1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/CmpInstAnalysis.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/LoopAnalysisManager.h" 31 #include "llvm/Analysis/MemoryBuiltins.h" 32 #include "llvm/Analysis/OverflowInstAnalysis.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/ConstantRange.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/GetElementPtrTypeIterator.h" 39 #include "llvm/IR/GlobalAlias.h" 40 #include "llvm/IR/InstrTypes.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/Operator.h" 43 #include "llvm/IR/PatternMatch.h" 44 #include "llvm/IR/ValueHandle.h" 45 #include "llvm/Support/KnownBits.h" 46 #include <algorithm> 47 using namespace llvm; 48 using namespace llvm::PatternMatch; 49 50 #define DEBUG_TYPE "instsimplify" 51 52 enum { RecursionLimit = 3 }; 53 54 STATISTIC(NumExpand, "Number of expansions"); 55 STATISTIC(NumReassoc, "Number of reassociations"); 56 57 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 58 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 59 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 60 const SimplifyQuery &, unsigned); 61 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 62 unsigned); 63 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 64 const SimplifyQuery &, unsigned); 65 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 66 unsigned); 67 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 68 const SimplifyQuery &Q, unsigned MaxRecurse); 69 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 70 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 71 static Value *SimplifyCastInst(unsigned, Value *, Type *, 72 const SimplifyQuery &, unsigned); 73 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, bool, 74 const SimplifyQuery &, unsigned); 75 static Value *SimplifySelectInst(Value *, Value *, Value *, 76 const SimplifyQuery &, unsigned); 77 78 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 79 Value *FalseVal) { 80 BinaryOperator::BinaryOps BinOpCode; 81 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 82 BinOpCode = BO->getOpcode(); 83 else 84 return nullptr; 85 86 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 87 if (BinOpCode == BinaryOperator::Or) { 88 ExpectedPred = ICmpInst::ICMP_NE; 89 } else if (BinOpCode == BinaryOperator::And) { 90 ExpectedPred = ICmpInst::ICMP_EQ; 91 } else 92 return nullptr; 93 94 // %A = icmp eq %TV, %FV 95 // %B = icmp eq %X, %Y (and one of these is a select operand) 96 // %C = and %A, %B 97 // %D = select %C, %TV, %FV 98 // --> 99 // %FV 100 101 // %A = icmp ne %TV, %FV 102 // %B = icmp ne %X, %Y (and one of these is a select operand) 103 // %C = or %A, %B 104 // %D = select %C, %TV, %FV 105 // --> 106 // %TV 107 Value *X, *Y; 108 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 109 m_Specific(FalseVal)), 110 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 111 Pred1 != Pred2 || Pred1 != ExpectedPred) 112 return nullptr; 113 114 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 115 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 116 117 return nullptr; 118 } 119 120 /// For a boolean type or a vector of boolean type, return false or a vector 121 /// with every element false. 122 static Constant *getFalse(Type *Ty) { 123 return ConstantInt::getFalse(Ty); 124 } 125 126 /// For a boolean type or a vector of boolean type, return true or a vector 127 /// with every element true. 128 static Constant *getTrue(Type *Ty) { 129 return ConstantInt::getTrue(Ty); 130 } 131 132 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 133 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 134 Value *RHS) { 135 CmpInst *Cmp = dyn_cast<CmpInst>(V); 136 if (!Cmp) 137 return false; 138 CmpInst::Predicate CPred = Cmp->getPredicate(); 139 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 140 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 141 return true; 142 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 143 CRHS == LHS; 144 } 145 146 /// Simplify comparison with true or false branch of select: 147 /// %sel = select i1 %cond, i32 %tv, i32 %fv 148 /// %cmp = icmp sle i32 %sel, %rhs 149 /// Compose new comparison by substituting %sel with either %tv or %fv 150 /// and see if it simplifies. 151 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 152 Value *RHS, Value *Cond, 153 const SimplifyQuery &Q, unsigned MaxRecurse, 154 Constant *TrueOrFalse) { 155 Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 156 if (SimplifiedCmp == Cond) { 157 // %cmp simplified to the select condition (%cond). 158 return TrueOrFalse; 159 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 160 // It didn't simplify. However, if composed comparison is equivalent 161 // to the select condition (%cond) then we can replace it. 162 return TrueOrFalse; 163 } 164 return SimplifiedCmp; 165 } 166 167 /// Simplify comparison with true branch of select 168 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 169 Value *RHS, Value *Cond, 170 const SimplifyQuery &Q, 171 unsigned MaxRecurse) { 172 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 173 getTrue(Cond->getType())); 174 } 175 176 /// Simplify comparison with false branch of select 177 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 178 Value *RHS, Value *Cond, 179 const SimplifyQuery &Q, 180 unsigned MaxRecurse) { 181 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 182 getFalse(Cond->getType())); 183 } 184 185 /// We know comparison with both branches of select can be simplified, but they 186 /// are not equal. This routine handles some logical simplifications. 187 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 188 Value *Cond, 189 const SimplifyQuery &Q, 190 unsigned MaxRecurse) { 191 // If the false value simplified to false, then the result of the compare 192 // is equal to "Cond && TCmp". This also catches the case when the false 193 // value simplified to false and the true value to true, returning "Cond". 194 // Folding select to and/or isn't poison-safe in general; impliesPoison 195 // checks whether folding it does not convert a well-defined value into 196 // poison. 197 if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond)) 198 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 199 return V; 200 // If the true value simplified to true, then the result of the compare 201 // is equal to "Cond || FCmp". 202 if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond)) 203 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 204 return V; 205 // Finally, if the false value simplified to true and the true value to 206 // false, then the result of the compare is equal to "!Cond". 207 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 208 if (Value *V = SimplifyXorInst( 209 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 210 return V; 211 return nullptr; 212 } 213 214 /// Does the given value dominate the specified phi node? 215 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 216 Instruction *I = dyn_cast<Instruction>(V); 217 if (!I) 218 // Arguments and constants dominate all instructions. 219 return true; 220 221 // If we are processing instructions (and/or basic blocks) that have not been 222 // fully added to a function, the parent nodes may still be null. Simply 223 // return the conservative answer in these cases. 224 if (!I->getParent() || !P->getParent() || !I->getFunction()) 225 return false; 226 227 // If we have a DominatorTree then do a precise test. 228 if (DT) 229 return DT->dominates(I, P); 230 231 // Otherwise, if the instruction is in the entry block and is not an invoke, 232 // then it obviously dominates all phi nodes. 233 if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) && 234 !isa<CallBrInst>(I)) 235 return true; 236 237 return false; 238 } 239 240 /// Try to simplify a binary operator of form "V op OtherOp" where V is 241 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 242 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 243 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 244 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 245 const SimplifyQuery &Q, unsigned MaxRecurse) { 246 auto *B = dyn_cast<BinaryOperator>(V); 247 if (!B || B->getOpcode() != OpcodeToExpand) 248 return nullptr; 249 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 250 Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), 251 MaxRecurse); 252 if (!L) 253 return nullptr; 254 Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), 255 MaxRecurse); 256 if (!R) 257 return nullptr; 258 259 // Does the expanded pair of binops simplify to the existing binop? 260 if ((L == B0 && R == B1) || 261 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 262 ++NumExpand; 263 return B; 264 } 265 266 // Otherwise, return "L op' R" if it simplifies. 267 Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 268 if (!S) 269 return nullptr; 270 271 ++NumExpand; 272 return S; 273 } 274 275 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 276 /// distributing op over op'. 277 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, 278 Value *L, Value *R, 279 Instruction::BinaryOps OpcodeToExpand, 280 const SimplifyQuery &Q, 281 unsigned MaxRecurse) { 282 // Recursion is always used, so bail out at once if we already hit the limit. 283 if (!MaxRecurse--) 284 return nullptr; 285 286 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 287 return V; 288 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 289 return V; 290 return nullptr; 291 } 292 293 /// Generic simplifications for associative binary operations. 294 /// Returns the simpler value, or null if none was found. 295 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 296 Value *LHS, Value *RHS, 297 const SimplifyQuery &Q, 298 unsigned MaxRecurse) { 299 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 300 301 // Recursion is always used, so bail out at once if we already hit the limit. 302 if (!MaxRecurse--) 303 return nullptr; 304 305 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 306 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 307 308 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 309 if (Op0 && Op0->getOpcode() == Opcode) { 310 Value *A = Op0->getOperand(0); 311 Value *B = Op0->getOperand(1); 312 Value *C = RHS; 313 314 // Does "B op C" simplify? 315 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 316 // It does! Return "A op V" if it simplifies or is already available. 317 // If V equals B then "A op V" is just the LHS. 318 if (V == B) return LHS; 319 // Otherwise return "A op V" if it simplifies. 320 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 321 ++NumReassoc; 322 return W; 323 } 324 } 325 } 326 327 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 328 if (Op1 && Op1->getOpcode() == Opcode) { 329 Value *A = LHS; 330 Value *B = Op1->getOperand(0); 331 Value *C = Op1->getOperand(1); 332 333 // Does "A op B" simplify? 334 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 335 // It does! Return "V op C" if it simplifies or is already available. 336 // If V equals B then "V op C" is just the RHS. 337 if (V == B) return RHS; 338 // Otherwise return "V op C" if it simplifies. 339 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 340 ++NumReassoc; 341 return W; 342 } 343 } 344 } 345 346 // The remaining transforms require commutativity as well as associativity. 347 if (!Instruction::isCommutative(Opcode)) 348 return nullptr; 349 350 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 351 if (Op0 && Op0->getOpcode() == Opcode) { 352 Value *A = Op0->getOperand(0); 353 Value *B = Op0->getOperand(1); 354 Value *C = RHS; 355 356 // Does "C op A" simplify? 357 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 358 // It does! Return "V op B" if it simplifies or is already available. 359 // If V equals A then "V op B" is just the LHS. 360 if (V == A) return LHS; 361 // Otherwise return "V op B" if it simplifies. 362 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 363 ++NumReassoc; 364 return W; 365 } 366 } 367 } 368 369 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 370 if (Op1 && Op1->getOpcode() == Opcode) { 371 Value *A = LHS; 372 Value *B = Op1->getOperand(0); 373 Value *C = Op1->getOperand(1); 374 375 // Does "C op A" simplify? 376 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 377 // It does! Return "B op V" if it simplifies or is already available. 378 // If V equals C then "B op V" is just the RHS. 379 if (V == C) return RHS; 380 // Otherwise return "B op V" if it simplifies. 381 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 382 ++NumReassoc; 383 return W; 384 } 385 } 386 } 387 388 return nullptr; 389 } 390 391 /// In the case of a binary operation with a select instruction as an operand, 392 /// try to simplify the binop by seeing whether evaluating it on both branches 393 /// of the select results in the same value. Returns the common value if so, 394 /// otherwise returns null. 395 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 396 Value *RHS, const SimplifyQuery &Q, 397 unsigned MaxRecurse) { 398 // Recursion is always used, so bail out at once if we already hit the limit. 399 if (!MaxRecurse--) 400 return nullptr; 401 402 SelectInst *SI; 403 if (isa<SelectInst>(LHS)) { 404 SI = cast<SelectInst>(LHS); 405 } else { 406 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 407 SI = cast<SelectInst>(RHS); 408 } 409 410 // Evaluate the BinOp on the true and false branches of the select. 411 Value *TV; 412 Value *FV; 413 if (SI == LHS) { 414 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 415 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 416 } else { 417 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 418 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 419 } 420 421 // If they simplified to the same value, then return the common value. 422 // If they both failed to simplify then return null. 423 if (TV == FV) 424 return TV; 425 426 // If one branch simplified to undef, return the other one. 427 if (TV && Q.isUndefValue(TV)) 428 return FV; 429 if (FV && Q.isUndefValue(FV)) 430 return TV; 431 432 // If applying the operation did not change the true and false select values, 433 // then the result of the binop is the select itself. 434 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 435 return SI; 436 437 // If one branch simplified and the other did not, and the simplified 438 // value is equal to the unsimplified one, return the simplified value. 439 // For example, select (cond, X, X & Z) & Z -> X & Z. 440 if ((FV && !TV) || (TV && !FV)) { 441 // Check that the simplified value has the form "X op Y" where "op" is the 442 // same as the original operation. 443 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 444 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 445 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 446 // We already know that "op" is the same as for the simplified value. See 447 // if the operands match too. If so, return the simplified value. 448 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 449 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 450 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 451 if (Simplified->getOperand(0) == UnsimplifiedLHS && 452 Simplified->getOperand(1) == UnsimplifiedRHS) 453 return Simplified; 454 if (Simplified->isCommutative() && 455 Simplified->getOperand(1) == UnsimplifiedLHS && 456 Simplified->getOperand(0) == UnsimplifiedRHS) 457 return Simplified; 458 } 459 } 460 461 return nullptr; 462 } 463 464 /// In the case of a comparison with a select instruction, try to simplify the 465 /// comparison by seeing whether both branches of the select result in the same 466 /// value. Returns the common value if so, otherwise returns null. 467 /// For example, if we have: 468 /// %tmp = select i1 %cmp, i32 1, i32 2 469 /// %cmp1 = icmp sle i32 %tmp, 3 470 /// We can simplify %cmp1 to true, because both branches of select are 471 /// less than 3. We compose new comparison by substituting %tmp with both 472 /// branches of select and see if it can be simplified. 473 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 474 Value *RHS, const SimplifyQuery &Q, 475 unsigned MaxRecurse) { 476 // Recursion is always used, so bail out at once if we already hit the limit. 477 if (!MaxRecurse--) 478 return nullptr; 479 480 // Make sure the select is on the LHS. 481 if (!isa<SelectInst>(LHS)) { 482 std::swap(LHS, RHS); 483 Pred = CmpInst::getSwappedPredicate(Pred); 484 } 485 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 486 SelectInst *SI = cast<SelectInst>(LHS); 487 Value *Cond = SI->getCondition(); 488 Value *TV = SI->getTrueValue(); 489 Value *FV = SI->getFalseValue(); 490 491 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 492 // Does "cmp TV, RHS" simplify? 493 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 494 if (!TCmp) 495 return nullptr; 496 497 // Does "cmp FV, RHS" simplify? 498 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 499 if (!FCmp) 500 return nullptr; 501 502 // If both sides simplified to the same value, then use it as the result of 503 // the original comparison. 504 if (TCmp == FCmp) 505 return TCmp; 506 507 // The remaining cases only make sense if the select condition has the same 508 // type as the result of the comparison, so bail out if this is not so. 509 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 510 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 511 512 return nullptr; 513 } 514 515 /// In the case of a binary operation with an operand that is a PHI instruction, 516 /// try to simplify the binop by seeing whether evaluating it on the incoming 517 /// phi values yields the same result for every value. If so returns the common 518 /// value, otherwise returns null. 519 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 520 Value *RHS, const SimplifyQuery &Q, 521 unsigned MaxRecurse) { 522 // Recursion is always used, so bail out at once if we already hit the limit. 523 if (!MaxRecurse--) 524 return nullptr; 525 526 PHINode *PI; 527 if (isa<PHINode>(LHS)) { 528 PI = cast<PHINode>(LHS); 529 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 530 if (!valueDominatesPHI(RHS, PI, Q.DT)) 531 return nullptr; 532 } else { 533 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 534 PI = cast<PHINode>(RHS); 535 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 536 if (!valueDominatesPHI(LHS, PI, Q.DT)) 537 return nullptr; 538 } 539 540 // Evaluate the BinOp on the incoming phi values. 541 Value *CommonValue = nullptr; 542 for (Value *Incoming : PI->incoming_values()) { 543 // If the incoming value is the phi node itself, it can safely be skipped. 544 if (Incoming == PI) continue; 545 Value *V = PI == LHS ? 546 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 547 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 548 // If the operation failed to simplify, or simplified to a different value 549 // to previously, then give up. 550 if (!V || (CommonValue && V != CommonValue)) 551 return nullptr; 552 CommonValue = V; 553 } 554 555 return CommonValue; 556 } 557 558 /// In the case of a comparison with a PHI instruction, try to simplify the 559 /// comparison by seeing whether comparing with all of the incoming phi values 560 /// yields the same result every time. If so returns the common result, 561 /// otherwise returns null. 562 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 563 const SimplifyQuery &Q, unsigned MaxRecurse) { 564 // Recursion is always used, so bail out at once if we already hit the limit. 565 if (!MaxRecurse--) 566 return nullptr; 567 568 // Make sure the phi is on the LHS. 569 if (!isa<PHINode>(LHS)) { 570 std::swap(LHS, RHS); 571 Pred = CmpInst::getSwappedPredicate(Pred); 572 } 573 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 574 PHINode *PI = cast<PHINode>(LHS); 575 576 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 577 if (!valueDominatesPHI(RHS, PI, Q.DT)) 578 return nullptr; 579 580 // Evaluate the BinOp on the incoming phi values. 581 Value *CommonValue = nullptr; 582 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 583 Value *Incoming = PI->getIncomingValue(u); 584 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 585 // If the incoming value is the phi node itself, it can safely be skipped. 586 if (Incoming == PI) continue; 587 // Change the context instruction to the "edge" that flows into the phi. 588 // This is important because that is where incoming is actually "evaluated" 589 // even though it is used later somewhere else. 590 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 591 MaxRecurse); 592 // If the operation failed to simplify, or simplified to a different value 593 // to previously, then give up. 594 if (!V || (CommonValue && V != CommonValue)) 595 return nullptr; 596 CommonValue = V; 597 } 598 599 return CommonValue; 600 } 601 602 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 603 Value *&Op0, Value *&Op1, 604 const SimplifyQuery &Q) { 605 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 606 if (auto *CRHS = dyn_cast<Constant>(Op1)) 607 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 608 609 // Canonicalize the constant to the RHS if this is a commutative operation. 610 if (Instruction::isCommutative(Opcode)) 611 std::swap(Op0, Op1); 612 } 613 return nullptr; 614 } 615 616 /// Given operands for an Add, see if we can fold the result. 617 /// If not, this returns null. 618 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 619 const SimplifyQuery &Q, unsigned MaxRecurse) { 620 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 621 return C; 622 623 // X + undef -> undef 624 if (Q.isUndefValue(Op1)) 625 return Op1; 626 627 // X + 0 -> X 628 if (match(Op1, m_Zero())) 629 return Op0; 630 631 // If two operands are negative, return 0. 632 if (isKnownNegation(Op0, Op1)) 633 return Constant::getNullValue(Op0->getType()); 634 635 // X + (Y - X) -> Y 636 // (Y - X) + X -> Y 637 // Eg: X + -X -> 0 638 Value *Y = nullptr; 639 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 640 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 641 return Y; 642 643 // X + ~X -> -1 since ~X = -X-1 644 Type *Ty = Op0->getType(); 645 if (match(Op0, m_Not(m_Specific(Op1))) || 646 match(Op1, m_Not(m_Specific(Op0)))) 647 return Constant::getAllOnesValue(Ty); 648 649 // add nsw/nuw (xor Y, signmask), signmask --> Y 650 // The no-wrapping add guarantees that the top bit will be set by the add. 651 // Therefore, the xor must be clearing the already set sign bit of Y. 652 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 653 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 654 return Y; 655 656 // add nuw %x, -1 -> -1, because %x can only be 0. 657 if (IsNUW && match(Op1, m_AllOnes())) 658 return Op1; // Which is -1. 659 660 /// i1 add -> xor. 661 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 662 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 663 return V; 664 665 // Try some generic simplifications for associative operations. 666 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 667 MaxRecurse)) 668 return V; 669 670 // Threading Add over selects and phi nodes is pointless, so don't bother. 671 // Threading over the select in "A + select(cond, B, C)" means evaluating 672 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 673 // only if B and C are equal. If B and C are equal then (since we assume 674 // that operands have already been simplified) "select(cond, B, C)" should 675 // have been simplified to the common value of B and C already. Analysing 676 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 677 // for threading over phi nodes. 678 679 return nullptr; 680 } 681 682 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 683 const SimplifyQuery &Query) { 684 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 685 } 686 687 /// Compute the base pointer and cumulative constant offsets for V. 688 /// 689 /// This strips all constant offsets off of V, leaving it the base pointer, and 690 /// accumulates the total constant offset applied in the returned constant. It 691 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 692 /// no constant offsets applied. 693 /// 694 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 695 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 696 /// folding. 697 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 698 bool AllowNonInbounds = false) { 699 assert(V->getType()->isPtrOrPtrVectorTy()); 700 701 APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType())); 702 703 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 704 // As that strip may trace through `addrspacecast`, need to sext or trunc 705 // the offset calculated. 706 Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 707 Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth()); 708 709 Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset); 710 if (VectorType *VecTy = dyn_cast<VectorType>(V->getType())) 711 return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr); 712 return OffsetIntPtr; 713 } 714 715 /// Compute the constant difference between two pointer values. 716 /// If the difference is not a constant, returns zero. 717 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 718 Value *RHS) { 719 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 720 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 721 722 // If LHS and RHS are not related via constant offsets to the same base 723 // value, there is nothing we can do here. 724 if (LHS != RHS) 725 return nullptr; 726 727 // Otherwise, the difference of LHS - RHS can be computed as: 728 // LHS - RHS 729 // = (LHSOffset + Base) - (RHSOffset + Base) 730 // = LHSOffset - RHSOffset 731 return ConstantExpr::getSub(LHSOffset, RHSOffset); 732 } 733 734 /// Given operands for a Sub, see if we can fold the result. 735 /// If not, this returns null. 736 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 737 const SimplifyQuery &Q, unsigned MaxRecurse) { 738 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 739 return C; 740 741 // X - poison -> poison 742 // poison - X -> poison 743 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 744 return PoisonValue::get(Op0->getType()); 745 746 // X - undef -> undef 747 // undef - X -> undef 748 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 749 return UndefValue::get(Op0->getType()); 750 751 // X - 0 -> X 752 if (match(Op1, m_Zero())) 753 return Op0; 754 755 // X - X -> 0 756 if (Op0 == Op1) 757 return Constant::getNullValue(Op0->getType()); 758 759 // Is this a negation? 760 if (match(Op0, m_Zero())) { 761 // 0 - X -> 0 if the sub is NUW. 762 if (isNUW) 763 return Constant::getNullValue(Op0->getType()); 764 765 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 766 if (Known.Zero.isMaxSignedValue()) { 767 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 768 // Op1 must be 0 because negating the minimum signed value is undefined. 769 if (isNSW) 770 return Constant::getNullValue(Op0->getType()); 771 772 // 0 - X -> X if X is 0 or the minimum signed value. 773 return Op1; 774 } 775 } 776 777 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 778 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 779 Value *X = nullptr, *Y = nullptr, *Z = Op1; 780 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 781 // See if "V === Y - Z" simplifies. 782 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 783 // It does! Now see if "X + V" simplifies. 784 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 785 // It does, we successfully reassociated! 786 ++NumReassoc; 787 return W; 788 } 789 // See if "V === X - Z" simplifies. 790 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 791 // It does! Now see if "Y + V" simplifies. 792 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 793 // It does, we successfully reassociated! 794 ++NumReassoc; 795 return W; 796 } 797 } 798 799 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 800 // For example, X - (X + 1) -> -1 801 X = Op0; 802 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 803 // See if "V === X - Y" simplifies. 804 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 805 // It does! Now see if "V - Z" simplifies. 806 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 807 // It does, we successfully reassociated! 808 ++NumReassoc; 809 return W; 810 } 811 // See if "V === X - Z" simplifies. 812 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 813 // It does! Now see if "V - Y" simplifies. 814 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 815 // It does, we successfully reassociated! 816 ++NumReassoc; 817 return W; 818 } 819 } 820 821 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 822 // For example, X - (X - Y) -> Y. 823 Z = Op0; 824 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 825 // See if "V === Z - X" simplifies. 826 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 827 // It does! Now see if "V + Y" simplifies. 828 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 829 // It does, we successfully reassociated! 830 ++NumReassoc; 831 return W; 832 } 833 834 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 835 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 836 match(Op1, m_Trunc(m_Value(Y)))) 837 if (X->getType() == Y->getType()) 838 // See if "V === X - Y" simplifies. 839 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 840 // It does! Now see if "trunc V" simplifies. 841 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 842 Q, MaxRecurse - 1)) 843 // It does, return the simplified "trunc V". 844 return W; 845 846 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 847 if (match(Op0, m_PtrToInt(m_Value(X))) && 848 match(Op1, m_PtrToInt(m_Value(Y)))) 849 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 850 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 851 852 // i1 sub -> xor. 853 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 854 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 855 return V; 856 857 // Threading Sub over selects and phi nodes is pointless, so don't bother. 858 // Threading over the select in "A - select(cond, B, C)" means evaluating 859 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 860 // only if B and C are equal. If B and C are equal then (since we assume 861 // that operands have already been simplified) "select(cond, B, C)" should 862 // have been simplified to the common value of B and C already. Analysing 863 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 864 // for threading over phi nodes. 865 866 return nullptr; 867 } 868 869 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 870 const SimplifyQuery &Q) { 871 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 872 } 873 874 /// Given operands for a Mul, see if we can fold the result. 875 /// If not, this returns null. 876 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 877 unsigned MaxRecurse) { 878 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 879 return C; 880 881 // X * poison -> poison 882 if (isa<PoisonValue>(Op1)) 883 return Op1; 884 885 // X * undef -> 0 886 // X * 0 -> 0 887 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 888 return Constant::getNullValue(Op0->getType()); 889 890 // X * 1 -> X 891 if (match(Op1, m_One())) 892 return Op0; 893 894 // (X / Y) * Y -> X if the division is exact. 895 Value *X = nullptr; 896 if (Q.IIQ.UseInstrInfo && 897 (match(Op0, 898 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 899 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 900 return X; 901 902 // i1 mul -> and. 903 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 904 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 905 return V; 906 907 // Try some generic simplifications for associative operations. 908 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 909 MaxRecurse)) 910 return V; 911 912 // Mul distributes over Add. Try some generic simplifications based on this. 913 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 914 Instruction::Add, Q, MaxRecurse)) 915 return V; 916 917 // If the operation is with the result of a select instruction, check whether 918 // operating on either branch of the select always yields the same value. 919 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 920 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 921 MaxRecurse)) 922 return V; 923 924 // If the operation is with the result of a phi instruction, check whether 925 // operating on all incoming values of the phi always yields the same value. 926 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 927 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 928 MaxRecurse)) 929 return V; 930 931 return nullptr; 932 } 933 934 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 935 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 936 } 937 938 /// Check for common or similar folds of integer division or integer remainder. 939 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 940 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, 941 Value *Op1, const SimplifyQuery &Q) { 942 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv); 943 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem); 944 945 Type *Ty = Op0->getType(); 946 947 // X / undef -> poison 948 // X % undef -> poison 949 if (Q.isUndefValue(Op1)) 950 return PoisonValue::get(Ty); 951 952 // X / 0 -> poison 953 // X % 0 -> poison 954 // We don't need to preserve faults! 955 if (match(Op1, m_Zero())) 956 return PoisonValue::get(Ty); 957 958 // If any element of a constant divisor fixed width vector is zero or undef 959 // the behavior is undefined and we can fold the whole op to poison. 960 auto *Op1C = dyn_cast<Constant>(Op1); 961 auto *VTy = dyn_cast<FixedVectorType>(Ty); 962 if (Op1C && VTy) { 963 unsigned NumElts = VTy->getNumElements(); 964 for (unsigned i = 0; i != NumElts; ++i) { 965 Constant *Elt = Op1C->getAggregateElement(i); 966 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) 967 return PoisonValue::get(Ty); 968 } 969 } 970 971 // poison / X -> poison 972 // poison % X -> poison 973 if (isa<PoisonValue>(Op0)) 974 return Op0; 975 976 // undef / X -> 0 977 // undef % X -> 0 978 if (Q.isUndefValue(Op0)) 979 return Constant::getNullValue(Ty); 980 981 // 0 / X -> 0 982 // 0 % X -> 0 983 if (match(Op0, m_Zero())) 984 return Constant::getNullValue(Op0->getType()); 985 986 // X / X -> 1 987 // X % X -> 0 988 if (Op0 == Op1) 989 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 990 991 // X / 1 -> X 992 // X % 1 -> 0 993 // If this is a boolean op (single-bit element type), we can't have 994 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 995 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 996 Value *X; 997 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 998 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 999 return IsDiv ? Op0 : Constant::getNullValue(Ty); 1000 1001 // If X * Y does not overflow, then: 1002 // X * Y / Y -> X 1003 // X * Y % Y -> 0 1004 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1005 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1006 // The multiplication can't overflow if it is defined not to, or if 1007 // X == A / Y for some A. 1008 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1009 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) || 1010 (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1011 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) { 1012 return IsDiv ? X : Constant::getNullValue(Op0->getType()); 1013 } 1014 } 1015 1016 return nullptr; 1017 } 1018 1019 /// Given a predicate and two operands, return true if the comparison is true. 1020 /// This is a helper for div/rem simplification where we return some other value 1021 /// when we can prove a relationship between the operands. 1022 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 1023 const SimplifyQuery &Q, unsigned MaxRecurse) { 1024 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 1025 Constant *C = dyn_cast_or_null<Constant>(V); 1026 return (C && C->isAllOnesValue()); 1027 } 1028 1029 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 1030 /// to simplify X % Y to X. 1031 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 1032 unsigned MaxRecurse, bool IsSigned) { 1033 // Recursion is always used, so bail out at once if we already hit the limit. 1034 if (!MaxRecurse--) 1035 return false; 1036 1037 if (IsSigned) { 1038 // |X| / |Y| --> 0 1039 // 1040 // We require that 1 operand is a simple constant. That could be extended to 1041 // 2 variables if we computed the sign bit for each. 1042 // 1043 // Make sure that a constant is not the minimum signed value because taking 1044 // the abs() of that is undefined. 1045 Type *Ty = X->getType(); 1046 const APInt *C; 1047 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1048 // Is the variable divisor magnitude always greater than the constant 1049 // dividend magnitude? 1050 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1051 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1052 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1053 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1054 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1055 return true; 1056 } 1057 if (match(Y, m_APInt(C))) { 1058 // Special-case: we can't take the abs() of a minimum signed value. If 1059 // that's the divisor, then all we have to do is prove that the dividend 1060 // is also not the minimum signed value. 1061 if (C->isMinSignedValue()) 1062 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1063 1064 // Is the variable dividend magnitude always less than the constant 1065 // divisor magnitude? 1066 // |X| < |C| --> X > -abs(C) and X < abs(C) 1067 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1068 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1069 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1070 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1071 return true; 1072 } 1073 return false; 1074 } 1075 1076 // IsSigned == false. 1077 // Is the dividend unsigned less than the divisor? 1078 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1079 } 1080 1081 /// These are simplifications common to SDiv and UDiv. 1082 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1083 const SimplifyQuery &Q, unsigned MaxRecurse) { 1084 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1085 return C; 1086 1087 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1088 return V; 1089 1090 bool IsSigned = Opcode == Instruction::SDiv; 1091 1092 // (X rem Y) / Y -> 0 1093 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1094 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1095 return Constant::getNullValue(Op0->getType()); 1096 1097 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1098 ConstantInt *C1, *C2; 1099 if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) && 1100 match(Op1, m_ConstantInt(C2))) { 1101 bool Overflow; 1102 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1103 if (Overflow) 1104 return Constant::getNullValue(Op0->getType()); 1105 } 1106 1107 // If the operation is with the result of a select instruction, check whether 1108 // operating on either branch of the select always yields the same value. 1109 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1110 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1111 return V; 1112 1113 // If the operation is with the result of a phi instruction, check whether 1114 // operating on all incoming values of the phi always yields the same value. 1115 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1116 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1117 return V; 1118 1119 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1120 return Constant::getNullValue(Op0->getType()); 1121 1122 return nullptr; 1123 } 1124 1125 /// These are simplifications common to SRem and URem. 1126 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1127 const SimplifyQuery &Q, unsigned MaxRecurse) { 1128 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1129 return C; 1130 1131 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1132 return V; 1133 1134 // (X % Y) % Y -> X % Y 1135 if ((Opcode == Instruction::SRem && 1136 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1137 (Opcode == Instruction::URem && 1138 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1139 return Op0; 1140 1141 // (X << Y) % X -> 0 1142 if (Q.IIQ.UseInstrInfo && 1143 ((Opcode == Instruction::SRem && 1144 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1145 (Opcode == Instruction::URem && 1146 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1147 return Constant::getNullValue(Op0->getType()); 1148 1149 // If the operation is with the result of a select instruction, check whether 1150 // operating on either branch of the select always yields the same value. 1151 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1152 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1153 return V; 1154 1155 // If the operation is with the result of a phi instruction, check whether 1156 // operating on all incoming values of the phi always yields the same value. 1157 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1158 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1159 return V; 1160 1161 // If X / Y == 0, then X % Y == X. 1162 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1163 return Op0; 1164 1165 return nullptr; 1166 } 1167 1168 /// Given operands for an SDiv, see if we can fold the result. 1169 /// If not, this returns null. 1170 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1171 unsigned MaxRecurse) { 1172 // If two operands are negated and no signed overflow, return -1. 1173 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1174 return Constant::getAllOnesValue(Op0->getType()); 1175 1176 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1177 } 1178 1179 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1180 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1181 } 1182 1183 /// Given operands for a UDiv, see if we can fold the result. 1184 /// If not, this returns null. 1185 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1186 unsigned MaxRecurse) { 1187 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1188 } 1189 1190 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1191 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1192 } 1193 1194 /// Given operands for an SRem, see if we can fold the result. 1195 /// If not, this returns null. 1196 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1197 unsigned MaxRecurse) { 1198 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1199 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1200 Value *X; 1201 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1202 return ConstantInt::getNullValue(Op0->getType()); 1203 1204 // If the two operands are negated, return 0. 1205 if (isKnownNegation(Op0, Op1)) 1206 return ConstantInt::getNullValue(Op0->getType()); 1207 1208 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1209 } 1210 1211 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1212 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1213 } 1214 1215 /// Given operands for a URem, see if we can fold the result. 1216 /// If not, this returns null. 1217 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1218 unsigned MaxRecurse) { 1219 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1220 } 1221 1222 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1223 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1224 } 1225 1226 /// Returns true if a shift by \c Amount always yields poison. 1227 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { 1228 Constant *C = dyn_cast<Constant>(Amount); 1229 if (!C) 1230 return false; 1231 1232 // X shift by undef -> poison because it may shift by the bitwidth. 1233 if (Q.isUndefValue(C)) 1234 return true; 1235 1236 // Shifting by the bitwidth or more is undefined. 1237 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1238 if (CI->getValue().uge(CI->getType()->getScalarSizeInBits())) 1239 return true; 1240 1241 // If all lanes of a vector shift are undefined the whole shift is. 1242 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1243 for (unsigned I = 0, 1244 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1245 I != E; ++I) 1246 if (!isPoisonShift(C->getAggregateElement(I), Q)) 1247 return false; 1248 return true; 1249 } 1250 1251 return false; 1252 } 1253 1254 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1255 /// If not, this returns null. 1256 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1257 Value *Op1, bool IsNSW, const SimplifyQuery &Q, 1258 unsigned MaxRecurse) { 1259 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1260 return C; 1261 1262 // poison shift by X -> poison 1263 if (isa<PoisonValue>(Op0)) 1264 return Op0; 1265 1266 // 0 shift by X -> 0 1267 if (match(Op0, m_Zero())) 1268 return Constant::getNullValue(Op0->getType()); 1269 1270 // X shift by 0 -> X 1271 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1272 // would be poison. 1273 Value *X; 1274 if (match(Op1, m_Zero()) || 1275 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1276 return Op0; 1277 1278 // Fold undefined shifts. 1279 if (isPoisonShift(Op1, Q)) 1280 return PoisonValue::get(Op0->getType()); 1281 1282 // If the operation is with the result of a select instruction, check whether 1283 // operating on either branch of the select always yields the same value. 1284 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1285 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1286 return V; 1287 1288 // If the operation is with the result of a phi instruction, check whether 1289 // operating on all incoming values of the phi always yields the same value. 1290 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1291 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1292 return V; 1293 1294 // If any bits in the shift amount make that value greater than or equal to 1295 // the number of bits in the type, the shift is undefined. 1296 KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1297 if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth())) 1298 return PoisonValue::get(Op0->getType()); 1299 1300 // If all valid bits in the shift amount are known zero, the first operand is 1301 // unchanged. 1302 unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth()); 1303 if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits) 1304 return Op0; 1305 1306 // Check for nsw shl leading to a poison value. 1307 if (IsNSW) { 1308 assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction"); 1309 KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1310 KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt); 1311 1312 if (KnownVal.Zero.isSignBitSet()) 1313 KnownShl.Zero.setSignBit(); 1314 if (KnownVal.One.isSignBitSet()) 1315 KnownShl.One.setSignBit(); 1316 1317 if (KnownShl.hasConflict()) 1318 return PoisonValue::get(Op0->getType()); 1319 } 1320 1321 return nullptr; 1322 } 1323 1324 /// Given operands for an Shl, LShr or AShr, see if we can 1325 /// fold the result. If not, this returns null. 1326 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1327 Value *Op1, bool isExact, const SimplifyQuery &Q, 1328 unsigned MaxRecurse) { 1329 if (Value *V = 1330 SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse)) 1331 return V; 1332 1333 // X >> X -> 0 1334 if (Op0 == Op1) 1335 return Constant::getNullValue(Op0->getType()); 1336 1337 // undef >> X -> 0 1338 // undef >> X -> undef (if it's exact) 1339 if (Q.isUndefValue(Op0)) 1340 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1341 1342 // The low bit cannot be shifted out of an exact shift if it is set. 1343 if (isExact) { 1344 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1345 if (Op0Known.One[0]) 1346 return Op0; 1347 } 1348 1349 return nullptr; 1350 } 1351 1352 /// Given operands for an Shl, see if we can fold the result. 1353 /// If not, this returns null. 1354 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1355 const SimplifyQuery &Q, unsigned MaxRecurse) { 1356 if (Value *V = 1357 SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse)) 1358 return V; 1359 1360 // undef << X -> 0 1361 // undef << X -> undef if (if it's NSW/NUW) 1362 if (Q.isUndefValue(Op0)) 1363 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1364 1365 // (X >> A) << A -> X 1366 Value *X; 1367 if (Q.IIQ.UseInstrInfo && 1368 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1369 return X; 1370 1371 // shl nuw i8 C, %x -> C iff C has sign bit set. 1372 if (isNUW && match(Op0, m_Negative())) 1373 return Op0; 1374 // NOTE: could use computeKnownBits() / LazyValueInfo, 1375 // but the cost-benefit analysis suggests it isn't worth it. 1376 1377 return nullptr; 1378 } 1379 1380 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1381 const SimplifyQuery &Q) { 1382 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1383 } 1384 1385 /// Given operands for an LShr, see if we can fold the result. 1386 /// If not, this returns null. 1387 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1388 const SimplifyQuery &Q, unsigned MaxRecurse) { 1389 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1390 MaxRecurse)) 1391 return V; 1392 1393 // (X << A) >> A -> X 1394 Value *X; 1395 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1396 return X; 1397 1398 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1399 // We can return X as we do in the above case since OR alters no bits in X. 1400 // SimplifyDemandedBits in InstCombine can do more general optimization for 1401 // bit manipulation. This pattern aims to provide opportunities for other 1402 // optimizers by supporting a simple but common case in InstSimplify. 1403 Value *Y; 1404 const APInt *ShRAmt, *ShLAmt; 1405 if (match(Op1, m_APInt(ShRAmt)) && 1406 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1407 *ShRAmt == *ShLAmt) { 1408 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1409 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 1410 if (ShRAmt->uge(EffWidthY)) 1411 return X; 1412 } 1413 1414 return nullptr; 1415 } 1416 1417 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1418 const SimplifyQuery &Q) { 1419 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1420 } 1421 1422 /// Given operands for an AShr, see if we can fold the result. 1423 /// If not, this returns null. 1424 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1425 const SimplifyQuery &Q, unsigned MaxRecurse) { 1426 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1427 MaxRecurse)) 1428 return V; 1429 1430 // -1 >>a X --> -1 1431 // (-1 << X) a>> X --> -1 1432 // Do not return Op0 because it may contain undef elements if it's a vector. 1433 if (match(Op0, m_AllOnes()) || 1434 match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1)))) 1435 return Constant::getAllOnesValue(Op0->getType()); 1436 1437 // (X << A) >> A -> X 1438 Value *X; 1439 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1440 return X; 1441 1442 // Arithmetic shifting an all-sign-bit value is a no-op. 1443 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1444 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1445 return Op0; 1446 1447 return nullptr; 1448 } 1449 1450 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1451 const SimplifyQuery &Q) { 1452 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1453 } 1454 1455 /// Commuted variants are assumed to be handled by calling this function again 1456 /// with the parameters swapped. 1457 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1458 ICmpInst *UnsignedICmp, bool IsAnd, 1459 const SimplifyQuery &Q) { 1460 Value *X, *Y; 1461 1462 ICmpInst::Predicate EqPred; 1463 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1464 !ICmpInst::isEquality(EqPred)) 1465 return nullptr; 1466 1467 ICmpInst::Predicate UnsignedPred; 1468 1469 Value *A, *B; 1470 // Y = (A - B); 1471 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1472 if (match(UnsignedICmp, 1473 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1474 ICmpInst::isUnsigned(UnsignedPred)) { 1475 // A >=/<= B || (A - B) != 0 <--> true 1476 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1477 UnsignedPred == ICmpInst::ICMP_ULE) && 1478 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1479 return ConstantInt::getTrue(UnsignedICmp->getType()); 1480 // A </> B && (A - B) == 0 <--> false 1481 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1482 UnsignedPred == ICmpInst::ICMP_UGT) && 1483 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1484 return ConstantInt::getFalse(UnsignedICmp->getType()); 1485 1486 // A </> B && (A - B) != 0 <--> A </> B 1487 // A </> B || (A - B) != 0 <--> (A - B) != 0 1488 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1489 UnsignedPred == ICmpInst::ICMP_UGT)) 1490 return IsAnd ? UnsignedICmp : ZeroICmp; 1491 1492 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1493 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1494 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1495 UnsignedPred == ICmpInst::ICMP_UGE)) 1496 return IsAnd ? ZeroICmp : UnsignedICmp; 1497 } 1498 1499 // Given Y = (A - B) 1500 // Y >= A && Y != 0 --> Y >= A iff B != 0 1501 // Y < A || Y == 0 --> Y < A iff B != 0 1502 if (match(UnsignedICmp, 1503 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1504 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1505 EqPred == ICmpInst::ICMP_NE && 1506 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1507 return UnsignedICmp; 1508 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1509 EqPred == ICmpInst::ICMP_EQ && 1510 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1511 return UnsignedICmp; 1512 } 1513 } 1514 1515 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1516 ICmpInst::isUnsigned(UnsignedPred)) 1517 ; 1518 else if (match(UnsignedICmp, 1519 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1520 ICmpInst::isUnsigned(UnsignedPred)) 1521 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1522 else 1523 return nullptr; 1524 1525 // X > Y && Y == 0 --> Y == 0 iff X != 0 1526 // X > Y || Y == 0 --> X > Y iff X != 0 1527 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1528 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1529 return IsAnd ? ZeroICmp : UnsignedICmp; 1530 1531 // X <= Y && Y != 0 --> X <= Y iff X != 0 1532 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1533 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1534 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1535 return IsAnd ? UnsignedICmp : ZeroICmp; 1536 1537 // The transforms below here are expected to be handled more generally with 1538 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1539 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1540 // these are candidates for removal. 1541 1542 // X < Y && Y != 0 --> X < Y 1543 // X < Y || Y != 0 --> Y != 0 1544 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1545 return IsAnd ? UnsignedICmp : ZeroICmp; 1546 1547 // X >= Y && Y == 0 --> Y == 0 1548 // X >= Y || Y == 0 --> X >= Y 1549 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1550 return IsAnd ? ZeroICmp : UnsignedICmp; 1551 1552 // X < Y && Y == 0 --> false 1553 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1554 IsAnd) 1555 return getFalse(UnsignedICmp->getType()); 1556 1557 // X >= Y || Y != 0 --> true 1558 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1559 !IsAnd) 1560 return getTrue(UnsignedICmp->getType()); 1561 1562 return nullptr; 1563 } 1564 1565 /// Commuted variants are assumed to be handled by calling this function again 1566 /// with the parameters swapped. 1567 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1568 ICmpInst::Predicate Pred0, Pred1; 1569 Value *A ,*B; 1570 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1571 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1572 return nullptr; 1573 1574 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1575 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1576 // can eliminate Op1 from this 'and'. 1577 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1578 return Op0; 1579 1580 // Check for any combination of predicates that are guaranteed to be disjoint. 1581 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1582 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1583 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1584 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1585 return getFalse(Op0->getType()); 1586 1587 return nullptr; 1588 } 1589 1590 /// Commuted variants are assumed to be handled by calling this function again 1591 /// with the parameters swapped. 1592 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1593 ICmpInst::Predicate Pred0, Pred1; 1594 Value *A ,*B; 1595 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1596 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1597 return nullptr; 1598 1599 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1600 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1601 // can eliminate Op0 from this 'or'. 1602 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1603 return Op1; 1604 1605 // Check for any combination of predicates that cover the entire range of 1606 // possibilities. 1607 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1608 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1609 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1610 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1611 return getTrue(Op0->getType()); 1612 1613 return nullptr; 1614 } 1615 1616 /// Test if a pair of compares with a shared operand and 2 constants has an 1617 /// empty set intersection, full set union, or if one compare is a superset of 1618 /// the other. 1619 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1620 bool IsAnd) { 1621 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1622 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1623 return nullptr; 1624 1625 const APInt *C0, *C1; 1626 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1627 !match(Cmp1->getOperand(1), m_APInt(C1))) 1628 return nullptr; 1629 1630 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1631 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1632 1633 // For and-of-compares, check if the intersection is empty: 1634 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1635 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1636 return getFalse(Cmp0->getType()); 1637 1638 // For or-of-compares, check if the union is full: 1639 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1640 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1641 return getTrue(Cmp0->getType()); 1642 1643 // Is one range a superset of the other? 1644 // If this is and-of-compares, take the smaller set: 1645 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1646 // If this is or-of-compares, take the larger set: 1647 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1648 if (Range0.contains(Range1)) 1649 return IsAnd ? Cmp1 : Cmp0; 1650 if (Range1.contains(Range0)) 1651 return IsAnd ? Cmp0 : Cmp1; 1652 1653 return nullptr; 1654 } 1655 1656 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1657 bool IsAnd) { 1658 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1659 if (!match(Cmp0->getOperand(1), m_Zero()) || 1660 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1661 return nullptr; 1662 1663 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1664 return nullptr; 1665 1666 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1667 Value *X = Cmp0->getOperand(0); 1668 Value *Y = Cmp1->getOperand(0); 1669 1670 // If one of the compares is a masked version of a (not) null check, then 1671 // that compare implies the other, so we eliminate the other. Optionally, look 1672 // through a pointer-to-int cast to match a null check of a pointer type. 1673 1674 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1675 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1676 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1677 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1678 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1679 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1680 return Cmp1; 1681 1682 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1683 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1684 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1685 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1686 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1687 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1688 return Cmp0; 1689 1690 return nullptr; 1691 } 1692 1693 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1694 const InstrInfoQuery &IIQ) { 1695 // (icmp (add V, C0), C1) & (icmp V, C0) 1696 ICmpInst::Predicate Pred0, Pred1; 1697 const APInt *C0, *C1; 1698 Value *V; 1699 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1700 return nullptr; 1701 1702 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1703 return nullptr; 1704 1705 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1706 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1707 return nullptr; 1708 1709 Type *ITy = Op0->getType(); 1710 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1711 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1712 1713 const APInt Delta = *C1 - *C0; 1714 if (C0->isStrictlyPositive()) { 1715 if (Delta == 2) { 1716 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1717 return getFalse(ITy); 1718 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1719 return getFalse(ITy); 1720 } 1721 if (Delta == 1) { 1722 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1723 return getFalse(ITy); 1724 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1725 return getFalse(ITy); 1726 } 1727 } 1728 if (C0->getBoolValue() && isNUW) { 1729 if (Delta == 2) 1730 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1731 return getFalse(ITy); 1732 if (Delta == 1) 1733 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1734 return getFalse(ITy); 1735 } 1736 1737 return nullptr; 1738 } 1739 1740 /// Try to eliminate compares with signed or unsigned min/max constants. 1741 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, 1742 bool IsAnd) { 1743 // Canonicalize an equality compare as Cmp0. 1744 if (Cmp1->isEquality()) 1745 std::swap(Cmp0, Cmp1); 1746 if (!Cmp0->isEquality()) 1747 return nullptr; 1748 1749 // The non-equality compare must include a common operand (X). Canonicalize 1750 // the common operand as operand 0 (the predicate is swapped if the common 1751 // operand was operand 1). 1752 ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); 1753 Value *X = Cmp0->getOperand(0); 1754 ICmpInst::Predicate Pred1; 1755 bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value())); 1756 if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value()))) 1757 return nullptr; 1758 if (ICmpInst::isEquality(Pred1)) 1759 return nullptr; 1760 1761 // The equality compare must be against a constant. Flip bits if we matched 1762 // a bitwise not. Convert a null pointer constant to an integer zero value. 1763 APInt MinMaxC; 1764 const APInt *C; 1765 if (match(Cmp0->getOperand(1), m_APInt(C))) 1766 MinMaxC = HasNotOp ? ~*C : *C; 1767 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) 1768 MinMaxC = APInt::getZero(8); 1769 else 1770 return nullptr; 1771 1772 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. 1773 if (!IsAnd) { 1774 Pred0 = ICmpInst::getInversePredicate(Pred0); 1775 Pred1 = ICmpInst::getInversePredicate(Pred1); 1776 } 1777 1778 // Normalize to unsigned compare and unsigned min/max value. 1779 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 1780 if (ICmpInst::isSigned(Pred1)) { 1781 Pred1 = ICmpInst::getUnsignedPredicate(Pred1); 1782 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); 1783 } 1784 1785 // (X != MAX) && (X < Y) --> X < Y 1786 // (X == MAX) || (X >= Y) --> X >= Y 1787 if (MinMaxC.isMaxValue()) 1788 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) 1789 return Cmp1; 1790 1791 // (X != MIN) && (X > Y) --> X > Y 1792 // (X == MIN) || (X <= Y) --> X <= Y 1793 if (MinMaxC.isMinValue()) 1794 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) 1795 return Cmp1; 1796 1797 return nullptr; 1798 } 1799 1800 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1801 const SimplifyQuery &Q) { 1802 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1803 return X; 1804 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1805 return X; 1806 1807 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1808 return X; 1809 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1810 return X; 1811 1812 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1813 return X; 1814 1815 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) 1816 return X; 1817 1818 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1819 return X; 1820 1821 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1822 return X; 1823 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1824 return X; 1825 1826 return nullptr; 1827 } 1828 1829 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1830 const InstrInfoQuery &IIQ) { 1831 // (icmp (add V, C0), C1) | (icmp V, C0) 1832 ICmpInst::Predicate Pred0, Pred1; 1833 const APInt *C0, *C1; 1834 Value *V; 1835 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1836 return nullptr; 1837 1838 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1839 return nullptr; 1840 1841 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1842 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1843 return nullptr; 1844 1845 Type *ITy = Op0->getType(); 1846 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1847 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1848 1849 const APInt Delta = *C1 - *C0; 1850 if (C0->isStrictlyPositive()) { 1851 if (Delta == 2) { 1852 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1853 return getTrue(ITy); 1854 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1855 return getTrue(ITy); 1856 } 1857 if (Delta == 1) { 1858 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1859 return getTrue(ITy); 1860 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1861 return getTrue(ITy); 1862 } 1863 } 1864 if (C0->getBoolValue() && isNUW) { 1865 if (Delta == 2) 1866 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1867 return getTrue(ITy); 1868 if (Delta == 1) 1869 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1870 return getTrue(ITy); 1871 } 1872 1873 return nullptr; 1874 } 1875 1876 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1877 const SimplifyQuery &Q) { 1878 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1879 return X; 1880 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1881 return X; 1882 1883 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1884 return X; 1885 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1886 return X; 1887 1888 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1889 return X; 1890 1891 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) 1892 return X; 1893 1894 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1895 return X; 1896 1897 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1898 return X; 1899 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1900 return X; 1901 1902 return nullptr; 1903 } 1904 1905 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1906 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1907 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1908 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1909 if (LHS0->getType() != RHS0->getType()) 1910 return nullptr; 1911 1912 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1913 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1914 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1915 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1916 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1917 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1918 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1919 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1920 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1921 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1922 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1923 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1924 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1925 return RHS; 1926 1927 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1928 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1929 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1930 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1931 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1932 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1933 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1934 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1935 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1936 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1937 return LHS; 1938 } 1939 1940 return nullptr; 1941 } 1942 1943 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1944 Value *Op0, Value *Op1, bool IsAnd) { 1945 // Look through casts of the 'and' operands to find compares. 1946 auto *Cast0 = dyn_cast<CastInst>(Op0); 1947 auto *Cast1 = dyn_cast<CastInst>(Op1); 1948 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1949 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1950 Op0 = Cast0->getOperand(0); 1951 Op1 = Cast1->getOperand(0); 1952 } 1953 1954 Value *V = nullptr; 1955 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1956 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1957 if (ICmp0 && ICmp1) 1958 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1959 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1960 1961 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1962 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1963 if (FCmp0 && FCmp1) 1964 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1965 1966 if (!V) 1967 return nullptr; 1968 if (!Cast0) 1969 return V; 1970 1971 // If we looked through casts, we can only handle a constant simplification 1972 // because we are not allowed to create a cast instruction here. 1973 if (auto *C = dyn_cast<Constant>(V)) 1974 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1975 1976 return nullptr; 1977 } 1978 1979 /// Given a bitwise logic op, check if the operands are add/sub with a common 1980 /// source value and inverted constant (identity: C - X -> ~(X + ~C)). 1981 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, 1982 Instruction::BinaryOps Opcode) { 1983 assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); 1984 assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); 1985 Value *X; 1986 Constant *C1, *C2; 1987 if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && 1988 match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || 1989 (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && 1990 match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { 1991 if (ConstantExpr::getNot(C1) == C2) { 1992 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 1993 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 1994 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 1995 Type *Ty = Op0->getType(); 1996 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) 1997 : ConstantInt::getAllOnesValue(Ty); 1998 } 1999 } 2000 return nullptr; 2001 } 2002 2003 /// Given operands for an And, see if we can fold the result. 2004 /// If not, this returns null. 2005 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2006 unsigned MaxRecurse) { 2007 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2008 return C; 2009 2010 // X & poison -> poison 2011 if (isa<PoisonValue>(Op1)) 2012 return Op1; 2013 2014 // X & undef -> 0 2015 if (Q.isUndefValue(Op1)) 2016 return Constant::getNullValue(Op0->getType()); 2017 2018 // X & X = X 2019 if (Op0 == Op1) 2020 return Op0; 2021 2022 // X & 0 = 0 2023 if (match(Op1, m_Zero())) 2024 return Constant::getNullValue(Op0->getType()); 2025 2026 // X & -1 = X 2027 if (match(Op1, m_AllOnes())) 2028 return Op0; 2029 2030 // A & ~A = ~A & A = 0 2031 if (match(Op0, m_Not(m_Specific(Op1))) || 2032 match(Op1, m_Not(m_Specific(Op0)))) 2033 return Constant::getNullValue(Op0->getType()); 2034 2035 // (A | ?) & A = A 2036 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2037 return Op1; 2038 2039 // A & (A | ?) = A 2040 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 2041 return Op0; 2042 2043 // (X | Y) & (X | ~Y) --> X (commuted 8 ways) 2044 Value *X, *Y; 2045 if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2046 match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2047 return X; 2048 if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2049 match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2050 return X; 2051 2052 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) 2053 return V; 2054 2055 // A mask that only clears known zeros of a shifted value is a no-op. 2056 const APInt *Mask; 2057 const APInt *ShAmt; 2058 if (match(Op1, m_APInt(Mask))) { 2059 // If all bits in the inverted and shifted mask are clear: 2060 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2061 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2062 (~(*Mask)).lshr(*ShAmt).isZero()) 2063 return Op0; 2064 2065 // If all bits in the inverted and shifted mask are clear: 2066 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2067 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2068 (~(*Mask)).shl(*ShAmt).isZero()) 2069 return Op0; 2070 } 2071 2072 // If we have a multiplication overflow check that is being 'and'ed with a 2073 // check that one of the multipliers is not zero, we can omit the 'and', and 2074 // only keep the overflow check. 2075 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true)) 2076 return Op1; 2077 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true)) 2078 return Op0; 2079 2080 // A & (-A) = A if A is a power of two or zero. 2081 if (match(Op0, m_Neg(m_Specific(Op1))) || 2082 match(Op1, m_Neg(m_Specific(Op0)))) { 2083 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2084 Q.DT)) 2085 return Op0; 2086 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2087 Q.DT)) 2088 return Op1; 2089 } 2090 2091 // This is a similar pattern used for checking if a value is a power-of-2: 2092 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2093 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 2094 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2095 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2096 return Constant::getNullValue(Op1->getType()); 2097 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 2098 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2099 return Constant::getNullValue(Op0->getType()); 2100 2101 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2102 return V; 2103 2104 // Try some generic simplifications for associative operations. 2105 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 2106 MaxRecurse)) 2107 return V; 2108 2109 // And distributes over Or. Try some generic simplifications based on this. 2110 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2111 Instruction::Or, Q, MaxRecurse)) 2112 return V; 2113 2114 // And distributes over Xor. Try some generic simplifications based on this. 2115 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2116 Instruction::Xor, Q, MaxRecurse)) 2117 return V; 2118 2119 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2120 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2121 // A & (A && B) -> A && B 2122 if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero()))) 2123 return Op1; 2124 else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero()))) 2125 return Op0; 2126 } 2127 // If the operation is with the result of a select instruction, check 2128 // whether operating on either branch of the select always yields the same 2129 // value. 2130 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 2131 MaxRecurse)) 2132 return V; 2133 } 2134 2135 // If the operation is with the result of a phi instruction, check whether 2136 // operating on all incoming values of the phi always yields the same value. 2137 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2138 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 2139 MaxRecurse)) 2140 return V; 2141 2142 // Assuming the effective width of Y is not larger than A, i.e. all bits 2143 // from X and Y are disjoint in (X << A) | Y, 2144 // if the mask of this AND op covers all bits of X or Y, while it covers 2145 // no bits from the other, we can bypass this AND op. E.g., 2146 // ((X << A) | Y) & Mask -> Y, 2147 // if Mask = ((1 << effective_width_of(Y)) - 1) 2148 // ((X << A) | Y) & Mask -> X << A, 2149 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2150 // SimplifyDemandedBits in InstCombine can optimize the general case. 2151 // This pattern aims to help other passes for a common case. 2152 Value *XShifted; 2153 if (match(Op1, m_APInt(Mask)) && 2154 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2155 m_Value(XShifted)), 2156 m_Value(Y)))) { 2157 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2158 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2159 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2160 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 2161 if (EffWidthY <= ShftCnt) { 2162 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 2163 Q.DT); 2164 const unsigned EffWidthX = XKnown.countMaxActiveBits(); 2165 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2166 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2167 // If the mask is extracting all bits from X or Y as is, we can skip 2168 // this AND op. 2169 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2170 return Y; 2171 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2172 return XShifted; 2173 } 2174 } 2175 2176 return nullptr; 2177 } 2178 2179 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2180 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 2181 } 2182 2183 /// Given operands for an Or, see if we can fold the result. 2184 /// If not, this returns null. 2185 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2186 unsigned MaxRecurse) { 2187 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2188 return C; 2189 2190 // X | poison -> poison 2191 if (isa<PoisonValue>(Op1)) 2192 return Op1; 2193 2194 // X | undef -> -1 2195 // X | -1 = -1 2196 // Do not return Op1 because it may contain undef elements if it's a vector. 2197 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2198 return Constant::getAllOnesValue(Op0->getType()); 2199 2200 // X | X = X 2201 // X | 0 = X 2202 if (Op0 == Op1 || match(Op1, m_Zero())) 2203 return Op0; 2204 2205 // A | ~A = ~A | A = -1 2206 if (match(Op0, m_Not(m_Specific(Op1))) || 2207 match(Op1, m_Not(m_Specific(Op0)))) 2208 return Constant::getAllOnesValue(Op0->getType()); 2209 2210 // (A & ?) | A = A 2211 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 2212 return Op1; 2213 2214 // A | (A & ?) = A 2215 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 2216 return Op0; 2217 2218 // ~(A & ?) | A = -1 2219 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 2220 return Constant::getAllOnesValue(Op1->getType()); 2221 2222 // A | ~(A & ?) = -1 2223 if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value())))) 2224 return Constant::getAllOnesValue(Op0->getType()); 2225 2226 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) 2227 return V; 2228 2229 Value *A, *B, *NotA; 2230 // (A & ~B) | (A ^ B) -> (A ^ B) 2231 // (~B & A) | (A ^ B) -> (A ^ B) 2232 // (A & ~B) | (B ^ A) -> (B ^ A) 2233 // (~B & A) | (B ^ A) -> (B ^ A) 2234 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2235 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2236 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2237 return Op1; 2238 2239 // Commute the 'or' operands. 2240 // (A ^ B) | (A & ~B) -> (A ^ B) 2241 // (A ^ B) | (~B & A) -> (A ^ B) 2242 // (B ^ A) | (A & ~B) -> (B ^ A) 2243 // (B ^ A) | (~B & A) -> (B ^ A) 2244 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2245 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2246 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2247 return Op0; 2248 2249 // (A & B) | (~A ^ B) -> (~A ^ B) 2250 // (B & A) | (~A ^ B) -> (~A ^ B) 2251 // (A & B) | (B ^ ~A) -> (B ^ ~A) 2252 // (B & A) | (B ^ ~A) -> (B ^ ~A) 2253 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2254 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2255 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2256 return Op1; 2257 2258 // Commute the 'or' operands. 2259 // (~A ^ B) | (A & B) -> (~A ^ B) 2260 // (~A ^ B) | (B & A) -> (~A ^ B) 2261 // (B ^ ~A) | (A & B) -> (B ^ ~A) 2262 // (B ^ ~A) | (B & A) -> (B ^ ~A) 2263 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 2264 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2265 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2266 return Op0; 2267 2268 // (A | B) | (A ^ B) --> A | B 2269 // (B | A) | (A ^ B) --> B | A 2270 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2271 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 2272 return Op0; 2273 2274 // Commute the outer 'or' operands. 2275 // (A ^ B) | (A | B) --> A | B 2276 // (A ^ B) | (B | A) --> B | A 2277 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2278 match(Op1, m_c_Or(m_Specific(A), m_Specific(B)))) 2279 return Op1; 2280 2281 // (~A & B) | ~(A | B) --> ~A 2282 // (~A & B) | ~(B | A) --> ~A 2283 // (B & ~A) | ~(A | B) --> ~A 2284 // (B & ~A) | ~(B | A) --> ~A 2285 if (match(Op0, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), 2286 m_Value(B))) && 2287 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2288 return NotA; 2289 2290 // Commute the 'or' operands. 2291 // ~(A | B) | (~A & B) --> ~A 2292 // ~(B | A) | (~A & B) --> ~A 2293 // ~(A | B) | (B & ~A) --> ~A 2294 // ~(B | A) | (B & ~A) --> ~A 2295 if (match(Op1, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), 2296 m_Value(B))) && 2297 match(Op0, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2298 return NotA; 2299 2300 // Rotated -1 is still -1: 2301 // (-1 << X) | (-1 >> (C - X)) --> -1 2302 // (-1 >> X) | (-1 << (C - X)) --> -1 2303 // ...with C <= bitwidth (and commuted variants). 2304 Value *X, *Y; 2305 if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) && 2306 match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) || 2307 (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) && 2308 match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) { 2309 const APInt *C; 2310 if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) || 2311 match(Y, m_Sub(m_APInt(C), m_Specific(X)))) && 2312 C->ule(X->getType()->getScalarSizeInBits())) { 2313 return ConstantInt::getAllOnesValue(X->getType()); 2314 } 2315 } 2316 2317 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2318 return V; 2319 2320 // If we have a multiplication overflow check that is being 'and'ed with a 2321 // check that one of the multipliers is not zero, we can omit the 'and', and 2322 // only keep the overflow check. 2323 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false)) 2324 return Op1; 2325 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false)) 2326 return Op0; 2327 2328 // Try some generic simplifications for associative operations. 2329 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2330 MaxRecurse)) 2331 return V; 2332 2333 // Or distributes over And. Try some generic simplifications based on this. 2334 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2335 Instruction::And, Q, MaxRecurse)) 2336 return V; 2337 2338 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2339 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2340 // A | (A || B) -> A || B 2341 if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value()))) 2342 return Op1; 2343 else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value()))) 2344 return Op0; 2345 } 2346 // If the operation is with the result of a select instruction, check 2347 // whether operating on either branch of the select always yields the same 2348 // value. 2349 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2350 MaxRecurse)) 2351 return V; 2352 } 2353 2354 // (A & C1)|(B & C2) 2355 const APInt *C1, *C2; 2356 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2357 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2358 if (*C1 == ~*C2) { 2359 // (A & C1)|(B & C2) 2360 // If we have: ((V + N) & C1) | (V & C2) 2361 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2362 // replace with V+N. 2363 Value *N; 2364 if (C2->isMask() && // C2 == 0+1+ 2365 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2366 // Add commutes, try both ways. 2367 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2368 return A; 2369 } 2370 // Or commutes, try both ways. 2371 if (C1->isMask() && 2372 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2373 // Add commutes, try both ways. 2374 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2375 return B; 2376 } 2377 } 2378 } 2379 2380 // If the operation is with the result of a phi instruction, check whether 2381 // operating on all incoming values of the phi always yields the same value. 2382 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2383 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2384 return V; 2385 2386 return nullptr; 2387 } 2388 2389 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2390 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2391 } 2392 2393 /// Given operands for a Xor, see if we can fold the result. 2394 /// If not, this returns null. 2395 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2396 unsigned MaxRecurse) { 2397 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2398 return C; 2399 2400 // A ^ undef -> undef 2401 if (Q.isUndefValue(Op1)) 2402 return Op1; 2403 2404 // A ^ 0 = A 2405 if (match(Op1, m_Zero())) 2406 return Op0; 2407 2408 // A ^ A = 0 2409 if (Op0 == Op1) 2410 return Constant::getNullValue(Op0->getType()); 2411 2412 // A ^ ~A = ~A ^ A = -1 2413 if (match(Op0, m_Not(m_Specific(Op1))) || 2414 match(Op1, m_Not(m_Specific(Op0)))) 2415 return Constant::getAllOnesValue(Op0->getType()); 2416 2417 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) 2418 return V; 2419 2420 // Try some generic simplifications for associative operations. 2421 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2422 MaxRecurse)) 2423 return V; 2424 2425 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2426 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2427 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2428 // only if B and C are equal. If B and C are equal then (since we assume 2429 // that operands have already been simplified) "select(cond, B, C)" should 2430 // have been simplified to the common value of B and C already. Analysing 2431 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2432 // for threading over phi nodes. 2433 2434 return nullptr; 2435 } 2436 2437 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2438 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2439 } 2440 2441 2442 static Type *GetCompareTy(Value *Op) { 2443 return CmpInst::makeCmpResultType(Op->getType()); 2444 } 2445 2446 /// Rummage around inside V looking for something equivalent to the comparison 2447 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2448 /// Helper function for analyzing max/min idioms. 2449 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2450 Value *LHS, Value *RHS) { 2451 SelectInst *SI = dyn_cast<SelectInst>(V); 2452 if (!SI) 2453 return nullptr; 2454 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2455 if (!Cmp) 2456 return nullptr; 2457 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2458 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2459 return Cmp; 2460 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2461 LHS == CmpRHS && RHS == CmpLHS) 2462 return Cmp; 2463 return nullptr; 2464 } 2465 2466 // A significant optimization not implemented here is assuming that alloca 2467 // addresses are not equal to incoming argument values. They don't *alias*, 2468 // as we say, but that doesn't mean they aren't equal, so we take a 2469 // conservative approach. 2470 // 2471 // This is inspired in part by C++11 5.10p1: 2472 // "Two pointers of the same type compare equal if and only if they are both 2473 // null, both point to the same function, or both represent the same 2474 // address." 2475 // 2476 // This is pretty permissive. 2477 // 2478 // It's also partly due to C11 6.5.9p6: 2479 // "Two pointers compare equal if and only if both are null pointers, both are 2480 // pointers to the same object (including a pointer to an object and a 2481 // subobject at its beginning) or function, both are pointers to one past the 2482 // last element of the same array object, or one is a pointer to one past the 2483 // end of one array object and the other is a pointer to the start of a 2484 // different array object that happens to immediately follow the first array 2485 // object in the address space.) 2486 // 2487 // C11's version is more restrictive, however there's no reason why an argument 2488 // couldn't be a one-past-the-end value for a stack object in the caller and be 2489 // equal to the beginning of a stack object in the callee. 2490 // 2491 // If the C and C++ standards are ever made sufficiently restrictive in this 2492 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2493 // this optimization. 2494 static Constant * 2495 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 2496 const SimplifyQuery &Q) { 2497 const DataLayout &DL = Q.DL; 2498 const TargetLibraryInfo *TLI = Q.TLI; 2499 const DominatorTree *DT = Q.DT; 2500 const Instruction *CxtI = Q.CxtI; 2501 const InstrInfoQuery &IIQ = Q.IIQ; 2502 2503 // First, skip past any trivial no-ops. 2504 LHS = LHS->stripPointerCasts(); 2505 RHS = RHS->stripPointerCasts(); 2506 2507 // A non-null pointer is not equal to a null pointer. 2508 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && 2509 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2510 IIQ.UseInstrInfo)) 2511 return ConstantInt::get(GetCompareTy(LHS), 2512 !CmpInst::isTrueWhenEqual(Pred)); 2513 2514 // We can only fold certain predicates on pointer comparisons. 2515 switch (Pred) { 2516 default: 2517 return nullptr; 2518 2519 // Equality comaprisons are easy to fold. 2520 case CmpInst::ICMP_EQ: 2521 case CmpInst::ICMP_NE: 2522 break; 2523 2524 // We can only handle unsigned relational comparisons because 'inbounds' on 2525 // a GEP only protects against unsigned wrapping. 2526 case CmpInst::ICMP_UGT: 2527 case CmpInst::ICMP_UGE: 2528 case CmpInst::ICMP_ULT: 2529 case CmpInst::ICMP_ULE: 2530 // However, we have to switch them to their signed variants to handle 2531 // negative indices from the base pointer. 2532 Pred = ICmpInst::getSignedPredicate(Pred); 2533 break; 2534 } 2535 2536 // Strip off any constant offsets so that we can reason about them. 2537 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2538 // here and compare base addresses like AliasAnalysis does, however there are 2539 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2540 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2541 // doesn't need to guarantee pointer inequality when it says NoAlias. 2542 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2543 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2544 2545 // If LHS and RHS are related via constant offsets to the same base 2546 // value, we can replace it with an icmp which just compares the offsets. 2547 if (LHS == RHS) 2548 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2549 2550 // Various optimizations for (in)equality comparisons. 2551 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2552 // Different non-empty allocations that exist at the same time have 2553 // different addresses (if the program can tell). Global variables always 2554 // exist, so they always exist during the lifetime of each other and all 2555 // allocas. Two different allocas usually have different addresses... 2556 // 2557 // However, if there's an @llvm.stackrestore dynamically in between two 2558 // allocas, they may have the same address. It's tempting to reduce the 2559 // scope of the problem by only looking at *static* allocas here. That would 2560 // cover the majority of allocas while significantly reducing the likelihood 2561 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2562 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2563 // an entry block. Also, if we have a block that's not attached to a 2564 // function, we can't tell if it's "static" under the current definition. 2565 // Theoretically, this problem could be fixed by creating a new kind of 2566 // instruction kind specifically for static allocas. Such a new instruction 2567 // could be required to be at the top of the entry block, thus preventing it 2568 // from being subject to a @llvm.stackrestore. Instcombine could even 2569 // convert regular allocas into these special allocas. It'd be nifty. 2570 // However, until then, this problem remains open. 2571 // 2572 // So, we'll assume that two non-empty allocas have different addresses 2573 // for now. 2574 // 2575 // With all that, if the offsets are within the bounds of their allocations 2576 // (and not one-past-the-end! so we can't use inbounds!), and their 2577 // allocations aren't the same, the pointers are not equal. 2578 // 2579 // Note that it's not necessary to check for LHS being a global variable 2580 // address, due to canonicalization and constant folding. 2581 if (isa<AllocaInst>(LHS) && 2582 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2583 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2584 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2585 uint64_t LHSSize, RHSSize; 2586 ObjectSizeOpts Opts; 2587 Opts.NullIsUnknownSize = 2588 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2589 if (LHSOffsetCI && RHSOffsetCI && 2590 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2591 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2592 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2593 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2594 if (!LHSOffsetValue.isNegative() && 2595 !RHSOffsetValue.isNegative() && 2596 LHSOffsetValue.ult(LHSSize) && 2597 RHSOffsetValue.ult(RHSSize)) { 2598 return ConstantInt::get(GetCompareTy(LHS), 2599 !CmpInst::isTrueWhenEqual(Pred)); 2600 } 2601 } 2602 2603 // Repeat the above check but this time without depending on DataLayout 2604 // or being able to compute a precise size. 2605 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2606 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2607 LHSOffset->isNullValue() && 2608 RHSOffset->isNullValue()) 2609 return ConstantInt::get(GetCompareTy(LHS), 2610 !CmpInst::isTrueWhenEqual(Pred)); 2611 } 2612 2613 // Even if an non-inbounds GEP occurs along the path we can still optimize 2614 // equality comparisons concerning the result. We avoid walking the whole 2615 // chain again by starting where the last calls to 2616 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2617 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2618 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2619 if (LHS == RHS) 2620 return ConstantExpr::getICmp(Pred, 2621 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2622 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2623 2624 // If one side of the equality comparison must come from a noalias call 2625 // (meaning a system memory allocation function), and the other side must 2626 // come from a pointer that cannot overlap with dynamically-allocated 2627 // memory within the lifetime of the current function (allocas, byval 2628 // arguments, globals), then determine the comparison result here. 2629 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2630 getUnderlyingObjects(LHS, LHSUObjs); 2631 getUnderlyingObjects(RHS, RHSUObjs); 2632 2633 // Is the set of underlying objects all noalias calls? 2634 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2635 return all_of(Objects, isNoAliasCall); 2636 }; 2637 2638 // Is the set of underlying objects all things which must be disjoint from 2639 // noalias calls. For allocas, we consider only static ones (dynamic 2640 // allocas might be transformed into calls to malloc not simultaneously 2641 // live with the compared-to allocation). For globals, we exclude symbols 2642 // that might be resolve lazily to symbols in another dynamically-loaded 2643 // library (and, thus, could be malloc'ed by the implementation). 2644 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2645 return all_of(Objects, [](const Value *V) { 2646 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2647 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2648 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2649 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2650 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2651 !GV->isThreadLocal(); 2652 if (const Argument *A = dyn_cast<Argument>(V)) 2653 return A->hasByValAttr(); 2654 return false; 2655 }); 2656 }; 2657 2658 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2659 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2660 return ConstantInt::get(GetCompareTy(LHS), 2661 !CmpInst::isTrueWhenEqual(Pred)); 2662 2663 // Fold comparisons for non-escaping pointer even if the allocation call 2664 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2665 // dynamic allocation call could be either of the operands. 2666 Value *MI = nullptr; 2667 if (isAllocLikeFn(LHS, TLI) && 2668 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2669 MI = LHS; 2670 else if (isAllocLikeFn(RHS, TLI) && 2671 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2672 MI = RHS; 2673 // FIXME: We should also fold the compare when the pointer escapes, but the 2674 // compare dominates the pointer escape 2675 if (MI && !PointerMayBeCaptured(MI, true, true)) 2676 return ConstantInt::get(GetCompareTy(LHS), 2677 CmpInst::isFalseWhenEqual(Pred)); 2678 } 2679 2680 // Otherwise, fail. 2681 return nullptr; 2682 } 2683 2684 /// Fold an icmp when its operands have i1 scalar type. 2685 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2686 Value *RHS, const SimplifyQuery &Q) { 2687 Type *ITy = GetCompareTy(LHS); // The return type. 2688 Type *OpTy = LHS->getType(); // The operand type. 2689 if (!OpTy->isIntOrIntVectorTy(1)) 2690 return nullptr; 2691 2692 // A boolean compared to true/false can be simplified in 14 out of the 20 2693 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2694 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2695 if (match(RHS, m_Zero())) { 2696 switch (Pred) { 2697 case CmpInst::ICMP_NE: // X != 0 -> X 2698 case CmpInst::ICMP_UGT: // X >u 0 -> X 2699 case CmpInst::ICMP_SLT: // X <s 0 -> X 2700 return LHS; 2701 2702 case CmpInst::ICMP_ULT: // X <u 0 -> false 2703 case CmpInst::ICMP_SGT: // X >s 0 -> false 2704 return getFalse(ITy); 2705 2706 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2707 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2708 return getTrue(ITy); 2709 2710 default: break; 2711 } 2712 } else if (match(RHS, m_One())) { 2713 switch (Pred) { 2714 case CmpInst::ICMP_EQ: // X == 1 -> X 2715 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2716 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2717 return LHS; 2718 2719 case CmpInst::ICMP_UGT: // X >u 1 -> false 2720 case CmpInst::ICMP_SLT: // X <s -1 -> false 2721 return getFalse(ITy); 2722 2723 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2724 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2725 return getTrue(ITy); 2726 2727 default: break; 2728 } 2729 } 2730 2731 switch (Pred) { 2732 default: 2733 break; 2734 case ICmpInst::ICMP_UGE: 2735 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2736 return getTrue(ITy); 2737 break; 2738 case ICmpInst::ICMP_SGE: 2739 /// For signed comparison, the values for an i1 are 0 and -1 2740 /// respectively. This maps into a truth table of: 2741 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2742 /// 0 | 0 | 1 (0 >= 0) | 1 2743 /// 0 | 1 | 1 (0 >= -1) | 1 2744 /// 1 | 0 | 0 (-1 >= 0) | 0 2745 /// 1 | 1 | 1 (-1 >= -1) | 1 2746 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2747 return getTrue(ITy); 2748 break; 2749 case ICmpInst::ICMP_ULE: 2750 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2751 return getTrue(ITy); 2752 break; 2753 } 2754 2755 return nullptr; 2756 } 2757 2758 /// Try hard to fold icmp with zero RHS because this is a common case. 2759 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2760 Value *RHS, const SimplifyQuery &Q) { 2761 if (!match(RHS, m_Zero())) 2762 return nullptr; 2763 2764 Type *ITy = GetCompareTy(LHS); // The return type. 2765 switch (Pred) { 2766 default: 2767 llvm_unreachable("Unknown ICmp predicate!"); 2768 case ICmpInst::ICMP_ULT: 2769 return getFalse(ITy); 2770 case ICmpInst::ICMP_UGE: 2771 return getTrue(ITy); 2772 case ICmpInst::ICMP_EQ: 2773 case ICmpInst::ICMP_ULE: 2774 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2775 return getFalse(ITy); 2776 break; 2777 case ICmpInst::ICMP_NE: 2778 case ICmpInst::ICMP_UGT: 2779 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2780 return getTrue(ITy); 2781 break; 2782 case ICmpInst::ICMP_SLT: { 2783 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2784 if (LHSKnown.isNegative()) 2785 return getTrue(ITy); 2786 if (LHSKnown.isNonNegative()) 2787 return getFalse(ITy); 2788 break; 2789 } 2790 case ICmpInst::ICMP_SLE: { 2791 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2792 if (LHSKnown.isNegative()) 2793 return getTrue(ITy); 2794 if (LHSKnown.isNonNegative() && 2795 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2796 return getFalse(ITy); 2797 break; 2798 } 2799 case ICmpInst::ICMP_SGE: { 2800 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2801 if (LHSKnown.isNegative()) 2802 return getFalse(ITy); 2803 if (LHSKnown.isNonNegative()) 2804 return getTrue(ITy); 2805 break; 2806 } 2807 case ICmpInst::ICMP_SGT: { 2808 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2809 if (LHSKnown.isNegative()) 2810 return getFalse(ITy); 2811 if (LHSKnown.isNonNegative() && 2812 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2813 return getTrue(ITy); 2814 break; 2815 } 2816 } 2817 2818 return nullptr; 2819 } 2820 2821 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2822 Value *RHS, const InstrInfoQuery &IIQ) { 2823 Type *ITy = GetCompareTy(RHS); // The return type. 2824 2825 Value *X; 2826 // Sign-bit checks can be optimized to true/false after unsigned 2827 // floating-point casts: 2828 // icmp slt (bitcast (uitofp X)), 0 --> false 2829 // icmp sgt (bitcast (uitofp X)), -1 --> true 2830 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2831 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2832 return ConstantInt::getFalse(ITy); 2833 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2834 return ConstantInt::getTrue(ITy); 2835 } 2836 2837 const APInt *C; 2838 if (!match(RHS, m_APIntAllowUndef(C))) 2839 return nullptr; 2840 2841 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2842 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2843 if (RHS_CR.isEmptySet()) 2844 return ConstantInt::getFalse(ITy); 2845 if (RHS_CR.isFullSet()) 2846 return ConstantInt::getTrue(ITy); 2847 2848 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo); 2849 if (!LHS_CR.isFullSet()) { 2850 if (RHS_CR.contains(LHS_CR)) 2851 return ConstantInt::getTrue(ITy); 2852 if (RHS_CR.inverse().contains(LHS_CR)) 2853 return ConstantInt::getFalse(ITy); 2854 } 2855 2856 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 2857 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 2858 const APInt *MulC; 2859 if (ICmpInst::isEquality(Pred) && 2860 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2861 *MulC != 0 && C->urem(*MulC) != 0) || 2862 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2863 *MulC != 0 && C->srem(*MulC) != 0))) 2864 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 2865 2866 return nullptr; 2867 } 2868 2869 static Value *simplifyICmpWithBinOpOnLHS( 2870 CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS, 2871 const SimplifyQuery &Q, unsigned MaxRecurse) { 2872 Type *ITy = GetCompareTy(RHS); // The return type. 2873 2874 Value *Y = nullptr; 2875 // icmp pred (or X, Y), X 2876 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2877 if (Pred == ICmpInst::ICMP_ULT) 2878 return getFalse(ITy); 2879 if (Pred == ICmpInst::ICMP_UGE) 2880 return getTrue(ITy); 2881 2882 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2883 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2884 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2885 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2886 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2887 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2888 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2889 } 2890 } 2891 2892 // icmp pred (and X, Y), X 2893 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2894 if (Pred == ICmpInst::ICMP_UGT) 2895 return getFalse(ITy); 2896 if (Pred == ICmpInst::ICMP_ULE) 2897 return getTrue(ITy); 2898 } 2899 2900 // icmp pred (urem X, Y), Y 2901 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2902 switch (Pred) { 2903 default: 2904 break; 2905 case ICmpInst::ICMP_SGT: 2906 case ICmpInst::ICMP_SGE: { 2907 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2908 if (!Known.isNonNegative()) 2909 break; 2910 LLVM_FALLTHROUGH; 2911 } 2912 case ICmpInst::ICMP_EQ: 2913 case ICmpInst::ICMP_UGT: 2914 case ICmpInst::ICMP_UGE: 2915 return getFalse(ITy); 2916 case ICmpInst::ICMP_SLT: 2917 case ICmpInst::ICMP_SLE: { 2918 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2919 if (!Known.isNonNegative()) 2920 break; 2921 LLVM_FALLTHROUGH; 2922 } 2923 case ICmpInst::ICMP_NE: 2924 case ICmpInst::ICMP_ULT: 2925 case ICmpInst::ICMP_ULE: 2926 return getTrue(ITy); 2927 } 2928 } 2929 2930 // icmp pred (urem X, Y), X 2931 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 2932 if (Pred == ICmpInst::ICMP_ULE) 2933 return getTrue(ITy); 2934 if (Pred == ICmpInst::ICMP_UGT) 2935 return getFalse(ITy); 2936 } 2937 2938 // x >> y <=u x 2939 // x udiv y <=u x. 2940 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2941 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 2942 // icmp pred (X op Y), X 2943 if (Pred == ICmpInst::ICMP_UGT) 2944 return getFalse(ITy); 2945 if (Pred == ICmpInst::ICMP_ULE) 2946 return getTrue(ITy); 2947 } 2948 2949 // (x*C1)/C2 <= x for C1 <= C2. 2950 // This holds even if the multiplication overflows: Assume that x != 0 and 2951 // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and 2952 // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. 2953 // 2954 // Additionally, either the multiplication and division might be represented 2955 // as shifts: 2956 // (x*C1)>>C2 <= x for C1 < 2**C2. 2957 // (x<<C1)/C2 <= x for 2**C1 < C2. 2958 const APInt *C1, *C2; 2959 if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2960 C1->ule(*C2)) || 2961 (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2962 C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) || 2963 (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2964 (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) { 2965 if (Pred == ICmpInst::ICMP_UGT) 2966 return getFalse(ITy); 2967 if (Pred == ICmpInst::ICMP_ULE) 2968 return getTrue(ITy); 2969 } 2970 2971 return nullptr; 2972 } 2973 2974 2975 // If only one of the icmp's operands has NSW flags, try to prove that: 2976 // 2977 // icmp slt (x + C1), (x +nsw C2) 2978 // 2979 // is equivalent to: 2980 // 2981 // icmp slt C1, C2 2982 // 2983 // which is true if x + C2 has the NSW flags set and: 2984 // *) C1 < C2 && C1 >= 0, or 2985 // *) C2 < C1 && C1 <= 0. 2986 // 2987 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, 2988 Value *RHS) { 2989 // TODO: only support icmp slt for now. 2990 if (Pred != CmpInst::ICMP_SLT) 2991 return false; 2992 2993 // Canonicalize nsw add as RHS. 2994 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 2995 std::swap(LHS, RHS); 2996 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 2997 return false; 2998 2999 Value *X; 3000 const APInt *C1, *C2; 3001 if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) || 3002 !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2)))) 3003 return false; 3004 3005 return (C1->slt(*C2) && C1->isNonNegative()) || 3006 (C2->slt(*C1) && C1->isNonPositive()); 3007 } 3008 3009 3010 /// TODO: A large part of this logic is duplicated in InstCombine's 3011 /// foldICmpBinOp(). We should be able to share that and avoid the code 3012 /// duplication. 3013 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 3014 Value *RHS, const SimplifyQuery &Q, 3015 unsigned MaxRecurse) { 3016 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 3017 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 3018 if (MaxRecurse && (LBO || RBO)) { 3019 // Analyze the case when either LHS or RHS is an add instruction. 3020 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3021 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 3022 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 3023 if (LBO && LBO->getOpcode() == Instruction::Add) { 3024 A = LBO->getOperand(0); 3025 B = LBO->getOperand(1); 3026 NoLHSWrapProblem = 3027 ICmpInst::isEquality(Pred) || 3028 (CmpInst::isUnsigned(Pred) && 3029 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 3030 (CmpInst::isSigned(Pred) && 3031 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 3032 } 3033 if (RBO && RBO->getOpcode() == Instruction::Add) { 3034 C = RBO->getOperand(0); 3035 D = RBO->getOperand(1); 3036 NoRHSWrapProblem = 3037 ICmpInst::isEquality(Pred) || 3038 (CmpInst::isUnsigned(Pred) && 3039 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 3040 (CmpInst::isSigned(Pred) && 3041 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 3042 } 3043 3044 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3045 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 3046 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 3047 Constant::getNullValue(RHS->getType()), Q, 3048 MaxRecurse - 1)) 3049 return V; 3050 3051 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3052 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 3053 if (Value *V = 3054 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 3055 C == LHS ? D : C, Q, MaxRecurse - 1)) 3056 return V; 3057 3058 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 3059 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || 3060 trySimplifyICmpWithAdds(Pred, LHS, RHS); 3061 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { 3062 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3063 Value *Y, *Z; 3064 if (A == C) { 3065 // C + B == C + D -> B == D 3066 Y = B; 3067 Z = D; 3068 } else if (A == D) { 3069 // D + B == C + D -> B == C 3070 Y = B; 3071 Z = C; 3072 } else if (B == C) { 3073 // A + C == C + D -> A == D 3074 Y = A; 3075 Z = D; 3076 } else { 3077 assert(B == D); 3078 // A + D == C + D -> A == C 3079 Y = A; 3080 Z = C; 3081 } 3082 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 3083 return V; 3084 } 3085 } 3086 3087 if (LBO) 3088 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 3089 return V; 3090 3091 if (RBO) 3092 if (Value *V = simplifyICmpWithBinOpOnLHS( 3093 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 3094 return V; 3095 3096 // 0 - (zext X) pred C 3097 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 3098 const APInt *C; 3099 if (match(RHS, m_APInt(C))) { 3100 if (C->isStrictlyPositive()) { 3101 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) 3102 return ConstantInt::getTrue(GetCompareTy(RHS)); 3103 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) 3104 return ConstantInt::getFalse(GetCompareTy(RHS)); 3105 } 3106 if (C->isNonNegative()) { 3107 if (Pred == ICmpInst::ICMP_SLE) 3108 return ConstantInt::getTrue(GetCompareTy(RHS)); 3109 if (Pred == ICmpInst::ICMP_SGT) 3110 return ConstantInt::getFalse(GetCompareTy(RHS)); 3111 } 3112 } 3113 } 3114 3115 // If C2 is a power-of-2 and C is not: 3116 // (C2 << X) == C --> false 3117 // (C2 << X) != C --> true 3118 const APInt *C; 3119 if (match(LHS, m_Shl(m_Power2(), m_Value())) && 3120 match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) { 3121 // C2 << X can equal zero in some circumstances. 3122 // This simplification might be unsafe if C is zero. 3123 // 3124 // We know it is safe if: 3125 // - The shift is nsw. We can't shift out the one bit. 3126 // - The shift is nuw. We can't shift out the one bit. 3127 // - C2 is one. 3128 // - C isn't zero. 3129 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3130 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3131 match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) { 3132 if (Pred == ICmpInst::ICMP_EQ) 3133 return ConstantInt::getFalse(GetCompareTy(RHS)); 3134 if (Pred == ICmpInst::ICMP_NE) 3135 return ConstantInt::getTrue(GetCompareTy(RHS)); 3136 } 3137 } 3138 3139 // TODO: This is overly constrained. LHS can be any power-of-2. 3140 // (1 << X) >u 0x8000 --> false 3141 // (1 << X) <=u 0x8000 --> true 3142 if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) { 3143 if (Pred == ICmpInst::ICMP_UGT) 3144 return ConstantInt::getFalse(GetCompareTy(RHS)); 3145 if (Pred == ICmpInst::ICMP_ULE) 3146 return ConstantInt::getTrue(GetCompareTy(RHS)); 3147 } 3148 3149 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 3150 LBO->getOperand(1) == RBO->getOperand(1)) { 3151 switch (LBO->getOpcode()) { 3152 default: 3153 break; 3154 case Instruction::UDiv: 3155 case Instruction::LShr: 3156 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3157 !Q.IIQ.isExact(RBO)) 3158 break; 3159 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3160 RBO->getOperand(0), Q, MaxRecurse - 1)) 3161 return V; 3162 break; 3163 case Instruction::SDiv: 3164 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3165 !Q.IIQ.isExact(RBO)) 3166 break; 3167 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3168 RBO->getOperand(0), Q, MaxRecurse - 1)) 3169 return V; 3170 break; 3171 case Instruction::AShr: 3172 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3173 break; 3174 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3175 RBO->getOperand(0), Q, MaxRecurse - 1)) 3176 return V; 3177 break; 3178 case Instruction::Shl: { 3179 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3180 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3181 if (!NUW && !NSW) 3182 break; 3183 if (!NSW && ICmpInst::isSigned(Pred)) 3184 break; 3185 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3186 RBO->getOperand(0), Q, MaxRecurse - 1)) 3187 return V; 3188 break; 3189 } 3190 } 3191 } 3192 return nullptr; 3193 } 3194 3195 /// Simplify integer comparisons where at least one operand of the compare 3196 /// matches an integer min/max idiom. 3197 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3198 Value *RHS, const SimplifyQuery &Q, 3199 unsigned MaxRecurse) { 3200 Type *ITy = GetCompareTy(LHS); // The return type. 3201 Value *A, *B; 3202 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3203 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3204 3205 // Signed variants on "max(a,b)>=a -> true". 3206 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3207 if (A != RHS) 3208 std::swap(A, B); // smax(A, B) pred A. 3209 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3210 // We analyze this as smax(A, B) pred A. 3211 P = Pred; 3212 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3213 (A == LHS || B == LHS)) { 3214 if (A != LHS) 3215 std::swap(A, B); // A pred smax(A, B). 3216 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3217 // We analyze this as smax(A, B) swapped-pred A. 3218 P = CmpInst::getSwappedPredicate(Pred); 3219 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3220 (A == RHS || B == RHS)) { 3221 if (A != RHS) 3222 std::swap(A, B); // smin(A, B) pred A. 3223 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3224 // We analyze this as smax(-A, -B) swapped-pred -A. 3225 // Note that we do not need to actually form -A or -B thanks to EqP. 3226 P = CmpInst::getSwappedPredicate(Pred); 3227 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3228 (A == LHS || B == LHS)) { 3229 if (A != LHS) 3230 std::swap(A, B); // A pred smin(A, B). 3231 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3232 // We analyze this as smax(-A, -B) pred -A. 3233 // Note that we do not need to actually form -A or -B thanks to EqP. 3234 P = Pred; 3235 } 3236 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3237 // Cases correspond to "max(A, B) p A". 3238 switch (P) { 3239 default: 3240 break; 3241 case CmpInst::ICMP_EQ: 3242 case CmpInst::ICMP_SLE: 3243 // Equivalent to "A EqP B". This may be the same as the condition tested 3244 // in the max/min; if so, we can just return that. 3245 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3246 return V; 3247 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3248 return V; 3249 // Otherwise, see if "A EqP B" simplifies. 3250 if (MaxRecurse) 3251 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3252 return V; 3253 break; 3254 case CmpInst::ICMP_NE: 3255 case CmpInst::ICMP_SGT: { 3256 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3257 // Equivalent to "A InvEqP B". This may be the same as the condition 3258 // tested in the max/min; if so, we can just return that. 3259 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3260 return V; 3261 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3262 return V; 3263 // Otherwise, see if "A InvEqP B" simplifies. 3264 if (MaxRecurse) 3265 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3266 return V; 3267 break; 3268 } 3269 case CmpInst::ICMP_SGE: 3270 // Always true. 3271 return getTrue(ITy); 3272 case CmpInst::ICMP_SLT: 3273 // Always false. 3274 return getFalse(ITy); 3275 } 3276 } 3277 3278 // Unsigned variants on "max(a,b)>=a -> true". 3279 P = CmpInst::BAD_ICMP_PREDICATE; 3280 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3281 if (A != RHS) 3282 std::swap(A, B); // umax(A, B) pred A. 3283 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3284 // We analyze this as umax(A, B) pred A. 3285 P = Pred; 3286 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3287 (A == LHS || B == LHS)) { 3288 if (A != LHS) 3289 std::swap(A, B); // A pred umax(A, B). 3290 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3291 // We analyze this as umax(A, B) swapped-pred A. 3292 P = CmpInst::getSwappedPredicate(Pred); 3293 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3294 (A == RHS || B == RHS)) { 3295 if (A != RHS) 3296 std::swap(A, B); // umin(A, B) pred A. 3297 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3298 // We analyze this as umax(-A, -B) swapped-pred -A. 3299 // Note that we do not need to actually form -A or -B thanks to EqP. 3300 P = CmpInst::getSwappedPredicate(Pred); 3301 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3302 (A == LHS || B == LHS)) { 3303 if (A != LHS) 3304 std::swap(A, B); // A pred umin(A, B). 3305 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3306 // We analyze this as umax(-A, -B) pred -A. 3307 // Note that we do not need to actually form -A or -B thanks to EqP. 3308 P = Pred; 3309 } 3310 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3311 // Cases correspond to "max(A, B) p A". 3312 switch (P) { 3313 default: 3314 break; 3315 case CmpInst::ICMP_EQ: 3316 case CmpInst::ICMP_ULE: 3317 // Equivalent to "A EqP B". This may be the same as the condition tested 3318 // in the max/min; if so, we can just return that. 3319 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3320 return V; 3321 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3322 return V; 3323 // Otherwise, see if "A EqP B" simplifies. 3324 if (MaxRecurse) 3325 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3326 return V; 3327 break; 3328 case CmpInst::ICMP_NE: 3329 case CmpInst::ICMP_UGT: { 3330 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3331 // Equivalent to "A InvEqP B". This may be the same as the condition 3332 // tested in the max/min; if so, we can just return that. 3333 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3334 return V; 3335 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3336 return V; 3337 // Otherwise, see if "A InvEqP B" simplifies. 3338 if (MaxRecurse) 3339 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3340 return V; 3341 break; 3342 } 3343 case CmpInst::ICMP_UGE: 3344 return getTrue(ITy); 3345 case CmpInst::ICMP_ULT: 3346 return getFalse(ITy); 3347 } 3348 } 3349 3350 // Comparing 1 each of min/max with a common operand? 3351 // Canonicalize min operand to RHS. 3352 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3353 match(LHS, m_SMin(m_Value(), m_Value()))) { 3354 std::swap(LHS, RHS); 3355 Pred = ICmpInst::getSwappedPredicate(Pred); 3356 } 3357 3358 Value *C, *D; 3359 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3360 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3361 (A == C || A == D || B == C || B == D)) { 3362 // smax(A, B) >=s smin(A, D) --> true 3363 if (Pred == CmpInst::ICMP_SGE) 3364 return getTrue(ITy); 3365 // smax(A, B) <s smin(A, D) --> false 3366 if (Pred == CmpInst::ICMP_SLT) 3367 return getFalse(ITy); 3368 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3369 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3370 (A == C || A == D || B == C || B == D)) { 3371 // umax(A, B) >=u umin(A, D) --> true 3372 if (Pred == CmpInst::ICMP_UGE) 3373 return getTrue(ITy); 3374 // umax(A, B) <u umin(A, D) --> false 3375 if (Pred == CmpInst::ICMP_ULT) 3376 return getFalse(ITy); 3377 } 3378 3379 return nullptr; 3380 } 3381 3382 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3383 Value *LHS, Value *RHS, 3384 const SimplifyQuery &Q) { 3385 // Gracefully handle instructions that have not been inserted yet. 3386 if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) 3387 return nullptr; 3388 3389 for (Value *AssumeBaseOp : {LHS, RHS}) { 3390 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3391 if (!AssumeVH) 3392 continue; 3393 3394 CallInst *Assume = cast<CallInst>(AssumeVH); 3395 if (Optional<bool> Imp = 3396 isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS, 3397 Q.DL)) 3398 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3399 return ConstantInt::get(GetCompareTy(LHS), *Imp); 3400 } 3401 } 3402 3403 return nullptr; 3404 } 3405 3406 /// Given operands for an ICmpInst, see if we can fold the result. 3407 /// If not, this returns null. 3408 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3409 const SimplifyQuery &Q, unsigned MaxRecurse) { 3410 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3411 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3412 3413 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3414 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3415 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3416 3417 // If we have a constant, make sure it is on the RHS. 3418 std::swap(LHS, RHS); 3419 Pred = CmpInst::getSwappedPredicate(Pred); 3420 } 3421 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3422 3423 Type *ITy = GetCompareTy(LHS); // The return type. 3424 3425 // icmp poison, X -> poison 3426 if (isa<PoisonValue>(RHS)) 3427 return PoisonValue::get(ITy); 3428 3429 // For EQ and NE, we can always pick a value for the undef to make the 3430 // predicate pass or fail, so we can return undef. 3431 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3432 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3433 return UndefValue::get(ITy); 3434 3435 // icmp X, X -> true/false 3436 // icmp X, undef -> true/false because undef could be X. 3437 if (LHS == RHS || Q.isUndefValue(RHS)) 3438 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3439 3440 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3441 return V; 3442 3443 // TODO: Sink/common this with other potentially expensive calls that use 3444 // ValueTracking? See comment below for isKnownNonEqual(). 3445 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3446 return V; 3447 3448 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3449 return V; 3450 3451 // If both operands have range metadata, use the metadata 3452 // to simplify the comparison. 3453 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3454 auto RHS_Instr = cast<Instruction>(RHS); 3455 auto LHS_Instr = cast<Instruction>(LHS); 3456 3457 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3458 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3459 auto RHS_CR = getConstantRangeFromMetadata( 3460 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3461 auto LHS_CR = getConstantRangeFromMetadata( 3462 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3463 3464 if (LHS_CR.icmp(Pred, RHS_CR)) 3465 return ConstantInt::getTrue(RHS->getContext()); 3466 3467 if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR)) 3468 return ConstantInt::getFalse(RHS->getContext()); 3469 } 3470 } 3471 3472 // Compare of cast, for example (zext X) != 0 -> X != 0 3473 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3474 Instruction *LI = cast<CastInst>(LHS); 3475 Value *SrcOp = LI->getOperand(0); 3476 Type *SrcTy = SrcOp->getType(); 3477 Type *DstTy = LI->getType(); 3478 3479 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3480 // if the integer type is the same size as the pointer type. 3481 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3482 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3483 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3484 // Transfer the cast to the constant. 3485 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3486 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3487 Q, MaxRecurse-1)) 3488 return V; 3489 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3490 if (RI->getOperand(0)->getType() == SrcTy) 3491 // Compare without the cast. 3492 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3493 Q, MaxRecurse-1)) 3494 return V; 3495 } 3496 } 3497 3498 if (isa<ZExtInst>(LHS)) { 3499 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3500 // same type. 3501 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3502 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3503 // Compare X and Y. Note that signed predicates become unsigned. 3504 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3505 SrcOp, RI->getOperand(0), Q, 3506 MaxRecurse-1)) 3507 return V; 3508 } 3509 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3510 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3511 if (SrcOp == RI->getOperand(0)) { 3512 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3513 return ConstantInt::getTrue(ITy); 3514 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3515 return ConstantInt::getFalse(ITy); 3516 } 3517 } 3518 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3519 // too. If not, then try to deduce the result of the comparison. 3520 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3521 // Compute the constant that would happen if we truncated to SrcTy then 3522 // reextended to DstTy. 3523 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3524 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3525 3526 // If the re-extended constant didn't change then this is effectively 3527 // also a case of comparing two zero-extended values. 3528 if (RExt == CI && MaxRecurse) 3529 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3530 SrcOp, Trunc, Q, MaxRecurse-1)) 3531 return V; 3532 3533 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3534 // there. Use this to work out the result of the comparison. 3535 if (RExt != CI) { 3536 switch (Pred) { 3537 default: llvm_unreachable("Unknown ICmp predicate!"); 3538 // LHS <u RHS. 3539 case ICmpInst::ICMP_EQ: 3540 case ICmpInst::ICMP_UGT: 3541 case ICmpInst::ICMP_UGE: 3542 return ConstantInt::getFalse(CI->getContext()); 3543 3544 case ICmpInst::ICMP_NE: 3545 case ICmpInst::ICMP_ULT: 3546 case ICmpInst::ICMP_ULE: 3547 return ConstantInt::getTrue(CI->getContext()); 3548 3549 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3550 // is non-negative then LHS <s RHS. 3551 case ICmpInst::ICMP_SGT: 3552 case ICmpInst::ICMP_SGE: 3553 return CI->getValue().isNegative() ? 3554 ConstantInt::getTrue(CI->getContext()) : 3555 ConstantInt::getFalse(CI->getContext()); 3556 3557 case ICmpInst::ICMP_SLT: 3558 case ICmpInst::ICMP_SLE: 3559 return CI->getValue().isNegative() ? 3560 ConstantInt::getFalse(CI->getContext()) : 3561 ConstantInt::getTrue(CI->getContext()); 3562 } 3563 } 3564 } 3565 } 3566 3567 if (isa<SExtInst>(LHS)) { 3568 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3569 // same type. 3570 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3571 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3572 // Compare X and Y. Note that the predicate does not change. 3573 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3574 Q, MaxRecurse-1)) 3575 return V; 3576 } 3577 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3578 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3579 if (SrcOp == RI->getOperand(0)) { 3580 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3581 return ConstantInt::getTrue(ITy); 3582 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3583 return ConstantInt::getFalse(ITy); 3584 } 3585 } 3586 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3587 // too. If not, then try to deduce the result of the comparison. 3588 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3589 // Compute the constant that would happen if we truncated to SrcTy then 3590 // reextended to DstTy. 3591 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3592 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3593 3594 // If the re-extended constant didn't change then this is effectively 3595 // also a case of comparing two sign-extended values. 3596 if (RExt == CI && MaxRecurse) 3597 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3598 return V; 3599 3600 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3601 // bits there. Use this to work out the result of the comparison. 3602 if (RExt != CI) { 3603 switch (Pred) { 3604 default: llvm_unreachable("Unknown ICmp predicate!"); 3605 case ICmpInst::ICMP_EQ: 3606 return ConstantInt::getFalse(CI->getContext()); 3607 case ICmpInst::ICMP_NE: 3608 return ConstantInt::getTrue(CI->getContext()); 3609 3610 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3611 // LHS >s RHS. 3612 case ICmpInst::ICMP_SGT: 3613 case ICmpInst::ICMP_SGE: 3614 return CI->getValue().isNegative() ? 3615 ConstantInt::getTrue(CI->getContext()) : 3616 ConstantInt::getFalse(CI->getContext()); 3617 case ICmpInst::ICMP_SLT: 3618 case ICmpInst::ICMP_SLE: 3619 return CI->getValue().isNegative() ? 3620 ConstantInt::getFalse(CI->getContext()) : 3621 ConstantInt::getTrue(CI->getContext()); 3622 3623 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3624 // LHS >u RHS. 3625 case ICmpInst::ICMP_UGT: 3626 case ICmpInst::ICMP_UGE: 3627 // Comparison is true iff the LHS <s 0. 3628 if (MaxRecurse) 3629 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3630 Constant::getNullValue(SrcTy), 3631 Q, MaxRecurse-1)) 3632 return V; 3633 break; 3634 case ICmpInst::ICMP_ULT: 3635 case ICmpInst::ICMP_ULE: 3636 // Comparison is true iff the LHS >=s 0. 3637 if (MaxRecurse) 3638 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3639 Constant::getNullValue(SrcTy), 3640 Q, MaxRecurse-1)) 3641 return V; 3642 break; 3643 } 3644 } 3645 } 3646 } 3647 } 3648 3649 // icmp eq|ne X, Y -> false|true if X != Y 3650 // This is potentially expensive, and we have already computedKnownBits for 3651 // compares with 0 above here, so only try this for a non-zero compare. 3652 if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) && 3653 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3654 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3655 } 3656 3657 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3658 return V; 3659 3660 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3661 return V; 3662 3663 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3664 return V; 3665 3666 // Simplify comparisons of related pointers using a powerful, recursive 3667 // GEP-walk when we have target data available.. 3668 if (LHS->getType()->isPointerTy()) 3669 if (auto *C = computePointerICmp(Pred, LHS, RHS, Q)) 3670 return C; 3671 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3672 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3673 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3674 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3675 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3676 Q.DL.getTypeSizeInBits(CRHS->getType())) 3677 if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(), 3678 CRHS->getPointerOperand(), Q)) 3679 return C; 3680 3681 // If the comparison is with the result of a select instruction, check whether 3682 // comparing with either branch of the select always yields the same value. 3683 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3684 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3685 return V; 3686 3687 // If the comparison is with the result of a phi instruction, check whether 3688 // doing the compare with each incoming phi value yields a common result. 3689 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3690 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3691 return V; 3692 3693 return nullptr; 3694 } 3695 3696 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3697 const SimplifyQuery &Q) { 3698 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3699 } 3700 3701 /// Given operands for an FCmpInst, see if we can fold the result. 3702 /// If not, this returns null. 3703 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3704 FastMathFlags FMF, const SimplifyQuery &Q, 3705 unsigned MaxRecurse) { 3706 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3707 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3708 3709 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3710 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3711 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3712 3713 // If we have a constant, make sure it is on the RHS. 3714 std::swap(LHS, RHS); 3715 Pred = CmpInst::getSwappedPredicate(Pred); 3716 } 3717 3718 // Fold trivial predicates. 3719 Type *RetTy = GetCompareTy(LHS); 3720 if (Pred == FCmpInst::FCMP_FALSE) 3721 return getFalse(RetTy); 3722 if (Pred == FCmpInst::FCMP_TRUE) 3723 return getTrue(RetTy); 3724 3725 // Fold (un)ordered comparison if we can determine there are no NaNs. 3726 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3727 if (FMF.noNaNs() || 3728 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3729 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3730 3731 // NaN is unordered; NaN is not ordered. 3732 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3733 "Comparison must be either ordered or unordered"); 3734 if (match(RHS, m_NaN())) 3735 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3736 3737 // fcmp pred x, poison and fcmp pred poison, x 3738 // fold to poison 3739 if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS)) 3740 return PoisonValue::get(RetTy); 3741 3742 // fcmp pred x, undef and fcmp pred undef, x 3743 // fold to true if unordered, false if ordered 3744 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 3745 // Choosing NaN for the undef will always make unordered comparison succeed 3746 // and ordered comparison fail. 3747 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3748 } 3749 3750 // fcmp x,x -> true/false. Not all compares are foldable. 3751 if (LHS == RHS) { 3752 if (CmpInst::isTrueWhenEqual(Pred)) 3753 return getTrue(RetTy); 3754 if (CmpInst::isFalseWhenEqual(Pred)) 3755 return getFalse(RetTy); 3756 } 3757 3758 // Handle fcmp with constant RHS. 3759 // TODO: Use match with a specific FP value, so these work with vectors with 3760 // undef lanes. 3761 const APFloat *C; 3762 if (match(RHS, m_APFloat(C))) { 3763 // Check whether the constant is an infinity. 3764 if (C->isInfinity()) { 3765 if (C->isNegative()) { 3766 switch (Pred) { 3767 case FCmpInst::FCMP_OLT: 3768 // No value is ordered and less than negative infinity. 3769 return getFalse(RetTy); 3770 case FCmpInst::FCMP_UGE: 3771 // All values are unordered with or at least negative infinity. 3772 return getTrue(RetTy); 3773 default: 3774 break; 3775 } 3776 } else { 3777 switch (Pred) { 3778 case FCmpInst::FCMP_OGT: 3779 // No value is ordered and greater than infinity. 3780 return getFalse(RetTy); 3781 case FCmpInst::FCMP_ULE: 3782 // All values are unordered with and at most infinity. 3783 return getTrue(RetTy); 3784 default: 3785 break; 3786 } 3787 } 3788 3789 // LHS == Inf 3790 if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI)) 3791 return getFalse(RetTy); 3792 // LHS != Inf 3793 if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI)) 3794 return getTrue(RetTy); 3795 // LHS == Inf || LHS == NaN 3796 if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) && 3797 isKnownNeverNaN(LHS, Q.TLI)) 3798 return getFalse(RetTy); 3799 // LHS != Inf && LHS != NaN 3800 if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) && 3801 isKnownNeverNaN(LHS, Q.TLI)) 3802 return getTrue(RetTy); 3803 } 3804 if (C->isNegative() && !C->isNegZero()) { 3805 assert(!C->isNaN() && "Unexpected NaN constant!"); 3806 // TODO: We can catch more cases by using a range check rather than 3807 // relying on CannotBeOrderedLessThanZero. 3808 switch (Pred) { 3809 case FCmpInst::FCMP_UGE: 3810 case FCmpInst::FCMP_UGT: 3811 case FCmpInst::FCMP_UNE: 3812 // (X >= 0) implies (X > C) when (C < 0) 3813 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3814 return getTrue(RetTy); 3815 break; 3816 case FCmpInst::FCMP_OEQ: 3817 case FCmpInst::FCMP_OLE: 3818 case FCmpInst::FCMP_OLT: 3819 // (X >= 0) implies !(X < C) when (C < 0) 3820 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3821 return getFalse(RetTy); 3822 break; 3823 default: 3824 break; 3825 } 3826 } 3827 3828 // Check comparison of [minnum/maxnum with constant] with other constant. 3829 const APFloat *C2; 3830 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 3831 *C2 < *C) || 3832 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 3833 *C2 > *C)) { 3834 bool IsMaxNum = 3835 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 3836 // The ordered relationship and minnum/maxnum guarantee that we do not 3837 // have NaN constants, so ordered/unordered preds are handled the same. 3838 switch (Pred) { 3839 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 3840 // minnum(X, LesserC) == C --> false 3841 // maxnum(X, GreaterC) == C --> false 3842 return getFalse(RetTy); 3843 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 3844 // minnum(X, LesserC) != C --> true 3845 // maxnum(X, GreaterC) != C --> true 3846 return getTrue(RetTy); 3847 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 3848 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 3849 // minnum(X, LesserC) >= C --> false 3850 // minnum(X, LesserC) > C --> false 3851 // maxnum(X, GreaterC) >= C --> true 3852 // maxnum(X, GreaterC) > C --> true 3853 return ConstantInt::get(RetTy, IsMaxNum); 3854 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 3855 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 3856 // minnum(X, LesserC) <= C --> true 3857 // minnum(X, LesserC) < C --> true 3858 // maxnum(X, GreaterC) <= C --> false 3859 // maxnum(X, GreaterC) < C --> false 3860 return ConstantInt::get(RetTy, !IsMaxNum); 3861 default: 3862 // TRUE/FALSE/ORD/UNO should be handled before this. 3863 llvm_unreachable("Unexpected fcmp predicate"); 3864 } 3865 } 3866 } 3867 3868 if (match(RHS, m_AnyZeroFP())) { 3869 switch (Pred) { 3870 case FCmpInst::FCMP_OGE: 3871 case FCmpInst::FCMP_ULT: 3872 // Positive or zero X >= 0.0 --> true 3873 // Positive or zero X < 0.0 --> false 3874 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 3875 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3876 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 3877 break; 3878 case FCmpInst::FCMP_UGE: 3879 case FCmpInst::FCMP_OLT: 3880 // Positive or zero or nan X >= 0.0 --> true 3881 // Positive or zero or nan X < 0.0 --> false 3882 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3883 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 3884 break; 3885 default: 3886 break; 3887 } 3888 } 3889 3890 // If the comparison is with the result of a select instruction, check whether 3891 // comparing with either branch of the select always yields the same value. 3892 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3893 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3894 return V; 3895 3896 // If the comparison is with the result of a phi instruction, check whether 3897 // doing the compare with each incoming phi value yields a common result. 3898 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3899 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3900 return V; 3901 3902 return nullptr; 3903 } 3904 3905 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3906 FastMathFlags FMF, const SimplifyQuery &Q) { 3907 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3908 } 3909 3910 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3911 const SimplifyQuery &Q, 3912 bool AllowRefinement, 3913 unsigned MaxRecurse) { 3914 assert(!Op->getType()->isVectorTy() && "This is not safe for vectors"); 3915 3916 // Trivial replacement. 3917 if (V == Op) 3918 return RepOp; 3919 3920 // We cannot replace a constant, and shouldn't even try. 3921 if (isa<Constant>(Op)) 3922 return nullptr; 3923 3924 auto *I = dyn_cast<Instruction>(V); 3925 if (!I || !is_contained(I->operands(), Op)) 3926 return nullptr; 3927 3928 // Replace Op with RepOp in instruction operands. 3929 SmallVector<Value *, 8> NewOps(I->getNumOperands()); 3930 transform(I->operands(), NewOps.begin(), 3931 [&](Value *V) { return V == Op ? RepOp : V; }); 3932 3933 if (!AllowRefinement) { 3934 // General InstSimplify functions may refine the result, e.g. by returning 3935 // a constant for a potentially poison value. To avoid this, implement only 3936 // a few non-refining but profitable transforms here. 3937 3938 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3939 unsigned Opcode = BO->getOpcode(); 3940 // id op x -> x, x op id -> x 3941 if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType())) 3942 return NewOps[1]; 3943 if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(), 3944 /* RHS */ true)) 3945 return NewOps[0]; 3946 3947 // x & x -> x, x | x -> x 3948 if ((Opcode == Instruction::And || Opcode == Instruction::Or) && 3949 NewOps[0] == NewOps[1]) 3950 return NewOps[0]; 3951 } 3952 3953 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3954 // getelementptr x, 0 -> x 3955 if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) && 3956 !GEP->isInBounds()) 3957 return NewOps[0]; 3958 } 3959 } else if (MaxRecurse) { 3960 // The simplification queries below may return the original value. Consider: 3961 // %div = udiv i32 %arg, %arg2 3962 // %mul = mul nsw i32 %div, %arg2 3963 // %cmp = icmp eq i32 %mul, %arg 3964 // %sel = select i1 %cmp, i32 %div, i32 undef 3965 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which 3966 // simplifies back to %arg. This can only happen because %mul does not 3967 // dominate %div. To ensure a consistent return value contract, we make sure 3968 // that this case returns nullptr as well. 3969 auto PreventSelfSimplify = [V](Value *Simplified) { 3970 return Simplified != V ? Simplified : nullptr; 3971 }; 3972 3973 if (auto *B = dyn_cast<BinaryOperator>(I)) 3974 return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0], 3975 NewOps[1], Q, MaxRecurse - 1)); 3976 3977 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3978 return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0], 3979 NewOps[1], Q, MaxRecurse - 1)); 3980 3981 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 3982 return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(), 3983 NewOps, GEP->isInBounds(), Q, 3984 MaxRecurse - 1)); 3985 3986 if (isa<SelectInst>(I)) 3987 return PreventSelfSimplify( 3988 SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q, 3989 MaxRecurse - 1)); 3990 // TODO: We could hand off more cases to instsimplify here. 3991 } 3992 3993 // If all operands are constant after substituting Op for RepOp then we can 3994 // constant fold the instruction. 3995 SmallVector<Constant *, 8> ConstOps; 3996 for (Value *NewOp : NewOps) { 3997 if (Constant *ConstOp = dyn_cast<Constant>(NewOp)) 3998 ConstOps.push_back(ConstOp); 3999 else 4000 return nullptr; 4001 } 4002 4003 // Consider: 4004 // %cmp = icmp eq i32 %x, 2147483647 4005 // %add = add nsw i32 %x, 1 4006 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 4007 // 4008 // We can't replace %sel with %add unless we strip away the flags (which 4009 // will be done in InstCombine). 4010 // TODO: This may be unsound, because it only catches some forms of 4011 // refinement. 4012 if (!AllowRefinement && canCreatePoison(cast<Operator>(I))) 4013 return nullptr; 4014 4015 if (CmpInst *C = dyn_cast<CmpInst>(I)) 4016 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 4017 ConstOps[1], Q.DL, Q.TLI); 4018 4019 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4020 if (!LI->isVolatile()) 4021 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 4022 4023 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 4024 } 4025 4026 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4027 const SimplifyQuery &Q, 4028 bool AllowRefinement) { 4029 return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, 4030 RecursionLimit); 4031 } 4032 4033 /// Try to simplify a select instruction when its condition operand is an 4034 /// integer comparison where one operand of the compare is a constant. 4035 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 4036 const APInt *Y, bool TrueWhenUnset) { 4037 const APInt *C; 4038 4039 // (X & Y) == 0 ? X & ~Y : X --> X 4040 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 4041 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 4042 *Y == ~*C) 4043 return TrueWhenUnset ? FalseVal : TrueVal; 4044 4045 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 4046 // (X & Y) != 0 ? X : X & ~Y --> X 4047 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 4048 *Y == ~*C) 4049 return TrueWhenUnset ? FalseVal : TrueVal; 4050 4051 if (Y->isPowerOf2()) { 4052 // (X & Y) == 0 ? X | Y : X --> X | Y 4053 // (X & Y) != 0 ? X | Y : X --> X 4054 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 4055 *Y == *C) 4056 return TrueWhenUnset ? TrueVal : FalseVal; 4057 4058 // (X & Y) == 0 ? X : X | Y --> X 4059 // (X & Y) != 0 ? X : X | Y --> X | Y 4060 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 4061 *Y == *C) 4062 return TrueWhenUnset ? TrueVal : FalseVal; 4063 } 4064 4065 return nullptr; 4066 } 4067 4068 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 4069 /// eq/ne. 4070 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 4071 ICmpInst::Predicate Pred, 4072 Value *TrueVal, Value *FalseVal) { 4073 Value *X; 4074 APInt Mask; 4075 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 4076 return nullptr; 4077 4078 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 4079 Pred == ICmpInst::ICMP_EQ); 4080 } 4081 4082 /// Try to simplify a select instruction when its condition operand is an 4083 /// integer comparison. 4084 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 4085 Value *FalseVal, const SimplifyQuery &Q, 4086 unsigned MaxRecurse) { 4087 ICmpInst::Predicate Pred; 4088 Value *CmpLHS, *CmpRHS; 4089 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 4090 return nullptr; 4091 4092 // Canonicalize ne to eq predicate. 4093 if (Pred == ICmpInst::ICMP_NE) { 4094 Pred = ICmpInst::ICMP_EQ; 4095 std::swap(TrueVal, FalseVal); 4096 } 4097 4098 // Check for integer min/max with a limit constant: 4099 // X > MIN_INT ? X : MIN_INT --> X 4100 // X < MAX_INT ? X : MAX_INT --> X 4101 if (TrueVal->getType()->isIntOrIntVectorTy()) { 4102 Value *X, *Y; 4103 SelectPatternFlavor SPF = 4104 matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal, 4105 X, Y).Flavor; 4106 if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) { 4107 APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF), 4108 X->getType()->getScalarSizeInBits()); 4109 if (match(Y, m_SpecificInt(LimitC))) 4110 return X; 4111 } 4112 } 4113 4114 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 4115 Value *X; 4116 const APInt *Y; 4117 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 4118 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 4119 /*TrueWhenUnset=*/true)) 4120 return V; 4121 4122 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 4123 Value *ShAmt; 4124 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), 4125 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); 4126 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 4127 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 4128 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 4129 return X; 4130 4131 // Test for a zero-shift-guard-op around rotates. These are used to 4132 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4133 // intrinsics do not have that problem. 4134 // We do not allow this transform for the general funnel shift case because 4135 // that would not preserve the poison safety of the original code. 4136 auto isRotate = 4137 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), 4138 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); 4139 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4140 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4141 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4142 Pred == ICmpInst::ICMP_EQ) 4143 return FalseVal; 4144 4145 // X == 0 ? abs(X) : -abs(X) --> -abs(X) 4146 // X == 0 ? -abs(X) : abs(X) --> abs(X) 4147 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) && 4148 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))) 4149 return FalseVal; 4150 if (match(TrueVal, 4151 m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) && 4152 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) 4153 return FalseVal; 4154 } 4155 4156 // Check for other compares that behave like bit test. 4157 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 4158 TrueVal, FalseVal)) 4159 return V; 4160 4161 // If we have a scalar equality comparison, then we know the value in one of 4162 // the arms of the select. See if substituting this value into the arm and 4163 // simplifying the result yields the same value as the other arm. 4164 // Note that the equivalence/replacement opportunity does not hold for vectors 4165 // because each element of a vector select is chosen independently. 4166 if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) { 4167 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, 4168 /* AllowRefinement */ false, MaxRecurse) == 4169 TrueVal || 4170 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, 4171 /* AllowRefinement */ false, MaxRecurse) == 4172 TrueVal) 4173 return FalseVal; 4174 if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4175 /* AllowRefinement */ true, MaxRecurse) == 4176 FalseVal || 4177 simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, 4178 /* AllowRefinement */ true, MaxRecurse) == 4179 FalseVal) 4180 return FalseVal; 4181 } 4182 4183 return nullptr; 4184 } 4185 4186 /// Try to simplify a select instruction when its condition operand is a 4187 /// floating-point comparison. 4188 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4189 const SimplifyQuery &Q) { 4190 FCmpInst::Predicate Pred; 4191 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4192 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4193 return nullptr; 4194 4195 // This transform is safe if we do not have (do not care about) -0.0 or if 4196 // at least one operand is known to not be -0.0. Otherwise, the select can 4197 // change the sign of a zero operand. 4198 bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) && 4199 Q.CxtI->hasNoSignedZeros(); 4200 const APFloat *C; 4201 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4202 (match(F, m_APFloat(C)) && C->isNonZero())) { 4203 // (T == F) ? T : F --> F 4204 // (F == T) ? T : F --> F 4205 if (Pred == FCmpInst::FCMP_OEQ) 4206 return F; 4207 4208 // (T != F) ? T : F --> T 4209 // (F != T) ? T : F --> T 4210 if (Pred == FCmpInst::FCMP_UNE) 4211 return T; 4212 } 4213 4214 return nullptr; 4215 } 4216 4217 /// Given operands for a SelectInst, see if we can fold the result. 4218 /// If not, this returns null. 4219 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4220 const SimplifyQuery &Q, unsigned MaxRecurse) { 4221 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4222 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4223 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4224 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4225 4226 // select poison, X, Y -> poison 4227 if (isa<PoisonValue>(CondC)) 4228 return PoisonValue::get(TrueVal->getType()); 4229 4230 // select undef, X, Y -> X or Y 4231 if (Q.isUndefValue(CondC)) 4232 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4233 4234 // select true, X, Y --> X 4235 // select false, X, Y --> Y 4236 // For vectors, allow undef/poison elements in the condition to match the 4237 // defined elements, so we can eliminate the select. 4238 if (match(CondC, m_One())) 4239 return TrueVal; 4240 if (match(CondC, m_Zero())) 4241 return FalseVal; 4242 } 4243 4244 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4245 "Select must have bool or bool vector condition"); 4246 assert(TrueVal->getType() == FalseVal->getType() && 4247 "Select must have same types for true/false ops"); 4248 4249 if (Cond->getType() == TrueVal->getType()) { 4250 // select i1 Cond, i1 true, i1 false --> i1 Cond 4251 if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4252 return Cond; 4253 4254 // (X || Y) && (X || !Y) --> X (commuted 8 ways) 4255 Value *X, *Y; 4256 if (match(FalseVal, m_ZeroInt())) { 4257 if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4258 match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4259 return X; 4260 if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4261 match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4262 return X; 4263 } 4264 } 4265 4266 // select ?, X, X -> X 4267 if (TrueVal == FalseVal) 4268 return TrueVal; 4269 4270 // If the true or false value is poison, we can fold to the other value. 4271 // If the true or false value is undef, we can fold to the other value as 4272 // long as the other value isn't poison. 4273 // select ?, poison, X -> X 4274 // select ?, undef, X -> X 4275 if (isa<PoisonValue>(TrueVal) || 4276 (Q.isUndefValue(TrueVal) && 4277 isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT))) 4278 return FalseVal; 4279 // select ?, X, poison -> X 4280 // select ?, X, undef -> X 4281 if (isa<PoisonValue>(FalseVal) || 4282 (Q.isUndefValue(FalseVal) && 4283 isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT))) 4284 return TrueVal; 4285 4286 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4287 Constant *TrueC, *FalseC; 4288 if (isa<FixedVectorType>(TrueVal->getType()) && 4289 match(TrueVal, m_Constant(TrueC)) && 4290 match(FalseVal, m_Constant(FalseC))) { 4291 unsigned NumElts = 4292 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4293 SmallVector<Constant *, 16> NewC; 4294 for (unsigned i = 0; i != NumElts; ++i) { 4295 // Bail out on incomplete vector constants. 4296 Constant *TEltC = TrueC->getAggregateElement(i); 4297 Constant *FEltC = FalseC->getAggregateElement(i); 4298 if (!TEltC || !FEltC) 4299 break; 4300 4301 // If the elements match (undef or not), that value is the result. If only 4302 // one element is undef, choose the defined element as the safe result. 4303 if (TEltC == FEltC) 4304 NewC.push_back(TEltC); 4305 else if (isa<PoisonValue>(TEltC) || 4306 (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC))) 4307 NewC.push_back(FEltC); 4308 else if (isa<PoisonValue>(FEltC) || 4309 (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC))) 4310 NewC.push_back(TEltC); 4311 else 4312 break; 4313 } 4314 if (NewC.size() == NumElts) 4315 return ConstantVector::get(NewC); 4316 } 4317 4318 if (Value *V = 4319 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4320 return V; 4321 4322 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4323 return V; 4324 4325 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4326 return V; 4327 4328 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4329 if (Imp) 4330 return *Imp ? TrueVal : FalseVal; 4331 4332 return nullptr; 4333 } 4334 4335 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4336 const SimplifyQuery &Q) { 4337 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4338 } 4339 4340 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4341 /// If not, this returns null. 4342 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds, 4343 const SimplifyQuery &Q, unsigned) { 4344 // The type of the GEP pointer operand. 4345 unsigned AS = 4346 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 4347 4348 // getelementptr P -> P. 4349 if (Ops.size() == 1) 4350 return Ops[0]; 4351 4352 // Compute the (pointer) type returned by the GEP instruction. 4353 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 4354 Type *GEPTy = PointerType::get(LastType, AS); 4355 for (Value *Op : Ops) { 4356 // If one of the operands is a vector, the result type is a vector of 4357 // pointers. All vector operands must have the same number of elements. 4358 if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) { 4359 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4360 break; 4361 } 4362 } 4363 4364 // getelementptr poison, idx -> poison 4365 // getelementptr baseptr, poison -> poison 4366 if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); })) 4367 return PoisonValue::get(GEPTy); 4368 4369 if (Q.isUndefValue(Ops[0])) 4370 return UndefValue::get(GEPTy); 4371 4372 bool IsScalableVec = 4373 isa<ScalableVectorType>(SrcTy) || any_of(Ops, [](const Value *V) { 4374 return isa<ScalableVectorType>(V->getType()); 4375 }); 4376 4377 if (Ops.size() == 2) { 4378 // getelementptr P, 0 -> P. 4379 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 4380 return Ops[0]; 4381 4382 Type *Ty = SrcTy; 4383 if (!IsScalableVec && Ty->isSized()) { 4384 Value *P; 4385 uint64_t C; 4386 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4387 // getelementptr P, N -> P if P points to a type of zero size. 4388 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 4389 return Ops[0]; 4390 4391 // The following transforms are only safe if the ptrtoint cast 4392 // doesn't truncate the pointers. 4393 if (Ops[1]->getType()->getScalarSizeInBits() == 4394 Q.DL.getPointerSizeInBits(AS)) { 4395 auto CanSimplify = [GEPTy, &P, V = Ops[0]]() -> bool { 4396 return P->getType() == GEPTy && 4397 getUnderlyingObject(P) == getUnderlyingObject(V); 4398 }; 4399 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4400 if (TyAllocSize == 1 && 4401 match(Ops[1], m_Sub(m_PtrToInt(m_Value(P)), 4402 m_PtrToInt(m_Specific(Ops[0])))) && 4403 CanSimplify()) 4404 return P; 4405 4406 // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of 4407 // size 1 << C. 4408 if (match(Ops[1], m_AShr(m_Sub(m_PtrToInt(m_Value(P)), 4409 m_PtrToInt(m_Specific(Ops[0]))), 4410 m_ConstantInt(C))) && 4411 TyAllocSize == 1ULL << C && CanSimplify()) 4412 return P; 4413 4414 // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of 4415 // size C. 4416 if (match(Ops[1], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)), 4417 m_PtrToInt(m_Specific(Ops[0]))), 4418 m_SpecificInt(TyAllocSize))) && 4419 CanSimplify()) 4420 return P; 4421 } 4422 } 4423 } 4424 4425 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 4426 all_of(Ops.slice(1).drop_back(1), 4427 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4428 unsigned IdxWidth = 4429 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 4430 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 4431 APInt BasePtrOffset(IdxWidth, 0); 4432 Value *StrippedBasePtr = 4433 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 4434 BasePtrOffset); 4435 4436 // Avoid creating inttoptr of zero here: While LLVMs treatment of 4437 // inttoptr is generally conservative, this particular case is folded to 4438 // a null pointer, which will have incorrect provenance. 4439 4440 // gep (gep V, C), (sub 0, V) -> C 4441 if (match(Ops.back(), 4442 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) && 4443 !BasePtrOffset.isZero()) { 4444 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4445 return ConstantExpr::getIntToPtr(CI, GEPTy); 4446 } 4447 // gep (gep V, C), (xor V, -1) -> C-1 4448 if (match(Ops.back(), 4449 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) && 4450 !BasePtrOffset.isOne()) { 4451 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4452 return ConstantExpr::getIntToPtr(CI, GEPTy); 4453 } 4454 } 4455 } 4456 4457 // Check to see if this is constant foldable. 4458 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 4459 return nullptr; 4460 4461 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 4462 Ops.slice(1), InBounds); 4463 return ConstantFoldConstant(CE, Q.DL); 4464 } 4465 4466 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds, 4467 const SimplifyQuery &Q) { 4468 return ::SimplifyGEPInst(SrcTy, Ops, InBounds, Q, RecursionLimit); 4469 } 4470 4471 /// Given operands for an InsertValueInst, see if we can fold the result. 4472 /// If not, this returns null. 4473 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 4474 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 4475 unsigned) { 4476 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4477 if (Constant *CVal = dyn_cast<Constant>(Val)) 4478 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4479 4480 // insertvalue x, undef, n -> x 4481 if (Q.isUndefValue(Val)) 4482 return Agg; 4483 4484 // insertvalue x, (extractvalue y, n), n 4485 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4486 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4487 EV->getIndices() == Idxs) { 4488 // insertvalue undef, (extractvalue y, n), n -> y 4489 if (Q.isUndefValue(Agg)) 4490 return EV->getAggregateOperand(); 4491 4492 // insertvalue y, (extractvalue y, n), n -> y 4493 if (Agg == EV->getAggregateOperand()) 4494 return Agg; 4495 } 4496 4497 return nullptr; 4498 } 4499 4500 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4501 ArrayRef<unsigned> Idxs, 4502 const SimplifyQuery &Q) { 4503 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4504 } 4505 4506 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4507 const SimplifyQuery &Q) { 4508 // Try to constant fold. 4509 auto *VecC = dyn_cast<Constant>(Vec); 4510 auto *ValC = dyn_cast<Constant>(Val); 4511 auto *IdxC = dyn_cast<Constant>(Idx); 4512 if (VecC && ValC && IdxC) 4513 return ConstantExpr::getInsertElement(VecC, ValC, IdxC); 4514 4515 // For fixed-length vector, fold into poison if index is out of bounds. 4516 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4517 if (isa<FixedVectorType>(Vec->getType()) && 4518 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 4519 return PoisonValue::get(Vec->getType()); 4520 } 4521 4522 // If index is undef, it might be out of bounds (see above case) 4523 if (Q.isUndefValue(Idx)) 4524 return PoisonValue::get(Vec->getType()); 4525 4526 // If the scalar is poison, or it is undef and there is no risk of 4527 // propagating poison from the vector value, simplify to the vector value. 4528 if (isa<PoisonValue>(Val) || 4529 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec))) 4530 return Vec; 4531 4532 // If we are extracting a value from a vector, then inserting it into the same 4533 // place, that's the input vector: 4534 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4535 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 4536 return Vec; 4537 4538 return nullptr; 4539 } 4540 4541 /// Given operands for an ExtractValueInst, see if we can fold the result. 4542 /// If not, this returns null. 4543 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4544 const SimplifyQuery &, unsigned) { 4545 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4546 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4547 4548 // extractvalue x, (insertvalue y, elt, n), n -> elt 4549 unsigned NumIdxs = Idxs.size(); 4550 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4551 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4552 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4553 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4554 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4555 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4556 Idxs.slice(0, NumCommonIdxs)) { 4557 if (NumIdxs == NumInsertValueIdxs) 4558 return IVI->getInsertedValueOperand(); 4559 break; 4560 } 4561 } 4562 4563 return nullptr; 4564 } 4565 4566 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4567 const SimplifyQuery &Q) { 4568 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4569 } 4570 4571 /// Given operands for an ExtractElementInst, see if we can fold the result. 4572 /// If not, this returns null. 4573 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, 4574 const SimplifyQuery &Q, unsigned) { 4575 auto *VecVTy = cast<VectorType>(Vec->getType()); 4576 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4577 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4578 return ConstantExpr::getExtractElement(CVec, CIdx); 4579 4580 if (Q.isUndefValue(Vec)) 4581 return UndefValue::get(VecVTy->getElementType()); 4582 } 4583 4584 // An undef extract index can be arbitrarily chosen to be an out-of-range 4585 // index value, which would result in the instruction being poison. 4586 if (Q.isUndefValue(Idx)) 4587 return PoisonValue::get(VecVTy->getElementType()); 4588 4589 // If extracting a specified index from the vector, see if we can recursively 4590 // find a previously computed scalar that was inserted into the vector. 4591 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4592 // For fixed-length vector, fold into undef if index is out of bounds. 4593 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue(); 4594 if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts)) 4595 return PoisonValue::get(VecVTy->getElementType()); 4596 // Handle case where an element is extracted from a splat. 4597 if (IdxC->getValue().ult(MinNumElts)) 4598 if (auto *Splat = getSplatValue(Vec)) 4599 return Splat; 4600 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4601 return Elt; 4602 } else { 4603 // The index is not relevant if our vector is a splat. 4604 if (Value *Splat = getSplatValue(Vec)) 4605 return Splat; 4606 } 4607 return nullptr; 4608 } 4609 4610 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4611 const SimplifyQuery &Q) { 4612 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4613 } 4614 4615 /// See if we can fold the given phi. If not, returns null. 4616 static Value *SimplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues, 4617 const SimplifyQuery &Q) { 4618 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE 4619 // here, because the PHI we may succeed simplifying to was not 4620 // def-reachable from the original PHI! 4621 4622 // If all of the PHI's incoming values are the same then replace the PHI node 4623 // with the common value. 4624 Value *CommonValue = nullptr; 4625 bool HasUndefInput = false; 4626 for (Value *Incoming : IncomingValues) { 4627 // If the incoming value is the phi node itself, it can safely be skipped. 4628 if (Incoming == PN) continue; 4629 if (Q.isUndefValue(Incoming)) { 4630 // Remember that we saw an undef value, but otherwise ignore them. 4631 HasUndefInput = true; 4632 continue; 4633 } 4634 if (CommonValue && Incoming != CommonValue) 4635 return nullptr; // Not the same, bail out. 4636 CommonValue = Incoming; 4637 } 4638 4639 // If CommonValue is null then all of the incoming values were either undef or 4640 // equal to the phi node itself. 4641 if (!CommonValue) 4642 return UndefValue::get(PN->getType()); 4643 4644 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4645 // instruction, we cannot return X as the result of the PHI node unless it 4646 // dominates the PHI block. 4647 if (HasUndefInput) 4648 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4649 4650 return CommonValue; 4651 } 4652 4653 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4654 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4655 if (auto *C = dyn_cast<Constant>(Op)) 4656 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4657 4658 if (auto *CI = dyn_cast<CastInst>(Op)) { 4659 auto *Src = CI->getOperand(0); 4660 Type *SrcTy = Src->getType(); 4661 Type *MidTy = CI->getType(); 4662 Type *DstTy = Ty; 4663 if (Src->getType() == Ty) { 4664 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4665 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4666 Type *SrcIntPtrTy = 4667 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4668 Type *MidIntPtrTy = 4669 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4670 Type *DstIntPtrTy = 4671 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4672 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4673 SrcIntPtrTy, MidIntPtrTy, 4674 DstIntPtrTy) == Instruction::BitCast) 4675 return Src; 4676 } 4677 } 4678 4679 // bitcast x -> x 4680 if (CastOpc == Instruction::BitCast) 4681 if (Op->getType() == Ty) 4682 return Op; 4683 4684 return nullptr; 4685 } 4686 4687 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4688 const SimplifyQuery &Q) { 4689 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4690 } 4691 4692 /// For the given destination element of a shuffle, peek through shuffles to 4693 /// match a root vector source operand that contains that element in the same 4694 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4695 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4696 int MaskVal, Value *RootVec, 4697 unsigned MaxRecurse) { 4698 if (!MaxRecurse--) 4699 return nullptr; 4700 4701 // Bail out if any mask value is undefined. That kind of shuffle may be 4702 // simplified further based on demanded bits or other folds. 4703 if (MaskVal == -1) 4704 return nullptr; 4705 4706 // The mask value chooses which source operand we need to look at next. 4707 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 4708 int RootElt = MaskVal; 4709 Value *SourceOp = Op0; 4710 if (MaskVal >= InVecNumElts) { 4711 RootElt = MaskVal - InVecNumElts; 4712 SourceOp = Op1; 4713 } 4714 4715 // If the source operand is a shuffle itself, look through it to find the 4716 // matching root vector. 4717 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4718 return foldIdentityShuffles( 4719 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4720 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4721 } 4722 4723 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4724 // size? 4725 4726 // The source operand is not a shuffle. Initialize the root vector value for 4727 // this shuffle if that has not been done yet. 4728 if (!RootVec) 4729 RootVec = SourceOp; 4730 4731 // Give up as soon as a source operand does not match the existing root value. 4732 if (RootVec != SourceOp) 4733 return nullptr; 4734 4735 // The element must be coming from the same lane in the source vector 4736 // (although it may have crossed lanes in intermediate shuffles). 4737 if (RootElt != DestElt) 4738 return nullptr; 4739 4740 return RootVec; 4741 } 4742 4743 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4744 ArrayRef<int> Mask, Type *RetTy, 4745 const SimplifyQuery &Q, 4746 unsigned MaxRecurse) { 4747 if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) 4748 return UndefValue::get(RetTy); 4749 4750 auto *InVecTy = cast<VectorType>(Op0->getType()); 4751 unsigned MaskNumElts = Mask.size(); 4752 ElementCount InVecEltCount = InVecTy->getElementCount(); 4753 4754 bool Scalable = InVecEltCount.isScalable(); 4755 4756 SmallVector<int, 32> Indices; 4757 Indices.assign(Mask.begin(), Mask.end()); 4758 4759 // Canonicalization: If mask does not select elements from an input vector, 4760 // replace that input vector with poison. 4761 if (!Scalable) { 4762 bool MaskSelects0 = false, MaskSelects1 = false; 4763 unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); 4764 for (unsigned i = 0; i != MaskNumElts; ++i) { 4765 if (Indices[i] == -1) 4766 continue; 4767 if ((unsigned)Indices[i] < InVecNumElts) 4768 MaskSelects0 = true; 4769 else 4770 MaskSelects1 = true; 4771 } 4772 if (!MaskSelects0) 4773 Op0 = PoisonValue::get(InVecTy); 4774 if (!MaskSelects1) 4775 Op1 = PoisonValue::get(InVecTy); 4776 } 4777 4778 auto *Op0Const = dyn_cast<Constant>(Op0); 4779 auto *Op1Const = dyn_cast<Constant>(Op1); 4780 4781 // If all operands are constant, constant fold the shuffle. This 4782 // transformation depends on the value of the mask which is not known at 4783 // compile time for scalable vectors 4784 if (Op0Const && Op1Const) 4785 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); 4786 4787 // Canonicalization: if only one input vector is constant, it shall be the 4788 // second one. This transformation depends on the value of the mask which 4789 // is not known at compile time for scalable vectors 4790 if (!Scalable && Op0Const && !Op1Const) { 4791 std::swap(Op0, Op1); 4792 ShuffleVectorInst::commuteShuffleMask(Indices, 4793 InVecEltCount.getKnownMinValue()); 4794 } 4795 4796 // A splat of an inserted scalar constant becomes a vector constant: 4797 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 4798 // NOTE: We may have commuted above, so analyze the updated Indices, not the 4799 // original mask constant. 4800 // NOTE: This transformation depends on the value of the mask which is not 4801 // known at compile time for scalable vectors 4802 Constant *C; 4803 ConstantInt *IndexC; 4804 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 4805 m_ConstantInt(IndexC)))) { 4806 // Match a splat shuffle mask of the insert index allowing undef elements. 4807 int InsertIndex = IndexC->getZExtValue(); 4808 if (all_of(Indices, [InsertIndex](int MaskElt) { 4809 return MaskElt == InsertIndex || MaskElt == -1; 4810 })) { 4811 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 4812 4813 // Shuffle mask undefs become undefined constant result elements. 4814 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 4815 for (unsigned i = 0; i != MaskNumElts; ++i) 4816 if (Indices[i] == -1) 4817 VecC[i] = UndefValue::get(C->getType()); 4818 return ConstantVector::get(VecC); 4819 } 4820 } 4821 4822 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4823 // value type is same as the input vectors' type. 4824 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4825 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 4826 is_splat(OpShuf->getShuffleMask())) 4827 return Op0; 4828 4829 // All remaining transformation depend on the value of the mask, which is 4830 // not known at compile time for scalable vectors. 4831 if (Scalable) 4832 return nullptr; 4833 4834 // Don't fold a shuffle with undef mask elements. This may get folded in a 4835 // better way using demanded bits or other analysis. 4836 // TODO: Should we allow this? 4837 if (is_contained(Indices, -1)) 4838 return nullptr; 4839 4840 // Check if every element of this shuffle can be mapped back to the 4841 // corresponding element of a single root vector. If so, we don't need this 4842 // shuffle. This handles simple identity shuffles as well as chains of 4843 // shuffles that may widen/narrow and/or move elements across lanes and back. 4844 Value *RootVec = nullptr; 4845 for (unsigned i = 0; i != MaskNumElts; ++i) { 4846 // Note that recursion is limited for each vector element, so if any element 4847 // exceeds the limit, this will fail to simplify. 4848 RootVec = 4849 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4850 4851 // We can't replace a widening/narrowing shuffle with one of its operands. 4852 if (!RootVec || RootVec->getType() != RetTy) 4853 return nullptr; 4854 } 4855 return RootVec; 4856 } 4857 4858 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4859 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4860 ArrayRef<int> Mask, Type *RetTy, 4861 const SimplifyQuery &Q) { 4862 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4863 } 4864 4865 static Constant *foldConstant(Instruction::UnaryOps Opcode, 4866 Value *&Op, const SimplifyQuery &Q) { 4867 if (auto *C = dyn_cast<Constant>(Op)) 4868 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 4869 return nullptr; 4870 } 4871 4872 /// Given the operand for an FNeg, see if we can fold the result. If not, this 4873 /// returns null. 4874 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 4875 const SimplifyQuery &Q, unsigned MaxRecurse) { 4876 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 4877 return C; 4878 4879 Value *X; 4880 // fneg (fneg X) ==> X 4881 if (match(Op, m_FNeg(m_Value(X)))) 4882 return X; 4883 4884 return nullptr; 4885 } 4886 4887 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 4888 const SimplifyQuery &Q) { 4889 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 4890 } 4891 4892 static Constant *propagateNaN(Constant *In) { 4893 // If the input is a vector with undef elements, just return a default NaN. 4894 if (!In->isNaN()) 4895 return ConstantFP::getNaN(In->getType()); 4896 4897 // Propagate the existing NaN constant when possible. 4898 // TODO: Should we quiet a signaling NaN? 4899 return In; 4900 } 4901 4902 /// Perform folds that are common to any floating-point operation. This implies 4903 /// transforms based on poison/undef/NaN because the operation itself makes no 4904 /// difference to the result. 4905 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF, 4906 const SimplifyQuery &Q, 4907 fp::ExceptionBehavior ExBehavior, 4908 RoundingMode Rounding) { 4909 // Poison is independent of anything else. It always propagates from an 4910 // operand to a math result. 4911 if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); })) 4912 return PoisonValue::get(Ops[0]->getType()); 4913 4914 for (Value *V : Ops) { 4915 bool IsNan = match(V, m_NaN()); 4916 bool IsInf = match(V, m_Inf()); 4917 bool IsUndef = Q.isUndefValue(V); 4918 4919 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 4920 // (an undef operand can be chosen to be Nan/Inf), then the result of 4921 // this operation is poison. 4922 if (FMF.noNaNs() && (IsNan || IsUndef)) 4923 return PoisonValue::get(V->getType()); 4924 if (FMF.noInfs() && (IsInf || IsUndef)) 4925 return PoisonValue::get(V->getType()); 4926 4927 if (isDefaultFPEnvironment(ExBehavior, Rounding)) { 4928 if (IsUndef || IsNan) 4929 return propagateNaN(cast<Constant>(V)); 4930 } else if (ExBehavior != fp::ebStrict) { 4931 if (IsNan) 4932 return propagateNaN(cast<Constant>(V)); 4933 } 4934 } 4935 return nullptr; 4936 } 4937 4938 // TODO: Move this out to a header file: 4939 static inline bool canIgnoreSNaN(fp::ExceptionBehavior EB, FastMathFlags FMF) { 4940 return (EB == fp::ebIgnore || FMF.noNaNs()); 4941 } 4942 4943 /// Given operands for an FAdd, see if we can fold the result. If not, this 4944 /// returns null. 4945 static Value * 4946 SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4947 const SimplifyQuery &Q, unsigned MaxRecurse, 4948 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 4949 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 4950 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 4951 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4952 return C; 4953 4954 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 4955 return C; 4956 4957 // fadd X, -0 ==> X 4958 // With strict/constrained FP, we have these possible edge cases that do 4959 // not simplify to Op0: 4960 // fadd SNaN, -0.0 --> QNaN 4961 // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative) 4962 if (canIgnoreSNaN(ExBehavior, FMF) && 4963 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 4964 FMF.noSignedZeros())) 4965 if (match(Op1, m_NegZeroFP())) 4966 return Op0; 4967 4968 // fadd X, 0 ==> X, when we know X is not -0 4969 if (canIgnoreSNaN(ExBehavior, FMF)) 4970 if (match(Op1, m_PosZeroFP()) && 4971 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4972 return Op0; 4973 4974 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 4975 return nullptr; 4976 4977 // With nnan: -X + X --> 0.0 (and commuted variant) 4978 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 4979 // Negative zeros are allowed because we always end up with positive zero: 4980 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4981 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4982 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 4983 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 4984 if (FMF.noNaNs()) { 4985 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 4986 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 4987 return ConstantFP::getNullValue(Op0->getType()); 4988 4989 if (match(Op0, m_FNeg(m_Specific(Op1))) || 4990 match(Op1, m_FNeg(m_Specific(Op0)))) 4991 return ConstantFP::getNullValue(Op0->getType()); 4992 } 4993 4994 // (X - Y) + Y --> X 4995 // Y + (X - Y) --> X 4996 Value *X; 4997 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4998 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 4999 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 5000 return X; 5001 5002 return nullptr; 5003 } 5004 5005 /// Given operands for an FSub, see if we can fold the result. If not, this 5006 /// returns null. 5007 static Value * 5008 SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5009 const SimplifyQuery &Q, unsigned MaxRecurse, 5010 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5011 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5012 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5013 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 5014 return C; 5015 5016 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5017 return C; 5018 5019 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5020 return nullptr; 5021 5022 // fsub X, +0 ==> X 5023 if (match(Op1, m_PosZeroFP())) 5024 return Op0; 5025 5026 // fsub X, -0 ==> X, when we know X is not -0 5027 if (match(Op1, m_NegZeroFP()) && 5028 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 5029 return Op0; 5030 5031 // fsub -0.0, (fsub -0.0, X) ==> X 5032 // fsub -0.0, (fneg X) ==> X 5033 Value *X; 5034 if (match(Op0, m_NegZeroFP()) && 5035 match(Op1, m_FNeg(m_Value(X)))) 5036 return X; 5037 5038 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 5039 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 5040 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 5041 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 5042 match(Op1, m_FNeg(m_Value(X))))) 5043 return X; 5044 5045 // fsub nnan x, x ==> 0.0 5046 if (FMF.noNaNs() && Op0 == Op1) 5047 return Constant::getNullValue(Op0->getType()); 5048 5049 // Y - (Y - X) --> X 5050 // (X + Y) - Y --> X 5051 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5052 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 5053 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 5054 return X; 5055 5056 return nullptr; 5057 } 5058 5059 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5060 const SimplifyQuery &Q, unsigned MaxRecurse, 5061 fp::ExceptionBehavior ExBehavior, 5062 RoundingMode Rounding) { 5063 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5064 return C; 5065 5066 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5067 return nullptr; 5068 5069 // fmul X, 1.0 ==> X 5070 if (match(Op1, m_FPOne())) 5071 return Op0; 5072 5073 // fmul 1.0, X ==> X 5074 if (match(Op0, m_FPOne())) 5075 return Op1; 5076 5077 // fmul nnan nsz X, 0 ==> 0 5078 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 5079 return ConstantFP::getNullValue(Op0->getType()); 5080 5081 // fmul nnan nsz 0, X ==> 0 5082 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5083 return ConstantFP::getNullValue(Op1->getType()); 5084 5085 // sqrt(X) * sqrt(X) --> X, if we can: 5086 // 1. Remove the intermediate rounding (reassociate). 5087 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 5088 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 5089 Value *X; 5090 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 5091 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 5092 return X; 5093 5094 return nullptr; 5095 } 5096 5097 /// Given the operands for an FMul, see if we can fold the result 5098 static Value * 5099 SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5100 const SimplifyQuery &Q, unsigned MaxRecurse, 5101 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5102 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5103 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5104 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 5105 return C; 5106 5107 // Now apply simplifications that do not require rounding. 5108 return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding); 5109 } 5110 5111 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5112 const SimplifyQuery &Q, 5113 fp::ExceptionBehavior ExBehavior, 5114 RoundingMode Rounding) { 5115 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5116 Rounding); 5117 } 5118 5119 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5120 const SimplifyQuery &Q, 5121 fp::ExceptionBehavior ExBehavior, 5122 RoundingMode Rounding) { 5123 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5124 Rounding); 5125 } 5126 5127 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5128 const SimplifyQuery &Q, 5129 fp::ExceptionBehavior ExBehavior, 5130 RoundingMode Rounding) { 5131 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5132 Rounding); 5133 } 5134 5135 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5136 const SimplifyQuery &Q, 5137 fp::ExceptionBehavior ExBehavior, 5138 RoundingMode Rounding) { 5139 return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5140 Rounding); 5141 } 5142 5143 static Value * 5144 SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5145 const SimplifyQuery &Q, unsigned, 5146 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5147 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5148 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5149 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 5150 return C; 5151 5152 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5153 return C; 5154 5155 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5156 return nullptr; 5157 5158 // X / 1.0 -> X 5159 if (match(Op1, m_FPOne())) 5160 return Op0; 5161 5162 // 0 / X -> 0 5163 // Requires that NaNs are off (X could be zero) and signed zeroes are 5164 // ignored (X could be positive or negative, so the output sign is unknown). 5165 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5166 return ConstantFP::getNullValue(Op0->getType()); 5167 5168 if (FMF.noNaNs()) { 5169 // X / X -> 1.0 is legal when NaNs are ignored. 5170 // We can ignore infinities because INF/INF is NaN. 5171 if (Op0 == Op1) 5172 return ConstantFP::get(Op0->getType(), 1.0); 5173 5174 // (X * Y) / Y --> X if we can reassociate to the above form. 5175 Value *X; 5176 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 5177 return X; 5178 5179 // -X / X -> -1.0 and 5180 // X / -X -> -1.0 are legal when NaNs are ignored. 5181 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 5182 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 5183 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 5184 return ConstantFP::get(Op0->getType(), -1.0); 5185 } 5186 5187 return nullptr; 5188 } 5189 5190 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5191 const SimplifyQuery &Q, 5192 fp::ExceptionBehavior ExBehavior, 5193 RoundingMode Rounding) { 5194 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5195 Rounding); 5196 } 5197 5198 static Value * 5199 SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5200 const SimplifyQuery &Q, unsigned, 5201 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5202 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5203 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5204 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 5205 return C; 5206 5207 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5208 return C; 5209 5210 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5211 return nullptr; 5212 5213 // Unlike fdiv, the result of frem always matches the sign of the dividend. 5214 // The constant match may include undef elements in a vector, so return a full 5215 // zero constant as the result. 5216 if (FMF.noNaNs()) { 5217 // +0 % X -> 0 5218 if (match(Op0, m_PosZeroFP())) 5219 return ConstantFP::getNullValue(Op0->getType()); 5220 // -0 % X -> -0 5221 if (match(Op0, m_NegZeroFP())) 5222 return ConstantFP::getNegativeZero(Op0->getType()); 5223 } 5224 5225 return nullptr; 5226 } 5227 5228 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5229 const SimplifyQuery &Q, 5230 fp::ExceptionBehavior ExBehavior, 5231 RoundingMode Rounding) { 5232 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5233 Rounding); 5234 } 5235 5236 //=== Helper functions for higher up the class hierarchy. 5237 5238 /// Given the operand for a UnaryOperator, see if we can fold the result. 5239 /// If not, this returns null. 5240 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 5241 unsigned MaxRecurse) { 5242 switch (Opcode) { 5243 case Instruction::FNeg: 5244 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 5245 default: 5246 llvm_unreachable("Unexpected opcode"); 5247 } 5248 } 5249 5250 /// Given the operand for a UnaryOperator, see if we can fold the result. 5251 /// If not, this returns null. 5252 /// Try to use FastMathFlags when folding the result. 5253 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 5254 const FastMathFlags &FMF, 5255 const SimplifyQuery &Q, unsigned MaxRecurse) { 5256 switch (Opcode) { 5257 case Instruction::FNeg: 5258 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 5259 default: 5260 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 5261 } 5262 } 5263 5264 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 5265 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 5266 } 5267 5268 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 5269 const SimplifyQuery &Q) { 5270 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 5271 } 5272 5273 /// Given operands for a BinaryOperator, see if we can fold the result. 5274 /// If not, this returns null. 5275 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5276 const SimplifyQuery &Q, unsigned MaxRecurse) { 5277 switch (Opcode) { 5278 case Instruction::Add: 5279 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 5280 case Instruction::Sub: 5281 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 5282 case Instruction::Mul: 5283 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 5284 case Instruction::SDiv: 5285 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 5286 case Instruction::UDiv: 5287 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 5288 case Instruction::SRem: 5289 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 5290 case Instruction::URem: 5291 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 5292 case Instruction::Shl: 5293 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 5294 case Instruction::LShr: 5295 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 5296 case Instruction::AShr: 5297 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 5298 case Instruction::And: 5299 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 5300 case Instruction::Or: 5301 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 5302 case Instruction::Xor: 5303 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 5304 case Instruction::FAdd: 5305 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5306 case Instruction::FSub: 5307 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5308 case Instruction::FMul: 5309 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5310 case Instruction::FDiv: 5311 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5312 case Instruction::FRem: 5313 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5314 default: 5315 llvm_unreachable("Unexpected opcode"); 5316 } 5317 } 5318 5319 /// Given operands for a BinaryOperator, see if we can fold the result. 5320 /// If not, this returns null. 5321 /// Try to use FastMathFlags when folding the result. 5322 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5323 const FastMathFlags &FMF, const SimplifyQuery &Q, 5324 unsigned MaxRecurse) { 5325 switch (Opcode) { 5326 case Instruction::FAdd: 5327 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 5328 case Instruction::FSub: 5329 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 5330 case Instruction::FMul: 5331 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 5332 case Instruction::FDiv: 5333 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 5334 default: 5335 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 5336 } 5337 } 5338 5339 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5340 const SimplifyQuery &Q) { 5341 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 5342 } 5343 5344 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5345 FastMathFlags FMF, const SimplifyQuery &Q) { 5346 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 5347 } 5348 5349 /// Given operands for a CmpInst, see if we can fold the result. 5350 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5351 const SimplifyQuery &Q, unsigned MaxRecurse) { 5352 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 5353 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 5354 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5355 } 5356 5357 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5358 const SimplifyQuery &Q) { 5359 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 5360 } 5361 5362 static bool IsIdempotent(Intrinsic::ID ID) { 5363 switch (ID) { 5364 default: return false; 5365 5366 // Unary idempotent: f(f(x)) = f(x) 5367 case Intrinsic::fabs: 5368 case Intrinsic::floor: 5369 case Intrinsic::ceil: 5370 case Intrinsic::trunc: 5371 case Intrinsic::rint: 5372 case Intrinsic::nearbyint: 5373 case Intrinsic::round: 5374 case Intrinsic::roundeven: 5375 case Intrinsic::canonicalize: 5376 return true; 5377 } 5378 } 5379 5380 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 5381 const DataLayout &DL) { 5382 GlobalValue *PtrSym; 5383 APInt PtrOffset; 5384 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 5385 return nullptr; 5386 5387 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 5388 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 5389 Type *Int32PtrTy = Int32Ty->getPointerTo(); 5390 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 5391 5392 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 5393 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 5394 return nullptr; 5395 5396 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 5397 if (OffsetInt % 4 != 0) 5398 return nullptr; 5399 5400 Constant *C = ConstantExpr::getGetElementPtr( 5401 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 5402 ConstantInt::get(Int64Ty, OffsetInt / 4)); 5403 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 5404 if (!Loaded) 5405 return nullptr; 5406 5407 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 5408 if (!LoadedCE) 5409 return nullptr; 5410 5411 if (LoadedCE->getOpcode() == Instruction::Trunc) { 5412 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5413 if (!LoadedCE) 5414 return nullptr; 5415 } 5416 5417 if (LoadedCE->getOpcode() != Instruction::Sub) 5418 return nullptr; 5419 5420 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5421 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 5422 return nullptr; 5423 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 5424 5425 Constant *LoadedRHS = LoadedCE->getOperand(1); 5426 GlobalValue *LoadedRHSSym; 5427 APInt LoadedRHSOffset; 5428 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 5429 DL) || 5430 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 5431 return nullptr; 5432 5433 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 5434 } 5435 5436 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 5437 const SimplifyQuery &Q) { 5438 // Idempotent functions return the same result when called repeatedly. 5439 Intrinsic::ID IID = F->getIntrinsicID(); 5440 if (IsIdempotent(IID)) 5441 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 5442 if (II->getIntrinsicID() == IID) 5443 return II; 5444 5445 Value *X; 5446 switch (IID) { 5447 case Intrinsic::fabs: 5448 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 5449 break; 5450 case Intrinsic::bswap: 5451 // bswap(bswap(x)) -> x 5452 if (match(Op0, m_BSwap(m_Value(X)))) return X; 5453 break; 5454 case Intrinsic::bitreverse: 5455 // bitreverse(bitreverse(x)) -> x 5456 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 5457 break; 5458 case Intrinsic::ctpop: { 5459 // If everything but the lowest bit is zero, that bit is the pop-count. Ex: 5460 // ctpop(and X, 1) --> and X, 1 5461 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 5462 if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), 5463 Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 5464 return Op0; 5465 break; 5466 } 5467 case Intrinsic::exp: 5468 // exp(log(x)) -> x 5469 if (Q.CxtI->hasAllowReassoc() && 5470 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 5471 break; 5472 case Intrinsic::exp2: 5473 // exp2(log2(x)) -> x 5474 if (Q.CxtI->hasAllowReassoc() && 5475 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 5476 break; 5477 case Intrinsic::log: 5478 // log(exp(x)) -> x 5479 if (Q.CxtI->hasAllowReassoc() && 5480 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 5481 break; 5482 case Intrinsic::log2: 5483 // log2(exp2(x)) -> x 5484 if (Q.CxtI->hasAllowReassoc() && 5485 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 5486 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 5487 m_Value(X))))) return X; 5488 break; 5489 case Intrinsic::log10: 5490 // log10(pow(10.0, x)) -> x 5491 if (Q.CxtI->hasAllowReassoc() && 5492 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 5493 m_Value(X)))) return X; 5494 break; 5495 case Intrinsic::floor: 5496 case Intrinsic::trunc: 5497 case Intrinsic::ceil: 5498 case Intrinsic::round: 5499 case Intrinsic::roundeven: 5500 case Intrinsic::nearbyint: 5501 case Intrinsic::rint: { 5502 // floor (sitofp x) -> sitofp x 5503 // floor (uitofp x) -> uitofp x 5504 // 5505 // Converting from int always results in a finite integral number or 5506 // infinity. For either of those inputs, these rounding functions always 5507 // return the same value, so the rounding can be eliminated. 5508 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 5509 return Op0; 5510 break; 5511 } 5512 case Intrinsic::experimental_vector_reverse: 5513 // experimental.vector.reverse(experimental.vector.reverse(x)) -> x 5514 if (match(Op0, 5515 m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X)))) 5516 return X; 5517 // experimental.vector.reverse(splat(X)) -> splat(X) 5518 if (isSplatValue(Op0)) 5519 return Op0; 5520 break; 5521 default: 5522 break; 5523 } 5524 5525 return nullptr; 5526 } 5527 5528 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) { 5529 switch (IID) { 5530 case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth); 5531 case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth); 5532 case Intrinsic::umax: return APInt::getMaxValue(BitWidth); 5533 case Intrinsic::umin: return APInt::getMinValue(BitWidth); 5534 default: llvm_unreachable("Unexpected intrinsic"); 5535 } 5536 } 5537 5538 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) { 5539 switch (IID) { 5540 case Intrinsic::smax: return ICmpInst::ICMP_SGE; 5541 case Intrinsic::smin: return ICmpInst::ICMP_SLE; 5542 case Intrinsic::umax: return ICmpInst::ICMP_UGE; 5543 case Intrinsic::umin: return ICmpInst::ICMP_ULE; 5544 default: llvm_unreachable("Unexpected intrinsic"); 5545 } 5546 } 5547 5548 /// Given a min/max intrinsic, see if it can be removed based on having an 5549 /// operand that is another min/max intrinsic with shared operand(s). The caller 5550 /// is expected to swap the operand arguments to handle commutation. 5551 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 5552 Value *X, *Y; 5553 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 5554 return nullptr; 5555 5556 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 5557 if (!MM0) 5558 return nullptr; 5559 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 5560 5561 if (Op1 == X || Op1 == Y || 5562 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 5563 // max (max X, Y), X --> max X, Y 5564 if (IID0 == IID) 5565 return MM0; 5566 // max (min X, Y), X --> X 5567 if (IID0 == getInverseMinMaxIntrinsic(IID)) 5568 return Op1; 5569 } 5570 return nullptr; 5571 } 5572 5573 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 5574 const SimplifyQuery &Q) { 5575 Intrinsic::ID IID = F->getIntrinsicID(); 5576 Type *ReturnType = F->getReturnType(); 5577 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 5578 switch (IID) { 5579 case Intrinsic::abs: 5580 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 5581 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 5582 // on the outer abs. 5583 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 5584 return Op0; 5585 break; 5586 5587 case Intrinsic::cttz: { 5588 Value *X; 5589 if (match(Op0, m_Shl(m_One(), m_Value(X)))) 5590 return X; 5591 break; 5592 } 5593 case Intrinsic::ctlz: { 5594 Value *X; 5595 if (match(Op0, m_LShr(m_Negative(), m_Value(X)))) 5596 return X; 5597 if (match(Op0, m_AShr(m_Negative(), m_Value()))) 5598 return Constant::getNullValue(ReturnType); 5599 break; 5600 } 5601 case Intrinsic::smax: 5602 case Intrinsic::smin: 5603 case Intrinsic::umax: 5604 case Intrinsic::umin: { 5605 // If the arguments are the same, this is a no-op. 5606 if (Op0 == Op1) 5607 return Op0; 5608 5609 // Canonicalize constant operand as Op1. 5610 if (isa<Constant>(Op0)) 5611 std::swap(Op0, Op1); 5612 5613 // Assume undef is the limit value. 5614 if (Q.isUndefValue(Op1)) 5615 return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth)); 5616 5617 const APInt *C; 5618 if (match(Op1, m_APIntAllowUndef(C))) { 5619 // Clamp to limit value. For example: 5620 // umax(i8 %x, i8 255) --> 255 5621 if (*C == getMaxMinLimit(IID, BitWidth)) 5622 return ConstantInt::get(ReturnType, *C); 5623 5624 // If the constant op is the opposite of the limit value, the other must 5625 // be larger/smaller or equal. For example: 5626 // umin(i8 %x, i8 255) --> %x 5627 if (*C == getMaxMinLimit(getInverseMinMaxIntrinsic(IID), BitWidth)) 5628 return Op0; 5629 5630 // Remove nested call if constant operands allow it. Example: 5631 // max (max X, 7), 5 -> max X, 7 5632 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 5633 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 5634 // TODO: loosen undef/splat restrictions for vector constants. 5635 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 5636 const APInt *InnerC; 5637 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 5638 ((IID == Intrinsic::smax && InnerC->sge(*C)) || 5639 (IID == Intrinsic::smin && InnerC->sle(*C)) || 5640 (IID == Intrinsic::umax && InnerC->uge(*C)) || 5641 (IID == Intrinsic::umin && InnerC->ule(*C)))) 5642 return Op0; 5643 } 5644 } 5645 5646 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 5647 return V; 5648 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 5649 return V; 5650 5651 ICmpInst::Predicate Pred = getMaxMinPredicate(IID); 5652 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) 5653 return Op0; 5654 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) 5655 return Op1; 5656 5657 if (Optional<bool> Imp = 5658 isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL)) 5659 return *Imp ? Op0 : Op1; 5660 if (Optional<bool> Imp = 5661 isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL)) 5662 return *Imp ? Op1 : Op0; 5663 5664 break; 5665 } 5666 case Intrinsic::usub_with_overflow: 5667 case Intrinsic::ssub_with_overflow: 5668 // X - X -> { 0, false } 5669 // X - undef -> { 0, false } 5670 // undef - X -> { 0, false } 5671 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5672 return Constant::getNullValue(ReturnType); 5673 break; 5674 case Intrinsic::uadd_with_overflow: 5675 case Intrinsic::sadd_with_overflow: 5676 // X + undef -> { -1, false } 5677 // undef + x -> { -1, false } 5678 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 5679 return ConstantStruct::get( 5680 cast<StructType>(ReturnType), 5681 {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), 5682 Constant::getNullValue(ReturnType->getStructElementType(1))}); 5683 } 5684 break; 5685 case Intrinsic::umul_with_overflow: 5686 case Intrinsic::smul_with_overflow: 5687 // 0 * X -> { 0, false } 5688 // X * 0 -> { 0, false } 5689 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 5690 return Constant::getNullValue(ReturnType); 5691 // undef * X -> { 0, false } 5692 // X * undef -> { 0, false } 5693 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5694 return Constant::getNullValue(ReturnType); 5695 break; 5696 case Intrinsic::uadd_sat: 5697 // sat(MAX + X) -> MAX 5698 // sat(X + MAX) -> MAX 5699 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 5700 return Constant::getAllOnesValue(ReturnType); 5701 LLVM_FALLTHROUGH; 5702 case Intrinsic::sadd_sat: 5703 // sat(X + undef) -> -1 5704 // sat(undef + X) -> -1 5705 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5706 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5707 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5708 return Constant::getAllOnesValue(ReturnType); 5709 5710 // X + 0 -> X 5711 if (match(Op1, m_Zero())) 5712 return Op0; 5713 // 0 + X -> X 5714 if (match(Op0, m_Zero())) 5715 return Op1; 5716 break; 5717 case Intrinsic::usub_sat: 5718 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5719 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5720 return Constant::getNullValue(ReturnType); 5721 LLVM_FALLTHROUGH; 5722 case Intrinsic::ssub_sat: 5723 // X - X -> 0, X - undef -> 0, undef - X -> 0 5724 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5725 return Constant::getNullValue(ReturnType); 5726 // X - 0 -> X 5727 if (match(Op1, m_Zero())) 5728 return Op0; 5729 break; 5730 case Intrinsic::load_relative: 5731 if (auto *C0 = dyn_cast<Constant>(Op0)) 5732 if (auto *C1 = dyn_cast<Constant>(Op1)) 5733 return SimplifyRelativeLoad(C0, C1, Q.DL); 5734 break; 5735 case Intrinsic::powi: 5736 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5737 // powi(x, 0) -> 1.0 5738 if (Power->isZero()) 5739 return ConstantFP::get(Op0->getType(), 1.0); 5740 // powi(x, 1) -> x 5741 if (Power->isOne()) 5742 return Op0; 5743 } 5744 break; 5745 case Intrinsic::copysign: 5746 // copysign X, X --> X 5747 if (Op0 == Op1) 5748 return Op0; 5749 // copysign -X, X --> X 5750 // copysign X, -X --> -X 5751 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5752 match(Op1, m_FNeg(m_Specific(Op0)))) 5753 return Op1; 5754 break; 5755 case Intrinsic::maxnum: 5756 case Intrinsic::minnum: 5757 case Intrinsic::maximum: 5758 case Intrinsic::minimum: { 5759 // If the arguments are the same, this is a no-op. 5760 if (Op0 == Op1) return Op0; 5761 5762 // Canonicalize constant operand as Op1. 5763 if (isa<Constant>(Op0)) 5764 std::swap(Op0, Op1); 5765 5766 // If an argument is undef, return the other argument. 5767 if (Q.isUndefValue(Op1)) 5768 return Op0; 5769 5770 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5771 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; 5772 5773 // minnum(X, nan) -> X 5774 // maxnum(X, nan) -> X 5775 // minimum(X, nan) -> nan 5776 // maximum(X, nan) -> nan 5777 if (match(Op1, m_NaN())) 5778 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; 5779 5780 // In the following folds, inf can be replaced with the largest finite 5781 // float, if the ninf flag is set. 5782 const APFloat *C; 5783 if (match(Op1, m_APFloat(C)) && 5784 (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) { 5785 // minnum(X, -inf) -> -inf 5786 // maxnum(X, +inf) -> +inf 5787 // minimum(X, -inf) -> -inf if nnan 5788 // maximum(X, +inf) -> +inf if nnan 5789 if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs())) 5790 return ConstantFP::get(ReturnType, *C); 5791 5792 // minnum(X, +inf) -> X if nnan 5793 // maxnum(X, -inf) -> X if nnan 5794 // minimum(X, +inf) -> X 5795 // maximum(X, -inf) -> X 5796 if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs())) 5797 return Op0; 5798 } 5799 5800 // Min/max of the same operation with common operand: 5801 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5802 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5803 if (M0->getIntrinsicID() == IID && 5804 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5805 return Op0; 5806 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5807 if (M1->getIntrinsicID() == IID && 5808 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5809 return Op1; 5810 5811 break; 5812 } 5813 case Intrinsic::experimental_vector_extract: { 5814 Type *ReturnType = F->getReturnType(); 5815 5816 // (extract_vector (insert_vector _, X, 0), 0) -> X 5817 unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue(); 5818 Value *X = nullptr; 5819 if (match(Op0, m_Intrinsic<Intrinsic::experimental_vector_insert>( 5820 m_Value(), m_Value(X), m_Zero())) && 5821 IdxN == 0 && X->getType() == ReturnType) 5822 return X; 5823 5824 break; 5825 } 5826 default: 5827 break; 5828 } 5829 5830 return nullptr; 5831 } 5832 5833 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 5834 5835 unsigned NumOperands = Call->arg_size(); 5836 Function *F = cast<Function>(Call->getCalledFunction()); 5837 Intrinsic::ID IID = F->getIntrinsicID(); 5838 5839 // Most of the intrinsics with no operands have some kind of side effect. 5840 // Don't simplify. 5841 if (!NumOperands) { 5842 switch (IID) { 5843 case Intrinsic::vscale: { 5844 // Call may not be inserted into the IR yet at point of calling simplify. 5845 if (!Call->getParent() || !Call->getParent()->getParent()) 5846 return nullptr; 5847 auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange); 5848 if (!Attr.isValid()) 5849 return nullptr; 5850 unsigned VScaleMin, VScaleMax; 5851 std::tie(VScaleMin, VScaleMax) = Attr.getVScaleRangeArgs(); 5852 if (VScaleMin == VScaleMax && VScaleMax != 0) 5853 return ConstantInt::get(F->getReturnType(), VScaleMin); 5854 return nullptr; 5855 } 5856 default: 5857 return nullptr; 5858 } 5859 } 5860 5861 if (NumOperands == 1) 5862 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 5863 5864 if (NumOperands == 2) 5865 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 5866 Call->getArgOperand(1), Q); 5867 5868 // Handle intrinsics with 3 or more arguments. 5869 switch (IID) { 5870 case Intrinsic::masked_load: 5871 case Intrinsic::masked_gather: { 5872 Value *MaskArg = Call->getArgOperand(2); 5873 Value *PassthruArg = Call->getArgOperand(3); 5874 // If the mask is all zeros or undef, the "passthru" argument is the result. 5875 if (maskIsAllZeroOrUndef(MaskArg)) 5876 return PassthruArg; 5877 return nullptr; 5878 } 5879 case Intrinsic::fshl: 5880 case Intrinsic::fshr: { 5881 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 5882 *ShAmtArg = Call->getArgOperand(2); 5883 5884 // If both operands are undef, the result is undef. 5885 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 5886 return UndefValue::get(F->getReturnType()); 5887 5888 // If shift amount is undef, assume it is zero. 5889 if (Q.isUndefValue(ShAmtArg)) 5890 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5891 5892 const APInt *ShAmtC; 5893 if (match(ShAmtArg, m_APInt(ShAmtC))) { 5894 // If there's effectively no shift, return the 1st arg or 2nd arg. 5895 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 5896 if (ShAmtC->urem(BitWidth).isZero()) 5897 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5898 } 5899 5900 // Rotating zero by anything is zero. 5901 if (match(Op0, m_Zero()) && match(Op1, m_Zero())) 5902 return ConstantInt::getNullValue(F->getReturnType()); 5903 5904 // Rotating -1 by anything is -1. 5905 if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes())) 5906 return ConstantInt::getAllOnesValue(F->getReturnType()); 5907 5908 return nullptr; 5909 } 5910 case Intrinsic::experimental_constrained_fma: { 5911 Value *Op0 = Call->getArgOperand(0); 5912 Value *Op1 = Call->getArgOperand(1); 5913 Value *Op2 = Call->getArgOperand(2); 5914 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 5915 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, 5916 FPI->getExceptionBehavior().getValue(), 5917 FPI->getRoundingMode().getValue())) 5918 return V; 5919 return nullptr; 5920 } 5921 case Intrinsic::fma: 5922 case Intrinsic::fmuladd: { 5923 Value *Op0 = Call->getArgOperand(0); 5924 Value *Op1 = Call->getArgOperand(1); 5925 Value *Op2 = Call->getArgOperand(2); 5926 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore, 5927 RoundingMode::NearestTiesToEven)) 5928 return V; 5929 return nullptr; 5930 } 5931 case Intrinsic::smul_fix: 5932 case Intrinsic::smul_fix_sat: { 5933 Value *Op0 = Call->getArgOperand(0); 5934 Value *Op1 = Call->getArgOperand(1); 5935 Value *Op2 = Call->getArgOperand(2); 5936 Type *ReturnType = F->getReturnType(); 5937 5938 // Canonicalize constant operand as Op1 (ConstantFolding handles the case 5939 // when both Op0 and Op1 are constant so we do not care about that special 5940 // case here). 5941 if (isa<Constant>(Op0)) 5942 std::swap(Op0, Op1); 5943 5944 // X * 0 -> 0 5945 if (match(Op1, m_Zero())) 5946 return Constant::getNullValue(ReturnType); 5947 5948 // X * undef -> 0 5949 if (Q.isUndefValue(Op1)) 5950 return Constant::getNullValue(ReturnType); 5951 5952 // X * (1 << Scale) -> X 5953 APInt ScaledOne = 5954 APInt::getOneBitSet(ReturnType->getScalarSizeInBits(), 5955 cast<ConstantInt>(Op2)->getZExtValue()); 5956 if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne))) 5957 return Op0; 5958 5959 return nullptr; 5960 } 5961 case Intrinsic::experimental_vector_insert: { 5962 Value *Vec = Call->getArgOperand(0); 5963 Value *SubVec = Call->getArgOperand(1); 5964 Value *Idx = Call->getArgOperand(2); 5965 Type *ReturnType = F->getReturnType(); 5966 5967 // (insert_vector Y, (extract_vector X, 0), 0) -> X 5968 // where: Y is X, or Y is undef 5969 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5970 Value *X = nullptr; 5971 if (match(SubVec, m_Intrinsic<Intrinsic::experimental_vector_extract>( 5972 m_Value(X), m_Zero())) && 5973 (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 && 5974 X->getType() == ReturnType) 5975 return X; 5976 5977 return nullptr; 5978 } 5979 case Intrinsic::experimental_constrained_fadd: { 5980 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 5981 return SimplifyFAddInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 5982 FPI->getFastMathFlags(), Q, 5983 FPI->getExceptionBehavior().getValue(), 5984 FPI->getRoundingMode().getValue()); 5985 break; 5986 } 5987 case Intrinsic::experimental_constrained_fsub: { 5988 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 5989 return SimplifyFSubInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 5990 FPI->getFastMathFlags(), Q, 5991 FPI->getExceptionBehavior().getValue(), 5992 FPI->getRoundingMode().getValue()); 5993 break; 5994 } 5995 case Intrinsic::experimental_constrained_fmul: { 5996 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 5997 return SimplifyFMulInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 5998 FPI->getFastMathFlags(), Q, 5999 FPI->getExceptionBehavior().getValue(), 6000 FPI->getRoundingMode().getValue()); 6001 break; 6002 } 6003 case Intrinsic::experimental_constrained_fdiv: { 6004 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6005 return SimplifyFDivInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6006 FPI->getFastMathFlags(), Q, 6007 FPI->getExceptionBehavior().getValue(), 6008 FPI->getRoundingMode().getValue()); 6009 break; 6010 } 6011 case Intrinsic::experimental_constrained_frem: { 6012 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6013 return SimplifyFRemInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6014 FPI->getFastMathFlags(), Q, 6015 FPI->getExceptionBehavior().getValue(), 6016 FPI->getRoundingMode().getValue()); 6017 break; 6018 } 6019 default: 6020 return nullptr; 6021 } 6022 } 6023 6024 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) { 6025 auto *F = dyn_cast<Function>(Call->getCalledOperand()); 6026 if (!F || !canConstantFoldCallTo(Call, F)) 6027 return nullptr; 6028 6029 SmallVector<Constant *, 4> ConstantArgs; 6030 unsigned NumArgs = Call->arg_size(); 6031 ConstantArgs.reserve(NumArgs); 6032 for (auto &Arg : Call->args()) { 6033 Constant *C = dyn_cast<Constant>(&Arg); 6034 if (!C) { 6035 if (isa<MetadataAsValue>(Arg.get())) 6036 continue; 6037 return nullptr; 6038 } 6039 ConstantArgs.push_back(C); 6040 } 6041 6042 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 6043 } 6044 6045 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 6046 // musttail calls can only be simplified if they are also DCEd. 6047 // As we can't guarantee this here, don't simplify them. 6048 if (Call->isMustTailCall()) 6049 return nullptr; 6050 6051 // call undef -> poison 6052 // call null -> poison 6053 Value *Callee = Call->getCalledOperand(); 6054 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 6055 return PoisonValue::get(Call->getType()); 6056 6057 if (Value *V = tryConstantFoldCall(Call, Q)) 6058 return V; 6059 6060 auto *F = dyn_cast<Function>(Callee); 6061 if (F && F->isIntrinsic()) 6062 if (Value *Ret = simplifyIntrinsic(Call, Q)) 6063 return Ret; 6064 6065 return nullptr; 6066 } 6067 6068 /// Given operands for a Freeze, see if we can fold the result. 6069 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6070 // Use a utility function defined in ValueTracking. 6071 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) 6072 return Op0; 6073 // We have room for improvement. 6074 return nullptr; 6075 } 6076 6077 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6078 return ::SimplifyFreezeInst(Op0, Q); 6079 } 6080 6081 static Value *SimplifyLoadInst(LoadInst *LI, Value *PtrOp, 6082 const SimplifyQuery &Q) { 6083 if (LI->isVolatile()) 6084 return nullptr; 6085 6086 APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0); 6087 auto *PtrOpC = dyn_cast<Constant>(PtrOp); 6088 // Try to convert operand into a constant by stripping offsets while looking 6089 // through invariant.group intrinsics. Don't bother if the underlying object 6090 // is not constant, as calculating GEP offsets is expensive. 6091 if (!PtrOpC && isa<Constant>(getUnderlyingObject(PtrOp))) { 6092 PtrOp = PtrOp->stripAndAccumulateConstantOffsets( 6093 Q.DL, Offset, /* AllowNonInbounts */ true, 6094 /* AllowInvariantGroup */ true); 6095 // Index size may have changed due to address space casts. 6096 Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType())); 6097 PtrOpC = dyn_cast<Constant>(PtrOp); 6098 } 6099 6100 if (PtrOpC) 6101 return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Offset, Q.DL); 6102 return nullptr; 6103 } 6104 6105 /// See if we can compute a simplified version of this instruction. 6106 /// If not, this returns null. 6107 6108 static Value *simplifyInstructionWithOperands(Instruction *I, 6109 ArrayRef<Value *> NewOps, 6110 const SimplifyQuery &SQ, 6111 OptimizationRemarkEmitter *ORE) { 6112 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 6113 Value *Result = nullptr; 6114 6115 switch (I->getOpcode()) { 6116 default: 6117 if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) { 6118 SmallVector<Constant *, 8> NewConstOps(NewOps.size()); 6119 transform(NewOps, NewConstOps.begin(), 6120 [](Value *V) { return cast<Constant>(V); }); 6121 Result = ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI); 6122 } 6123 break; 6124 case Instruction::FNeg: 6125 Result = SimplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q); 6126 break; 6127 case Instruction::FAdd: 6128 Result = SimplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6129 break; 6130 case Instruction::Add: 6131 Result = SimplifyAddInst( 6132 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6133 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6134 break; 6135 case Instruction::FSub: 6136 Result = SimplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6137 break; 6138 case Instruction::Sub: 6139 Result = SimplifySubInst( 6140 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6141 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6142 break; 6143 case Instruction::FMul: 6144 Result = SimplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6145 break; 6146 case Instruction::Mul: 6147 Result = SimplifyMulInst(NewOps[0], NewOps[1], Q); 6148 break; 6149 case Instruction::SDiv: 6150 Result = SimplifySDivInst(NewOps[0], NewOps[1], Q); 6151 break; 6152 case Instruction::UDiv: 6153 Result = SimplifyUDivInst(NewOps[0], NewOps[1], Q); 6154 break; 6155 case Instruction::FDiv: 6156 Result = SimplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6157 break; 6158 case Instruction::SRem: 6159 Result = SimplifySRemInst(NewOps[0], NewOps[1], Q); 6160 break; 6161 case Instruction::URem: 6162 Result = SimplifyURemInst(NewOps[0], NewOps[1], Q); 6163 break; 6164 case Instruction::FRem: 6165 Result = SimplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6166 break; 6167 case Instruction::Shl: 6168 Result = SimplifyShlInst( 6169 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6170 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6171 break; 6172 case Instruction::LShr: 6173 Result = SimplifyLShrInst(NewOps[0], NewOps[1], 6174 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6175 break; 6176 case Instruction::AShr: 6177 Result = SimplifyAShrInst(NewOps[0], NewOps[1], 6178 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6179 break; 6180 case Instruction::And: 6181 Result = SimplifyAndInst(NewOps[0], NewOps[1], Q); 6182 break; 6183 case Instruction::Or: 6184 Result = SimplifyOrInst(NewOps[0], NewOps[1], Q); 6185 break; 6186 case Instruction::Xor: 6187 Result = SimplifyXorInst(NewOps[0], NewOps[1], Q); 6188 break; 6189 case Instruction::ICmp: 6190 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0], 6191 NewOps[1], Q); 6192 break; 6193 case Instruction::FCmp: 6194 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0], 6195 NewOps[1], I->getFastMathFlags(), Q); 6196 break; 6197 case Instruction::Select: 6198 Result = SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q); 6199 break; 6200 case Instruction::GetElementPtr: { 6201 auto *GEPI = cast<GetElementPtrInst>(I); 6202 Result = SimplifyGEPInst(GEPI->getSourceElementType(), NewOps, 6203 GEPI->isInBounds(), Q); 6204 break; 6205 } 6206 case Instruction::InsertValue: { 6207 InsertValueInst *IV = cast<InsertValueInst>(I); 6208 Result = SimplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q); 6209 break; 6210 } 6211 case Instruction::InsertElement: { 6212 Result = SimplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q); 6213 break; 6214 } 6215 case Instruction::ExtractValue: { 6216 auto *EVI = cast<ExtractValueInst>(I); 6217 Result = SimplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q); 6218 break; 6219 } 6220 case Instruction::ExtractElement: { 6221 Result = SimplifyExtractElementInst(NewOps[0], NewOps[1], Q); 6222 break; 6223 } 6224 case Instruction::ShuffleVector: { 6225 auto *SVI = cast<ShuffleVectorInst>(I); 6226 Result = SimplifyShuffleVectorInst( 6227 NewOps[0], NewOps[1], SVI->getShuffleMask(), SVI->getType(), Q); 6228 break; 6229 } 6230 case Instruction::PHI: 6231 Result = SimplifyPHINode(cast<PHINode>(I), NewOps, Q); 6232 break; 6233 case Instruction::Call: { 6234 // TODO: Use NewOps 6235 Result = SimplifyCall(cast<CallInst>(I), Q); 6236 break; 6237 } 6238 case Instruction::Freeze: 6239 Result = llvm::SimplifyFreezeInst(NewOps[0], Q); 6240 break; 6241 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 6242 #include "llvm/IR/Instruction.def" 6243 #undef HANDLE_CAST_INST 6244 Result = SimplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q); 6245 break; 6246 case Instruction::Alloca: 6247 // No simplifications for Alloca and it can't be constant folded. 6248 Result = nullptr; 6249 break; 6250 case Instruction::Load: 6251 Result = SimplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q); 6252 break; 6253 } 6254 6255 /// If called on unreachable code, the above logic may report that the 6256 /// instruction simplified to itself. Make life easier for users by 6257 /// detecting that case here, returning a safe value instead. 6258 return Result == I ? UndefValue::get(I->getType()) : Result; 6259 } 6260 6261 Value *llvm::SimplifyInstructionWithOperands(Instruction *I, 6262 ArrayRef<Value *> NewOps, 6263 const SimplifyQuery &SQ, 6264 OptimizationRemarkEmitter *ORE) { 6265 assert(NewOps.size() == I->getNumOperands() && 6266 "Number of operands should match the instruction!"); 6267 return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE); 6268 } 6269 6270 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 6271 OptimizationRemarkEmitter *ORE) { 6272 SmallVector<Value *, 8> Ops(I->operands()); 6273 return ::simplifyInstructionWithOperands(I, Ops, SQ, ORE); 6274 } 6275 6276 /// Implementation of recursive simplification through an instruction's 6277 /// uses. 6278 /// 6279 /// This is the common implementation of the recursive simplification routines. 6280 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 6281 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 6282 /// instructions to process and attempt to simplify it using 6283 /// InstructionSimplify. Recursively visited users which could not be 6284 /// simplified themselves are to the optional UnsimplifiedUsers set for 6285 /// further processing by the caller. 6286 /// 6287 /// This routine returns 'true' only when *it* simplifies something. The passed 6288 /// in simplified value does not count toward this. 6289 static bool replaceAndRecursivelySimplifyImpl( 6290 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6291 const DominatorTree *DT, AssumptionCache *AC, 6292 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 6293 bool Simplified = false; 6294 SmallSetVector<Instruction *, 8> Worklist; 6295 const DataLayout &DL = I->getModule()->getDataLayout(); 6296 6297 // If we have an explicit value to collapse to, do that round of the 6298 // simplification loop by hand initially. 6299 if (SimpleV) { 6300 for (User *U : I->users()) 6301 if (U != I) 6302 Worklist.insert(cast<Instruction>(U)); 6303 6304 // Replace the instruction with its simplified value. 6305 I->replaceAllUsesWith(SimpleV); 6306 6307 // Gracefully handle edge cases where the instruction is not wired into any 6308 // parent block. 6309 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6310 !I->mayHaveSideEffects()) 6311 I->eraseFromParent(); 6312 } else { 6313 Worklist.insert(I); 6314 } 6315 6316 // Note that we must test the size on each iteration, the worklist can grow. 6317 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 6318 I = Worklist[Idx]; 6319 6320 // See if this instruction simplifies. 6321 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 6322 if (!SimpleV) { 6323 if (UnsimplifiedUsers) 6324 UnsimplifiedUsers->insert(I); 6325 continue; 6326 } 6327 6328 Simplified = true; 6329 6330 // Stash away all the uses of the old instruction so we can check them for 6331 // recursive simplifications after a RAUW. This is cheaper than checking all 6332 // uses of To on the recursive step in most cases. 6333 for (User *U : I->users()) 6334 Worklist.insert(cast<Instruction>(U)); 6335 6336 // Replace the instruction with its simplified value. 6337 I->replaceAllUsesWith(SimpleV); 6338 6339 // Gracefully handle edge cases where the instruction is not wired into any 6340 // parent block. 6341 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6342 !I->mayHaveSideEffects()) 6343 I->eraseFromParent(); 6344 } 6345 return Simplified; 6346 } 6347 6348 bool llvm::replaceAndRecursivelySimplify( 6349 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6350 const DominatorTree *DT, AssumptionCache *AC, 6351 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 6352 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 6353 assert(SimpleV && "Must provide a simplified value."); 6354 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 6355 UnsimplifiedUsers); 6356 } 6357 6358 namespace llvm { 6359 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 6360 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 6361 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 6362 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6363 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 6364 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 6365 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 6366 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6367 } 6368 6369 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 6370 const DataLayout &DL) { 6371 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 6372 } 6373 6374 template <class T, class... TArgs> 6375 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 6376 Function &F) { 6377 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 6378 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 6379 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 6380 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6381 } 6382 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 6383 Function &); 6384 } 6385