xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/InstructionSimplify.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions.  This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/InstructionSimplify.h"
20 
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/CmpInstAnalysis.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/LoopAnalysisManager.h"
31 #include "llvm/Analysis/MemoryBuiltins.h"
32 #include "llvm/Analysis/OverflowInstAnalysis.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/ConstantRange.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/GetElementPtrTypeIterator.h"
39 #include "llvm/IR/GlobalAlias.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/Operator.h"
43 #include "llvm/IR/PatternMatch.h"
44 #include "llvm/IR/ValueHandle.h"
45 #include "llvm/Support/KnownBits.h"
46 #include <algorithm>
47 using namespace llvm;
48 using namespace llvm::PatternMatch;
49 
50 #define DEBUG_TYPE "instsimplify"
51 
52 enum { RecursionLimit = 3 };
53 
54 STATISTIC(NumExpand,  "Number of expansions");
55 STATISTIC(NumReassoc, "Number of reassociations");
56 
57 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
58 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
59 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
60                              const SimplifyQuery &, unsigned);
61 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
62                             unsigned);
63 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
64                             const SimplifyQuery &, unsigned);
65 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
66                               unsigned);
67 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
68                                const SimplifyQuery &Q, unsigned MaxRecurse);
69 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
70 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
71 static Value *SimplifyCastInst(unsigned, Value *, Type *,
72                                const SimplifyQuery &, unsigned);
73 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, bool,
74                               const SimplifyQuery &, unsigned);
75 static Value *SimplifySelectInst(Value *, Value *, Value *,
76                                  const SimplifyQuery &, unsigned);
77 
78 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
79                                      Value *FalseVal) {
80   BinaryOperator::BinaryOps BinOpCode;
81   if (auto *BO = dyn_cast<BinaryOperator>(Cond))
82     BinOpCode = BO->getOpcode();
83   else
84     return nullptr;
85 
86   CmpInst::Predicate ExpectedPred, Pred1, Pred2;
87   if (BinOpCode == BinaryOperator::Or) {
88     ExpectedPred = ICmpInst::ICMP_NE;
89   } else if (BinOpCode == BinaryOperator::And) {
90     ExpectedPred = ICmpInst::ICMP_EQ;
91   } else
92     return nullptr;
93 
94   // %A = icmp eq %TV, %FV
95   // %B = icmp eq %X, %Y (and one of these is a select operand)
96   // %C = and %A, %B
97   // %D = select %C, %TV, %FV
98   // -->
99   // %FV
100 
101   // %A = icmp ne %TV, %FV
102   // %B = icmp ne %X, %Y (and one of these is a select operand)
103   // %C = or %A, %B
104   // %D = select %C, %TV, %FV
105   // -->
106   // %TV
107   Value *X, *Y;
108   if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
109                                       m_Specific(FalseVal)),
110                              m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
111       Pred1 != Pred2 || Pred1 != ExpectedPred)
112     return nullptr;
113 
114   if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
115     return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
116 
117   return nullptr;
118 }
119 
120 /// For a boolean type or a vector of boolean type, return false or a vector
121 /// with every element false.
122 static Constant *getFalse(Type *Ty) {
123   return ConstantInt::getFalse(Ty);
124 }
125 
126 /// For a boolean type or a vector of boolean type, return true or a vector
127 /// with every element true.
128 static Constant *getTrue(Type *Ty) {
129   return ConstantInt::getTrue(Ty);
130 }
131 
132 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
133 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
134                           Value *RHS) {
135   CmpInst *Cmp = dyn_cast<CmpInst>(V);
136   if (!Cmp)
137     return false;
138   CmpInst::Predicate CPred = Cmp->getPredicate();
139   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
140   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
141     return true;
142   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
143     CRHS == LHS;
144 }
145 
146 /// Simplify comparison with true or false branch of select:
147 ///  %sel = select i1 %cond, i32 %tv, i32 %fv
148 ///  %cmp = icmp sle i32 %sel, %rhs
149 /// Compose new comparison by substituting %sel with either %tv or %fv
150 /// and see if it simplifies.
151 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS,
152                                  Value *RHS, Value *Cond,
153                                  const SimplifyQuery &Q, unsigned MaxRecurse,
154                                  Constant *TrueOrFalse) {
155   Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse);
156   if (SimplifiedCmp == Cond) {
157     // %cmp simplified to the select condition (%cond).
158     return TrueOrFalse;
159   } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) {
160     // It didn't simplify. However, if composed comparison is equivalent
161     // to the select condition (%cond) then we can replace it.
162     return TrueOrFalse;
163   }
164   return SimplifiedCmp;
165 }
166 
167 /// Simplify comparison with true branch of select
168 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS,
169                                      Value *RHS, Value *Cond,
170                                      const SimplifyQuery &Q,
171                                      unsigned MaxRecurse) {
172   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
173                             getTrue(Cond->getType()));
174 }
175 
176 /// Simplify comparison with false branch of select
177 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS,
178                                       Value *RHS, Value *Cond,
179                                       const SimplifyQuery &Q,
180                                       unsigned MaxRecurse) {
181   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
182                             getFalse(Cond->getType()));
183 }
184 
185 /// We know comparison with both branches of select can be simplified, but they
186 /// are not equal. This routine handles some logical simplifications.
187 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp,
188                                                Value *Cond,
189                                                const SimplifyQuery &Q,
190                                                unsigned MaxRecurse) {
191   // If the false value simplified to false, then the result of the compare
192   // is equal to "Cond && TCmp".  This also catches the case when the false
193   // value simplified to false and the true value to true, returning "Cond".
194   // Folding select to and/or isn't poison-safe in general; impliesPoison
195   // checks whether folding it does not convert a well-defined value into
196   // poison.
197   if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond))
198     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
199       return V;
200   // If the true value simplified to true, then the result of the compare
201   // is equal to "Cond || FCmp".
202   if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond))
203     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
204       return V;
205   // Finally, if the false value simplified to true and the true value to
206   // false, then the result of the compare is equal to "!Cond".
207   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
208     if (Value *V = SimplifyXorInst(
209             Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse))
210       return V;
211   return nullptr;
212 }
213 
214 /// Does the given value dominate the specified phi node?
215 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
216   Instruction *I = dyn_cast<Instruction>(V);
217   if (!I)
218     // Arguments and constants dominate all instructions.
219     return true;
220 
221   // If we are processing instructions (and/or basic blocks) that have not been
222   // fully added to a function, the parent nodes may still be null. Simply
223   // return the conservative answer in these cases.
224   if (!I->getParent() || !P->getParent() || !I->getFunction())
225     return false;
226 
227   // If we have a DominatorTree then do a precise test.
228   if (DT)
229     return DT->dominates(I, P);
230 
231   // Otherwise, if the instruction is in the entry block and is not an invoke,
232   // then it obviously dominates all phi nodes.
233   if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) &&
234       !isa<CallBrInst>(I))
235     return true;
236 
237   return false;
238 }
239 
240 /// Try to simplify a binary operator of form "V op OtherOp" where V is
241 /// "(B0 opex B1)" by distributing 'op' across 'opex' as
242 /// "(B0 op OtherOp) opex (B1 op OtherOp)".
243 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V,
244                           Value *OtherOp, Instruction::BinaryOps OpcodeToExpand,
245                           const SimplifyQuery &Q, unsigned MaxRecurse) {
246   auto *B = dyn_cast<BinaryOperator>(V);
247   if (!B || B->getOpcode() != OpcodeToExpand)
248     return nullptr;
249   Value *B0 = B->getOperand(0), *B1 = B->getOperand(1);
250   Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(),
251                            MaxRecurse);
252   if (!L)
253     return nullptr;
254   Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(),
255                            MaxRecurse);
256   if (!R)
257     return nullptr;
258 
259   // Does the expanded pair of binops simplify to the existing binop?
260   if ((L == B0 && R == B1) ||
261       (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) {
262     ++NumExpand;
263     return B;
264   }
265 
266   // Otherwise, return "L op' R" if it simplifies.
267   Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse);
268   if (!S)
269     return nullptr;
270 
271   ++NumExpand;
272   return S;
273 }
274 
275 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by
276 /// distributing op over op'.
277 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode,
278                                      Value *L, Value *R,
279                                      Instruction::BinaryOps OpcodeToExpand,
280                                      const SimplifyQuery &Q,
281                                      unsigned MaxRecurse) {
282   // Recursion is always used, so bail out at once if we already hit the limit.
283   if (!MaxRecurse--)
284     return nullptr;
285 
286   if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse))
287     return V;
288   if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse))
289     return V;
290   return nullptr;
291 }
292 
293 /// Generic simplifications for associative binary operations.
294 /// Returns the simpler value, or null if none was found.
295 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
296                                        Value *LHS, Value *RHS,
297                                        const SimplifyQuery &Q,
298                                        unsigned MaxRecurse) {
299   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
300 
301   // Recursion is always used, so bail out at once if we already hit the limit.
302   if (!MaxRecurse--)
303     return nullptr;
304 
305   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
306   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
307 
308   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
309   if (Op0 && Op0->getOpcode() == Opcode) {
310     Value *A = Op0->getOperand(0);
311     Value *B = Op0->getOperand(1);
312     Value *C = RHS;
313 
314     // Does "B op C" simplify?
315     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
316       // It does!  Return "A op V" if it simplifies or is already available.
317       // If V equals B then "A op V" is just the LHS.
318       if (V == B) return LHS;
319       // Otherwise return "A op V" if it simplifies.
320       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
321         ++NumReassoc;
322         return W;
323       }
324     }
325   }
326 
327   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
328   if (Op1 && Op1->getOpcode() == Opcode) {
329     Value *A = LHS;
330     Value *B = Op1->getOperand(0);
331     Value *C = Op1->getOperand(1);
332 
333     // Does "A op B" simplify?
334     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
335       // It does!  Return "V op C" if it simplifies or is already available.
336       // If V equals B then "V op C" is just the RHS.
337       if (V == B) return RHS;
338       // Otherwise return "V op C" if it simplifies.
339       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
340         ++NumReassoc;
341         return W;
342       }
343     }
344   }
345 
346   // The remaining transforms require commutativity as well as associativity.
347   if (!Instruction::isCommutative(Opcode))
348     return nullptr;
349 
350   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
351   if (Op0 && Op0->getOpcode() == Opcode) {
352     Value *A = Op0->getOperand(0);
353     Value *B = Op0->getOperand(1);
354     Value *C = RHS;
355 
356     // Does "C op A" simplify?
357     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
358       // It does!  Return "V op B" if it simplifies or is already available.
359       // If V equals A then "V op B" is just the LHS.
360       if (V == A) return LHS;
361       // Otherwise return "V op B" if it simplifies.
362       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
363         ++NumReassoc;
364         return W;
365       }
366     }
367   }
368 
369   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
370   if (Op1 && Op1->getOpcode() == Opcode) {
371     Value *A = LHS;
372     Value *B = Op1->getOperand(0);
373     Value *C = Op1->getOperand(1);
374 
375     // Does "C op A" simplify?
376     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
377       // It does!  Return "B op V" if it simplifies or is already available.
378       // If V equals C then "B op V" is just the RHS.
379       if (V == C) return RHS;
380       // Otherwise return "B op V" if it simplifies.
381       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
382         ++NumReassoc;
383         return W;
384       }
385     }
386   }
387 
388   return nullptr;
389 }
390 
391 /// In the case of a binary operation with a select instruction as an operand,
392 /// try to simplify the binop by seeing whether evaluating it on both branches
393 /// of the select results in the same value. Returns the common value if so,
394 /// otherwise returns null.
395 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
396                                     Value *RHS, const SimplifyQuery &Q,
397                                     unsigned MaxRecurse) {
398   // Recursion is always used, so bail out at once if we already hit the limit.
399   if (!MaxRecurse--)
400     return nullptr;
401 
402   SelectInst *SI;
403   if (isa<SelectInst>(LHS)) {
404     SI = cast<SelectInst>(LHS);
405   } else {
406     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
407     SI = cast<SelectInst>(RHS);
408   }
409 
410   // Evaluate the BinOp on the true and false branches of the select.
411   Value *TV;
412   Value *FV;
413   if (SI == LHS) {
414     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
415     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
416   } else {
417     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
418     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
419   }
420 
421   // If they simplified to the same value, then return the common value.
422   // If they both failed to simplify then return null.
423   if (TV == FV)
424     return TV;
425 
426   // If one branch simplified to undef, return the other one.
427   if (TV && Q.isUndefValue(TV))
428     return FV;
429   if (FV && Q.isUndefValue(FV))
430     return TV;
431 
432   // If applying the operation did not change the true and false select values,
433   // then the result of the binop is the select itself.
434   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
435     return SI;
436 
437   // If one branch simplified and the other did not, and the simplified
438   // value is equal to the unsimplified one, return the simplified value.
439   // For example, select (cond, X, X & Z) & Z -> X & Z.
440   if ((FV && !TV) || (TV && !FV)) {
441     // Check that the simplified value has the form "X op Y" where "op" is the
442     // same as the original operation.
443     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
444     if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
445       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
446       // We already know that "op" is the same as for the simplified value.  See
447       // if the operands match too.  If so, return the simplified value.
448       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
449       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
450       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
451       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
452           Simplified->getOperand(1) == UnsimplifiedRHS)
453         return Simplified;
454       if (Simplified->isCommutative() &&
455           Simplified->getOperand(1) == UnsimplifiedLHS &&
456           Simplified->getOperand(0) == UnsimplifiedRHS)
457         return Simplified;
458     }
459   }
460 
461   return nullptr;
462 }
463 
464 /// In the case of a comparison with a select instruction, try to simplify the
465 /// comparison by seeing whether both branches of the select result in the same
466 /// value. Returns the common value if so, otherwise returns null.
467 /// For example, if we have:
468 ///  %tmp = select i1 %cmp, i32 1, i32 2
469 ///  %cmp1 = icmp sle i32 %tmp, 3
470 /// We can simplify %cmp1 to true, because both branches of select are
471 /// less than 3. We compose new comparison by substituting %tmp with both
472 /// branches of select and see if it can be simplified.
473 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
474                                   Value *RHS, const SimplifyQuery &Q,
475                                   unsigned MaxRecurse) {
476   // Recursion is always used, so bail out at once if we already hit the limit.
477   if (!MaxRecurse--)
478     return nullptr;
479 
480   // Make sure the select is on the LHS.
481   if (!isa<SelectInst>(LHS)) {
482     std::swap(LHS, RHS);
483     Pred = CmpInst::getSwappedPredicate(Pred);
484   }
485   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
486   SelectInst *SI = cast<SelectInst>(LHS);
487   Value *Cond = SI->getCondition();
488   Value *TV = SI->getTrueValue();
489   Value *FV = SI->getFalseValue();
490 
491   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
492   // Does "cmp TV, RHS" simplify?
493   Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse);
494   if (!TCmp)
495     return nullptr;
496 
497   // Does "cmp FV, RHS" simplify?
498   Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse);
499   if (!FCmp)
500     return nullptr;
501 
502   // If both sides simplified to the same value, then use it as the result of
503   // the original comparison.
504   if (TCmp == FCmp)
505     return TCmp;
506 
507   // The remaining cases only make sense if the select condition has the same
508   // type as the result of the comparison, so bail out if this is not so.
509   if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy())
510     return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse);
511 
512   return nullptr;
513 }
514 
515 /// In the case of a binary operation with an operand that is a PHI instruction,
516 /// try to simplify the binop by seeing whether evaluating it on the incoming
517 /// phi values yields the same result for every value. If so returns the common
518 /// value, otherwise returns null.
519 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
520                                  Value *RHS, const SimplifyQuery &Q,
521                                  unsigned MaxRecurse) {
522   // Recursion is always used, so bail out at once if we already hit the limit.
523   if (!MaxRecurse--)
524     return nullptr;
525 
526   PHINode *PI;
527   if (isa<PHINode>(LHS)) {
528     PI = cast<PHINode>(LHS);
529     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
530     if (!valueDominatesPHI(RHS, PI, Q.DT))
531       return nullptr;
532   } else {
533     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
534     PI = cast<PHINode>(RHS);
535     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
536     if (!valueDominatesPHI(LHS, PI, Q.DT))
537       return nullptr;
538   }
539 
540   // Evaluate the BinOp on the incoming phi values.
541   Value *CommonValue = nullptr;
542   for (Value *Incoming : PI->incoming_values()) {
543     // If the incoming value is the phi node itself, it can safely be skipped.
544     if (Incoming == PI) continue;
545     Value *V = PI == LHS ?
546       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
547       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
548     // If the operation failed to simplify, or simplified to a different value
549     // to previously, then give up.
550     if (!V || (CommonValue && V != CommonValue))
551       return nullptr;
552     CommonValue = V;
553   }
554 
555   return CommonValue;
556 }
557 
558 /// In the case of a comparison with a PHI instruction, try to simplify the
559 /// comparison by seeing whether comparing with all of the incoming phi values
560 /// yields the same result every time. If so returns the common result,
561 /// otherwise returns null.
562 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
563                                const SimplifyQuery &Q, unsigned MaxRecurse) {
564   // Recursion is always used, so bail out at once if we already hit the limit.
565   if (!MaxRecurse--)
566     return nullptr;
567 
568   // Make sure the phi is on the LHS.
569   if (!isa<PHINode>(LHS)) {
570     std::swap(LHS, RHS);
571     Pred = CmpInst::getSwappedPredicate(Pred);
572   }
573   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
574   PHINode *PI = cast<PHINode>(LHS);
575 
576   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
577   if (!valueDominatesPHI(RHS, PI, Q.DT))
578     return nullptr;
579 
580   // Evaluate the BinOp on the incoming phi values.
581   Value *CommonValue = nullptr;
582   for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) {
583     Value *Incoming = PI->getIncomingValue(u);
584     Instruction *InTI = PI->getIncomingBlock(u)->getTerminator();
585     // If the incoming value is the phi node itself, it can safely be skipped.
586     if (Incoming == PI) continue;
587     // Change the context instruction to the "edge" that flows into the phi.
588     // This is important because that is where incoming is actually "evaluated"
589     // even though it is used later somewhere else.
590     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI),
591                                MaxRecurse);
592     // If the operation failed to simplify, or simplified to a different value
593     // to previously, then give up.
594     if (!V || (CommonValue && V != CommonValue))
595       return nullptr;
596     CommonValue = V;
597   }
598 
599   return CommonValue;
600 }
601 
602 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
603                                        Value *&Op0, Value *&Op1,
604                                        const SimplifyQuery &Q) {
605   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
606     if (auto *CRHS = dyn_cast<Constant>(Op1))
607       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
608 
609     // Canonicalize the constant to the RHS if this is a commutative operation.
610     if (Instruction::isCommutative(Opcode))
611       std::swap(Op0, Op1);
612   }
613   return nullptr;
614 }
615 
616 /// Given operands for an Add, see if we can fold the result.
617 /// If not, this returns null.
618 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
619                               const SimplifyQuery &Q, unsigned MaxRecurse) {
620   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
621     return C;
622 
623   // X + undef -> undef
624   if (Q.isUndefValue(Op1))
625     return Op1;
626 
627   // X + 0 -> X
628   if (match(Op1, m_Zero()))
629     return Op0;
630 
631   // If two operands are negative, return 0.
632   if (isKnownNegation(Op0, Op1))
633     return Constant::getNullValue(Op0->getType());
634 
635   // X + (Y - X) -> Y
636   // (Y - X) + X -> Y
637   // Eg: X + -X -> 0
638   Value *Y = nullptr;
639   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
640       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
641     return Y;
642 
643   // X + ~X -> -1   since   ~X = -X-1
644   Type *Ty = Op0->getType();
645   if (match(Op0, m_Not(m_Specific(Op1))) ||
646       match(Op1, m_Not(m_Specific(Op0))))
647     return Constant::getAllOnesValue(Ty);
648 
649   // add nsw/nuw (xor Y, signmask), signmask --> Y
650   // The no-wrapping add guarantees that the top bit will be set by the add.
651   // Therefore, the xor must be clearing the already set sign bit of Y.
652   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
653       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
654     return Y;
655 
656   // add nuw %x, -1  ->  -1, because %x can only be 0.
657   if (IsNUW && match(Op1, m_AllOnes()))
658     return Op1; // Which is -1.
659 
660   /// i1 add -> xor.
661   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
662     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
663       return V;
664 
665   // Try some generic simplifications for associative operations.
666   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
667                                           MaxRecurse))
668     return V;
669 
670   // Threading Add over selects and phi nodes is pointless, so don't bother.
671   // Threading over the select in "A + select(cond, B, C)" means evaluating
672   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
673   // only if B and C are equal.  If B and C are equal then (since we assume
674   // that operands have already been simplified) "select(cond, B, C)" should
675   // have been simplified to the common value of B and C already.  Analysing
676   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
677   // for threading over phi nodes.
678 
679   return nullptr;
680 }
681 
682 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
683                              const SimplifyQuery &Query) {
684   return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
685 }
686 
687 /// Compute the base pointer and cumulative constant offsets for V.
688 ///
689 /// This strips all constant offsets off of V, leaving it the base pointer, and
690 /// accumulates the total constant offset applied in the returned constant. It
691 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
692 /// no constant offsets applied.
693 ///
694 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
695 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
696 /// folding.
697 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
698                                                 bool AllowNonInbounds = false) {
699   assert(V->getType()->isPtrOrPtrVectorTy());
700 
701   APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType()));
702 
703   V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
704   // As that strip may trace through `addrspacecast`, need to sext or trunc
705   // the offset calculated.
706   Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
707   Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth());
708 
709   Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset);
710   if (VectorType *VecTy = dyn_cast<VectorType>(V->getType()))
711     return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr);
712   return OffsetIntPtr;
713 }
714 
715 /// Compute the constant difference between two pointer values.
716 /// If the difference is not a constant, returns zero.
717 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
718                                           Value *RHS) {
719   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
720   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
721 
722   // If LHS and RHS are not related via constant offsets to the same base
723   // value, there is nothing we can do here.
724   if (LHS != RHS)
725     return nullptr;
726 
727   // Otherwise, the difference of LHS - RHS can be computed as:
728   //    LHS - RHS
729   //  = (LHSOffset + Base) - (RHSOffset + Base)
730   //  = LHSOffset - RHSOffset
731   return ConstantExpr::getSub(LHSOffset, RHSOffset);
732 }
733 
734 /// Given operands for a Sub, see if we can fold the result.
735 /// If not, this returns null.
736 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
737                               const SimplifyQuery &Q, unsigned MaxRecurse) {
738   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
739     return C;
740 
741   // X - poison -> poison
742   // poison - X -> poison
743   if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1))
744     return PoisonValue::get(Op0->getType());
745 
746   // X - undef -> undef
747   // undef - X -> undef
748   if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
749     return UndefValue::get(Op0->getType());
750 
751   // X - 0 -> X
752   if (match(Op1, m_Zero()))
753     return Op0;
754 
755   // X - X -> 0
756   if (Op0 == Op1)
757     return Constant::getNullValue(Op0->getType());
758 
759   // Is this a negation?
760   if (match(Op0, m_Zero())) {
761     // 0 - X -> 0 if the sub is NUW.
762     if (isNUW)
763       return Constant::getNullValue(Op0->getType());
764 
765     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
766     if (Known.Zero.isMaxSignedValue()) {
767       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
768       // Op1 must be 0 because negating the minimum signed value is undefined.
769       if (isNSW)
770         return Constant::getNullValue(Op0->getType());
771 
772       // 0 - X -> X if X is 0 or the minimum signed value.
773       return Op1;
774     }
775   }
776 
777   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
778   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
779   Value *X = nullptr, *Y = nullptr, *Z = Op1;
780   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
781     // See if "V === Y - Z" simplifies.
782     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
783       // It does!  Now see if "X + V" simplifies.
784       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
785         // It does, we successfully reassociated!
786         ++NumReassoc;
787         return W;
788       }
789     // See if "V === X - Z" simplifies.
790     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
791       // It does!  Now see if "Y + V" simplifies.
792       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
793         // It does, we successfully reassociated!
794         ++NumReassoc;
795         return W;
796       }
797   }
798 
799   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
800   // For example, X - (X + 1) -> -1
801   X = Op0;
802   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
803     // See if "V === X - Y" simplifies.
804     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
805       // It does!  Now see if "V - Z" simplifies.
806       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
807         // It does, we successfully reassociated!
808         ++NumReassoc;
809         return W;
810       }
811     // See if "V === X - Z" simplifies.
812     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
813       // It does!  Now see if "V - Y" simplifies.
814       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
815         // It does, we successfully reassociated!
816         ++NumReassoc;
817         return W;
818       }
819   }
820 
821   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
822   // For example, X - (X - Y) -> Y.
823   Z = Op0;
824   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
825     // See if "V === Z - X" simplifies.
826     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
827       // It does!  Now see if "V + Y" simplifies.
828       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
829         // It does, we successfully reassociated!
830         ++NumReassoc;
831         return W;
832       }
833 
834   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
835   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
836       match(Op1, m_Trunc(m_Value(Y))))
837     if (X->getType() == Y->getType())
838       // See if "V === X - Y" simplifies.
839       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
840         // It does!  Now see if "trunc V" simplifies.
841         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
842                                         Q, MaxRecurse - 1))
843           // It does, return the simplified "trunc V".
844           return W;
845 
846   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
847   if (match(Op0, m_PtrToInt(m_Value(X))) &&
848       match(Op1, m_PtrToInt(m_Value(Y))))
849     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
850       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
851 
852   // i1 sub -> xor.
853   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
854     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
855       return V;
856 
857   // Threading Sub over selects and phi nodes is pointless, so don't bother.
858   // Threading over the select in "A - select(cond, B, C)" means evaluating
859   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
860   // only if B and C are equal.  If B and C are equal then (since we assume
861   // that operands have already been simplified) "select(cond, B, C)" should
862   // have been simplified to the common value of B and C already.  Analysing
863   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
864   // for threading over phi nodes.
865 
866   return nullptr;
867 }
868 
869 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
870                              const SimplifyQuery &Q) {
871   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
872 }
873 
874 /// Given operands for a Mul, see if we can fold the result.
875 /// If not, this returns null.
876 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
877                               unsigned MaxRecurse) {
878   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
879     return C;
880 
881   // X * poison -> poison
882   if (isa<PoisonValue>(Op1))
883     return Op1;
884 
885   // X * undef -> 0
886   // X * 0 -> 0
887   if (Q.isUndefValue(Op1) || match(Op1, m_Zero()))
888     return Constant::getNullValue(Op0->getType());
889 
890   // X * 1 -> X
891   if (match(Op1, m_One()))
892     return Op0;
893 
894   // (X / Y) * Y -> X if the division is exact.
895   Value *X = nullptr;
896   if (Q.IIQ.UseInstrInfo &&
897       (match(Op0,
898              m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y
899        match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
900     return X;
901 
902   // i1 mul -> and.
903   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
904     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
905       return V;
906 
907   // Try some generic simplifications for associative operations.
908   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
909                                           MaxRecurse))
910     return V;
911 
912   // Mul distributes over Add. Try some generic simplifications based on this.
913   if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1,
914                                         Instruction::Add, Q, MaxRecurse))
915     return V;
916 
917   // If the operation is with the result of a select instruction, check whether
918   // operating on either branch of the select always yields the same value.
919   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
920     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
921                                          MaxRecurse))
922       return V;
923 
924   // If the operation is with the result of a phi instruction, check whether
925   // operating on all incoming values of the phi always yields the same value.
926   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
927     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
928                                       MaxRecurse))
929       return V;
930 
931   return nullptr;
932 }
933 
934 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
935   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
936 }
937 
938 /// Check for common or similar folds of integer division or integer remainder.
939 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
940 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0,
941                              Value *Op1, const SimplifyQuery &Q) {
942   bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv);
943   bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem);
944 
945   Type *Ty = Op0->getType();
946 
947   // X / undef -> poison
948   // X % undef -> poison
949   if (Q.isUndefValue(Op1))
950     return PoisonValue::get(Ty);
951 
952   // X / 0 -> poison
953   // X % 0 -> poison
954   // We don't need to preserve faults!
955   if (match(Op1, m_Zero()))
956     return PoisonValue::get(Ty);
957 
958   // If any element of a constant divisor fixed width vector is zero or undef
959   // the behavior is undefined and we can fold the whole op to poison.
960   auto *Op1C = dyn_cast<Constant>(Op1);
961   auto *VTy = dyn_cast<FixedVectorType>(Ty);
962   if (Op1C && VTy) {
963     unsigned NumElts = VTy->getNumElements();
964     for (unsigned i = 0; i != NumElts; ++i) {
965       Constant *Elt = Op1C->getAggregateElement(i);
966       if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt)))
967         return PoisonValue::get(Ty);
968     }
969   }
970 
971   // poison / X -> poison
972   // poison % X -> poison
973   if (isa<PoisonValue>(Op0))
974     return Op0;
975 
976   // undef / X -> 0
977   // undef % X -> 0
978   if (Q.isUndefValue(Op0))
979     return Constant::getNullValue(Ty);
980 
981   // 0 / X -> 0
982   // 0 % X -> 0
983   if (match(Op0, m_Zero()))
984     return Constant::getNullValue(Op0->getType());
985 
986   // X / X -> 1
987   // X % X -> 0
988   if (Op0 == Op1)
989     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
990 
991   // X / 1 -> X
992   // X % 1 -> 0
993   // If this is a boolean op (single-bit element type), we can't have
994   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
995   // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
996   Value *X;
997   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
998       (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
999     return IsDiv ? Op0 : Constant::getNullValue(Ty);
1000 
1001   // If X * Y does not overflow, then:
1002   //   X * Y / Y -> X
1003   //   X * Y % Y -> 0
1004   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1005     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1006     // The multiplication can't overflow if it is defined not to, or if
1007     // X == A / Y for some A.
1008     if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1009         (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) ||
1010         (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1011         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) {
1012       return IsDiv ? X : Constant::getNullValue(Op0->getType());
1013     }
1014   }
1015 
1016   return nullptr;
1017 }
1018 
1019 /// Given a predicate and two operands, return true if the comparison is true.
1020 /// This is a helper for div/rem simplification where we return some other value
1021 /// when we can prove a relationship between the operands.
1022 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
1023                        const SimplifyQuery &Q, unsigned MaxRecurse) {
1024   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
1025   Constant *C = dyn_cast_or_null<Constant>(V);
1026   return (C && C->isAllOnesValue());
1027 }
1028 
1029 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
1030 /// to simplify X % Y to X.
1031 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
1032                       unsigned MaxRecurse, bool IsSigned) {
1033   // Recursion is always used, so bail out at once if we already hit the limit.
1034   if (!MaxRecurse--)
1035     return false;
1036 
1037   if (IsSigned) {
1038     // |X| / |Y| --> 0
1039     //
1040     // We require that 1 operand is a simple constant. That could be extended to
1041     // 2 variables if we computed the sign bit for each.
1042     //
1043     // Make sure that a constant is not the minimum signed value because taking
1044     // the abs() of that is undefined.
1045     Type *Ty = X->getType();
1046     const APInt *C;
1047     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
1048       // Is the variable divisor magnitude always greater than the constant
1049       // dividend magnitude?
1050       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
1051       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
1052       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
1053       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
1054           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
1055         return true;
1056     }
1057     if (match(Y, m_APInt(C))) {
1058       // Special-case: we can't take the abs() of a minimum signed value. If
1059       // that's the divisor, then all we have to do is prove that the dividend
1060       // is also not the minimum signed value.
1061       if (C->isMinSignedValue())
1062         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
1063 
1064       // Is the variable dividend magnitude always less than the constant
1065       // divisor magnitude?
1066       // |X| < |C| --> X > -abs(C) and X < abs(C)
1067       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
1068       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
1069       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
1070           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
1071         return true;
1072     }
1073     return false;
1074   }
1075 
1076   // IsSigned == false.
1077   // Is the dividend unsigned less than the divisor?
1078   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1079 }
1080 
1081 /// These are simplifications common to SDiv and UDiv.
1082 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1083                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1084   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1085     return C;
1086 
1087   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q))
1088     return V;
1089 
1090   bool IsSigned = Opcode == Instruction::SDiv;
1091 
1092   // (X rem Y) / Y -> 0
1093   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1094       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1095     return Constant::getNullValue(Op0->getType());
1096 
1097   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1098   ConstantInt *C1, *C2;
1099   if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) &&
1100       match(Op1, m_ConstantInt(C2))) {
1101     bool Overflow;
1102     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1103     if (Overflow)
1104       return Constant::getNullValue(Op0->getType());
1105   }
1106 
1107   // If the operation is with the result of a select instruction, check whether
1108   // operating on either branch of the select always yields the same value.
1109   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1110     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1111       return V;
1112 
1113   // If the operation is with the result of a phi instruction, check whether
1114   // operating on all incoming values of the phi always yields the same value.
1115   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1116     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1117       return V;
1118 
1119   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1120     return Constant::getNullValue(Op0->getType());
1121 
1122   return nullptr;
1123 }
1124 
1125 /// These are simplifications common to SRem and URem.
1126 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1127                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1128   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1129     return C;
1130 
1131   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q))
1132     return V;
1133 
1134   // (X % Y) % Y -> X % Y
1135   if ((Opcode == Instruction::SRem &&
1136        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1137       (Opcode == Instruction::URem &&
1138        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1139     return Op0;
1140 
1141   // (X << Y) % X -> 0
1142   if (Q.IIQ.UseInstrInfo &&
1143       ((Opcode == Instruction::SRem &&
1144         match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1145        (Opcode == Instruction::URem &&
1146         match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1147     return Constant::getNullValue(Op0->getType());
1148 
1149   // If the operation is with the result of a select instruction, check whether
1150   // operating on either branch of the select always yields the same value.
1151   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1152     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1153       return V;
1154 
1155   // If the operation is with the result of a phi instruction, check whether
1156   // operating on all incoming values of the phi always yields the same value.
1157   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1158     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1159       return V;
1160 
1161   // If X / Y == 0, then X % Y == X.
1162   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1163     return Op0;
1164 
1165   return nullptr;
1166 }
1167 
1168 /// Given operands for an SDiv, see if we can fold the result.
1169 /// If not, this returns null.
1170 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1171                                unsigned MaxRecurse) {
1172   // If two operands are negated and no signed overflow, return -1.
1173   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1174     return Constant::getAllOnesValue(Op0->getType());
1175 
1176   return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1177 }
1178 
1179 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1180   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1181 }
1182 
1183 /// Given operands for a UDiv, see if we can fold the result.
1184 /// If not, this returns null.
1185 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1186                                unsigned MaxRecurse) {
1187   return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1188 }
1189 
1190 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1191   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1192 }
1193 
1194 /// Given operands for an SRem, see if we can fold the result.
1195 /// If not, this returns null.
1196 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1197                                unsigned MaxRecurse) {
1198   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1199   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1200   Value *X;
1201   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1202     return ConstantInt::getNullValue(Op0->getType());
1203 
1204   // If the two operands are negated, return 0.
1205   if (isKnownNegation(Op0, Op1))
1206     return ConstantInt::getNullValue(Op0->getType());
1207 
1208   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1209 }
1210 
1211 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1212   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1213 }
1214 
1215 /// Given operands for a URem, see if we can fold the result.
1216 /// If not, this returns null.
1217 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1218                                unsigned MaxRecurse) {
1219   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1220 }
1221 
1222 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1223   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1224 }
1225 
1226 /// Returns true if a shift by \c Amount always yields poison.
1227 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) {
1228   Constant *C = dyn_cast<Constant>(Amount);
1229   if (!C)
1230     return false;
1231 
1232   // X shift by undef -> poison because it may shift by the bitwidth.
1233   if (Q.isUndefValue(C))
1234     return true;
1235 
1236   // Shifting by the bitwidth or more is undefined.
1237   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1238     if (CI->getValue().uge(CI->getType()->getScalarSizeInBits()))
1239       return true;
1240 
1241   // If all lanes of a vector shift are undefined the whole shift is.
1242   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1243     for (unsigned I = 0,
1244                   E = cast<FixedVectorType>(C->getType())->getNumElements();
1245          I != E; ++I)
1246       if (!isPoisonShift(C->getAggregateElement(I), Q))
1247         return false;
1248     return true;
1249   }
1250 
1251   return false;
1252 }
1253 
1254 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1255 /// If not, this returns null.
1256 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1257                             Value *Op1, bool IsNSW, const SimplifyQuery &Q,
1258                             unsigned MaxRecurse) {
1259   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1260     return C;
1261 
1262   // poison shift by X -> poison
1263   if (isa<PoisonValue>(Op0))
1264     return Op0;
1265 
1266   // 0 shift by X -> 0
1267   if (match(Op0, m_Zero()))
1268     return Constant::getNullValue(Op0->getType());
1269 
1270   // X shift by 0 -> X
1271   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1272   // would be poison.
1273   Value *X;
1274   if (match(Op1, m_Zero()) ||
1275       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1276     return Op0;
1277 
1278   // Fold undefined shifts.
1279   if (isPoisonShift(Op1, Q))
1280     return PoisonValue::get(Op0->getType());
1281 
1282   // If the operation is with the result of a select instruction, check whether
1283   // operating on either branch of the select always yields the same value.
1284   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1285     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1286       return V;
1287 
1288   // If the operation is with the result of a phi instruction, check whether
1289   // operating on all incoming values of the phi always yields the same value.
1290   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1291     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1292       return V;
1293 
1294   // If any bits in the shift amount make that value greater than or equal to
1295   // the number of bits in the type, the shift is undefined.
1296   KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1297   if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth()))
1298     return PoisonValue::get(Op0->getType());
1299 
1300   // If all valid bits in the shift amount are known zero, the first operand is
1301   // unchanged.
1302   unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth());
1303   if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits)
1304     return Op0;
1305 
1306   // Check for nsw shl leading to a poison value.
1307   if (IsNSW) {
1308     assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction");
1309     KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1310     KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt);
1311 
1312     if (KnownVal.Zero.isSignBitSet())
1313       KnownShl.Zero.setSignBit();
1314     if (KnownVal.One.isSignBitSet())
1315       KnownShl.One.setSignBit();
1316 
1317     if (KnownShl.hasConflict())
1318       return PoisonValue::get(Op0->getType());
1319   }
1320 
1321   return nullptr;
1322 }
1323 
1324 /// Given operands for an Shl, LShr or AShr, see if we can
1325 /// fold the result.  If not, this returns null.
1326 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1327                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
1328                                  unsigned MaxRecurse) {
1329   if (Value *V =
1330           SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse))
1331     return V;
1332 
1333   // X >> X -> 0
1334   if (Op0 == Op1)
1335     return Constant::getNullValue(Op0->getType());
1336 
1337   // undef >> X -> 0
1338   // undef >> X -> undef (if it's exact)
1339   if (Q.isUndefValue(Op0))
1340     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1341 
1342   // The low bit cannot be shifted out of an exact shift if it is set.
1343   if (isExact) {
1344     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1345     if (Op0Known.One[0])
1346       return Op0;
1347   }
1348 
1349   return nullptr;
1350 }
1351 
1352 /// Given operands for an Shl, see if we can fold the result.
1353 /// If not, this returns null.
1354 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1355                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1356   if (Value *V =
1357           SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse))
1358     return V;
1359 
1360   // undef << X -> 0
1361   // undef << X -> undef if (if it's NSW/NUW)
1362   if (Q.isUndefValue(Op0))
1363     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1364 
1365   // (X >> A) << A -> X
1366   Value *X;
1367   if (Q.IIQ.UseInstrInfo &&
1368       match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1369     return X;
1370 
1371   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
1372   if (isNUW && match(Op0, m_Negative()))
1373     return Op0;
1374   // NOTE: could use computeKnownBits() / LazyValueInfo,
1375   // but the cost-benefit analysis suggests it isn't worth it.
1376 
1377   return nullptr;
1378 }
1379 
1380 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1381                              const SimplifyQuery &Q) {
1382   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1383 }
1384 
1385 /// Given operands for an LShr, see if we can fold the result.
1386 /// If not, this returns null.
1387 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1388                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1389   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1390                                     MaxRecurse))
1391       return V;
1392 
1393   // (X << A) >> A -> X
1394   Value *X;
1395   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1396     return X;
1397 
1398   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
1399   // We can return X as we do in the above case since OR alters no bits in X.
1400   // SimplifyDemandedBits in InstCombine can do more general optimization for
1401   // bit manipulation. This pattern aims to provide opportunities for other
1402   // optimizers by supporting a simple but common case in InstSimplify.
1403   Value *Y;
1404   const APInt *ShRAmt, *ShLAmt;
1405   if (match(Op1, m_APInt(ShRAmt)) &&
1406       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1407       *ShRAmt == *ShLAmt) {
1408     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1409     const unsigned EffWidthY = YKnown.countMaxActiveBits();
1410     if (ShRAmt->uge(EffWidthY))
1411       return X;
1412   }
1413 
1414   return nullptr;
1415 }
1416 
1417 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1418                               const SimplifyQuery &Q) {
1419   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1420 }
1421 
1422 /// Given operands for an AShr, see if we can fold the result.
1423 /// If not, this returns null.
1424 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1425                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1426   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1427                                     MaxRecurse))
1428     return V;
1429 
1430   // -1 >>a X --> -1
1431   // (-1 << X) a>> X --> -1
1432   // Do not return Op0 because it may contain undef elements if it's a vector.
1433   if (match(Op0, m_AllOnes()) ||
1434       match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1))))
1435     return Constant::getAllOnesValue(Op0->getType());
1436 
1437   // (X << A) >> A -> X
1438   Value *X;
1439   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1440     return X;
1441 
1442   // Arithmetic shifting an all-sign-bit value is a no-op.
1443   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1444   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1445     return Op0;
1446 
1447   return nullptr;
1448 }
1449 
1450 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1451                               const SimplifyQuery &Q) {
1452   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1453 }
1454 
1455 /// Commuted variants are assumed to be handled by calling this function again
1456 /// with the parameters swapped.
1457 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1458                                          ICmpInst *UnsignedICmp, bool IsAnd,
1459                                          const SimplifyQuery &Q) {
1460   Value *X, *Y;
1461 
1462   ICmpInst::Predicate EqPred;
1463   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1464       !ICmpInst::isEquality(EqPred))
1465     return nullptr;
1466 
1467   ICmpInst::Predicate UnsignedPred;
1468 
1469   Value *A, *B;
1470   // Y = (A - B);
1471   if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
1472     if (match(UnsignedICmp,
1473               m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
1474         ICmpInst::isUnsigned(UnsignedPred)) {
1475       // A >=/<= B || (A - B) != 0  <-->  true
1476       if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1477            UnsignedPred == ICmpInst::ICMP_ULE) &&
1478           EqPred == ICmpInst::ICMP_NE && !IsAnd)
1479         return ConstantInt::getTrue(UnsignedICmp->getType());
1480       // A </> B && (A - B) == 0  <-->  false
1481       if ((UnsignedPred == ICmpInst::ICMP_ULT ||
1482            UnsignedPred == ICmpInst::ICMP_UGT) &&
1483           EqPred == ICmpInst::ICMP_EQ && IsAnd)
1484         return ConstantInt::getFalse(UnsignedICmp->getType());
1485 
1486       // A </> B && (A - B) != 0  <-->  A </> B
1487       // A </> B || (A - B) != 0  <-->  (A - B) != 0
1488       if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT ||
1489                                           UnsignedPred == ICmpInst::ICMP_UGT))
1490         return IsAnd ? UnsignedICmp : ZeroICmp;
1491 
1492       // A <=/>= B && (A - B) == 0  <-->  (A - B) == 0
1493       // A <=/>= B || (A - B) == 0  <-->  A <=/>= B
1494       if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE ||
1495                                           UnsignedPred == ICmpInst::ICMP_UGE))
1496         return IsAnd ? ZeroICmp : UnsignedICmp;
1497     }
1498 
1499     // Given  Y = (A - B)
1500     //   Y >= A && Y != 0  --> Y >= A  iff B != 0
1501     //   Y <  A || Y == 0  --> Y <  A  iff B != 0
1502     if (match(UnsignedICmp,
1503               m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
1504       if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
1505           EqPred == ICmpInst::ICMP_NE &&
1506           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1507         return UnsignedICmp;
1508       if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
1509           EqPred == ICmpInst::ICMP_EQ &&
1510           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1511         return UnsignedICmp;
1512     }
1513   }
1514 
1515   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1516       ICmpInst::isUnsigned(UnsignedPred))
1517     ;
1518   else if (match(UnsignedICmp,
1519                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1520            ICmpInst::isUnsigned(UnsignedPred))
1521     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1522   else
1523     return nullptr;
1524 
1525   // X > Y && Y == 0  -->  Y == 0  iff X != 0
1526   // X > Y || Y == 0  -->  X > Y   iff X != 0
1527   if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1528       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1529     return IsAnd ? ZeroICmp : UnsignedICmp;
1530 
1531   // X <= Y && Y != 0  -->  X <= Y  iff X != 0
1532   // X <= Y || Y != 0  -->  Y != 0  iff X != 0
1533   if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1534       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1535     return IsAnd ? UnsignedICmp : ZeroICmp;
1536 
1537   // The transforms below here are expected to be handled more generally with
1538   // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's
1539   // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap,
1540   // these are candidates for removal.
1541 
1542   // X < Y && Y != 0  -->  X < Y
1543   // X < Y || Y != 0  -->  Y != 0
1544   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1545     return IsAnd ? UnsignedICmp : ZeroICmp;
1546 
1547   // X >= Y && Y == 0  -->  Y == 0
1548   // X >= Y || Y == 0  -->  X >= Y
1549   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
1550     return IsAnd ? ZeroICmp : UnsignedICmp;
1551 
1552   // X < Y && Y == 0  -->  false
1553   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1554       IsAnd)
1555     return getFalse(UnsignedICmp->getType());
1556 
1557   // X >= Y || Y != 0  -->  true
1558   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
1559       !IsAnd)
1560     return getTrue(UnsignedICmp->getType());
1561 
1562   return nullptr;
1563 }
1564 
1565 /// Commuted variants are assumed to be handled by calling this function again
1566 /// with the parameters swapped.
1567 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1568   ICmpInst::Predicate Pred0, Pred1;
1569   Value *A ,*B;
1570   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1571       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1572     return nullptr;
1573 
1574   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1575   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1576   // can eliminate Op1 from this 'and'.
1577   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1578     return Op0;
1579 
1580   // Check for any combination of predicates that are guaranteed to be disjoint.
1581   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1582       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1583       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1584       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1585     return getFalse(Op0->getType());
1586 
1587   return nullptr;
1588 }
1589 
1590 /// Commuted variants are assumed to be handled by calling this function again
1591 /// with the parameters swapped.
1592 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1593   ICmpInst::Predicate Pred0, Pred1;
1594   Value *A ,*B;
1595   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1596       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1597     return nullptr;
1598 
1599   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1600   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1601   // can eliminate Op0 from this 'or'.
1602   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1603     return Op1;
1604 
1605   // Check for any combination of predicates that cover the entire range of
1606   // possibilities.
1607   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1608       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1609       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1610       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1611     return getTrue(Op0->getType());
1612 
1613   return nullptr;
1614 }
1615 
1616 /// Test if a pair of compares with a shared operand and 2 constants has an
1617 /// empty set intersection, full set union, or if one compare is a superset of
1618 /// the other.
1619 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1620                                                 bool IsAnd) {
1621   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1622   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1623     return nullptr;
1624 
1625   const APInt *C0, *C1;
1626   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1627       !match(Cmp1->getOperand(1), m_APInt(C1)))
1628     return nullptr;
1629 
1630   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1631   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1632 
1633   // For and-of-compares, check if the intersection is empty:
1634   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1635   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1636     return getFalse(Cmp0->getType());
1637 
1638   // For or-of-compares, check if the union is full:
1639   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1640   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1641     return getTrue(Cmp0->getType());
1642 
1643   // Is one range a superset of the other?
1644   // If this is and-of-compares, take the smaller set:
1645   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1646   // If this is or-of-compares, take the larger set:
1647   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1648   if (Range0.contains(Range1))
1649     return IsAnd ? Cmp1 : Cmp0;
1650   if (Range1.contains(Range0))
1651     return IsAnd ? Cmp0 : Cmp1;
1652 
1653   return nullptr;
1654 }
1655 
1656 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1657                                            bool IsAnd) {
1658   ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1659   if (!match(Cmp0->getOperand(1), m_Zero()) ||
1660       !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1661     return nullptr;
1662 
1663   if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1664     return nullptr;
1665 
1666   // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1667   Value *X = Cmp0->getOperand(0);
1668   Value *Y = Cmp1->getOperand(0);
1669 
1670   // If one of the compares is a masked version of a (not) null check, then
1671   // that compare implies the other, so we eliminate the other. Optionally, look
1672   // through a pointer-to-int cast to match a null check of a pointer type.
1673 
1674   // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1675   // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1676   // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1677   // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1678   if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1679       match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1680     return Cmp1;
1681 
1682   // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1683   // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1684   // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1685   // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1686   if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1687       match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1688     return Cmp0;
1689 
1690   return nullptr;
1691 }
1692 
1693 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1694                                         const InstrInfoQuery &IIQ) {
1695   // (icmp (add V, C0), C1) & (icmp V, C0)
1696   ICmpInst::Predicate Pred0, Pred1;
1697   const APInt *C0, *C1;
1698   Value *V;
1699   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1700     return nullptr;
1701 
1702   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1703     return nullptr;
1704 
1705   auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1706   if (AddInst->getOperand(1) != Op1->getOperand(1))
1707     return nullptr;
1708 
1709   Type *ITy = Op0->getType();
1710   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1711   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1712 
1713   const APInt Delta = *C1 - *C0;
1714   if (C0->isStrictlyPositive()) {
1715     if (Delta == 2) {
1716       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1717         return getFalse(ITy);
1718       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1719         return getFalse(ITy);
1720     }
1721     if (Delta == 1) {
1722       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1723         return getFalse(ITy);
1724       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1725         return getFalse(ITy);
1726     }
1727   }
1728   if (C0->getBoolValue() && isNUW) {
1729     if (Delta == 2)
1730       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1731         return getFalse(ITy);
1732     if (Delta == 1)
1733       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1734         return getFalse(ITy);
1735   }
1736 
1737   return nullptr;
1738 }
1739 
1740 /// Try to eliminate compares with signed or unsigned min/max constants.
1741 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1,
1742                                                  bool IsAnd) {
1743   // Canonicalize an equality compare as Cmp0.
1744   if (Cmp1->isEquality())
1745     std::swap(Cmp0, Cmp1);
1746   if (!Cmp0->isEquality())
1747     return nullptr;
1748 
1749   // The non-equality compare must include a common operand (X). Canonicalize
1750   // the common operand as operand 0 (the predicate is swapped if the common
1751   // operand was operand 1).
1752   ICmpInst::Predicate Pred0 = Cmp0->getPredicate();
1753   Value *X = Cmp0->getOperand(0);
1754   ICmpInst::Predicate Pred1;
1755   bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value()));
1756   if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value())))
1757     return nullptr;
1758   if (ICmpInst::isEquality(Pred1))
1759     return nullptr;
1760 
1761   // The equality compare must be against a constant. Flip bits if we matched
1762   // a bitwise not. Convert a null pointer constant to an integer zero value.
1763   APInt MinMaxC;
1764   const APInt *C;
1765   if (match(Cmp0->getOperand(1), m_APInt(C)))
1766     MinMaxC = HasNotOp ? ~*C : *C;
1767   else if (isa<ConstantPointerNull>(Cmp0->getOperand(1)))
1768     MinMaxC = APInt::getZero(8);
1769   else
1770     return nullptr;
1771 
1772   // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1.
1773   if (!IsAnd) {
1774     Pred0 = ICmpInst::getInversePredicate(Pred0);
1775     Pred1 = ICmpInst::getInversePredicate(Pred1);
1776   }
1777 
1778   // Normalize to unsigned compare and unsigned min/max value.
1779   // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255
1780   if (ICmpInst::isSigned(Pred1)) {
1781     Pred1 = ICmpInst::getUnsignedPredicate(Pred1);
1782     MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth());
1783   }
1784 
1785   // (X != MAX) && (X < Y) --> X < Y
1786   // (X == MAX) || (X >= Y) --> X >= Y
1787   if (MinMaxC.isMaxValue())
1788     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT)
1789       return Cmp1;
1790 
1791   // (X != MIN) && (X > Y) -->  X > Y
1792   // (X == MIN) || (X <= Y) --> X <= Y
1793   if (MinMaxC.isMinValue())
1794     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT)
1795       return Cmp1;
1796 
1797   return nullptr;
1798 }
1799 
1800 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1801                                  const SimplifyQuery &Q) {
1802   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
1803     return X;
1804   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
1805     return X;
1806 
1807   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1808     return X;
1809   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1810     return X;
1811 
1812   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1813     return X;
1814 
1815   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true))
1816     return X;
1817 
1818   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1819     return X;
1820 
1821   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1822     return X;
1823   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1824     return X;
1825 
1826   return nullptr;
1827 }
1828 
1829 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1830                                        const InstrInfoQuery &IIQ) {
1831   // (icmp (add V, C0), C1) | (icmp V, C0)
1832   ICmpInst::Predicate Pred0, Pred1;
1833   const APInt *C0, *C1;
1834   Value *V;
1835   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1836     return nullptr;
1837 
1838   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1839     return nullptr;
1840 
1841   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1842   if (AddInst->getOperand(1) != Op1->getOperand(1))
1843     return nullptr;
1844 
1845   Type *ITy = Op0->getType();
1846   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1847   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1848 
1849   const APInt Delta = *C1 - *C0;
1850   if (C0->isStrictlyPositive()) {
1851     if (Delta == 2) {
1852       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1853         return getTrue(ITy);
1854       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1855         return getTrue(ITy);
1856     }
1857     if (Delta == 1) {
1858       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1859         return getTrue(ITy);
1860       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1861         return getTrue(ITy);
1862     }
1863   }
1864   if (C0->getBoolValue() && isNUW) {
1865     if (Delta == 2)
1866       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1867         return getTrue(ITy);
1868     if (Delta == 1)
1869       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1870         return getTrue(ITy);
1871   }
1872 
1873   return nullptr;
1874 }
1875 
1876 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1877                                 const SimplifyQuery &Q) {
1878   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
1879     return X;
1880   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
1881     return X;
1882 
1883   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1884     return X;
1885   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1886     return X;
1887 
1888   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1889     return X;
1890 
1891   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false))
1892     return X;
1893 
1894   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1895     return X;
1896 
1897   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1898     return X;
1899   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1900     return X;
1901 
1902   return nullptr;
1903 }
1904 
1905 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
1906                                    FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1907   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1908   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1909   if (LHS0->getType() != RHS0->getType())
1910     return nullptr;
1911 
1912   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1913   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1914       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1915     // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1916     // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1917     // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1918     // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1919     // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1920     // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1921     // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1922     // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1923     if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1924         (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1925       return RHS;
1926 
1927     // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1928     // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1929     // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1930     // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1931     // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1932     // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1933     // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1934     // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1935     if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1936         (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1937       return LHS;
1938   }
1939 
1940   return nullptr;
1941 }
1942 
1943 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
1944                                   Value *Op0, Value *Op1, bool IsAnd) {
1945   // Look through casts of the 'and' operands to find compares.
1946   auto *Cast0 = dyn_cast<CastInst>(Op0);
1947   auto *Cast1 = dyn_cast<CastInst>(Op1);
1948   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1949       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1950     Op0 = Cast0->getOperand(0);
1951     Op1 = Cast1->getOperand(0);
1952   }
1953 
1954   Value *V = nullptr;
1955   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1956   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1957   if (ICmp0 && ICmp1)
1958     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
1959               : simplifyOrOfICmps(ICmp0, ICmp1, Q);
1960 
1961   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1962   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1963   if (FCmp0 && FCmp1)
1964     V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
1965 
1966   if (!V)
1967     return nullptr;
1968   if (!Cast0)
1969     return V;
1970 
1971   // If we looked through casts, we can only handle a constant simplification
1972   // because we are not allowed to create a cast instruction here.
1973   if (auto *C = dyn_cast<Constant>(V))
1974     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1975 
1976   return nullptr;
1977 }
1978 
1979 /// Given a bitwise logic op, check if the operands are add/sub with a common
1980 /// source value and inverted constant (identity: C - X -> ~(X + ~C)).
1981 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1,
1982                                     Instruction::BinaryOps Opcode) {
1983   assert(Op0->getType() == Op1->getType() && "Mismatched binop types");
1984   assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op");
1985   Value *X;
1986   Constant *C1, *C2;
1987   if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) &&
1988        match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) ||
1989       (match(Op1, m_Add(m_Value(X), m_Constant(C1))) &&
1990        match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) {
1991     if (ConstantExpr::getNot(C1) == C2) {
1992       // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0
1993       // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1
1994       // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1
1995       Type *Ty = Op0->getType();
1996       return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty)
1997                                         : ConstantInt::getAllOnesValue(Ty);
1998     }
1999   }
2000   return nullptr;
2001 }
2002 
2003 /// Given operands for an And, see if we can fold the result.
2004 /// If not, this returns null.
2005 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2006                               unsigned MaxRecurse) {
2007   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
2008     return C;
2009 
2010   // X & poison -> poison
2011   if (isa<PoisonValue>(Op1))
2012     return Op1;
2013 
2014   // X & undef -> 0
2015   if (Q.isUndefValue(Op1))
2016     return Constant::getNullValue(Op0->getType());
2017 
2018   // X & X = X
2019   if (Op0 == Op1)
2020     return Op0;
2021 
2022   // X & 0 = 0
2023   if (match(Op1, m_Zero()))
2024     return Constant::getNullValue(Op0->getType());
2025 
2026   // X & -1 = X
2027   if (match(Op1, m_AllOnes()))
2028     return Op0;
2029 
2030   // A & ~A  =  ~A & A  =  0
2031   if (match(Op0, m_Not(m_Specific(Op1))) ||
2032       match(Op1, m_Not(m_Specific(Op0))))
2033     return Constant::getNullValue(Op0->getType());
2034 
2035   // (A | ?) & A = A
2036   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
2037     return Op1;
2038 
2039   // A & (A | ?) = A
2040   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
2041     return Op0;
2042 
2043   // (X | Y) & (X | ~Y) --> X (commuted 8 ways)
2044   Value *X, *Y;
2045   if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2046       match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y))))
2047     return X;
2048   if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2049       match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y))))
2050     return X;
2051 
2052   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And))
2053     return V;
2054 
2055   // A mask that only clears known zeros of a shifted value is a no-op.
2056   const APInt *Mask;
2057   const APInt *ShAmt;
2058   if (match(Op1, m_APInt(Mask))) {
2059     // If all bits in the inverted and shifted mask are clear:
2060     // and (shl X, ShAmt), Mask --> shl X, ShAmt
2061     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
2062         (~(*Mask)).lshr(*ShAmt).isZero())
2063       return Op0;
2064 
2065     // If all bits in the inverted and shifted mask are clear:
2066     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
2067     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
2068         (~(*Mask)).shl(*ShAmt).isZero())
2069       return Op0;
2070   }
2071 
2072   // If we have a multiplication overflow check that is being 'and'ed with a
2073   // check that one of the multipliers is not zero, we can omit the 'and', and
2074   // only keep the overflow check.
2075   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true))
2076     return Op1;
2077   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true))
2078     return Op0;
2079 
2080   // A & (-A) = A if A is a power of two or zero.
2081   if (match(Op0, m_Neg(m_Specific(Op1))) ||
2082       match(Op1, m_Neg(m_Specific(Op0)))) {
2083     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2084                                Q.DT))
2085       return Op0;
2086     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2087                                Q.DT))
2088       return Op1;
2089   }
2090 
2091   // This is a similar pattern used for checking if a value is a power-of-2:
2092   // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
2093   // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
2094   if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
2095       isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2096     return Constant::getNullValue(Op1->getType());
2097   if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
2098       isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2099     return Constant::getNullValue(Op0->getType());
2100 
2101   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
2102     return V;
2103 
2104   // Try some generic simplifications for associative operations.
2105   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
2106                                           MaxRecurse))
2107     return V;
2108 
2109   // And distributes over Or.  Try some generic simplifications based on this.
2110   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2111                                         Instruction::Or, Q, MaxRecurse))
2112     return V;
2113 
2114   // And distributes over Xor.  Try some generic simplifications based on this.
2115   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2116                                         Instruction::Xor, Q, MaxRecurse))
2117     return V;
2118 
2119   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2120     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2121       // A & (A && B) -> A && B
2122       if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero())))
2123         return Op1;
2124       else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero())))
2125         return Op0;
2126     }
2127     // If the operation is with the result of a select instruction, check
2128     // whether operating on either branch of the select always yields the same
2129     // value.
2130     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
2131                                          MaxRecurse))
2132       return V;
2133   }
2134 
2135   // If the operation is with the result of a phi instruction, check whether
2136   // operating on all incoming values of the phi always yields the same value.
2137   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2138     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
2139                                       MaxRecurse))
2140       return V;
2141 
2142   // Assuming the effective width of Y is not larger than A, i.e. all bits
2143   // from X and Y are disjoint in (X << A) | Y,
2144   // if the mask of this AND op covers all bits of X or Y, while it covers
2145   // no bits from the other, we can bypass this AND op. E.g.,
2146   // ((X << A) | Y) & Mask -> Y,
2147   //     if Mask = ((1 << effective_width_of(Y)) - 1)
2148   // ((X << A) | Y) & Mask -> X << A,
2149   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
2150   // SimplifyDemandedBits in InstCombine can optimize the general case.
2151   // This pattern aims to help other passes for a common case.
2152   Value *XShifted;
2153   if (match(Op1, m_APInt(Mask)) &&
2154       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
2155                                      m_Value(XShifted)),
2156                         m_Value(Y)))) {
2157     const unsigned Width = Op0->getType()->getScalarSizeInBits();
2158     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
2159     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2160     const unsigned EffWidthY = YKnown.countMaxActiveBits();
2161     if (EffWidthY <= ShftCnt) {
2162       const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
2163                                                 Q.DT);
2164       const unsigned EffWidthX = XKnown.countMaxActiveBits();
2165       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
2166       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
2167       // If the mask is extracting all bits from X or Y as is, we can skip
2168       // this AND op.
2169       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
2170         return Y;
2171       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
2172         return XShifted;
2173     }
2174   }
2175 
2176   return nullptr;
2177 }
2178 
2179 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2180   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
2181 }
2182 
2183 /// Given operands for an Or, see if we can fold the result.
2184 /// If not, this returns null.
2185 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2186                              unsigned MaxRecurse) {
2187   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
2188     return C;
2189 
2190   // X | poison -> poison
2191   if (isa<PoisonValue>(Op1))
2192     return Op1;
2193 
2194   // X | undef -> -1
2195   // X | -1 = -1
2196   // Do not return Op1 because it may contain undef elements if it's a vector.
2197   if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes()))
2198     return Constant::getAllOnesValue(Op0->getType());
2199 
2200   // X | X = X
2201   // X | 0 = X
2202   if (Op0 == Op1 || match(Op1, m_Zero()))
2203     return Op0;
2204 
2205   // A | ~A  =  ~A | A  =  -1
2206   if (match(Op0, m_Not(m_Specific(Op1))) ||
2207       match(Op1, m_Not(m_Specific(Op0))))
2208     return Constant::getAllOnesValue(Op0->getType());
2209 
2210   // (A & ?) | A = A
2211   if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
2212     return Op1;
2213 
2214   // A | (A & ?) = A
2215   if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
2216     return Op0;
2217 
2218   // ~(A & ?) | A = -1
2219   if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
2220     return Constant::getAllOnesValue(Op1->getType());
2221 
2222   // A | ~(A & ?) = -1
2223   if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value()))))
2224     return Constant::getAllOnesValue(Op0->getType());
2225 
2226   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or))
2227     return V;
2228 
2229   Value *A, *B, *NotA;
2230   // (A & ~B) | (A ^ B) -> (A ^ B)
2231   // (~B & A) | (A ^ B) -> (A ^ B)
2232   // (A & ~B) | (B ^ A) -> (B ^ A)
2233   // (~B & A) | (B ^ A) -> (B ^ A)
2234   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2235       (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2236        match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2237     return Op1;
2238 
2239   // Commute the 'or' operands.
2240   // (A ^ B) | (A & ~B) -> (A ^ B)
2241   // (A ^ B) | (~B & A) -> (A ^ B)
2242   // (B ^ A) | (A & ~B) -> (B ^ A)
2243   // (B ^ A) | (~B & A) -> (B ^ A)
2244   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2245       (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2246        match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2247     return Op0;
2248 
2249   // (A & B) | (~A ^ B) -> (~A ^ B)
2250   // (B & A) | (~A ^ B) -> (~A ^ B)
2251   // (A & B) | (B ^ ~A) -> (B ^ ~A)
2252   // (B & A) | (B ^ ~A) -> (B ^ ~A)
2253   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2254       (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2255        match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2256     return Op1;
2257 
2258   // Commute the 'or' operands.
2259   // (~A ^ B) | (A & B) -> (~A ^ B)
2260   // (~A ^ B) | (B & A) -> (~A ^ B)
2261   // (B ^ ~A) | (A & B) -> (B ^ ~A)
2262   // (B ^ ~A) | (B & A) -> (B ^ ~A)
2263   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
2264       (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2265        match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2266     return Op0;
2267 
2268   // (A | B) | (A ^ B) --> A | B
2269   // (B | A) | (A ^ B) --> B | A
2270   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2271       match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
2272     return Op0;
2273 
2274   // Commute the outer 'or' operands.
2275   // (A ^ B) | (A | B) --> A | B
2276   // (A ^ B) | (B | A) --> B | A
2277   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2278       match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
2279     return Op1;
2280 
2281   // (~A & B) | ~(A | B) --> ~A
2282   // (~A & B) | ~(B | A) --> ~A
2283   // (B & ~A) | ~(A | B) --> ~A
2284   // (B & ~A) | ~(B | A) --> ~A
2285   if (match(Op0, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))),
2286                          m_Value(B))) &&
2287       match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
2288     return NotA;
2289 
2290   // Commute the 'or' operands.
2291   // ~(A | B) | (~A & B) --> ~A
2292   // ~(B | A) | (~A & B) --> ~A
2293   // ~(A | B) | (B & ~A) --> ~A
2294   // ~(B | A) | (B & ~A) --> ~A
2295   if (match(Op1, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))),
2296                          m_Value(B))) &&
2297       match(Op0, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
2298     return NotA;
2299 
2300   // Rotated -1 is still -1:
2301   // (-1 << X) | (-1 >> (C - X)) --> -1
2302   // (-1 >> X) | (-1 << (C - X)) --> -1
2303   // ...with C <= bitwidth (and commuted variants).
2304   Value *X, *Y;
2305   if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) &&
2306        match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) ||
2307       (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) &&
2308        match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) {
2309     const APInt *C;
2310     if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) ||
2311          match(Y, m_Sub(m_APInt(C), m_Specific(X)))) &&
2312         C->ule(X->getType()->getScalarSizeInBits())) {
2313       return ConstantInt::getAllOnesValue(X->getType());
2314     }
2315   }
2316 
2317   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
2318     return V;
2319 
2320   // If we have a multiplication overflow check that is being 'and'ed with a
2321   // check that one of the multipliers is not zero, we can omit the 'and', and
2322   // only keep the overflow check.
2323   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false))
2324     return Op1;
2325   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false))
2326     return Op0;
2327 
2328   // Try some generic simplifications for associative operations.
2329   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
2330                                           MaxRecurse))
2331     return V;
2332 
2333   // Or distributes over And.  Try some generic simplifications based on this.
2334   if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1,
2335                                         Instruction::And, Q, MaxRecurse))
2336     return V;
2337 
2338   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2339     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2340       // A | (A || B) -> A || B
2341       if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value())))
2342         return Op1;
2343       else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value())))
2344         return Op0;
2345     }
2346     // If the operation is with the result of a select instruction, check
2347     // whether operating on either branch of the select always yields the same
2348     // value.
2349     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
2350                                          MaxRecurse))
2351       return V;
2352   }
2353 
2354   // (A & C1)|(B & C2)
2355   const APInt *C1, *C2;
2356   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2357       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2358     if (*C1 == ~*C2) {
2359       // (A & C1)|(B & C2)
2360       // If we have: ((V + N) & C1) | (V & C2)
2361       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2362       // replace with V+N.
2363       Value *N;
2364       if (C2->isMask() && // C2 == 0+1+
2365           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2366         // Add commutes, try both ways.
2367         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2368           return A;
2369       }
2370       // Or commutes, try both ways.
2371       if (C1->isMask() &&
2372           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2373         // Add commutes, try both ways.
2374         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2375           return B;
2376       }
2377     }
2378   }
2379 
2380   // If the operation is with the result of a phi instruction, check whether
2381   // operating on all incoming values of the phi always yields the same value.
2382   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2383     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2384       return V;
2385 
2386   return nullptr;
2387 }
2388 
2389 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2390   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
2391 }
2392 
2393 /// Given operands for a Xor, see if we can fold the result.
2394 /// If not, this returns null.
2395 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2396                               unsigned MaxRecurse) {
2397   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2398     return C;
2399 
2400   // A ^ undef -> undef
2401   if (Q.isUndefValue(Op1))
2402     return Op1;
2403 
2404   // A ^ 0 = A
2405   if (match(Op1, m_Zero()))
2406     return Op0;
2407 
2408   // A ^ A = 0
2409   if (Op0 == Op1)
2410     return Constant::getNullValue(Op0->getType());
2411 
2412   // A ^ ~A  =  ~A ^ A  =  -1
2413   if (match(Op0, m_Not(m_Specific(Op1))) ||
2414       match(Op1, m_Not(m_Specific(Op0))))
2415     return Constant::getAllOnesValue(Op0->getType());
2416 
2417   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor))
2418     return V;
2419 
2420   // Try some generic simplifications for associative operations.
2421   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2422                                           MaxRecurse))
2423     return V;
2424 
2425   // Threading Xor over selects and phi nodes is pointless, so don't bother.
2426   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2427   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2428   // only if B and C are equal.  If B and C are equal then (since we assume
2429   // that operands have already been simplified) "select(cond, B, C)" should
2430   // have been simplified to the common value of B and C already.  Analysing
2431   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2432   // for threading over phi nodes.
2433 
2434   return nullptr;
2435 }
2436 
2437 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2438   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2439 }
2440 
2441 
2442 static Type *GetCompareTy(Value *Op) {
2443   return CmpInst::makeCmpResultType(Op->getType());
2444 }
2445 
2446 /// Rummage around inside V looking for something equivalent to the comparison
2447 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2448 /// Helper function for analyzing max/min idioms.
2449 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2450                                          Value *LHS, Value *RHS) {
2451   SelectInst *SI = dyn_cast<SelectInst>(V);
2452   if (!SI)
2453     return nullptr;
2454   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2455   if (!Cmp)
2456     return nullptr;
2457   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2458   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2459     return Cmp;
2460   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2461       LHS == CmpRHS && RHS == CmpLHS)
2462     return Cmp;
2463   return nullptr;
2464 }
2465 
2466 // A significant optimization not implemented here is assuming that alloca
2467 // addresses are not equal to incoming argument values. They don't *alias*,
2468 // as we say, but that doesn't mean they aren't equal, so we take a
2469 // conservative approach.
2470 //
2471 // This is inspired in part by C++11 5.10p1:
2472 //   "Two pointers of the same type compare equal if and only if they are both
2473 //    null, both point to the same function, or both represent the same
2474 //    address."
2475 //
2476 // This is pretty permissive.
2477 //
2478 // It's also partly due to C11 6.5.9p6:
2479 //   "Two pointers compare equal if and only if both are null pointers, both are
2480 //    pointers to the same object (including a pointer to an object and a
2481 //    subobject at its beginning) or function, both are pointers to one past the
2482 //    last element of the same array object, or one is a pointer to one past the
2483 //    end of one array object and the other is a pointer to the start of a
2484 //    different array object that happens to immediately follow the first array
2485 //    object in the address space.)
2486 //
2487 // C11's version is more restrictive, however there's no reason why an argument
2488 // couldn't be a one-past-the-end value for a stack object in the caller and be
2489 // equal to the beginning of a stack object in the callee.
2490 //
2491 // If the C and C++ standards are ever made sufficiently restrictive in this
2492 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2493 // this optimization.
2494 static Constant *
2495 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
2496                    const SimplifyQuery &Q) {
2497   const DataLayout &DL = Q.DL;
2498   const TargetLibraryInfo *TLI = Q.TLI;
2499   const DominatorTree *DT = Q.DT;
2500   const Instruction *CxtI = Q.CxtI;
2501   const InstrInfoQuery &IIQ = Q.IIQ;
2502 
2503   // First, skip past any trivial no-ops.
2504   LHS = LHS->stripPointerCasts();
2505   RHS = RHS->stripPointerCasts();
2506 
2507   // A non-null pointer is not equal to a null pointer.
2508   if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) &&
2509       llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2510                            IIQ.UseInstrInfo))
2511     return ConstantInt::get(GetCompareTy(LHS),
2512                             !CmpInst::isTrueWhenEqual(Pred));
2513 
2514   // We can only fold certain predicates on pointer comparisons.
2515   switch (Pred) {
2516   default:
2517     return nullptr;
2518 
2519     // Equality comaprisons are easy to fold.
2520   case CmpInst::ICMP_EQ:
2521   case CmpInst::ICMP_NE:
2522     break;
2523 
2524     // We can only handle unsigned relational comparisons because 'inbounds' on
2525     // a GEP only protects against unsigned wrapping.
2526   case CmpInst::ICMP_UGT:
2527   case CmpInst::ICMP_UGE:
2528   case CmpInst::ICMP_ULT:
2529   case CmpInst::ICMP_ULE:
2530     // However, we have to switch them to their signed variants to handle
2531     // negative indices from the base pointer.
2532     Pred = ICmpInst::getSignedPredicate(Pred);
2533     break;
2534   }
2535 
2536   // Strip off any constant offsets so that we can reason about them.
2537   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2538   // here and compare base addresses like AliasAnalysis does, however there are
2539   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2540   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2541   // doesn't need to guarantee pointer inequality when it says NoAlias.
2542   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2543   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2544 
2545   // If LHS and RHS are related via constant offsets to the same base
2546   // value, we can replace it with an icmp which just compares the offsets.
2547   if (LHS == RHS)
2548     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2549 
2550   // Various optimizations for (in)equality comparisons.
2551   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2552     // Different non-empty allocations that exist at the same time have
2553     // different addresses (if the program can tell). Global variables always
2554     // exist, so they always exist during the lifetime of each other and all
2555     // allocas. Two different allocas usually have different addresses...
2556     //
2557     // However, if there's an @llvm.stackrestore dynamically in between two
2558     // allocas, they may have the same address. It's tempting to reduce the
2559     // scope of the problem by only looking at *static* allocas here. That would
2560     // cover the majority of allocas while significantly reducing the likelihood
2561     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2562     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2563     // an entry block. Also, if we have a block that's not attached to a
2564     // function, we can't tell if it's "static" under the current definition.
2565     // Theoretically, this problem could be fixed by creating a new kind of
2566     // instruction kind specifically for static allocas. Such a new instruction
2567     // could be required to be at the top of the entry block, thus preventing it
2568     // from being subject to a @llvm.stackrestore. Instcombine could even
2569     // convert regular allocas into these special allocas. It'd be nifty.
2570     // However, until then, this problem remains open.
2571     //
2572     // So, we'll assume that two non-empty allocas have different addresses
2573     // for now.
2574     //
2575     // With all that, if the offsets are within the bounds of their allocations
2576     // (and not one-past-the-end! so we can't use inbounds!), and their
2577     // allocations aren't the same, the pointers are not equal.
2578     //
2579     // Note that it's not necessary to check for LHS being a global variable
2580     // address, due to canonicalization and constant folding.
2581     if (isa<AllocaInst>(LHS) &&
2582         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2583       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2584       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2585       uint64_t LHSSize, RHSSize;
2586       ObjectSizeOpts Opts;
2587       Opts.NullIsUnknownSize =
2588           NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
2589       if (LHSOffsetCI && RHSOffsetCI &&
2590           getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2591           getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
2592         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2593         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2594         if (!LHSOffsetValue.isNegative() &&
2595             !RHSOffsetValue.isNegative() &&
2596             LHSOffsetValue.ult(LHSSize) &&
2597             RHSOffsetValue.ult(RHSSize)) {
2598           return ConstantInt::get(GetCompareTy(LHS),
2599                                   !CmpInst::isTrueWhenEqual(Pred));
2600         }
2601       }
2602 
2603       // Repeat the above check but this time without depending on DataLayout
2604       // or being able to compute a precise size.
2605       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2606           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2607           LHSOffset->isNullValue() &&
2608           RHSOffset->isNullValue())
2609         return ConstantInt::get(GetCompareTy(LHS),
2610                                 !CmpInst::isTrueWhenEqual(Pred));
2611     }
2612 
2613     // Even if an non-inbounds GEP occurs along the path we can still optimize
2614     // equality comparisons concerning the result. We avoid walking the whole
2615     // chain again by starting where the last calls to
2616     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2617     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2618     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2619     if (LHS == RHS)
2620       return ConstantExpr::getICmp(Pred,
2621                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2622                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2623 
2624     // If one side of the equality comparison must come from a noalias call
2625     // (meaning a system memory allocation function), and the other side must
2626     // come from a pointer that cannot overlap with dynamically-allocated
2627     // memory within the lifetime of the current function (allocas, byval
2628     // arguments, globals), then determine the comparison result here.
2629     SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2630     getUnderlyingObjects(LHS, LHSUObjs);
2631     getUnderlyingObjects(RHS, RHSUObjs);
2632 
2633     // Is the set of underlying objects all noalias calls?
2634     auto IsNAC = [](ArrayRef<const Value *> Objects) {
2635       return all_of(Objects, isNoAliasCall);
2636     };
2637 
2638     // Is the set of underlying objects all things which must be disjoint from
2639     // noalias calls. For allocas, we consider only static ones (dynamic
2640     // allocas might be transformed into calls to malloc not simultaneously
2641     // live with the compared-to allocation). For globals, we exclude symbols
2642     // that might be resolve lazily to symbols in another dynamically-loaded
2643     // library (and, thus, could be malloc'ed by the implementation).
2644     auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2645       return all_of(Objects, [](const Value *V) {
2646         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2647           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2648         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2649           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2650                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2651                  !GV->isThreadLocal();
2652         if (const Argument *A = dyn_cast<Argument>(V))
2653           return A->hasByValAttr();
2654         return false;
2655       });
2656     };
2657 
2658     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2659         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2660         return ConstantInt::get(GetCompareTy(LHS),
2661                                 !CmpInst::isTrueWhenEqual(Pred));
2662 
2663     // Fold comparisons for non-escaping pointer even if the allocation call
2664     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2665     // dynamic allocation call could be either of the operands.
2666     Value *MI = nullptr;
2667     if (isAllocLikeFn(LHS, TLI) &&
2668         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2669       MI = LHS;
2670     else if (isAllocLikeFn(RHS, TLI) &&
2671              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2672       MI = RHS;
2673     // FIXME: We should also fold the compare when the pointer escapes, but the
2674     // compare dominates the pointer escape
2675     if (MI && !PointerMayBeCaptured(MI, true, true))
2676       return ConstantInt::get(GetCompareTy(LHS),
2677                               CmpInst::isFalseWhenEqual(Pred));
2678   }
2679 
2680   // Otherwise, fail.
2681   return nullptr;
2682 }
2683 
2684 /// Fold an icmp when its operands have i1 scalar type.
2685 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2686                                   Value *RHS, const SimplifyQuery &Q) {
2687   Type *ITy = GetCompareTy(LHS); // The return type.
2688   Type *OpTy = LHS->getType();   // The operand type.
2689   if (!OpTy->isIntOrIntVectorTy(1))
2690     return nullptr;
2691 
2692   // A boolean compared to true/false can be simplified in 14 out of the 20
2693   // (10 predicates * 2 constants) possible combinations. Cases not handled here
2694   // require a 'not' of the LHS, so those must be transformed in InstCombine.
2695   if (match(RHS, m_Zero())) {
2696     switch (Pred) {
2697     case CmpInst::ICMP_NE:  // X !=  0 -> X
2698     case CmpInst::ICMP_UGT: // X >u  0 -> X
2699     case CmpInst::ICMP_SLT: // X <s  0 -> X
2700       return LHS;
2701 
2702     case CmpInst::ICMP_ULT: // X <u  0 -> false
2703     case CmpInst::ICMP_SGT: // X >s  0 -> false
2704       return getFalse(ITy);
2705 
2706     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2707     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2708       return getTrue(ITy);
2709 
2710     default: break;
2711     }
2712   } else if (match(RHS, m_One())) {
2713     switch (Pred) {
2714     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2715     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2716     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2717       return LHS;
2718 
2719     case CmpInst::ICMP_UGT: // X >u   1 -> false
2720     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2721       return getFalse(ITy);
2722 
2723     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2724     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2725       return getTrue(ITy);
2726 
2727     default: break;
2728     }
2729   }
2730 
2731   switch (Pred) {
2732   default:
2733     break;
2734   case ICmpInst::ICMP_UGE:
2735     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2736       return getTrue(ITy);
2737     break;
2738   case ICmpInst::ICMP_SGE:
2739     /// For signed comparison, the values for an i1 are 0 and -1
2740     /// respectively. This maps into a truth table of:
2741     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2742     ///  0  |  0  |  1 (0 >= 0)   |  1
2743     ///  0  |  1  |  1 (0 >= -1)  |  1
2744     ///  1  |  0  |  0 (-1 >= 0)  |  0
2745     ///  1  |  1  |  1 (-1 >= -1) |  1
2746     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2747       return getTrue(ITy);
2748     break;
2749   case ICmpInst::ICMP_ULE:
2750     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2751       return getTrue(ITy);
2752     break;
2753   }
2754 
2755   return nullptr;
2756 }
2757 
2758 /// Try hard to fold icmp with zero RHS because this is a common case.
2759 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2760                                    Value *RHS, const SimplifyQuery &Q) {
2761   if (!match(RHS, m_Zero()))
2762     return nullptr;
2763 
2764   Type *ITy = GetCompareTy(LHS); // The return type.
2765   switch (Pred) {
2766   default:
2767     llvm_unreachable("Unknown ICmp predicate!");
2768   case ICmpInst::ICMP_ULT:
2769     return getFalse(ITy);
2770   case ICmpInst::ICMP_UGE:
2771     return getTrue(ITy);
2772   case ICmpInst::ICMP_EQ:
2773   case ICmpInst::ICMP_ULE:
2774     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2775       return getFalse(ITy);
2776     break;
2777   case ICmpInst::ICMP_NE:
2778   case ICmpInst::ICMP_UGT:
2779     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2780       return getTrue(ITy);
2781     break;
2782   case ICmpInst::ICMP_SLT: {
2783     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2784     if (LHSKnown.isNegative())
2785       return getTrue(ITy);
2786     if (LHSKnown.isNonNegative())
2787       return getFalse(ITy);
2788     break;
2789   }
2790   case ICmpInst::ICMP_SLE: {
2791     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2792     if (LHSKnown.isNegative())
2793       return getTrue(ITy);
2794     if (LHSKnown.isNonNegative() &&
2795         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2796       return getFalse(ITy);
2797     break;
2798   }
2799   case ICmpInst::ICMP_SGE: {
2800     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2801     if (LHSKnown.isNegative())
2802       return getFalse(ITy);
2803     if (LHSKnown.isNonNegative())
2804       return getTrue(ITy);
2805     break;
2806   }
2807   case ICmpInst::ICMP_SGT: {
2808     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2809     if (LHSKnown.isNegative())
2810       return getFalse(ITy);
2811     if (LHSKnown.isNonNegative() &&
2812         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2813       return getTrue(ITy);
2814     break;
2815   }
2816   }
2817 
2818   return nullptr;
2819 }
2820 
2821 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2822                                        Value *RHS, const InstrInfoQuery &IIQ) {
2823   Type *ITy = GetCompareTy(RHS); // The return type.
2824 
2825   Value *X;
2826   // Sign-bit checks can be optimized to true/false after unsigned
2827   // floating-point casts:
2828   // icmp slt (bitcast (uitofp X)),  0 --> false
2829   // icmp sgt (bitcast (uitofp X)), -1 --> true
2830   if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2831     if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2832       return ConstantInt::getFalse(ITy);
2833     if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2834       return ConstantInt::getTrue(ITy);
2835   }
2836 
2837   const APInt *C;
2838   if (!match(RHS, m_APIntAllowUndef(C)))
2839     return nullptr;
2840 
2841   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2842   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2843   if (RHS_CR.isEmptySet())
2844     return ConstantInt::getFalse(ITy);
2845   if (RHS_CR.isFullSet())
2846     return ConstantInt::getTrue(ITy);
2847 
2848   ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo);
2849   if (!LHS_CR.isFullSet()) {
2850     if (RHS_CR.contains(LHS_CR))
2851       return ConstantInt::getTrue(ITy);
2852     if (RHS_CR.inverse().contains(LHS_CR))
2853       return ConstantInt::getFalse(ITy);
2854   }
2855 
2856   // (mul nuw/nsw X, MulC) != C --> true  (if C is not a multiple of MulC)
2857   // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC)
2858   const APInt *MulC;
2859   if (ICmpInst::isEquality(Pred) &&
2860       ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2861         *MulC != 0 && C->urem(*MulC) != 0) ||
2862        (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2863         *MulC != 0 && C->srem(*MulC) != 0)))
2864     return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE);
2865 
2866   return nullptr;
2867 }
2868 
2869 static Value *simplifyICmpWithBinOpOnLHS(
2870     CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS,
2871     const SimplifyQuery &Q, unsigned MaxRecurse) {
2872   Type *ITy = GetCompareTy(RHS); // The return type.
2873 
2874   Value *Y = nullptr;
2875   // icmp pred (or X, Y), X
2876   if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2877     if (Pred == ICmpInst::ICMP_ULT)
2878       return getFalse(ITy);
2879     if (Pred == ICmpInst::ICMP_UGE)
2880       return getTrue(ITy);
2881 
2882     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2883       KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2884       KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2885       if (RHSKnown.isNonNegative() && YKnown.isNegative())
2886         return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2887       if (RHSKnown.isNegative() || YKnown.isNonNegative())
2888         return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2889     }
2890   }
2891 
2892   // icmp pred (and X, Y), X
2893   if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2894     if (Pred == ICmpInst::ICMP_UGT)
2895       return getFalse(ITy);
2896     if (Pred == ICmpInst::ICMP_ULE)
2897       return getTrue(ITy);
2898   }
2899 
2900   // icmp pred (urem X, Y), Y
2901   if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2902     switch (Pred) {
2903     default:
2904       break;
2905     case ICmpInst::ICMP_SGT:
2906     case ICmpInst::ICMP_SGE: {
2907       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2908       if (!Known.isNonNegative())
2909         break;
2910       LLVM_FALLTHROUGH;
2911     }
2912     case ICmpInst::ICMP_EQ:
2913     case ICmpInst::ICMP_UGT:
2914     case ICmpInst::ICMP_UGE:
2915       return getFalse(ITy);
2916     case ICmpInst::ICMP_SLT:
2917     case ICmpInst::ICMP_SLE: {
2918       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2919       if (!Known.isNonNegative())
2920         break;
2921       LLVM_FALLTHROUGH;
2922     }
2923     case ICmpInst::ICMP_NE:
2924     case ICmpInst::ICMP_ULT:
2925     case ICmpInst::ICMP_ULE:
2926       return getTrue(ITy);
2927     }
2928   }
2929 
2930   // icmp pred (urem X, Y), X
2931   if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) {
2932     if (Pred == ICmpInst::ICMP_ULE)
2933       return getTrue(ITy);
2934     if (Pred == ICmpInst::ICMP_UGT)
2935       return getFalse(ITy);
2936   }
2937 
2938   // x >> y <=u x
2939   // x udiv y <=u x.
2940   if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2941       match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2942     // icmp pred (X op Y), X
2943     if (Pred == ICmpInst::ICMP_UGT)
2944       return getFalse(ITy);
2945     if (Pred == ICmpInst::ICMP_ULE)
2946       return getTrue(ITy);
2947   }
2948 
2949   // (x*C1)/C2 <= x for C1 <= C2.
2950   // This holds even if the multiplication overflows: Assume that x != 0 and
2951   // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and
2952   // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x.
2953   //
2954   // Additionally, either the multiplication and division might be represented
2955   // as shifts:
2956   // (x*C1)>>C2 <= x for C1 < 2**C2.
2957   // (x<<C1)/C2 <= x for 2**C1 < C2.
2958   const APInt *C1, *C2;
2959   if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
2960        C1->ule(*C2)) ||
2961       (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
2962        C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) ||
2963       (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
2964        (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) {
2965     if (Pred == ICmpInst::ICMP_UGT)
2966       return getFalse(ITy);
2967     if (Pred == ICmpInst::ICMP_ULE)
2968       return getTrue(ITy);
2969   }
2970 
2971   return nullptr;
2972 }
2973 
2974 
2975 // If only one of the icmp's operands has NSW flags, try to prove that:
2976 //
2977 //   icmp slt (x + C1), (x +nsw C2)
2978 //
2979 // is equivalent to:
2980 //
2981 //   icmp slt C1, C2
2982 //
2983 // which is true if x + C2 has the NSW flags set and:
2984 // *) C1 < C2 && C1 >= 0, or
2985 // *) C2 < C1 && C1 <= 0.
2986 //
2987 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS,
2988                                     Value *RHS) {
2989   // TODO: only support icmp slt for now.
2990   if (Pred != CmpInst::ICMP_SLT)
2991     return false;
2992 
2993   // Canonicalize nsw add as RHS.
2994   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
2995     std::swap(LHS, RHS);
2996   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
2997     return false;
2998 
2999   Value *X;
3000   const APInt *C1, *C2;
3001   if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) ||
3002       !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2))))
3003     return false;
3004 
3005   return (C1->slt(*C2) && C1->isNonNegative()) ||
3006          (C2->slt(*C1) && C1->isNonPositive());
3007 }
3008 
3009 
3010 /// TODO: A large part of this logic is duplicated in InstCombine's
3011 /// foldICmpBinOp(). We should be able to share that and avoid the code
3012 /// duplication.
3013 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
3014                                     Value *RHS, const SimplifyQuery &Q,
3015                                     unsigned MaxRecurse) {
3016   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
3017   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
3018   if (MaxRecurse && (LBO || RBO)) {
3019     // Analyze the case when either LHS or RHS is an add instruction.
3020     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3021     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
3022     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
3023     if (LBO && LBO->getOpcode() == Instruction::Add) {
3024       A = LBO->getOperand(0);
3025       B = LBO->getOperand(1);
3026       NoLHSWrapProblem =
3027           ICmpInst::isEquality(Pred) ||
3028           (CmpInst::isUnsigned(Pred) &&
3029            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
3030           (CmpInst::isSigned(Pred) &&
3031            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
3032     }
3033     if (RBO && RBO->getOpcode() == Instruction::Add) {
3034       C = RBO->getOperand(0);
3035       D = RBO->getOperand(1);
3036       NoRHSWrapProblem =
3037           ICmpInst::isEquality(Pred) ||
3038           (CmpInst::isUnsigned(Pred) &&
3039            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
3040           (CmpInst::isSigned(Pred) &&
3041            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
3042     }
3043 
3044     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3045     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
3046       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
3047                                       Constant::getNullValue(RHS->getType()), Q,
3048                                       MaxRecurse - 1))
3049         return V;
3050 
3051     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3052     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
3053       if (Value *V =
3054               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
3055                                C == LHS ? D : C, Q, MaxRecurse - 1))
3056         return V;
3057 
3058     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
3059     bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
3060                        trySimplifyICmpWithAdds(Pred, LHS, RHS);
3061     if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) {
3062       // Determine Y and Z in the form icmp (X+Y), (X+Z).
3063       Value *Y, *Z;
3064       if (A == C) {
3065         // C + B == C + D  ->  B == D
3066         Y = B;
3067         Z = D;
3068       } else if (A == D) {
3069         // D + B == C + D  ->  B == C
3070         Y = B;
3071         Z = C;
3072       } else if (B == C) {
3073         // A + C == C + D  ->  A == D
3074         Y = A;
3075         Z = D;
3076       } else {
3077         assert(B == D);
3078         // A + D == C + D  ->  A == C
3079         Y = A;
3080         Z = C;
3081       }
3082       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
3083         return V;
3084     }
3085   }
3086 
3087   if (LBO)
3088     if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse))
3089       return V;
3090 
3091   if (RBO)
3092     if (Value *V = simplifyICmpWithBinOpOnLHS(
3093             ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse))
3094       return V;
3095 
3096   // 0 - (zext X) pred C
3097   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
3098     const APInt *C;
3099     if (match(RHS, m_APInt(C))) {
3100       if (C->isStrictlyPositive()) {
3101         if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE)
3102           return ConstantInt::getTrue(GetCompareTy(RHS));
3103         if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ)
3104           return ConstantInt::getFalse(GetCompareTy(RHS));
3105       }
3106       if (C->isNonNegative()) {
3107         if (Pred == ICmpInst::ICMP_SLE)
3108           return ConstantInt::getTrue(GetCompareTy(RHS));
3109         if (Pred == ICmpInst::ICMP_SGT)
3110           return ConstantInt::getFalse(GetCompareTy(RHS));
3111       }
3112     }
3113   }
3114 
3115   //   If C2 is a power-of-2 and C is not:
3116   //   (C2 << X) == C --> false
3117   //   (C2 << X) != C --> true
3118   const APInt *C;
3119   if (match(LHS, m_Shl(m_Power2(), m_Value())) &&
3120       match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) {
3121     // C2 << X can equal zero in some circumstances.
3122     // This simplification might be unsafe if C is zero.
3123     //
3124     // We know it is safe if:
3125     // - The shift is nsw. We can't shift out the one bit.
3126     // - The shift is nuw. We can't shift out the one bit.
3127     // - C2 is one.
3128     // - C isn't zero.
3129     if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3130         Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3131         match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) {
3132       if (Pred == ICmpInst::ICMP_EQ)
3133         return ConstantInt::getFalse(GetCompareTy(RHS));
3134       if (Pred == ICmpInst::ICMP_NE)
3135         return ConstantInt::getTrue(GetCompareTy(RHS));
3136     }
3137   }
3138 
3139   // TODO: This is overly constrained. LHS can be any power-of-2.
3140   // (1 << X)  >u 0x8000 --> false
3141   // (1 << X) <=u 0x8000 --> true
3142   if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) {
3143     if (Pred == ICmpInst::ICMP_UGT)
3144       return ConstantInt::getFalse(GetCompareTy(RHS));
3145     if (Pred == ICmpInst::ICMP_ULE)
3146       return ConstantInt::getTrue(GetCompareTy(RHS));
3147   }
3148 
3149   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
3150       LBO->getOperand(1) == RBO->getOperand(1)) {
3151     switch (LBO->getOpcode()) {
3152     default:
3153       break;
3154     case Instruction::UDiv:
3155     case Instruction::LShr:
3156       if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
3157           !Q.IIQ.isExact(RBO))
3158         break;
3159       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3160                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3161           return V;
3162       break;
3163     case Instruction::SDiv:
3164       if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
3165           !Q.IIQ.isExact(RBO))
3166         break;
3167       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3168                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3169         return V;
3170       break;
3171     case Instruction::AShr:
3172       if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
3173         break;
3174       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3175                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3176         return V;
3177       break;
3178     case Instruction::Shl: {
3179       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
3180       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
3181       if (!NUW && !NSW)
3182         break;
3183       if (!NSW && ICmpInst::isSigned(Pred))
3184         break;
3185       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3186                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3187         return V;
3188       break;
3189     }
3190     }
3191   }
3192   return nullptr;
3193 }
3194 
3195 /// Simplify integer comparisons where at least one operand of the compare
3196 /// matches an integer min/max idiom.
3197 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
3198                                      Value *RHS, const SimplifyQuery &Q,
3199                                      unsigned MaxRecurse) {
3200   Type *ITy = GetCompareTy(LHS); // The return type.
3201   Value *A, *B;
3202   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
3203   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
3204 
3205   // Signed variants on "max(a,b)>=a -> true".
3206   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3207     if (A != RHS)
3208       std::swap(A, B);       // smax(A, B) pred A.
3209     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3210     // We analyze this as smax(A, B) pred A.
3211     P = Pred;
3212   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
3213              (A == LHS || B == LHS)) {
3214     if (A != LHS)
3215       std::swap(A, B);       // A pred smax(A, B).
3216     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3217     // We analyze this as smax(A, B) swapped-pred A.
3218     P = CmpInst::getSwappedPredicate(Pred);
3219   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3220              (A == RHS || B == RHS)) {
3221     if (A != RHS)
3222       std::swap(A, B);       // smin(A, B) pred A.
3223     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3224     // We analyze this as smax(-A, -B) swapped-pred -A.
3225     // Note that we do not need to actually form -A or -B thanks to EqP.
3226     P = CmpInst::getSwappedPredicate(Pred);
3227   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
3228              (A == LHS || B == LHS)) {
3229     if (A != LHS)
3230       std::swap(A, B);       // A pred smin(A, B).
3231     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3232     // We analyze this as smax(-A, -B) pred -A.
3233     // Note that we do not need to actually form -A or -B thanks to EqP.
3234     P = Pred;
3235   }
3236   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3237     // Cases correspond to "max(A, B) p A".
3238     switch (P) {
3239     default:
3240       break;
3241     case CmpInst::ICMP_EQ:
3242     case CmpInst::ICMP_SLE:
3243       // Equivalent to "A EqP B".  This may be the same as the condition tested
3244       // in the max/min; if so, we can just return that.
3245       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3246         return V;
3247       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3248         return V;
3249       // Otherwise, see if "A EqP B" simplifies.
3250       if (MaxRecurse)
3251         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3252           return V;
3253       break;
3254     case CmpInst::ICMP_NE:
3255     case CmpInst::ICMP_SGT: {
3256       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3257       // Equivalent to "A InvEqP B".  This may be the same as the condition
3258       // tested in the max/min; if so, we can just return that.
3259       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3260         return V;
3261       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3262         return V;
3263       // Otherwise, see if "A InvEqP B" simplifies.
3264       if (MaxRecurse)
3265         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3266           return V;
3267       break;
3268     }
3269     case CmpInst::ICMP_SGE:
3270       // Always true.
3271       return getTrue(ITy);
3272     case CmpInst::ICMP_SLT:
3273       // Always false.
3274       return getFalse(ITy);
3275     }
3276   }
3277 
3278   // Unsigned variants on "max(a,b)>=a -> true".
3279   P = CmpInst::BAD_ICMP_PREDICATE;
3280   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3281     if (A != RHS)
3282       std::swap(A, B);       // umax(A, B) pred A.
3283     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3284     // We analyze this as umax(A, B) pred A.
3285     P = Pred;
3286   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3287              (A == LHS || B == LHS)) {
3288     if (A != LHS)
3289       std::swap(A, B);       // A pred umax(A, B).
3290     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3291     // We analyze this as umax(A, B) swapped-pred A.
3292     P = CmpInst::getSwappedPredicate(Pred);
3293   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3294              (A == RHS || B == RHS)) {
3295     if (A != RHS)
3296       std::swap(A, B);       // umin(A, B) pred A.
3297     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3298     // We analyze this as umax(-A, -B) swapped-pred -A.
3299     // Note that we do not need to actually form -A or -B thanks to EqP.
3300     P = CmpInst::getSwappedPredicate(Pred);
3301   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3302              (A == LHS || B == LHS)) {
3303     if (A != LHS)
3304       std::swap(A, B);       // A pred umin(A, B).
3305     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3306     // We analyze this as umax(-A, -B) pred -A.
3307     // Note that we do not need to actually form -A or -B thanks to EqP.
3308     P = Pred;
3309   }
3310   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3311     // Cases correspond to "max(A, B) p A".
3312     switch (P) {
3313     default:
3314       break;
3315     case CmpInst::ICMP_EQ:
3316     case CmpInst::ICMP_ULE:
3317       // Equivalent to "A EqP B".  This may be the same as the condition tested
3318       // in the max/min; if so, we can just return that.
3319       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3320         return V;
3321       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3322         return V;
3323       // Otherwise, see if "A EqP B" simplifies.
3324       if (MaxRecurse)
3325         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3326           return V;
3327       break;
3328     case CmpInst::ICMP_NE:
3329     case CmpInst::ICMP_UGT: {
3330       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3331       // Equivalent to "A InvEqP B".  This may be the same as the condition
3332       // tested in the max/min; if so, we can just return that.
3333       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3334         return V;
3335       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3336         return V;
3337       // Otherwise, see if "A InvEqP B" simplifies.
3338       if (MaxRecurse)
3339         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3340           return V;
3341       break;
3342     }
3343     case CmpInst::ICMP_UGE:
3344       return getTrue(ITy);
3345     case CmpInst::ICMP_ULT:
3346       return getFalse(ITy);
3347     }
3348   }
3349 
3350   // Comparing 1 each of min/max with a common operand?
3351   // Canonicalize min operand to RHS.
3352   if (match(LHS, m_UMin(m_Value(), m_Value())) ||
3353       match(LHS, m_SMin(m_Value(), m_Value()))) {
3354     std::swap(LHS, RHS);
3355     Pred = ICmpInst::getSwappedPredicate(Pred);
3356   }
3357 
3358   Value *C, *D;
3359   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3360       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3361       (A == C || A == D || B == C || B == D)) {
3362     // smax(A, B) >=s smin(A, D) --> true
3363     if (Pred == CmpInst::ICMP_SGE)
3364       return getTrue(ITy);
3365     // smax(A, B) <s smin(A, D) --> false
3366     if (Pred == CmpInst::ICMP_SLT)
3367       return getFalse(ITy);
3368   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3369              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3370              (A == C || A == D || B == C || B == D)) {
3371     // umax(A, B) >=u umin(A, D) --> true
3372     if (Pred == CmpInst::ICMP_UGE)
3373       return getTrue(ITy);
3374     // umax(A, B) <u umin(A, D) --> false
3375     if (Pred == CmpInst::ICMP_ULT)
3376       return getFalse(ITy);
3377   }
3378 
3379   return nullptr;
3380 }
3381 
3382 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate,
3383                                                Value *LHS, Value *RHS,
3384                                                const SimplifyQuery &Q) {
3385   // Gracefully handle instructions that have not been inserted yet.
3386   if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent())
3387     return nullptr;
3388 
3389   for (Value *AssumeBaseOp : {LHS, RHS}) {
3390     for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) {
3391       if (!AssumeVH)
3392         continue;
3393 
3394       CallInst *Assume = cast<CallInst>(AssumeVH);
3395       if (Optional<bool> Imp =
3396               isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS,
3397                                  Q.DL))
3398         if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT))
3399           return ConstantInt::get(GetCompareTy(LHS), *Imp);
3400     }
3401   }
3402 
3403   return nullptr;
3404 }
3405 
3406 /// Given operands for an ICmpInst, see if we can fold the result.
3407 /// If not, this returns null.
3408 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3409                                const SimplifyQuery &Q, unsigned MaxRecurse) {
3410   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3411   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3412 
3413   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3414     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3415       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3416 
3417     // If we have a constant, make sure it is on the RHS.
3418     std::swap(LHS, RHS);
3419     Pred = CmpInst::getSwappedPredicate(Pred);
3420   }
3421   assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3422 
3423   Type *ITy = GetCompareTy(LHS); // The return type.
3424 
3425   // icmp poison, X -> poison
3426   if (isa<PoisonValue>(RHS))
3427     return PoisonValue::get(ITy);
3428 
3429   // For EQ and NE, we can always pick a value for the undef to make the
3430   // predicate pass or fail, so we can return undef.
3431   // Matches behavior in llvm::ConstantFoldCompareInstruction.
3432   if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred))
3433     return UndefValue::get(ITy);
3434 
3435   // icmp X, X -> true/false
3436   // icmp X, undef -> true/false because undef could be X.
3437   if (LHS == RHS || Q.isUndefValue(RHS))
3438     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3439 
3440   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3441     return V;
3442 
3443   // TODO: Sink/common this with other potentially expensive calls that use
3444   //       ValueTracking? See comment below for isKnownNonEqual().
3445   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3446     return V;
3447 
3448   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3449     return V;
3450 
3451   // If both operands have range metadata, use the metadata
3452   // to simplify the comparison.
3453   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3454     auto RHS_Instr = cast<Instruction>(RHS);
3455     auto LHS_Instr = cast<Instruction>(LHS);
3456 
3457     if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3458         Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3459       auto RHS_CR = getConstantRangeFromMetadata(
3460           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3461       auto LHS_CR = getConstantRangeFromMetadata(
3462           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3463 
3464       if (LHS_CR.icmp(Pred, RHS_CR))
3465         return ConstantInt::getTrue(RHS->getContext());
3466 
3467       if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR))
3468         return ConstantInt::getFalse(RHS->getContext());
3469     }
3470   }
3471 
3472   // Compare of cast, for example (zext X) != 0 -> X != 0
3473   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3474     Instruction *LI = cast<CastInst>(LHS);
3475     Value *SrcOp = LI->getOperand(0);
3476     Type *SrcTy = SrcOp->getType();
3477     Type *DstTy = LI->getType();
3478 
3479     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3480     // if the integer type is the same size as the pointer type.
3481     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3482         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3483       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3484         // Transfer the cast to the constant.
3485         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3486                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3487                                         Q, MaxRecurse-1))
3488           return V;
3489       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3490         if (RI->getOperand(0)->getType() == SrcTy)
3491           // Compare without the cast.
3492           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3493                                           Q, MaxRecurse-1))
3494             return V;
3495       }
3496     }
3497 
3498     if (isa<ZExtInst>(LHS)) {
3499       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3500       // same type.
3501       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3502         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3503           // Compare X and Y.  Note that signed predicates become unsigned.
3504           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3505                                           SrcOp, RI->getOperand(0), Q,
3506                                           MaxRecurse-1))
3507             return V;
3508       }
3509       // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true.
3510       else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3511         if (SrcOp == RI->getOperand(0)) {
3512           if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE)
3513             return ConstantInt::getTrue(ITy);
3514           if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT)
3515             return ConstantInt::getFalse(ITy);
3516         }
3517       }
3518       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3519       // too.  If not, then try to deduce the result of the comparison.
3520       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3521         // Compute the constant that would happen if we truncated to SrcTy then
3522         // reextended to DstTy.
3523         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3524         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3525 
3526         // If the re-extended constant didn't change then this is effectively
3527         // also a case of comparing two zero-extended values.
3528         if (RExt == CI && MaxRecurse)
3529           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3530                                         SrcOp, Trunc, Q, MaxRecurse-1))
3531             return V;
3532 
3533         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3534         // there.  Use this to work out the result of the comparison.
3535         if (RExt != CI) {
3536           switch (Pred) {
3537           default: llvm_unreachable("Unknown ICmp predicate!");
3538           // LHS <u RHS.
3539           case ICmpInst::ICMP_EQ:
3540           case ICmpInst::ICMP_UGT:
3541           case ICmpInst::ICMP_UGE:
3542             return ConstantInt::getFalse(CI->getContext());
3543 
3544           case ICmpInst::ICMP_NE:
3545           case ICmpInst::ICMP_ULT:
3546           case ICmpInst::ICMP_ULE:
3547             return ConstantInt::getTrue(CI->getContext());
3548 
3549           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3550           // is non-negative then LHS <s RHS.
3551           case ICmpInst::ICMP_SGT:
3552           case ICmpInst::ICMP_SGE:
3553             return CI->getValue().isNegative() ?
3554               ConstantInt::getTrue(CI->getContext()) :
3555               ConstantInt::getFalse(CI->getContext());
3556 
3557           case ICmpInst::ICMP_SLT:
3558           case ICmpInst::ICMP_SLE:
3559             return CI->getValue().isNegative() ?
3560               ConstantInt::getFalse(CI->getContext()) :
3561               ConstantInt::getTrue(CI->getContext());
3562           }
3563         }
3564       }
3565     }
3566 
3567     if (isa<SExtInst>(LHS)) {
3568       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3569       // same type.
3570       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3571         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3572           // Compare X and Y.  Note that the predicate does not change.
3573           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3574                                           Q, MaxRecurse-1))
3575             return V;
3576       }
3577       // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true.
3578       else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3579         if (SrcOp == RI->getOperand(0)) {
3580           if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE)
3581             return ConstantInt::getTrue(ITy);
3582           if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT)
3583             return ConstantInt::getFalse(ITy);
3584         }
3585       }
3586       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3587       // too.  If not, then try to deduce the result of the comparison.
3588       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3589         // Compute the constant that would happen if we truncated to SrcTy then
3590         // reextended to DstTy.
3591         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3592         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3593 
3594         // If the re-extended constant didn't change then this is effectively
3595         // also a case of comparing two sign-extended values.
3596         if (RExt == CI && MaxRecurse)
3597           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3598             return V;
3599 
3600         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3601         // bits there.  Use this to work out the result of the comparison.
3602         if (RExt != CI) {
3603           switch (Pred) {
3604           default: llvm_unreachable("Unknown ICmp predicate!");
3605           case ICmpInst::ICMP_EQ:
3606             return ConstantInt::getFalse(CI->getContext());
3607           case ICmpInst::ICMP_NE:
3608             return ConstantInt::getTrue(CI->getContext());
3609 
3610           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3611           // LHS >s RHS.
3612           case ICmpInst::ICMP_SGT:
3613           case ICmpInst::ICMP_SGE:
3614             return CI->getValue().isNegative() ?
3615               ConstantInt::getTrue(CI->getContext()) :
3616               ConstantInt::getFalse(CI->getContext());
3617           case ICmpInst::ICMP_SLT:
3618           case ICmpInst::ICMP_SLE:
3619             return CI->getValue().isNegative() ?
3620               ConstantInt::getFalse(CI->getContext()) :
3621               ConstantInt::getTrue(CI->getContext());
3622 
3623           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3624           // LHS >u RHS.
3625           case ICmpInst::ICMP_UGT:
3626           case ICmpInst::ICMP_UGE:
3627             // Comparison is true iff the LHS <s 0.
3628             if (MaxRecurse)
3629               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3630                                               Constant::getNullValue(SrcTy),
3631                                               Q, MaxRecurse-1))
3632                 return V;
3633             break;
3634           case ICmpInst::ICMP_ULT:
3635           case ICmpInst::ICMP_ULE:
3636             // Comparison is true iff the LHS >=s 0.
3637             if (MaxRecurse)
3638               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3639                                               Constant::getNullValue(SrcTy),
3640                                               Q, MaxRecurse-1))
3641                 return V;
3642             break;
3643           }
3644         }
3645       }
3646     }
3647   }
3648 
3649   // icmp eq|ne X, Y -> false|true if X != Y
3650   // This is potentially expensive, and we have already computedKnownBits for
3651   // compares with 0 above here, so only try this for a non-zero compare.
3652   if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) &&
3653       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3654     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3655   }
3656 
3657   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3658     return V;
3659 
3660   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3661     return V;
3662 
3663   if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q))
3664     return V;
3665 
3666   // Simplify comparisons of related pointers using a powerful, recursive
3667   // GEP-walk when we have target data available..
3668   if (LHS->getType()->isPointerTy())
3669     if (auto *C = computePointerICmp(Pred, LHS, RHS, Q))
3670       return C;
3671   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3672     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3673       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3674               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3675           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3676               Q.DL.getTypeSizeInBits(CRHS->getType()))
3677         if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(),
3678                                          CRHS->getPointerOperand(), Q))
3679           return C;
3680 
3681   // If the comparison is with the result of a select instruction, check whether
3682   // comparing with either branch of the select always yields the same value.
3683   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3684     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3685       return V;
3686 
3687   // If the comparison is with the result of a phi instruction, check whether
3688   // doing the compare with each incoming phi value yields a common result.
3689   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3690     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3691       return V;
3692 
3693   return nullptr;
3694 }
3695 
3696 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3697                               const SimplifyQuery &Q) {
3698   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3699 }
3700 
3701 /// Given operands for an FCmpInst, see if we can fold the result.
3702 /// If not, this returns null.
3703 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3704                                FastMathFlags FMF, const SimplifyQuery &Q,
3705                                unsigned MaxRecurse) {
3706   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3707   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3708 
3709   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3710     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3711       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3712 
3713     // If we have a constant, make sure it is on the RHS.
3714     std::swap(LHS, RHS);
3715     Pred = CmpInst::getSwappedPredicate(Pred);
3716   }
3717 
3718   // Fold trivial predicates.
3719   Type *RetTy = GetCompareTy(LHS);
3720   if (Pred == FCmpInst::FCMP_FALSE)
3721     return getFalse(RetTy);
3722   if (Pred == FCmpInst::FCMP_TRUE)
3723     return getTrue(RetTy);
3724 
3725   // Fold (un)ordered comparison if we can determine there are no NaNs.
3726   if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
3727     if (FMF.noNaNs() ||
3728         (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3729       return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3730 
3731   // NaN is unordered; NaN is not ordered.
3732   assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3733          "Comparison must be either ordered or unordered");
3734   if (match(RHS, m_NaN()))
3735     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3736 
3737   // fcmp pred x, poison and  fcmp pred poison, x
3738   // fold to poison
3739   if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS))
3740     return PoisonValue::get(RetTy);
3741 
3742   // fcmp pred x, undef  and  fcmp pred undef, x
3743   // fold to true if unordered, false if ordered
3744   if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) {
3745     // Choosing NaN for the undef will always make unordered comparison succeed
3746     // and ordered comparison fail.
3747     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3748   }
3749 
3750   // fcmp x,x -> true/false.  Not all compares are foldable.
3751   if (LHS == RHS) {
3752     if (CmpInst::isTrueWhenEqual(Pred))
3753       return getTrue(RetTy);
3754     if (CmpInst::isFalseWhenEqual(Pred))
3755       return getFalse(RetTy);
3756   }
3757 
3758   // Handle fcmp with constant RHS.
3759   // TODO: Use match with a specific FP value, so these work with vectors with
3760   // undef lanes.
3761   const APFloat *C;
3762   if (match(RHS, m_APFloat(C))) {
3763     // Check whether the constant is an infinity.
3764     if (C->isInfinity()) {
3765       if (C->isNegative()) {
3766         switch (Pred) {
3767         case FCmpInst::FCMP_OLT:
3768           // No value is ordered and less than negative infinity.
3769           return getFalse(RetTy);
3770         case FCmpInst::FCMP_UGE:
3771           // All values are unordered with or at least negative infinity.
3772           return getTrue(RetTy);
3773         default:
3774           break;
3775         }
3776       } else {
3777         switch (Pred) {
3778         case FCmpInst::FCMP_OGT:
3779           // No value is ordered and greater than infinity.
3780           return getFalse(RetTy);
3781         case FCmpInst::FCMP_ULE:
3782           // All values are unordered with and at most infinity.
3783           return getTrue(RetTy);
3784         default:
3785           break;
3786         }
3787       }
3788 
3789       // LHS == Inf
3790       if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI))
3791         return getFalse(RetTy);
3792       // LHS != Inf
3793       if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI))
3794         return getTrue(RetTy);
3795       // LHS == Inf || LHS == NaN
3796       if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) &&
3797           isKnownNeverNaN(LHS, Q.TLI))
3798         return getFalse(RetTy);
3799       // LHS != Inf && LHS != NaN
3800       if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) &&
3801           isKnownNeverNaN(LHS, Q.TLI))
3802         return getTrue(RetTy);
3803     }
3804     if (C->isNegative() && !C->isNegZero()) {
3805       assert(!C->isNaN() && "Unexpected NaN constant!");
3806       // TODO: We can catch more cases by using a range check rather than
3807       //       relying on CannotBeOrderedLessThanZero.
3808       switch (Pred) {
3809       case FCmpInst::FCMP_UGE:
3810       case FCmpInst::FCMP_UGT:
3811       case FCmpInst::FCMP_UNE:
3812         // (X >= 0) implies (X > C) when (C < 0)
3813         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3814           return getTrue(RetTy);
3815         break;
3816       case FCmpInst::FCMP_OEQ:
3817       case FCmpInst::FCMP_OLE:
3818       case FCmpInst::FCMP_OLT:
3819         // (X >= 0) implies !(X < C) when (C < 0)
3820         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3821           return getFalse(RetTy);
3822         break;
3823       default:
3824         break;
3825       }
3826     }
3827 
3828     // Check comparison of [minnum/maxnum with constant] with other constant.
3829     const APFloat *C2;
3830     if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
3831          *C2 < *C) ||
3832         (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
3833          *C2 > *C)) {
3834       bool IsMaxNum =
3835           cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
3836       // The ordered relationship and minnum/maxnum guarantee that we do not
3837       // have NaN constants, so ordered/unordered preds are handled the same.
3838       switch (Pred) {
3839       case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ:
3840         // minnum(X, LesserC)  == C --> false
3841         // maxnum(X, GreaterC) == C --> false
3842         return getFalse(RetTy);
3843       case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE:
3844         // minnum(X, LesserC)  != C --> true
3845         // maxnum(X, GreaterC) != C --> true
3846         return getTrue(RetTy);
3847       case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE:
3848       case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT:
3849         // minnum(X, LesserC)  >= C --> false
3850         // minnum(X, LesserC)  >  C --> false
3851         // maxnum(X, GreaterC) >= C --> true
3852         // maxnum(X, GreaterC) >  C --> true
3853         return ConstantInt::get(RetTy, IsMaxNum);
3854       case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE:
3855       case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT:
3856         // minnum(X, LesserC)  <= C --> true
3857         // minnum(X, LesserC)  <  C --> true
3858         // maxnum(X, GreaterC) <= C --> false
3859         // maxnum(X, GreaterC) <  C --> false
3860         return ConstantInt::get(RetTy, !IsMaxNum);
3861       default:
3862         // TRUE/FALSE/ORD/UNO should be handled before this.
3863         llvm_unreachable("Unexpected fcmp predicate");
3864       }
3865     }
3866   }
3867 
3868   if (match(RHS, m_AnyZeroFP())) {
3869     switch (Pred) {
3870     case FCmpInst::FCMP_OGE:
3871     case FCmpInst::FCMP_ULT:
3872       // Positive or zero X >= 0.0 --> true
3873       // Positive or zero X <  0.0 --> false
3874       if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
3875           CannotBeOrderedLessThanZero(LHS, Q.TLI))
3876         return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
3877       break;
3878     case FCmpInst::FCMP_UGE:
3879     case FCmpInst::FCMP_OLT:
3880       // Positive or zero or nan X >= 0.0 --> true
3881       // Positive or zero or nan X <  0.0 --> false
3882       if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3883         return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
3884       break;
3885     default:
3886       break;
3887     }
3888   }
3889 
3890   // If the comparison is with the result of a select instruction, check whether
3891   // comparing with either branch of the select always yields the same value.
3892   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3893     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3894       return V;
3895 
3896   // If the comparison is with the result of a phi instruction, check whether
3897   // doing the compare with each incoming phi value yields a common result.
3898   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3899     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3900       return V;
3901 
3902   return nullptr;
3903 }
3904 
3905 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3906                               FastMathFlags FMF, const SimplifyQuery &Q) {
3907   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3908 }
3909 
3910 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3911                                      const SimplifyQuery &Q,
3912                                      bool AllowRefinement,
3913                                      unsigned MaxRecurse) {
3914   assert(!Op->getType()->isVectorTy() && "This is not safe for vectors");
3915 
3916   // Trivial replacement.
3917   if (V == Op)
3918     return RepOp;
3919 
3920   // We cannot replace a constant, and shouldn't even try.
3921   if (isa<Constant>(Op))
3922     return nullptr;
3923 
3924   auto *I = dyn_cast<Instruction>(V);
3925   if (!I || !is_contained(I->operands(), Op))
3926     return nullptr;
3927 
3928   // Replace Op with RepOp in instruction operands.
3929   SmallVector<Value *, 8> NewOps(I->getNumOperands());
3930   transform(I->operands(), NewOps.begin(),
3931             [&](Value *V) { return V == Op ? RepOp : V; });
3932 
3933   if (!AllowRefinement) {
3934     // General InstSimplify functions may refine the result, e.g. by returning
3935     // a constant for a potentially poison value. To avoid this, implement only
3936     // a few non-refining but profitable transforms here.
3937 
3938     if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3939       unsigned Opcode = BO->getOpcode();
3940       // id op x -> x, x op id -> x
3941       if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType()))
3942         return NewOps[1];
3943       if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(),
3944                                                       /* RHS */ true))
3945         return NewOps[0];
3946 
3947       // x & x -> x, x | x -> x
3948       if ((Opcode == Instruction::And || Opcode == Instruction::Or) &&
3949           NewOps[0] == NewOps[1])
3950         return NewOps[0];
3951     }
3952 
3953     if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
3954       // getelementptr x, 0 -> x
3955       if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) &&
3956           !GEP->isInBounds())
3957         return NewOps[0];
3958     }
3959   } else if (MaxRecurse) {
3960     // The simplification queries below may return the original value. Consider:
3961     //   %div = udiv i32 %arg, %arg2
3962     //   %mul = mul nsw i32 %div, %arg2
3963     //   %cmp = icmp eq i32 %mul, %arg
3964     //   %sel = select i1 %cmp, i32 %div, i32 undef
3965     // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which
3966     // simplifies back to %arg. This can only happen because %mul does not
3967     // dominate %div. To ensure a consistent return value contract, we make sure
3968     // that this case returns nullptr as well.
3969     auto PreventSelfSimplify = [V](Value *Simplified) {
3970       return Simplified != V ? Simplified : nullptr;
3971     };
3972 
3973     if (auto *B = dyn_cast<BinaryOperator>(I))
3974       return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0],
3975                                                NewOps[1], Q, MaxRecurse - 1));
3976 
3977     if (CmpInst *C = dyn_cast<CmpInst>(I))
3978       return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0],
3979                                                  NewOps[1], Q, MaxRecurse - 1));
3980 
3981     if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
3982       return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(),
3983                                                  NewOps, GEP->isInBounds(), Q,
3984                                                  MaxRecurse - 1));
3985 
3986     if (isa<SelectInst>(I))
3987       return PreventSelfSimplify(
3988           SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q,
3989                              MaxRecurse - 1));
3990     // TODO: We could hand off more cases to instsimplify here.
3991   }
3992 
3993   // If all operands are constant after substituting Op for RepOp then we can
3994   // constant fold the instruction.
3995   SmallVector<Constant *, 8> ConstOps;
3996   for (Value *NewOp : NewOps) {
3997     if (Constant *ConstOp = dyn_cast<Constant>(NewOp))
3998       ConstOps.push_back(ConstOp);
3999     else
4000       return nullptr;
4001   }
4002 
4003   // Consider:
4004   //   %cmp = icmp eq i32 %x, 2147483647
4005   //   %add = add nsw i32 %x, 1
4006   //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
4007   //
4008   // We can't replace %sel with %add unless we strip away the flags (which
4009   // will be done in InstCombine).
4010   // TODO: This may be unsound, because it only catches some forms of
4011   // refinement.
4012   if (!AllowRefinement && canCreatePoison(cast<Operator>(I)))
4013     return nullptr;
4014 
4015   if (CmpInst *C = dyn_cast<CmpInst>(I))
4016     return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
4017                                            ConstOps[1], Q.DL, Q.TLI);
4018 
4019   if (LoadInst *LI = dyn_cast<LoadInst>(I))
4020     if (!LI->isVolatile())
4021       return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
4022 
4023   return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
4024 }
4025 
4026 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
4027                                     const SimplifyQuery &Q,
4028                                     bool AllowRefinement) {
4029   return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement,
4030                                   RecursionLimit);
4031 }
4032 
4033 /// Try to simplify a select instruction when its condition operand is an
4034 /// integer comparison where one operand of the compare is a constant.
4035 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
4036                                     const APInt *Y, bool TrueWhenUnset) {
4037   const APInt *C;
4038 
4039   // (X & Y) == 0 ? X & ~Y : X  --> X
4040   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
4041   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
4042       *Y == ~*C)
4043     return TrueWhenUnset ? FalseVal : TrueVal;
4044 
4045   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
4046   // (X & Y) != 0 ? X : X & ~Y  --> X
4047   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
4048       *Y == ~*C)
4049     return TrueWhenUnset ? FalseVal : TrueVal;
4050 
4051   if (Y->isPowerOf2()) {
4052     // (X & Y) == 0 ? X | Y : X  --> X | Y
4053     // (X & Y) != 0 ? X | Y : X  --> X
4054     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
4055         *Y == *C)
4056       return TrueWhenUnset ? TrueVal : FalseVal;
4057 
4058     // (X & Y) == 0 ? X : X | Y  --> X
4059     // (X & Y) != 0 ? X : X | Y  --> X | Y
4060     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
4061         *Y == *C)
4062       return TrueWhenUnset ? TrueVal : FalseVal;
4063   }
4064 
4065   return nullptr;
4066 }
4067 
4068 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
4069 /// eq/ne.
4070 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
4071                                            ICmpInst::Predicate Pred,
4072                                            Value *TrueVal, Value *FalseVal) {
4073   Value *X;
4074   APInt Mask;
4075   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
4076     return nullptr;
4077 
4078   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
4079                                Pred == ICmpInst::ICMP_EQ);
4080 }
4081 
4082 /// Try to simplify a select instruction when its condition operand is an
4083 /// integer comparison.
4084 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
4085                                          Value *FalseVal, const SimplifyQuery &Q,
4086                                          unsigned MaxRecurse) {
4087   ICmpInst::Predicate Pred;
4088   Value *CmpLHS, *CmpRHS;
4089   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
4090     return nullptr;
4091 
4092   // Canonicalize ne to eq predicate.
4093   if (Pred == ICmpInst::ICMP_NE) {
4094     Pred = ICmpInst::ICMP_EQ;
4095     std::swap(TrueVal, FalseVal);
4096   }
4097 
4098   // Check for integer min/max with a limit constant:
4099   // X > MIN_INT ? X : MIN_INT --> X
4100   // X < MAX_INT ? X : MAX_INT --> X
4101   if (TrueVal->getType()->isIntOrIntVectorTy()) {
4102     Value *X, *Y;
4103     SelectPatternFlavor SPF =
4104         matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal,
4105                                      X, Y).Flavor;
4106     if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) {
4107       APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF),
4108                                     X->getType()->getScalarSizeInBits());
4109       if (match(Y, m_SpecificInt(LimitC)))
4110         return X;
4111     }
4112   }
4113 
4114   if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) {
4115     Value *X;
4116     const APInt *Y;
4117     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
4118       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
4119                                            /*TrueWhenUnset=*/true))
4120         return V;
4121 
4122     // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
4123     Value *ShAmt;
4124     auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)),
4125                              m_FShr(m_Value(), m_Value(X), m_Value(ShAmt)));
4126     // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
4127     // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
4128     if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt)
4129       return X;
4130 
4131     // Test for a zero-shift-guard-op around rotates. These are used to
4132     // avoid UB from oversized shifts in raw IR rotate patterns, but the
4133     // intrinsics do not have that problem.
4134     // We do not allow this transform for the general funnel shift case because
4135     // that would not preserve the poison safety of the original code.
4136     auto isRotate =
4137         m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)),
4138                     m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt)));
4139     // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
4140     // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
4141     if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
4142         Pred == ICmpInst::ICMP_EQ)
4143       return FalseVal;
4144 
4145     // X == 0 ? abs(X) : -abs(X) --> -abs(X)
4146     // X == 0 ? -abs(X) : abs(X) --> abs(X)
4147     if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) &&
4148         match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))))
4149       return FalseVal;
4150     if (match(TrueVal,
4151               m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) &&
4152         match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))
4153       return FalseVal;
4154   }
4155 
4156   // Check for other compares that behave like bit test.
4157   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
4158                                               TrueVal, FalseVal))
4159     return V;
4160 
4161   // If we have a scalar equality comparison, then we know the value in one of
4162   // the arms of the select. See if substituting this value into the arm and
4163   // simplifying the result yields the same value as the other arm.
4164   // Note that the equivalence/replacement opportunity does not hold for vectors
4165   // because each element of a vector select is chosen independently.
4166   if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) {
4167     if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q,
4168                                /* AllowRefinement */ false, MaxRecurse) ==
4169             TrueVal ||
4170         simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q,
4171                                /* AllowRefinement */ false, MaxRecurse) ==
4172             TrueVal)
4173       return FalseVal;
4174     if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q,
4175                                /* AllowRefinement */ true, MaxRecurse) ==
4176             FalseVal ||
4177         simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q,
4178                                /* AllowRefinement */ true, MaxRecurse) ==
4179             FalseVal)
4180       return FalseVal;
4181   }
4182 
4183   return nullptr;
4184 }
4185 
4186 /// Try to simplify a select instruction when its condition operand is a
4187 /// floating-point comparison.
4188 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F,
4189                                      const SimplifyQuery &Q) {
4190   FCmpInst::Predicate Pred;
4191   if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
4192       !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
4193     return nullptr;
4194 
4195   // This transform is safe if we do not have (do not care about) -0.0 or if
4196   // at least one operand is known to not be -0.0. Otherwise, the select can
4197   // change the sign of a zero operand.
4198   bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) &&
4199                           Q.CxtI->hasNoSignedZeros();
4200   const APFloat *C;
4201   if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) ||
4202                           (match(F, m_APFloat(C)) && C->isNonZero())) {
4203     // (T == F) ? T : F --> F
4204     // (F == T) ? T : F --> F
4205     if (Pred == FCmpInst::FCMP_OEQ)
4206       return F;
4207 
4208     // (T != F) ? T : F --> T
4209     // (F != T) ? T : F --> T
4210     if (Pred == FCmpInst::FCMP_UNE)
4211       return T;
4212   }
4213 
4214   return nullptr;
4215 }
4216 
4217 /// Given operands for a SelectInst, see if we can fold the result.
4218 /// If not, this returns null.
4219 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4220                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
4221   if (auto *CondC = dyn_cast<Constant>(Cond)) {
4222     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
4223       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
4224         return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
4225 
4226     // select poison, X, Y -> poison
4227     if (isa<PoisonValue>(CondC))
4228       return PoisonValue::get(TrueVal->getType());
4229 
4230     // select undef, X, Y -> X or Y
4231     if (Q.isUndefValue(CondC))
4232       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
4233 
4234     // select true,  X, Y --> X
4235     // select false, X, Y --> Y
4236     // For vectors, allow undef/poison elements in the condition to match the
4237     // defined elements, so we can eliminate the select.
4238     if (match(CondC, m_One()))
4239       return TrueVal;
4240     if (match(CondC, m_Zero()))
4241       return FalseVal;
4242   }
4243 
4244   assert(Cond->getType()->isIntOrIntVectorTy(1) &&
4245          "Select must have bool or bool vector condition");
4246   assert(TrueVal->getType() == FalseVal->getType() &&
4247          "Select must have same types for true/false ops");
4248 
4249   if (Cond->getType() == TrueVal->getType()) {
4250     // select i1 Cond, i1 true, i1 false --> i1 Cond
4251     if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt()))
4252       return Cond;
4253 
4254     // (X || Y) && (X || !Y) --> X (commuted 8 ways)
4255     Value *X, *Y;
4256     if (match(FalseVal, m_ZeroInt())) {
4257       if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4258           match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4259         return X;
4260       if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4261           match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4262         return X;
4263     }
4264   }
4265 
4266   // select ?, X, X -> X
4267   if (TrueVal == FalseVal)
4268     return TrueVal;
4269 
4270   // If the true or false value is poison, we can fold to the other value.
4271   // If the true or false value is undef, we can fold to the other value as
4272   // long as the other value isn't poison.
4273   // select ?, poison, X -> X
4274   // select ?, undef,  X -> X
4275   if (isa<PoisonValue>(TrueVal) ||
4276       (Q.isUndefValue(TrueVal) &&
4277        isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT)))
4278     return FalseVal;
4279   // select ?, X, poison -> X
4280   // select ?, X, undef  -> X
4281   if (isa<PoisonValue>(FalseVal) ||
4282       (Q.isUndefValue(FalseVal) &&
4283        isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT)))
4284     return TrueVal;
4285 
4286   // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC''
4287   Constant *TrueC, *FalseC;
4288   if (isa<FixedVectorType>(TrueVal->getType()) &&
4289       match(TrueVal, m_Constant(TrueC)) &&
4290       match(FalseVal, m_Constant(FalseC))) {
4291     unsigned NumElts =
4292         cast<FixedVectorType>(TrueC->getType())->getNumElements();
4293     SmallVector<Constant *, 16> NewC;
4294     for (unsigned i = 0; i != NumElts; ++i) {
4295       // Bail out on incomplete vector constants.
4296       Constant *TEltC = TrueC->getAggregateElement(i);
4297       Constant *FEltC = FalseC->getAggregateElement(i);
4298       if (!TEltC || !FEltC)
4299         break;
4300 
4301       // If the elements match (undef or not), that value is the result. If only
4302       // one element is undef, choose the defined element as the safe result.
4303       if (TEltC == FEltC)
4304         NewC.push_back(TEltC);
4305       else if (isa<PoisonValue>(TEltC) ||
4306                (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC)))
4307         NewC.push_back(FEltC);
4308       else if (isa<PoisonValue>(FEltC) ||
4309                (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC)))
4310         NewC.push_back(TEltC);
4311       else
4312         break;
4313     }
4314     if (NewC.size() == NumElts)
4315       return ConstantVector::get(NewC);
4316   }
4317 
4318   if (Value *V =
4319           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
4320     return V;
4321 
4322   if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q))
4323     return V;
4324 
4325   if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
4326     return V;
4327 
4328   Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
4329   if (Imp)
4330     return *Imp ? TrueVal : FalseVal;
4331 
4332   return nullptr;
4333 }
4334 
4335 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4336                                 const SimplifyQuery &Q) {
4337   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
4338 }
4339 
4340 /// Given operands for an GetElementPtrInst, see if we can fold the result.
4341 /// If not, this returns null.
4342 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds,
4343                               const SimplifyQuery &Q, unsigned) {
4344   // The type of the GEP pointer operand.
4345   unsigned AS =
4346       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
4347 
4348   // getelementptr P -> P.
4349   if (Ops.size() == 1)
4350     return Ops[0];
4351 
4352   // Compute the (pointer) type returned by the GEP instruction.
4353   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
4354   Type *GEPTy = PointerType::get(LastType, AS);
4355   for (Value *Op : Ops) {
4356     // If one of the operands is a vector, the result type is a vector of
4357     // pointers. All vector operands must have the same number of elements.
4358     if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) {
4359       GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4360       break;
4361     }
4362   }
4363 
4364   // getelementptr poison, idx -> poison
4365   // getelementptr baseptr, poison -> poison
4366   if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); }))
4367     return PoisonValue::get(GEPTy);
4368 
4369   if (Q.isUndefValue(Ops[0]))
4370     return UndefValue::get(GEPTy);
4371 
4372   bool IsScalableVec =
4373       isa<ScalableVectorType>(SrcTy) || any_of(Ops, [](const Value *V) {
4374         return isa<ScalableVectorType>(V->getType());
4375       });
4376 
4377   if (Ops.size() == 2) {
4378     // getelementptr P, 0 -> P.
4379     if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
4380       return Ops[0];
4381 
4382     Type *Ty = SrcTy;
4383     if (!IsScalableVec && Ty->isSized()) {
4384       Value *P;
4385       uint64_t C;
4386       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
4387       // getelementptr P, N -> P if P points to a type of zero size.
4388       if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
4389         return Ops[0];
4390 
4391       // The following transforms are only safe if the ptrtoint cast
4392       // doesn't truncate the pointers.
4393       if (Ops[1]->getType()->getScalarSizeInBits() ==
4394           Q.DL.getPointerSizeInBits(AS)) {
4395         auto CanSimplify = [GEPTy, &P, V = Ops[0]]() -> bool {
4396           return P->getType() == GEPTy &&
4397                  getUnderlyingObject(P) == getUnderlyingObject(V);
4398         };
4399         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
4400         if (TyAllocSize == 1 &&
4401             match(Ops[1], m_Sub(m_PtrToInt(m_Value(P)),
4402                                 m_PtrToInt(m_Specific(Ops[0])))) &&
4403             CanSimplify())
4404           return P;
4405 
4406         // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of
4407         // size 1 << C.
4408         if (match(Ops[1], m_AShr(m_Sub(m_PtrToInt(m_Value(P)),
4409                                        m_PtrToInt(m_Specific(Ops[0]))),
4410                                  m_ConstantInt(C))) &&
4411             TyAllocSize == 1ULL << C && CanSimplify())
4412           return P;
4413 
4414         // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of
4415         // size C.
4416         if (match(Ops[1], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)),
4417                                        m_PtrToInt(m_Specific(Ops[0]))),
4418                                  m_SpecificInt(TyAllocSize))) &&
4419             CanSimplify())
4420           return P;
4421       }
4422     }
4423   }
4424 
4425   if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 &&
4426       all_of(Ops.slice(1).drop_back(1),
4427              [](Value *Idx) { return match(Idx, m_Zero()); })) {
4428     unsigned IdxWidth =
4429         Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
4430     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
4431       APInt BasePtrOffset(IdxWidth, 0);
4432       Value *StrippedBasePtr =
4433           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
4434                                                             BasePtrOffset);
4435 
4436       // Avoid creating inttoptr of zero here: While LLVMs treatment of
4437       // inttoptr is generally conservative, this particular case is folded to
4438       // a null pointer, which will have incorrect provenance.
4439 
4440       // gep (gep V, C), (sub 0, V) -> C
4441       if (match(Ops.back(),
4442                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) &&
4443           !BasePtrOffset.isZero()) {
4444         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
4445         return ConstantExpr::getIntToPtr(CI, GEPTy);
4446       }
4447       // gep (gep V, C), (xor V, -1) -> C-1
4448       if (match(Ops.back(),
4449                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) &&
4450           !BasePtrOffset.isOne()) {
4451         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
4452         return ConstantExpr::getIntToPtr(CI, GEPTy);
4453       }
4454     }
4455   }
4456 
4457   // Check to see if this is constant foldable.
4458   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
4459     return nullptr;
4460 
4461   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
4462                                             Ops.slice(1), InBounds);
4463   return ConstantFoldConstant(CE, Q.DL);
4464 }
4465 
4466 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds,
4467                              const SimplifyQuery &Q) {
4468   return ::SimplifyGEPInst(SrcTy, Ops, InBounds, Q, RecursionLimit);
4469 }
4470 
4471 /// Given operands for an InsertValueInst, see if we can fold the result.
4472 /// If not, this returns null.
4473 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
4474                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
4475                                       unsigned) {
4476   if (Constant *CAgg = dyn_cast<Constant>(Agg))
4477     if (Constant *CVal = dyn_cast<Constant>(Val))
4478       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
4479 
4480   // insertvalue x, undef, n -> x
4481   if (Q.isUndefValue(Val))
4482     return Agg;
4483 
4484   // insertvalue x, (extractvalue y, n), n
4485   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
4486     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
4487         EV->getIndices() == Idxs) {
4488       // insertvalue undef, (extractvalue y, n), n -> y
4489       if (Q.isUndefValue(Agg))
4490         return EV->getAggregateOperand();
4491 
4492       // insertvalue y, (extractvalue y, n), n -> y
4493       if (Agg == EV->getAggregateOperand())
4494         return Agg;
4495     }
4496 
4497   return nullptr;
4498 }
4499 
4500 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
4501                                      ArrayRef<unsigned> Idxs,
4502                                      const SimplifyQuery &Q) {
4503   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
4504 }
4505 
4506 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
4507                                        const SimplifyQuery &Q) {
4508   // Try to constant fold.
4509   auto *VecC = dyn_cast<Constant>(Vec);
4510   auto *ValC = dyn_cast<Constant>(Val);
4511   auto *IdxC = dyn_cast<Constant>(Idx);
4512   if (VecC && ValC && IdxC)
4513     return ConstantExpr::getInsertElement(VecC, ValC, IdxC);
4514 
4515   // For fixed-length vector, fold into poison if index is out of bounds.
4516   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
4517     if (isa<FixedVectorType>(Vec->getType()) &&
4518         CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements()))
4519       return PoisonValue::get(Vec->getType());
4520   }
4521 
4522   // If index is undef, it might be out of bounds (see above case)
4523   if (Q.isUndefValue(Idx))
4524     return PoisonValue::get(Vec->getType());
4525 
4526   // If the scalar is poison, or it is undef and there is no risk of
4527   // propagating poison from the vector value, simplify to the vector value.
4528   if (isa<PoisonValue>(Val) ||
4529       (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec)))
4530     return Vec;
4531 
4532   // If we are extracting a value from a vector, then inserting it into the same
4533   // place, that's the input vector:
4534   // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
4535   if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx))))
4536     return Vec;
4537 
4538   return nullptr;
4539 }
4540 
4541 /// Given operands for an ExtractValueInst, see if we can fold the result.
4542 /// If not, this returns null.
4543 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4544                                        const SimplifyQuery &, unsigned) {
4545   if (auto *CAgg = dyn_cast<Constant>(Agg))
4546     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4547 
4548   // extractvalue x, (insertvalue y, elt, n), n -> elt
4549   unsigned NumIdxs = Idxs.size();
4550   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4551        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4552     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4553     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4554     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4555     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4556         Idxs.slice(0, NumCommonIdxs)) {
4557       if (NumIdxs == NumInsertValueIdxs)
4558         return IVI->getInsertedValueOperand();
4559       break;
4560     }
4561   }
4562 
4563   return nullptr;
4564 }
4565 
4566 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4567                                       const SimplifyQuery &Q) {
4568   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4569 }
4570 
4571 /// Given operands for an ExtractElementInst, see if we can fold the result.
4572 /// If not, this returns null.
4573 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx,
4574                                          const SimplifyQuery &Q, unsigned) {
4575   auto *VecVTy = cast<VectorType>(Vec->getType());
4576   if (auto *CVec = dyn_cast<Constant>(Vec)) {
4577     if (auto *CIdx = dyn_cast<Constant>(Idx))
4578       return ConstantExpr::getExtractElement(CVec, CIdx);
4579 
4580     if (Q.isUndefValue(Vec))
4581       return UndefValue::get(VecVTy->getElementType());
4582   }
4583 
4584   // An undef extract index can be arbitrarily chosen to be an out-of-range
4585   // index value, which would result in the instruction being poison.
4586   if (Q.isUndefValue(Idx))
4587     return PoisonValue::get(VecVTy->getElementType());
4588 
4589   // If extracting a specified index from the vector, see if we can recursively
4590   // find a previously computed scalar that was inserted into the vector.
4591   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4592     // For fixed-length vector, fold into undef if index is out of bounds.
4593     unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue();
4594     if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts))
4595       return PoisonValue::get(VecVTy->getElementType());
4596     // Handle case where an element is extracted from a splat.
4597     if (IdxC->getValue().ult(MinNumElts))
4598       if (auto *Splat = getSplatValue(Vec))
4599         return Splat;
4600     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4601       return Elt;
4602   } else {
4603     // The index is not relevant if our vector is a splat.
4604     if (Value *Splat = getSplatValue(Vec))
4605       return Splat;
4606   }
4607   return nullptr;
4608 }
4609 
4610 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
4611                                         const SimplifyQuery &Q) {
4612   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4613 }
4614 
4615 /// See if we can fold the given phi. If not, returns null.
4616 static Value *SimplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues,
4617                               const SimplifyQuery &Q) {
4618   // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE
4619   //          here, because the PHI we may succeed simplifying to was not
4620   //          def-reachable from the original PHI!
4621 
4622   // If all of the PHI's incoming values are the same then replace the PHI node
4623   // with the common value.
4624   Value *CommonValue = nullptr;
4625   bool HasUndefInput = false;
4626   for (Value *Incoming : IncomingValues) {
4627     // If the incoming value is the phi node itself, it can safely be skipped.
4628     if (Incoming == PN) continue;
4629     if (Q.isUndefValue(Incoming)) {
4630       // Remember that we saw an undef value, but otherwise ignore them.
4631       HasUndefInput = true;
4632       continue;
4633     }
4634     if (CommonValue && Incoming != CommonValue)
4635       return nullptr;  // Not the same, bail out.
4636     CommonValue = Incoming;
4637   }
4638 
4639   // If CommonValue is null then all of the incoming values were either undef or
4640   // equal to the phi node itself.
4641   if (!CommonValue)
4642     return UndefValue::get(PN->getType());
4643 
4644   // If we have a PHI node like phi(X, undef, X), where X is defined by some
4645   // instruction, we cannot return X as the result of the PHI node unless it
4646   // dominates the PHI block.
4647   if (HasUndefInput)
4648     return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4649 
4650   return CommonValue;
4651 }
4652 
4653 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4654                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
4655   if (auto *C = dyn_cast<Constant>(Op))
4656     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4657 
4658   if (auto *CI = dyn_cast<CastInst>(Op)) {
4659     auto *Src = CI->getOperand(0);
4660     Type *SrcTy = Src->getType();
4661     Type *MidTy = CI->getType();
4662     Type *DstTy = Ty;
4663     if (Src->getType() == Ty) {
4664       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4665       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4666       Type *SrcIntPtrTy =
4667           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4668       Type *MidIntPtrTy =
4669           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4670       Type *DstIntPtrTy =
4671           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4672       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4673                                          SrcIntPtrTy, MidIntPtrTy,
4674                                          DstIntPtrTy) == Instruction::BitCast)
4675         return Src;
4676     }
4677   }
4678 
4679   // bitcast x -> x
4680   if (CastOpc == Instruction::BitCast)
4681     if (Op->getType() == Ty)
4682       return Op;
4683 
4684   return nullptr;
4685 }
4686 
4687 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4688                               const SimplifyQuery &Q) {
4689   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4690 }
4691 
4692 /// For the given destination element of a shuffle, peek through shuffles to
4693 /// match a root vector source operand that contains that element in the same
4694 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4695 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4696                                    int MaskVal, Value *RootVec,
4697                                    unsigned MaxRecurse) {
4698   if (!MaxRecurse--)
4699     return nullptr;
4700 
4701   // Bail out if any mask value is undefined. That kind of shuffle may be
4702   // simplified further based on demanded bits or other folds.
4703   if (MaskVal == -1)
4704     return nullptr;
4705 
4706   // The mask value chooses which source operand we need to look at next.
4707   int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements();
4708   int RootElt = MaskVal;
4709   Value *SourceOp = Op0;
4710   if (MaskVal >= InVecNumElts) {
4711     RootElt = MaskVal - InVecNumElts;
4712     SourceOp = Op1;
4713   }
4714 
4715   // If the source operand is a shuffle itself, look through it to find the
4716   // matching root vector.
4717   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4718     return foldIdentityShuffles(
4719         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4720         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4721   }
4722 
4723   // TODO: Look through bitcasts? What if the bitcast changes the vector element
4724   // size?
4725 
4726   // The source operand is not a shuffle. Initialize the root vector value for
4727   // this shuffle if that has not been done yet.
4728   if (!RootVec)
4729     RootVec = SourceOp;
4730 
4731   // Give up as soon as a source operand does not match the existing root value.
4732   if (RootVec != SourceOp)
4733     return nullptr;
4734 
4735   // The element must be coming from the same lane in the source vector
4736   // (although it may have crossed lanes in intermediate shuffles).
4737   if (RootElt != DestElt)
4738     return nullptr;
4739 
4740   return RootVec;
4741 }
4742 
4743 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4744                                         ArrayRef<int> Mask, Type *RetTy,
4745                                         const SimplifyQuery &Q,
4746                                         unsigned MaxRecurse) {
4747   if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; }))
4748     return UndefValue::get(RetTy);
4749 
4750   auto *InVecTy = cast<VectorType>(Op0->getType());
4751   unsigned MaskNumElts = Mask.size();
4752   ElementCount InVecEltCount = InVecTy->getElementCount();
4753 
4754   bool Scalable = InVecEltCount.isScalable();
4755 
4756   SmallVector<int, 32> Indices;
4757   Indices.assign(Mask.begin(), Mask.end());
4758 
4759   // Canonicalization: If mask does not select elements from an input vector,
4760   // replace that input vector with poison.
4761   if (!Scalable) {
4762     bool MaskSelects0 = false, MaskSelects1 = false;
4763     unsigned InVecNumElts = InVecEltCount.getKnownMinValue();
4764     for (unsigned i = 0; i != MaskNumElts; ++i) {
4765       if (Indices[i] == -1)
4766         continue;
4767       if ((unsigned)Indices[i] < InVecNumElts)
4768         MaskSelects0 = true;
4769       else
4770         MaskSelects1 = true;
4771     }
4772     if (!MaskSelects0)
4773       Op0 = PoisonValue::get(InVecTy);
4774     if (!MaskSelects1)
4775       Op1 = PoisonValue::get(InVecTy);
4776   }
4777 
4778   auto *Op0Const = dyn_cast<Constant>(Op0);
4779   auto *Op1Const = dyn_cast<Constant>(Op1);
4780 
4781   // If all operands are constant, constant fold the shuffle. This
4782   // transformation depends on the value of the mask which is not known at
4783   // compile time for scalable vectors
4784   if (Op0Const && Op1Const)
4785     return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask);
4786 
4787   // Canonicalization: if only one input vector is constant, it shall be the
4788   // second one. This transformation depends on the value of the mask which
4789   // is not known at compile time for scalable vectors
4790   if (!Scalable && Op0Const && !Op1Const) {
4791     std::swap(Op0, Op1);
4792     ShuffleVectorInst::commuteShuffleMask(Indices,
4793                                           InVecEltCount.getKnownMinValue());
4794   }
4795 
4796   // A splat of an inserted scalar constant becomes a vector constant:
4797   // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...>
4798   // NOTE: We may have commuted above, so analyze the updated Indices, not the
4799   //       original mask constant.
4800   // NOTE: This transformation depends on the value of the mask which is not
4801   // known at compile time for scalable vectors
4802   Constant *C;
4803   ConstantInt *IndexC;
4804   if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C),
4805                                           m_ConstantInt(IndexC)))) {
4806     // Match a splat shuffle mask of the insert index allowing undef elements.
4807     int InsertIndex = IndexC->getZExtValue();
4808     if (all_of(Indices, [InsertIndex](int MaskElt) {
4809           return MaskElt == InsertIndex || MaskElt == -1;
4810         })) {
4811       assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat");
4812 
4813       // Shuffle mask undefs become undefined constant result elements.
4814       SmallVector<Constant *, 16> VecC(MaskNumElts, C);
4815       for (unsigned i = 0; i != MaskNumElts; ++i)
4816         if (Indices[i] == -1)
4817           VecC[i] = UndefValue::get(C->getType());
4818       return ConstantVector::get(VecC);
4819     }
4820   }
4821 
4822   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4823   // value type is same as the input vectors' type.
4824   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4825     if (Q.isUndefValue(Op1) && RetTy == InVecTy &&
4826         is_splat(OpShuf->getShuffleMask()))
4827       return Op0;
4828 
4829   // All remaining transformation depend on the value of the mask, which is
4830   // not known at compile time for scalable vectors.
4831   if (Scalable)
4832     return nullptr;
4833 
4834   // Don't fold a shuffle with undef mask elements. This may get folded in a
4835   // better way using demanded bits or other analysis.
4836   // TODO: Should we allow this?
4837   if (is_contained(Indices, -1))
4838     return nullptr;
4839 
4840   // Check if every element of this shuffle can be mapped back to the
4841   // corresponding element of a single root vector. If so, we don't need this
4842   // shuffle. This handles simple identity shuffles as well as chains of
4843   // shuffles that may widen/narrow and/or move elements across lanes and back.
4844   Value *RootVec = nullptr;
4845   for (unsigned i = 0; i != MaskNumElts; ++i) {
4846     // Note that recursion is limited for each vector element, so if any element
4847     // exceeds the limit, this will fail to simplify.
4848     RootVec =
4849         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4850 
4851     // We can't replace a widening/narrowing shuffle with one of its operands.
4852     if (!RootVec || RootVec->getType() != RetTy)
4853       return nullptr;
4854   }
4855   return RootVec;
4856 }
4857 
4858 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4859 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4860                                        ArrayRef<int> Mask, Type *RetTy,
4861                                        const SimplifyQuery &Q) {
4862   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4863 }
4864 
4865 static Constant *foldConstant(Instruction::UnaryOps Opcode,
4866                               Value *&Op, const SimplifyQuery &Q) {
4867   if (auto *C = dyn_cast<Constant>(Op))
4868     return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
4869   return nullptr;
4870 }
4871 
4872 /// Given the operand for an FNeg, see if we can fold the result.  If not, this
4873 /// returns null.
4874 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
4875                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4876   if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
4877     return C;
4878 
4879   Value *X;
4880   // fneg (fneg X) ==> X
4881   if (match(Op, m_FNeg(m_Value(X))))
4882     return X;
4883 
4884   return nullptr;
4885 }
4886 
4887 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF,
4888                               const SimplifyQuery &Q) {
4889   return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
4890 }
4891 
4892 static Constant *propagateNaN(Constant *In) {
4893   // If the input is a vector with undef elements, just return a default NaN.
4894   if (!In->isNaN())
4895     return ConstantFP::getNaN(In->getType());
4896 
4897   // Propagate the existing NaN constant when possible.
4898   // TODO: Should we quiet a signaling NaN?
4899   return In;
4900 }
4901 
4902 /// Perform folds that are common to any floating-point operation. This implies
4903 /// transforms based on poison/undef/NaN because the operation itself makes no
4904 /// difference to the result.
4905 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF,
4906                               const SimplifyQuery &Q,
4907                               fp::ExceptionBehavior ExBehavior,
4908                               RoundingMode Rounding) {
4909   // Poison is independent of anything else. It always propagates from an
4910   // operand to a math result.
4911   if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); }))
4912     return PoisonValue::get(Ops[0]->getType());
4913 
4914   for (Value *V : Ops) {
4915     bool IsNan = match(V, m_NaN());
4916     bool IsInf = match(V, m_Inf());
4917     bool IsUndef = Q.isUndefValue(V);
4918 
4919     // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
4920     // (an undef operand can be chosen to be Nan/Inf), then the result of
4921     // this operation is poison.
4922     if (FMF.noNaNs() && (IsNan || IsUndef))
4923       return PoisonValue::get(V->getType());
4924     if (FMF.noInfs() && (IsInf || IsUndef))
4925       return PoisonValue::get(V->getType());
4926 
4927     if (isDefaultFPEnvironment(ExBehavior, Rounding)) {
4928       if (IsUndef || IsNan)
4929         return propagateNaN(cast<Constant>(V));
4930     } else if (ExBehavior != fp::ebStrict) {
4931       if (IsNan)
4932         return propagateNaN(cast<Constant>(V));
4933     }
4934   }
4935   return nullptr;
4936 }
4937 
4938 // TODO: Move this out to a header file:
4939 static inline bool canIgnoreSNaN(fp::ExceptionBehavior EB, FastMathFlags FMF) {
4940   return (EB == fp::ebIgnore || FMF.noNaNs());
4941 }
4942 
4943 /// Given operands for an FAdd, see if we can fold the result.  If not, this
4944 /// returns null.
4945 static Value *
4946 SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4947                  const SimplifyQuery &Q, unsigned MaxRecurse,
4948                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
4949                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
4950   if (isDefaultFPEnvironment(ExBehavior, Rounding))
4951     if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
4952       return C;
4953 
4954   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
4955     return C;
4956 
4957   // fadd X, -0 ==> X
4958   // With strict/constrained FP, we have these possible edge cases that do
4959   // not simplify to Op0:
4960   // fadd SNaN, -0.0 --> QNaN
4961   // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative)
4962   if (canIgnoreSNaN(ExBehavior, FMF) &&
4963       (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) ||
4964        FMF.noSignedZeros()))
4965     if (match(Op1, m_NegZeroFP()))
4966       return Op0;
4967 
4968   // fadd X, 0 ==> X, when we know X is not -0
4969   if (canIgnoreSNaN(ExBehavior, FMF))
4970     if (match(Op1, m_PosZeroFP()) &&
4971         (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4972       return Op0;
4973 
4974   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
4975     return nullptr;
4976 
4977   // With nnan: -X + X --> 0.0 (and commuted variant)
4978   // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
4979   // Negative zeros are allowed because we always end up with positive zero:
4980   // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4981   // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4982   // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
4983   // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
4984   if (FMF.noNaNs()) {
4985     if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
4986         match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
4987       return ConstantFP::getNullValue(Op0->getType());
4988 
4989     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
4990         match(Op1, m_FNeg(m_Specific(Op0))))
4991       return ConstantFP::getNullValue(Op0->getType());
4992   }
4993 
4994   // (X - Y) + Y --> X
4995   // Y + (X - Y) --> X
4996   Value *X;
4997   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4998       (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
4999        match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
5000     return X;
5001 
5002   return nullptr;
5003 }
5004 
5005 /// Given operands for an FSub, see if we can fold the result.  If not, this
5006 /// returns null.
5007 static Value *
5008 SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5009                  const SimplifyQuery &Q, unsigned MaxRecurse,
5010                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5011                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5012   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5013     if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
5014       return C;
5015 
5016   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5017     return C;
5018 
5019   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5020     return nullptr;
5021 
5022   // fsub X, +0 ==> X
5023   if (match(Op1, m_PosZeroFP()))
5024     return Op0;
5025 
5026   // fsub X, -0 ==> X, when we know X is not -0
5027   if (match(Op1, m_NegZeroFP()) &&
5028       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
5029     return Op0;
5030 
5031   // fsub -0.0, (fsub -0.0, X) ==> X
5032   // fsub -0.0, (fneg X) ==> X
5033   Value *X;
5034   if (match(Op0, m_NegZeroFP()) &&
5035       match(Op1, m_FNeg(m_Value(X))))
5036     return X;
5037 
5038   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
5039   // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
5040   if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
5041       (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
5042        match(Op1, m_FNeg(m_Value(X)))))
5043     return X;
5044 
5045   // fsub nnan x, x ==> 0.0
5046   if (FMF.noNaNs() && Op0 == Op1)
5047     return Constant::getNullValue(Op0->getType());
5048 
5049   // Y - (Y - X) --> X
5050   // (X + Y) - Y --> X
5051   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5052       (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
5053        match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
5054     return X;
5055 
5056   return nullptr;
5057 }
5058 
5059 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5060                               const SimplifyQuery &Q, unsigned MaxRecurse,
5061                               fp::ExceptionBehavior ExBehavior,
5062                               RoundingMode Rounding) {
5063   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5064     return C;
5065 
5066   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5067     return nullptr;
5068 
5069   // fmul X, 1.0 ==> X
5070   if (match(Op1, m_FPOne()))
5071     return Op0;
5072 
5073   // fmul 1.0, X ==> X
5074   if (match(Op0, m_FPOne()))
5075     return Op1;
5076 
5077   // fmul nnan nsz X, 0 ==> 0
5078   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
5079     return ConstantFP::getNullValue(Op0->getType());
5080 
5081   // fmul nnan nsz 0, X ==> 0
5082   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5083     return ConstantFP::getNullValue(Op1->getType());
5084 
5085   // sqrt(X) * sqrt(X) --> X, if we can:
5086   // 1. Remove the intermediate rounding (reassociate).
5087   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
5088   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
5089   Value *X;
5090   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
5091       FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
5092     return X;
5093 
5094   return nullptr;
5095 }
5096 
5097 /// Given the operands for an FMul, see if we can fold the result
5098 static Value *
5099 SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5100                  const SimplifyQuery &Q, unsigned MaxRecurse,
5101                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5102                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5103   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5104     if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
5105       return C;
5106 
5107   // Now apply simplifications that do not require rounding.
5108   return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding);
5109 }
5110 
5111 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5112                               const SimplifyQuery &Q,
5113                               fp::ExceptionBehavior ExBehavior,
5114                               RoundingMode Rounding) {
5115   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5116                             Rounding);
5117 }
5118 
5119 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5120                               const SimplifyQuery &Q,
5121                               fp::ExceptionBehavior ExBehavior,
5122                               RoundingMode Rounding) {
5123   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5124                             Rounding);
5125 }
5126 
5127 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5128                               const SimplifyQuery &Q,
5129                               fp::ExceptionBehavior ExBehavior,
5130                               RoundingMode Rounding) {
5131   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5132                             Rounding);
5133 }
5134 
5135 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5136                              const SimplifyQuery &Q,
5137                              fp::ExceptionBehavior ExBehavior,
5138                              RoundingMode Rounding) {
5139   return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5140                            Rounding);
5141 }
5142 
5143 static Value *
5144 SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5145                  const SimplifyQuery &Q, unsigned,
5146                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5147                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5148   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5149     if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
5150       return C;
5151 
5152   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5153     return C;
5154 
5155   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5156     return nullptr;
5157 
5158   // X / 1.0 -> X
5159   if (match(Op1, m_FPOne()))
5160     return Op0;
5161 
5162   // 0 / X -> 0
5163   // Requires that NaNs are off (X could be zero) and signed zeroes are
5164   // ignored (X could be positive or negative, so the output sign is unknown).
5165   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5166     return ConstantFP::getNullValue(Op0->getType());
5167 
5168   if (FMF.noNaNs()) {
5169     // X / X -> 1.0 is legal when NaNs are ignored.
5170     // We can ignore infinities because INF/INF is NaN.
5171     if (Op0 == Op1)
5172       return ConstantFP::get(Op0->getType(), 1.0);
5173 
5174     // (X * Y) / Y --> X if we can reassociate to the above form.
5175     Value *X;
5176     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
5177       return X;
5178 
5179     // -X /  X -> -1.0 and
5180     //  X / -X -> -1.0 are legal when NaNs are ignored.
5181     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
5182     if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
5183         match(Op1, m_FNegNSZ(m_Specific(Op0))))
5184       return ConstantFP::get(Op0->getType(), -1.0);
5185   }
5186 
5187   return nullptr;
5188 }
5189 
5190 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5191                               const SimplifyQuery &Q,
5192                               fp::ExceptionBehavior ExBehavior,
5193                               RoundingMode Rounding) {
5194   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5195                             Rounding);
5196 }
5197 
5198 static Value *
5199 SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5200                  const SimplifyQuery &Q, unsigned,
5201                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5202                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5203   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5204     if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
5205       return C;
5206 
5207   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5208     return C;
5209 
5210   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5211     return nullptr;
5212 
5213   // Unlike fdiv, the result of frem always matches the sign of the dividend.
5214   // The constant match may include undef elements in a vector, so return a full
5215   // zero constant as the result.
5216   if (FMF.noNaNs()) {
5217     // +0 % X -> 0
5218     if (match(Op0, m_PosZeroFP()))
5219       return ConstantFP::getNullValue(Op0->getType());
5220     // -0 % X -> -0
5221     if (match(Op0, m_NegZeroFP()))
5222       return ConstantFP::getNegativeZero(Op0->getType());
5223   }
5224 
5225   return nullptr;
5226 }
5227 
5228 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5229                               const SimplifyQuery &Q,
5230                               fp::ExceptionBehavior ExBehavior,
5231                               RoundingMode Rounding) {
5232   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5233                             Rounding);
5234 }
5235 
5236 //=== Helper functions for higher up the class hierarchy.
5237 
5238 /// Given the operand for a UnaryOperator, see if we can fold the result.
5239 /// If not, this returns null.
5240 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
5241                            unsigned MaxRecurse) {
5242   switch (Opcode) {
5243   case Instruction::FNeg:
5244     return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
5245   default:
5246     llvm_unreachable("Unexpected opcode");
5247   }
5248 }
5249 
5250 /// Given the operand for a UnaryOperator, see if we can fold the result.
5251 /// If not, this returns null.
5252 /// Try to use FastMathFlags when folding the result.
5253 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
5254                              const FastMathFlags &FMF,
5255                              const SimplifyQuery &Q, unsigned MaxRecurse) {
5256   switch (Opcode) {
5257   case Instruction::FNeg:
5258     return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
5259   default:
5260     return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
5261   }
5262 }
5263 
5264 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
5265   return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
5266 }
5267 
5268 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
5269                           const SimplifyQuery &Q) {
5270   return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
5271 }
5272 
5273 /// Given operands for a BinaryOperator, see if we can fold the result.
5274 /// If not, this returns null.
5275 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5276                             const SimplifyQuery &Q, unsigned MaxRecurse) {
5277   switch (Opcode) {
5278   case Instruction::Add:
5279     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
5280   case Instruction::Sub:
5281     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
5282   case Instruction::Mul:
5283     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
5284   case Instruction::SDiv:
5285     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
5286   case Instruction::UDiv:
5287     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
5288   case Instruction::SRem:
5289     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
5290   case Instruction::URem:
5291     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
5292   case Instruction::Shl:
5293     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
5294   case Instruction::LShr:
5295     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
5296   case Instruction::AShr:
5297     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
5298   case Instruction::And:
5299     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
5300   case Instruction::Or:
5301     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
5302   case Instruction::Xor:
5303     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
5304   case Instruction::FAdd:
5305     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5306   case Instruction::FSub:
5307     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5308   case Instruction::FMul:
5309     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5310   case Instruction::FDiv:
5311     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5312   case Instruction::FRem:
5313     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5314   default:
5315     llvm_unreachable("Unexpected opcode");
5316   }
5317 }
5318 
5319 /// Given operands for a BinaryOperator, see if we can fold the result.
5320 /// If not, this returns null.
5321 /// Try to use FastMathFlags when folding the result.
5322 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5323                             const FastMathFlags &FMF, const SimplifyQuery &Q,
5324                             unsigned MaxRecurse) {
5325   switch (Opcode) {
5326   case Instruction::FAdd:
5327     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
5328   case Instruction::FSub:
5329     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
5330   case Instruction::FMul:
5331     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
5332   case Instruction::FDiv:
5333     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
5334   default:
5335     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
5336   }
5337 }
5338 
5339 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5340                            const SimplifyQuery &Q) {
5341   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
5342 }
5343 
5344 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5345                            FastMathFlags FMF, const SimplifyQuery &Q) {
5346   return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
5347 }
5348 
5349 /// Given operands for a CmpInst, see if we can fold the result.
5350 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5351                               const SimplifyQuery &Q, unsigned MaxRecurse) {
5352   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
5353     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
5354   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5355 }
5356 
5357 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5358                              const SimplifyQuery &Q) {
5359   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
5360 }
5361 
5362 static bool IsIdempotent(Intrinsic::ID ID) {
5363   switch (ID) {
5364   default: return false;
5365 
5366   // Unary idempotent: f(f(x)) = f(x)
5367   case Intrinsic::fabs:
5368   case Intrinsic::floor:
5369   case Intrinsic::ceil:
5370   case Intrinsic::trunc:
5371   case Intrinsic::rint:
5372   case Intrinsic::nearbyint:
5373   case Intrinsic::round:
5374   case Intrinsic::roundeven:
5375   case Intrinsic::canonicalize:
5376     return true;
5377   }
5378 }
5379 
5380 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
5381                                    const DataLayout &DL) {
5382   GlobalValue *PtrSym;
5383   APInt PtrOffset;
5384   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
5385     return nullptr;
5386 
5387   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
5388   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
5389   Type *Int32PtrTy = Int32Ty->getPointerTo();
5390   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
5391 
5392   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
5393   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
5394     return nullptr;
5395 
5396   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
5397   if (OffsetInt % 4 != 0)
5398     return nullptr;
5399 
5400   Constant *C = ConstantExpr::getGetElementPtr(
5401       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
5402       ConstantInt::get(Int64Ty, OffsetInt / 4));
5403   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
5404   if (!Loaded)
5405     return nullptr;
5406 
5407   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
5408   if (!LoadedCE)
5409     return nullptr;
5410 
5411   if (LoadedCE->getOpcode() == Instruction::Trunc) {
5412     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5413     if (!LoadedCE)
5414       return nullptr;
5415   }
5416 
5417   if (LoadedCE->getOpcode() != Instruction::Sub)
5418     return nullptr;
5419 
5420   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5421   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
5422     return nullptr;
5423   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
5424 
5425   Constant *LoadedRHS = LoadedCE->getOperand(1);
5426   GlobalValue *LoadedRHSSym;
5427   APInt LoadedRHSOffset;
5428   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
5429                                   DL) ||
5430       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
5431     return nullptr;
5432 
5433   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
5434 }
5435 
5436 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
5437                                      const SimplifyQuery &Q) {
5438   // Idempotent functions return the same result when called repeatedly.
5439   Intrinsic::ID IID = F->getIntrinsicID();
5440   if (IsIdempotent(IID))
5441     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
5442       if (II->getIntrinsicID() == IID)
5443         return II;
5444 
5445   Value *X;
5446   switch (IID) {
5447   case Intrinsic::fabs:
5448     if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
5449     break;
5450   case Intrinsic::bswap:
5451     // bswap(bswap(x)) -> x
5452     if (match(Op0, m_BSwap(m_Value(X)))) return X;
5453     break;
5454   case Intrinsic::bitreverse:
5455     // bitreverse(bitreverse(x)) -> x
5456     if (match(Op0, m_BitReverse(m_Value(X)))) return X;
5457     break;
5458   case Intrinsic::ctpop: {
5459     // If everything but the lowest bit is zero, that bit is the pop-count. Ex:
5460     // ctpop(and X, 1) --> and X, 1
5461     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
5462     if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1),
5463                           Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
5464       return Op0;
5465     break;
5466   }
5467   case Intrinsic::exp:
5468     // exp(log(x)) -> x
5469     if (Q.CxtI->hasAllowReassoc() &&
5470         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
5471     break;
5472   case Intrinsic::exp2:
5473     // exp2(log2(x)) -> x
5474     if (Q.CxtI->hasAllowReassoc() &&
5475         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
5476     break;
5477   case Intrinsic::log:
5478     // log(exp(x)) -> x
5479     if (Q.CxtI->hasAllowReassoc() &&
5480         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
5481     break;
5482   case Intrinsic::log2:
5483     // log2(exp2(x)) -> x
5484     if (Q.CxtI->hasAllowReassoc() &&
5485         (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
5486          match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0),
5487                                                 m_Value(X))))) return X;
5488     break;
5489   case Intrinsic::log10:
5490     // log10(pow(10.0, x)) -> x
5491     if (Q.CxtI->hasAllowReassoc() &&
5492         match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0),
5493                                                m_Value(X)))) return X;
5494     break;
5495   case Intrinsic::floor:
5496   case Intrinsic::trunc:
5497   case Intrinsic::ceil:
5498   case Intrinsic::round:
5499   case Intrinsic::roundeven:
5500   case Intrinsic::nearbyint:
5501   case Intrinsic::rint: {
5502     // floor (sitofp x) -> sitofp x
5503     // floor (uitofp x) -> uitofp x
5504     //
5505     // Converting from int always results in a finite integral number or
5506     // infinity. For either of those inputs, these rounding functions always
5507     // return the same value, so the rounding can be eliminated.
5508     if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
5509       return Op0;
5510     break;
5511   }
5512   case Intrinsic::experimental_vector_reverse:
5513     // experimental.vector.reverse(experimental.vector.reverse(x)) -> x
5514     if (match(Op0,
5515               m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X))))
5516       return X;
5517     // experimental.vector.reverse(splat(X)) -> splat(X)
5518     if (isSplatValue(Op0))
5519       return Op0;
5520     break;
5521   default:
5522     break;
5523   }
5524 
5525   return nullptr;
5526 }
5527 
5528 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) {
5529   switch (IID) {
5530   case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth);
5531   case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth);
5532   case Intrinsic::umax: return APInt::getMaxValue(BitWidth);
5533   case Intrinsic::umin: return APInt::getMinValue(BitWidth);
5534   default: llvm_unreachable("Unexpected intrinsic");
5535   }
5536 }
5537 
5538 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) {
5539   switch (IID) {
5540   case Intrinsic::smax: return ICmpInst::ICMP_SGE;
5541   case Intrinsic::smin: return ICmpInst::ICMP_SLE;
5542   case Intrinsic::umax: return ICmpInst::ICMP_UGE;
5543   case Intrinsic::umin: return ICmpInst::ICMP_ULE;
5544   default: llvm_unreachable("Unexpected intrinsic");
5545   }
5546 }
5547 
5548 /// Given a min/max intrinsic, see if it can be removed based on having an
5549 /// operand that is another min/max intrinsic with shared operand(s). The caller
5550 /// is expected to swap the operand arguments to handle commutation.
5551 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) {
5552   Value *X, *Y;
5553   if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y))))
5554     return nullptr;
5555 
5556   auto *MM0 = dyn_cast<IntrinsicInst>(Op0);
5557   if (!MM0)
5558     return nullptr;
5559   Intrinsic::ID IID0 = MM0->getIntrinsicID();
5560 
5561   if (Op1 == X || Op1 == Y ||
5562       match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) {
5563     // max (max X, Y), X --> max X, Y
5564     if (IID0 == IID)
5565       return MM0;
5566     // max (min X, Y), X --> X
5567     if (IID0 == getInverseMinMaxIntrinsic(IID))
5568       return Op1;
5569   }
5570   return nullptr;
5571 }
5572 
5573 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
5574                                       const SimplifyQuery &Q) {
5575   Intrinsic::ID IID = F->getIntrinsicID();
5576   Type *ReturnType = F->getReturnType();
5577   unsigned BitWidth = ReturnType->getScalarSizeInBits();
5578   switch (IID) {
5579   case Intrinsic::abs:
5580     // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here.
5581     // It is always ok to pick the earlier abs. We'll just lose nsw if its only
5582     // on the outer abs.
5583     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value())))
5584       return Op0;
5585     break;
5586 
5587   case Intrinsic::cttz: {
5588     Value *X;
5589     if (match(Op0, m_Shl(m_One(), m_Value(X))))
5590       return X;
5591     break;
5592   }
5593   case Intrinsic::ctlz: {
5594     Value *X;
5595     if (match(Op0, m_LShr(m_Negative(), m_Value(X))))
5596       return X;
5597     if (match(Op0, m_AShr(m_Negative(), m_Value())))
5598       return Constant::getNullValue(ReturnType);
5599     break;
5600   }
5601   case Intrinsic::smax:
5602   case Intrinsic::smin:
5603   case Intrinsic::umax:
5604   case Intrinsic::umin: {
5605     // If the arguments are the same, this is a no-op.
5606     if (Op0 == Op1)
5607       return Op0;
5608 
5609     // Canonicalize constant operand as Op1.
5610     if (isa<Constant>(Op0))
5611       std::swap(Op0, Op1);
5612 
5613     // Assume undef is the limit value.
5614     if (Q.isUndefValue(Op1))
5615       return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth));
5616 
5617     const APInt *C;
5618     if (match(Op1, m_APIntAllowUndef(C))) {
5619       // Clamp to limit value. For example:
5620       // umax(i8 %x, i8 255) --> 255
5621       if (*C == getMaxMinLimit(IID, BitWidth))
5622         return ConstantInt::get(ReturnType, *C);
5623 
5624       // If the constant op is the opposite of the limit value, the other must
5625       // be larger/smaller or equal. For example:
5626       // umin(i8 %x, i8 255) --> %x
5627       if (*C == getMaxMinLimit(getInverseMinMaxIntrinsic(IID), BitWidth))
5628         return Op0;
5629 
5630       // Remove nested call if constant operands allow it. Example:
5631       // max (max X, 7), 5 -> max X, 7
5632       auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0);
5633       if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
5634         // TODO: loosen undef/splat restrictions for vector constants.
5635         Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
5636         const APInt *InnerC;
5637         if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) &&
5638             ((IID == Intrinsic::smax && InnerC->sge(*C)) ||
5639              (IID == Intrinsic::smin && InnerC->sle(*C)) ||
5640              (IID == Intrinsic::umax && InnerC->uge(*C)) ||
5641              (IID == Intrinsic::umin && InnerC->ule(*C))))
5642           return Op0;
5643       }
5644     }
5645 
5646     if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1))
5647       return V;
5648     if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0))
5649       return V;
5650 
5651     ICmpInst::Predicate Pred = getMaxMinPredicate(IID);
5652     if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit))
5653       return Op0;
5654     if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit))
5655       return Op1;
5656 
5657     if (Optional<bool> Imp =
5658             isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL))
5659       return *Imp ? Op0 : Op1;
5660     if (Optional<bool> Imp =
5661             isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL))
5662       return *Imp ? Op1 : Op0;
5663 
5664     break;
5665   }
5666   case Intrinsic::usub_with_overflow:
5667   case Intrinsic::ssub_with_overflow:
5668     // X - X -> { 0, false }
5669     // X - undef -> { 0, false }
5670     // undef - X -> { 0, false }
5671     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5672       return Constant::getNullValue(ReturnType);
5673     break;
5674   case Intrinsic::uadd_with_overflow:
5675   case Intrinsic::sadd_with_overflow:
5676     // X + undef -> { -1, false }
5677     // undef + x -> { -1, false }
5678     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) {
5679       return ConstantStruct::get(
5680           cast<StructType>(ReturnType),
5681           {Constant::getAllOnesValue(ReturnType->getStructElementType(0)),
5682            Constant::getNullValue(ReturnType->getStructElementType(1))});
5683     }
5684     break;
5685   case Intrinsic::umul_with_overflow:
5686   case Intrinsic::smul_with_overflow:
5687     // 0 * X -> { 0, false }
5688     // X * 0 -> { 0, false }
5689     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
5690       return Constant::getNullValue(ReturnType);
5691     // undef * X -> { 0, false }
5692     // X * undef -> { 0, false }
5693     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5694       return Constant::getNullValue(ReturnType);
5695     break;
5696   case Intrinsic::uadd_sat:
5697     // sat(MAX + X) -> MAX
5698     // sat(X + MAX) -> MAX
5699     if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
5700       return Constant::getAllOnesValue(ReturnType);
5701     LLVM_FALLTHROUGH;
5702   case Intrinsic::sadd_sat:
5703     // sat(X + undef) -> -1
5704     // sat(undef + X) -> -1
5705     // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
5706     // For signed: Assume undef is ~X, in which case X + ~X = -1.
5707     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5708       return Constant::getAllOnesValue(ReturnType);
5709 
5710     // X + 0 -> X
5711     if (match(Op1, m_Zero()))
5712       return Op0;
5713     // 0 + X -> X
5714     if (match(Op0, m_Zero()))
5715       return Op1;
5716     break;
5717   case Intrinsic::usub_sat:
5718     // sat(0 - X) -> 0, sat(X - MAX) -> 0
5719     if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
5720       return Constant::getNullValue(ReturnType);
5721     LLVM_FALLTHROUGH;
5722   case Intrinsic::ssub_sat:
5723     // X - X -> 0, X - undef -> 0, undef - X -> 0
5724     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5725       return Constant::getNullValue(ReturnType);
5726     // X - 0 -> X
5727     if (match(Op1, m_Zero()))
5728       return Op0;
5729     break;
5730   case Intrinsic::load_relative:
5731     if (auto *C0 = dyn_cast<Constant>(Op0))
5732       if (auto *C1 = dyn_cast<Constant>(Op1))
5733         return SimplifyRelativeLoad(C0, C1, Q.DL);
5734     break;
5735   case Intrinsic::powi:
5736     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
5737       // powi(x, 0) -> 1.0
5738       if (Power->isZero())
5739         return ConstantFP::get(Op0->getType(), 1.0);
5740       // powi(x, 1) -> x
5741       if (Power->isOne())
5742         return Op0;
5743     }
5744     break;
5745   case Intrinsic::copysign:
5746     // copysign X, X --> X
5747     if (Op0 == Op1)
5748       return Op0;
5749     // copysign -X, X --> X
5750     // copysign X, -X --> -X
5751     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5752         match(Op1, m_FNeg(m_Specific(Op0))))
5753       return Op1;
5754     break;
5755   case Intrinsic::maxnum:
5756   case Intrinsic::minnum:
5757   case Intrinsic::maximum:
5758   case Intrinsic::minimum: {
5759     // If the arguments are the same, this is a no-op.
5760     if (Op0 == Op1) return Op0;
5761 
5762     // Canonicalize constant operand as Op1.
5763     if (isa<Constant>(Op0))
5764       std::swap(Op0, Op1);
5765 
5766     // If an argument is undef, return the other argument.
5767     if (Q.isUndefValue(Op1))
5768       return Op0;
5769 
5770     bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
5771     bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum;
5772 
5773     // minnum(X, nan) -> X
5774     // maxnum(X, nan) -> X
5775     // minimum(X, nan) -> nan
5776     // maximum(X, nan) -> nan
5777     if (match(Op1, m_NaN()))
5778       return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0;
5779 
5780     // In the following folds, inf can be replaced with the largest finite
5781     // float, if the ninf flag is set.
5782     const APFloat *C;
5783     if (match(Op1, m_APFloat(C)) &&
5784         (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) {
5785       // minnum(X, -inf) -> -inf
5786       // maxnum(X, +inf) -> +inf
5787       // minimum(X, -inf) -> -inf if nnan
5788       // maximum(X, +inf) -> +inf if nnan
5789       if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs()))
5790         return ConstantFP::get(ReturnType, *C);
5791 
5792       // minnum(X, +inf) -> X if nnan
5793       // maxnum(X, -inf) -> X if nnan
5794       // minimum(X, +inf) -> X
5795       // maximum(X, -inf) -> X
5796       if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs()))
5797         return Op0;
5798     }
5799 
5800     // Min/max of the same operation with common operand:
5801     // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
5802     if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
5803       if (M0->getIntrinsicID() == IID &&
5804           (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
5805         return Op0;
5806     if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
5807       if (M1->getIntrinsicID() == IID &&
5808           (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
5809         return Op1;
5810 
5811     break;
5812   }
5813   case Intrinsic::experimental_vector_extract: {
5814     Type *ReturnType = F->getReturnType();
5815 
5816     // (extract_vector (insert_vector _, X, 0), 0) -> X
5817     unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue();
5818     Value *X = nullptr;
5819     if (match(Op0, m_Intrinsic<Intrinsic::experimental_vector_insert>(
5820                        m_Value(), m_Value(X), m_Zero())) &&
5821         IdxN == 0 && X->getType() == ReturnType)
5822       return X;
5823 
5824     break;
5825   }
5826   default:
5827     break;
5828   }
5829 
5830   return nullptr;
5831 }
5832 
5833 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
5834 
5835   unsigned NumOperands = Call->arg_size();
5836   Function *F = cast<Function>(Call->getCalledFunction());
5837   Intrinsic::ID IID = F->getIntrinsicID();
5838 
5839   // Most of the intrinsics with no operands have some kind of side effect.
5840   // Don't simplify.
5841   if (!NumOperands) {
5842     switch (IID) {
5843     case Intrinsic::vscale: {
5844       // Call may not be inserted into the IR yet at point of calling simplify.
5845       if (!Call->getParent() || !Call->getParent()->getParent())
5846         return nullptr;
5847       auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange);
5848       if (!Attr.isValid())
5849         return nullptr;
5850       unsigned VScaleMin, VScaleMax;
5851       std::tie(VScaleMin, VScaleMax) = Attr.getVScaleRangeArgs();
5852       if (VScaleMin == VScaleMax && VScaleMax != 0)
5853         return ConstantInt::get(F->getReturnType(), VScaleMin);
5854       return nullptr;
5855     }
5856     default:
5857       return nullptr;
5858     }
5859   }
5860 
5861   if (NumOperands == 1)
5862     return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
5863 
5864   if (NumOperands == 2)
5865     return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
5866                                    Call->getArgOperand(1), Q);
5867 
5868   // Handle intrinsics with 3 or more arguments.
5869   switch (IID) {
5870   case Intrinsic::masked_load:
5871   case Intrinsic::masked_gather: {
5872     Value *MaskArg = Call->getArgOperand(2);
5873     Value *PassthruArg = Call->getArgOperand(3);
5874     // If the mask is all zeros or undef, the "passthru" argument is the result.
5875     if (maskIsAllZeroOrUndef(MaskArg))
5876       return PassthruArg;
5877     return nullptr;
5878   }
5879   case Intrinsic::fshl:
5880   case Intrinsic::fshr: {
5881     Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
5882           *ShAmtArg = Call->getArgOperand(2);
5883 
5884     // If both operands are undef, the result is undef.
5885     if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1))
5886       return UndefValue::get(F->getReturnType());
5887 
5888     // If shift amount is undef, assume it is zero.
5889     if (Q.isUndefValue(ShAmtArg))
5890       return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5891 
5892     const APInt *ShAmtC;
5893     if (match(ShAmtArg, m_APInt(ShAmtC))) {
5894       // If there's effectively no shift, return the 1st arg or 2nd arg.
5895       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
5896       if (ShAmtC->urem(BitWidth).isZero())
5897         return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5898     }
5899 
5900     // Rotating zero by anything is zero.
5901     if (match(Op0, m_Zero()) && match(Op1, m_Zero()))
5902       return ConstantInt::getNullValue(F->getReturnType());
5903 
5904     // Rotating -1 by anything is -1.
5905     if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes()))
5906       return ConstantInt::getAllOnesValue(F->getReturnType());
5907 
5908     return nullptr;
5909   }
5910   case Intrinsic::experimental_constrained_fma: {
5911     Value *Op0 = Call->getArgOperand(0);
5912     Value *Op1 = Call->getArgOperand(1);
5913     Value *Op2 = Call->getArgOperand(2);
5914     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
5915     if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q,
5916                                 FPI->getExceptionBehavior().getValue(),
5917                                 FPI->getRoundingMode().getValue()))
5918       return V;
5919     return nullptr;
5920   }
5921   case Intrinsic::fma:
5922   case Intrinsic::fmuladd: {
5923     Value *Op0 = Call->getArgOperand(0);
5924     Value *Op1 = Call->getArgOperand(1);
5925     Value *Op2 = Call->getArgOperand(2);
5926     if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore,
5927                                 RoundingMode::NearestTiesToEven))
5928       return V;
5929     return nullptr;
5930   }
5931   case Intrinsic::smul_fix:
5932   case Intrinsic::smul_fix_sat: {
5933     Value *Op0 = Call->getArgOperand(0);
5934     Value *Op1 = Call->getArgOperand(1);
5935     Value *Op2 = Call->getArgOperand(2);
5936     Type *ReturnType = F->getReturnType();
5937 
5938     // Canonicalize constant operand as Op1 (ConstantFolding handles the case
5939     // when both Op0 and Op1 are constant so we do not care about that special
5940     // case here).
5941     if (isa<Constant>(Op0))
5942       std::swap(Op0, Op1);
5943 
5944     // X * 0 -> 0
5945     if (match(Op1, m_Zero()))
5946       return Constant::getNullValue(ReturnType);
5947 
5948     // X * undef -> 0
5949     if (Q.isUndefValue(Op1))
5950       return Constant::getNullValue(ReturnType);
5951 
5952     // X * (1 << Scale) -> X
5953     APInt ScaledOne =
5954         APInt::getOneBitSet(ReturnType->getScalarSizeInBits(),
5955                             cast<ConstantInt>(Op2)->getZExtValue());
5956     if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne)))
5957       return Op0;
5958 
5959     return nullptr;
5960   }
5961   case Intrinsic::experimental_vector_insert: {
5962     Value *Vec = Call->getArgOperand(0);
5963     Value *SubVec = Call->getArgOperand(1);
5964     Value *Idx = Call->getArgOperand(2);
5965     Type *ReturnType = F->getReturnType();
5966 
5967     // (insert_vector Y, (extract_vector X, 0), 0) -> X
5968     // where: Y is X, or Y is undef
5969     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5970     Value *X = nullptr;
5971     if (match(SubVec, m_Intrinsic<Intrinsic::experimental_vector_extract>(
5972                           m_Value(X), m_Zero())) &&
5973         (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 &&
5974         X->getType() == ReturnType)
5975       return X;
5976 
5977     return nullptr;
5978   }
5979   case Intrinsic::experimental_constrained_fadd: {
5980     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
5981     return SimplifyFAddInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
5982                             FPI->getFastMathFlags(), Q,
5983                             FPI->getExceptionBehavior().getValue(),
5984                             FPI->getRoundingMode().getValue());
5985     break;
5986   }
5987   case Intrinsic::experimental_constrained_fsub: {
5988     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
5989     return SimplifyFSubInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
5990                             FPI->getFastMathFlags(), Q,
5991                             FPI->getExceptionBehavior().getValue(),
5992                             FPI->getRoundingMode().getValue());
5993     break;
5994   }
5995   case Intrinsic::experimental_constrained_fmul: {
5996     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
5997     return SimplifyFMulInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
5998                             FPI->getFastMathFlags(), Q,
5999                             FPI->getExceptionBehavior().getValue(),
6000                             FPI->getRoundingMode().getValue());
6001     break;
6002   }
6003   case Intrinsic::experimental_constrained_fdiv: {
6004     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6005     return SimplifyFDivInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6006                             FPI->getFastMathFlags(), Q,
6007                             FPI->getExceptionBehavior().getValue(),
6008                             FPI->getRoundingMode().getValue());
6009     break;
6010   }
6011   case Intrinsic::experimental_constrained_frem: {
6012     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6013     return SimplifyFRemInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6014                             FPI->getFastMathFlags(), Q,
6015                             FPI->getExceptionBehavior().getValue(),
6016                             FPI->getRoundingMode().getValue());
6017     break;
6018   }
6019   default:
6020     return nullptr;
6021   }
6022 }
6023 
6024 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) {
6025   auto *F = dyn_cast<Function>(Call->getCalledOperand());
6026   if (!F || !canConstantFoldCallTo(Call, F))
6027     return nullptr;
6028 
6029   SmallVector<Constant *, 4> ConstantArgs;
6030   unsigned NumArgs = Call->arg_size();
6031   ConstantArgs.reserve(NumArgs);
6032   for (auto &Arg : Call->args()) {
6033     Constant *C = dyn_cast<Constant>(&Arg);
6034     if (!C) {
6035       if (isa<MetadataAsValue>(Arg.get()))
6036         continue;
6037       return nullptr;
6038     }
6039     ConstantArgs.push_back(C);
6040   }
6041 
6042   return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
6043 }
6044 
6045 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) {
6046   // musttail calls can only be simplified if they are also DCEd.
6047   // As we can't guarantee this here, don't simplify them.
6048   if (Call->isMustTailCall())
6049     return nullptr;
6050 
6051   // call undef -> poison
6052   // call null -> poison
6053   Value *Callee = Call->getCalledOperand();
6054   if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
6055     return PoisonValue::get(Call->getType());
6056 
6057   if (Value *V = tryConstantFoldCall(Call, Q))
6058     return V;
6059 
6060   auto *F = dyn_cast<Function>(Callee);
6061   if (F && F->isIntrinsic())
6062     if (Value *Ret = simplifyIntrinsic(Call, Q))
6063       return Ret;
6064 
6065   return nullptr;
6066 }
6067 
6068 /// Given operands for a Freeze, see if we can fold the result.
6069 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
6070   // Use a utility function defined in ValueTracking.
6071   if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT))
6072     return Op0;
6073   // We have room for improvement.
6074   return nullptr;
6075 }
6076 
6077 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
6078   return ::SimplifyFreezeInst(Op0, Q);
6079 }
6080 
6081 static Value *SimplifyLoadInst(LoadInst *LI, Value *PtrOp,
6082                                const SimplifyQuery &Q) {
6083   if (LI->isVolatile())
6084     return nullptr;
6085 
6086   APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0);
6087   auto *PtrOpC = dyn_cast<Constant>(PtrOp);
6088   // Try to convert operand into a constant by stripping offsets while looking
6089   // through invariant.group intrinsics. Don't bother if the underlying object
6090   // is not constant, as calculating GEP offsets is expensive.
6091   if (!PtrOpC && isa<Constant>(getUnderlyingObject(PtrOp))) {
6092     PtrOp = PtrOp->stripAndAccumulateConstantOffsets(
6093         Q.DL, Offset, /* AllowNonInbounts */ true,
6094         /* AllowInvariantGroup */ true);
6095     // Index size may have changed due to address space casts.
6096     Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()));
6097     PtrOpC = dyn_cast<Constant>(PtrOp);
6098   }
6099 
6100   if (PtrOpC)
6101     return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Offset, Q.DL);
6102   return nullptr;
6103 }
6104 
6105 /// See if we can compute a simplified version of this instruction.
6106 /// If not, this returns null.
6107 
6108 static Value *simplifyInstructionWithOperands(Instruction *I,
6109                                               ArrayRef<Value *> NewOps,
6110                                               const SimplifyQuery &SQ,
6111                                               OptimizationRemarkEmitter *ORE) {
6112   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
6113   Value *Result = nullptr;
6114 
6115   switch (I->getOpcode()) {
6116   default:
6117     if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) {
6118       SmallVector<Constant *, 8> NewConstOps(NewOps.size());
6119       transform(NewOps, NewConstOps.begin(),
6120                 [](Value *V) { return cast<Constant>(V); });
6121       Result = ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI);
6122     }
6123     break;
6124   case Instruction::FNeg:
6125     Result = SimplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q);
6126     break;
6127   case Instruction::FAdd:
6128     Result = SimplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6129     break;
6130   case Instruction::Add:
6131     Result = SimplifyAddInst(
6132         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6133         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6134     break;
6135   case Instruction::FSub:
6136     Result = SimplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6137     break;
6138   case Instruction::Sub:
6139     Result = SimplifySubInst(
6140         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6141         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6142     break;
6143   case Instruction::FMul:
6144     Result = SimplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6145     break;
6146   case Instruction::Mul:
6147     Result = SimplifyMulInst(NewOps[0], NewOps[1], Q);
6148     break;
6149   case Instruction::SDiv:
6150     Result = SimplifySDivInst(NewOps[0], NewOps[1], Q);
6151     break;
6152   case Instruction::UDiv:
6153     Result = SimplifyUDivInst(NewOps[0], NewOps[1], Q);
6154     break;
6155   case Instruction::FDiv:
6156     Result = SimplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6157     break;
6158   case Instruction::SRem:
6159     Result = SimplifySRemInst(NewOps[0], NewOps[1], Q);
6160     break;
6161   case Instruction::URem:
6162     Result = SimplifyURemInst(NewOps[0], NewOps[1], Q);
6163     break;
6164   case Instruction::FRem:
6165     Result = SimplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6166     break;
6167   case Instruction::Shl:
6168     Result = SimplifyShlInst(
6169         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6170         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6171     break;
6172   case Instruction::LShr:
6173     Result = SimplifyLShrInst(NewOps[0], NewOps[1],
6174                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6175     break;
6176   case Instruction::AShr:
6177     Result = SimplifyAShrInst(NewOps[0], NewOps[1],
6178                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6179     break;
6180   case Instruction::And:
6181     Result = SimplifyAndInst(NewOps[0], NewOps[1], Q);
6182     break;
6183   case Instruction::Or:
6184     Result = SimplifyOrInst(NewOps[0], NewOps[1], Q);
6185     break;
6186   case Instruction::Xor:
6187     Result = SimplifyXorInst(NewOps[0], NewOps[1], Q);
6188     break;
6189   case Instruction::ICmp:
6190     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0],
6191                               NewOps[1], Q);
6192     break;
6193   case Instruction::FCmp:
6194     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0],
6195                               NewOps[1], I->getFastMathFlags(), Q);
6196     break;
6197   case Instruction::Select:
6198     Result = SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q);
6199     break;
6200   case Instruction::GetElementPtr: {
6201     auto *GEPI = cast<GetElementPtrInst>(I);
6202     Result = SimplifyGEPInst(GEPI->getSourceElementType(), NewOps,
6203                              GEPI->isInBounds(), Q);
6204     break;
6205   }
6206   case Instruction::InsertValue: {
6207     InsertValueInst *IV = cast<InsertValueInst>(I);
6208     Result = SimplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q);
6209     break;
6210   }
6211   case Instruction::InsertElement: {
6212     Result = SimplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q);
6213     break;
6214   }
6215   case Instruction::ExtractValue: {
6216     auto *EVI = cast<ExtractValueInst>(I);
6217     Result = SimplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q);
6218     break;
6219   }
6220   case Instruction::ExtractElement: {
6221     Result = SimplifyExtractElementInst(NewOps[0], NewOps[1], Q);
6222     break;
6223   }
6224   case Instruction::ShuffleVector: {
6225     auto *SVI = cast<ShuffleVectorInst>(I);
6226     Result = SimplifyShuffleVectorInst(
6227         NewOps[0], NewOps[1], SVI->getShuffleMask(), SVI->getType(), Q);
6228     break;
6229   }
6230   case Instruction::PHI:
6231     Result = SimplifyPHINode(cast<PHINode>(I), NewOps, Q);
6232     break;
6233   case Instruction::Call: {
6234     // TODO: Use NewOps
6235     Result = SimplifyCall(cast<CallInst>(I), Q);
6236     break;
6237   }
6238   case Instruction::Freeze:
6239     Result = llvm::SimplifyFreezeInst(NewOps[0], Q);
6240     break;
6241 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
6242 #include "llvm/IR/Instruction.def"
6243 #undef HANDLE_CAST_INST
6244     Result = SimplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q);
6245     break;
6246   case Instruction::Alloca:
6247     // No simplifications for Alloca and it can't be constant folded.
6248     Result = nullptr;
6249     break;
6250   case Instruction::Load:
6251     Result = SimplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q);
6252     break;
6253   }
6254 
6255   /// If called on unreachable code, the above logic may report that the
6256   /// instruction simplified to itself.  Make life easier for users by
6257   /// detecting that case here, returning a safe value instead.
6258   return Result == I ? UndefValue::get(I->getType()) : Result;
6259 }
6260 
6261 Value *llvm::SimplifyInstructionWithOperands(Instruction *I,
6262                                              ArrayRef<Value *> NewOps,
6263                                              const SimplifyQuery &SQ,
6264                                              OptimizationRemarkEmitter *ORE) {
6265   assert(NewOps.size() == I->getNumOperands() &&
6266          "Number of operands should match the instruction!");
6267   return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE);
6268 }
6269 
6270 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
6271                                  OptimizationRemarkEmitter *ORE) {
6272   SmallVector<Value *, 8> Ops(I->operands());
6273   return ::simplifyInstructionWithOperands(I, Ops, SQ, ORE);
6274 }
6275 
6276 /// Implementation of recursive simplification through an instruction's
6277 /// uses.
6278 ///
6279 /// This is the common implementation of the recursive simplification routines.
6280 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
6281 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
6282 /// instructions to process and attempt to simplify it using
6283 /// InstructionSimplify. Recursively visited users which could not be
6284 /// simplified themselves are to the optional UnsimplifiedUsers set for
6285 /// further processing by the caller.
6286 ///
6287 /// This routine returns 'true' only when *it* simplifies something. The passed
6288 /// in simplified value does not count toward this.
6289 static bool replaceAndRecursivelySimplifyImpl(
6290     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6291     const DominatorTree *DT, AssumptionCache *AC,
6292     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
6293   bool Simplified = false;
6294   SmallSetVector<Instruction *, 8> Worklist;
6295   const DataLayout &DL = I->getModule()->getDataLayout();
6296 
6297   // If we have an explicit value to collapse to, do that round of the
6298   // simplification loop by hand initially.
6299   if (SimpleV) {
6300     for (User *U : I->users())
6301       if (U != I)
6302         Worklist.insert(cast<Instruction>(U));
6303 
6304     // Replace the instruction with its simplified value.
6305     I->replaceAllUsesWith(SimpleV);
6306 
6307     // Gracefully handle edge cases where the instruction is not wired into any
6308     // parent block.
6309     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6310         !I->mayHaveSideEffects())
6311       I->eraseFromParent();
6312   } else {
6313     Worklist.insert(I);
6314   }
6315 
6316   // Note that we must test the size on each iteration, the worklist can grow.
6317   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
6318     I = Worklist[Idx];
6319 
6320     // See if this instruction simplifies.
6321     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
6322     if (!SimpleV) {
6323       if (UnsimplifiedUsers)
6324         UnsimplifiedUsers->insert(I);
6325       continue;
6326     }
6327 
6328     Simplified = true;
6329 
6330     // Stash away all the uses of the old instruction so we can check them for
6331     // recursive simplifications after a RAUW. This is cheaper than checking all
6332     // uses of To on the recursive step in most cases.
6333     for (User *U : I->users())
6334       Worklist.insert(cast<Instruction>(U));
6335 
6336     // Replace the instruction with its simplified value.
6337     I->replaceAllUsesWith(SimpleV);
6338 
6339     // Gracefully handle edge cases where the instruction is not wired into any
6340     // parent block.
6341     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6342         !I->mayHaveSideEffects())
6343       I->eraseFromParent();
6344   }
6345   return Simplified;
6346 }
6347 
6348 bool llvm::replaceAndRecursivelySimplify(
6349     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6350     const DominatorTree *DT, AssumptionCache *AC,
6351     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
6352   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
6353   assert(SimpleV && "Must provide a simplified value.");
6354   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
6355                                            UnsimplifiedUsers);
6356 }
6357 
6358 namespace llvm {
6359 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
6360   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
6361   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
6362   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
6363   auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
6364   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
6365   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
6366   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6367 }
6368 
6369 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
6370                                          const DataLayout &DL) {
6371   return {DL, &AR.TLI, &AR.DT, &AR.AC};
6372 }
6373 
6374 template <class T, class... TArgs>
6375 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
6376                                          Function &F) {
6377   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
6378   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
6379   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
6380   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6381 }
6382 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
6383                                                   Function &);
6384 }
6385