 722 return Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(V->getType())); 723 } 724 725 /// Compute the constant difference between two pointer values. 726 /// If the difference is not a constant, returns zero. 727 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 728 Value *RHS) { 729 APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 730 APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 731 732 // If LHS and RHS are not related via constant offsets to the same base 733 // value, there is nothing we can do here. 734 if (LHS != RHS) 735 return nullptr; 736 737 // Otherwise, the difference of LHS - RHS can be computed as: 738 // LHS - RHS 739 // = (LHSOffset + Base) - (RHSOffset + Base) 740 // = LHSOffset - RHSOffset 741 Constant *Res = ConstantInt::get(LHS->getContext(), LHSOffset - RHSOffset); 742 if (auto *VecTy = dyn_cast<VectorType>(LHS->getType())) 743 Res = ConstantVector::getSplat(VecTy->getElementCount(), Res); 744 return Res; 745 } 746 747 /// Test if there is a dominating equivalence condition for the 748 /// two operands. If there is, try to reduce the binary operation 749 /// between the two operands. 750 /// Example: Op0 - Op1 --> 0 when Op0 == Op1 751 static Value *simplifyByDomEq(unsigned Opcode, Value *Op0, Value *Op1, 752 const SimplifyQuery &Q, unsigned MaxRecurse) { 753 // Recursive run it can not get any benefit 754 if (MaxRecurse != RecursionLimit) 755 return nullptr; 756 757 std::optional<bool> Imp = 758 isImpliedByDomCondition(CmpInst::ICMP_EQ, Op0, Op1, Q.CxtI, Q.DL); 759 if (Imp && *Imp) { 760 Type *Ty = Op0->getType(); 761 switch (Opcode) { 762 case Instruction::Sub: 763 case Instruction::Xor: 764 case Instruction::URem: 765 case Instruction::SRem: 766 return Constant::getNullValue(Ty); 767 768 case Instruction::SDiv: 769 case Instruction::UDiv: 770 return ConstantInt::get(Ty, 1); 771 772 case Instruction::And: 773 case Instruction::Or: 774 // Could be either one - choose Op1 since that's more likely a constant. 775 return Op1; 776 default: 777 break; 778 } 779 } 780 return nullptr; 781 } 782 783 /// Given operands for a Sub, see if we can fold the result. 784 /// If not, this returns null. 785 static Value *simplifySubInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 786 const SimplifyQuery &Q, unsigned MaxRecurse) { 787 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 788 return C; 789 790 // X - poison -> poison 791 // poison - X -> poison 792 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 793 return PoisonValue::get(Op0->getType()); 794 795 // X - undef -> undef 796 // undef - X -> undef 797 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 798 return UndefValue::get(Op0->getType()); 799 800 // X - 0 -> X 801 if (match(Op1, m_Zero())) 802 return Op0; 803 804 // X - X -> 0 805 if (Op0 == Op1) 806 return Constant::getNullValue(Op0->getType()); 807 808 // Is this a negation? 809 if (match(Op0, m_Zero())) { 810 // 0 - X -> 0 if the sub is NUW. 811 if (IsNUW) 812 return Constant::getNullValue(Op0->getType()); 813 814 KnownBits Known = computeKnownBits(Op1, /* Depth */ 0, Q); 815 if (Known.Zero.isMaxSignedValue()) { 816 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 817 // Op1 must be 0 because negating the minimum signed value is undefined. 818 if (IsNSW) 819 return Constant::getNullValue(Op0->getType()); 820 821 // 0 - X -> X if X is 0 or the minimum signed value. 822 return Op1; 823 } 824 } 825 826 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 827 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 828 Value *X = nullptr, *Y = nullptr, *Z = Op1; 829 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 830 // See if "V === Y - Z" simplifies. 831 if (Value *V = simplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse - 1)) 832 // It does! Now see if "X + V" simplifies. 833 if (Value *W = simplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse - 1)) { 834 // It does, we successfully reassociated! 835 ++NumReassoc; 836 return W; 837 } 838 // See if "V === X - Z" simplifies. 839 if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1)) 840 // It does! Now see if "Y + V" simplifies. 841 if (Value *W = simplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse - 1)) { 842 // It does, we successfully reassociated! 843 ++NumReassoc; 844 return W; 845 } 846 } 847 848 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 849 // For example, X - (X + 1) -> -1 850 X = Op0; 851 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 852 // See if "V === X - Y" simplifies. 853 if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1)) 854 // It does! Now see if "V - Z" simplifies. 855 if (Value *W = simplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse - 1)) { 856 // It does, we successfully reassociated! 857 ++NumReassoc; 858 return W; 859 } 860 // See if "V === X - Z" simplifies. 861 if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1)) 862 // It does! Now see if "V - Y" simplifies. 863 if (Value *W = simplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse - 1)) { 864 // It does, we successfully reassociated! 865 ++NumReassoc; 866 return W; 867 } 868 } 869 870 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 871 // For example, X - (X - Y) -> Y. 872 Z = Op0; 873 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 874 // See if "V === Z - X" simplifies. 875 if (Value *V = simplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse - 1)) 876 // It does! Now see if "V + Y" simplifies. 877 if (Value *W = simplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse - 1)) { 878 // It does, we successfully reassociated! 879 ++NumReassoc; 880 return W; 881 } 882 883 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 884 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 885 match(Op1, m_Trunc(m_Value(Y)))) 886 if (X->getType() == Y->getType()) 887 // See if "V === X - Y" simplifies. 888 if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1)) 889 // It does! Now see if "trunc V" simplifies. 890 if (Value *W = simplifyCastInst(Instruction::Trunc, V, Op0->getType(), 891 Q, MaxRecurse - 1)) 892 // It does, return the simplified "trunc V". 893 return W; 894 895 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 896 if (match(Op0, m_PtrToInt(m_Value(X))) && match(Op1, m_PtrToInt(m_Value(Y)))) 897 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 898 return ConstantFoldIntegerCast(Result, Op0->getType(), /*IsSigned*/ true, 899 Q.DL); 900 901 // i1 sub -> xor. 902 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 903 if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1)) 904 return V; 905 906 // Threading Sub over selects and phi nodes is pointless, so don't bother. 907 // Threading over the select in "A - select(cond, B, C)" means evaluating 908 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 909 // only if B and C are equal. If B and C are equal then (since we assume 910 // that operands have already been simplified) "select(cond, B, C)" should 911 // have been simplified to the common value of B and C already. Analysing 912 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 913 // for threading over phi nodes. 914 915 if (Value *V = simplifyByDomEq(Instruction::Sub, Op0, Op1, Q, MaxRecurse)) 916 return V; 917 918 return nullptr; 919 } 920 921 Value *llvm::simplifySubInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 922 const SimplifyQuery &Q) { 923 return ::simplifySubInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit); 924 } 925 926 /// Given operands for a Mul, see if we can fold the result. 927 /// If not, this returns null. 928 static Value *simplifyMulInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 929 const SimplifyQuery &Q, unsigned MaxRecurse) { 930 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 931 return C; 932 933 // X * poison -> poison 934 if (isa<PoisonValue>(Op1)) 935 return Op1; 936 937 // X * undef -> 0 938 // X * 0 -> 0 939 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 940 return Constant::getNullValue(Op0->getType()); 941 942 // X * 1 -> X 943 if (match(Op1, m_One())) 944 return Op0; 945 946 // (X / Y) * Y -> X if the division is exact. 947 Value *X = nullptr; 948 if (Q.IIQ.UseInstrInfo && 949 (match(Op0, 950 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 951 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 952 return X; 953 954 if (Op0->getType()->isIntOrIntVectorTy(1)) { 955 // mul i1 nsw is a special-case because -1 * -1 is poison (+1 is not 956 // representable). All other cases reduce to 0, so just return 0. 957 if (IsNSW) 958 return ConstantInt::getNullValue(Op0->getType()); 959 960 // Treat "mul i1" as "and i1". 961 if (MaxRecurse) 962 if (Value *V = simplifyAndInst(Op0, Op1, Q, MaxRecurse - 1)) 963 return V; 964 } 965 966 // Try some generic simplifications for associative operations. 967 if (Value *V = 968 simplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) 969 return V; 970 971 // Mul distributes over Add. Try some generic simplifications based on this. 972 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 973 Instruction::Add, Q, MaxRecurse)) 974 return V; 975 976 // If the operation is with the result of a select instruction, check whether 977 // operating on either branch of the select always yields the same value. 978 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 979 if (Value *V = 980 threadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) 981 return V; 982 983 // If the operation is with the result of a phi instruction, check whether 984 // operating on all incoming values of the phi always yields the same value. 985 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 986 if (Value *V = 987 threadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) 988 return V; 989 990 return nullptr; 991 } 992 993 Value *llvm::simplifyMulInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 994 const SimplifyQuery &Q) { 995 return ::simplifyMulInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit); 996 } 997 998 /// Given a predicate and two operands, return true if the comparison is true. 999 /// This is a helper for div/rem simplification where we return some other value 1000 /// when we can prove a relationship between the operands. 1001 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 1002 const SimplifyQuery &Q, unsigned MaxRecurse) { 1003 Value *V = simplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 1004 Constant *C = dyn_cast_or_null<Constant>(V); 1005 return (C && C->isAllOnesValue()); 1006 } 1007 1008 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 1009 /// to simplify X % Y to X. 1010 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 1011 unsigned MaxRecurse, bool IsSigned) { 1012 // Recursion is always used, so bail out at once if we already hit the limit. 1013 if (!MaxRecurse--) 1014 return false; 1015 1016 if (IsSigned) { 1017 // (X srem Y) sdiv Y --> 0 1018 if (match(X, m_SRem(m_Value(), m_Specific(Y)))) 1019 return true; 1020 1021 // |X| / |Y| --> 0 1022 // 1023 // We require that 1 operand is a simple constant. That could be extended to 1024 // 2 variables if we computed the sign bit for each. 1025 // 1026 // Make sure that a constant is not the minimum signed value because taking 1027 // the abs() of that is undefined. 1028 Type *Ty = X->getType(); 1029 const APInt *C; 1030 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1031 // Is the variable divisor magnitude always greater than the constant 1032 // dividend magnitude? 1033 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1034 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1035 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1036 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1037 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1038 return true; 1039 } 1040 if (match(Y, m_APInt(C))) { 1041 // Special-case: we can't take the abs() of a minimum signed value. If 1042 // that's the divisor, then all we have to do is prove that the dividend 1043 // is also not the minimum signed value. 1044 if (C->isMinSignedValue()) 1045 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1046 1047 // Is the variable dividend magnitude always less than the constant 1048 // divisor magnitude? 1049 // |X| < |C| --> X > -abs(C) and X < abs(C) 1050 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1051 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1052 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1053 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1054 return true; 1055 } 1056 return false; 1057 } 1058 1059 // IsSigned == false. 1060 1061 // Is the unsigned dividend known to be less than a constant divisor? 1062 // TODO: Convert this (and above) to range analysis 1063 // ("computeConstantRangeIncludingKnownBits")? 1064 const APInt *C; 1065 if (match(Y, m_APInt(C)) && 1066 computeKnownBits(X, /* Depth */ 0, Q).getMaxValue().ult(*C)) 1067 return true; 1068 1069 // Try again for any divisor: 1070 // Is the dividend unsigned less than the divisor? 1071 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1072 } 1073 1074 /// Check for common or similar folds of integer division or integer remainder. 1075 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 1076 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, 1077 Value *Op1, const SimplifyQuery &Q, 1078 unsigned MaxRecurse) { 1079 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv); 1080 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem); 1081 1082 Type *Ty = Op0->getType(); 1083 1084 // X / undef -> poison 1085 // X % undef -> poison 1086 if (Q.isUndefValue(Op1) || isa<PoisonValue>(Op1)) 1087 return PoisonValue::get(Ty); 1088 1089 // X / 0 -> poison 1090 // X % 0 -> poison 1091 // We don't need to preserve faults! 1092 if (match(Op1, m_Zero())) 1093 return PoisonValue::get(Ty); 1094 1095 // If any element of a constant divisor fixed width vector is zero or undef 1096 // the behavior is undefined and we can fold the whole op to poison. 1097 auto *Op1C = dyn_cast<Constant>(Op1); 1098 auto *VTy = dyn_cast<FixedVectorType>(Ty); 1099 if (Op1C && VTy) { 1100 unsigned NumElts = VTy->getNumElements(); 1101 for (unsigned i = 0; i != NumElts; ++i) { 1102 Constant *Elt = Op1C->getAggregateElement(i); 1103 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) 1104 return PoisonValue::get(Ty); 1105 } 1106 } 1107 1108 // poison / X -> poison 1109 // poison % X -> poison 1110 if (isa<PoisonValue>(Op0)) 1111 return Op0; 1112 1113 // undef / X -> 0 1114 // undef % X -> 0 1115 if (Q.isUndefValue(Op0)) 1116 return Constant::getNullValue(Ty); 1117 1118 // 0 / X -> 0 1119 // 0 % X -> 0 1120 if (match(Op0, m_Zero())) 1121 return Constant::getNullValue(Op0->getType()); 1122 1123 // X / X -> 1 1124 // X % X -> 0 1125 if (Op0 == Op1) 1126 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 1127 1128 KnownBits Known = computeKnownBits(Op1, /* Depth */ 0, Q); 1129 // X / 0 -> poison 1130 // X % 0 -> poison 1131 // If the divisor is known to be zero, just return poison. This can happen in 1132 // some cases where its provable indirectly the denominator is zero but it's 1133 // not trivially simplifiable (i.e known zero through a phi node). 1134 if (Known.isZero()) 1135 return PoisonValue::get(Ty); 1136 1137 // X / 1 -> X 1138 // X % 1 -> 0 1139 // If the divisor can only be zero or one, we can't have division-by-zero 1140 // or remainder-by-zero, so assume the divisor is 1. 1141 // e.g. 1, zext (i8 X), sdiv X (Y and 1) 1142 if (Known.countMinLeadingZeros() == Known.getBitWidth() - 1) 1143 return IsDiv ? Op0 : Constant::getNullValue(Ty); 1144 1145 // If X * Y does not overflow, then: 1146 // X * Y / Y -> X 1147 // X * Y % Y -> 0 1148 Value *X; 1149 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1150 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1151 // The multiplication can't overflow if it is defined not to, or if 1152 // X == A / Y for some A. 1153 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1154 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) || 1155 (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1156 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) { 1157 return IsDiv ? X : Constant::getNullValue(Op0->getType()); 1158 } 1159 } 1160 1161 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1162 return IsDiv ? Constant::getNullValue(Op0->getType()) : Op0; 1163 1164 if (Value *V = simplifyByDomEq(Opcode, Op0, Op1, Q, MaxRecurse)) 1165 return V; 1166 1167 // If the operation is with the result of a select instruction, check whether 1168 // operating on either branch of the select always yields the same value. 1169 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1170 if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1171 return V; 1172 1173 // If the operation is with the result of a phi instruction, check whether 1174 // operating on all incoming values of the phi always yields the same value. 1175 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1176 if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1177 return V; 1178 1179 return nullptr; 1180 } 1181 1182 /// These are simplifications common to SDiv and UDiv. 1183 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1184 bool IsExact, const SimplifyQuery &Q, 1185 unsigned MaxRecurse) { 1186 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1187 return C; 1188 1189 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q, MaxRecurse)) 1190 return V; 1191 1192 // If this is an exact divide by a constant, then the dividend (Op0) must have 1193 // at least as many trailing zeros as the divisor to divide evenly. If it has 1194 // less trailing zeros, then the result must be poison. 1195 const APInt *DivC; 1196 if (IsExact && match(Op1, m_APInt(DivC)) && DivC->countr_zero()) { 1197 KnownBits KnownOp0 = computeKnownBits(Op0, /* Depth */ 0, Q); 1198 if (KnownOp0.countMaxTrailingZeros() < DivC->countr_zero()) 1199 return PoisonValue::get(Op0->getType()); 1200 } 1201 1202 return nullptr; 1203 } 1204 1205 /// These are simplifications common to SRem and URem. 1206 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1207 const SimplifyQuery &Q, unsigned MaxRecurse) { 1208 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1209 return C; 1210 1211 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q, MaxRecurse)) 1212 return V; 1213 1214 // (X << Y) % X -> 0 1215 if (Q.IIQ.UseInstrInfo && 1216 ((Opcode == Instruction::SRem && 1217 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1218 (Opcode == Instruction::URem && 1219 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1220 return Constant::getNullValue(Op0->getType()); 1221 1222 return nullptr; 1223 } 1224 1225 /// Given operands for an SDiv, see if we can fold the result. 1226 /// If not, this returns null. 1227 static Value *simplifySDivInst(Value *Op0, Value *Op1, bool IsExact, 1228 const SimplifyQuery &Q, unsigned MaxRecurse) { 1229 // If two operands are negated and no signed overflow, return -1. 1230 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1231 return Constant::getAllOnesValue(Op0->getType()); 1232 1233 return simplifyDiv(Instruction::SDiv, Op0, Op1, IsExact, Q, MaxRecurse); 1234 } 1235 1236 Value *llvm::simplifySDivInst(Value *Op0, Value *Op1, bool IsExact, 1237 const SimplifyQuery &Q) { 1238 return ::simplifySDivInst(Op0, Op1, IsExact, Q, RecursionLimit); 1239 } 1240 1241 /// Given operands for a UDiv, see if we can fold the result. 1242 /// If not, this returns null. 1243 static Value *simplifyUDivInst(Value *Op0, Value *Op1, bool IsExact, 1244 const SimplifyQuery &Q, unsigned MaxRecurse) { 1245 return simplifyDiv(Instruction::UDiv, Op0, Op1, IsExact, Q, MaxRecurse); 1246 } 1247 1248 Value *llvm::simplifyUDivInst(Value *Op0, Value *Op1, bool IsExact, 1249 const SimplifyQuery &Q) { 1250 return ::simplifyUDivInst(Op0, Op1, IsExact, Q, RecursionLimit); 1251 } 1252 1253 /// Given operands for an SRem, see if we can fold the result. 1254 /// If not, this returns null. 1255 static Value *simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1256 unsigned MaxRecurse) { 1257 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1258 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1259 Value *X; 1260 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1261 return ConstantInt::getNullValue(Op0->getType()); 1262 1263 // If the two operands are negated, return 0. 1264 if (isKnownNegation(Op0, Op1)) 1265 return ConstantInt::getNullValue(Op0->getType()); 1266 1267 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1268 } 1269 1270 Value *llvm::simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1271 return ::simplifySRemInst(Op0, Op1, Q, RecursionLimit); 1272 } 1273 1274 /// Given operands for a URem, see if we can fold the result. 1275 /// If not, this returns null. 1276 static Value *simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1277 unsigned MaxRecurse) { 1278 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1279 } 1280 1281 Value *llvm::simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1282 return ::simplifyURemInst(Op0, Op1, Q, RecursionLimit); 1283 } 1284 1285 /// Returns true if a shift by \c Amount always yields poison. 1286 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { 1287 Constant *C = dyn_cast<Constant>(Amount); 1288 if (!C) 1289 return false; 1290 1291 // X shift by undef -> poison because it may shift by the bitwidth. 1292 if (Q.isUndefValue(C)) 1293 return true; 1294 1295 // Shifting by the bitwidth or more is poison. This covers scalars and 1296 // fixed/scalable vectors with splat constants. 1297 const APInt *AmountC; 1298 if (match(C, m_APInt(AmountC)) && AmountC->uge(AmountC->getBitWidth())) 1299 return true; 1300 1301 // Try harder for fixed-length vectors: 1302 // If all lanes of a vector shift are poison, the whole shift is poison. 1303 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1304 for (unsigned I = 0, 1305 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1306 I != E; ++I) 1307 if (!isPoisonShift(C->getAggregateElement(I), Q)) 1308 return false; 1309 return true; 1310 } 1311 1312 return false; 1313 } 1314 1315 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1316 /// If not, this returns null. 1317 static Value *simplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1318 Value *Op1, bool IsNSW, const SimplifyQuery &Q, 1319 unsigned MaxRecurse) { 1320 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1321 return C; 1322 1323 // poison shift by X -> poison 1324 if (isa<PoisonValue>(Op0)) 1325 return Op0; 1326 1327 // 0 shift by X -> 0 1328 if (match(Op0, m_Zero())) 1329 return Constant::getNullValue(Op0->getType()); 1330 1331 // X shift by 0 -> X 1332 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1333 // would be poison. 1334 Value *X; 1335 if (match(Op1, m_Zero()) || 1336 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1337 return Op0; 1338 1339 // Fold undefined shifts. 1340 if (isPoisonShift(Op1, Q)) 1341 return PoisonValue::get(Op0->getType()); 1342 1343 // If the operation is with the result of a select instruction, check whether 1344 // operating on either branch of the select always yields the same value. 1345 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1346 if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1347 return V; 1348 1349 // If the operation is with the result of a phi instruction, check whether 1350 // operating on all incoming values of the phi always yields the same value. 1351 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1352 if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1353 return V; 1354 1355 // If any bits in the shift amount make that value greater than or equal to 1356 // the number of bits in the type, the shift is undefined. 1357 KnownBits KnownAmt = computeKnownBits(Op1, /* Depth */ 0, Q); 1358 if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth())) 1359 return PoisonValue::get(Op0->getType()); 1360 1361 // If all valid bits in the shift amount are known zero, the first operand is 1362 // unchanged. 1363 unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth()); 1364 if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits) 1365 return Op0; 1366 1367 // Check for nsw shl leading to a poison value. 1368 if (IsNSW) { 1369 assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction"); 1370 KnownBits KnownVal = computeKnownBits(Op0, /* Depth */ 0, Q); 1371 KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt); 1372 1373 if (KnownVal.Zero.isSignBitSet()) 1374 KnownShl.Zero.setSignBit(); 1375 if (KnownVal.One.isSignBitSet()) 1376 KnownShl.One.setSignBit(); 1377 1378 if (KnownShl.hasConflict()) 1379 return PoisonValue::get(Op0->getType()); 1380 } 1381 1382 return nullptr; 1383 } 1384 1385 /// Given operands for an LShr or AShr, see if we can fold the result. If not, 1386 /// this returns null. 1387 static Value *simplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1388 Value *Op1, bool IsExact, 1389 const SimplifyQuery &Q, unsigned MaxRecurse) { 1390 if (Value *V = 1391 simplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse)) 1392 return V; 1393 1394 // X >> X -> 0 1395 if (Op0 == Op1) 1396 return Constant::getNullValue(Op0->getType()); 1397 1398 // undef >> X -> 0 1399 // undef >> X -> undef (if it's exact) 1400 if (Q.isUndefValue(Op0)) 1401 return IsExact ? Op0 : Constant::getNullValue(Op0->getType()); 1402 1403 // The low bit cannot be shifted out of an exact shift if it is set. 1404 // TODO: Generalize by counting trailing zeros (see fold for exact division). 1405 if (IsExact) { 1406 KnownBits Op0Known = computeKnownBits(Op0, /* Depth */ 0, Q); 1407 if (Op0Known.One[0]) 1408 return Op0; 1409 } 1410 1411 return nullptr; 1412 } 1413 1414 /// Given operands for an Shl, see if we can fold the result. 1415 /// If not, this returns null. 1416 static Value *simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 1417 const SimplifyQuery &Q, unsigned MaxRecurse) { 1418 if (Value *V = 1419 simplifyShift(Instruction::Shl, Op0, Op1, IsNSW, Q, MaxRecurse)) 1420 return V; 1421 1422 Type *Ty = Op0->getType(); 1423 // undef << X -> 0 1424 // undef << X -> undef if (if it's NSW/NUW) 1425 if (Q.isUndefValue(Op0)) 1426 return IsNSW || IsNUW ? Op0 : Constant::getNullValue(Ty); 1427 1428 // (X >> A) << A -> X 1429 Value *X; 1430 if (Q.IIQ.UseInstrInfo && 1431 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1432 return X; 1433 1434 // shl nuw i8 C, %x -> C iff C has sign bit set. 1435 if (IsNUW && match(Op0, m_Negative())) 1436 return Op0; 1437 // NOTE: could use computeKnownBits() / LazyValueInfo, 1438 // but the cost-benefit analysis suggests it isn't worth it. 1439 1440 // "nuw" guarantees that only zeros are shifted out, and "nsw" guarantees 1441 // that the sign-bit does not change, so the only input that does not 1442 // produce poison is 0, and "0 << (bitwidth-1) --> 0". 1443 if (IsNSW && IsNUW && 1444 match(Op1, m_SpecificInt(Ty->getScalarSizeInBits() - 1))) 1445 return Constant::getNullValue(Ty); 1446 1447 return nullptr; 1448 } 1449 1450 Value *llvm::simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 1451 const SimplifyQuery &Q) { 1452 return ::simplifyShlInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit); 1453 } 1454 1455 /// Given operands for an LShr, see if we can fold the result. 1456 /// If not, this returns null. 1457 static Value *simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, 1458 const SimplifyQuery &Q, unsigned MaxRecurse) { 1459 if (Value *V = simplifyRightShift(Instruction::LShr, Op0, Op1, IsExact, Q, 1460 MaxRecurse)) 1461 return V; 1462 1463 // (X << A) >> A -> X 1464 Value *X; 1465 if (Q.IIQ.UseInstrInfo && match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1466 return X; 1467 1468 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1469 // We can return X as we do in the above case since OR alters no bits in X. 1470 // SimplifyDemandedBits in InstCombine can do more general optimization for 1471 // bit manipulation. This pattern aims to provide opportunities for other 1472 // optimizers by supporting a simple but common case in InstSimplify. 1473 Value *Y; 1474 const APInt *ShRAmt, *ShLAmt; 1475 if (Q.IIQ.UseInstrInfo && match(Op1, m_APInt(ShRAmt)) && 1476 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1477 *ShRAmt == *ShLAmt) { 1478 const KnownBits YKnown = computeKnownBits(Y, /* Depth */ 0, Q); 1479 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 1480 if (ShRAmt->uge(EffWidthY)) 1481 return X; 1482 } 1483 1484 return nullptr; 1485 } 1486 1487 Value *llvm::simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, 1488 const SimplifyQuery &Q) { 1489 return ::simplifyLShrInst(Op0, Op1, IsExact, Q, RecursionLimit); 1490 } 1491 1492 /// Given operands for an AShr, see if we can fold the result. 1493 /// If not, this returns null. 1494 static Value *simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, 1495 const SimplifyQuery &Q, unsigned MaxRecurse) { 1496 if (Value *V = simplifyRightShift(Instruction::AShr, Op0, Op1, IsExact, Q, 1497 MaxRecurse)) 1498 return V; 1499 1500 // -1 >>a X --> -1 1501 // (-1 << X) a>> X --> -1 1502 // Do not return Op0 because it may contain undef elements if it's a vector. 1503 if (match(Op0, m_AllOnes()) || 1504 match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1)))) 1505 return Constant::getAllOnesValue(Op0->getType()); 1506 1507 // (X << A) >> A -> X 1508 Value *X; 1509 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1510 return X; 1511 1512 // Arithmetic shifting an all-sign-bit value is a no-op. 1513 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1514 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1515 return Op0; 1516 1517 return nullptr; 1518 } 1519 1520 Value *llvm::simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, 1521 const SimplifyQuery &Q) { 1522 return ::simplifyAShrInst(Op0, Op1, IsExact, Q, RecursionLimit); 1523 } 1524 1525 /// Commuted variants are assumed to be handled by calling this function again 1526 /// with the parameters swapped. 1527 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1528 ICmpInst *UnsignedICmp, bool IsAnd, 1529 const SimplifyQuery &Q) { 1530 Value *X, *Y; 1531 1532 ICmpInst::Predicate EqPred; 1533 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1534 !ICmpInst::isEquality(EqPred)) 1535 return nullptr; 1536 1537 ICmpInst::Predicate UnsignedPred; 1538 1539 Value *A, *B; 1540 // Y = (A - B); 1541 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1542 if (match(UnsignedICmp, 1543 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1544 ICmpInst::isUnsigned(UnsignedPred)) { 1545 // A >=/<= B || (A - B) != 0 <--> true 1546 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1547 UnsignedPred == ICmpInst::ICMP_ULE) && 1548 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1549 return ConstantInt::getTrue(UnsignedICmp->getType()); 1550 // A </> B && (A - B) == 0 <--> false 1551 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1552 UnsignedPred == ICmpInst::ICMP_UGT) && 1553 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1554 return ConstantInt::getFalse(UnsignedICmp->getType()); 1555 1556 // A </> B && (A - B) != 0 <--> A </> B 1557 // A </> B || (A - B) != 0 <--> (A - B) != 0 1558 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1559 UnsignedPred == ICmpInst::ICMP_UGT)) 1560 return IsAnd ? UnsignedICmp : ZeroICmp; 1561 1562 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1563 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1564 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1565 UnsignedPred == ICmpInst::ICMP_UGE)) 1566 return IsAnd ? ZeroICmp : UnsignedICmp; 1567 } 1568 1569 // Given Y = (A - B) 1570 // Y >= A && Y != 0 --> Y >= A iff B != 0 1571 // Y < A || Y == 0 --> Y < A iff B != 0 1572 if (match(UnsignedICmp, 1573 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1574 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1575 EqPred == ICmpInst::ICMP_NE && 1576 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1577 return UnsignedICmp; 1578 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1579 EqPred == ICmpInst::ICMP_EQ && 1580 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1581 return UnsignedICmp; 1582 } 1583 } 1584 1585 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1586 ICmpInst::isUnsigned(UnsignedPred)) 1587 ; 1588 else if (match(UnsignedICmp, 1589 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1590 ICmpInst::isUnsigned(UnsignedPred)) 1591 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1592 else 1593 return nullptr; 1594 1595 // X > Y && Y == 0 --> Y == 0 iff X != 0 1596 // X > Y || Y == 0 --> X > Y iff X != 0 1597 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1598 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1599 return IsAnd ? ZeroICmp : UnsignedICmp; 1600 1601 // X <= Y && Y != 0 --> X <= Y iff X != 0 1602 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1603 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1604 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1605 return IsAnd ? UnsignedICmp : ZeroICmp; 1606 1607 // The transforms below here are expected to be handled more generally with 1608 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1609 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1610 // these are candidates for removal. 1611 1612 // X < Y && Y != 0 --> X < Y 1613 // X < Y || Y != 0 --> Y != 0 1614 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1615 return IsAnd ? UnsignedICmp : ZeroICmp; 1616 1617 // X >= Y && Y == 0 --> Y == 0 1618 // X >= Y || Y == 0 --> X >= Y 1619 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1620 return IsAnd ? ZeroICmp : UnsignedICmp; 1621 1622 // X < Y && Y == 0 --> false 1623 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1624 IsAnd) 1625 return getFalse(UnsignedICmp->getType()); 1626 1627 // X >= Y || Y != 0 --> true 1628 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1629 !IsAnd) 1630 return getTrue(UnsignedICmp->getType()); 1631 1632 return nullptr; 1633 } 1634 1635 /// Test if a pair of compares with a shared operand and 2 constants has an 1636 /// empty set intersection, full set union, or if one compare is a superset of 1637 /// the other. 1638 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1639 bool IsAnd) { 1640 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1641 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1642 return nullptr; 1643 1644 const APInt *C0, *C1; 1645 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1646 !match(Cmp1->getOperand(1), m_APInt(C1))) 1647 return nullptr; 1648 1649 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1650 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1651 1652 // For and-of-compares, check if the intersection is empty: 1653 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1654 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1655 return getFalse(Cmp0->getType()); 1656 1657 // For or-of-compares, check if the union is full: 1658 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1659 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1660 return getTrue(Cmp0->getType()); 1661 1662 // Is one range a superset of the other? 1663 // If this is and-of-compares, take the smaller set: 1664 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1665 // If this is or-of-compares, take the larger set: 1666 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1667 if (Range0.contains(Range1)) 1668 return IsAnd ? Cmp1 : Cmp0; 1669 if (Range1.contains(Range0)) 1670 return IsAnd ? Cmp0 : Cmp1; 1671 1672 return nullptr; 1673 } 1674 1675 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1676 const InstrInfoQuery &IIQ) { 1677 // (icmp (add V, C0), C1) & (icmp V, C0) 1678 ICmpInst::Predicate Pred0, Pred1; 1679 const APInt *C0, *C1; 1680 Value *V; 1681 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1682 return nullptr; 1683 1684 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1685 return nullptr; 1686 1687 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1688 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1689 return nullptr; 1690 1691 Type *ITy = Op0->getType(); 1692 bool IsNSW = IIQ.hasNoSignedWrap(AddInst); 1693 bool IsNUW = IIQ.hasNoUnsignedWrap(AddInst); 1694 1695 const APInt Delta = *C1 - *C0; 1696 if (C0->isStrictlyPositive()) { 1697 if (Delta == 2) { 1698 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1699 return getFalse(ITy); 1700 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && IsNSW) 1701 return getFalse(ITy); 1702 } 1703 if (Delta == 1) { 1704 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1705 return getFalse(ITy); 1706 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && IsNSW) 1707 return getFalse(ITy); 1708 } 1709 } 1710 if (C0->getBoolValue() && IsNUW) { 1711 if (Delta == 2) 1712 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1713 return getFalse(ITy); 1714 if (Delta == 1) 1715 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1716 return getFalse(ITy); 1717 } 1718 1719 return nullptr; 1720 } 1721 1722 /// Try to simplify and/or of icmp with ctpop intrinsic. 1723 static Value *simplifyAndOrOfICmpsWithCtpop(ICmpInst *Cmp0, ICmpInst *Cmp1, 1724 bool IsAnd) { 1725 ICmpInst::Predicate Pred0, Pred1; 1726 Value *X; 1727 const APInt *C; 1728 if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)), 1729 m_APInt(C))) || 1730 !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt())) || C->isZero()) 1731 return nullptr; 1732 1733 // (ctpop(X) == C) || (X != 0) --> X != 0 where C > 0 1734 if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_NE) 1735 return Cmp1; 1736 // (ctpop(X) != C) && (X == 0) --> X == 0 where C > 0 1737 if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_EQ) 1738 return Cmp1; 1739 1740 return nullptr; 1741 } 1742 1743 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1744 const SimplifyQuery &Q) { 1745 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1746 return X; 1747 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1748 return X; 1749 1750 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1751 return X; 1752 1753 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, true)) 1754 return X; 1755 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, true)) 1756 return X; 1757 1758 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1759 return X; 1760 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1761 return X; 1762 1763 return nullptr; 1764 } 1765 1766 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1767 const InstrInfoQuery &IIQ) { 1768 // (icmp (add V, C0), C1) | (icmp V, C0) 1769 ICmpInst::Predicate Pred0, Pred1; 1770 const APInt *C0, *C1; 1771 Value *V; 1772 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1773 return nullptr; 1774 1775 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1776 return nullptr; 1777 1778 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1779 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1780 return nullptr; 1781 1782 Type *ITy = Op0->getType(); 1783 bool IsNSW = IIQ.hasNoSignedWrap(AddInst); 1784 bool IsNUW = IIQ.hasNoUnsignedWrap(AddInst); 1785 1786 const APInt Delta = *C1 - *C0; 1787 if (C0->isStrictlyPositive()) { 1788 if (Delta == 2) { 1789 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1790 return getTrue(ITy); 1791 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && IsNSW) 1792 return getTrue(ITy); 1793 } 1794 if (Delta == 1) { 1795 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1796 return getTrue(ITy); 1797 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && IsNSW) 1798 return getTrue(ITy); 1799 } 1800 } 1801 if (C0->getBoolValue() && IsNUW) { 1802 if (Delta == 2) 1803 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1804 return getTrue(ITy); 1805 if (Delta == 1) 1806 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1807 return getTrue(ITy); 1808 } 1809 1810 return nullptr; 1811 } 1812 1813 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1814 const SimplifyQuery &Q) { 1815 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1816 return X; 1817 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1818 return X; 1819 1820 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1821 return X; 1822 1823 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, false)) 1824 return X; 1825 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, false)) 1826 return X; 1827 1828 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1829 return X; 1830 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1831 return X; 1832 1833 return nullptr; 1834 } 1835 1836 static Value *simplifyAndOrOfFCmps(const SimplifyQuery &Q, FCmpInst *LHS, 1837 FCmpInst *RHS, bool IsAnd) { 1838 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1839 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1840 if (LHS0->getType() != RHS0->getType()) 1841 return nullptr; 1842 1843 const DataLayout &DL = Q.DL; 1844 const TargetLibraryInfo *TLI = Q.TLI; 1845 1846 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1847 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1848 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1849 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1850 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1851 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1852 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1853 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1854 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1855 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1856 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1857 if (((LHS1 == RHS0 || LHS1 == RHS1) && 1858 isKnownNeverNaN(LHS0, DL, TLI, 0, Q.AC, Q.CxtI, Q.DT)) || 1859 ((LHS0 == RHS0 || LHS0 == RHS1) && 1860 isKnownNeverNaN(LHS1, DL, TLI, 0, Q.AC, Q.CxtI, Q.DT))) 1861 return RHS; 1862 1863 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1864 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1865 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1866 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1867 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1868 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1869 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1870 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1871 if (((RHS1 == LHS0 || RHS1 == LHS1) && 1872 isKnownNeverNaN(RHS0, DL, TLI, 0, Q.AC, Q.CxtI, Q.DT)) || 1873 ((RHS0 == LHS0 || RHS0 == LHS1) && 1874 isKnownNeverNaN(RHS1, DL, TLI, 0, Q.AC, Q.CxtI, Q.DT))) 1875 return LHS; 1876 } 1877 1878 return nullptr; 1879 } 1880 1881 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, Value *Op0, 1882 Value *Op1, bool IsAnd) { 1883 // Look through casts of the 'and' operands to find compares. 1884 auto *Cast0 = dyn_cast<CastInst>(Op0); 1885 auto *Cast1 = dyn_cast<CastInst>(Op1); 1886 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1887 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1888 Op0 = Cast0->getOperand(0); 1889 Op1 = Cast1->getOperand(0); 1890 } 1891 1892 Value *V = nullptr; 1893 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1894 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1895 if (ICmp0 && ICmp1) 1896 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1897 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1898 1899 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1900 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1901 if (FCmp0 && FCmp1) 1902 V = simplifyAndOrOfFCmps(Q, FCmp0, FCmp1, IsAnd); 1903 1904 if (!V) 1905 return nullptr; 1906 if (!Cast0) 1907 return V; 1908 1909 // If we looked through casts, we can only handle a constant simplification 1910 // because we are not allowed to create a cast instruction here. 1911 if (auto *C = dyn_cast<Constant>(V)) 1912 return ConstantFoldCastOperand(Cast0->getOpcode(), C, Cast0->getType(), 1913 Q.DL); 1914 1915 return nullptr; 1916 } 1917 1918 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 1919 const SimplifyQuery &Q, 1920 bool AllowRefinement, 1921 SmallVectorImpl<Instruction *> *DropFlags, 1922 unsigned MaxRecurse); 1923 1924 static Value *simplifyAndOrWithICmpEq(unsigned Opcode, Value *Op0, Value *Op1, 1925 const SimplifyQuery &Q, 1926 unsigned MaxRecurse) { 1927 assert((Opcode == Instruction::And || Opcode == Instruction::Or) && 1928 "Must be and/or"); 1929 ICmpInst::Predicate Pred; 1930 Value *A, *B; 1931 if (!match(Op0, m_ICmp(Pred, m_Value(A), m_Value(B))) || 1932 !ICmpInst::isEquality(Pred)) 1933 return nullptr; 1934 1935 auto Simplify = [&](Value *Res) -> Value * { 1936 Constant *Absorber = ConstantExpr::getBinOpAbsorber(Opcode, Res->getType()); 1937 1938 // and (icmp eq a, b), x implies (a==b) inside x. 1939 // or (icmp ne a, b), x implies (a==b) inside x. 1940 // If x simplifies to true/false, we can simplify the and/or. 1941 if (Pred == 1942 (Opcode == Instruction::And ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 1943 if (Res == Absorber) 1944 return Absorber; 1945 if (Res == ConstantExpr::getBinOpIdentity(Opcode, Res->getType())) 1946 return Op0; 1947 return nullptr; 1948 } 1949 1950 // If we have and (icmp ne a, b), x and for a==b we can simplify x to false, 1951 // then we can drop the icmp, as x will already be false in the case where 1952 // the icmp is false. Similar for or and true. 1953 if (Res == Absorber) 1954 return Op1; 1955 return nullptr; 1956 }; 1957 1958 if (Value *Res = 1959 simplifyWithOpReplaced(Op1, A, B, Q, /* AllowRefinement */ true, 1960 /* DropFlags */ nullptr, MaxRecurse)) 1961 return Simplify(Res); 1962 if (Value *Res = 1963 simplifyWithOpReplaced(Op1, B, A, Q, /* AllowRefinement */ true, 1964 /* DropFlags */ nullptr, MaxRecurse)) 1965 return Simplify(Res); 1966 1967 return nullptr; 1968 } 1969 1970 /// Given a bitwise logic op, check if the operands are add/sub with a common 1971 /// source value and inverted constant (identity: C - X -> ~(X + ~C)). 1972 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, 1973 Instruction::BinaryOps Opcode) { 1974 assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); 1975 assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); 1976 Value *X; 1977 Constant *C1, *C2; 1978 if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && 1979 match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || 1980 (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && 1981 match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { 1982 if (ConstantExpr::getNot(C1) == C2) { 1983 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 1984 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 1985 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 1986 Type *Ty = Op0->getType(); 1987 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) 1988 : ConstantInt::getAllOnesValue(Ty); 1989 } 1990 } 1991 return nullptr; 1992 } 1993 1994 // Commutative patterns for and that will be tried with both operand orders. 1995 static Value *simplifyAndCommutative(Value *Op0, Value *Op1, 1996 const SimplifyQuery &Q, 1997 unsigned MaxRecurse) { 1998 // ~A & A = 0 1999 if (match(Op0, m_Not(m_Specific(Op1)))) 2000 return Constant::getNullValue(Op0->getType()); 2001 2002 // (A | ?) & A = A 2003 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2004 return Op1; 2005 2006 // (X | ~Y) & (X | Y) --> X 2007 Value *X, *Y; 2008 if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2009 match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2010 return X; 2011 2012 // If we have a multiplication overflow check that is being 'and'ed with a 2013 // check that one of the multipliers is not zero, we can omit the 'and', and 2014 // only keep the overflow check. 2015 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true)) 2016 return Op1; 2017 2018 // -A & A = A if A is a power of two or zero. 2019 if (match(Op0, m_Neg(m_Specific(Op1))) && 2020 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2021 return Op1; 2022 2023 // This is a similar pattern used for checking if a value is a power-of-2: 2024 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2025 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2026 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2027 return Constant::getNullValue(Op1->getType()); 2028 2029 // (x << N) & ((x << M) - 1) --> 0, where x is known to be a power of 2 and 2030 // M <= N. 2031 const APInt *Shift1, *Shift2; 2032 if (match(Op0, m_Shl(m_Value(X), m_APInt(Shift1))) && 2033 match(Op1, m_Add(m_Shl(m_Specific(X), m_APInt(Shift2)), m_AllOnes())) && 2034 isKnownToBeAPowerOfTwo(X, Q.DL, /*OrZero*/ true, /*Depth*/ 0, Q.AC, 2035 Q.CxtI) && 2036 Shift1->uge(*Shift2)) 2037 return Constant::getNullValue(Op0->getType()); 2038 2039 if (Value *V = 2040 simplifyAndOrWithICmpEq(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2041 return V; 2042 2043 return nullptr; 2044 } 2045 2046 /// Given operands for an And, see if we can fold the result. 2047 /// If not, this returns null. 2048 static Value *simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2049 unsigned MaxRecurse) { 2050 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2051 return C; 2052 2053 // X & poison -> poison 2054 if (isa<PoisonValue>(Op1)) 2055 return Op1; 2056 2057 // X & undef -> 0 2058 if (Q.isUndefValue(Op1)) 2059 return Constant::getNullValue(Op0->getType()); 2060 2061 // X & X = X 2062 if (Op0 == Op1) 2063 return Op0; 2064 2065 // X & 0 = 0 2066 if (match(Op1, m_Zero())) 2067 return Constant::getNullValue(Op0->getType()); 2068 2069 // X & -1 = X 2070 if (match(Op1, m_AllOnes())) 2071 return Op0; 2072 2073 if (Value *Res = simplifyAndCommutative(Op0, Op1, Q, MaxRecurse)) 2074 return Res; 2075 if (Value *Res = simplifyAndCommutative(Op1, Op0, Q, MaxRecurse)) 2076 return Res; 2077 2078 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) 2079 return V; 2080 2081 // A mask that only clears known zeros of a shifted value is a no-op. 2082 const APInt *Mask; 2083 const APInt *ShAmt; 2084 Value *X, *Y; 2085 if (match(Op1, m_APInt(Mask))) { 2086 // If all bits in the inverted and shifted mask are clear: 2087 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2088 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2089 (~(*Mask)).lshr(*ShAmt).isZero()) 2090 return Op0; 2091 2092 // If all bits in the inverted and shifted mask are clear: 2093 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2094 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2095 (~(*Mask)).shl(*ShAmt).isZero()) 2096 return Op0; 2097 } 2098 2099 // and 2^x-1, 2^C --> 0 where x <= C. 2100 const APInt *PowerC; 2101 Value *Shift; 2102 if (match(Op1, m_Power2(PowerC)) && 2103 match(Op0, m_Add(m_Value(Shift), m_AllOnes())) && 2104 isKnownToBeAPowerOfTwo(Shift, Q.DL, /*OrZero*/ false, 0, Q.AC, Q.CxtI, 2105 Q.DT)) { 2106 KnownBits Known = computeKnownBits(Shift, /* Depth */ 0, Q); 2107 // Use getActiveBits() to make use of the additional power of two knowledge 2108 if (PowerC->getActiveBits() >= Known.getMaxValue().getActiveBits()) 2109 return ConstantInt::getNullValue(Op1->getType()); 2110 } 2111 2112 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2113 return V; 2114 2115 // Try some generic simplifications for associative operations. 2116 if (Value *V = 2117 simplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2118 return V; 2119 2120 // And distributes over Or. Try some generic simplifications based on this. 2121 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2122 Instruction::Or, Q, MaxRecurse)) 2123 return V; 2124 2125 // And distributes over Xor. Try some generic simplifications based on this. 2126 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2127 Instruction::Xor, Q, MaxRecurse)) 2128 return V; 2129 2130 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2131 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2132 // A & (A && B) -> A && B 2133 if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero()))) 2134 return Op1; 2135 else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero()))) 2136 return Op0; 2137 } 2138 // If the operation is with the result of a select instruction, check 2139 // whether operating on either branch of the select always yields the same 2140 // value. 2141 if (Value *V = 2142 threadBinOpOverSelect(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2143 return V; 2144 } 2145 2146 // If the operation is with the result of a phi instruction, check whether 2147 // operating on all incoming values of the phi always yields the same value. 2148 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2149 if (Value *V = 2150 threadBinOpOverPHI(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2151 return V; 2152 2153 // Assuming the effective width of Y is not larger than A, i.e. all bits 2154 // from X and Y are disjoint in (X << A) | Y, 2155 // if the mask of this AND op covers all bits of X or Y, while it covers 2156 // no bits from the other, we can bypass this AND op. E.g., 2157 // ((X << A) | Y) & Mask -> Y, 2158 // if Mask = ((1 << effective_width_of(Y)) - 1) 2159 // ((X << A) | Y) & Mask -> X << A, 2160 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2161 // SimplifyDemandedBits in InstCombine can optimize the general case. 2162 // This pattern aims to help other passes for a common case. 2163 Value *XShifted; 2164 if (Q.IIQ.UseInstrInfo && match(Op1, m_APInt(Mask)) && 2165 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2166 m_Value(XShifted)), 2167 m_Value(Y)))) { 2168 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2169 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2170 const KnownBits YKnown = computeKnownBits(Y, /* Depth */ 0, Q); 2171 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 2172 if (EffWidthY <= ShftCnt) { 2173 const KnownBits XKnown = computeKnownBits(X, /* Depth */ 0, Q); 2174 const unsigned EffWidthX = XKnown.countMaxActiveBits(); 2175 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2176 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2177 // If the mask is extracting all bits from X or Y as is, we can skip 2178 // this AND op. 2179 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2180 return Y; 2181 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2182 return XShifted; 2183 } 2184 } 2185 2186 // ((X | Y) ^ X ) & ((X | Y) ^ Y) --> 0 2187 // ((X | Y) ^ Y ) & ((X | Y) ^ X) --> 0 2188 BinaryOperator *Or; 2189 if (match(Op0, m_c_Xor(m_Value(X), 2190 m_CombineAnd(m_BinOp(Or), 2191 m_c_Or(m_Deferred(X), m_Value(Y))))) && 2192 match(Op1, m_c_Xor(m_Specific(Or), m_Specific(Y)))) 2193 return Constant::getNullValue(Op0->getType()); 2194 2195 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2196 if (std::optional<bool> Implied = isImpliedCondition(Op0, Op1, Q.DL)) { 2197 // If Op0 is true implies Op1 is true, then Op0 is a subset of Op1. 2198 if (*Implied == true) 2199 return Op0; 2200 // If Op0 is true implies Op1 is false, then they are not true together. 2201 if (*Implied == false) 2202 return ConstantInt::getFalse(Op0->getType()); 2203 } 2204 if (std::optional<bool> Implied = isImpliedCondition(Op1, Op0, Q.DL)) { 2205 // If Op1 is true implies Op0 is true, then Op1 is a subset of Op0. 2206 if (*Implied) 2207 return Op1; 2208 // If Op1 is true implies Op0 is false, then they are not true together. 2209 if (!*Implied) 2210 return ConstantInt::getFalse(Op1->getType()); 2211 } 2212 } 2213 2214 if (Value *V = simplifyByDomEq(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2215 return V; 2216 2217 return nullptr; 2218 } 2219 2220 Value *llvm::simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2221 return ::simplifyAndInst(Op0, Op1, Q, RecursionLimit); 2222 } 2223 2224 // TODO: Many of these folds could use LogicalAnd/LogicalOr. 2225 static Value *simplifyOrLogic(Value *X, Value *Y) { 2226 assert(X->getType() == Y->getType() && "Expected same type for 'or' ops"); 2227 Type *Ty = X->getType(); 2228 2229 // X | ~X --> -1 2230 if (match(Y, m_Not(m_Specific(X)))) 2231 return ConstantInt::getAllOnesValue(Ty); 2232 2233 // X | ~(X & ?) = -1 2234 if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value())))) 2235 return ConstantInt::getAllOnesValue(Ty); 2236 2237 // X | (X & ?) --> X 2238 if (match(Y, m_c_And(m_Specific(X), m_Value()))) 2239 return X; 2240 2241 Value *A, *B; 2242 2243 // (A ^ B) | (A | B) --> A | B 2244 // (A ^ B) | (B | A) --> B | A 2245 if (match(X, m_Xor(m_Value(A), m_Value(B))) && 2246 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2247 return Y; 2248 2249 // ~(A ^ B) | (A | B) --> -1 2250 // ~(A ^ B) | (B | A) --> -1 2251 if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) && 2252 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2253 return ConstantInt::getAllOnesValue(Ty); 2254 2255 // (A & ~B) | (A ^ B) --> A ^ B 2256 // (~B & A) | (A ^ B) --> A ^ B 2257 // (A & ~B) | (B ^ A) --> B ^ A 2258 // (~B & A) | (B ^ A) --> B ^ A 2259 if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) && 2260 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2261 return Y; 2262 2263 // (~A ^ B) | (A & B) --> ~A ^ B 2264 // (B ^ ~A) | (A & B) --> B ^ ~A 2265 // (~A ^ B) | (B & A) --> ~A ^ B 2266 // (B ^ ~A) | (B & A) --> B ^ ~A 2267 if (match(X, m_c_Xor(m_NotForbidUndef(m_Value(A)), m_Value(B))) && 2268 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2269 return X; 2270 2271 // (~A | B) | (A ^ B) --> -1 2272 // (~A | B) | (B ^ A) --> -1 2273 // (B | ~A) | (A ^ B) --> -1 2274 // (B | ~A) | (B ^ A) --> -1 2275 if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) && 2276 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2277 return ConstantInt::getAllOnesValue(Ty); 2278 2279 // (~A & B) | ~(A | B) --> ~A 2280 // (~A & B) | ~(B | A) --> ~A 2281 // (B & ~A) | ~(A | B) --> ~A 2282 // (B & ~A) | ~(B | A) --> ~A 2283 Value *NotA; 2284 if (match(X, 2285 m_c_And(m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))), 2286 m_Value(B))) && 2287 match(Y, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2288 return NotA; 2289 // The same is true of Logical And 2290 // TODO: This could share the logic of the version above if there was a 2291 // version of LogicalAnd that allowed more than just i1 types. 2292 if (match(X, m_c_LogicalAnd( 2293 m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))), 2294 m_Value(B))) && 2295 match(Y, m_Not(m_c_LogicalOr(m_Specific(A), m_Specific(B))))) 2296 return NotA; 2297 2298 // ~(A ^ B) | (A & B) --> ~(A ^ B) 2299 // ~(A ^ B) | (B & A) --> ~(A ^ B) 2300 Value *NotAB; 2301 if (match(X, m_CombineAnd(m_NotForbidUndef(m_Xor(m_Value(A), m_Value(B))), 2302 m_Value(NotAB))) && 2303 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2304 return NotAB; 2305 2306 // ~(A & B) | (A ^ B) --> ~(A & B) 2307 // ~(A & B) | (B ^ A) --> ~(A & B) 2308 if (match(X, m_CombineAnd(m_NotForbidUndef(m_And(m_Value(A), m_Value(B))), 2309 m_Value(NotAB))) && 2310 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2311 return NotAB; 2312 2313 return nullptr; 2314 } 2315 2316 /// Given operands for an Or, see if we can fold the result. 2317 /// If not, this returns null. 2318 static Value *simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2319 unsigned MaxRecurse) { 2320 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2321 return C; 2322 2323 // X | poison -> poison 2324 if (isa<PoisonValue>(Op1)) 2325 return Op1; 2326 2327 // X | undef -> -1 2328 // X | -1 = -1 2329 // Do not return Op1 because it may contain undef elements if it's a vector. 2330 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2331 return Constant::getAllOnesValue(Op0->getType()); 2332 2333 // X | X = X 2334 // X | 0 = X 2335 if (Op0 == Op1 || match(Op1, m_Zero())) 2336 return Op0; 2337 2338 if (Value *R = simplifyOrLogic(Op0, Op1)) 2339 return R; 2340 if (Value *R = simplifyOrLogic(Op1, Op0)) 2341 return R; 2342 2343 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) 2344 return V; 2345 2346 // Rotated -1 is still -1: 2347 // (-1 << X) | (-1 >> (C - X)) --> -1 2348 // (-1 >> X) | (-1 << (C - X)) --> -1 2349 // ...with C <= bitwidth (and commuted variants). 2350 Value *X, *Y; 2351 if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) && 2352 match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) || 2353 (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) && 2354 match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) { 2355 const APInt *C; 2356 if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) || 2357 match(Y, m_Sub(m_APInt(C), m_Specific(X)))) && 2358 C->ule(X->getType()->getScalarSizeInBits())) { 2359 return ConstantInt::getAllOnesValue(X->getType()); 2360 } 2361 } 2362 2363 // A funnel shift (rotate) can be decomposed into simpler shifts. See if we 2364 // are mixing in another shift that is redundant with the funnel shift. 2365 2366 // (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y 2367 // (shl X, Y) | (fshl X, ?, Y) --> fshl X, ?, Y 2368 if (match(Op0, 2369 m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) && 2370 match(Op1, m_Shl(m_Specific(X), m_Specific(Y)))) 2371 return Op0; 2372 if (match(Op1, 2373 m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) && 2374 match(Op0, m_Shl(m_Specific(X), m_Specific(Y)))) 2375 return Op1; 2376 2377 // (fshr ?, X, Y) | (lshr X, Y) --> fshr ?, X, Y 2378 // (lshr X, Y) | (fshr ?, X, Y) --> fshr ?, X, Y 2379 if (match(Op0, 2380 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) && 2381 match(Op1, m_LShr(m_Specific(X), m_Specific(Y)))) 2382 return Op0; 2383 if (match(Op1, 2384 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) && 2385 match(Op0, m_LShr(m_Specific(X), m_Specific(Y)))) 2386 return Op1; 2387 2388 if (Value *V = 2389 simplifyAndOrWithICmpEq(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2390 return V; 2391 if (Value *V = 2392 simplifyAndOrWithICmpEq(Instruction::Or, Op1, Op0, Q, MaxRecurse)) 2393 return V; 2394 2395 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2396 return V; 2397 2398 // If we have a multiplication overflow check that is being 'and'ed with a 2399 // check that one of the multipliers is not zero, we can omit the 'and', and 2400 // only keep the overflow check. 2401 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false)) 2402 return Op1; 2403 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false)) 2404 return Op0; 2405 2406 // Try some generic simplifications for associative operations. 2407 if (Value *V = 2408 simplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2409 return V; 2410 2411 // Or distributes over And. Try some generic simplifications based on this. 2412 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2413 Instruction::And, Q, MaxRecurse)) 2414 return V; 2415 2416 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2417 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2418 // A | (A || B) -> A || B 2419 if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value()))) 2420 return Op1; 2421 else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value()))) 2422 return Op0; 2423 } 2424 // If the operation is with the result of a select instruction, check 2425 // whether operating on either branch of the select always yields the same 2426 // value. 2427 if (Value *V = 2428 threadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2429 return V; 2430 } 2431 2432 // (A & C1)|(B & C2) 2433 Value *A, *B; 2434 const APInt *C1, *C2; 2435 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2436 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2437 if (*C1 == ~*C2) { 2438 // (A & C1)|(B & C2) 2439 // If we have: ((V + N) & C1) | (V & C2) 2440 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2441 // replace with V+N. 2442 Value *N; 2443 if (C2->isMask() && // C2 == 0+1+ 2444 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2445 // Add commutes, try both ways. 2446 if (MaskedValueIsZero(N, *C2, Q)) 2447 return A; 2448 } 2449 // Or commutes, try both ways. 2450 if (C1->isMask() && match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2451 // Add commutes, try both ways. 2452 if (MaskedValueIsZero(N, *C1, Q)) 2453 return B; 2454 } 2455 } 2456 } 2457 2458 // If the operation is with the result of a phi instruction, check whether 2459 // operating on all incoming values of the phi always yields the same value. 2460 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2461 if (Value *V = threadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2462 return V; 2463 2464 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2465 if (std::optional<bool> Implied = 2466 isImpliedCondition(Op0, Op1, Q.DL, false)) { 2467 // If Op0 is false implies Op1 is false, then Op1 is a subset of Op0. 2468 if (*Implied == false) 2469 return Op0; 2470 // If Op0 is false implies Op1 is true, then at least one is always true. 2471 if (*Implied == true) 2472 return ConstantInt::getTrue(Op0->getType()); 2473 } 2474 if (std::optional<bool> Implied = 2475 isImpliedCondition(Op1, Op0, Q.DL, false)) { 2476 // If Op1 is false implies Op0 is false, then Op0 is a subset of Op1. 2477 if (*Implied == false) 2478 return Op1; 2479 // If Op1 is false implies Op0 is true, then at least one is always true. 2480 if (*Implied == true) 2481 return ConstantInt::getTrue(Op1->getType()); 2482 } 2483 } 2484 2485 if (Value *V = simplifyByDomEq(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2486 return V; 2487 2488 return nullptr; 2489 } 2490 2491 Value *llvm::simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2492 return ::simplifyOrInst(Op0, Op1, Q, RecursionLimit); 2493 } 2494 2495 /// Given operands for a Xor, see if we can fold the result. 2496 /// If not, this returns null. 2497 static Value *simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2498 unsigned MaxRecurse) { 2499 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2500 return C; 2501 2502 // X ^ poison -> poison 2503 if (isa<PoisonValue>(Op1)) 2504 return Op1; 2505 2506 // A ^ undef -> undef 2507 if (Q.isUndefValue(Op1)) 2508 return Op1; 2509 2510 // A ^ 0 = A 2511 if (match(Op1, m_Zero())) 2512 return Op0; 2513 2514 // A ^ A = 0 2515 if (Op0 == Op1) 2516 return Constant::getNullValue(Op0->getType()); 2517 2518 // A ^ ~A = ~A ^ A = -1 2519 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) 2520 return Constant::getAllOnesValue(Op0->getType()); 2521 2522 auto foldAndOrNot = [](Value *X, Value *Y) -> Value * { 2523 Value *A, *B; 2524 // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants. 2525 if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) && 2526 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2527 return A; 2528 2529 // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants. 2530 // The 'not' op must contain a complete -1 operand (no undef elements for 2531 // vector) for the transform to be safe. 2532 Value *NotA; 2533 if (match(X, 2534 m_c_Or(m_CombineAnd(m_NotForbidUndef(m_Value(A)), m_Value(NotA)), 2535 m_Value(B))) && 2536 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2537 return NotA; 2538 2539 return nullptr; 2540 }; 2541 if (Value *R = foldAndOrNot(Op0, Op1)) 2542 return R; 2543 if (Value *R = foldAndOrNot(Op1, Op0)) 2544 return R; 2545 2546 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) 2547 return V; 2548 2549 // Try some generic simplifications for associative operations. 2550 if (Value *V = 2551 simplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, MaxRecurse)) 2552 return V; 2553 2554 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2555 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2556 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2557 // only if B and C are equal. If B and C are equal then (since we assume 2558 // that operands have already been simplified) "select(cond, B, C)" should 2559 // have been simplified to the common value of B and C already. Analysing 2560 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2561 // for threading over phi nodes. 2562 2563 if (Value *V = simplifyByDomEq(Instruction::Xor, Op0, Op1, Q, MaxRecurse)) 2564 return V; 2565 2566 return nullptr; 2567 } 2568 2569 Value *llvm::simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2570 return ::simplifyXorInst(Op0, Op1, Q, RecursionLimit); 2571 } 2572 2573 static Type *getCompareTy(Value *Op) { 2574 return CmpInst::makeCmpResultType(Op->getType()); 2575 } 2576 2577 /// Rummage around inside V looking for something equivalent to the comparison 2578 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2579 /// Helper function for analyzing max/min idioms. 2580 static Value *extractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2581 Value *LHS, Value *RHS) { 2582 SelectInst *SI = dyn_cast<SelectInst>(V); 2583 if (!SI) 2584 return nullptr; 2585 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2586 if (!Cmp) 2587 return nullptr; 2588 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2589 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2590 return Cmp; 2591 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2592 LHS == CmpRHS && RHS == CmpLHS) 2593 return Cmp; 2594 return nullptr; 2595 } 2596 2597 /// Return true if the underlying object (storage) must be disjoint from 2598 /// storage returned by any noalias return call. 2599 static bool isAllocDisjoint(const Value *V) { 2600 // For allocas, we consider only static ones (dynamic 2601 // allocas might be transformed into calls to malloc not simultaneously 2602 // live with the compared-to allocation). For globals, we exclude symbols 2603 // that might be resolve lazily to symbols in another dynamically-loaded 2604 // library (and, thus, could be malloc'ed by the implementation). 2605 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2606 return AI->isStaticAlloca(); 2607 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2608 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2609 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2610 !GV->isThreadLocal(); 2611 if (const Argument *A = dyn_cast<Argument>(V)) 2612 return A->hasByValAttr(); 2613 return false; 2614 } 2615 2616 /// Return true if V1 and V2 are each the base of some distict storage region 2617 /// [V, object_size(V)] which do not overlap. Note that zero sized regions 2618 /// *are* possible, and that zero sized regions do not overlap with any other. 2619 static bool haveNonOverlappingStorage(const Value *V1, const Value *V2) { 2620 // Global variables always exist, so they always exist during the lifetime 2621 // of each other and all allocas. Global variables themselves usually have 2622 // non-overlapping storage, but since their addresses are constants, the 2623 // case involving two globals does not reach here and is instead handled in 2624 // constant folding. 2625 // 2626 // Two different allocas usually have different addresses... 2627 // 2628 // However, if there's an @llvm.stackrestore dynamically in between two 2629 // allocas, they may have the same address. It's tempting to reduce the 2630 // scope of the problem by only looking at *static* allocas here. That would 2631 // cover the majority of allocas while significantly reducing the likelihood 2632 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2633 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2634 // an entry block. Also, if we have a block that's not attached to a 2635 // function, we can't tell if it's "static" under the current definition. 2636 // Theoretically, this problem could be fixed by creating a new kind of 2637 // instruction kind specifically for static allocas. Such a new instruction 2638 // could be required to be at the top of the entry block, thus preventing it 2639 // from being subject to a @llvm.stackrestore. Instcombine could even 2640 // convert regular allocas into these special allocas. It'd be nifty. 2641 // However, until then, this problem remains open. 2642 // 2643 // So, we'll assume that two non-empty allocas have different addresses 2644 // for now. 2645 auto isByValArg = [](const Value *V) { 2646 const Argument *A = dyn_cast<Argument>(V); 2647 return A && A->hasByValAttr(); 2648 }; 2649 2650 // Byval args are backed by store which does not overlap with each other, 2651 // allocas, or globals. 2652 if (isByValArg(V1)) 2653 return isa<AllocaInst>(V2) || isa<GlobalVariable>(V2) || isByValArg(V2); 2654 if (isByValArg(V2)) 2655 return isa<AllocaInst>(V1) || isa<GlobalVariable>(V1) || isByValArg(V1); 2656 2657 return isa<AllocaInst>(V1) && 2658 (isa<AllocaInst>(V2) || isa<GlobalVariable>(V2)); 2659 } 2660 2661 // A significant optimization not implemented here is assuming that alloca 2662 // addresses are not equal to incoming argument values. They don't *alias*, 2663 // as we say, but that doesn't mean they aren't equal, so we take a 2664 // conservative approach. 2665 // 2666 // This is inspired in part by C++11 5.10p1: 2667 // "Two pointers of the same type compare equal if and only if they are both 2668 // null, both point to the same function, or both represent the same 2669 // address." 2670 // 2671 // This is pretty permissive. 2672 // 2673 // It's also partly due to C11 6.5.9p6: 2674 // "Two pointers compare equal if and only if both are null pointers, both are 2675 // pointers to the same object (including a pointer to an object and a 2676 // subobject at its beginning) or function, both are pointers to one past the 2677 // last element of the same array object, or one is a pointer to one past the 2678 // end of one array object and the other is a pointer to the start of a 2679 // different array object that happens to immediately follow the first array 2680 // object in the address space.) 2681 // 2682 // C11's version is more restrictive, however there's no reason why an argument 2683 // couldn't be a one-past-the-end value for a stack object in the caller and be 2684 // equal to the beginning of a stack object in the callee. 2685 // 2686 // If the C and C++ standards are ever made sufficiently restrictive in this 2687 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2688 // this optimization. 2689 static Constant *computePointerICmp(CmpInst::Predicate Pred, Value *LHS, 2690 Value *RHS, const SimplifyQuery &Q) { 2691 assert(LHS->getType() == RHS->getType() && "Must have same types"); 2692 const DataLayout &DL = Q.DL; 2693 const TargetLibraryInfo *TLI = Q.TLI; 2694 const DominatorTree *DT = Q.DT; 2695 const Instruction *CxtI = Q.CxtI; 2696 2697 // We can only fold certain predicates on pointer comparisons. 2698 switch (Pred) { 2699 default: 2700 return nullptr; 2701 2702 // Equality comparisons are easy to fold. 2703 case CmpInst::ICMP_EQ: 2704 case CmpInst::ICMP_NE: 2705 break; 2706 2707 // We can only handle unsigned relational comparisons because 'inbounds' on 2708 // a GEP only protects against unsigned wrapping. 2709 case CmpInst::ICMP_UGT: 2710 case CmpInst::ICMP_UGE: 2711 case CmpInst::ICMP_ULT: 2712 case CmpInst::ICMP_ULE: 2713 // However, we have to switch them to their signed variants to handle 2714 // negative indices from the base pointer. 2715 Pred = ICmpInst::getSignedPredicate(Pred); 2716 break; 2717 } 2718 2719 // Strip off any constant offsets so that we can reason about them. 2720 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2721 // here and compare base addresses like AliasAnalysis does, however there are 2722 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2723 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2724 // doesn't need to guarantee pointer inequality when it says NoAlias. 2725 2726 // Even if an non-inbounds GEP occurs along the path we can still optimize 2727 // equality comparisons concerning the result. 2728 bool AllowNonInbounds = ICmpInst::isEquality(Pred); 2729 unsigned IndexSize = DL.getIndexTypeSizeInBits(LHS->getType()); 2730 APInt LHSOffset(IndexSize, 0), RHSOffset(IndexSize, 0); 2731 LHS = LHS->stripAndAccumulateConstantOffsets(DL, LHSOffset, AllowNonInbounds); 2732 RHS = RHS->stripAndAccumulateConstantOffsets(DL, RHSOffset, AllowNonInbounds); 2733 2734 // If LHS and RHS are related via constant offsets to the same base 2735 // value, we can replace it with an icmp which just compares the offsets. 2736 if (LHS == RHS) 2737 return ConstantInt::get(getCompareTy(LHS), 2738 ICmpInst::compare(LHSOffset, RHSOffset, Pred)); 2739 2740 // Various optimizations for (in)equality comparisons. 2741 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2742 // Different non-empty allocations that exist at the same time have 2743 // different addresses (if the program can tell). If the offsets are 2744 // within the bounds of their allocations (and not one-past-the-end! 2745 // so we can't use inbounds!), and their allocations aren't the same, 2746 // the pointers are not equal. 2747 if (haveNonOverlappingStorage(LHS, RHS)) { 2748 uint64_t LHSSize, RHSSize; 2749 ObjectSizeOpts Opts; 2750 Opts.EvalMode = ObjectSizeOpts::Mode::Min; 2751 auto *F = [](Value *V) -> Function * { 2752 if (auto *I = dyn_cast<Instruction>(V)) 2753 return I->getFunction(); 2754 if (auto *A = dyn_cast<Argument>(V)) 2755 return A->getParent(); 2756 return nullptr; 2757 }(LHS); 2758 Opts.NullIsUnknownSize = F ? NullPointerIsDefined(F) : true; 2759 if (getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2760 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2761 APInt Dist = LHSOffset - RHSOffset; 2762 if (Dist.isNonNegative() ? Dist.ult(LHSSize) : (-Dist).ult(RHSSize)) 2763 return ConstantInt::get(getCompareTy(LHS), 2764 !CmpInst::isTrueWhenEqual(Pred)); 2765 } 2766 } 2767 2768 // If one side of the equality comparison must come from a noalias call 2769 // (meaning a system memory allocation function), and the other side must 2770 // come from a pointer that cannot overlap with dynamically-allocated 2771 // memory within the lifetime of the current function (allocas, byval 2772 // arguments, globals), then determine the comparison result here. 2773 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2774 getUnderlyingObjects(LHS, LHSUObjs); 2775 getUnderlyingObjects(RHS, RHSUObjs); 2776 2777 // Is the set of underlying objects all noalias calls? 2778 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2779 return all_of(Objects, isNoAliasCall); 2780 }; 2781 2782 // Is the set of underlying objects all things which must be disjoint from 2783 // noalias calls. We assume that indexing from such disjoint storage 2784 // into the heap is undefined, and thus offsets can be safely ignored. 2785 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2786 return all_of(Objects, ::isAllocDisjoint); 2787 }; 2788 2789 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2790 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2791 return ConstantInt::get(getCompareTy(LHS), 2792 !CmpInst::isTrueWhenEqual(Pred)); 2793 2794 // Fold comparisons for non-escaping pointer even if the allocation call 2795 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2796 // dynamic allocation call could be either of the operands. Note that 2797 // the other operand can not be based on the alloc - if it were, then 2798 // the cmp itself would be a capture. 2799 Value *MI = nullptr; 2800 if (isAllocLikeFn(LHS, TLI) && 2801 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2802 MI = LHS; 2803 else if (isAllocLikeFn(RHS, TLI) && 2804 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2805 MI = RHS; 2806 if (MI) { 2807 // FIXME: This is incorrect, see PR54002. While we can assume that the 2808 // allocation is at an address that makes the comparison false, this 2809 // requires that *all* comparisons to that address be false, which 2810 // InstSimplify cannot guarantee. 2811 struct CustomCaptureTracker : public CaptureTracker { 2812 bool Captured = false; 2813 void tooManyUses() override { Captured = true; } 2814 bool captured(const Use *U) override { 2815 if (auto *ICmp = dyn_cast<ICmpInst>(U->getUser())) { 2816 // Comparison against value stored in global variable. Given the 2817 // pointer does not escape, its value cannot be guessed and stored 2818 // separately in a global variable. 2819 unsigned OtherIdx = 1 - U->getOperandNo(); 2820 auto *LI = dyn_cast<LoadInst>(ICmp->getOperand(OtherIdx)); 2821 if (LI && isa<GlobalVariable>(LI->getPointerOperand())) 2822 return false; 2823 } 2824 2825 Captured = true; 2826 return true; 2827 } 2828 }; 2829 CustomCaptureTracker Tracker; 2830 PointerMayBeCaptured(MI, &Tracker); 2831 if (!Tracker.Captured) 2832 return ConstantInt::get(getCompareTy(LHS), 2833 CmpInst::isFalseWhenEqual(Pred)); 2834 } 2835 } 2836 2837 // Otherwise, fail. 2838 return nullptr; 2839 } 2840 2841 /// Fold an icmp when its operands have i1 scalar type. 2842 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2843 Value *RHS, const SimplifyQuery &Q) { 2844 Type *ITy = getCompareTy(LHS); // The return type. 2845 Type *OpTy = LHS->getType(); // The operand type. 2846 if (!OpTy->isIntOrIntVectorTy(1)) 2847 return nullptr; 2848 2849 // A boolean compared to true/false can be reduced in 14 out of the 20 2850 // (10 predicates * 2 constants) possible combinations. The other 2851 // 6 cases require a 'not' of the LHS. 2852 2853 auto ExtractNotLHS = [](Value *V) -> Value * { 2854 Value *X; 2855 if (match(V, m_Not(m_Value(X)))) 2856 return X; 2857 return nullptr; 2858 }; 2859 2860 if (match(RHS, m_Zero())) { 2861 switch (Pred) { 2862 case CmpInst::ICMP_NE: // X != 0 -> X 2863 case CmpInst::ICMP_UGT: // X >u 0 -> X 2864 case CmpInst::ICMP_SLT: // X <s 0 -> X 2865 return LHS; 2866 2867 case CmpInst::ICMP_EQ: // not(X) == 0 -> X != 0 -> X 2868 case CmpInst::ICMP_ULE: // not(X) <=u 0 -> X >u 0 -> X 2869 case CmpInst::ICMP_SGE: // not(X) >=s 0 -> X <s 0 -> X 2870 if (Value *X = ExtractNotLHS(LHS)) 2871 return X; 2872 break; 2873 2874 case CmpInst::ICMP_ULT: // X <u 0 -> false 2875 case CmpInst::ICMP_SGT: // X >s 0 -> false 2876 return getFalse(ITy); 2877 2878 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2879 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2880 return getTrue(ITy); 2881 2882 default: 2883 break; 2884 } 2885 } else if (match(RHS, m_One())) { 2886 switch (Pred) { 2887 case CmpInst::ICMP_EQ: // X == 1 -> X 2888 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2889 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2890 return LHS; 2891 2892 case CmpInst::ICMP_NE: // not(X) != 1 -> X == 1 -> X 2893 case CmpInst::ICMP_ULT: // not(X) <=u 1 -> X >=u 1 -> X 2894 case CmpInst::ICMP_SGT: // not(X) >s 1 -> X <=s -1 -> X 2895 if (Value *X = ExtractNotLHS(LHS)) 2896 return X; 2897 break; 2898 2899 case CmpInst::ICMP_UGT: // X >u 1 -> false 2900 case CmpInst::ICMP_SLT: // X <s -1 -> false 2901 return getFalse(ITy); 2902 2903 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2904 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2905 return getTrue(ITy); 2906 2907 default: 2908 break; 2909 } 2910 } 2911 2912 switch (Pred) { 2913 default: 2914 break; 2915 case ICmpInst::ICMP_UGE: 2916 if (isImpliedCondition(RHS, LHS, Q.DL).value_or(false)) 2917 return getTrue(ITy); 2918 break; 2919 case ICmpInst::ICMP_SGE: 2920 /// For signed comparison, the values for an i1 are 0 and -1 2921 /// respectively. This maps into a truth table of: 2922 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2923 /// 0 | 0 | 1 (0 >= 0) | 1 2924 /// 0 | 1 | 1 (0 >= -1) | 1 2925 /// 1 | 0 | 0 (-1 >= 0) | 0 2926 /// 1 | 1 | 1 (-1 >= -1) | 1 2927 if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false)) 2928 return getTrue(ITy); 2929 break; 2930 case ICmpInst::ICMP_ULE: 2931 if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false)) 2932 return getTrue(ITy); 2933 break; 2934 case ICmpInst::ICMP_SLE: 2935 /// SLE follows the same logic as SGE with the LHS and RHS swapped. 2936 if (isImpliedCondition(RHS, LHS, Q.DL).value_or(false)) 2937 return getTrue(ITy); 2938 break; 2939 } 2940 2941 return nullptr; 2942 } 2943 2944 /// Try hard to fold icmp with zero RHS because this is a common case. 2945 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2946 Value *RHS, const SimplifyQuery &Q) { 2947 if (!match(RHS, m_Zero())) 2948 return nullptr; 2949 2950 Type *ITy = getCompareTy(LHS); // The return type. 2951 switch (Pred) { 2952 default: 2953 llvm_unreachable("Unknown ICmp predicate!"); 2954 case ICmpInst::ICMP_ULT: 2955 return getFalse(ITy); 2956 case ICmpInst::ICMP_UGE: 2957 return getTrue(ITy); 2958 case ICmpInst::ICMP_EQ: 2959 case ICmpInst::ICMP_ULE: 2960 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2961 return getFalse(ITy); 2962 break; 2963 case ICmpInst::ICMP_NE: 2964 case ICmpInst::ICMP_UGT: 2965 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2966 return getTrue(ITy); 2967 break; 2968 case ICmpInst::ICMP_SLT: { 2969 KnownBits LHSKnown = computeKnownBits(LHS, /* Depth */ 0, Q); 2970 if (LHSKnown.isNegative()) 2971 return getTrue(ITy); 2972 if (LHSKnown.isNonNegative()) 2973 return getFalse(ITy); 2974 break; 2975 } 2976 case ICmpInst::ICMP_SLE: { 2977 KnownBits LHSKnown = computeKnownBits(LHS, /* Depth */ 0, Q); 2978 if (LHSKnown.isNegative()) 2979 return getTrue(ITy); 2980 if (LHSKnown.isNonNegative() && 2981 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2982 return getFalse(ITy); 2983 break; 2984 } 2985 case ICmpInst::ICMP_SGE: { 2986 KnownBits LHSKnown = computeKnownBits(LHS, /* Depth */ 0, Q); 2987 if (LHSKnown.isNegative()) 2988 return getFalse(ITy); 2989 if (LHSKnown.isNonNegative()) 2990 return getTrue(ITy); 2991 break; 2992 } 2993 case ICmpInst::ICMP_SGT: { 2994 KnownBits LHSKnown = computeKnownBits(LHS, /* Depth */ 0, Q); 2995 if (LHSKnown.isNegative()) 2996 return getFalse(ITy); 2997 if (LHSKnown.isNonNegative() && 2998 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2999 return getTrue(ITy); 3000 break; 3001 } 3002 } 3003 3004 return nullptr; 3005 } 3006 3007 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 3008 Value *RHS, const InstrInfoQuery &IIQ) { 3009 Type *ITy = getCompareTy(RHS); // The return type. 3010 3011 Value *X; 3012 // Sign-bit checks can be optimized to true/false after unsigned 3013 // floating-point casts: 3014 // icmp slt (bitcast (uitofp X)), 0 --> false 3015 // icmp sgt (bitcast (uitofp X)), -1 --> true 3016 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 3017 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 3018 return ConstantInt::getFalse(ITy); 3019 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 3020 return ConstantInt::getTrue(ITy); 3021 } 3022 3023 const APInt *C; 3024 if (!match(RHS, m_APIntAllowUndef(C))) 3025 return nullptr; 3026 3027 // Rule out tautological comparisons (eg., ult 0 or uge 0). 3028 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 3029 if (RHS_CR.isEmptySet()) 3030 return ConstantInt::getFalse(ITy); 3031 if (RHS_CR.isFullSet()) 3032 return ConstantInt::getTrue(ITy); 3033 3034 ConstantRange LHS_CR = 3035 computeConstantRange(LHS, CmpInst::isSigned(Pred), IIQ.UseInstrInfo); 3036 if (!LHS_CR.isFullSet()) { 3037 if (RHS_CR.contains(LHS_CR)) 3038 return ConstantInt::getTrue(ITy); 3039 if (RHS_CR.inverse().contains(LHS_CR)) 3040 return ConstantInt::getFalse(ITy); 3041 } 3042 3043 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 3044 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 3045 const APInt *MulC; 3046 if (IIQ.UseInstrInfo && ICmpInst::isEquality(Pred) && 3047 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && 3048 *MulC != 0 && C->urem(*MulC) != 0) || 3049 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && 3050 *MulC != 0 && C->srem(*MulC) != 0))) 3051 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 3052 3053 return nullptr; 3054 } 3055 3056 static Value *simplifyICmpWithBinOpOnLHS(CmpInst::Predicate Pred, 3057 BinaryOperator *LBO, Value *RHS, 3058 const SimplifyQuery &Q, 3059 unsigned MaxRecurse) { 3060 Type *ITy = getCompareTy(RHS); // The return type. 3061 3062 Value *Y = nullptr; 3063 // icmp pred (or X, Y), X 3064 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 3065 if (Pred == ICmpInst::ICMP_ULT) 3066 return getFalse(ITy); 3067 if (Pred == ICmpInst::ICMP_UGE) 3068 return getTrue(ITy); 3069 3070 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 3071 KnownBits RHSKnown = computeKnownBits(RHS, /* Depth */ 0, Q); 3072 KnownBits YKnown = computeKnownBits(Y, /* Depth */ 0, Q); 3073 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 3074 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 3075 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 3076 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 3077 } 3078 } 3079 3080 // icmp pred (and X, Y), X 3081 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 3082 if (Pred == ICmpInst::ICMP_UGT) 3083 return getFalse(ITy); 3084 if (Pred == ICmpInst::ICMP_ULE) 3085 return getTrue(ITy); 3086 } 3087 3088 // icmp pred (urem X, Y), Y 3089 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 3090 switch (Pred) { 3091 default: 3092 break; 3093 case ICmpInst::ICMP_SGT: 3094 case ICmpInst::ICMP_SGE: { 3095 KnownBits Known = computeKnownBits(RHS, /* Depth */ 0, Q); 3096 if (!Known.isNonNegative()) 3097 break; 3098 [[fallthrough]]; 3099 } 3100 case ICmpInst::ICMP_EQ: 3101 case ICmpInst::ICMP_UGT: 3102 case ICmpInst::ICMP_UGE: 3103 return getFalse(ITy); 3104 case ICmpInst::ICMP_SLT: 3105 case ICmpInst::ICMP_SLE: { 3106 KnownBits Known = computeKnownBits(RHS, /* Depth */ 0, Q); 3107 if (!Known.isNonNegative()) 3108 break; 3109 [[fallthrough]]; 3110 } 3111 case ICmpInst::ICMP_NE: 3112 case ICmpInst::ICMP_ULT: 3113 case ICmpInst::ICMP_ULE: 3114 return getTrue(ITy); 3115 } 3116 } 3117 3118 // icmp pred (urem X, Y), X 3119 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 3120 if (Pred == ICmpInst::ICMP_ULE) 3121 return getTrue(ITy); 3122 if (Pred == ICmpInst::ICMP_UGT) 3123 return getFalse(ITy); 3124 } 3125 3126 // x >>u y <=u x --> true. 3127 // x >>u y >u x --> false. 3128 // x udiv y <=u x --> true. 3129 // x udiv y >u x --> false. 3130 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 3131 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 3132 // icmp pred (X op Y), X 3133 if (Pred == ICmpInst::ICMP_UGT) 3134 return getFalse(ITy); 3135 if (Pred == ICmpInst::ICMP_ULE) 3136 return getTrue(ITy); 3137 } 3138 3139 // If x is nonzero: 3140 // x >>u C <u x --> true for C != 0. 3141 // x >>u C != x --> true for C != 0. 3142 // x >>u C >=u x --> false for C != 0. 3143 // x >>u C == x --> false for C != 0. 3144 // x udiv C <u x --> true for C != 1. 3145 // x udiv C != x --> true for C != 1. 3146 // x udiv C >=u x --> false for C != 1. 3147 // x udiv C == x --> false for C != 1. 3148 // TODO: allow non-constant shift amount/divisor 3149 const APInt *C; 3150 if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) || 3151 (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) { 3152 if (isKnownNonZero(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) { 3153 switch (Pred) { 3154 default: 3155 break; 3156 case ICmpInst::ICMP_EQ: 3157 case ICmpInst::ICMP_UGE: 3158 return getFalse(ITy); 3159 case ICmpInst::ICMP_NE: 3160 case ICmpInst::ICMP_ULT: 3161 return getTrue(ITy); 3162 case ICmpInst::ICMP_UGT: 3163 case ICmpInst::ICMP_ULE: 3164 // UGT/ULE are handled by the more general case just above 3165 llvm_unreachable("Unexpected UGT/ULE, should have been handled"); 3166 } 3167 } 3168 } 3169 3170 // (x*C1)/C2 <= x for C1 <= C2. 3171 // This holds even if the multiplication overflows: Assume that x != 0 and 3172 // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and 3173 // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. 3174 // 3175 // Additionally, either the multiplication and division might be represented 3176 // as shifts: 3177 // (x*C1)>>C2 <= x for C1 < 2**C2. 3178 // (x<<C1)/C2 <= x for 2**C1 < C2. 3179 const APInt *C1, *C2; 3180 if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3181 C1->ule(*C2)) || 3182 (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3183 C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) || 3184 (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3185 (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) { 3186 if (Pred == ICmpInst::ICMP_UGT) 3187 return getFalse(ITy); 3188 if (Pred == ICmpInst::ICMP_ULE) 3189 return getTrue(ITy); 3190 } 3191 3192 // (sub C, X) == X, C is odd --> false 3193 // (sub C, X) != X, C is odd --> true 3194 if (match(LBO, m_Sub(m_APIntAllowUndef(C), m_Specific(RHS))) && 3195 (*C & 1) == 1 && ICmpInst::isEquality(Pred)) 3196 return (Pred == ICmpInst::ICMP_EQ) ? getFalse(ITy) : getTrue(ITy); 3197 3198 return nullptr; 3199 } 3200 3201 // If only one of the icmp's operands has NSW flags, try to prove that: 3202 // 3203 // icmp slt (x + C1), (x +nsw C2) 3204 // 3205 // is equivalent to: 3206 // 3207 // icmp slt C1, C2 3208 // 3209 // which is true if x + C2 has the NSW flags set and: 3210 // *) C1 < C2 && C1 >= 0, or 3211 // *) C2 < C1 && C1 <= 0. 3212 // 3213 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, 3214 Value *RHS, const InstrInfoQuery &IIQ) { 3215 // TODO: only support icmp slt for now. 3216 if (Pred != CmpInst::ICMP_SLT || !IIQ.UseInstrInfo) 3217 return false; 3218 3219 // Canonicalize nsw add as RHS. 3220 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3221 std::swap(LHS, RHS); 3222 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3223 return false; 3224 3225 Value *X; 3226 const APInt *C1, *C2; 3227 if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) || 3228 !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2)))) 3229 return false; 3230 3231 return (C1->slt(*C2) && C1->isNonNegative()) || 3232 (C2->slt(*C1) && C1->isNonPositive()); 3233 } 3234 3235 /// TODO: A large part of this logic is duplicated in InstCombine's 3236 /// foldICmpBinOp(). We should be able to share that and avoid the code 3237 /// duplication. 3238 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 3239 Value *RHS, const SimplifyQuery &Q, 3240 unsigned MaxRecurse) { 3241 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 3242 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 3243 if (MaxRecurse && (LBO || RBO)) { 3244 // Analyze the case when either LHS or RHS is an add instruction. 3245 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3246 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 3247 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 3248 if (LBO && LBO->getOpcode() == Instruction::Add) { 3249 A = LBO->getOperand(0); 3250 B = LBO->getOperand(1); 3251 NoLHSWrapProblem = 3252 ICmpInst::isEquality(Pred) || 3253 (CmpInst::isUnsigned(Pred) && 3254 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 3255 (CmpInst::isSigned(Pred) && 3256 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 3257 } 3258 if (RBO && RBO->getOpcode() == Instruction::Add) { 3259 C = RBO->getOperand(0); 3260 D = RBO->getOperand(1); 3261 NoRHSWrapProblem = 3262 ICmpInst::isEquality(Pred) || 3263 (CmpInst::isUnsigned(Pred) && 3264 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 3265 (CmpInst::isSigned(Pred) && 3266 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 3267 } 3268 3269 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3270 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 3271 if (Value *V = simplifyICmpInst(Pred, A == RHS ? B : A, 3272 Constant::getNullValue(RHS->getType()), Q, 3273 MaxRecurse - 1)) 3274 return V; 3275 3276 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3277 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 3278 if (Value *V = 3279 simplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 3280 C == LHS ? D : C, Q, MaxRecurse - 1)) 3281 return V; 3282 3283 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 3284 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || 3285 trySimplifyICmpWithAdds(Pred, LHS, RHS, Q.IIQ); 3286 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { 3287 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3288 Value *Y, *Z; 3289 if (A == C) { 3290 // C + B == C + D -> B == D 3291 Y = B; 3292 Z = D; 3293 } else if (A == D) { 3294 // D + B == C + D -> B == C 3295 Y = B; 3296 Z = C; 3297 } else if (B == C) { 3298 // A + C == C + D -> A == D 3299 Y = A; 3300 Z = D; 3301 } else { 3302 assert(B == D); 3303 // A + D == C + D -> A == C 3304 Y = A; 3305 Z = C; 3306 } 3307 if (Value *V = simplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 3308 return V; 3309 } 3310 } 3311 3312 if (LBO) 3313 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 3314 return V; 3315 3316 if (RBO) 3317 if (Value *V = simplifyICmpWithBinOpOnLHS( 3318 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 3319 return V; 3320 3321 // 0 - (zext X) pred C 3322 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 3323 const APInt *C; 3324 if (match(RHS, m_APInt(C))) { 3325 if (C->isStrictlyPositive()) { 3326 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) 3327 return ConstantInt::getTrue(getCompareTy(RHS)); 3328 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) 3329 return ConstantInt::getFalse(getCompareTy(RHS)); 3330 } 3331 if (C->isNonNegative()) { 3332 if (Pred == ICmpInst::ICMP_SLE) 3333 return ConstantInt::getTrue(getCompareTy(RHS)); 3334 if (Pred == ICmpInst::ICMP_SGT) 3335 return ConstantInt::getFalse(getCompareTy(RHS)); 3336 } 3337 } 3338 } 3339 3340 // If C2 is a power-of-2 and C is not: 3341 // (C2 << X) == C --> false 3342 // (C2 << X) != C --> true 3343 const APInt *C; 3344 if (match(LHS, m_Shl(m_Power2(), m_Value())) && 3345 match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) { 3346 // C2 << X can equal zero in some circumstances. 3347 // This simplification might be unsafe if C is zero. 3348 // 3349 // We know it is safe if: 3350 // - The shift is nsw. We can't shift out the one bit. 3351 // - The shift is nuw. We can't shift out the one bit. 3352 // - C2 is one. 3353 // - C isn't zero. 3354 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3355 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3356 match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) { 3357 if (Pred == ICmpInst::ICMP_EQ) 3358 return ConstantInt::getFalse(getCompareTy(RHS)); 3359 if (Pred == ICmpInst::ICMP_NE) 3360 return ConstantInt::getTrue(getCompareTy(RHS)); 3361 } 3362 } 3363 3364 // If C is a power-of-2: 3365 // (C << X) >u 0x8000 --> false 3366 // (C << X) <=u 0x8000 --> true 3367 if (match(LHS, m_Shl(m_Power2(), m_Value())) && match(RHS, m_SignMask())) { 3368 if (Pred == ICmpInst::ICMP_UGT) 3369 return ConstantInt::getFalse(getCompareTy(RHS)); 3370 if (Pred == ICmpInst::ICMP_ULE) 3371 return ConstantInt::getTrue(getCompareTy(RHS)); 3372 } 3373 3374 if (!MaxRecurse || !LBO || !RBO || LBO->getOpcode() != RBO->getOpcode()) 3375 return nullptr; 3376 3377 if (LBO->getOperand(0) == RBO->getOperand(0)) { 3378 switch (LBO->getOpcode()) { 3379 default: 3380 break; 3381 case Instruction::Shl: { 3382 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3383 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3384 if (!NUW || (ICmpInst::isSigned(Pred) && !NSW) || 3385 !isKnownNonZero(LBO->getOperand(0), Q.DL)) 3386 break; 3387 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(1), 3388 RBO->getOperand(1), Q, MaxRecurse - 1)) 3389 return V; 3390 break; 3391 } 3392 // If C1 & C2 == C1, A = X and/or C1, B = X and/or C2: 3393 // icmp ule A, B -> true 3394 // icmp ugt A, B -> false 3395 // icmp sle A, B -> true (C1 and C2 are the same sign) 3396 // icmp sgt A, B -> false (C1 and C2 are the same sign) 3397 case Instruction::And: 3398 case Instruction::Or: { 3399 const APInt *C1, *C2; 3400 if (ICmpInst::isRelational(Pred) && 3401 match(LBO->getOperand(1), m_APInt(C1)) && 3402 match(RBO->getOperand(1), m_APInt(C2))) { 3403 if (!C1->isSubsetOf(*C2)) { 3404 std::swap(C1, C2); 3405 Pred = ICmpInst::getSwappedPredicate(Pred); 3406 } 3407 if (C1->isSubsetOf(*C2)) { 3408 if (Pred == ICmpInst::ICMP_ULE) 3409 return ConstantInt::getTrue(getCompareTy(LHS)); 3410 if (Pred == ICmpInst::ICMP_UGT) 3411 return ConstantInt::getFalse(getCompareTy(LHS)); 3412 if (C1->isNonNegative() == C2->isNonNegative()) { 3413 if (Pred == ICmpInst::ICMP_SLE) 3414 return ConstantInt::getTrue(getCompareTy(LHS)); 3415 if (Pred == ICmpInst::ICMP_SGT) 3416 return ConstantInt::getFalse(getCompareTy(LHS)); 3417 } 3418 } 3419 } 3420 break; 3421 } 3422 } 3423 } 3424 3425 if (LBO->getOperand(1) == RBO->getOperand(1)) { 3426 switch (LBO->getOpcode()) { 3427 default: 3428 break; 3429 case Instruction::UDiv: 3430 case Instruction::LShr: 3431 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3432 !Q.IIQ.isExact(RBO)) 3433 break; 3434 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3435 RBO->getOperand(0), Q, MaxRecurse - 1)) 3436 return V; 3437 break; 3438 case Instruction::SDiv: 3439 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3440 !Q.IIQ.isExact(RBO)) 3441 break; 3442 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3443 RBO->getOperand(0), Q, MaxRecurse - 1)) 3444 return V; 3445 break; 3446 case Instruction::AShr: 3447 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3448 break; 3449 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3450 RBO->getOperand(0), Q, MaxRecurse - 1)) 3451 return V; 3452 break; 3453 case Instruction::Shl: { 3454 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3455 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3456 if (!NUW && !NSW) 3457 break; 3458 if (!NSW && ICmpInst::isSigned(Pred)) 3459 break; 3460 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3461 RBO->getOperand(0), Q, MaxRecurse - 1)) 3462 return V; 3463 break; 3464 } 3465 } 3466 } 3467 return nullptr; 3468 } 3469 3470 /// simplify integer comparisons where at least one operand of the compare 3471 /// matches an integer min/max idiom. 3472 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3473 Value *RHS, const SimplifyQuery &Q, 3474 unsigned MaxRecurse) { 3475 Type *ITy = getCompareTy(LHS); // The return type. 3476 Value *A, *B; 3477 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3478 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3479 3480 // Signed variants on "max(a,b)>=a -> true". 3481 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3482 if (A != RHS) 3483 std::swap(A, B); // smax(A, B) pred A. 3484 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3485 // We analyze this as smax(A, B) pred A. 3486 P = Pred; 3487 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3488 (A == LHS || B == LHS)) { 3489 if (A != LHS) 3490 std::swap(A, B); // A pred smax(A, B). 3491 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3492 // We analyze this as smax(A, B) swapped-pred A. 3493 P = CmpInst::getSwappedPredicate(Pred); 3494 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3495 (A == RHS || B == RHS)) { 3496 if (A != RHS) 3497 std::swap(A, B); // smin(A, B) pred A. 3498 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3499 // We analyze this as smax(-A, -B) swapped-pred -A. 3500 // Note that we do not need to actually form -A or -B thanks to EqP. 3501 P = CmpInst::getSwappedPredicate(Pred); 3502 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3503 (A == LHS || B == LHS)) { 3504 if (A != LHS) 3505 std::swap(A, B); // A pred smin(A, B). 3506 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3507 // We analyze this as smax(-A, -B) pred -A. 3508 // Note that we do not need to actually form -A or -B thanks to EqP. 3509 P = Pred; 3510 } 3511 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3512 // Cases correspond to "max(A, B) p A". 3513 switch (P) { 3514 default: 3515 break; 3516 case CmpInst::ICMP_EQ: 3517 case CmpInst::ICMP_SLE: 3518 // Equivalent to "A EqP B". This may be the same as the condition tested 3519 // in the max/min; if so, we can just return that. 3520 if (Value *V = extractEquivalentCondition(LHS, EqP, A, B)) 3521 return V; 3522 if (Value *V = extractEquivalentCondition(RHS, EqP, A, B)) 3523 return V; 3524 // Otherwise, see if "A EqP B" simplifies. 3525 if (MaxRecurse) 3526 if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3527 return V; 3528 break; 3529 case CmpInst::ICMP_NE: 3530 case CmpInst::ICMP_SGT: { 3531 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3532 // Equivalent to "A InvEqP B". This may be the same as the condition 3533 // tested in the max/min; if so, we can just return that. 3534 if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B)) 3535 return V; 3536 if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B)) 3537 return V; 3538 // Otherwise, see if "A InvEqP B" simplifies. 3539 if (MaxRecurse) 3540 if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3541 return V; 3542 break; 3543 } 3544 case CmpInst::ICMP_SGE: 3545 // Always true. 3546 return getTrue(ITy); 3547 case CmpInst::ICMP_SLT: 3548 // Always false. 3549 return getFalse(ITy); 3550 } 3551 } 3552 3553 // Unsigned variants on "max(a,b)>=a -> true". 3554 P = CmpInst::BAD_ICMP_PREDICATE; 3555 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3556 if (A != RHS) 3557 std::swap(A, B); // umax(A, B) pred A. 3558 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3559 // We analyze this as umax(A, B) pred A. 3560 P = Pred; 3561 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3562 (A == LHS || B == LHS)) { 3563 if (A != LHS) 3564 std::swap(A, B); // A pred umax(A, B). 3565 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3566 // We analyze this as umax(A, B) swapped-pred A. 3567 P = CmpInst::getSwappedPredicate(Pred); 3568 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3569 (A == RHS || B == RHS)) { 3570 if (A != RHS) 3571 std::swap(A, B); // umin(A, B) pred A. 3572 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3573 // We analyze this as umax(-A, -B) swapped-pred -A. 3574 // Note that we do not need to actually form -A or -B thanks to EqP. 3575 P = CmpInst::getSwappedPredicate(Pred); 3576 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3577 (A == LHS || B == LHS)) { 3578 if (A != LHS) 3579 std::swap(A, B); // A pred umin(A, B). 3580 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3581 // We analyze this as umax(-A, -B) pred -A. 3582 // Note that we do not need to actually form -A or -B thanks to EqP. 3583 P = Pred; 3584 } 3585 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3586 // Cases correspond to "max(A, B) p A". 3587 switch (P) { 3588 default: 3589 break; 3590 case CmpInst::ICMP_EQ: 3591 case CmpInst::ICMP_ULE: 3592 // Equivalent to "A EqP B". This may be the same as the condition tested 3593 // in the max/min; if so, we can just return that. 3594 if (Value *V = extractEquivalentCondition(LHS, EqP, A, B)) 3595 return V; 3596 if (Value *V = extractEquivalentCondition(RHS, EqP, A, B)) 3597 return V; 3598 // Otherwise, see if "A EqP B" simplifies. 3599 if (MaxRecurse) 3600 if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3601 return V; 3602 break; 3603 case CmpInst::ICMP_NE: 3604 case CmpInst::ICMP_UGT: { 3605 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3606 // Equivalent to "A InvEqP B". This may be the same as the condition 3607 // tested in the max/min; if so, we can just return that. 3608 if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B)) 3609 return V; 3610 if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B)) 3611 return V; 3612 // Otherwise, see if "A InvEqP B" simplifies. 3613 if (MaxRecurse) 3614 if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3615 return V; 3616 break; 3617 } 3618 case CmpInst::ICMP_UGE: 3619 return getTrue(ITy); 3620 case CmpInst::ICMP_ULT: 3621 return getFalse(ITy); 3622 } 3623 } 3624 3625 // Comparing 1 each of min/max with a common operand? 3626 // Canonicalize min operand to RHS. 3627 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3628 match(LHS, m_SMin(m_Value(), m_Value()))) { 3629 std::swap(LHS, RHS); 3630 Pred = ICmpInst::getSwappedPredicate(Pred); 3631 } 3632 3633 Value *C, *D; 3634 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3635 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3636 (A == C || A == D || B == C || B == D)) { 3637 // smax(A, B) >=s smin(A, D) --> true 3638 if (Pred == CmpInst::ICMP_SGE) 3639 return getTrue(ITy); 3640 // smax(A, B) <s smin(A, D) --> false 3641 if (Pred == CmpInst::ICMP_SLT) 3642 return getFalse(ITy); 3643 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3644 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3645 (A == C || A == D || B == C || B == D)) { 3646 // umax(A, B) >=u umin(A, D) --> true 3647 if (Pred == CmpInst::ICMP_UGE) 3648 return getTrue(ITy); 3649 // umax(A, B) <u umin(A, D) --> false 3650 if (Pred == CmpInst::ICMP_ULT) 3651 return getFalse(ITy); 3652 } 3653 3654 return nullptr; 3655 } 3656 3657 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3658 Value *LHS, Value *RHS, 3659 const SimplifyQuery &Q) { 3660 // Gracefully handle instructions that have not been inserted yet. 3661 if (!Q.AC || !Q.CxtI) 3662 return nullptr; 3663 3664 for (Value *AssumeBaseOp : {LHS, RHS}) { 3665 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3666 if (!AssumeVH) 3667 continue; 3668 3669 CallInst *Assume = cast<CallInst>(AssumeVH); 3670 if (std::optional<bool> Imp = isImpliedCondition( 3671 Assume->getArgOperand(0), Predicate, LHS, RHS, Q.DL)) 3672 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3673 return ConstantInt::get(getCompareTy(LHS), *Imp); 3674 } 3675 } 3676 3677 return nullptr; 3678 } 3679 3680 static Value *simplifyICmpWithIntrinsicOnLHS(CmpInst::Predicate Pred, 3681 Value *LHS, Value *RHS) { 3682 auto *II = dyn_cast<IntrinsicInst>(LHS); 3683 if (!II) 3684 return nullptr; 3685 3686 switch (II->getIntrinsicID()) { 3687 case Intrinsic::uadd_sat: 3688 // uadd.sat(X, Y) uge X, uadd.sat(X, Y) uge Y 3689 if (II->getArgOperand(0) == RHS || II->getArgOperand(1) == RHS) { 3690 if (Pred == ICmpInst::ICMP_UGE) 3691 return ConstantInt::getTrue(getCompareTy(II)); 3692 if (Pred == ICmpInst::ICMP_ULT) 3693 return ConstantInt::getFalse(getCompareTy(II)); 3694 } 3695 return nullptr; 3696 case Intrinsic::usub_sat: 3697 // usub.sat(X, Y) ule X 3698 if (II->getArgOperand(0) == RHS) { 3699 if (Pred == ICmpInst::ICMP_ULE) 3700 return ConstantInt::getTrue(getCompareTy(II)); 3701 if (Pred == ICmpInst::ICMP_UGT) 3702 return ConstantInt::getFalse(getCompareTy(II)); 3703 } 3704 return nullptr; 3705 default: 3706 return nullptr; 3707 } 3708 } 3709 3710 /// Given operands for an ICmpInst, see if we can fold the result. 3711 /// If not, this returns null. 3712 static Value *simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3713 const SimplifyQuery &Q, unsigned MaxRecurse) { 3714 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3715 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3716 3717 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3718 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3719 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3720 3721 // If we have a constant, make sure it is on the RHS. 3722 std::swap(LHS, RHS); 3723 Pred = CmpInst::getSwappedPredicate(Pred); 3724 } 3725 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3726 3727 Type *ITy = getCompareTy(LHS); // The return type. 3728 3729 // icmp poison, X -> poison 3730 if (isa<PoisonValue>(RHS)) 3731 return PoisonValue::get(ITy); 3732 3733 // For EQ and NE, we can always pick a value for the undef to make the 3734 // predicate pass or fail, so we can return undef. 3735 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3736 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3737 return UndefValue::get(ITy); 3738 3739 // icmp X, X -> true/false 3740 // icmp X, undef -> true/false because undef could be X. 3741 if (LHS == RHS || Q.isUndefValue(RHS)) 3742 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3743 3744 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3745 return V; 3746 3747 // TODO: Sink/common this with other potentially expensive calls that use 3748 // ValueTracking? See comment below for isKnownNonEqual(). 3749 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3750 return V; 3751 3752 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3753 return V; 3754 3755 // If both operands have range metadata, use the metadata 3756 // to simplify the comparison. 3757 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3758 auto RHS_Instr = cast<Instruction>(RHS); 3759 auto LHS_Instr = cast<Instruction>(LHS); 3760 3761 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3762 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3763 auto RHS_CR = getConstantRangeFromMetadata( 3764 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3765 auto LHS_CR = getConstantRangeFromMetadata( 3766 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3767 3768 if (LHS_CR.icmp(Pred, RHS_CR)) 3769 return ConstantInt::getTrue(RHS->getContext()); 3770 3771 if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR)) 3772 return ConstantInt::getFalse(RHS->getContext()); 3773 } 3774 } 3775 3776 // Compare of cast, for example (zext X) != 0 -> X != 0 3777 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3778 Instruction *LI = cast<CastInst>(LHS); 3779 Value *SrcOp = LI->getOperand(0); 3780 Type *SrcTy = SrcOp->getType(); 3781 Type *DstTy = LI->getType(); 3782 3783 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3784 // if the integer type is the same size as the pointer type. 3785 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3786 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3787 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3788 // Transfer the cast to the constant. 3789 if (Value *V = simplifyICmpInst(Pred, SrcOp, 3790 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3791 Q, MaxRecurse - 1)) 3792 return V; 3793 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3794 if (RI->getOperand(0)->getType() == SrcTy) 3795 // Compare without the cast. 3796 if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q, 3797 MaxRecurse - 1)) 3798 return V; 3799 } 3800 } 3801 3802 if (isa<ZExtInst>(LHS)) { 3803 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3804 // same type. 3805 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3806 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3807 // Compare X and Y. Note that signed predicates become unsigned. 3808 if (Value *V = 3809 simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), SrcOp, 3810 RI->getOperand(0), Q, MaxRecurse - 1)) 3811 return V; 3812 } 3813 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3814 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3815 if (SrcOp == RI->getOperand(0)) { 3816 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3817 return ConstantInt::getTrue(ITy); 3818 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3819 return ConstantInt::getFalse(ITy); 3820 } 3821 } 3822 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3823 // too. If not, then try to deduce the result of the comparison. 3824 else if (match(RHS, m_ImmConstant())) { 3825 Constant *C = dyn_cast<Constant>(RHS); 3826 assert(C != nullptr); 3827 3828 // Compute the constant that would happen if we truncated to SrcTy then 3829 // reextended to DstTy. 3830 Constant *Trunc = 3831 ConstantFoldCastOperand(Instruction::Trunc, C, SrcTy, Q.DL); 3832 assert(Trunc && "Constant-fold of ImmConstant should not fail"); 3833 Constant *RExt = 3834 ConstantFoldCastOperand(CastInst::ZExt, Trunc, DstTy, Q.DL); 3835 assert(RExt && "Constant-fold of ImmConstant should not fail"); 3836 Constant *AnyEq = 3837 ConstantFoldCompareInstOperands(ICmpInst::ICMP_EQ, RExt, C, Q.DL); 3838 assert(AnyEq && "Constant-fold of ImmConstant should not fail"); 3839 3840 // If the re-extended constant didn't change any of the elements then 3841 // this is effectively also a case of comparing two zero-extended 3842 // values. 3843 if (AnyEq->isAllOnesValue() && MaxRecurse) 3844 if (Value *V = simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3845 SrcOp, Trunc, Q, MaxRecurse - 1)) 3846 return V; 3847 3848 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3849 // there. Use this to work out the result of the comparison. 3850 if (AnyEq->isNullValue()) { 3851 switch (Pred) { 3852 default: 3853 llvm_unreachable("Unknown ICmp predicate!"); 3854 // LHS <u RHS. 3855 case ICmpInst::ICMP_EQ: 3856 case ICmpInst::ICMP_UGT: 3857 case ICmpInst::ICMP_UGE: 3858 return Constant::getNullValue(ITy); 3859 3860 case ICmpInst::ICMP_NE: 3861 case ICmpInst::ICMP_ULT: 3862 case ICmpInst::ICMP_ULE: 3863 return Constant::getAllOnesValue(ITy); 3864 3865 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3866 // is non-negative then LHS <s RHS. 3867 case ICmpInst::ICMP_SGT: 3868 case ICmpInst::ICMP_SGE: 3869 return ConstantFoldCompareInstOperands( 3870 ICmpInst::ICMP_SLT, C, Constant::getNullValue(C->getType()), 3871 Q.DL); 3872 case ICmpInst::ICMP_SLT: 3873 case ICmpInst::ICMP_SLE: 3874 return ConstantFoldCompareInstOperands( 3875 ICmpInst::ICMP_SGE, C, Constant::getNullValue(C->getType()), 3876 Q.DL); 3877 } 3878 } 3879 } 3880 } 3881 3882 if (isa<SExtInst>(LHS)) { 3883 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3884 // same type. 3885 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3886 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3887 // Compare X and Y. Note that the predicate does not change. 3888 if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q, 3889 MaxRecurse - 1)) 3890 return V; 3891 } 3892 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3893 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3894 if (SrcOp == RI->getOperand(0)) { 3895 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3896 return ConstantInt::getTrue(ITy); 3897 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3898 return ConstantInt::getFalse(ITy); 3899 } 3900 } 3901 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3902 // too. If not, then try to deduce the result of the comparison. 3903 else if (match(RHS, m_ImmConstant())) { 3904 Constant *C = cast<Constant>(RHS); 3905 3906 // Compute the constant that would happen if we truncated to SrcTy then 3907 // reextended to DstTy. 3908 Constant *Trunc = 3909 ConstantFoldCastOperand(Instruction::Trunc, C, SrcTy, Q.DL); 3910 assert(Trunc && "Constant-fold of ImmConstant should not fail"); 3911 Constant *RExt = 3912 ConstantFoldCastOperand(CastInst::SExt, Trunc, DstTy, Q.DL); 3913 assert(RExt && "Constant-fold of ImmConstant should not fail"); 3914 Constant *AnyEq = 3915 ConstantFoldCompareInstOperands(ICmpInst::ICMP_EQ, RExt, C, Q.DL); 3916 assert(AnyEq && "Constant-fold of ImmConstant should not fail"); 3917 3918 // If the re-extended constant didn't change then this is effectively 3919 // also a case of comparing two sign-extended values. 3920 if (AnyEq->isAllOnesValue() && MaxRecurse) 3921 if (Value *V = 3922 simplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse - 1)) 3923 return V; 3924 3925 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3926 // bits there. Use this to work out the result of the comparison. 3927 if (AnyEq->isNullValue()) { 3928 switch (Pred) { 3929 default: 3930 llvm_unreachable("Unknown ICmp predicate!"); 3931 case ICmpInst::ICMP_EQ: 3932 return Constant::getNullValue(ITy); 3933 case ICmpInst::ICMP_NE: 3934 return Constant::getAllOnesValue(ITy); 3935 3936 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3937 // LHS >s RHS. 3938 case ICmpInst::ICMP_SGT: 3939 case ICmpInst::ICMP_SGE: 3940 return ConstantExpr::getICmp(ICmpInst::ICMP_SLT, C, 3941 Constant::getNullValue(C->getType())); 3942 case ICmpInst::ICMP_SLT: 3943 case ICmpInst::ICMP_SLE: 3944 return ConstantExpr::getICmp(ICmpInst::ICMP_SGE, C, 3945 Constant::getNullValue(C->getType())); 3946 3947 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3948 // LHS >u RHS. 3949 case ICmpInst::ICMP_UGT: 3950 case ICmpInst::ICMP_UGE: 3951 // Comparison is true iff the LHS <s 0. 3952 if (MaxRecurse) 3953 if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3954 Constant::getNullValue(SrcTy), Q, 3955 MaxRecurse - 1)) 3956 return V; 3957 break; 3958 case ICmpInst::ICMP_ULT: 3959 case ICmpInst::ICMP_ULE: 3960 // Comparison is true iff the LHS >=s 0. 3961 if (MaxRecurse) 3962 if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3963 Constant::getNullValue(SrcTy), Q, 3964 MaxRecurse - 1)) 3965 return V; 3966 break; 3967 } 3968 } 3969 } 3970 } 3971 } 3972 3973 // icmp eq|ne X, Y -> false|true if X != Y 3974 // This is potentially expensive, and we have already computedKnownBits for 3975 // compares with 0 above here, so only try this for a non-zero compare. 3976 if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) && 3977 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3978 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3979 } 3980 3981 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3982 return V; 3983 3984 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3985 return V; 3986 3987 if (Value *V = simplifyICmpWithIntrinsicOnLHS(Pred, LHS, RHS)) 3988 return V; 3989 if (Value *V = simplifyICmpWithIntrinsicOnLHS( 3990 ICmpInst::getSwappedPredicate(Pred), RHS, LHS)) 3991 return V; 3992 3993 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3994 return V; 3995 3996 if (std::optional<bool> Res = 3997 isImpliedByDomCondition(Pred, LHS, RHS, Q.CxtI, Q.DL)) 3998 return ConstantInt::getBool(ITy, *Res); 3999 4000 // Simplify comparisons of related pointers using a powerful, recursive 4001 // GEP-walk when we have target data available.. 4002 if (LHS->getType()->isPointerTy()) 4003 if (auto *C = computePointerICmp(Pred, LHS, RHS, Q)) 4004 return C; 4005 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 4006 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 4007 if (CLHS->getPointerOperandType() == CRHS->getPointerOperandType() && 4008 Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 4009 Q.DL.getTypeSizeInBits(CLHS->getType())) 4010 if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(), 4011 CRHS->getPointerOperand(), Q)) 4012 return C; 4013 4014 // If the comparison is with the result of a select instruction, check whether 4015 // comparing with either branch of the select always yields the same value. 4016 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 4017 if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 4018 return V; 4019 4020 // If the comparison is with the result of a phi instruction, check whether 4021 // doing the compare with each incoming phi value yields a common result. 4022 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 4023 if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 4024 return V; 4025 4026 return nullptr; 4027 } 4028 4029 Value *llvm::simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4030 const SimplifyQuery &Q) { 4031 return ::simplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 4032 } 4033 4034 /// Given operands for an FCmpInst, see if we can fold the result. 4035 /// If not, this returns null. 4036 static Value *simplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4037 FastMathFlags FMF, const SimplifyQuery &Q, 4038 unsigned MaxRecurse) { 4039 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 4040 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 4041 4042 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 4043 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 4044 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI, 4045 Q.CxtI); 4046 4047 // If we have a constant, make sure it is on the RHS. 4048 std::swap(LHS, RHS); 4049 Pred = CmpInst::getSwappedPredicate(Pred); 4050 } 4051 4052 // Fold trivial predicates. 4053 Type *RetTy = getCompareTy(LHS); 4054 if (Pred == FCmpInst::FCMP_FALSE) 4055 return getFalse(RetTy); 4056 if (Pred == FCmpInst::FCMP_TRUE) 4057 return getTrue(RetTy); 4058 4059 // fcmp pred x, poison and fcmp pred poison, x 4060 // fold to poison 4061 if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS)) 4062 return PoisonValue::get(RetTy); 4063 4064 // fcmp pred x, undef and fcmp pred undef, x 4065 // fold to true if unordered, false if ordered 4066 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 4067 // Choosing NaN for the undef will always make unordered comparison succeed 4068 // and ordered comparison fail. 4069 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 4070 } 4071 4072 // fcmp x,x -> true/false. Not all compares are foldable. 4073 if (LHS == RHS) { 4074 if (CmpInst::isTrueWhenEqual(Pred)) 4075 return getTrue(RetTy); 4076 if (CmpInst::isFalseWhenEqual(Pred)) 4077 return getFalse(RetTy); 4078 } 4079 4080 // Fold (un)ordered comparison if we can determine there are no NaNs. 4081 // 4082 // This catches the 2 variable input case, constants are handled below as a 4083 // class-like compare. 4084 if (Pred == FCmpInst::FCMP_ORD || Pred == FCmpInst::FCMP_UNO) { 4085 if (FMF.noNaNs() || 4086 (isKnownNeverNaN(RHS, Q.DL, Q.TLI, 0, Q.AC, Q.CxtI, Q.DT) && 4087 isKnownNeverNaN(LHS, Q.DL, Q.TLI, 0, Q.AC, Q.CxtI, Q.DT))) 4088 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 4089 } 4090 4091 const APFloat *C = nullptr; 4092 match(RHS, m_APFloatAllowUndef(C)); 4093 std::optional<KnownFPClass> FullKnownClassLHS; 4094 4095 // Lazily compute the possible classes for LHS. Avoid computing it twice if 4096 // RHS is a 0. 4097 auto computeLHSClass = [=, &FullKnownClassLHS](FPClassTest InterestedFlags = 4098 fcAllFlags) { 4099 if (FullKnownClassLHS) 4100 return *FullKnownClassLHS; 4101 return computeKnownFPClass(LHS, FMF, Q.DL, InterestedFlags, 0, Q.TLI, Q.AC, 4102 Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo); 4103 }; 4104 4105 if (C && Q.CxtI) { 4106 // Fold out compares that express a class test. 4107 // 4108 // FIXME: Should be able to perform folds without context 4109 // instruction. Always pass in the context function? 4110 4111 const Function *ParentF = Q.CxtI->getFunction(); 4112 auto [ClassVal, ClassTest] = fcmpToClassTest(Pred, *ParentF, LHS, C); 4113 if (ClassVal) { 4114 FullKnownClassLHS = computeLHSClass(); 4115 if ((FullKnownClassLHS->KnownFPClasses & ClassTest) == fcNone) 4116 return getFalse(RetTy); 4117 if ((FullKnownClassLHS->KnownFPClasses & ~ClassTest) == fcNone) 4118 return getTrue(RetTy); 4119 } 4120 } 4121 4122 // Handle fcmp with constant RHS. 4123 if (C) { 4124 // TODO: If we always required a context function, we wouldn't need to 4125 // special case nans. 4126 if (C->isNaN()) 4127 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 4128 4129 // TODO: Need version fcmpToClassTest which returns implied class when the 4130 // compare isn't a complete class test. e.g. > 1.0 implies fcPositive, but 4131 // isn't implementable as a class call. 4132 if (C->isNegative() && !C->isNegZero()) { 4133 FPClassTest Interested = KnownFPClass::OrderedLessThanZeroMask; 4134 4135 // TODO: We can catch more cases by using a range check rather than 4136 // relying on CannotBeOrderedLessThanZero. 4137 switch (Pred) { 4138 case FCmpInst::FCMP_UGE: 4139 case FCmpInst::FCMP_UGT: 4140 case FCmpInst::FCMP_UNE: { 4141 KnownFPClass KnownClass = computeLHSClass(Interested); 4142 4143 // (X >= 0) implies (X > C) when (C < 0) 4144 if (KnownClass.cannotBeOrderedLessThanZero()) 4145 return getTrue(RetTy); 4146 break; 4147 } 4148 case FCmpInst::FCMP_OEQ: 4149 case FCmpInst::FCMP_OLE: 4150 case FCmpInst::FCMP_OLT: { 4151 KnownFPClass KnownClass = computeLHSClass(Interested); 4152 4153 // (X >= 0) implies !(X < C) when (C < 0) 4154 if (KnownClass.cannotBeOrderedLessThanZero()) 4155 return getFalse(RetTy); 4156 break; 4157 } 4158 default: 4159 break; 4160 } 4161 } 4162 // Check comparison of [minnum/maxnum with constant] with other constant. 4163 const APFloat *C2; 4164 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 4165 *C2 < *C) || 4166 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 4167 *C2 > *C)) { 4168 bool IsMaxNum = 4169 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 4170 // The ordered relationship and minnum/maxnum guarantee that we do not 4171 // have NaN constants, so ordered/unordered preds are handled the same. 4172 switch (Pred) { 4173 case FCmpInst::FCMP_OEQ: 4174 case FCmpInst::FCMP_UEQ: 4175 // minnum(X, LesserC) == C --> false 4176 // maxnum(X, GreaterC) == C --> false 4177 return getFalse(RetTy); 4178 case FCmpInst::FCMP_ONE: 4179 case FCmpInst::FCMP_UNE: 4180 // minnum(X, LesserC) != C --> true 4181 // maxnum(X, GreaterC) != C --> true 4182 return getTrue(RetTy); 4183 case FCmpInst::FCMP_OGE: 4184 case FCmpInst::FCMP_UGE: 4185 case FCmpInst::FCMP_OGT: 4186 case FCmpInst::FCMP_UGT: 4187 // minnum(X, LesserC) >= C --> false 4188 // minnum(X, LesserC) > C --> false 4189 // maxnum(X, GreaterC) >= C --> true 4190 // maxnum(X, GreaterC) > C --> true 4191 return ConstantInt::get(RetTy, IsMaxNum); 4192 case FCmpInst::FCMP_OLE: 4193 case FCmpInst::FCMP_ULE: 4194 case FCmpInst::FCMP_OLT: 4195 case FCmpInst::FCMP_ULT: 4196 // minnum(X, LesserC) <= C --> true 4197 // minnum(X, LesserC) < C --> true 4198 // maxnum(X, GreaterC) <= C --> false 4199 // maxnum(X, GreaterC) < C --> false 4200 return ConstantInt::get(RetTy, !IsMaxNum); 4201 default: 4202 // TRUE/FALSE/ORD/UNO should be handled before this. 4203 llvm_unreachable("Unexpected fcmp predicate"); 4204 } 4205 } 4206 } 4207 4208 // TODO: Could fold this with above if there were a matcher which returned all 4209 // classes in a non-splat vector. 4210 if (match(RHS, m_AnyZeroFP())) { 4211 switch (Pred) { 4212 case FCmpInst::FCMP_OGE: 4213 case FCmpInst::FCMP_ULT: { 4214 FPClassTest Interested = KnownFPClass::OrderedLessThanZeroMask; 4215 if (!FMF.noNaNs()) 4216 Interested |= fcNan; 4217 4218 KnownFPClass Known = computeLHSClass(Interested); 4219 4220 // Positive or zero X >= 0.0 --> true 4221 // Positive or zero X < 0.0 --> false 4222 if ((FMF.noNaNs() || Known.isKnownNeverNaN()) && 4223 Known.cannotBeOrderedLessThanZero()) 4224 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 4225 break; 4226 } 4227 case FCmpInst::FCMP_UGE: 4228 case FCmpInst::FCMP_OLT: { 4229 FPClassTest Interested = KnownFPClass::OrderedLessThanZeroMask; 4230 KnownFPClass Known = computeLHSClass(Interested); 4231 4232 // Positive or zero or nan X >= 0.0 --> true 4233 // Positive or zero or nan X < 0.0 --> false 4234 if (Known.cannotBeOrderedLessThanZero()) 4235 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 4236 break; 4237 } 4238 default: 4239 break; 4240 } 4241 } 4242 4243 // If the comparison is with the result of a select instruction, check whether 4244 // comparing with either branch of the select always yields the same value. 4245 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 4246 if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 4247 return V; 4248 4249 // If the comparison is with the result of a phi instruction, check whether 4250 // doing the compare with each incoming phi value yields a common result. 4251 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 4252 if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 4253 return V; 4254 4255 return nullptr; 4256 } 4257 4258 Value *llvm::simplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4259 FastMathFlags FMF, const SimplifyQuery &Q) { 4260 return ::simplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 4261 } 4262 4263 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4264 const SimplifyQuery &Q, 4265 bool AllowRefinement, 4266 SmallVectorImpl<Instruction *> *DropFlags, 4267 unsigned MaxRecurse) { 4268 // Trivial replacement. 4269 if (V == Op) 4270 return RepOp; 4271 4272 if (!MaxRecurse--) 4273 return nullptr; 4274 4275 // We cannot replace a constant, and shouldn't even try. 4276 if (isa<Constant>(Op)) 4277 return nullptr; 4278 4279 auto *I = dyn_cast<Instruction>(V); 4280 if (!I) 4281 return nullptr; 4282 4283 // The arguments of a phi node might refer to a value from a previous 4284 // cycle iteration. 4285 if (isa<PHINode>(I)) 4286 return nullptr; 4287 4288 if (Op->getType()->isVectorTy()) { 4289 // For vector types, the simplification must hold per-lane, so forbid 4290 // potentially cross-lane operations like shufflevector. 4291 if (!I->getType()->isVectorTy() || isa<ShuffleVectorInst>(I) || 4292 isa<CallBase>(I)) 4293 return nullptr; 4294 } 4295 4296 // Don't fold away llvm.is.constant checks based on assumptions. 4297 if (match(I, m_Intrinsic<Intrinsic::is_constant>())) 4298 return nullptr; 4299 4300 // Replace Op with RepOp in instruction operands. 4301 SmallVector<Value *, 8> NewOps; 4302 bool AnyReplaced = false; 4303 for (Value *InstOp : I->operands()) { 4304 if (Value *NewInstOp = simplifyWithOpReplaced( 4305 InstOp, Op, RepOp, Q, AllowRefinement, DropFlags, MaxRecurse)) { 4306 NewOps.push_back(NewInstOp); 4307 AnyReplaced = InstOp != NewInstOp; 4308 } else { 4309 NewOps.push_back(InstOp); 4310 } 4311 } 4312 4313 if (!AnyReplaced) 4314 return nullptr; 4315 4316 if (!AllowRefinement) { 4317 // General InstSimplify functions may refine the result, e.g. by returning 4318 // a constant for a potentially poison value. To avoid this, implement only 4319 // a few non-refining but profitable transforms here. 4320 4321 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 4322 unsigned Opcode = BO->getOpcode(); 4323 // id op x -> x, x op id -> x 4324 if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType())) 4325 return NewOps[1]; 4326 if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(), 4327 /* RHS */ true)) 4328 return NewOps[0]; 4329 4330 // x & x -> x, x | x -> x 4331 if ((Opcode == Instruction::And || Opcode == Instruction::Or) && 4332 NewOps[0] == NewOps[1]) { 4333 // or disjoint x, x results in poison. 4334 if (auto *PDI = dyn_cast<PossiblyDisjointInst>(BO)) { 4335 if (PDI->isDisjoint()) { 4336 if (!DropFlags) 4337 return nullptr; 4338 DropFlags->push_back(BO); 4339 } 4340 } 4341 return NewOps[0]; 4342 } 4343 4344 // x - x -> 0, x ^ x -> 0. This is non-refining, because x is non-poison 4345 // by assumption and this case never wraps, so nowrap flags can be 4346 // ignored. 4347 if ((Opcode == Instruction::Sub || Opcode == Instruction::Xor) && 4348 NewOps[0] == RepOp && NewOps[1] == RepOp) 4349 return Constant::getNullValue(I->getType()); 4350 4351 // If we are substituting an absorber constant into a binop and extra 4352 // poison can't leak if we remove the select -- because both operands of 4353 // the binop are based on the same value -- then it may be safe to replace 4354 // the value with the absorber constant. Examples: 4355 // (Op == 0) ? 0 : (Op & -Op) --> Op & -Op 4356 // (Op == 0) ? 0 : (Op * (binop Op, C)) --> Op * (binop Op, C) 4357 // (Op == -1) ? -1 : (Op | (binop C, Op) --> Op | (binop C, Op) 4358 Constant *Absorber = 4359 ConstantExpr::getBinOpAbsorber(Opcode, I->getType()); 4360 if ((NewOps[0] == Absorber || NewOps[1] == Absorber) && 4361 impliesPoison(BO, Op)) 4362 return Absorber; 4363 } 4364 4365 if (isa<GetElementPtrInst>(I)) { 4366 // getelementptr x, 0 -> x. 4367 // This never returns poison, even if inbounds is set. 4368 if (NewOps.size() == 2 && match(NewOps[1], m_Zero())) 4369 return NewOps[0]; 4370 } 4371 } else { 4372 // The simplification queries below may return the original value. Consider: 4373 // %div = udiv i32 %arg, %arg2 4374 // %mul = mul nsw i32 %div, %arg2 4375 // %cmp = icmp eq i32 %mul, %arg 4376 // %sel = select i1 %cmp, i32 %div, i32 undef 4377 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which 4378 // simplifies back to %arg. This can only happen because %mul does not 4379 // dominate %div. To ensure a consistent return value contract, we make sure 4380 // that this case returns nullptr as well. 4381 auto PreventSelfSimplify = [V](Value *Simplified) { 4382 return Simplified != V ? Simplified : nullptr; 4383 }; 4384 4385 return PreventSelfSimplify( 4386 ::simplifyInstructionWithOperands(I, NewOps, Q, MaxRecurse)); 4387 } 4388 4389 // If all operands are constant after substituting Op for RepOp then we can 4390 // constant fold the instruction. 4391 SmallVector<Constant *, 8> ConstOps; 4392 for (Value *NewOp : NewOps) { 4393 if (Constant *ConstOp = dyn_cast<Constant>(NewOp)) 4394 ConstOps.push_back(ConstOp); 4395 else 4396 return nullptr; 4397 } 4398 4399 // Consider: 4400 // %cmp = icmp eq i32 %x, 2147483647 4401 // %add = add nsw i32 %x, 1 4402 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 4403 // 4404 // We can't replace %sel with %add unless we strip away the flags (which 4405 // will be done in InstCombine). 4406 // TODO: This may be unsound, because it only catches some forms of 4407 // refinement. 4408 if (!AllowRefinement) { 4409 if (canCreatePoison(cast<Operator>(I), !DropFlags)) { 4410 // abs cannot create poison if the value is known to never be int_min. 4411 if (auto *II = dyn_cast<IntrinsicInst>(I); 4412 II && II->getIntrinsicID() == Intrinsic::abs) { 4413 if (!ConstOps[0]->isNotMinSignedValue()) 4414 return nullptr; 4415 } else 4416 return nullptr; 4417 } 4418 Constant *Res = ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 4419 if (DropFlags && Res && I->hasPoisonGeneratingFlagsOrMetadata()) 4420 DropFlags->push_back(I); 4421 return Res; 4422 } 4423 4424 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 4425 } 4426 4427 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4428 const SimplifyQuery &Q, 4429 bool AllowRefinement, 4430 SmallVectorImpl<Instruction *> *DropFlags) { 4431 return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, DropFlags, 4432 RecursionLimit); 4433 } 4434 4435 /// Try to simplify a select instruction when its condition operand is an 4436 /// integer comparison where one operand of the compare is a constant. 4437 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 4438 const APInt *Y, bool TrueWhenUnset) { 4439 const APInt *C; 4440 4441 // (X & Y) == 0 ? X & ~Y : X --> X 4442 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 4443 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 4444 *Y == ~*C) 4445 return TrueWhenUnset ? FalseVal : TrueVal; 4446 4447 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 4448 // (X & Y) != 0 ? X : X & ~Y --> X 4449 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 4450 *Y == ~*C) 4451 return TrueWhenUnset ? FalseVal : TrueVal; 4452 4453 if (Y->isPowerOf2()) { 4454 // (X & Y) == 0 ? X | Y : X --> X | Y 4455 // (X & Y) != 0 ? X | Y : X --> X 4456 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 4457 *Y == *C) { 4458 // We can't return the or if it has the disjoint flag. 4459 if (TrueWhenUnset && cast<PossiblyDisjointInst>(TrueVal)->isDisjoint()) 4460 return nullptr; 4461 return TrueWhenUnset ? TrueVal : FalseVal; 4462 } 4463 4464 // (X & Y) == 0 ? X : X | Y --> X 4465 // (X & Y) != 0 ? X : X | Y --> X | Y 4466 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 4467 *Y == *C) { 4468 // We can't return the or if it has the disjoint flag. 4469 if (!TrueWhenUnset && cast<PossiblyDisjointInst>(FalseVal)->isDisjoint()) 4470 return nullptr; 4471 return TrueWhenUnset ? TrueVal : FalseVal; 4472 } 4473 } 4474 4475 return nullptr; 4476 } 4477 4478 static Value *simplifyCmpSelOfMaxMin(Value *CmpLHS, Value *CmpRHS, 4479 ICmpInst::Predicate Pred, Value *TVal, 4480 Value *FVal) { 4481 // Canonicalize common cmp+sel operand as CmpLHS. 4482 if (CmpRHS == TVal || CmpRHS == FVal) { 4483 std::swap(CmpLHS, CmpRHS); 4484 Pred = ICmpInst::getSwappedPredicate(Pred); 4485 } 4486 4487 // Canonicalize common cmp+sel operand as TVal. 4488 if (CmpLHS == FVal) { 4489 std::swap(TVal, FVal); 4490 Pred = ICmpInst::getInversePredicate(Pred); 4491 } 4492 4493 // A vector select may be shuffling together elements that are equivalent 4494 // based on the max/min/select relationship. 4495 Value *X = CmpLHS, *Y = CmpRHS; 4496 bool PeekedThroughSelectShuffle = false; 4497 auto *Shuf = dyn_cast<ShuffleVectorInst>(FVal); 4498 if (Shuf && Shuf->isSelect()) { 4499 if (Shuf->getOperand(0) == Y) 4500 FVal = Shuf->getOperand(1); 4501 else if (Shuf->getOperand(1) == Y) 4502 FVal = Shuf->getOperand(0); 4503 else 4504 return nullptr; 4505 PeekedThroughSelectShuffle = true; 4506 } 4507 4508 // (X pred Y) ? X : max/min(X, Y) 4509 auto *MMI = dyn_cast<MinMaxIntrinsic>(FVal); 4510 if (!MMI || TVal != X || 4511 !match(FVal, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) 4512 return nullptr; 4513 4514 // (X > Y) ? X : max(X, Y) --> max(X, Y) 4515 // (X >= Y) ? X : max(X, Y) --> max(X, Y) 4516 // (X < Y) ? X : min(X, Y) --> min(X, Y) 4517 // (X <= Y) ? X : min(X, Y) --> min(X, Y) 4518 // 4519 // The equivalence allows a vector select (shuffle) of max/min and Y. Ex: 4520 // (X > Y) ? X : (Z ? max(X, Y) : Y) 4521 // If Z is true, this reduces as above, and if Z is false: 4522 // (X > Y) ? X : Y --> max(X, Y) 4523 ICmpInst::Predicate MMPred = MMI->getPredicate(); 4524 if (MMPred == CmpInst::getStrictPredicate(Pred)) 4525 return MMI; 4526 4527 // Other transforms are not valid with a shuffle. 4528 if (PeekedThroughSelectShuffle) 4529 return nullptr; 4530 4531 // (X == Y) ? X : max/min(X, Y) --> max/min(X, Y) 4532 if (Pred == CmpInst::ICMP_EQ) 4533 return MMI; 4534 4535 // (X != Y) ? X : max/min(X, Y) --> X 4536 if (Pred == CmpInst::ICMP_NE) 4537 return X; 4538 4539 // (X < Y) ? X : max(X, Y) --> X 4540 // (X <= Y) ? X : max(X, Y) --> X 4541 // (X > Y) ? X : min(X, Y) --> X 4542 // (X >= Y) ? X : min(X, Y) --> X 4543 ICmpInst::Predicate InvPred = CmpInst::getInversePredicate(Pred); 4544 if (MMPred == CmpInst::getStrictPredicate(InvPred)) 4545 return X; 4546 4547 return nullptr; 4548 } 4549 4550 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 4551 /// eq/ne. 4552 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 4553 ICmpInst::Predicate Pred, 4554 Value *TrueVal, Value *FalseVal) { 4555 Value *X; 4556 APInt Mask; 4557 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 4558 return nullptr; 4559 4560 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 4561 Pred == ICmpInst::ICMP_EQ); 4562 } 4563 4564 /// Try to simplify a select instruction when its condition operand is an 4565 /// integer equality comparison. 4566 static Value *simplifySelectWithICmpEq(Value *CmpLHS, Value *CmpRHS, 4567 Value *TrueVal, Value *FalseVal, 4568 const SimplifyQuery &Q, 4569 unsigned MaxRecurse) { 4570 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, 4571 /* AllowRefinement */ false, 4572 /* DropFlags */ nullptr, MaxRecurse) == TrueVal) 4573 return FalseVal; 4574 if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4575 /* AllowRefinement */ true, 4576 /* DropFlags */ nullptr, MaxRecurse) == FalseVal) 4577 return FalseVal; 4578 4579 return nullptr; 4580 } 4581 4582 /// Try to simplify a select instruction when its condition operand is an 4583 /// integer comparison. 4584 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 4585 Value *FalseVal, 4586 const SimplifyQuery &Q, 4587 unsigned MaxRecurse) { 4588 ICmpInst::Predicate Pred; 4589 Value *CmpLHS, *CmpRHS; 4590 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 4591 return nullptr; 4592 4593 if (Value *V = simplifyCmpSelOfMaxMin(CmpLHS, CmpRHS, Pred, TrueVal, FalseVal)) 4594 return V; 4595 4596 // Canonicalize ne to eq predicate. 4597 if (Pred == ICmpInst::ICMP_NE) { 4598 Pred = ICmpInst::ICMP_EQ; 4599 std::swap(TrueVal, FalseVal); 4600 } 4601 4602 // Check for integer min/max with a limit constant: 4603 // X > MIN_INT ? X : MIN_INT --> X 4604 // X < MAX_INT ? X : MAX_INT --> X 4605 if (TrueVal->getType()->isIntOrIntVectorTy()) { 4606 Value *X, *Y; 4607 SelectPatternFlavor SPF = 4608 matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal, 4609 X, Y) 4610 .Flavor; 4611 if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) { 4612 APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF), 4613 X->getType()->getScalarSizeInBits()); 4614 if (match(Y, m_SpecificInt(LimitC))) 4615 return X; 4616 } 4617 } 4618 4619 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 4620 Value *X; 4621 const APInt *Y; 4622 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 4623 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 4624 /*TrueWhenUnset=*/true)) 4625 return V; 4626 4627 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 4628 Value *ShAmt; 4629 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), 4630 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); 4631 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 4632 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 4633 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 4634 return X; 4635 4636 // Test for a zero-shift-guard-op around rotates. These are used to 4637 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4638 // intrinsics do not have that problem. 4639 // We do not allow this transform for the general funnel shift case because 4640 // that would not preserve the poison safety of the original code. 4641 auto isRotate = 4642 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), 4643 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); 4644 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4645 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4646 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4647 Pred == ICmpInst::ICMP_EQ) 4648 return FalseVal; 4649 4650 // X == 0 ? abs(X) : -abs(X) --> -abs(X) 4651 // X == 0 ? -abs(X) : abs(X) --> abs(X) 4652 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) && 4653 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))) 4654 return FalseVal; 4655 if (match(TrueVal, 4656 m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) && 4657 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) 4658 return FalseVal; 4659 } 4660 4661 // Check for other compares that behave like bit test. 4662 if (Value *V = 4663 simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, TrueVal, FalseVal)) 4664 return V; 4665 4666 // If we have a scalar equality comparison, then we know the value in one of 4667 // the arms of the select. See if substituting this value into the arm and 4668 // simplifying the result yields the same value as the other arm. 4669 if (Pred == ICmpInst::ICMP_EQ) { 4670 if (Value *V = simplifySelectWithICmpEq(CmpLHS, CmpRHS, TrueVal, FalseVal, 4671 Q, MaxRecurse)) 4672 return V; 4673 if (Value *V = simplifySelectWithICmpEq(CmpRHS, CmpLHS, TrueVal, FalseVal, 4674 Q, MaxRecurse)) 4675 return V; 4676 4677 Value *X; 4678 Value *Y; 4679 // select((X | Y) == 0 ? X : 0) --> 0 (commuted 2 ways) 4680 if (match(CmpLHS, m_Or(m_Value(X), m_Value(Y))) && 4681 match(CmpRHS, m_Zero())) { 4682 // (X | Y) == 0 implies X == 0 and Y == 0. 4683 if (Value *V = simplifySelectWithICmpEq(X, CmpRHS, TrueVal, FalseVal, Q, 4684 MaxRecurse)) 4685 return V; 4686 if (Value *V = simplifySelectWithICmpEq(Y, CmpRHS, TrueVal, FalseVal, Q, 4687 MaxRecurse)) 4688 return V; 4689 } 4690 4691 // select((X & Y) == -1 ? X : -1) --> -1 (commuted 2 ways) 4692 if (match(CmpLHS, m_And(m_Value(X), m_Value(Y))) && 4693 match(CmpRHS, m_AllOnes())) { 4694 // (X & Y) == -1 implies X == -1 and Y == -1. 4695 if (Value *V = simplifySelectWithICmpEq(X, CmpRHS, TrueVal, FalseVal, Q, 4696 MaxRecurse)) 4697 return V; 4698 if (Value *V = simplifySelectWithICmpEq(Y, CmpRHS, TrueVal, FalseVal, Q, 4699 MaxRecurse)) 4700 return V; 4701 } 4702 } 4703 4704 return nullptr; 4705 } 4706 4707 /// Try to simplify a select instruction when its condition operand is a 4708 /// floating-point comparison. 4709 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4710 const SimplifyQuery &Q) { 4711 FCmpInst::Predicate Pred; 4712 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4713 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4714 return nullptr; 4715 4716 // This transform is safe if we do not have (do not care about) -0.0 or if 4717 // at least one operand is known to not be -0.0. Otherwise, the select can 4718 // change the sign of a zero operand. 4719 bool HasNoSignedZeros = 4720 Q.CxtI && isa<FPMathOperator>(Q.CxtI) && Q.CxtI->hasNoSignedZeros(); 4721 const APFloat *C; 4722 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4723 (match(F, m_APFloat(C)) && C->isNonZero())) { 4724 // (T == F) ? T : F --> F 4725 // (F == T) ? T : F --> F 4726 if (Pred == FCmpInst::FCMP_OEQ) 4727 return F; 4728 4729 // (T != F) ? T : F --> T 4730 // (F != T) ? T : F --> T 4731 if (Pred == FCmpInst::FCMP_UNE) 4732 return T; 4733 } 4734 4735 return nullptr; 4736 } 4737 4738 /// Given operands for a SelectInst, see if we can fold the result. 4739 /// If not, this returns null. 4740 static Value *simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4741 const SimplifyQuery &Q, unsigned MaxRecurse) { 4742 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4743 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4744 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4745 if (Constant *C = ConstantFoldSelectInstruction(CondC, TrueC, FalseC)) 4746 return C; 4747 4748 // select poison, X, Y -> poison 4749 if (isa<PoisonValue>(CondC)) 4750 return PoisonValue::get(TrueVal->getType()); 4751 4752 // select undef, X, Y -> X or Y 4753 if (Q.isUndefValue(CondC)) 4754 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4755 4756 // select true, X, Y --> X 4757 // select false, X, Y --> Y 4758 // For vectors, allow undef/poison elements in the condition to match the 4759 // defined elements, so we can eliminate the select. 4760 if (match(CondC, m_One())) 4761 return TrueVal; 4762 if (match(CondC, m_Zero())) 4763 return FalseVal; 4764 } 4765 4766 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4767 "Select must have bool or bool vector condition"); 4768 assert(TrueVal->getType() == FalseVal->getType() && 4769 "Select must have same types for true/false ops"); 4770 4771 if (Cond->getType() == TrueVal->getType()) { 4772 // select i1 Cond, i1 true, i1 false --> i1 Cond 4773 if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4774 return Cond; 4775 4776 // (X && Y) ? X : Y --> Y (commuted 2 ways) 4777 if (match(Cond, m_c_LogicalAnd(m_Specific(TrueVal), m_Specific(FalseVal)))) 4778 return FalseVal; 4779 4780 // (X || Y) ? X : Y --> X (commuted 2 ways) 4781 if (match(Cond, m_c_LogicalOr(m_Specific(TrueVal), m_Specific(FalseVal)))) 4782 return TrueVal; 4783 4784 // (X || Y) ? false : X --> false (commuted 2 ways) 4785 if (match(Cond, m_c_LogicalOr(m_Specific(FalseVal), m_Value())) && 4786 match(TrueVal, m_ZeroInt())) 4787 return ConstantInt::getFalse(Cond->getType()); 4788 4789 // Match patterns that end in logical-and. 4790 if (match(FalseVal, m_ZeroInt())) { 4791 // !(X || Y) && X --> false (commuted 2 ways) 4792 if (match(Cond, m_Not(m_c_LogicalOr(m_Specific(TrueVal), m_Value())))) 4793 return ConstantInt::getFalse(Cond->getType()); 4794 // X && !(X || Y) --> false (commuted 2 ways) 4795 if (match(TrueVal, m_Not(m_c_LogicalOr(m_Specific(Cond), m_Value())))) 4796 return ConstantInt::getFalse(Cond->getType()); 4797 4798 // (X || Y) && Y --> Y (commuted 2 ways) 4799 if (match(Cond, m_c_LogicalOr(m_Specific(TrueVal), m_Value()))) 4800 return TrueVal; 4801 // Y && (X || Y) --> Y (commuted 2 ways) 4802 if (match(TrueVal, m_c_LogicalOr(m_Specific(Cond), m_Value()))) 4803 return Cond; 4804 4805 // (X || Y) && (X || !Y) --> X (commuted 8 ways) 4806 Value *X, *Y; 4807 if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4808 match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4809 return X; 4810 if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4811 match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4812 return X; 4813 } 4814 4815 // Match patterns that end in logical-or. 4816 if (match(TrueVal, m_One())) { 4817 // !(X && Y) || X --> true (commuted 2 ways) 4818 if (match(Cond, m_Not(m_c_LogicalAnd(m_Specific(FalseVal), m_Value())))) 4819 return ConstantInt::getTrue(Cond->getType()); 4820 // X || !(X && Y) --> true (commuted 2 ways) 4821 if (match(FalseVal, m_Not(m_c_LogicalAnd(m_Specific(Cond), m_Value())))) 4822 return ConstantInt::getTrue(Cond->getType()); 4823 4824 // (X && Y) || Y --> Y (commuted 2 ways) 4825 if (match(Cond, m_c_LogicalAnd(m_Specific(FalseVal), m_Value()))) 4826 return FalseVal; 4827 // Y || (X && Y) --> Y (commuted 2 ways) 4828 if (match(FalseVal, m_c_LogicalAnd(m_Specific(Cond), m_Value()))) 4829 return Cond; 4830 } 4831 } 4832 4833 // select ?, X, X -> X 4834 if (TrueVal == FalseVal) 4835 return TrueVal; 4836 4837 if (Cond == TrueVal) { 4838 // select i1 X, i1 X, i1 false --> X (logical-and) 4839 if (match(FalseVal, m_ZeroInt())) 4840 return Cond; 4841 // select i1 X, i1 X, i1 true --> true 4842 if (match(FalseVal, m_One())) 4843 return ConstantInt::getTrue(Cond->getType()); 4844 } 4845 if (Cond == FalseVal) { 4846 // select i1 X, i1 true, i1 X --> X (logical-or) 4847 if (match(TrueVal, m_One())) 4848 return Cond; 4849 // select i1 X, i1 false, i1 X --> false 4850 if (match(TrueVal, m_ZeroInt())) 4851 return ConstantInt::getFalse(Cond->getType()); 4852 } 4853 4854 // If the true or false value is poison, we can fold to the other value. 4855 // If the true or false value is undef, we can fold to the other value as 4856 // long as the other value isn't poison. 4857 // select ?, poison, X -> X 4858 // select ?, undef, X -> X 4859 if (isa<PoisonValue>(TrueVal) || 4860 (Q.isUndefValue(TrueVal) && 4861 isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT))) 4862 return FalseVal; 4863 // select ?, X, poison -> X 4864 // select ?, X, undef -> X 4865 if (isa<PoisonValue>(FalseVal) || 4866 (Q.isUndefValue(FalseVal) && 4867 isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT))) 4868 return TrueVal; 4869 4870 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4871 Constant *TrueC, *FalseC; 4872 if (isa<FixedVectorType>(TrueVal->getType()) && 4873 match(TrueVal, m_Constant(TrueC)) && 4874 match(FalseVal, m_Constant(FalseC))) { 4875 unsigned NumElts = 4876 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4877 SmallVector<Constant *, 16> NewC; 4878 for (unsigned i = 0; i != NumElts; ++i) { 4879 // Bail out on incomplete vector constants. 4880 Constant *TEltC = TrueC->getAggregateElement(i); 4881 Constant *FEltC = FalseC->getAggregateElement(i); 4882 if (!TEltC || !FEltC) 4883 break; 4884 4885 // If the elements match (undef or not), that value is the result. If only 4886 // one element is undef, choose the defined element as the safe result. 4887 if (TEltC == FEltC) 4888 NewC.push_back(TEltC); 4889 else if (isa<PoisonValue>(TEltC) || 4890 (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC))) 4891 NewC.push_back(FEltC); 4892 else if (isa<PoisonValue>(FEltC) || 4893 (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC))) 4894 NewC.push_back(TEltC); 4895 else 4896 break; 4897 } 4898 if (NewC.size() == NumElts) 4899 return ConstantVector::get(NewC); 4900 } 4901 4902 if (Value *V = 4903 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4904 return V; 4905 4906 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4907 return V; 4908 4909 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4910 return V; 4911 4912 std::optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4913 if (Imp) 4914 return *Imp ? TrueVal : FalseVal; 4915 4916 return nullptr; 4917 } 4918 4919 Value *llvm::simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4920 const SimplifyQuery &Q) { 4921 return ::simplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4922 } 4923 4924 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4925 /// If not, this returns null. 4926 static Value *simplifyGEPInst(Type *SrcTy, Value *Ptr, 4927 ArrayRef<Value *> Indices, bool InBounds, 4928 const SimplifyQuery &Q, unsigned) { 4929 // The type of the GEP pointer operand. 4930 unsigned AS = 4931 cast<PointerType>(Ptr->getType()->getScalarType())->getAddressSpace(); 4932 4933 // getelementptr P -> P. 4934 if (Indices.empty()) 4935 return Ptr; 4936 4937 // Compute the (pointer) type returned by the GEP instruction. 4938 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Indices); 4939 Type *GEPTy = Ptr->getType(); 4940 if (!GEPTy->isVectorTy()) { 4941 for (Value *Op : Indices) { 4942 // If one of the operands is a vector, the result type is a vector of 4943 // pointers. All vector operands must have the same number of elements. 4944 if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) { 4945 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4946 break; 4947 } 4948 } 4949 } 4950 4951 // All-zero GEP is a no-op, unless it performs a vector splat. 4952 if (Ptr->getType() == GEPTy && 4953 all_of(Indices, [](const auto *V) { return match(V, m_Zero()); })) 4954 return Ptr; 4955 4956 // getelementptr poison, idx -> poison 4957 // getelementptr baseptr, poison -> poison 4958 if (isa<PoisonValue>(Ptr) || 4959 any_of(Indices, [](const auto *V) { return isa<PoisonValue>(V); })) 4960 return PoisonValue::get(GEPTy); 4961 4962 // getelementptr undef, idx -> undef 4963 if (Q.isUndefValue(Ptr)) 4964 return UndefValue::get(GEPTy); 4965 4966 bool IsScalableVec = 4967 SrcTy->isScalableTy() || any_of(Indices, [](const Value *V) { 4968 return isa<ScalableVectorType>(V->getType()); 4969 }); 4970 4971 if (Indices.size() == 1) { 4972 Type *Ty = SrcTy; 4973 if (!IsScalableVec && Ty->isSized()) { 4974 Value *P; 4975 uint64_t C; 4976 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4977 // getelementptr P, N -> P if P points to a type of zero size. 4978 if (TyAllocSize == 0 && Ptr->getType() == GEPTy) 4979 return Ptr; 4980 4981 // The following transforms are only safe if the ptrtoint cast 4982 // doesn't truncate the pointers. 4983 if (Indices[0]->getType()->getScalarSizeInBits() == 4984 Q.DL.getPointerSizeInBits(AS)) { 4985 auto CanSimplify = [GEPTy, &P, Ptr]() -> bool { 4986 return P->getType() == GEPTy && 4987 getUnderlyingObject(P) == getUnderlyingObject(Ptr); 4988 }; 4989 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4990 if (TyAllocSize == 1 && 4991 match(Indices[0], 4992 m_Sub(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Specific(Ptr)))) && 4993 CanSimplify()) 4994 return P; 4995 4996 // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of 4997 // size 1 << C. 4998 if (match(Indices[0], m_AShr(m_Sub(m_PtrToInt(m_Value(P)), 4999 m_PtrToInt(m_Specific(Ptr))), 5000 m_ConstantInt(C))) && 5001 TyAllocSize == 1ULL << C && CanSimplify()) 5002 return P; 5003 5004 // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of 5005 // size C. 5006 if (match(Indices[0], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)), 5007 m_PtrToInt(m_Specific(Ptr))), 5008 m_SpecificInt(TyAllocSize))) && 5009 CanSimplify()) 5010 return P; 5011 } 5012 } 5013 } 5014 5015 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 5016 all_of(Indices.drop_back(1), 5017 [](Value *Idx) { return match(Idx, m_Zero()); })) { 5018 unsigned IdxWidth = 5019 Q.DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()); 5020 if (Q.DL.getTypeSizeInBits(Indices.back()->getType()) == IdxWidth) { 5021 APInt BasePtrOffset(IdxWidth, 0); 5022 Value *StrippedBasePtr = 5023 Ptr->stripAndAccumulateInBoundsConstantOffsets(Q.DL, BasePtrOffset); 5024 5025 // Avoid creating inttoptr of zero here: While LLVMs treatment of 5026 // inttoptr is generally conservative, this particular case is folded to 5027 // a null pointer, which will have incorrect provenance. 5028 5029 // gep (gep V, C), (sub 0, V) -> C 5030 if (match(Indices.back(), 5031 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) && 5032 !BasePtrOffset.isZero()) { 5033 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 5034 return ConstantExpr::getIntToPtr(CI, GEPTy); 5035 } 5036 // gep (gep V, C), (xor V, -1) -> C-1 5037 if (match(Indices.back(), 5038 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) && 5039 !BasePtrOffset.isOne()) { 5040 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 5041 return ConstantExpr::getIntToPtr(CI, GEPTy); 5042 } 5043 } 5044 } 5045 5046 // Check to see if this is constant foldable. 5047 if (!isa<Constant>(Ptr) || 5048 !all_of(Indices, [](Value *V) { return isa<Constant>(V); })) 5049 return nullptr; 5050 5051 if (!ConstantExpr::isSupportedGetElementPtr(SrcTy)) 5052 return ConstantFoldGetElementPtr(SrcTy, cast<Constant>(Ptr), InBounds, 5053 std::nullopt, Indices); 5054 5055 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ptr), Indices, 5056 InBounds); 5057 return ConstantFoldConstant(CE, Q.DL); 5058 } 5059 5060 Value *llvm::simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef<Value *> Indices, 5061 bool InBounds, const SimplifyQuery &Q) { 5062 return ::simplifyGEPInst(SrcTy, Ptr, Indices, InBounds, Q, RecursionLimit); 5063 } 5064 5065 /// Given operands for an InsertValueInst, see if we can fold the result. 5066 /// If not, this returns null. 5067 static Value *simplifyInsertValueInst(Value *Agg, Value *Val, 5068 ArrayRef<unsigned> Idxs, 5069 const SimplifyQuery &Q, unsigned) { 5070 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 5071 if (Constant *CVal = dyn_cast<Constant>(Val)) 5072 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 5073 5074 // insertvalue x, poison, n -> x 5075 // insertvalue x, undef, n -> x if x cannot be poison 5076 if (isa<PoisonValue>(Val) || 5077 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Agg))) 5078 return Agg; 5079 5080 // insertvalue x, (extractvalue y, n), n 5081 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 5082 if (EV->getAggregateOperand()->getType() == Agg->getType() && 5083 EV->getIndices() == Idxs) { 5084 // insertvalue poison, (extractvalue y, n), n -> y 5085 // insertvalue undef, (extractvalue y, n), n -> y if y cannot be poison 5086 if (isa<PoisonValue>(Agg) || 5087 (Q.isUndefValue(Agg) && 5088 isGuaranteedNotToBePoison(EV->getAggregateOperand()))) 5089 return EV->getAggregateOperand(); 5090 5091 // insertvalue y, (extractvalue y, n), n -> y 5092 if (Agg == EV->getAggregateOperand()) 5093 return Agg; 5094 } 5095 5096 return nullptr; 5097 } 5098 5099 Value *llvm::simplifyInsertValueInst(Value *Agg, Value *Val, 5100 ArrayRef<unsigned> Idxs, 5101 const SimplifyQuery &Q) { 5102 return ::simplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 5103 } 5104 5105 Value *llvm::simplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 5106 const SimplifyQuery &Q) { 5107 // Try to constant fold. 5108 auto *VecC = dyn_cast<Constant>(Vec); 5109 auto *ValC = dyn_cast<Constant>(Val); 5110 auto *IdxC = dyn_cast<Constant>(Idx); 5111 if (VecC && ValC && IdxC) 5112 return ConstantExpr::getInsertElement(VecC, ValC, IdxC); 5113 5114 // For fixed-length vector, fold into poison if index is out of bounds. 5115 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 5116 if (isa<FixedVectorType>(Vec->getType()) && 5117 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 5118 return PoisonValue::get(Vec->getType()); 5119 } 5120 5121 // If index is undef, it might be out of bounds (see above case) 5122 if (Q.isUndefValue(Idx)) 5123 return PoisonValue::get(Vec->getType()); 5124 5125 // If the scalar is poison, or it is undef and there is no risk of 5126 // propagating poison from the vector value, simplify to the vector value. 5127 if (isa<PoisonValue>(Val) || 5128 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec))) 5129 return Vec; 5130 5131 // If we are extracting a value from a vector, then inserting it into the same 5132 // place, that's the input vector: 5133 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 5134 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 5135 return Vec; 5136 5137 return nullptr; 5138 } 5139 5140 /// Given operands for an ExtractValueInst, see if we can fold the result. 5141 /// If not, this returns null. 5142 static Value *simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 5143 const SimplifyQuery &, unsigned) { 5144 if (auto *CAgg = dyn_cast<Constant>(Agg)) 5145 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 5146 5147 // extractvalue x, (insertvalue y, elt, n), n -> elt 5148 unsigned NumIdxs = Idxs.size(); 5149 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 5150 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 5151 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 5152 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 5153 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 5154 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 5155 Idxs.slice(0, NumCommonIdxs)) { 5156 if (NumIdxs == NumInsertValueIdxs) 5157 return IVI->getInsertedValueOperand(); 5158 break; 5159 } 5160 } 5161 5162 return nullptr; 5163 } 5164 5165 Value *llvm::simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 5166 const SimplifyQuery &Q) { 5167 return ::simplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 5168 } 5169 5170 /// Given operands for an ExtractElementInst, see if we can fold the result. 5171 /// If not, this returns null. 5172 static Value *simplifyExtractElementInst(Value *Vec, Value *Idx, 5173 const SimplifyQuery &Q, unsigned) { 5174 auto *VecVTy = cast<VectorType>(Vec->getType()); 5175 if (auto *CVec = dyn_cast<Constant>(Vec)) { 5176 if (auto *CIdx = dyn_cast<Constant>(Idx)) 5177 return ConstantExpr::getExtractElement(CVec, CIdx); 5178 5179 if (Q.isUndefValue(Vec)) 5180 return UndefValue::get(VecVTy->getElementType()); 5181 } 5182 5183 // An undef extract index can be arbitrarily chosen to be an out-of-range 5184 // index value, which would result in the instruction being poison. 5185 if (Q.isUndefValue(Idx)) 5186 return PoisonValue::get(VecVTy->getElementType()); 5187 5188 // If extracting a specified index from the vector, see if we can recursively 5189 // find a previously computed scalar that was inserted into the vector. 5190 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 5191 // For fixed-length vector, fold into undef if index is out of bounds. 5192 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue(); 5193 if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts)) 5194 return PoisonValue::get(VecVTy->getElementType()); 5195 // Handle case where an element is extracted from a splat. 5196 if (IdxC->getValue().ult(MinNumElts)) 5197 if (auto *Splat = getSplatValue(Vec)) 5198 return Splat; 5199 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 5200 return Elt; 5201 } else { 5202 // extractelt x, (insertelt y, elt, n), n -> elt 5203 // If the possibly-variable indices are trivially known to be equal 5204 // (because they are the same operand) then use the value that was 5205 // inserted directly. 5206 auto *IE = dyn_cast<InsertElementInst>(Vec); 5207 if (IE && IE->getOperand(2) == Idx) 5208 return IE->getOperand(1); 5209 5210 // The index is not relevant if our vector is a splat. 5211 if (Value *Splat = getSplatValue(Vec)) 5212 return Splat; 5213 } 5214 return nullptr; 5215 } 5216 5217 Value *llvm::simplifyExtractElementInst(Value *Vec, Value *Idx, 5218 const SimplifyQuery &Q) { 5219 return ::simplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 5220 } 5221 5222 /// See if we can fold the given phi. If not, returns null. 5223 static Value *simplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues, 5224 const SimplifyQuery &Q) { 5225 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE 5226 // here, because the PHI we may succeed simplifying to was not 5227 // def-reachable from the original PHI! 5228 5229 // If all of the PHI's incoming values are the same then replace the PHI node 5230 // with the common value. 5231 Value *CommonValue = nullptr; 5232 bool HasUndefInput = false; 5233 for (Value *Incoming : IncomingValues) { 5234 // If the incoming value is the phi node itself, it can safely be skipped. 5235 if (Incoming == PN) 5236 continue; 5237 if (Q.isUndefValue(Incoming)) { 5238 // Remember that we saw an undef value, but otherwise ignore them. 5239 HasUndefInput = true; 5240 continue; 5241 } 5242 if (CommonValue && Incoming != CommonValue) 5243 return nullptr; // Not the same, bail out. 5244 CommonValue = Incoming; 5245 } 5246 5247 // If CommonValue is null then all of the incoming values were either undef or 5248 // equal to the phi node itself. 5249 if (!CommonValue) 5250 return UndefValue::get(PN->getType()); 5251 5252 if (HasUndefInput) { 5253 // If we have a PHI node like phi(X, undef, X), where X is defined by some 5254 // instruction, we cannot return X as the result of the PHI node unless it 5255 // dominates the PHI block. 5256 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 5257 } 5258 5259 return CommonValue; 5260 } 5261 5262 static Value *simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 5263 const SimplifyQuery &Q, unsigned MaxRecurse) { 5264 if (auto *C = dyn_cast<Constant>(Op)) 5265 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 5266 5267 if (auto *CI = dyn_cast<CastInst>(Op)) { 5268 auto *Src = CI->getOperand(0); 5269 Type *SrcTy = Src->getType(); 5270 Type *MidTy = CI->getType(); 5271 Type *DstTy = Ty; 5272 if (Src->getType() == Ty) { 5273 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 5274 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 5275 Type *SrcIntPtrTy = 5276 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 5277 Type *MidIntPtrTy = 5278 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 5279 Type *DstIntPtrTy = 5280 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 5281 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 5282 SrcIntPtrTy, MidIntPtrTy, 5283 DstIntPtrTy) == Instruction::BitCast) 5284 return Src; 5285 } 5286 } 5287 5288 // bitcast x -> x 5289 if (CastOpc == Instruction::BitCast) 5290 if (Op->getType() == Ty) 5291 return Op; 5292 5293 return nullptr; 5294 } 5295 5296 Value *llvm::simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 5297 const SimplifyQuery &Q) { 5298 return ::simplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 5299 } 5300 5301 /// For the given destination element of a shuffle, peek through shuffles to 5302 /// match a root vector source operand that contains that element in the same 5303 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 5304 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 5305 int MaskVal, Value *RootVec, 5306 unsigned MaxRecurse) { 5307 if (!MaxRecurse--) 5308 return nullptr; 5309 5310 // Bail out if any mask value is undefined. That kind of shuffle may be 5311 // simplified further based on demanded bits or other folds. 5312 if (MaskVal == -1) 5313 return nullptr; 5314 5315 // The mask value chooses which source operand we need to look at next. 5316 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 5317 int RootElt = MaskVal; 5318 Value *SourceOp = Op0; 5319 if (MaskVal >= InVecNumElts) { 5320 RootElt = MaskVal - InVecNumElts; 5321 SourceOp = Op1; 5322 } 5323 5324 // If the source operand is a shuffle itself, look through it to find the 5325 // matching root vector. 5326 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 5327 return foldIdentityShuffles( 5328 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 5329 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 5330 } 5331 5332 // TODO: Look through bitcasts? What if the bitcast changes the vector element 5333 // size? 5334 5335 // The source operand is not a shuffle. Initialize the root vector value for 5336 // this shuffle if that has not been done yet. 5337 if (!RootVec) 5338 RootVec = SourceOp; 5339 5340 // Give up as soon as a source operand does not match the existing root value. 5341 if (RootVec != SourceOp) 5342 return nullptr; 5343 5344 // The element must be coming from the same lane in the source vector 5345 // (although it may have crossed lanes in intermediate shuffles). 5346 if (RootElt != DestElt) 5347 return nullptr; 5348 5349 return RootVec; 5350 } 5351 5352 static Value *simplifyShuffleVectorInst(Value *Op0, Value *Op1, 5353 ArrayRef<int> Mask, Type *RetTy, 5354 const SimplifyQuery &Q, 5355 unsigned MaxRecurse) { 5356 if (all_of(Mask, [](int Elem) { return Elem == PoisonMaskElem; })) 5357 return PoisonValue::get(RetTy); 5358 5359 auto *InVecTy = cast<VectorType>(Op0->getType()); 5360 unsigned MaskNumElts = Mask.size(); 5361 ElementCount InVecEltCount = InVecTy->getElementCount(); 5362 5363 bool Scalable = InVecEltCount.isScalable(); 5364 5365 SmallVector<int, 32> Indices; 5366 Indices.assign(Mask.begin(), Mask.end()); 5367 5368 // Canonicalization: If mask does not select elements from an input vector, 5369 // replace that input vector with poison. 5370 if (!Scalable) { 5371 bool MaskSelects0 = false, MaskSelects1 = false; 5372 unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); 5373 for (unsigned i = 0; i != MaskNumElts; ++i) { 5374 if (Indices[i] == -1) 5375 continue; 5376 if ((unsigned)Indices[i] < InVecNumElts) 5377 MaskSelects0 = true; 5378 else 5379 MaskSelects1 = true; 5380 } 5381 if (!MaskSelects0) 5382 Op0 = PoisonValue::get(InVecTy); 5383 if (!MaskSelects1) 5384 Op1 = PoisonValue::get(InVecTy); 5385 } 5386 5387 auto *Op0Const = dyn_cast<Constant>(Op0); 5388 auto *Op1Const = dyn_cast<Constant>(Op1); 5389 5390 // If all operands are constant, constant fold the shuffle. This 5391 // transformation depends on the value of the mask which is not known at 5392 // compile time for scalable vectors 5393 if (Op0Const && Op1Const) 5394 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); 5395 5396 // Canonicalization: if only one input vector is constant, it shall be the 5397 // second one. This transformation depends on the value of the mask which 5398 // is not known at compile time for scalable vectors 5399 if (!Scalable && Op0Const && !Op1Const) { 5400 std::swap(Op0, Op1); 5401 ShuffleVectorInst::commuteShuffleMask(Indices, 5402 InVecEltCount.getKnownMinValue()); 5403 } 5404 5405 // A splat of an inserted scalar constant becomes a vector constant: 5406 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 5407 // NOTE: We may have commuted above, so analyze the updated Indices, not the 5408 // original mask constant. 5409 // NOTE: This transformation depends on the value of the mask which is not 5410 // known at compile time for scalable vectors 5411 Constant *C; 5412 ConstantInt *IndexC; 5413 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 5414 m_ConstantInt(IndexC)))) { 5415 // Match a splat shuffle mask of the insert index allowing undef elements. 5416 int InsertIndex = IndexC->getZExtValue(); 5417 if (all_of(Indices, [InsertIndex](int MaskElt) { 5418 return MaskElt == InsertIndex || MaskElt == -1; 5419 })) { 5420 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 5421 5422 // Shuffle mask poisons become poison constant result elements. 5423 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 5424 for (unsigned i = 0; i != MaskNumElts; ++i) 5425 if (Indices[i] == -1) 5426 VecC[i] = PoisonValue::get(C->getType()); 5427 return ConstantVector::get(VecC); 5428 } 5429 } 5430 5431 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 5432 // value type is same as the input vectors' type. 5433 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 5434 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 5435 all_equal(OpShuf->getShuffleMask())) 5436 return Op0; 5437 5438 // All remaining transformation depend on the value of the mask, which is 5439 // not known at compile time for scalable vectors. 5440 if (Scalable) 5441 return nullptr; 5442 5443 // Don't fold a shuffle with undef mask elements. This may get folded in a 5444 // better way using demanded bits or other analysis. 5445 // TODO: Should we allow this? 5446 if (is_contained(Indices, -1)) 5447 return nullptr; 5448 5449 // Check if every element of this shuffle can be mapped back to the 5450 // corresponding element of a single root vector. If so, we don't need this 5451 // shuffle. This handles simple identity shuffles as well as chains of 5452 // shuffles that may widen/narrow and/or move elements across lanes and back. 5453 Value *RootVec = nullptr; 5454 for (unsigned i = 0; i != MaskNumElts; ++i) { 5455 // Note that recursion is limited for each vector element, so if any element 5456 // exceeds the limit, this will fail to simplify. 5457 RootVec = 5458 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 5459 5460 // We can't replace a widening/narrowing shuffle with one of its operands. 5461 if (!RootVec || RootVec->getType() != RetTy) 5462 return nullptr; 5463 } 5464 return RootVec; 5465 } 5466 5467 /// Given operands for a ShuffleVectorInst, fold the result or return null. 5468 Value *llvm::simplifyShuffleVectorInst(Value *Op0, Value *Op1, 5469 ArrayRef<int> Mask, Type *RetTy, 5470 const SimplifyQuery &Q) { 5471 return ::simplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 5472 } 5473 5474 static Constant *foldConstant(Instruction::UnaryOps Opcode, Value *&Op, 5475 const SimplifyQuery &Q) { 5476 if (auto *C = dyn_cast<Constant>(Op)) 5477 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 5478 return nullptr; 5479 } 5480 5481 /// Given the operand for an FNeg, see if we can fold the result. If not, this 5482 /// returns null. 5483 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 5484 const SimplifyQuery &Q, unsigned MaxRecurse) { 5485 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 5486 return C; 5487 5488 Value *X; 5489 // fneg (fneg X) ==> X 5490 if (match(Op, m_FNeg(m_Value(X)))) 5491 return X; 5492 5493 return nullptr; 5494 } 5495 5496 Value *llvm::simplifyFNegInst(Value *Op, FastMathFlags FMF, 5497 const SimplifyQuery &Q) { 5498 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 5499 } 5500 5501 /// Try to propagate existing NaN values when possible. If not, replace the 5502 /// constant or elements in the constant with a canonical NaN. 5503 static Constant *propagateNaN(Constant *In) { 5504 Type *Ty = In->getType(); 5505 if (auto *VecTy = dyn_cast<FixedVectorType>(Ty)) { 5506 unsigned NumElts = VecTy->getNumElements(); 5507 SmallVector<Constant *, 32> NewC(NumElts); 5508 for (unsigned i = 0; i != NumElts; ++i) { 5509 Constant *EltC = In->getAggregateElement(i); 5510 // Poison elements propagate. NaN propagates except signaling is quieted. 5511 // Replace unknown or undef elements with canonical NaN. 5512 if (EltC && isa<PoisonValue>(EltC)) 5513 NewC[i] = EltC; 5514 else if (EltC && EltC->isNaN()) 5515 NewC[i] = ConstantFP::get( 5516 EltC->getType(), cast<ConstantFP>(EltC)->getValue().makeQuiet()); 5517 else 5518 NewC[i] = ConstantFP::getNaN(VecTy->getElementType()); 5519 } 5520 return ConstantVector::get(NewC); 5521 } 5522 5523 // If it is not a fixed vector, but not a simple NaN either, return a 5524 // canonical NaN. 5525 if (!In->isNaN()) 5526 return ConstantFP::getNaN(Ty); 5527 5528 // If we known this is a NaN, and it's scalable vector, we must have a splat 5529 // on our hands. Grab that before splatting a QNaN constant. 5530 if (isa<ScalableVectorType>(Ty)) { 5531 auto *Splat = In->getSplatValue(); 5532 assert(Splat && Splat->isNaN() && 5533 "Found a scalable-vector NaN but not a splat"); 5534 In = Splat; 5535 } 5536 5537 // Propagate an existing QNaN constant. If it is an SNaN, make it quiet, but 5538 // preserve the sign/payload. 5539 return ConstantFP::get(Ty, cast<ConstantFP>(In)->getValue().makeQuiet()); 5540 } 5541 5542 /// Perform folds that are common to any floating-point operation. This implies 5543 /// transforms based on poison/undef/NaN because the operation itself makes no 5544 /// difference to the result. 5545 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF, 5546 const SimplifyQuery &Q, 5547 fp::ExceptionBehavior ExBehavior, 5548 RoundingMode Rounding) { 5549 // Poison is independent of anything else. It always propagates from an 5550 // operand to a math result. 5551 if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); })) 5552 return PoisonValue::get(Ops[0]->getType()); 5553 5554 for (Value *V : Ops) { 5555 bool IsNan = match(V, m_NaN()); 5556 bool IsInf = match(V, m_Inf()); 5557 bool IsUndef = Q.isUndefValue(V); 5558 5559 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 5560 // (an undef operand can be chosen to be Nan/Inf), then the result of 5561 // this operation is poison. 5562 if (FMF.noNaNs() && (IsNan || IsUndef)) 5563 return PoisonValue::get(V->getType()); 5564 if (FMF.noInfs() && (IsInf || IsUndef)) 5565 return PoisonValue::get(V->getType()); 5566 5567 if (isDefaultFPEnvironment(ExBehavior, Rounding)) { 5568 // Undef does not propagate because undef means that all bits can take on 5569 // any value. If this is undef * NaN for example, then the result values 5570 // (at least the exponent bits) are limited. Assume the undef is a 5571 // canonical NaN and propagate that. 5572 if (IsUndef) 5573 return ConstantFP::getNaN(V->getType()); 5574 if (IsNan) 5575 return propagateNaN(cast<Constant>(V)); 5576 } else if (ExBehavior != fp::ebStrict) { 5577 if (IsNan) 5578 return propagateNaN(cast<Constant>(V)); 5579 } 5580 } 5581 return nullptr; 5582 } 5583 5584 /// Given operands for an FAdd, see if we can fold the result. If not, this 5585 /// returns null. 5586 static Value * 5587 simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5588 const SimplifyQuery &Q, unsigned MaxRecurse, 5589 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5590 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5591 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5592 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 5593 return C; 5594 5595 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5596 return C; 5597 5598 // fadd X, -0 ==> X 5599 // With strict/constrained FP, we have these possible edge cases that do 5600 // not simplify to Op0: 5601 // fadd SNaN, -0.0 --> QNaN 5602 // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative) 5603 if (canIgnoreSNaN(ExBehavior, FMF) && 5604 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 5605 FMF.noSignedZeros())) 5606 if (match(Op1, m_NegZeroFP())) 5607 return Op0; 5608 5609 // fadd X, 0 ==> X, when we know X is not -0 5610 if (canIgnoreSNaN(ExBehavior, FMF)) 5611 if (match(Op1, m_PosZeroFP()) && 5612 (FMF.noSignedZeros() || cannotBeNegativeZero(Op0, Q.DL, Q.TLI))) 5613 return Op0; 5614 5615 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5616 return nullptr; 5617 5618 if (FMF.noNaNs()) { 5619 // With nnan: X + {+/-}Inf --> {+/-}Inf 5620 if (match(Op1, m_Inf())) 5621 return Op1; 5622 5623 // With nnan: -X + X --> 0.0 (and commuted variant) 5624 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 5625 // Negative zeros are allowed because we always end up with positive zero: 5626 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5627 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5628 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 5629 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 5630 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 5631 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 5632 return ConstantFP::getZero(Op0->getType()); 5633 5634 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5635 match(Op1, m_FNeg(m_Specific(Op0)))) 5636 return ConstantFP::getZero(Op0->getType()); 5637 } 5638 5639 // (X - Y) + Y --> X 5640 // Y + (X - Y) --> X 5641 Value *X; 5642 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5643 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 5644 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 5645 return X; 5646 5647 return nullptr; 5648 } 5649 5650 /// Given operands for an FSub, see if we can fold the result. If not, this 5651 /// returns null. 5652 static Value * 5653 simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5654 const SimplifyQuery &Q, unsigned MaxRecurse, 5655 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5656 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5657 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5658 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 5659 return C; 5660 5661 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5662 return C; 5663 5664 // fsub X, +0 ==> X 5665 if (canIgnoreSNaN(ExBehavior, FMF) && 5666 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 5667 FMF.noSignedZeros())) 5668 if (match(Op1, m_PosZeroFP())) 5669 return Op0; 5670 5671 // fsub X, -0 ==> X, when we know X is not -0 5672 if (canIgnoreSNaN(ExBehavior, FMF)) 5673 if (match(Op1, m_NegZeroFP()) && 5674 (FMF.noSignedZeros() || cannotBeNegativeZero(Op0, Q.DL, Q.TLI))) 5675 return Op0; 5676 5677 // fsub -0.0, (fsub -0.0, X) ==> X 5678 // fsub -0.0, (fneg X) ==> X 5679 Value *X; 5680 if (canIgnoreSNaN(ExBehavior, FMF)) 5681 if (match(Op0, m_NegZeroFP()) && match(Op1, m_FNeg(m_Value(X)))) 5682 return X; 5683 5684 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 5685 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 5686 if (canIgnoreSNaN(ExBehavior, FMF)) 5687 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 5688 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 5689 match(Op1, m_FNeg(m_Value(X))))) 5690 return X; 5691 5692 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5693 return nullptr; 5694 5695 if (FMF.noNaNs()) { 5696 // fsub nnan x, x ==> 0.0 5697 if (Op0 == Op1) 5698 return Constant::getNullValue(Op0->getType()); 5699 5700 // With nnan: {+/-}Inf - X --> {+/-}Inf 5701 if (match(Op0, m_Inf())) 5702 return Op0; 5703 5704 // With nnan: X - {+/-}Inf --> {-/+}Inf 5705 if (match(Op1, m_Inf())) 5706 return foldConstant(Instruction::FNeg, Op1, Q); 5707 } 5708 5709 // Y - (Y - X) --> X 5710 // (X + Y) - Y --> X 5711 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5712 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 5713 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 5714 return X; 5715 5716 return nullptr; 5717 } 5718 5719 static Value *simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5720 const SimplifyQuery &Q, unsigned MaxRecurse, 5721 fp::ExceptionBehavior ExBehavior, 5722 RoundingMode Rounding) { 5723 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5724 return C; 5725 5726 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5727 return nullptr; 5728 5729 // Canonicalize special constants as operand 1. 5730 if (match(Op0, m_FPOne()) || match(Op0, m_AnyZeroFP())) 5731 std::swap(Op0, Op1); 5732 5733 // X * 1.0 --> X 5734 if (match(Op1, m_FPOne())) 5735 return Op0; 5736 5737 if (match(Op1, m_AnyZeroFP())) { 5738 // X * 0.0 --> 0.0 (with nnan and nsz) 5739 if (FMF.noNaNs() && FMF.noSignedZeros()) 5740 return ConstantFP::getZero(Op0->getType()); 5741 5742 // +normal number * (-)0.0 --> (-)0.0 5743 if (isKnownNeverInfOrNaN(Op0, Q.DL, Q.TLI, 0, Q.AC, Q.CxtI, Q.DT) && 5744 // TODO: Check SignBit from computeKnownFPClass when it's more complete. 5745 SignBitMustBeZero(Op0, Q.DL, Q.TLI)) 5746 return Op1; 5747 } 5748 5749 // sqrt(X) * sqrt(X) --> X, if we can: 5750 // 1. Remove the intermediate rounding (reassociate). 5751 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 5752 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 5753 Value *X; 5754 if (Op0 == Op1 && match(Op0, m_Sqrt(m_Value(X))) && FMF.allowReassoc() && 5755 FMF.noNaNs() && FMF.noSignedZeros()) 5756 return X; 5757 5758 return nullptr; 5759 } 5760 5761 /// Given the operands for an FMul, see if we can fold the result 5762 static Value * 5763 simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5764 const SimplifyQuery &Q, unsigned MaxRecurse, 5765 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5766 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5767 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5768 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 5769 return C; 5770 5771 // Now apply simplifications that do not require rounding. 5772 return simplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding); 5773 } 5774 5775 Value *llvm::simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5776 const SimplifyQuery &Q, 5777 fp::ExceptionBehavior ExBehavior, 5778 RoundingMode Rounding) { 5779 return ::simplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5780 Rounding); 5781 } 5782 5783 Value *llvm::simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5784 const SimplifyQuery &Q, 5785 fp::ExceptionBehavior ExBehavior, 5786 RoundingMode Rounding) { 5787 return ::simplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5788 Rounding); 5789 } 5790 5791 Value *llvm::simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5792 const SimplifyQuery &Q, 5793 fp::ExceptionBehavior ExBehavior, 5794 RoundingMode Rounding) { 5795 return ::simplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5796 Rounding); 5797 } 5798 5799 Value *llvm::simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5800 const SimplifyQuery &Q, 5801 fp::ExceptionBehavior ExBehavior, 5802 RoundingMode Rounding) { 5803 return ::simplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5804 Rounding); 5805 } 5806 5807 static Value * 5808 simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5809 const SimplifyQuery &Q, unsigned, 5810 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5811 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5812 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5813 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 5814 return C; 5815 5816 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5817 return C; 5818 5819 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5820 return nullptr; 5821 5822 // X / 1.0 -> X 5823 if (match(Op1, m_FPOne())) 5824 return Op0; 5825 5826 // 0 / X -> 0 5827 // Requires that NaNs are off (X could be zero) and signed zeroes are 5828 // ignored (X could be positive or negative, so the output sign is unknown). 5829 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5830 return ConstantFP::getZero(Op0->getType()); 5831 5832 if (FMF.noNaNs()) { 5833 // X / X -> 1.0 is legal when NaNs are ignored. 5834 // We can ignore infinities because INF/INF is NaN. 5835 if (Op0 == Op1) 5836 return ConstantFP::get(Op0->getType(), 1.0); 5837 5838 // (X * Y) / Y --> X if we can reassociate to the above form. 5839 Value *X; 5840 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 5841 return X; 5842 5843 // -X / X -> -1.0 and 5844 // X / -X -> -1.0 are legal when NaNs are ignored. 5845 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 5846 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 5847 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 5848 return ConstantFP::get(Op0->getType(), -1.0); 5849 5850 // nnan ninf X / [-]0.0 -> poison 5851 if (FMF.noInfs() && match(Op1, m_AnyZeroFP())) 5852 return PoisonValue::get(Op1->getType()); 5853 } 5854 5855 return nullptr; 5856 } 5857 5858 Value *llvm::simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5859 const SimplifyQuery &Q, 5860 fp::ExceptionBehavior ExBehavior, 5861 RoundingMode Rounding) { 5862 return ::simplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5863 Rounding); 5864 } 5865 5866 static Value * 5867 simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5868 const SimplifyQuery &Q, unsigned, 5869 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5870 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5871 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5872 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 5873 return C; 5874 5875 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5876 return C; 5877 5878 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5879 return nullptr; 5880 5881 // Unlike fdiv, the result of frem always matches the sign of the dividend. 5882 // The constant match may include undef elements in a vector, so return a full 5883 // zero constant as the result. 5884 if (FMF.noNaNs()) { 5885 // +0 % X -> 0 5886 if (match(Op0, m_PosZeroFP())) 5887 return ConstantFP::getZero(Op0->getType()); 5888 // -0 % X -> -0 5889 if (match(Op0, m_NegZeroFP())) 5890 return ConstantFP::getNegativeZero(Op0->getType()); 5891 } 5892 5893 return nullptr; 5894 } 5895 5896 Value *llvm::simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5897 const SimplifyQuery &Q, 5898 fp::ExceptionBehavior ExBehavior, 5899 RoundingMode Rounding) { 5900 return ::simplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5901 Rounding); 5902 } 5903 5904 //=== Helper functions for higher up the class hierarchy. 5905 5906 /// Given the operand for a UnaryOperator, see if we can fold the result. 5907 /// If not, this returns null. 5908 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 5909 unsigned MaxRecurse) { 5910 switch (Opcode) { 5911 case Instruction::FNeg: 5912 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 5913 default: 5914 llvm_unreachable("Unexpected opcode"); 5915 } 5916 } 5917 5918 /// Given the operand for a UnaryOperator, see if we can fold the result. 5919 /// If not, this returns null. 5920 /// Try to use FastMathFlags when folding the result. 5921 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 5922 const FastMathFlags &FMF, const SimplifyQuery &Q, 5923 unsigned MaxRecurse) { 5924 switch (Opcode) { 5925 case Instruction::FNeg: 5926 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 5927 default: 5928 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 5929 } 5930 } 5931 5932 Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 5933 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 5934 } 5935 5936 Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 5937 const SimplifyQuery &Q) { 5938 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 5939 } 5940 5941 /// Given operands for a BinaryOperator, see if we can fold the result. 5942 /// If not, this returns null. 5943 static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5944 const SimplifyQuery &Q, unsigned MaxRecurse) { 5945 switch (Opcode) { 5946 case Instruction::Add: 5947 return simplifyAddInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, 5948 MaxRecurse); 5949 case Instruction::Sub: 5950 return simplifySubInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, 5951 MaxRecurse); 5952 case Instruction::Mul: 5953 return simplifyMulInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, 5954 MaxRecurse); 5955 case Instruction::SDiv: 5956 return simplifySDivInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); 5957 case Instruction::UDiv: 5958 return simplifyUDivInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); 5959 case Instruction::SRem: 5960 return simplifySRemInst(LHS, RHS, Q, MaxRecurse); 5961 case Instruction::URem: 5962 return simplifyURemInst(LHS, RHS, Q, MaxRecurse); 5963 case Instruction::Shl: 5964 return simplifyShlInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, 5965 MaxRecurse); 5966 case Instruction::LShr: 5967 return simplifyLShrInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); 5968 case Instruction::AShr: 5969 return simplifyAShrInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); 5970 case Instruction::And: 5971 return simplifyAndInst(LHS, RHS, Q, MaxRecurse); 5972 case Instruction::Or: 5973 return simplifyOrInst(LHS, RHS, Q, MaxRecurse); 5974 case Instruction::Xor: 5975 return simplifyXorInst(LHS, RHS, Q, MaxRecurse); 5976 case Instruction::FAdd: 5977 return simplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5978 case Instruction::FSub: 5979 return simplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5980 case Instruction::FMul: 5981 return simplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5982 case Instruction::FDiv: 5983 return simplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5984 case Instruction::FRem: 5985 return simplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5986 default: 5987 llvm_unreachable("Unexpected opcode"); 5988 } 5989 } 5990 5991 /// Given operands for a BinaryOperator, see if we can fold the result. 5992 /// If not, this returns null. 5993 /// Try to use FastMathFlags when folding the result. 5994 static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5995 const FastMathFlags &FMF, const SimplifyQuery &Q, 5996 unsigned MaxRecurse) { 5997 switch (Opcode) { 5998 case Instruction::FAdd: 5999 return simplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 6000 case Instruction::FSub: 6001 return simplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 6002 case Instruction::FMul: 6003 return simplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 6004 case Instruction::FDiv: 6005 return simplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 6006 default: 6007 return simplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 6008 } 6009 } 6010 6011 Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 6012 const SimplifyQuery &Q) { 6013 return ::simplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 6014 } 6015 6016 Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 6017 FastMathFlags FMF, const SimplifyQuery &Q) { 6018 return ::simplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 6019 } 6020 6021 /// Given operands for a CmpInst, see if we can fold the result. 6022 static Value *simplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 6023 const SimplifyQuery &Q, unsigned MaxRecurse) { 6024 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 6025 return simplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 6026 return simplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 6027 } 6028 6029 Value *llvm::simplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 6030 const SimplifyQuery &Q) { 6031 return ::simplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 6032 } 6033 6034 static bool isIdempotent(Intrinsic::ID ID) { 6035 switch (ID) { 6036 default: 6037 return false; 6038 6039 // Unary idempotent: f(f(x)) = f(x) 6040 case Intrinsic::fabs: 6041 case Intrinsic::floor: 6042 case Intrinsic::ceil: 6043 case Intrinsic::trunc: 6044 case Intrinsic::rint: 6045 case Intrinsic::nearbyint: 6046 case Intrinsic::round: 6047 case Intrinsic::roundeven: 6048 case Intrinsic::canonicalize: 6049 case Intrinsic::arithmetic_fence: 6050 return true; 6051 } 6052 } 6053 6054 /// Return true if the intrinsic rounds a floating-point value to an integral 6055 /// floating-point value (not an integer type). 6056 static bool removesFPFraction(Intrinsic::ID ID) { 6057 switch (ID) { 6058 default: 6059 return false; 6060 6061 case Intrinsic::floor: 6062 case Intrinsic::ceil: 6063 case Intrinsic::trunc: 6064 case Intrinsic::rint: 6065 case Intrinsic::nearbyint: 6066 case Intrinsic::round: 6067 case Intrinsic::roundeven: 6068 return true; 6069 } 6070 } 6071 6072 static Value *simplifyRelativeLoad(Constant *Ptr, Constant *Offset, 6073 const DataLayout &DL) { 6074 GlobalValue *PtrSym; 6075 APInt PtrOffset; 6076 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 6077 return nullptr; 6078 6079 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 6080 6081 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 6082 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 6083 return nullptr; 6084 6085 APInt OffsetInt = OffsetConstInt->getValue().sextOrTrunc( 6086 DL.getIndexTypeSizeInBits(Ptr->getType())); 6087 if (OffsetInt.srem(4) != 0) 6088 return nullptr; 6089 6090 Constant *Loaded = ConstantFoldLoadFromConstPtr(Ptr, Int32Ty, OffsetInt, DL); 6091 if (!Loaded) 6092 return nullptr; 6093 6094 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 6095 if (!LoadedCE) 6096 return nullptr; 6097 6098 if (LoadedCE->getOpcode() == Instruction::Trunc) { 6099 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 6100 if (!LoadedCE) 6101 return nullptr; 6102 } 6103 6104 if (LoadedCE->getOpcode() != Instruction::Sub) 6105 return nullptr; 6106 6107 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 6108 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 6109 return nullptr; 6110 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 6111 6112 Constant *LoadedRHS = LoadedCE->getOperand(1); 6113 GlobalValue *LoadedRHSSym; 6114 APInt LoadedRHSOffset; 6115 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 6116 DL) || 6117 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 6118 return nullptr; 6119 6120 return LoadedLHSPtr; 6121 } 6122 6123 // TODO: Need to pass in FastMathFlags 6124 static Value *simplifyLdexp(Value *Op0, Value *Op1, const SimplifyQuery &Q, 6125 bool IsStrict) { 6126 // ldexp(poison, x) -> poison 6127 // ldexp(x, poison) -> poison 6128 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 6129 return Op0; 6130 6131 // ldexp(undef, x) -> nan 6132 if (Q.isUndefValue(Op0)) 6133 return ConstantFP::getNaN(Op0->getType()); 6134 6135 if (!IsStrict) { 6136 // TODO: Could insert a canonicalize for strict 6137 6138 // ldexp(x, undef) -> x 6139 if (Q.isUndefValue(Op1)) 6140 return Op0; 6141 } 6142 6143 const APFloat *C = nullptr; 6144 match(Op0, PatternMatch::m_APFloat(C)); 6145 6146 // These cases should be safe, even with strictfp. 6147 // ldexp(0.0, x) -> 0.0 6148 // ldexp(-0.0, x) -> -0.0 6149 // ldexp(inf, x) -> inf 6150 // ldexp(-inf, x) -> -inf 6151 if (C && (C->isZero() || C->isInfinity())) 6152 return Op0; 6153 6154 // These are canonicalization dropping, could do it if we knew how we could 6155 // ignore denormal flushes and target handling of nan payload bits. 6156 if (IsStrict) 6157 return nullptr; 6158 6159 // TODO: Could quiet this with strictfp if the exception mode isn't strict. 6160 if (C && C->isNaN()) 6161 return ConstantFP::get(Op0->getType(), C->makeQuiet()); 6162 6163 // ldexp(x, 0) -> x 6164 6165 // TODO: Could fold this if we know the exception mode isn't 6166 // strict, we know the denormal mode and other target modes. 6167 if (match(Op1, PatternMatch::m_ZeroInt())) 6168 return Op0; 6169 6170 return nullptr; 6171 } 6172 6173 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 6174 const SimplifyQuery &Q, 6175 const CallBase *Call) { 6176 // Idempotent functions return the same result when called repeatedly. 6177 Intrinsic::ID IID = F->getIntrinsicID(); 6178 if (isIdempotent(IID)) 6179 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 6180 if (II->getIntrinsicID() == IID) 6181 return II; 6182 6183 if (removesFPFraction(IID)) { 6184 // Converting from int or calling a rounding function always results in a 6185 // finite integral number or infinity. For those inputs, rounding functions 6186 // always return the same value, so the (2nd) rounding is eliminated. Ex: 6187 // floor (sitofp x) -> sitofp x 6188 // round (ceil x) -> ceil x 6189 auto *II = dyn_cast<IntrinsicInst>(Op0); 6190 if ((II && removesFPFraction(II->getIntrinsicID())) || 6191 match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 6192 return Op0; 6193 } 6194 6195 Value *X; 6196 switch (IID) { 6197 case Intrinsic::fabs: 6198 if (SignBitMustBeZero(Op0, Q.DL, Q.TLI)) 6199 return Op0; 6200 break; 6201 case Intrinsic::bswap: 6202 // bswap(bswap(x)) -> x 6203 if (match(Op0, m_BSwap(m_Value(X)))) 6204 return X; 6205 break; 6206 case Intrinsic::bitreverse: 6207 // bitreverse(bitreverse(x)) -> x 6208 if (match(Op0, m_BitReverse(m_Value(X)))) 6209 return X; 6210 break; 6211 case Intrinsic::ctpop: { 6212 // ctpop(X) -> 1 iff X is non-zero power of 2. 6213 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ false, 0, Q.AC, Q.CxtI, 6214 Q.DT)) 6215 return ConstantInt::get(Op0->getType(), 1); 6216 // If everything but the lowest bit is zero, that bit is the pop-count. Ex: 6217 // ctpop(and X, 1) --> and X, 1 6218 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 6219 if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), 6220 Q)) 6221 return Op0; 6222 break; 6223 } 6224 case Intrinsic::exp: 6225 // exp(log(x)) -> x 6226 if (Call->hasAllowReassoc() && 6227 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) 6228 return X; 6229 break; 6230 case Intrinsic::exp2: 6231 // exp2(log2(x)) -> x 6232 if (Call->hasAllowReassoc() && 6233 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) 6234 return X; 6235 break; 6236 case Intrinsic::exp10: 6237 // exp10(log10(x)) -> x 6238 if (Call->hasAllowReassoc() && 6239 match(Op0, m_Intrinsic<Intrinsic::log10>(m_Value(X)))) 6240 return X; 6241 break; 6242 case Intrinsic::log: 6243 // log(exp(x)) -> x 6244 if (Call->hasAllowReassoc() && 6245 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) 6246 return X; 6247 break; 6248 case Intrinsic::log2: 6249 // log2(exp2(x)) -> x 6250 if (Call->hasAllowReassoc() && 6251 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 6252 match(Op0, 6253 m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), m_Value(X))))) 6254 return X; 6255 break; 6256 case Intrinsic::log10: 6257 // log10(pow(10.0, x)) -> x 6258 // log10(exp10(x)) -> x 6259 if (Call->hasAllowReassoc() && 6260 (match(Op0, m_Intrinsic<Intrinsic::exp10>(m_Value(X))) || 6261 match(Op0, 6262 m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), m_Value(X))))) 6263 return X; 6264 break; 6265 case Intrinsic::experimental_vector_reverse: 6266 // experimental.vector.reverse(experimental.vector.reverse(x)) -> x 6267 if (match(Op0, m_VecReverse(m_Value(X)))) 6268 return X; 6269 // experimental.vector.reverse(splat(X)) -> splat(X) 6270 if (isSplatValue(Op0)) 6271 return Op0; 6272 break; 6273 case Intrinsic::frexp: { 6274 // Frexp is idempotent with the added complication of the struct return. 6275 if (match(Op0, m_ExtractValue<0>(m_Value(X)))) { 6276 if (match(X, m_Intrinsic<Intrinsic::frexp>(m_Value()))) 6277 return X; 6278 } 6279 6280 break; 6281 } 6282 default: 6283 break; 6284 } 6285 6286 return nullptr; 6287 } 6288 6289 /// Given a min/max intrinsic, see if it can be removed based on having an 6290 /// operand that is another min/max intrinsic with shared operand(s). The caller 6291 /// is expected to swap the operand arguments to handle commutation. 6292 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 6293 Value *X, *Y; 6294 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 6295 return nullptr; 6296 6297 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 6298 if (!MM0) 6299 return nullptr; 6300 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 6301 6302 if (Op1 == X || Op1 == Y || 6303 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 6304 // max (max X, Y), X --> max X, Y 6305 if (IID0 == IID) 6306 return MM0; 6307 // max (min X, Y), X --> X 6308 if (IID0 == getInverseMinMaxIntrinsic(IID)) 6309 return Op1; 6310 } 6311 return nullptr; 6312 } 6313 6314 /// Given a min/max intrinsic, see if it can be removed based on having an 6315 /// operand that is another min/max intrinsic with shared operand(s). The caller 6316 /// is expected to swap the operand arguments to handle commutation. 6317 static Value *foldMinimumMaximumSharedOp(Intrinsic::ID IID, Value *Op0, 6318 Value *Op1) { 6319 assert((IID == Intrinsic::maxnum || IID == Intrinsic::minnum || 6320 IID == Intrinsic::maximum || IID == Intrinsic::minimum) && 6321 "Unsupported intrinsic"); 6322 6323 auto *M0 = dyn_cast<IntrinsicInst>(Op0); 6324 // If Op0 is not the same intrinsic as IID, do not process. 6325 // This is a difference with integer min/max handling. We do not process the 6326 // case like max(min(X,Y),min(X,Y)) => min(X,Y). But it can be handled by GVN. 6327 if (!M0 || M0->getIntrinsicID() != IID) 6328 return nullptr; 6329 Value *X0 = M0->getOperand(0); 6330 Value *Y0 = M0->getOperand(1); 6331 // Simple case, m(m(X,Y), X) => m(X, Y) 6332 // m(m(X,Y), Y) => m(X, Y) 6333 // For minimum/maximum, X is NaN => m(NaN, Y) == NaN and m(NaN, NaN) == NaN. 6334 // For minimum/maximum, Y is NaN => m(X, NaN) == NaN and m(NaN, NaN) == NaN. 6335 // For minnum/maxnum, X is NaN => m(NaN, Y) == Y and m(Y, Y) == Y. 6336 // For minnum/maxnum, Y is NaN => m(X, NaN) == X and m(X, NaN) == X. 6337 if (X0 == Op1 || Y0 == Op1) 6338 return M0; 6339 6340 auto *M1 = dyn_cast<IntrinsicInst>(Op1); 6341 if (!M1) 6342 return nullptr; 6343 Value *X1 = M1->getOperand(0); 6344 Value *Y1 = M1->getOperand(1); 6345 Intrinsic::ID IID1 = M1->getIntrinsicID(); 6346 // we have a case m(m(X,Y),m'(X,Y)) taking into account m' is commutative. 6347 // if m' is m or inversion of m => m(m(X,Y),m'(X,Y)) == m(X,Y). 6348 // For minimum/maximum, X is NaN => m(NaN,Y) == m'(NaN, Y) == NaN. 6349 // For minimum/maximum, Y is NaN => m(X,NaN) == m'(X, NaN) == NaN. 6350 // For minnum/maxnum, X is NaN => m(NaN,Y) == m'(NaN, Y) == Y. 6351 // For minnum/maxnum, Y is NaN => m(X,NaN) == m'(X, NaN) == X. 6352 if ((X0 == X1 && Y0 == Y1) || (X0 == Y1 && Y0 == X1)) 6353 if (IID1 == IID || getInverseMinMaxIntrinsic(IID1) == IID) 6354 return M0; 6355 6356 return nullptr; 6357 } 6358 6359 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 6360 const SimplifyQuery &Q, 6361 const CallBase *Call) { 6362 Intrinsic::ID IID = F->getIntrinsicID(); 6363 Type *ReturnType = F->getReturnType(); 6364 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 6365 switch (IID) { 6366 case Intrinsic::abs: 6367 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 6368 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 6369 // on the outer abs. 6370 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 6371 return Op0; 6372 break; 6373 6374 case Intrinsic::cttz: { 6375 Value *X; 6376 if (match(Op0, m_Shl(m_One(), m_Value(X)))) 6377 return X; 6378 break; 6379 } 6380 case Intrinsic::ctlz: { 6381 Value *X; 6382 if (match(Op0, m_LShr(m_Negative(), m_Value(X)))) 6383 return X; 6384 if (match(Op0, m_AShr(m_Negative(), m_Value()))) 6385 return Constant::getNullValue(ReturnType); 6386 break; 6387 } 6388 case Intrinsic::ptrmask: { 6389 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 6390 return PoisonValue::get(Op0->getType()); 6391 6392 // NOTE: We can't apply this simplifications based on the value of Op1 6393 // because we need to preserve provenance. 6394 if (Q.isUndefValue(Op0) || match(Op0, m_Zero())) 6395 return Constant::getNullValue(Op0->getType()); 6396 6397 assert(Op1->getType()->getScalarSizeInBits() == 6398 Q.DL.getIndexTypeSizeInBits(Op0->getType()) && 6399 "Invalid mask width"); 6400 // If index-width (mask size) is less than pointer-size then mask is 6401 // 1-extended. 6402 if (match(Op1, m_PtrToInt(m_Specific(Op0)))) 6403 return Op0; 6404 6405 // NOTE: We may have attributes associated with the return value of the 6406 // llvm.ptrmask intrinsic that will be lost when we just return the 6407 // operand. We should try to preserve them. 6408 if (match(Op1, m_AllOnes()) || Q.isUndefValue(Op1)) 6409 return Op0; 6410 6411 Constant *C; 6412 if (match(Op1, m_ImmConstant(C))) { 6413 KnownBits PtrKnown = computeKnownBits(Op0, /*Depth=*/0, Q); 6414 // See if we only masking off bits we know are already zero due to 6415 // alignment. 6416 APInt IrrelevantPtrBits = 6417 PtrKnown.Zero.zextOrTrunc(C->getType()->getScalarSizeInBits()); 6418 C = ConstantFoldBinaryOpOperands( 6419 Instruction::Or, C, ConstantInt::get(C->getType(), IrrelevantPtrBits), 6420 Q.DL); 6421 if (C != nullptr && C->isAllOnesValue()) 6422 return Op0; 6423 } 6424 break; 6425 } 6426 case Intrinsic::smax: 6427 case Intrinsic::smin: 6428 case Intrinsic::umax: 6429 case Intrinsic::umin: { 6430 // If the arguments are the same, this is a no-op. 6431 if (Op0 == Op1) 6432 return Op0; 6433 6434 // Canonicalize immediate constant operand as Op1. 6435 if (match(Op0, m_ImmConstant())) 6436 std::swap(Op0, Op1); 6437 6438 // Assume undef is the limit value. 6439 if (Q.isUndefValue(Op1)) 6440 return ConstantInt::get( 6441 ReturnType, MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)); 6442 6443 const APInt *C; 6444 if (match(Op1, m_APIntAllowUndef(C))) { 6445 // Clamp to limit value. For example: 6446 // umax(i8 %x, i8 255) --> 255 6447 if (*C == MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)) 6448 return ConstantInt::get(ReturnType, *C); 6449 6450 // If the constant op is the opposite of the limit value, the other must 6451 // be larger/smaller or equal. For example: 6452 // umin(i8 %x, i8 255) --> %x 6453 if (*C == MinMaxIntrinsic::getSaturationPoint( 6454 getInverseMinMaxIntrinsic(IID), BitWidth)) 6455 return Op0; 6456 6457 // Remove nested call if constant operands allow it. Example: 6458 // max (max X, 7), 5 -> max X, 7 6459 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 6460 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 6461 // TODO: loosen undef/splat restrictions for vector constants. 6462 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 6463 const APInt *InnerC; 6464 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 6465 ICmpInst::compare(*InnerC, *C, 6466 ICmpInst::getNonStrictPredicate( 6467 MinMaxIntrinsic::getPredicate(IID)))) 6468 return Op0; 6469 } 6470 } 6471 6472 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 6473 return V; 6474 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 6475 return V; 6476 6477 ICmpInst::Predicate Pred = 6478 ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID)); 6479 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) 6480 return Op0; 6481 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) 6482 return Op1; 6483 6484 break; 6485 } 6486 case Intrinsic::usub_with_overflow: 6487 case Intrinsic::ssub_with_overflow: 6488 // X - X -> { 0, false } 6489 // X - undef -> { 0, false } 6490 // undef - X -> { 0, false } 6491 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 6492 return Constant::getNullValue(ReturnType); 6493 break; 6494 case Intrinsic::uadd_with_overflow: 6495 case Intrinsic::sadd_with_overflow: 6496 // X + undef -> { -1, false } 6497 // undef + x -> { -1, false } 6498 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 6499 return ConstantStruct::get( 6500 cast<StructType>(ReturnType), 6501 {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), 6502 Constant::getNullValue(ReturnType->getStructElementType(1))}); 6503 } 6504 break; 6505 case Intrinsic::umul_with_overflow: 6506 case Intrinsic::smul_with_overflow: 6507 // 0 * X -> { 0, false } 6508 // X * 0 -> { 0, false } 6509 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 6510 return Constant::getNullValue(ReturnType); 6511 // undef * X -> { 0, false } 6512 // X * undef -> { 0, false } 6513 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 6514 return Constant::getNullValue(ReturnType); 6515 break; 6516 case Intrinsic::uadd_sat: 6517 // sat(MAX + X) -> MAX 6518 // sat(X + MAX) -> MAX 6519 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 6520 return Constant::getAllOnesValue(ReturnType); 6521 [[fallthrough]]; 6522 case Intrinsic::sadd_sat: 6523 // sat(X + undef) -> -1 6524 // sat(undef + X) -> -1 6525 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 6526 // For signed: Assume undef is ~X, in which case X + ~X = -1. 6527 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 6528 return Constant::getAllOnesValue(ReturnType); 6529 6530 // X + 0 -> X 6531 if (match(Op1, m_Zero())) 6532 return Op0; 6533 // 0 + X -> X 6534 if (match(Op0, m_Zero())) 6535 return Op1; 6536 break; 6537 case Intrinsic::usub_sat: 6538 // sat(0 - X) -> 0, sat(X - MAX) -> 0 6539 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 6540 return Constant::getNullValue(ReturnType); 6541 [[fallthrough]]; 6542 case Intrinsic::ssub_sat: 6543 // X - X -> 0, X - undef -> 0, undef - X -> 0 6544 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 6545 return Constant::getNullValue(ReturnType); 6546 // X - 0 -> X 6547 if (match(Op1, m_Zero())) 6548 return Op0; 6549 break; 6550 case Intrinsic::load_relative: 6551 if (auto *C0 = dyn_cast<Constant>(Op0)) 6552 if (auto *C1 = dyn_cast<Constant>(Op1)) 6553 return simplifyRelativeLoad(C0, C1, Q.DL); 6554 break; 6555 case Intrinsic::powi: 6556 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 6557 // powi(x, 0) -> 1.0 6558 if (Power->isZero()) 6559 return ConstantFP::get(Op0->getType(), 1.0); 6560 // powi(x, 1) -> x 6561 if (Power->isOne()) 6562 return Op0; 6563 } 6564 break; 6565 case Intrinsic::ldexp: 6566 return simplifyLdexp(Op0, Op1, Q, false); 6567 case Intrinsic::copysign: 6568 // copysign X, X --> X 6569 if (Op0 == Op1) 6570 return Op0; 6571 // copysign -X, X --> X 6572 // copysign X, -X --> -X 6573 if (match(Op0, m_FNeg(m_Specific(Op1))) || 6574 match(Op1, m_FNeg(m_Specific(Op0)))) 6575 return Op1; 6576 break; 6577 case Intrinsic::is_fpclass: { 6578 if (isa<PoisonValue>(Op0)) 6579 return PoisonValue::get(ReturnType); 6580 6581 uint64_t Mask = cast<ConstantInt>(Op1)->getZExtValue(); 6582 // If all tests are made, it doesn't matter what the value is. 6583 if ((Mask & fcAllFlags) == fcAllFlags) 6584 return ConstantInt::get(ReturnType, true); 6585 if ((Mask & fcAllFlags) == 0) 6586 return ConstantInt::get(ReturnType, false); 6587 if (Q.isUndefValue(Op0)) 6588 return UndefValue::get(ReturnType); 6589 break; 6590 } 6591 case Intrinsic::maxnum: 6592 case Intrinsic::minnum: 6593 case Intrinsic::maximum: 6594 case Intrinsic::minimum: { 6595 // If the arguments are the same, this is a no-op. 6596 if (Op0 == Op1) 6597 return Op0; 6598 6599 // Canonicalize constant operand as Op1. 6600 if (isa<Constant>(Op0)) 6601 std::swap(Op0, Op1); 6602 6603 // If an argument is undef, return the other argument. 6604 if (Q.isUndefValue(Op1)) 6605 return Op0; 6606 6607 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 6608 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; 6609 6610 // minnum(X, nan) -> X 6611 // maxnum(X, nan) -> X 6612 // minimum(X, nan) -> nan 6613 // maximum(X, nan) -> nan 6614 if (match(Op1, m_NaN())) 6615 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; 6616 6617 // In the following folds, inf can be replaced with the largest finite 6618 // float, if the ninf flag is set. 6619 const APFloat *C; 6620 if (match(Op1, m_APFloat(C)) && 6621 (C->isInfinity() || (Call->hasNoInfs() && C->isLargest()))) { 6622 // minnum(X, -inf) -> -inf 6623 // maxnum(X, +inf) -> +inf 6624 // minimum(X, -inf) -> -inf if nnan 6625 // maximum(X, +inf) -> +inf if nnan 6626 if (C->isNegative() == IsMin && (!PropagateNaN || Call->hasNoNaNs())) 6627 return ConstantFP::get(ReturnType, *C); 6628 6629 // minnum(X, +inf) -> X if nnan 6630 // maxnum(X, -inf) -> X if nnan 6631 // minimum(X, +inf) -> X 6632 // maximum(X, -inf) -> X 6633 if (C->isNegative() != IsMin && (PropagateNaN || Call->hasNoNaNs())) 6634 return Op0; 6635 } 6636 6637 // Min/max of the same operation with common operand: 6638 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 6639 if (Value *V = foldMinimumMaximumSharedOp(IID, Op0, Op1)) 6640 return V; 6641 if (Value *V = foldMinimumMaximumSharedOp(IID, Op1, Op0)) 6642 return V; 6643 6644 break; 6645 } 6646 case Intrinsic::vector_extract: { 6647 Type *ReturnType = F->getReturnType(); 6648 6649 // (extract_vector (insert_vector _, X, 0), 0) -> X 6650 unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue(); 6651 Value *X = nullptr; 6652 if (match(Op0, m_Intrinsic<Intrinsic::vector_insert>(m_Value(), m_Value(X), 6653 m_Zero())) && 6654 IdxN == 0 && X->getType() == ReturnType) 6655 return X; 6656 6657 break; 6658 } 6659 default: 6660 break; 6661 } 6662 6663 return nullptr; 6664 } 6665 6666 static Value *simplifyIntrinsic(CallBase *Call, Value *Callee, 6667 ArrayRef<Value *> Args, 6668 const SimplifyQuery &Q) { 6669 // Operand bundles should not be in Args. 6670 assert(Call->arg_size() == Args.size()); 6671 unsigned NumOperands = Args.size(); 6672 Function *F = cast<Function>(Callee); 6673 Intrinsic::ID IID = F->getIntrinsicID(); 6674 6675 // Most of the intrinsics with no operands have some kind of side effect. 6676 // Don't simplify. 6677 if (!NumOperands) { 6678 switch (IID) { 6679 case Intrinsic::vscale: { 6680 Type *RetTy = F->getReturnType(); 6681 ConstantRange CR = getVScaleRange(Call->getFunction(), 64); 6682 if (const APInt *C = CR.getSingleElement()) 6683 return ConstantInt::get(RetTy, C->getZExtValue()); 6684 return nullptr; 6685 } 6686 default: 6687 return nullptr; 6688 } 6689 } 6690 6691 if (NumOperands == 1) 6692 return simplifyUnaryIntrinsic(F, Args[0], Q, Call); 6693 6694 if (NumOperands == 2) 6695 return simplifyBinaryIntrinsic(F, Args[0], Args[1], Q, Call); 6696 6697 // Handle intrinsics with 3 or more arguments. 6698 switch (IID) { 6699 case Intrinsic::masked_load: 6700 case Intrinsic::masked_gather: { 6701 Value *MaskArg = Args[2]; 6702 Value *PassthruArg = Args[3]; 6703 // If the mask is all zeros or undef, the "passthru" argument is the result. 6704 if (maskIsAllZeroOrUndef(MaskArg)) 6705 return PassthruArg; 6706 return nullptr; 6707 } 6708 case Intrinsic::fshl: 6709 case Intrinsic::fshr: { 6710 Value *Op0 = Args[0], *Op1 = Args[1], *ShAmtArg = Args[2]; 6711 6712 // If both operands are undef, the result is undef. 6713 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 6714 return UndefValue::get(F->getReturnType()); 6715 6716 // If shift amount is undef, assume it is zero. 6717 if (Q.isUndefValue(ShAmtArg)) 6718 return Args[IID == Intrinsic::fshl ? 0 : 1]; 6719 6720 const APInt *ShAmtC; 6721 if (match(ShAmtArg, m_APInt(ShAmtC))) { 6722 // If there's effectively no shift, return the 1st arg or 2nd arg. 6723 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 6724 if (ShAmtC->urem(BitWidth).isZero()) 6725 return Args[IID == Intrinsic::fshl ? 0 : 1]; 6726 } 6727 6728 // Rotating zero by anything is zero. 6729 if (match(Op0, m_Zero()) && match(Op1, m_Zero())) 6730 return ConstantInt::getNullValue(F->getReturnType()); 6731 6732 // Rotating -1 by anything is -1. 6733 if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes())) 6734 return ConstantInt::getAllOnesValue(F->getReturnType()); 6735 6736 return nullptr; 6737 } 6738 case Intrinsic::experimental_constrained_fma: { 6739 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6740 if (Value *V = simplifyFPOp(Args, {}, Q, *FPI->getExceptionBehavior(), 6741 *FPI->getRoundingMode())) 6742 return V; 6743 return nullptr; 6744 } 6745 case Intrinsic::fma: 6746 case Intrinsic::fmuladd: { 6747 if (Value *V = simplifyFPOp(Args, {}, Q, fp::ebIgnore, 6748 RoundingMode::NearestTiesToEven)) 6749 return V; 6750 return nullptr; 6751 } 6752 case Intrinsic::smul_fix: 6753 case Intrinsic::smul_fix_sat: { 6754 Value *Op0 = Args[0]; 6755 Value *Op1 = Args[1]; 6756 Value *Op2 = Args[2]; 6757 Type *ReturnType = F->getReturnType(); 6758 6759 // Canonicalize constant operand as Op1 (ConstantFolding handles the case 6760 // when both Op0 and Op1 are constant so we do not care about that special 6761 // case here). 6762 if (isa<Constant>(Op0)) 6763 std::swap(Op0, Op1); 6764 6765 // X * 0 -> 0 6766 if (match(Op1, m_Zero())) 6767 return Constant::getNullValue(ReturnType); 6768 6769 // X * undef -> 0 6770 if (Q.isUndefValue(Op1)) 6771 return Constant::getNullValue(ReturnType); 6772 6773 // X * (1 << Scale) -> X 6774 APInt ScaledOne = 6775 APInt::getOneBitSet(ReturnType->getScalarSizeInBits(), 6776 cast<ConstantInt>(Op2)->getZExtValue()); 6777 if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne))) 6778 return Op0; 6779 6780 return nullptr; 6781 } 6782 case Intrinsic::vector_insert: { 6783 Value *Vec = Args[0]; 6784 Value *SubVec = Args[1]; 6785 Value *Idx = Args[2]; 6786 Type *ReturnType = F->getReturnType(); 6787 6788 // (insert_vector Y, (extract_vector X, 0), 0) -> X 6789 // where: Y is X, or Y is undef 6790 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 6791 Value *X = nullptr; 6792 if (match(SubVec, 6793 m_Intrinsic<Intrinsic::vector_extract>(m_Value(X), m_Zero())) && 6794 (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 && 6795 X->getType() == ReturnType) 6796 return X; 6797 6798 return nullptr; 6799 } 6800 case Intrinsic::experimental_constrained_fadd: { 6801 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6802 return simplifyFAddInst(Args[0], Args[1], FPI->getFastMathFlags(), Q, 6803 *FPI->getExceptionBehavior(), 6804 *FPI->getRoundingMode()); 6805 } 6806 case Intrinsic::experimental_constrained_fsub: { 6807 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6808 return simplifyFSubInst(Args[0], Args[1], FPI->getFastMathFlags(), Q, 6809 *FPI->getExceptionBehavior(), 6810 *FPI->getRoundingMode()); 6811 } 6812 case Intrinsic::experimental_constrained_fmul: { 6813 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6814 return simplifyFMulInst(Args[0], Args[1], FPI->getFastMathFlags(), Q, 6815 *FPI->getExceptionBehavior(), 6816 *FPI->getRoundingMode()); 6817 } 6818 case Intrinsic::experimental_constrained_fdiv: { 6819 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6820 return simplifyFDivInst(Args[0], Args[1], FPI->getFastMathFlags(), Q, 6821 *FPI->getExceptionBehavior(), 6822 *FPI->getRoundingMode()); 6823 } 6824 case Intrinsic::experimental_constrained_frem: { 6825 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6826 return simplifyFRemInst(Args[0], Args[1], FPI->getFastMathFlags(), Q, 6827 *FPI->getExceptionBehavior(), 6828 *FPI->getRoundingMode()); 6829 } 6830 case Intrinsic::experimental_constrained_ldexp: 6831 return simplifyLdexp(Args[0], Args[1], Q, true); 6832 default: 6833 return nullptr; 6834 } 6835 } 6836 6837 static Value *tryConstantFoldCall(CallBase *Call, Value *Callee, 6838 ArrayRef<Value *> Args, 6839 const SimplifyQuery &Q) { 6840 auto *F = dyn_cast<Function>(Callee); 6841 if (!F || !canConstantFoldCallTo(Call, F)) 6842 return nullptr; 6843 6844 SmallVector<Constant *, 4> ConstantArgs; 6845 ConstantArgs.reserve(Args.size()); 6846 for (Value *Arg : Args) { 6847 Constant *C = dyn_cast<Constant>(Arg); 6848 if (!C) { 6849 if (isa<MetadataAsValue>(Arg)) 6850 continue; 6851 return nullptr; 6852 } 6853 ConstantArgs.push_back(C); 6854 } 6855 6856 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 6857 } 6858 6859 Value *llvm::simplifyCall(CallBase *Call, Value *Callee, ArrayRef<Value *> Args, 6860 const SimplifyQuery &Q) { 6861 // Args should not contain operand bundle operands. 6862 assert(Call->arg_size() == Args.size()); 6863 6864 // musttail calls can only be simplified if they are also DCEd. 6865 // As we can't guarantee this here, don't simplify them. 6866 if (Call->isMustTailCall()) 6867 return nullptr; 6868 6869 // call undef -> poison 6870 // call null -> poison 6871 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 6872 return PoisonValue::get(Call->getType()); 6873 6874 if (Value *V = tryConstantFoldCall(Call, Callee, Args, Q)) 6875 return V; 6876 6877 auto *F = dyn_cast<Function>(Callee); 6878 if (F && F->isIntrinsic()) 6879 if (Value *Ret = simplifyIntrinsic(Call, Callee, Args, Q)) 6880 return Ret; 6881 6882 return nullptr; 6883 } 6884 6885 Value *llvm::simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q) { 6886 assert(isa<ConstrainedFPIntrinsic>(Call)); 6887 SmallVector<Value *, 4> Args(Call->args()); 6888 if (Value *V = tryConstantFoldCall(Call, Call->getCalledOperand(), Args, Q)) 6889 return V; 6890 if (Value *Ret = simplifyIntrinsic(Call, Call->getCalledOperand(), Args, Q)) 6891 return Ret; 6892 return nullptr; 6893 } 6894 6895 /// Given operands for a Freeze, see if we can fold the result. 6896 static Value *simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6897 // Use a utility function defined in ValueTracking. 6898 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) 6899 return Op0; 6900 // We have room for improvement. 6901 return nullptr; 6902 } 6903 6904 Value *llvm::simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6905 return ::simplifyFreezeInst(Op0, Q); 6906 } 6907 6908 Value *llvm::simplifyLoadInst(LoadInst *LI, Value *PtrOp, 6909 const SimplifyQuery &Q) { 6910 if (LI->isVolatile()) 6911 return nullptr; 6912 6913 if (auto *PtrOpC = dyn_cast<Constant>(PtrOp)) 6914 return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Q.DL); 6915 6916 // We can only fold the load if it is from a constant global with definitive 6917 // initializer. Skip expensive logic if this is not the case. 6918 auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(PtrOp)); 6919 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 6920 return nullptr; 6921 6922 // If GlobalVariable's initializer is uniform, then return the constant 6923 // regardless of its offset. 6924 if (Constant *C = 6925 ConstantFoldLoadFromUniformValue(GV->getInitializer(), LI->getType())) 6926 return C; 6927 6928 // Try to convert operand into a constant by stripping offsets while looking 6929 // through invariant.group intrinsics. 6930 APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0); 6931 PtrOp = PtrOp->stripAndAccumulateConstantOffsets( 6932 Q.DL, Offset, /* AllowNonInbounts */ true, 6933 /* AllowInvariantGroup */ true); 6934 if (PtrOp == GV) { 6935 // Index size may have changed due to address space casts. 6936 Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType())); 6937 return ConstantFoldLoadFromConstPtr(GV, LI->getType(), Offset, Q.DL); 6938 } 6939 6940 return nullptr; 6941 } 6942 6943 /// See if we can compute a simplified version of this instruction. 6944 /// If not, this returns null. 6945 6946 static Value *simplifyInstructionWithOperands(Instruction *I, 6947 ArrayRef<Value *> NewOps, 6948 const SimplifyQuery &SQ, 6949 unsigned MaxRecurse) { 6950 assert(I->getFunction() && "instruction should be inserted in a function"); 6951 assert((!SQ.CxtI || SQ.CxtI->getFunction() == I->getFunction()) && 6952 "context instruction should be in the same function"); 6953 6954 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 6955 6956 switch (I->getOpcode()) { 6957 default: 6958 if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) { 6959 SmallVector<Constant *, 8> NewConstOps(NewOps.size()); 6960 transform(NewOps, NewConstOps.begin(), 6961 [](Value *V) { return cast<Constant>(V); }); 6962 return ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI); 6963 } 6964 return nullptr; 6965 case Instruction::FNeg: 6966 return simplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q, MaxRecurse); 6967 case Instruction::FAdd: 6968 return simplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q, 6969 MaxRecurse); 6970 case Instruction::Add: 6971 return simplifyAddInst( 6972 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6973 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse); 6974 case Instruction::FSub: 6975 return simplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q, 6976 MaxRecurse); 6977 case Instruction::Sub: 6978 return simplifySubInst( 6979 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6980 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse); 6981 case Instruction::FMul: 6982 return simplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q, 6983 MaxRecurse); 6984 case Instruction::Mul: 6985 return simplifyMulInst( 6986 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6987 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse); 6988 case Instruction::SDiv: 6989 return simplifySDivInst(NewOps[0], NewOps[1], 6990 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q, 6991 MaxRecurse); 6992 case Instruction::UDiv: 6993 return simplifyUDivInst(NewOps[0], NewOps[1], 6994 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q, 6995 MaxRecurse); 6996 case Instruction::FDiv: 6997 return simplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q, 6998 MaxRecurse); 6999 case Instruction::SRem: 7000 return simplifySRemInst(NewOps[0], NewOps[1], Q, MaxRecurse); 7001 case Instruction::URem: 7002 return simplifyURemInst(NewOps[0], NewOps[1], Q, MaxRecurse); 7003 case Instruction::FRem: 7004 return simplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q, 7005 MaxRecurse); 7006 case Instruction::Shl: 7007 return simplifyShlInst( 7008 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 7009 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse); 7010 case Instruction::LShr: 7011 return simplifyLShrInst(NewOps[0], NewOps[1], 7012 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q, 7013 MaxRecurse); 7014 case Instruction::AShr: 7015 return simplifyAShrInst(NewOps[0], NewOps[1], 7016 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q, 7017 MaxRecurse); 7018 case Instruction::And: 7019 return simplifyAndInst(NewOps[0], NewOps[1], Q, MaxRecurse); 7020 case Instruction::Or: 7021 return simplifyOrInst(NewOps[0], NewOps[1], Q, MaxRecurse); 7022 case Instruction::Xor: 7023 return simplifyXorInst(NewOps[0], NewOps[1], Q, MaxRecurse); 7024 case Instruction::ICmp: 7025 return simplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0], 7026 NewOps[1], Q, MaxRecurse); 7027 case Instruction::FCmp: 7028 return simplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0], 7029 NewOps[1], I->getFastMathFlags(), Q, MaxRecurse); 7030 case Instruction::Select: 7031 return simplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q, MaxRecurse); 7032 break; 7033 case Instruction::GetElementPtr: { 7034 auto *GEPI = cast<GetElementPtrInst>(I); 7035 return simplifyGEPInst(GEPI->getSourceElementType(), NewOps[0], 7036 ArrayRef(NewOps).slice(1), GEPI->isInBounds(), Q, 7037 MaxRecurse); 7038 } 7039 case Instruction::InsertValue: { 7040 InsertValueInst *IV = cast<InsertValueInst>(I); 7041 return simplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q, 7042 MaxRecurse); 7043 } 7044 case Instruction::InsertElement: 7045 return simplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q); 7046 case Instruction::ExtractValue: { 7047 auto *EVI = cast<ExtractValueInst>(I); 7048 return simplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q, 7049 MaxRecurse); 7050 } 7051 case Instruction::ExtractElement: 7052 return simplifyExtractElementInst(NewOps[0], NewOps[1], Q, MaxRecurse); 7053 case Instruction::ShuffleVector: { 7054 auto *SVI = cast<ShuffleVectorInst>(I); 7055 return simplifyShuffleVectorInst(NewOps[0], NewOps[1], 7056 SVI->getShuffleMask(), SVI->getType(), Q, 7057 MaxRecurse); 7058 } 7059 case Instruction::PHI: 7060 return simplifyPHINode(cast<PHINode>(I), NewOps, Q); 7061 case Instruction::Call: 7062 return simplifyCall( 7063 cast<CallInst>(I), NewOps.back(), 7064 NewOps.drop_back(1 + cast<CallInst>(I)->getNumTotalBundleOperands()), Q); 7065 case Instruction::Freeze: 7066 return llvm::simplifyFreezeInst(NewOps[0], Q); 7067 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 7068 #include "llvm/IR/Instruction.def" 7069 #undef HANDLE_CAST_INST 7070 return simplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q, 7071 MaxRecurse); 7072 case Instruction::Alloca: 7073 // No simplifications for Alloca and it can't be constant folded. 7074 return nullptr; 7075 case Instruction::Load: 7076 return simplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q); 7077 } 7078 } 7079 7080 Value *llvm::simplifyInstructionWithOperands(Instruction *I, 7081 ArrayRef<Value *> NewOps, 7082 const SimplifyQuery &SQ) { 7083 assert(NewOps.size() == I->getNumOperands() && 7084 "Number of operands should match the instruction!"); 7085 return ::simplifyInstructionWithOperands(I, NewOps, SQ, RecursionLimit); 7086 } 7087 7088 Value *llvm::simplifyInstruction(Instruction *I, const SimplifyQuery &SQ) { 7089 SmallVector<Value *, 8> Ops(I->operands()); 7090 Value *Result = ::simplifyInstructionWithOperands(I, Ops, SQ, RecursionLimit); 7091 7092 /// If called on unreachable code, the instruction may simplify to itself. 7093 /// Make life easier for users by detecting that case here, and returning a 7094 /// safe value instead. 7095 return Result == I ? UndefValue::get(I->getType()) : Result; 7096 } 7097 7098 /// Implementation of recursive simplification through an instruction's 7099 /// uses. 7100 /// 7101 /// This is the common implementation of the recursive simplification routines. 7102 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 7103 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 7104 /// instructions to process and attempt to simplify it using 7105 /// InstructionSimplify. Recursively visited users which could not be 7106 /// simplified themselves are to the optional UnsimplifiedUsers set for 7107 /// further processing by the caller. 7108 /// 7109 /// This routine returns 'true' only when *it* simplifies something. The passed 7110 /// in simplified value does not count toward this. 7111 static bool replaceAndRecursivelySimplifyImpl( 7112 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 7113 const DominatorTree *DT, AssumptionCache *AC, 7114 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 7115 bool Simplified = false; 7116 SmallSetVector<Instruction *, 8> Worklist; 7117 const DataLayout &DL = I->getModule()->getDataLayout(); 7118 7119 // If we have an explicit value to collapse to, do that round of the 7120 // simplification loop by hand initially. 7121 if (SimpleV) { 7122 for (User *U : I->users()) 7123 if (U != I) 7124 Worklist.insert(cast<Instruction>(U)); 7125 7126 // Replace the instruction with its simplified value. 7127 I->replaceAllUsesWith(SimpleV); 7128 7129 if (!I->isEHPad() && !I->isTerminator() && !I->mayHaveSideEffects()) 7130 I->eraseFromParent(); 7131 } else { 7132 Worklist.insert(I); 7133 } 7134 7135 // Note that we must test the size on each iteration, the worklist can grow. 7136 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 7137 I = Worklist[Idx]; 7138 7139 // See if this instruction simplifies. 7140 SimpleV = simplifyInstruction(I, {DL, TLI, DT, AC}); 7141 if (!SimpleV) { 7142 if (UnsimplifiedUsers) 7143 UnsimplifiedUsers->insert(I); 7144 continue; 7145 } 7146 7147 Simplified = true; 7148 7149 // Stash away all the uses of the old instruction so we can check them for 7150 // recursive simplifications after a RAUW. This is cheaper than checking all 7151 // uses of To on the recursive step in most cases. 7152 for (User *U : I->users()) 7153 Worklist.insert(cast<Instruction>(U)); 7154 7155 // Replace the instruction with its simplified value. 7156 I->replaceAllUsesWith(SimpleV); 7157 7158 if (!I->isEHPad() && !I->isTerminator() && !I->mayHaveSideEffects()) 7159 I->eraseFromParent(); 7160 } 7161 return Simplified; 7162 } 7163 7164 bool llvm::replaceAndRecursivelySimplify( 7165 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 7166 const DominatorTree *DT, AssumptionCache *AC, 7167 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 7168 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 7169 assert(SimpleV && "Must provide a simplified value."); 7170 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 7171 UnsimplifiedUsers); 7172 } 7173 7174 namespace llvm { 7175 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 7176 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 7177 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 7178 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 7179 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 7180 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 7181 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 7182 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 7183 } 7184 7185 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 7186 const DataLayout &DL) { 7187 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 7188 } 7189 7190 template <class T, class... TArgs> 7191 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 7192 Function &F) { 7193 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 7194 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 7195 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 7196 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 7197 } 7198 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 7199 Function &); 7200 } // namespace llvm 7201 7202 void InstSimplifyFolder::anchor() {} 7203