1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/CaptureTracking.h" 27 #include "llvm/Analysis/CmpInstAnalysis.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/InstSimplifyFolder.h" 30 #include "llvm/Analysis/LoopAnalysisManager.h" 31 #include "llvm/Analysis/MemoryBuiltins.h" 32 #include "llvm/Analysis/OverflowInstAnalysis.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/ConstantRange.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/Support/KnownBits.h" 43 #include <algorithm> 44 #include <optional> 45 using namespace llvm; 46 using namespace llvm::PatternMatch; 47 48 #define DEBUG_TYPE "instsimplify" 49 50 enum { RecursionLimit = 3 }; 51 52 STATISTIC(NumExpand, "Number of expansions"); 53 STATISTIC(NumReassoc, "Number of reassociations"); 54 55 static Value *simplifyAndInst(Value *, Value *, const SimplifyQuery &, 56 unsigned); 57 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 58 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 59 const SimplifyQuery &, unsigned); 60 static Value *simplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 61 unsigned); 62 static Value *simplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 63 const SimplifyQuery &, unsigned); 64 static Value *simplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 65 unsigned); 66 static Value *simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 67 const SimplifyQuery &Q, unsigned MaxRecurse); 68 static Value *simplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 69 static Value *simplifyXorInst(Value *, Value *, const SimplifyQuery &, 70 unsigned); 71 static Value *simplifyCastInst(unsigned, Value *, Type *, const SimplifyQuery &, 72 unsigned); 73 static Value *simplifyGEPInst(Type *, Value *, ArrayRef<Value *>, bool, 74 const SimplifyQuery &, unsigned); 75 static Value *simplifySelectInst(Value *, Value *, Value *, 76 const SimplifyQuery &, unsigned); 77 static Value *simplifyInstructionWithOperands(Instruction *I, 78 ArrayRef<Value *> NewOps, 79 const SimplifyQuery &SQ, 80 unsigned MaxRecurse); 81 82 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 83 Value *FalseVal) { 84 BinaryOperator::BinaryOps BinOpCode; 85 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 86 BinOpCode = BO->getOpcode(); 87 else 88 return nullptr; 89 90 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 91 if (BinOpCode == BinaryOperator::Or) { 92 ExpectedPred = ICmpInst::ICMP_NE; 93 } else if (BinOpCode == BinaryOperator::And) { 94 ExpectedPred = ICmpInst::ICMP_EQ; 95 } else 96 return nullptr; 97 98 // %A = icmp eq %TV, %FV 99 // %B = icmp eq %X, %Y (and one of these is a select operand) 100 // %C = and %A, %B 101 // %D = select %C, %TV, %FV 102 // --> 103 // %FV 104 105 // %A = icmp ne %TV, %FV 106 // %B = icmp ne %X, %Y (and one of these is a select operand) 107 // %C = or %A, %B 108 // %D = select %C, %TV, %FV 109 // --> 110 // %TV 111 Value *X, *Y; 112 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 113 m_Specific(FalseVal)), 114 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 115 Pred1 != Pred2 || Pred1 != ExpectedPred) 116 return nullptr; 117 118 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 119 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 120 121 return nullptr; 122 } 123 124 /// For a boolean type or a vector of boolean type, return false or a vector 125 /// with every element false. 126 static Constant *getFalse(Type *Ty) { return ConstantInt::getFalse(Ty); } 127 128 /// For a boolean type or a vector of boolean type, return true or a vector 129 /// with every element true. 130 static Constant *getTrue(Type *Ty) { return ConstantInt::getTrue(Ty); } 131 132 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 133 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 134 Value *RHS) { 135 CmpInst *Cmp = dyn_cast<CmpInst>(V); 136 if (!Cmp) 137 return false; 138 CmpInst::Predicate CPred = Cmp->getPredicate(); 139 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 140 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 141 return true; 142 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 143 CRHS == LHS; 144 } 145 146 /// Simplify comparison with true or false branch of select: 147 /// %sel = select i1 %cond, i32 %tv, i32 %fv 148 /// %cmp = icmp sle i32 %sel, %rhs 149 /// Compose new comparison by substituting %sel with either %tv or %fv 150 /// and see if it simplifies. 151 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 152 Value *RHS, Value *Cond, 153 const SimplifyQuery &Q, unsigned MaxRecurse, 154 Constant *TrueOrFalse) { 155 Value *SimplifiedCmp = simplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 156 if (SimplifiedCmp == Cond) { 157 // %cmp simplified to the select condition (%cond). 158 return TrueOrFalse; 159 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 160 // It didn't simplify. However, if composed comparison is equivalent 161 // to the select condition (%cond) then we can replace it. 162 return TrueOrFalse; 163 } 164 return SimplifiedCmp; 165 } 166 167 /// Simplify comparison with true branch of select 168 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 169 Value *RHS, Value *Cond, 170 const SimplifyQuery &Q, 171 unsigned MaxRecurse) { 172 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 173 getTrue(Cond->getType())); 174 } 175 176 /// Simplify comparison with false branch of select 177 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 178 Value *RHS, Value *Cond, 179 const SimplifyQuery &Q, 180 unsigned MaxRecurse) { 181 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 182 getFalse(Cond->getType())); 183 } 184 185 /// We know comparison with both branches of select can be simplified, but they 186 /// are not equal. This routine handles some logical simplifications. 187 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 188 Value *Cond, 189 const SimplifyQuery &Q, 190 unsigned MaxRecurse) { 191 // If the false value simplified to false, then the result of the compare 192 // is equal to "Cond && TCmp". This also catches the case when the false 193 // value simplified to false and the true value to true, returning "Cond". 194 // Folding select to and/or isn't poison-safe in general; impliesPoison 195 // checks whether folding it does not convert a well-defined value into 196 // poison. 197 if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond)) 198 if (Value *V = simplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 199 return V; 200 // If the true value simplified to true, then the result of the compare 201 // is equal to "Cond || FCmp". 202 if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond)) 203 if (Value *V = simplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 204 return V; 205 // Finally, if the false value simplified to true and the true value to 206 // false, then the result of the compare is equal to "!Cond". 207 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 208 if (Value *V = simplifyXorInst( 209 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 210 return V; 211 return nullptr; 212 } 213 214 /// Does the given value dominate the specified phi node? 215 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 216 Instruction *I = dyn_cast<Instruction>(V); 217 if (!I) 218 // Arguments and constants dominate all instructions. 219 return true; 220 221 // If we have a DominatorTree then do a precise test. 222 if (DT) 223 return DT->dominates(I, P); 224 225 // Otherwise, if the instruction is in the entry block and is not an invoke, 226 // then it obviously dominates all phi nodes. 227 if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) && 228 !isa<CallBrInst>(I)) 229 return true; 230 231 return false; 232 } 233 234 /// Try to simplify a binary operator of form "V op OtherOp" where V is 235 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 236 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 237 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 238 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 239 const SimplifyQuery &Q, unsigned MaxRecurse) { 240 auto *B = dyn_cast<BinaryOperator>(V); 241 if (!B || B->getOpcode() != OpcodeToExpand) 242 return nullptr; 243 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 244 Value *L = 245 simplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), MaxRecurse); 246 if (!L) 247 return nullptr; 248 Value *R = 249 simplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), MaxRecurse); 250 if (!R) 251 return nullptr; 252 253 // Does the expanded pair of binops simplify to the existing binop? 254 if ((L == B0 && R == B1) || 255 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 256 ++NumExpand; 257 return B; 258 } 259 260 // Otherwise, return "L op' R" if it simplifies. 261 Value *S = simplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 262 if (!S) 263 return nullptr; 264 265 ++NumExpand; 266 return S; 267 } 268 269 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 270 /// distributing op over op'. 271 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, Value *L, 272 Value *R, 273 Instruction::BinaryOps OpcodeToExpand, 274 const SimplifyQuery &Q, 275 unsigned MaxRecurse) { 276 // Recursion is always used, so bail out at once if we already hit the limit. 277 if (!MaxRecurse--) 278 return nullptr; 279 280 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 281 return V; 282 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 283 return V; 284 return nullptr; 285 } 286 287 /// Generic simplifications for associative binary operations. 288 /// Returns the simpler value, or null if none was found. 289 static Value *simplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 290 Value *LHS, Value *RHS, 291 const SimplifyQuery &Q, 292 unsigned MaxRecurse) { 293 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 294 295 // Recursion is always used, so bail out at once if we already hit the limit. 296 if (!MaxRecurse--) 297 return nullptr; 298 299 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 300 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 301 302 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 303 if (Op0 && Op0->getOpcode() == Opcode) { 304 Value *A = Op0->getOperand(0); 305 Value *B = Op0->getOperand(1); 306 Value *C = RHS; 307 308 // Does "B op C" simplify? 309 if (Value *V = simplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 310 // It does! Return "A op V" if it simplifies or is already available. 311 // If V equals B then "A op V" is just the LHS. 312 if (V == B) 313 return LHS; 314 // Otherwise return "A op V" if it simplifies. 315 if (Value *W = simplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 316 ++NumReassoc; 317 return W; 318 } 319 } 320 } 321 322 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 323 if (Op1 && Op1->getOpcode() == Opcode) { 324 Value *A = LHS; 325 Value *B = Op1->getOperand(0); 326 Value *C = Op1->getOperand(1); 327 328 // Does "A op B" simplify? 329 if (Value *V = simplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 330 // It does! Return "V op C" if it simplifies or is already available. 331 // If V equals B then "V op C" is just the RHS. 332 if (V == B) 333 return RHS; 334 // Otherwise return "V op C" if it simplifies. 335 if (Value *W = simplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 336 ++NumReassoc; 337 return W; 338 } 339 } 340 } 341 342 // The remaining transforms require commutativity as well as associativity. 343 if (!Instruction::isCommutative(Opcode)) 344 return nullptr; 345 346 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 347 if (Op0 && Op0->getOpcode() == Opcode) { 348 Value *A = Op0->getOperand(0); 349 Value *B = Op0->getOperand(1); 350 Value *C = RHS; 351 352 // Does "C op A" simplify? 353 if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 354 // It does! Return "V op B" if it simplifies or is already available. 355 // If V equals A then "V op B" is just the LHS. 356 if (V == A) 357 return LHS; 358 // Otherwise return "V op B" if it simplifies. 359 if (Value *W = simplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 360 ++NumReassoc; 361 return W; 362 } 363 } 364 } 365 366 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 367 if (Op1 && Op1->getOpcode() == Opcode) { 368 Value *A = LHS; 369 Value *B = Op1->getOperand(0); 370 Value *C = Op1->getOperand(1); 371 372 // Does "C op A" simplify? 373 if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 374 // It does! Return "B op V" if it simplifies or is already available. 375 // If V equals C then "B op V" is just the RHS. 376 if (V == C) 377 return RHS; 378 // Otherwise return "B op V" if it simplifies. 379 if (Value *W = simplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 380 ++NumReassoc; 381 return W; 382 } 383 } 384 } 385 386 return nullptr; 387 } 388 389 /// In the case of a binary operation with a select instruction as an operand, 390 /// try to simplify the binop by seeing whether evaluating it on both branches 391 /// of the select results in the same value. Returns the common value if so, 392 /// otherwise returns null. 393 static Value *threadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 394 Value *RHS, const SimplifyQuery &Q, 395 unsigned MaxRecurse) { 396 // Recursion is always used, so bail out at once if we already hit the limit. 397 if (!MaxRecurse--) 398 return nullptr; 399 400 SelectInst *SI; 401 if (isa<SelectInst>(LHS)) { 402 SI = cast<SelectInst>(LHS); 403 } else { 404 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 405 SI = cast<SelectInst>(RHS); 406 } 407 408 // Evaluate the BinOp on the true and false branches of the select. 409 Value *TV; 410 Value *FV; 411 if (SI == LHS) { 412 TV = simplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 413 FV = simplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 414 } else { 415 TV = simplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 416 FV = simplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 417 } 418 419 // If they simplified to the same value, then return the common value. 420 // If they both failed to simplify then return null. 421 if (TV == FV) 422 return TV; 423 424 // If one branch simplified to undef, return the other one. 425 if (TV && Q.isUndefValue(TV)) 426 return FV; 427 if (FV && Q.isUndefValue(FV)) 428 return TV; 429 430 // If applying the operation did not change the true and false select values, 431 // then the result of the binop is the select itself. 432 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 433 return SI; 434 435 // If one branch simplified and the other did not, and the simplified 436 // value is equal to the unsimplified one, return the simplified value. 437 // For example, select (cond, X, X & Z) & Z -> X & Z. 438 if ((FV && !TV) || (TV && !FV)) { 439 // Check that the simplified value has the form "X op Y" where "op" is the 440 // same as the original operation. 441 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 442 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 443 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 444 // We already know that "op" is the same as for the simplified value. See 445 // if the operands match too. If so, return the simplified value. 446 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 447 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 448 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 449 if (Simplified->getOperand(0) == UnsimplifiedLHS && 450 Simplified->getOperand(1) == UnsimplifiedRHS) 451 return Simplified; 452 if (Simplified->isCommutative() && 453 Simplified->getOperand(1) == UnsimplifiedLHS && 454 Simplified->getOperand(0) == UnsimplifiedRHS) 455 return Simplified; 456 } 457 } 458 459 return nullptr; 460 } 461 462 /// In the case of a comparison with a select instruction, try to simplify the 463 /// comparison by seeing whether both branches of the select result in the same 464 /// value. Returns the common value if so, otherwise returns null. 465 /// For example, if we have: 466 /// %tmp = select i1 %cmp, i32 1, i32 2 467 /// %cmp1 = icmp sle i32 %tmp, 3 468 /// We can simplify %cmp1 to true, because both branches of select are 469 /// less than 3. We compose new comparison by substituting %tmp with both 470 /// branches of select and see if it can be simplified. 471 static Value *threadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 472 Value *RHS, const SimplifyQuery &Q, 473 unsigned MaxRecurse) { 474 // Recursion is always used, so bail out at once if we already hit the limit. 475 if (!MaxRecurse--) 476 return nullptr; 477 478 // Make sure the select is on the LHS. 479 if (!isa<SelectInst>(LHS)) { 480 std::swap(LHS, RHS); 481 Pred = CmpInst::getSwappedPredicate(Pred); 482 } 483 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 484 SelectInst *SI = cast<SelectInst>(LHS); 485 Value *Cond = SI->getCondition(); 486 Value *TV = SI->getTrueValue(); 487 Value *FV = SI->getFalseValue(); 488 489 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 490 // Does "cmp TV, RHS" simplify? 491 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 492 if (!TCmp) 493 return nullptr; 494 495 // Does "cmp FV, RHS" simplify? 496 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 497 if (!FCmp) 498 return nullptr; 499 500 // If both sides simplified to the same value, then use it as the result of 501 // the original comparison. 502 if (TCmp == FCmp) 503 return TCmp; 504 505 // The remaining cases only make sense if the select condition has the same 506 // type as the result of the comparison, so bail out if this is not so. 507 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 508 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 509 510 return nullptr; 511 } 512 513 /// In the case of a binary operation with an operand that is a PHI instruction, 514 /// try to simplify the binop by seeing whether evaluating it on the incoming 515 /// phi values yields the same result for every value. If so returns the common 516 /// value, otherwise returns null. 517 static Value *threadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 518 Value *RHS, const SimplifyQuery &Q, 519 unsigned MaxRecurse) { 520 // Recursion is always used, so bail out at once if we already hit the limit. 521 if (!MaxRecurse--) 522 return nullptr; 523 524 PHINode *PI; 525 if (isa<PHINode>(LHS)) { 526 PI = cast<PHINode>(LHS); 527 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 528 if (!valueDominatesPHI(RHS, PI, Q.DT)) 529 return nullptr; 530 } else { 531 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 532 PI = cast<PHINode>(RHS); 533 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 534 if (!valueDominatesPHI(LHS, PI, Q.DT)) 535 return nullptr; 536 } 537 538 // Evaluate the BinOp on the incoming phi values. 539 Value *CommonValue = nullptr; 540 for (Use &Incoming : PI->incoming_values()) { 541 // If the incoming value is the phi node itself, it can safely be skipped. 542 if (Incoming == PI) 543 continue; 544 Instruction *InTI = PI->getIncomingBlock(Incoming)->getTerminator(); 545 Value *V = PI == LHS 546 ? simplifyBinOp(Opcode, Incoming, RHS, 547 Q.getWithInstruction(InTI), MaxRecurse) 548 : simplifyBinOp(Opcode, LHS, Incoming, 549 Q.getWithInstruction(InTI), MaxRecurse); 550 // If the operation failed to simplify, or simplified to a different value 551 // to previously, then give up. 552 if (!V || (CommonValue && V != CommonValue)) 553 return nullptr; 554 CommonValue = V; 555 } 556 557 return CommonValue; 558 } 559 560 /// In the case of a comparison with a PHI instruction, try to simplify the 561 /// comparison by seeing whether comparing with all of the incoming phi values 562 /// yields the same result every time. If so returns the common result, 563 /// otherwise returns null. 564 static Value *threadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 565 const SimplifyQuery &Q, unsigned MaxRecurse) { 566 // Recursion is always used, so bail out at once if we already hit the limit. 567 if (!MaxRecurse--) 568 return nullptr; 569 570 // Make sure the phi is on the LHS. 571 if (!isa<PHINode>(LHS)) { 572 std::swap(LHS, RHS); 573 Pred = CmpInst::getSwappedPredicate(Pred); 574 } 575 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 576 PHINode *PI = cast<PHINode>(LHS); 577 578 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 579 if (!valueDominatesPHI(RHS, PI, Q.DT)) 580 return nullptr; 581 582 // Evaluate the BinOp on the incoming phi values. 583 Value *CommonValue = nullptr; 584 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 585 Value *Incoming = PI->getIncomingValue(u); 586 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 587 // If the incoming value is the phi node itself, it can safely be skipped. 588 if (Incoming == PI) 589 continue; 590 // Change the context instruction to the "edge" that flows into the phi. 591 // This is important because that is where incoming is actually "evaluated" 592 // even though it is used later somewhere else. 593 Value *V = simplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 594 MaxRecurse); 595 // If the operation failed to simplify, or simplified to a different value 596 // to previously, then give up. 597 if (!V || (CommonValue && V != CommonValue)) 598 return nullptr; 599 CommonValue = V; 600 } 601 602 return CommonValue; 603 } 604 605 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 606 Value *&Op0, Value *&Op1, 607 const SimplifyQuery &Q) { 608 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 609 if (auto *CRHS = dyn_cast<Constant>(Op1)) { 610 switch (Opcode) { 611 default: 612 break; 613 case Instruction::FAdd: 614 case Instruction::FSub: 615 case Instruction::FMul: 616 case Instruction::FDiv: 617 case Instruction::FRem: 618 if (Q.CxtI != nullptr) 619 return ConstantFoldFPInstOperands(Opcode, CLHS, CRHS, Q.DL, Q.CxtI); 620 } 621 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 622 } 623 624 // Canonicalize the constant to the RHS if this is a commutative operation. 625 if (Instruction::isCommutative(Opcode)) 626 std::swap(Op0, Op1); 627 } 628 return nullptr; 629 } 630 631 /// Given operands for an Add, see if we can fold the result. 632 /// If not, this returns null. 633 static Value *simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 634 const SimplifyQuery &Q, unsigned MaxRecurse) { 635 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 636 return C; 637 638 // X + poison -> poison 639 if (isa<PoisonValue>(Op1)) 640 return Op1; 641 642 // X + undef -> undef 643 if (Q.isUndefValue(Op1)) 644 return Op1; 645 646 // X + 0 -> X 647 if (match(Op1, m_Zero())) 648 return Op0; 649 650 // If two operands are negative, return 0. 651 if (isKnownNegation(Op0, Op1)) 652 return Constant::getNullValue(Op0->getType()); 653 654 // X + (Y - X) -> Y 655 // (Y - X) + X -> Y 656 // Eg: X + -X -> 0 657 Value *Y = nullptr; 658 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 659 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 660 return Y; 661 662 // X + ~X -> -1 since ~X = -X-1 663 Type *Ty = Op0->getType(); 664 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) 665 return Constant::getAllOnesValue(Ty); 666 667 // add nsw/nuw (xor Y, signmask), signmask --> Y 668 // The no-wrapping add guarantees that the top bit will be set by the add. 669 // Therefore, the xor must be clearing the already set sign bit of Y. 670 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 671 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 672 return Y; 673 674 // add nuw %x, -1 -> -1, because %x can only be 0. 675 if (IsNUW && match(Op1, m_AllOnes())) 676 return Op1; // Which is -1. 677 678 /// i1 add -> xor. 679 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 680 if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1)) 681 return V; 682 683 // Try some generic simplifications for associative operations. 684 if (Value *V = 685 simplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, MaxRecurse)) 686 return V; 687 688 // Threading Add over selects and phi nodes is pointless, so don't bother. 689 // Threading over the select in "A + select(cond, B, C)" means evaluating 690 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 691 // only if B and C are equal. If B and C are equal then (since we assume 692 // that operands have already been simplified) "select(cond, B, C)" should 693 // have been simplified to the common value of B and C already. Analysing 694 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 695 // for threading over phi nodes. 696 697 return nullptr; 698 } 699 700 Value *llvm::simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 701 const SimplifyQuery &Query) { 702 return ::simplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 703 } 704 705 /// Compute the base pointer and cumulative constant offsets for V. 706 /// 707 /// This strips all constant offsets off of V, leaving it the base pointer, and 708 /// accumulates the total constant offset applied in the returned constant. 709 /// It returns zero if there are no constant offsets applied. 710 /// 711 /// This is very similar to stripAndAccumulateConstantOffsets(), except it 712 /// normalizes the offset bitwidth to the stripped pointer type, not the 713 /// original pointer type. 714 static APInt stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 715 bool AllowNonInbounds = false) { 716 assert(V->getType()->isPtrOrPtrVectorTy()); 717 718 APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType())); 719 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 720 // As that strip may trace through `addrspacecast`, need to sext or trunc 721 // the offset calculated. 722 return Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(V->getType())); 723 } 724 725 /// Compute the constant difference between two pointer values. 726 /// If the difference is not a constant, returns zero. 727 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 728 Value *RHS) { 729 APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 730 APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 731 732 // If LHS and RHS are not related via constant offsets to the same base 733 // value, there is nothing we can do here. 734 if (LHS != RHS) 735 return nullptr; 736 737 // Otherwise, the difference of LHS - RHS can be computed as: 738 // LHS - RHS 739 // = (LHSOffset + Base) - (RHSOffset + Base) 740 // = LHSOffset - RHSOffset 741 Constant *Res = ConstantInt::get(LHS->getContext(), LHSOffset - RHSOffset); 742 if (auto *VecTy = dyn_cast<VectorType>(LHS->getType())) 743 Res = ConstantVector::getSplat(VecTy->getElementCount(), Res); 744 return Res; 745 } 746 747 /// Test if there is a dominating equivalence condition for the 748 /// two operands. If there is, try to reduce the binary operation 749 /// between the two operands. 750 /// Example: Op0 - Op1 --> 0 when Op0 == Op1 751 static Value *simplifyByDomEq(unsigned Opcode, Value *Op0, Value *Op1, 752 const SimplifyQuery &Q, unsigned MaxRecurse) { 753 // Recursive run it can not get any benefit 754 if (MaxRecurse != RecursionLimit) 755 return nullptr; 756 757 std::optional<bool> Imp = 758 isImpliedByDomCondition(CmpInst::ICMP_EQ, Op0, Op1, Q.CxtI, Q.DL); 759 if (Imp && *Imp) { 760 Type *Ty = Op0->getType(); 761 switch (Opcode) { 762 case Instruction::Sub: 763 case Instruction::Xor: 764 case Instruction::URem: 765 case Instruction::SRem: 766 return Constant::getNullValue(Ty); 767 768 case Instruction::SDiv: 769 case Instruction::UDiv: 770 return ConstantInt::get(Ty, 1); 771 772 case Instruction::And: 773 case Instruction::Or: 774 // Could be either one - choose Op1 since that's more likely a constant. 775 return Op1; 776 default: 777 break; 778 } 779 } 780 return nullptr; 781 } 782 783 /// Given operands for a Sub, see if we can fold the result. 784 /// If not, this returns null. 785 static Value *simplifySubInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 786 const SimplifyQuery &Q, unsigned MaxRecurse) { 787 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 788 return C; 789 790 // X - poison -> poison 791 // poison - X -> poison 792 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 793 return PoisonValue::get(Op0->getType()); 794 795 // X - undef -> undef 796 // undef - X -> undef 797 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 798 return UndefValue::get(Op0->getType()); 799 800 // X - 0 -> X 801 if (match(Op1, m_Zero())) 802 return Op0; 803 804 // X - X -> 0 805 if (Op0 == Op1) 806 return Constant::getNullValue(Op0->getType()); 807 808 // Is this a negation? 809 if (match(Op0, m_Zero())) { 810 // 0 - X -> 0 if the sub is NUW. 811 if (IsNUW) 812 return Constant::getNullValue(Op0->getType()); 813 814 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 815 if (Known.Zero.isMaxSignedValue()) { 816 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 817 // Op1 must be 0 because negating the minimum signed value is undefined. 818 if (IsNSW) 819 return Constant::getNullValue(Op0->getType()); 820 821 // 0 - X -> X if X is 0 or the minimum signed value. 822 return Op1; 823 } 824 } 825 826 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 827 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 828 Value *X = nullptr, *Y = nullptr, *Z = Op1; 829 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 830 // See if "V === Y - Z" simplifies. 831 if (Value *V = simplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse - 1)) 832 // It does! Now see if "X + V" simplifies. 833 if (Value *W = simplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse - 1)) { 834 // It does, we successfully reassociated! 835 ++NumReassoc; 836 return W; 837 } 838 // See if "V === X - Z" simplifies. 839 if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1)) 840 // It does! Now see if "Y + V" simplifies. 841 if (Value *W = simplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse - 1)) { 842 // It does, we successfully reassociated! 843 ++NumReassoc; 844 return W; 845 } 846 } 847 848 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 849 // For example, X - (X + 1) -> -1 850 X = Op0; 851 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 852 // See if "V === X - Y" simplifies. 853 if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1)) 854 // It does! Now see if "V - Z" simplifies. 855 if (Value *W = simplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse - 1)) { 856 // It does, we successfully reassociated! 857 ++NumReassoc; 858 return W; 859 } 860 // See if "V === X - Z" simplifies. 861 if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1)) 862 // It does! Now see if "V - Y" simplifies. 863 if (Value *W = simplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse - 1)) { 864 // It does, we successfully reassociated! 865 ++NumReassoc; 866 return W; 867 } 868 } 869 870 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 871 // For example, X - (X - Y) -> Y. 872 Z = Op0; 873 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 874 // See if "V === Z - X" simplifies. 875 if (Value *V = simplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse - 1)) 876 // It does! Now see if "V + Y" simplifies. 877 if (Value *W = simplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse - 1)) { 878 // It does, we successfully reassociated! 879 ++NumReassoc; 880 return W; 881 } 882 883 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 884 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 885 match(Op1, m_Trunc(m_Value(Y)))) 886 if (X->getType() == Y->getType()) 887 // See if "V === X - Y" simplifies. 888 if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1)) 889 // It does! Now see if "trunc V" simplifies. 890 if (Value *W = simplifyCastInst(Instruction::Trunc, V, Op0->getType(), 891 Q, MaxRecurse - 1)) 892 // It does, return the simplified "trunc V". 893 return W; 894 895 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 896 if (match(Op0, m_PtrToInt(m_Value(X))) && match(Op1, m_PtrToInt(m_Value(Y)))) 897 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 898 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 899 900 // i1 sub -> xor. 901 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 902 if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1)) 903 return V; 904 905 // Threading Sub over selects and phi nodes is pointless, so don't bother. 906 // Threading over the select in "A - select(cond, B, C)" means evaluating 907 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 908 // only if B and C are equal. If B and C are equal then (since we assume 909 // that operands have already been simplified) "select(cond, B, C)" should 910 // have been simplified to the common value of B and C already. Analysing 911 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 912 // for threading over phi nodes. 913 914 if (Value *V = simplifyByDomEq(Instruction::Sub, Op0, Op1, Q, MaxRecurse)) 915 return V; 916 917 return nullptr; 918 } 919 920 Value *llvm::simplifySubInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 921 const SimplifyQuery &Q) { 922 return ::simplifySubInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit); 923 } 924 925 /// Given operands for a Mul, see if we can fold the result. 926 /// If not, this returns null. 927 static Value *simplifyMulInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 928 const SimplifyQuery &Q, unsigned MaxRecurse) { 929 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 930 return C; 931 932 // X * poison -> poison 933 if (isa<PoisonValue>(Op1)) 934 return Op1; 935 936 // X * undef -> 0 937 // X * 0 -> 0 938 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 939 return Constant::getNullValue(Op0->getType()); 940 941 // X * 1 -> X 942 if (match(Op1, m_One())) 943 return Op0; 944 945 // (X / Y) * Y -> X if the division is exact. 946 Value *X = nullptr; 947 if (Q.IIQ.UseInstrInfo && 948 (match(Op0, 949 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 950 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 951 return X; 952 953 if (Op0->getType()->isIntOrIntVectorTy(1)) { 954 // mul i1 nsw is a special-case because -1 * -1 is poison (+1 is not 955 // representable). All other cases reduce to 0, so just return 0. 956 if (IsNSW) 957 return ConstantInt::getNullValue(Op0->getType()); 958 959 // Treat "mul i1" as "and i1". 960 if (MaxRecurse) 961 if (Value *V = simplifyAndInst(Op0, Op1, Q, MaxRecurse - 1)) 962 return V; 963 } 964 965 // Try some generic simplifications for associative operations. 966 if (Value *V = 967 simplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) 968 return V; 969 970 // Mul distributes over Add. Try some generic simplifications based on this. 971 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 972 Instruction::Add, Q, MaxRecurse)) 973 return V; 974 975 // If the operation is with the result of a select instruction, check whether 976 // operating on either branch of the select always yields the same value. 977 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 978 if (Value *V = 979 threadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) 980 return V; 981 982 // If the operation is with the result of a phi instruction, check whether 983 // operating on all incoming values of the phi always yields the same value. 984 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 985 if (Value *V = 986 threadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) 987 return V; 988 989 return nullptr; 990 } 991 992 Value *llvm::simplifyMulInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 993 const SimplifyQuery &Q) { 994 return ::simplifyMulInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit); 995 } 996 997 /// Given a predicate and two operands, return true if the comparison is true. 998 /// This is a helper for div/rem simplification where we return some other value 999 /// when we can prove a relationship between the operands. 1000 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 1001 const SimplifyQuery &Q, unsigned MaxRecurse) { 1002 Value *V = simplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 1003 Constant *C = dyn_cast_or_null<Constant>(V); 1004 return (C && C->isAllOnesValue()); 1005 } 1006 1007 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 1008 /// to simplify X % Y to X. 1009 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 1010 unsigned MaxRecurse, bool IsSigned) { 1011 // Recursion is always used, so bail out at once if we already hit the limit. 1012 if (!MaxRecurse--) 1013 return false; 1014 1015 if (IsSigned) { 1016 // (X srem Y) sdiv Y --> 0 1017 if (match(X, m_SRem(m_Value(), m_Specific(Y)))) 1018 return true; 1019 1020 // |X| / |Y| --> 0 1021 // 1022 // We require that 1 operand is a simple constant. That could be extended to 1023 // 2 variables if we computed the sign bit for each. 1024 // 1025 // Make sure that a constant is not the minimum signed value because taking 1026 // the abs() of that is undefined. 1027 Type *Ty = X->getType(); 1028 const APInt *C; 1029 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1030 // Is the variable divisor magnitude always greater than the constant 1031 // dividend magnitude? 1032 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1033 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1034 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1035 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1036 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1037 return true; 1038 } 1039 if (match(Y, m_APInt(C))) { 1040 // Special-case: we can't take the abs() of a minimum signed value. If 1041 // that's the divisor, then all we have to do is prove that the dividend 1042 // is also not the minimum signed value. 1043 if (C->isMinSignedValue()) 1044 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1045 1046 // Is the variable dividend magnitude always less than the constant 1047 // divisor magnitude? 1048 // |X| < |C| --> X > -abs(C) and X < abs(C) 1049 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1050 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1051 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1052 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1053 return true; 1054 } 1055 return false; 1056 } 1057 1058 // IsSigned == false. 1059 1060 // Is the unsigned dividend known to be less than a constant divisor? 1061 // TODO: Convert this (and above) to range analysis 1062 // ("computeConstantRangeIncludingKnownBits")? 1063 const APInt *C; 1064 if (match(Y, m_APInt(C)) && 1065 computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, Q.DT).getMaxValue().ult(*C)) 1066 return true; 1067 1068 // Try again for any divisor: 1069 // Is the dividend unsigned less than the divisor? 1070 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1071 } 1072 1073 /// Check for common or similar folds of integer division or integer remainder. 1074 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 1075 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, 1076 Value *Op1, const SimplifyQuery &Q, 1077 unsigned MaxRecurse) { 1078 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv); 1079 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem); 1080 1081 Type *Ty = Op0->getType(); 1082 1083 // X / undef -> poison 1084 // X % undef -> poison 1085 if (Q.isUndefValue(Op1) || isa<PoisonValue>(Op1)) 1086 return PoisonValue::get(Ty); 1087 1088 // X / 0 -> poison 1089 // X % 0 -> poison 1090 // We don't need to preserve faults! 1091 if (match(Op1, m_Zero())) 1092 return PoisonValue::get(Ty); 1093 1094 // If any element of a constant divisor fixed width vector is zero or undef 1095 // the behavior is undefined and we can fold the whole op to poison. 1096 auto *Op1C = dyn_cast<Constant>(Op1); 1097 auto *VTy = dyn_cast<FixedVectorType>(Ty); 1098 if (Op1C && VTy) { 1099 unsigned NumElts = VTy->getNumElements(); 1100 for (unsigned i = 0; i != NumElts; ++i) { 1101 Constant *Elt = Op1C->getAggregateElement(i); 1102 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) 1103 return PoisonValue::get(Ty); 1104 } 1105 } 1106 1107 // poison / X -> poison 1108 // poison % X -> poison 1109 if (isa<PoisonValue>(Op0)) 1110 return Op0; 1111 1112 // undef / X -> 0 1113 // undef % X -> 0 1114 if (Q.isUndefValue(Op0)) 1115 return Constant::getNullValue(Ty); 1116 1117 // 0 / X -> 0 1118 // 0 % X -> 0 1119 if (match(Op0, m_Zero())) 1120 return Constant::getNullValue(Op0->getType()); 1121 1122 // X / X -> 1 1123 // X % X -> 0 1124 if (Op0 == Op1) 1125 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 1126 1127 1128 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1129 // X / 0 -> poison 1130 // X % 0 -> poison 1131 // If the divisor is known to be zero, just return poison. This can happen in 1132 // some cases where its provable indirectly the denominator is zero but it's 1133 // not trivially simplifiable (i.e known zero through a phi node). 1134 if (Known.isZero()) 1135 return PoisonValue::get(Ty); 1136 1137 // X / 1 -> X 1138 // X % 1 -> 0 1139 // If the divisor can only be zero or one, we can't have division-by-zero 1140 // or remainder-by-zero, so assume the divisor is 1. 1141 // e.g. 1, zext (i8 X), sdiv X (Y and 1) 1142 if (Known.countMinLeadingZeros() == Known.getBitWidth() - 1) 1143 return IsDiv ? Op0 : Constant::getNullValue(Ty); 1144 1145 // If X * Y does not overflow, then: 1146 // X * Y / Y -> X 1147 // X * Y % Y -> 0 1148 Value *X; 1149 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1150 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1151 // The multiplication can't overflow if it is defined not to, or if 1152 // X == A / Y for some A. 1153 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1154 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) || 1155 (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1156 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) { 1157 return IsDiv ? X : Constant::getNullValue(Op0->getType()); 1158 } 1159 } 1160 1161 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1162 return IsDiv ? Constant::getNullValue(Op0->getType()) : Op0; 1163 1164 if (Value *V = simplifyByDomEq(Opcode, Op0, Op1, Q, MaxRecurse)) 1165 return V; 1166 1167 // If the operation is with the result of a select instruction, check whether 1168 // operating on either branch of the select always yields the same value. 1169 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1170 if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1171 return V; 1172 1173 // If the operation is with the result of a phi instruction, check whether 1174 // operating on all incoming values of the phi always yields the same value. 1175 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1176 if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1177 return V; 1178 1179 return nullptr; 1180 } 1181 1182 /// These are simplifications common to SDiv and UDiv. 1183 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1184 bool IsExact, const SimplifyQuery &Q, 1185 unsigned MaxRecurse) { 1186 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1187 return C; 1188 1189 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q, MaxRecurse)) 1190 return V; 1191 1192 // If this is an exact divide by a constant, then the dividend (Op0) must have 1193 // at least as many trailing zeros as the divisor to divide evenly. If it has 1194 // less trailing zeros, then the result must be poison. 1195 const APInt *DivC; 1196 if (IsExact && match(Op1, m_APInt(DivC)) && DivC->countr_zero()) { 1197 KnownBits KnownOp0 = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1198 if (KnownOp0.countMaxTrailingZeros() < DivC->countr_zero()) 1199 return PoisonValue::get(Op0->getType()); 1200 } 1201 1202 return nullptr; 1203 } 1204 1205 /// These are simplifications common to SRem and URem. 1206 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1207 const SimplifyQuery &Q, unsigned MaxRecurse) { 1208 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1209 return C; 1210 1211 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q, MaxRecurse)) 1212 return V; 1213 1214 // (X << Y) % X -> 0 1215 if (Q.IIQ.UseInstrInfo && 1216 ((Opcode == Instruction::SRem && 1217 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1218 (Opcode == Instruction::URem && 1219 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1220 return Constant::getNullValue(Op0->getType()); 1221 1222 return nullptr; 1223 } 1224 1225 /// Given operands for an SDiv, see if we can fold the result. 1226 /// If not, this returns null. 1227 static Value *simplifySDivInst(Value *Op0, Value *Op1, bool IsExact, 1228 const SimplifyQuery &Q, unsigned MaxRecurse) { 1229 // If two operands are negated and no signed overflow, return -1. 1230 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1231 return Constant::getAllOnesValue(Op0->getType()); 1232 1233 return simplifyDiv(Instruction::SDiv, Op0, Op1, IsExact, Q, MaxRecurse); 1234 } 1235 1236 Value *llvm::simplifySDivInst(Value *Op0, Value *Op1, bool IsExact, 1237 const SimplifyQuery &Q) { 1238 return ::simplifySDivInst(Op0, Op1, IsExact, Q, RecursionLimit); 1239 } 1240 1241 /// Given operands for a UDiv, see if we can fold the result. 1242 /// If not, this returns null. 1243 static Value *simplifyUDivInst(Value *Op0, Value *Op1, bool IsExact, 1244 const SimplifyQuery &Q, unsigned MaxRecurse) { 1245 return simplifyDiv(Instruction::UDiv, Op0, Op1, IsExact, Q, MaxRecurse); 1246 } 1247 1248 Value *llvm::simplifyUDivInst(Value *Op0, Value *Op1, bool IsExact, 1249 const SimplifyQuery &Q) { 1250 return ::simplifyUDivInst(Op0, Op1, IsExact, Q, RecursionLimit); 1251 } 1252 1253 /// Given operands for an SRem, see if we can fold the result. 1254 /// If not, this returns null. 1255 static Value *simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1256 unsigned MaxRecurse) { 1257 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1258 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1259 Value *X; 1260 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1261 return ConstantInt::getNullValue(Op0->getType()); 1262 1263 // If the two operands are negated, return 0. 1264 if (isKnownNegation(Op0, Op1)) 1265 return ConstantInt::getNullValue(Op0->getType()); 1266 1267 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1268 } 1269 1270 Value *llvm::simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1271 return ::simplifySRemInst(Op0, Op1, Q, RecursionLimit); 1272 } 1273 1274 /// Given operands for a URem, see if we can fold the result. 1275 /// If not, this returns null. 1276 static Value *simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1277 unsigned MaxRecurse) { 1278 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1279 } 1280 1281 Value *llvm::simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1282 return ::simplifyURemInst(Op0, Op1, Q, RecursionLimit); 1283 } 1284 1285 /// Returns true if a shift by \c Amount always yields poison. 1286 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { 1287 Constant *C = dyn_cast<Constant>(Amount); 1288 if (!C) 1289 return false; 1290 1291 // X shift by undef -> poison because it may shift by the bitwidth. 1292 if (Q.isUndefValue(C)) 1293 return true; 1294 1295 // Shifting by the bitwidth or more is poison. This covers scalars and 1296 // fixed/scalable vectors with splat constants. 1297 const APInt *AmountC; 1298 if (match(C, m_APInt(AmountC)) && AmountC->uge(AmountC->getBitWidth())) 1299 return true; 1300 1301 // Try harder for fixed-length vectors: 1302 // If all lanes of a vector shift are poison, the whole shift is poison. 1303 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1304 for (unsigned I = 0, 1305 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1306 I != E; ++I) 1307 if (!isPoisonShift(C->getAggregateElement(I), Q)) 1308 return false; 1309 return true; 1310 } 1311 1312 return false; 1313 } 1314 1315 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1316 /// If not, this returns null. 1317 static Value *simplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1318 Value *Op1, bool IsNSW, const SimplifyQuery &Q, 1319 unsigned MaxRecurse) { 1320 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1321 return C; 1322 1323 // poison shift by X -> poison 1324 if (isa<PoisonValue>(Op0)) 1325 return Op0; 1326 1327 // 0 shift by X -> 0 1328 if (match(Op0, m_Zero())) 1329 return Constant::getNullValue(Op0->getType()); 1330 1331 // X shift by 0 -> X 1332 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1333 // would be poison. 1334 Value *X; 1335 if (match(Op1, m_Zero()) || 1336 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1337 return Op0; 1338 1339 // Fold undefined shifts. 1340 if (isPoisonShift(Op1, Q)) 1341 return PoisonValue::get(Op0->getType()); 1342 1343 // If the operation is with the result of a select instruction, check whether 1344 // operating on either branch of the select always yields the same value. 1345 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1346 if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1347 return V; 1348 1349 // If the operation is with the result of a phi instruction, check whether 1350 // operating on all incoming values of the phi always yields the same value. 1351 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1352 if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1353 return V; 1354 1355 // If any bits in the shift amount make that value greater than or equal to 1356 // the number of bits in the type, the shift is undefined. 1357 KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1358 if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth())) 1359 return PoisonValue::get(Op0->getType()); 1360 1361 // If all valid bits in the shift amount are known zero, the first operand is 1362 // unchanged. 1363 unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth()); 1364 if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits) 1365 return Op0; 1366 1367 // Check for nsw shl leading to a poison value. 1368 if (IsNSW) { 1369 assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction"); 1370 KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1371 KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt); 1372 1373 if (KnownVal.Zero.isSignBitSet()) 1374 KnownShl.Zero.setSignBit(); 1375 if (KnownVal.One.isSignBitSet()) 1376 KnownShl.One.setSignBit(); 1377 1378 if (KnownShl.hasConflict()) 1379 return PoisonValue::get(Op0->getType()); 1380 } 1381 1382 return nullptr; 1383 } 1384 1385 /// Given operands for an LShr or AShr, see if we can fold the result. If not, 1386 /// this returns null. 1387 static Value *simplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1388 Value *Op1, bool IsExact, 1389 const SimplifyQuery &Q, unsigned MaxRecurse) { 1390 if (Value *V = 1391 simplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse)) 1392 return V; 1393 1394 // X >> X -> 0 1395 if (Op0 == Op1) 1396 return Constant::getNullValue(Op0->getType()); 1397 1398 // undef >> X -> 0 1399 // undef >> X -> undef (if it's exact) 1400 if (Q.isUndefValue(Op0)) 1401 return IsExact ? Op0 : Constant::getNullValue(Op0->getType()); 1402 1403 // The low bit cannot be shifted out of an exact shift if it is set. 1404 // TODO: Generalize by counting trailing zeros (see fold for exact division). 1405 if (IsExact) { 1406 KnownBits Op0Known = 1407 computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1408 if (Op0Known.One[0]) 1409 return Op0; 1410 } 1411 1412 return nullptr; 1413 } 1414 1415 /// Given operands for an Shl, see if we can fold the result. 1416 /// If not, this returns null. 1417 static Value *simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 1418 const SimplifyQuery &Q, unsigned MaxRecurse) { 1419 if (Value *V = 1420 simplifyShift(Instruction::Shl, Op0, Op1, IsNSW, Q, MaxRecurse)) 1421 return V; 1422 1423 Type *Ty = Op0->getType(); 1424 // undef << X -> 0 1425 // undef << X -> undef if (if it's NSW/NUW) 1426 if (Q.isUndefValue(Op0)) 1427 return IsNSW || IsNUW ? Op0 : Constant::getNullValue(Ty); 1428 1429 // (X >> A) << A -> X 1430 Value *X; 1431 if (Q.IIQ.UseInstrInfo && 1432 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1433 return X; 1434 1435 // shl nuw i8 C, %x -> C iff C has sign bit set. 1436 if (IsNUW && match(Op0, m_Negative())) 1437 return Op0; 1438 // NOTE: could use computeKnownBits() / LazyValueInfo, 1439 // but the cost-benefit analysis suggests it isn't worth it. 1440 1441 // "nuw" guarantees that only zeros are shifted out, and "nsw" guarantees 1442 // that the sign-bit does not change, so the only input that does not 1443 // produce poison is 0, and "0 << (bitwidth-1) --> 0". 1444 if (IsNSW && IsNUW && 1445 match(Op1, m_SpecificInt(Ty->getScalarSizeInBits() - 1))) 1446 return Constant::getNullValue(Ty); 1447 1448 return nullptr; 1449 } 1450 1451 Value *llvm::simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 1452 const SimplifyQuery &Q) { 1453 return ::simplifyShlInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit); 1454 } 1455 1456 /// Given operands for an LShr, see if we can fold the result. 1457 /// If not, this returns null. 1458 static Value *simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, 1459 const SimplifyQuery &Q, unsigned MaxRecurse) { 1460 if (Value *V = simplifyRightShift(Instruction::LShr, Op0, Op1, IsExact, Q, 1461 MaxRecurse)) 1462 return V; 1463 1464 // (X << A) >> A -> X 1465 Value *X; 1466 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1467 return X; 1468 1469 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1470 // We can return X as we do in the above case since OR alters no bits in X. 1471 // SimplifyDemandedBits in InstCombine can do more general optimization for 1472 // bit manipulation. This pattern aims to provide opportunities for other 1473 // optimizers by supporting a simple but common case in InstSimplify. 1474 Value *Y; 1475 const APInt *ShRAmt, *ShLAmt; 1476 if (match(Op1, m_APInt(ShRAmt)) && 1477 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1478 *ShRAmt == *ShLAmt) { 1479 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1480 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 1481 if (ShRAmt->uge(EffWidthY)) 1482 return X; 1483 } 1484 1485 return nullptr; 1486 } 1487 1488 Value *llvm::simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, 1489 const SimplifyQuery &Q) { 1490 return ::simplifyLShrInst(Op0, Op1, IsExact, Q, RecursionLimit); 1491 } 1492 1493 /// Given operands for an AShr, see if we can fold the result. 1494 /// If not, this returns null. 1495 static Value *simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, 1496 const SimplifyQuery &Q, unsigned MaxRecurse) { 1497 if (Value *V = simplifyRightShift(Instruction::AShr, Op0, Op1, IsExact, Q, 1498 MaxRecurse)) 1499 return V; 1500 1501 // -1 >>a X --> -1 1502 // (-1 << X) a>> X --> -1 1503 // Do not return Op0 because it may contain undef elements if it's a vector. 1504 if (match(Op0, m_AllOnes()) || 1505 match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1)))) 1506 return Constant::getAllOnesValue(Op0->getType()); 1507 1508 // (X << A) >> A -> X 1509 Value *X; 1510 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1511 return X; 1512 1513 // Arithmetic shifting an all-sign-bit value is a no-op. 1514 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1515 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1516 return Op0; 1517 1518 return nullptr; 1519 } 1520 1521 Value *llvm::simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, 1522 const SimplifyQuery &Q) { 1523 return ::simplifyAShrInst(Op0, Op1, IsExact, Q, RecursionLimit); 1524 } 1525 1526 /// Commuted variants are assumed to be handled by calling this function again 1527 /// with the parameters swapped. 1528 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1529 ICmpInst *UnsignedICmp, bool IsAnd, 1530 const SimplifyQuery &Q) { 1531 Value *X, *Y; 1532 1533 ICmpInst::Predicate EqPred; 1534 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1535 !ICmpInst::isEquality(EqPred)) 1536 return nullptr; 1537 1538 ICmpInst::Predicate UnsignedPred; 1539 1540 Value *A, *B; 1541 // Y = (A - B); 1542 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1543 if (match(UnsignedICmp, 1544 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1545 ICmpInst::isUnsigned(UnsignedPred)) { 1546 // A >=/<= B || (A - B) != 0 <--> true 1547 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1548 UnsignedPred == ICmpInst::ICMP_ULE) && 1549 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1550 return ConstantInt::getTrue(UnsignedICmp->getType()); 1551 // A </> B && (A - B) == 0 <--> false 1552 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1553 UnsignedPred == ICmpInst::ICMP_UGT) && 1554 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1555 return ConstantInt::getFalse(UnsignedICmp->getType()); 1556 1557 // A </> B && (A - B) != 0 <--> A </> B 1558 // A </> B || (A - B) != 0 <--> (A - B) != 0 1559 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1560 UnsignedPred == ICmpInst::ICMP_UGT)) 1561 return IsAnd ? UnsignedICmp : ZeroICmp; 1562 1563 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1564 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1565 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1566 UnsignedPred == ICmpInst::ICMP_UGE)) 1567 return IsAnd ? ZeroICmp : UnsignedICmp; 1568 } 1569 1570 // Given Y = (A - B) 1571 // Y >= A && Y != 0 --> Y >= A iff B != 0 1572 // Y < A || Y == 0 --> Y < A iff B != 0 1573 if (match(UnsignedICmp, 1574 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1575 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1576 EqPred == ICmpInst::ICMP_NE && 1577 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1578 return UnsignedICmp; 1579 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1580 EqPred == ICmpInst::ICMP_EQ && 1581 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1582 return UnsignedICmp; 1583 } 1584 } 1585 1586 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1587 ICmpInst::isUnsigned(UnsignedPred)) 1588 ; 1589 else if (match(UnsignedICmp, 1590 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1591 ICmpInst::isUnsigned(UnsignedPred)) 1592 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1593 else 1594 return nullptr; 1595 1596 // X > Y && Y == 0 --> Y == 0 iff X != 0 1597 // X > Y || Y == 0 --> X > Y iff X != 0 1598 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1599 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1600 return IsAnd ? ZeroICmp : UnsignedICmp; 1601 1602 // X <= Y && Y != 0 --> X <= Y iff X != 0 1603 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1604 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1605 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1606 return IsAnd ? UnsignedICmp : ZeroICmp; 1607 1608 // The transforms below here are expected to be handled more generally with 1609 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1610 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1611 // these are candidates for removal. 1612 1613 // X < Y && Y != 0 --> X < Y 1614 // X < Y || Y != 0 --> Y != 0 1615 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1616 return IsAnd ? UnsignedICmp : ZeroICmp; 1617 1618 // X >= Y && Y == 0 --> Y == 0 1619 // X >= Y || Y == 0 --> X >= Y 1620 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1621 return IsAnd ? ZeroICmp : UnsignedICmp; 1622 1623 // X < Y && Y == 0 --> false 1624 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1625 IsAnd) 1626 return getFalse(UnsignedICmp->getType()); 1627 1628 // X >= Y || Y != 0 --> true 1629 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1630 !IsAnd) 1631 return getTrue(UnsignedICmp->getType()); 1632 1633 return nullptr; 1634 } 1635 1636 /// Test if a pair of compares with a shared operand and 2 constants has an 1637 /// empty set intersection, full set union, or if one compare is a superset of 1638 /// the other. 1639 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1640 bool IsAnd) { 1641 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1642 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1643 return nullptr; 1644 1645 const APInt *C0, *C1; 1646 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1647 !match(Cmp1->getOperand(1), m_APInt(C1))) 1648 return nullptr; 1649 1650 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1651 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1652 1653 // For and-of-compares, check if the intersection is empty: 1654 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1655 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1656 return getFalse(Cmp0->getType()); 1657 1658 // For or-of-compares, check if the union is full: 1659 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1660 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1661 return getTrue(Cmp0->getType()); 1662 1663 // Is one range a superset of the other? 1664 // If this is and-of-compares, take the smaller set: 1665 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1666 // If this is or-of-compares, take the larger set: 1667 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1668 if (Range0.contains(Range1)) 1669 return IsAnd ? Cmp1 : Cmp0; 1670 if (Range1.contains(Range0)) 1671 return IsAnd ? Cmp0 : Cmp1; 1672 1673 return nullptr; 1674 } 1675 1676 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1677 bool IsAnd) { 1678 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1679 if (!match(Cmp0->getOperand(1), m_Zero()) || 1680 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1681 return nullptr; 1682 1683 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1684 return nullptr; 1685 1686 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1687 Value *X = Cmp0->getOperand(0); 1688 Value *Y = Cmp1->getOperand(0); 1689 1690 // If one of the compares is a masked version of a (not) null check, then 1691 // that compare implies the other, so we eliminate the other. Optionally, look 1692 // through a pointer-to-int cast to match a null check of a pointer type. 1693 1694 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1695 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1696 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1697 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1698 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1699 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1700 return Cmp1; 1701 1702 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1703 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1704 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1705 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1706 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1707 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1708 return Cmp0; 1709 1710 return nullptr; 1711 } 1712 1713 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1714 const InstrInfoQuery &IIQ) { 1715 // (icmp (add V, C0), C1) & (icmp V, C0) 1716 ICmpInst::Predicate Pred0, Pred1; 1717 const APInt *C0, *C1; 1718 Value *V; 1719 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1720 return nullptr; 1721 1722 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1723 return nullptr; 1724 1725 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1726 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1727 return nullptr; 1728 1729 Type *ITy = Op0->getType(); 1730 bool IsNSW = IIQ.hasNoSignedWrap(AddInst); 1731 bool IsNUW = IIQ.hasNoUnsignedWrap(AddInst); 1732 1733 const APInt Delta = *C1 - *C0; 1734 if (C0->isStrictlyPositive()) { 1735 if (Delta == 2) { 1736 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1737 return getFalse(ITy); 1738 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && IsNSW) 1739 return getFalse(ITy); 1740 } 1741 if (Delta == 1) { 1742 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1743 return getFalse(ITy); 1744 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && IsNSW) 1745 return getFalse(ITy); 1746 } 1747 } 1748 if (C0->getBoolValue() && IsNUW) { 1749 if (Delta == 2) 1750 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1751 return getFalse(ITy); 1752 if (Delta == 1) 1753 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1754 return getFalse(ITy); 1755 } 1756 1757 return nullptr; 1758 } 1759 1760 /// Try to eliminate compares with signed or unsigned min/max constants. 1761 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, 1762 bool IsAnd) { 1763 // Canonicalize an equality compare as Cmp0. 1764 if (Cmp1->isEquality()) 1765 std::swap(Cmp0, Cmp1); 1766 if (!Cmp0->isEquality()) 1767 return nullptr; 1768 1769 // The non-equality compare must include a common operand (X). Canonicalize 1770 // the common operand as operand 0 (the predicate is swapped if the common 1771 // operand was operand 1). 1772 ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); 1773 Value *X = Cmp0->getOperand(0); 1774 ICmpInst::Predicate Pred1; 1775 bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value())); 1776 if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value()))) 1777 return nullptr; 1778 if (ICmpInst::isEquality(Pred1)) 1779 return nullptr; 1780 1781 // The equality compare must be against a constant. Flip bits if we matched 1782 // a bitwise not. Convert a null pointer constant to an integer zero value. 1783 APInt MinMaxC; 1784 const APInt *C; 1785 if (match(Cmp0->getOperand(1), m_APInt(C))) 1786 MinMaxC = HasNotOp ? ~*C : *C; 1787 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) 1788 MinMaxC = APInt::getZero(8); 1789 else 1790 return nullptr; 1791 1792 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. 1793 if (!IsAnd) { 1794 Pred0 = ICmpInst::getInversePredicate(Pred0); 1795 Pred1 = ICmpInst::getInversePredicate(Pred1); 1796 } 1797 1798 // Normalize to unsigned compare and unsigned min/max value. 1799 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 1800 if (ICmpInst::isSigned(Pred1)) { 1801 Pred1 = ICmpInst::getUnsignedPredicate(Pred1); 1802 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); 1803 } 1804 1805 // (X != MAX) && (X < Y) --> X < Y 1806 // (X == MAX) || (X >= Y) --> X >= Y 1807 if (MinMaxC.isMaxValue()) 1808 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) 1809 return Cmp1; 1810 1811 // (X != MIN) && (X > Y) --> X > Y 1812 // (X == MIN) || (X <= Y) --> X <= Y 1813 if (MinMaxC.isMinValue()) 1814 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) 1815 return Cmp1; 1816 1817 return nullptr; 1818 } 1819 1820 /// Try to simplify and/or of icmp with ctpop intrinsic. 1821 static Value *simplifyAndOrOfICmpsWithCtpop(ICmpInst *Cmp0, ICmpInst *Cmp1, 1822 bool IsAnd) { 1823 ICmpInst::Predicate Pred0, Pred1; 1824 Value *X; 1825 const APInt *C; 1826 if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)), 1827 m_APInt(C))) || 1828 !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt())) || C->isZero()) 1829 return nullptr; 1830 1831 // (ctpop(X) == C) || (X != 0) --> X != 0 where C > 0 1832 if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_NE) 1833 return Cmp1; 1834 // (ctpop(X) != C) && (X == 0) --> X == 0 where C > 0 1835 if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_EQ) 1836 return Cmp1; 1837 1838 return nullptr; 1839 } 1840 1841 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1842 const SimplifyQuery &Q) { 1843 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1844 return X; 1845 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1846 return X; 1847 1848 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1849 return X; 1850 1851 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) 1852 return X; 1853 1854 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1855 return X; 1856 1857 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, true)) 1858 return X; 1859 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, true)) 1860 return X; 1861 1862 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1863 return X; 1864 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1865 return X; 1866 1867 return nullptr; 1868 } 1869 1870 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1871 const InstrInfoQuery &IIQ) { 1872 // (icmp (add V, C0), C1) | (icmp V, C0) 1873 ICmpInst::Predicate Pred0, Pred1; 1874 const APInt *C0, *C1; 1875 Value *V; 1876 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1877 return nullptr; 1878 1879 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1880 return nullptr; 1881 1882 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1883 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1884 return nullptr; 1885 1886 Type *ITy = Op0->getType(); 1887 bool IsNSW = IIQ.hasNoSignedWrap(AddInst); 1888 bool IsNUW = IIQ.hasNoUnsignedWrap(AddInst); 1889 1890 const APInt Delta = *C1 - *C0; 1891 if (C0->isStrictlyPositive()) { 1892 if (Delta == 2) { 1893 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1894 return getTrue(ITy); 1895 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && IsNSW) 1896 return getTrue(ITy); 1897 } 1898 if (Delta == 1) { 1899 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1900 return getTrue(ITy); 1901 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && IsNSW) 1902 return getTrue(ITy); 1903 } 1904 } 1905 if (C0->getBoolValue() && IsNUW) { 1906 if (Delta == 2) 1907 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1908 return getTrue(ITy); 1909 if (Delta == 1) 1910 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1911 return getTrue(ITy); 1912 } 1913 1914 return nullptr; 1915 } 1916 1917 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1918 const SimplifyQuery &Q) { 1919 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1920 return X; 1921 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1922 return X; 1923 1924 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1925 return X; 1926 1927 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) 1928 return X; 1929 1930 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1931 return X; 1932 1933 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, false)) 1934 return X; 1935 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, false)) 1936 return X; 1937 1938 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1939 return X; 1940 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1941 return X; 1942 1943 return nullptr; 1944 } 1945 1946 static Value *simplifyAndOrOfFCmps(const SimplifyQuery &Q, FCmpInst *LHS, 1947 FCmpInst *RHS, bool IsAnd) { 1948 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1949 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1950 if (LHS0->getType() != RHS0->getType()) 1951 return nullptr; 1952 1953 const DataLayout &DL = Q.DL; 1954 const TargetLibraryInfo *TLI = Q.TLI; 1955 1956 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1957 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1958 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1959 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1960 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1961 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1962 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1963 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1964 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1965 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1966 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1967 if (((LHS1 == RHS0 || LHS1 == RHS1) && 1968 isKnownNeverNaN(LHS0, DL, TLI, 0, Q.AC, Q.CxtI, Q.DT)) || 1969 ((LHS0 == RHS0 || LHS0 == RHS1) && 1970 isKnownNeverNaN(LHS1, DL, TLI, 0, Q.AC, Q.CxtI, Q.DT))) 1971 return RHS; 1972 1973 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1974 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1975 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1976 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1977 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1978 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1979 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1980 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1981 if (((RHS1 == LHS0 || RHS1 == LHS1) && 1982 isKnownNeverNaN(RHS0, DL, TLI, 0, Q.AC, Q.CxtI, Q.DT)) || 1983 ((RHS0 == LHS0 || RHS0 == LHS1) && 1984 isKnownNeverNaN(RHS1, DL, TLI, 0, Q.AC, Q.CxtI, Q.DT))) 1985 return LHS; 1986 } 1987 1988 return nullptr; 1989 } 1990 1991 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, Value *Op0, 1992 Value *Op1, bool IsAnd) { 1993 // Look through casts of the 'and' operands to find compares. 1994 auto *Cast0 = dyn_cast<CastInst>(Op0); 1995 auto *Cast1 = dyn_cast<CastInst>(Op1); 1996 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1997 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1998 Op0 = Cast0->getOperand(0); 1999 Op1 = Cast1->getOperand(0); 2000 } 2001 2002 Value *V = nullptr; 2003 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 2004 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 2005 if (ICmp0 && ICmp1) 2006 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 2007 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 2008 2009 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 2010 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 2011 if (FCmp0 && FCmp1) 2012 V = simplifyAndOrOfFCmps(Q, FCmp0, FCmp1, IsAnd); 2013 2014 if (!V) 2015 return nullptr; 2016 if (!Cast0) 2017 return V; 2018 2019 // If we looked through casts, we can only handle a constant simplification 2020 // because we are not allowed to create a cast instruction here. 2021 if (auto *C = dyn_cast<Constant>(V)) 2022 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 2023 2024 return nullptr; 2025 } 2026 2027 /// Given a bitwise logic op, check if the operands are add/sub with a common 2028 /// source value and inverted constant (identity: C - X -> ~(X + ~C)). 2029 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, 2030 Instruction::BinaryOps Opcode) { 2031 assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); 2032 assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); 2033 Value *X; 2034 Constant *C1, *C2; 2035 if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && 2036 match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || 2037 (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && 2038 match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { 2039 if (ConstantExpr::getNot(C1) == C2) { 2040 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 2041 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 2042 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 2043 Type *Ty = Op0->getType(); 2044 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) 2045 : ConstantInt::getAllOnesValue(Ty); 2046 } 2047 } 2048 return nullptr; 2049 } 2050 2051 /// Given operands for an And, see if we can fold the result. 2052 /// If not, this returns null. 2053 static Value *simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2054 unsigned MaxRecurse) { 2055 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2056 return C; 2057 2058 // X & poison -> poison 2059 if (isa<PoisonValue>(Op1)) 2060 return Op1; 2061 2062 // X & undef -> 0 2063 if (Q.isUndefValue(Op1)) 2064 return Constant::getNullValue(Op0->getType()); 2065 2066 // X & X = X 2067 if (Op0 == Op1) 2068 return Op0; 2069 2070 // X & 0 = 0 2071 if (match(Op1, m_Zero())) 2072 return Constant::getNullValue(Op0->getType()); 2073 2074 // X & -1 = X 2075 if (match(Op1, m_AllOnes())) 2076 return Op0; 2077 2078 // A & ~A = ~A & A = 0 2079 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) 2080 return Constant::getNullValue(Op0->getType()); 2081 2082 // (A | ?) & A = A 2083 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2084 return Op1; 2085 2086 // A & (A | ?) = A 2087 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 2088 return Op0; 2089 2090 // (X | Y) & (X | ~Y) --> X (commuted 8 ways) 2091 Value *X, *Y; 2092 if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2093 match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2094 return X; 2095 if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2096 match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2097 return X; 2098 2099 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) 2100 return V; 2101 2102 // A mask that only clears known zeros of a shifted value is a no-op. 2103 const APInt *Mask; 2104 const APInt *ShAmt; 2105 if (match(Op1, m_APInt(Mask))) { 2106 // If all bits in the inverted and shifted mask are clear: 2107 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2108 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2109 (~(*Mask)).lshr(*ShAmt).isZero()) 2110 return Op0; 2111 2112 // If all bits in the inverted and shifted mask are clear: 2113 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2114 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2115 (~(*Mask)).shl(*ShAmt).isZero()) 2116 return Op0; 2117 } 2118 2119 // If we have a multiplication overflow check that is being 'and'ed with a 2120 // check that one of the multipliers is not zero, we can omit the 'and', and 2121 // only keep the overflow check. 2122 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true)) 2123 return Op1; 2124 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true)) 2125 return Op0; 2126 2127 // A & (-A) = A if A is a power of two or zero. 2128 if (match(Op0, m_Neg(m_Specific(Op1))) || 2129 match(Op1, m_Neg(m_Specific(Op0)))) { 2130 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2131 Q.DT)) 2132 return Op0; 2133 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2134 Q.DT)) 2135 return Op1; 2136 } 2137 2138 // This is a similar pattern used for checking if a value is a power-of-2: 2139 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2140 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 2141 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2142 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2143 return Constant::getNullValue(Op1->getType()); 2144 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 2145 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2146 return Constant::getNullValue(Op0->getType()); 2147 2148 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2149 return V; 2150 2151 // Try some generic simplifications for associative operations. 2152 if (Value *V = 2153 simplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2154 return V; 2155 2156 // And distributes over Or. Try some generic simplifications based on this. 2157 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2158 Instruction::Or, Q, MaxRecurse)) 2159 return V; 2160 2161 // And distributes over Xor. Try some generic simplifications based on this. 2162 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2163 Instruction::Xor, Q, MaxRecurse)) 2164 return V; 2165 2166 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2167 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2168 // A & (A && B) -> A && B 2169 if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero()))) 2170 return Op1; 2171 else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero()))) 2172 return Op0; 2173 } 2174 // If the operation is with the result of a select instruction, check 2175 // whether operating on either branch of the select always yields the same 2176 // value. 2177 if (Value *V = 2178 threadBinOpOverSelect(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2179 return V; 2180 } 2181 2182 // If the operation is with the result of a phi instruction, check whether 2183 // operating on all incoming values of the phi always yields the same value. 2184 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2185 if (Value *V = 2186 threadBinOpOverPHI(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2187 return V; 2188 2189 // Assuming the effective width of Y is not larger than A, i.e. all bits 2190 // from X and Y are disjoint in (X << A) | Y, 2191 // if the mask of this AND op covers all bits of X or Y, while it covers 2192 // no bits from the other, we can bypass this AND op. E.g., 2193 // ((X << A) | Y) & Mask -> Y, 2194 // if Mask = ((1 << effective_width_of(Y)) - 1) 2195 // ((X << A) | Y) & Mask -> X << A, 2196 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2197 // SimplifyDemandedBits in InstCombine can optimize the general case. 2198 // This pattern aims to help other passes for a common case. 2199 Value *XShifted; 2200 if (match(Op1, m_APInt(Mask)) && 2201 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2202 m_Value(XShifted)), 2203 m_Value(Y)))) { 2204 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2205 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2206 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2207 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 2208 if (EffWidthY <= ShftCnt) { 2209 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2210 const unsigned EffWidthX = XKnown.countMaxActiveBits(); 2211 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2212 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2213 // If the mask is extracting all bits from X or Y as is, we can skip 2214 // this AND op. 2215 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2216 return Y; 2217 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2218 return XShifted; 2219 } 2220 } 2221 2222 // ((X | Y) ^ X ) & ((X | Y) ^ Y) --> 0 2223 // ((X | Y) ^ Y ) & ((X | Y) ^ X) --> 0 2224 BinaryOperator *Or; 2225 if (match(Op0, m_c_Xor(m_Value(X), 2226 m_CombineAnd(m_BinOp(Or), 2227 m_c_Or(m_Deferred(X), m_Value(Y))))) && 2228 match(Op1, m_c_Xor(m_Specific(Or), m_Specific(Y)))) 2229 return Constant::getNullValue(Op0->getType()); 2230 2231 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2232 if (std::optional<bool> Implied = isImpliedCondition(Op0, Op1, Q.DL)) { 2233 // If Op0 is true implies Op1 is true, then Op0 is a subset of Op1. 2234 if (*Implied == true) 2235 return Op0; 2236 // If Op0 is true implies Op1 is false, then they are not true together. 2237 if (*Implied == false) 2238 return ConstantInt::getFalse(Op0->getType()); 2239 } 2240 if (std::optional<bool> Implied = isImpliedCondition(Op1, Op0, Q.DL)) { 2241 // If Op1 is true implies Op0 is true, then Op1 is a subset of Op0. 2242 if (*Implied) 2243 return Op1; 2244 // If Op1 is true implies Op0 is false, then they are not true together. 2245 if (!*Implied) 2246 return ConstantInt::getFalse(Op1->getType()); 2247 } 2248 } 2249 2250 if (Value *V = simplifyByDomEq(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2251 return V; 2252 2253 return nullptr; 2254 } 2255 2256 Value *llvm::simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2257 return ::simplifyAndInst(Op0, Op1, Q, RecursionLimit); 2258 } 2259 2260 // TODO: Many of these folds could use LogicalAnd/LogicalOr. 2261 static Value *simplifyOrLogic(Value *X, Value *Y) { 2262 assert(X->getType() == Y->getType() && "Expected same type for 'or' ops"); 2263 Type *Ty = X->getType(); 2264 2265 // X | ~X --> -1 2266 if (match(Y, m_Not(m_Specific(X)))) 2267 return ConstantInt::getAllOnesValue(Ty); 2268 2269 // X | ~(X & ?) = -1 2270 if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value())))) 2271 return ConstantInt::getAllOnesValue(Ty); 2272 2273 // X | (X & ?) --> X 2274 if (match(Y, m_c_And(m_Specific(X), m_Value()))) 2275 return X; 2276 2277 Value *A, *B; 2278 2279 // (A ^ B) | (A | B) --> A | B 2280 // (A ^ B) | (B | A) --> B | A 2281 if (match(X, m_Xor(m_Value(A), m_Value(B))) && 2282 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2283 return Y; 2284 2285 // ~(A ^ B) | (A | B) --> -1 2286 // ~(A ^ B) | (B | A) --> -1 2287 if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) && 2288 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2289 return ConstantInt::getAllOnesValue(Ty); 2290 2291 // (A & ~B) | (A ^ B) --> A ^ B 2292 // (~B & A) | (A ^ B) --> A ^ B 2293 // (A & ~B) | (B ^ A) --> B ^ A 2294 // (~B & A) | (B ^ A) --> B ^ A 2295 if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) && 2296 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2297 return Y; 2298 2299 // (~A ^ B) | (A & B) --> ~A ^ B 2300 // (B ^ ~A) | (A & B) --> B ^ ~A 2301 // (~A ^ B) | (B & A) --> ~A ^ B 2302 // (B ^ ~A) | (B & A) --> B ^ ~A 2303 if (match(X, m_c_Xor(m_NotForbidUndef(m_Value(A)), m_Value(B))) && 2304 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2305 return X; 2306 2307 // (~A | B) | (A ^ B) --> -1 2308 // (~A | B) | (B ^ A) --> -1 2309 // (B | ~A) | (A ^ B) --> -1 2310 // (B | ~A) | (B ^ A) --> -1 2311 if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) && 2312 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2313 return ConstantInt::getAllOnesValue(Ty); 2314 2315 // (~A & B) | ~(A | B) --> ~A 2316 // (~A & B) | ~(B | A) --> ~A 2317 // (B & ~A) | ~(A | B) --> ~A 2318 // (B & ~A) | ~(B | A) --> ~A 2319 Value *NotA; 2320 if (match(X, 2321 m_c_And(m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))), 2322 m_Value(B))) && 2323 match(Y, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2324 return NotA; 2325 // The same is true of Logical And 2326 // TODO: This could share the logic of the version above if there was a 2327 // version of LogicalAnd that allowed more than just i1 types. 2328 if (match(X, m_c_LogicalAnd( 2329 m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))), 2330 m_Value(B))) && 2331 match(Y, m_Not(m_c_LogicalOr(m_Specific(A), m_Specific(B))))) 2332 return NotA; 2333 2334 // ~(A ^ B) | (A & B) --> ~(A ^ B) 2335 // ~(A ^ B) | (B & A) --> ~(A ^ B) 2336 Value *NotAB; 2337 if (match(X, m_CombineAnd(m_NotForbidUndef(m_Xor(m_Value(A), m_Value(B))), 2338 m_Value(NotAB))) && 2339 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2340 return NotAB; 2341 2342 // ~(A & B) | (A ^ B) --> ~(A & B) 2343 // ~(A & B) | (B ^ A) --> ~(A & B) 2344 if (match(X, m_CombineAnd(m_NotForbidUndef(m_And(m_Value(A), m_Value(B))), 2345 m_Value(NotAB))) && 2346 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2347 return NotAB; 2348 2349 return nullptr; 2350 } 2351 2352 /// Given operands for an Or, see if we can fold the result. 2353 /// If not, this returns null. 2354 static Value *simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2355 unsigned MaxRecurse) { 2356 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2357 return C; 2358 2359 // X | poison -> poison 2360 if (isa<PoisonValue>(Op1)) 2361 return Op1; 2362 2363 // X | undef -> -1 2364 // X | -1 = -1 2365 // Do not return Op1 because it may contain undef elements if it's a vector. 2366 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2367 return Constant::getAllOnesValue(Op0->getType()); 2368 2369 // X | X = X 2370 // X | 0 = X 2371 if (Op0 == Op1 || match(Op1, m_Zero())) 2372 return Op0; 2373 2374 if (Value *R = simplifyOrLogic(Op0, Op1)) 2375 return R; 2376 if (Value *R = simplifyOrLogic(Op1, Op0)) 2377 return R; 2378 2379 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) 2380 return V; 2381 2382 // Rotated -1 is still -1: 2383 // (-1 << X) | (-1 >> (C - X)) --> -1 2384 // (-1 >> X) | (-1 << (C - X)) --> -1 2385 // ...with C <= bitwidth (and commuted variants). 2386 Value *X, *Y; 2387 if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) && 2388 match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) || 2389 (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) && 2390 match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) { 2391 const APInt *C; 2392 if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) || 2393 match(Y, m_Sub(m_APInt(C), m_Specific(X)))) && 2394 C->ule(X->getType()->getScalarSizeInBits())) { 2395 return ConstantInt::getAllOnesValue(X->getType()); 2396 } 2397 } 2398 2399 // A funnel shift (rotate) can be decomposed into simpler shifts. See if we 2400 // are mixing in another shift that is redundant with the funnel shift. 2401 2402 // (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y 2403 // (shl X, Y) | (fshl X, ?, Y) --> fshl X, ?, Y 2404 if (match(Op0, 2405 m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) && 2406 match(Op1, m_Shl(m_Specific(X), m_Specific(Y)))) 2407 return Op0; 2408 if (match(Op1, 2409 m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) && 2410 match(Op0, m_Shl(m_Specific(X), m_Specific(Y)))) 2411 return Op1; 2412 2413 // (fshr ?, X, Y) | (lshr X, Y) --> fshr ?, X, Y 2414 // (lshr X, Y) | (fshr ?, X, Y) --> fshr ?, X, Y 2415 if (match(Op0, 2416 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) && 2417 match(Op1, m_LShr(m_Specific(X), m_Specific(Y)))) 2418 return Op0; 2419 if (match(Op1, 2420 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) && 2421 match(Op0, m_LShr(m_Specific(X), m_Specific(Y)))) 2422 return Op1; 2423 2424 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2425 return V; 2426 2427 // If we have a multiplication overflow check that is being 'and'ed with a 2428 // check that one of the multipliers is not zero, we can omit the 'and', and 2429 // only keep the overflow check. 2430 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false)) 2431 return Op1; 2432 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false)) 2433 return Op0; 2434 2435 // Try some generic simplifications for associative operations. 2436 if (Value *V = 2437 simplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2438 return V; 2439 2440 // Or distributes over And. Try some generic simplifications based on this. 2441 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2442 Instruction::And, Q, MaxRecurse)) 2443 return V; 2444 2445 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2446 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2447 // A | (A || B) -> A || B 2448 if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value()))) 2449 return Op1; 2450 else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value()))) 2451 return Op0; 2452 } 2453 // If the operation is with the result of a select instruction, check 2454 // whether operating on either branch of the select always yields the same 2455 // value. 2456 if (Value *V = 2457 threadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2458 return V; 2459 } 2460 2461 // (A & C1)|(B & C2) 2462 Value *A, *B; 2463 const APInt *C1, *C2; 2464 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2465 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2466 if (*C1 == ~*C2) { 2467 // (A & C1)|(B & C2) 2468 // If we have: ((V + N) & C1) | (V & C2) 2469 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2470 // replace with V+N. 2471 Value *N; 2472 if (C2->isMask() && // C2 == 0+1+ 2473 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2474 // Add commutes, try both ways. 2475 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2476 return A; 2477 } 2478 // Or commutes, try both ways. 2479 if (C1->isMask() && match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2480 // Add commutes, try both ways. 2481 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2482 return B; 2483 } 2484 } 2485 } 2486 2487 // If the operation is with the result of a phi instruction, check whether 2488 // operating on all incoming values of the phi always yields the same value. 2489 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2490 if (Value *V = threadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2491 return V; 2492 2493 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2494 if (std::optional<bool> Implied = 2495 isImpliedCondition(Op0, Op1, Q.DL, false)) { 2496 // If Op0 is false implies Op1 is false, then Op1 is a subset of Op0. 2497 if (*Implied == false) 2498 return Op0; 2499 // If Op0 is false implies Op1 is true, then at least one is always true. 2500 if (*Implied == true) 2501 return ConstantInt::getTrue(Op0->getType()); 2502 } 2503 if (std::optional<bool> Implied = 2504 isImpliedCondition(Op1, Op0, Q.DL, false)) { 2505 // If Op1 is false implies Op0 is false, then Op0 is a subset of Op1. 2506 if (*Implied == false) 2507 return Op1; 2508 // If Op1 is false implies Op0 is true, then at least one is always true. 2509 if (*Implied == true) 2510 return ConstantInt::getTrue(Op1->getType()); 2511 } 2512 } 2513 2514 if (Value *V = simplifyByDomEq(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2515 return V; 2516 2517 return nullptr; 2518 } 2519 2520 Value *llvm::simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2521 return ::simplifyOrInst(Op0, Op1, Q, RecursionLimit); 2522 } 2523 2524 /// Given operands for a Xor, see if we can fold the result. 2525 /// If not, this returns null. 2526 static Value *simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2527 unsigned MaxRecurse) { 2528 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2529 return C; 2530 2531 // X ^ poison -> poison 2532 if (isa<PoisonValue>(Op1)) 2533 return Op1; 2534 2535 // A ^ undef -> undef 2536 if (Q.isUndefValue(Op1)) 2537 return Op1; 2538 2539 // A ^ 0 = A 2540 if (match(Op1, m_Zero())) 2541 return Op0; 2542 2543 // A ^ A = 0 2544 if (Op0 == Op1) 2545 return Constant::getNullValue(Op0->getType()); 2546 2547 // A ^ ~A = ~A ^ A = -1 2548 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) 2549 return Constant::getAllOnesValue(Op0->getType()); 2550 2551 auto foldAndOrNot = [](Value *X, Value *Y) -> Value * { 2552 Value *A, *B; 2553 // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants. 2554 if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) && 2555 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2556 return A; 2557 2558 // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants. 2559 // The 'not' op must contain a complete -1 operand (no undef elements for 2560 // vector) for the transform to be safe. 2561 Value *NotA; 2562 if (match(X, 2563 m_c_Or(m_CombineAnd(m_NotForbidUndef(m_Value(A)), m_Value(NotA)), 2564 m_Value(B))) && 2565 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2566 return NotA; 2567 2568 return nullptr; 2569 }; 2570 if (Value *R = foldAndOrNot(Op0, Op1)) 2571 return R; 2572 if (Value *R = foldAndOrNot(Op1, Op0)) 2573 return R; 2574 2575 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) 2576 return V; 2577 2578 // Try some generic simplifications for associative operations. 2579 if (Value *V = 2580 simplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, MaxRecurse)) 2581 return V; 2582 2583 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2584 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2585 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2586 // only if B and C are equal. If B and C are equal then (since we assume 2587 // that operands have already been simplified) "select(cond, B, C)" should 2588 // have been simplified to the common value of B and C already. Analysing 2589 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2590 // for threading over phi nodes. 2591 2592 if (Value *V = simplifyByDomEq(Instruction::Xor, Op0, Op1, Q, MaxRecurse)) 2593 return V; 2594 2595 return nullptr; 2596 } 2597 2598 Value *llvm::simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2599 return ::simplifyXorInst(Op0, Op1, Q, RecursionLimit); 2600 } 2601 2602 static Type *getCompareTy(Value *Op) { 2603 return CmpInst::makeCmpResultType(Op->getType()); 2604 } 2605 2606 /// Rummage around inside V looking for something equivalent to the comparison 2607 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2608 /// Helper function for analyzing max/min idioms. 2609 static Value *extractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2610 Value *LHS, Value *RHS) { 2611 SelectInst *SI = dyn_cast<SelectInst>(V); 2612 if (!SI) 2613 return nullptr; 2614 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2615 if (!Cmp) 2616 return nullptr; 2617 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2618 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2619 return Cmp; 2620 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2621 LHS == CmpRHS && RHS == CmpLHS) 2622 return Cmp; 2623 return nullptr; 2624 } 2625 2626 /// Return true if the underlying object (storage) must be disjoint from 2627 /// storage returned by any noalias return call. 2628 static bool isAllocDisjoint(const Value *V) { 2629 // For allocas, we consider only static ones (dynamic 2630 // allocas might be transformed into calls to malloc not simultaneously 2631 // live with the compared-to allocation). For globals, we exclude symbols 2632 // that might be resolve lazily to symbols in another dynamically-loaded 2633 // library (and, thus, could be malloc'ed by the implementation). 2634 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2635 return AI->isStaticAlloca(); 2636 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2637 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2638 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2639 !GV->isThreadLocal(); 2640 if (const Argument *A = dyn_cast<Argument>(V)) 2641 return A->hasByValAttr(); 2642 return false; 2643 } 2644 2645 /// Return true if V1 and V2 are each the base of some distict storage region 2646 /// [V, object_size(V)] which do not overlap. Note that zero sized regions 2647 /// *are* possible, and that zero sized regions do not overlap with any other. 2648 static bool haveNonOverlappingStorage(const Value *V1, const Value *V2) { 2649 // Global variables always exist, so they always exist during the lifetime 2650 // of each other and all allocas. Global variables themselves usually have 2651 // non-overlapping storage, but since their addresses are constants, the 2652 // case involving two globals does not reach here and is instead handled in 2653 // constant folding. 2654 // 2655 // Two different allocas usually have different addresses... 2656 // 2657 // However, if there's an @llvm.stackrestore dynamically in between two 2658 // allocas, they may have the same address. It's tempting to reduce the 2659 // scope of the problem by only looking at *static* allocas here. That would 2660 // cover the majority of allocas while significantly reducing the likelihood 2661 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2662 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2663 // an entry block. Also, if we have a block that's not attached to a 2664 // function, we can't tell if it's "static" under the current definition. 2665 // Theoretically, this problem could be fixed by creating a new kind of 2666 // instruction kind specifically for static allocas. Such a new instruction 2667 // could be required to be at the top of the entry block, thus preventing it 2668 // from being subject to a @llvm.stackrestore. Instcombine could even 2669 // convert regular allocas into these special allocas. It'd be nifty. 2670 // However, until then, this problem remains open. 2671 // 2672 // So, we'll assume that two non-empty allocas have different addresses 2673 // for now. 2674 auto isByValArg = [](const Value *V) { 2675 const Argument *A = dyn_cast<Argument>(V); 2676 return A && A->hasByValAttr(); 2677 }; 2678 2679 // Byval args are backed by store which does not overlap with each other, 2680 // allocas, or globals. 2681 if (isByValArg(V1)) 2682 return isa<AllocaInst>(V2) || isa<GlobalVariable>(V2) || isByValArg(V2); 2683 if (isByValArg(V2)) 2684 return isa<AllocaInst>(V1) || isa<GlobalVariable>(V1) || isByValArg(V1); 2685 2686 return isa<AllocaInst>(V1) && 2687 (isa<AllocaInst>(V2) || isa<GlobalVariable>(V2)); 2688 } 2689 2690 // A significant optimization not implemented here is assuming that alloca 2691 // addresses are not equal to incoming argument values. They don't *alias*, 2692 // as we say, but that doesn't mean they aren't equal, so we take a 2693 // conservative approach. 2694 // 2695 // This is inspired in part by C++11 5.10p1: 2696 // "Two pointers of the same type compare equal if and only if they are both 2697 // null, both point to the same function, or both represent the same 2698 // address." 2699 // 2700 // This is pretty permissive. 2701 // 2702 // It's also partly due to C11 6.5.9p6: 2703 // "Two pointers compare equal if and only if both are null pointers, both are 2704 // pointers to the same object (including a pointer to an object and a 2705 // subobject at its beginning) or function, both are pointers to one past the 2706 // last element of the same array object, or one is a pointer to one past the 2707 // end of one array object and the other is a pointer to the start of a 2708 // different array object that happens to immediately follow the first array 2709 // object in the address space.) 2710 // 2711 // C11's version is more restrictive, however there's no reason why an argument 2712 // couldn't be a one-past-the-end value for a stack object in the caller and be 2713 // equal to the beginning of a stack object in the callee. 2714 // 2715 // If the C and C++ standards are ever made sufficiently restrictive in this 2716 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2717 // this optimization. 2718 static Constant *computePointerICmp(CmpInst::Predicate Pred, Value *LHS, 2719 Value *RHS, const SimplifyQuery &Q) { 2720 assert(LHS->getType() == RHS->getType() && "Must have same types"); 2721 const DataLayout &DL = Q.DL; 2722 const TargetLibraryInfo *TLI = Q.TLI; 2723 const DominatorTree *DT = Q.DT; 2724 const Instruction *CxtI = Q.CxtI; 2725 const InstrInfoQuery &IIQ = Q.IIQ; 2726 2727 // A non-null pointer is not equal to a null pointer. 2728 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && 2729 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2730 IIQ.UseInstrInfo)) 2731 return ConstantInt::get(getCompareTy(LHS), !CmpInst::isTrueWhenEqual(Pred)); 2732 2733 // We can only fold certain predicates on pointer comparisons. 2734 switch (Pred) { 2735 default: 2736 return nullptr; 2737 2738 // Equality comparisons are easy to fold. 2739 case CmpInst::ICMP_EQ: 2740 case CmpInst::ICMP_NE: 2741 break; 2742 2743 // We can only handle unsigned relational comparisons because 'inbounds' on 2744 // a GEP only protects against unsigned wrapping. 2745 case CmpInst::ICMP_UGT: 2746 case CmpInst::ICMP_UGE: 2747 case CmpInst::ICMP_ULT: 2748 case CmpInst::ICMP_ULE: 2749 // However, we have to switch them to their signed variants to handle 2750 // negative indices from the base pointer. 2751 Pred = ICmpInst::getSignedPredicate(Pred); 2752 break; 2753 } 2754 2755 // Strip off any constant offsets so that we can reason about them. 2756 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2757 // here and compare base addresses like AliasAnalysis does, however there are 2758 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2759 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2760 // doesn't need to guarantee pointer inequality when it says NoAlias. 2761 2762 // Even if an non-inbounds GEP occurs along the path we can still optimize 2763 // equality comparisons concerning the result. 2764 bool AllowNonInbounds = ICmpInst::isEquality(Pred); 2765 unsigned IndexSize = DL.getIndexTypeSizeInBits(LHS->getType()); 2766 APInt LHSOffset(IndexSize, 0), RHSOffset(IndexSize, 0); 2767 LHS = LHS->stripAndAccumulateConstantOffsets(DL, LHSOffset, AllowNonInbounds); 2768 RHS = RHS->stripAndAccumulateConstantOffsets(DL, RHSOffset, AllowNonInbounds); 2769 2770 // If LHS and RHS are related via constant offsets to the same base 2771 // value, we can replace it with an icmp which just compares the offsets. 2772 if (LHS == RHS) 2773 return ConstantInt::get(getCompareTy(LHS), 2774 ICmpInst::compare(LHSOffset, RHSOffset, Pred)); 2775 2776 // Various optimizations for (in)equality comparisons. 2777 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2778 // Different non-empty allocations that exist at the same time have 2779 // different addresses (if the program can tell). If the offsets are 2780 // within the bounds of their allocations (and not one-past-the-end! 2781 // so we can't use inbounds!), and their allocations aren't the same, 2782 // the pointers are not equal. 2783 if (haveNonOverlappingStorage(LHS, RHS)) { 2784 uint64_t LHSSize, RHSSize; 2785 ObjectSizeOpts Opts; 2786 Opts.EvalMode = ObjectSizeOpts::Mode::Min; 2787 auto *F = [](Value *V) -> Function * { 2788 if (auto *I = dyn_cast<Instruction>(V)) 2789 return I->getFunction(); 2790 if (auto *A = dyn_cast<Argument>(V)) 2791 return A->getParent(); 2792 return nullptr; 2793 }(LHS); 2794 Opts.NullIsUnknownSize = F ? NullPointerIsDefined(F) : true; 2795 if (getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2796 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2797 APInt Dist = LHSOffset - RHSOffset; 2798 if (Dist.isNonNegative() ? Dist.ult(LHSSize) : (-Dist).ult(RHSSize)) 2799 return ConstantInt::get(getCompareTy(LHS), 2800 !CmpInst::isTrueWhenEqual(Pred)); 2801 } 2802 } 2803 2804 // If one side of the equality comparison must come from a noalias call 2805 // (meaning a system memory allocation function), and the other side must 2806 // come from a pointer that cannot overlap with dynamically-allocated 2807 // memory within the lifetime of the current function (allocas, byval 2808 // arguments, globals), then determine the comparison result here. 2809 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2810 getUnderlyingObjects(LHS, LHSUObjs); 2811 getUnderlyingObjects(RHS, RHSUObjs); 2812 2813 // Is the set of underlying objects all noalias calls? 2814 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2815 return all_of(Objects, isNoAliasCall); 2816 }; 2817 2818 // Is the set of underlying objects all things which must be disjoint from 2819 // noalias calls. We assume that indexing from such disjoint storage 2820 // into the heap is undefined, and thus offsets can be safely ignored. 2821 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2822 return all_of(Objects, ::isAllocDisjoint); 2823 }; 2824 2825 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2826 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2827 return ConstantInt::get(getCompareTy(LHS), 2828 !CmpInst::isTrueWhenEqual(Pred)); 2829 2830 // Fold comparisons for non-escaping pointer even if the allocation call 2831 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2832 // dynamic allocation call could be either of the operands. Note that 2833 // the other operand can not be based on the alloc - if it were, then 2834 // the cmp itself would be a capture. 2835 Value *MI = nullptr; 2836 if (isAllocLikeFn(LHS, TLI) && 2837 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2838 MI = LHS; 2839 else if (isAllocLikeFn(RHS, TLI) && 2840 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2841 MI = RHS; 2842 if (MI) { 2843 // FIXME: This is incorrect, see PR54002. While we can assume that the 2844 // allocation is at an address that makes the comparison false, this 2845 // requires that *all* comparisons to that address be false, which 2846 // InstSimplify cannot guarantee. 2847 struct CustomCaptureTracker : public CaptureTracker { 2848 bool Captured = false; 2849 void tooManyUses() override { Captured = true; } 2850 bool captured(const Use *U) override { 2851 if (auto *ICmp = dyn_cast<ICmpInst>(U->getUser())) { 2852 // Comparison against value stored in global variable. Given the 2853 // pointer does not escape, its value cannot be guessed and stored 2854 // separately in a global variable. 2855 unsigned OtherIdx = 1 - U->getOperandNo(); 2856 auto *LI = dyn_cast<LoadInst>(ICmp->getOperand(OtherIdx)); 2857 if (LI && isa<GlobalVariable>(LI->getPointerOperand())) 2858 return false; 2859 } 2860 2861 Captured = true; 2862 return true; 2863 } 2864 }; 2865 CustomCaptureTracker Tracker; 2866 PointerMayBeCaptured(MI, &Tracker); 2867 if (!Tracker.Captured) 2868 return ConstantInt::get(getCompareTy(LHS), 2869 CmpInst::isFalseWhenEqual(Pred)); 2870 } 2871 } 2872 2873 // Otherwise, fail. 2874 return nullptr; 2875 } 2876 2877 /// Fold an icmp when its operands have i1 scalar type. 2878 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2879 Value *RHS, const SimplifyQuery &Q) { 2880 Type *ITy = getCompareTy(LHS); // The return type. 2881 Type *OpTy = LHS->getType(); // The operand type. 2882 if (!OpTy->isIntOrIntVectorTy(1)) 2883 return nullptr; 2884 2885 // A boolean compared to true/false can be reduced in 14 out of the 20 2886 // (10 predicates * 2 constants) possible combinations. The other 2887 // 6 cases require a 'not' of the LHS. 2888 2889 auto ExtractNotLHS = [](Value *V) -> Value * { 2890 Value *X; 2891 if (match(V, m_Not(m_Value(X)))) 2892 return X; 2893 return nullptr; 2894 }; 2895 2896 if (match(RHS, m_Zero())) { 2897 switch (Pred) { 2898 case CmpInst::ICMP_NE: // X != 0 -> X 2899 case CmpInst::ICMP_UGT: // X >u 0 -> X 2900 case CmpInst::ICMP_SLT: // X <s 0 -> X 2901 return LHS; 2902 2903 case CmpInst::ICMP_EQ: // not(X) == 0 -> X != 0 -> X 2904 case CmpInst::ICMP_ULE: // not(X) <=u 0 -> X >u 0 -> X 2905 case CmpInst::ICMP_SGE: // not(X) >=s 0 -> X <s 0 -> X 2906 if (Value *X = ExtractNotLHS(LHS)) 2907 return X; 2908 break; 2909 2910 case CmpInst::ICMP_ULT: // X <u 0 -> false 2911 case CmpInst::ICMP_SGT: // X >s 0 -> false 2912 return getFalse(ITy); 2913 2914 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2915 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2916 return getTrue(ITy); 2917 2918 default: 2919 break; 2920 } 2921 } else if (match(RHS, m_One())) { 2922 switch (Pred) { 2923 case CmpInst::ICMP_EQ: // X == 1 -> X 2924 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2925 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2926 return LHS; 2927 2928 case CmpInst::ICMP_NE: // not(X) != 1 -> X == 1 -> X 2929 case CmpInst::ICMP_ULT: // not(X) <=u 1 -> X >=u 1 -> X 2930 case CmpInst::ICMP_SGT: // not(X) >s 1 -> X <=s -1 -> X 2931 if (Value *X = ExtractNotLHS(LHS)) 2932 return X; 2933 break; 2934 2935 case CmpInst::ICMP_UGT: // X >u 1 -> false 2936 case CmpInst::ICMP_SLT: // X <s -1 -> false 2937 return getFalse(ITy); 2938 2939 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2940 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2941 return getTrue(ITy); 2942 2943 default: 2944 break; 2945 } 2946 } 2947 2948 switch (Pred) { 2949 default: 2950 break; 2951 case ICmpInst::ICMP_UGE: 2952 if (isImpliedCondition(RHS, LHS, Q.DL).value_or(false)) 2953 return getTrue(ITy); 2954 break; 2955 case ICmpInst::ICMP_SGE: 2956 /// For signed comparison, the values for an i1 are 0 and -1 2957 /// respectively. This maps into a truth table of: 2958 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2959 /// 0 | 0 | 1 (0 >= 0) | 1 2960 /// 0 | 1 | 1 (0 >= -1) | 1 2961 /// 1 | 0 | 0 (-1 >= 0) | 0 2962 /// 1 | 1 | 1 (-1 >= -1) | 1 2963 if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false)) 2964 return getTrue(ITy); 2965 break; 2966 case ICmpInst::ICMP_ULE: 2967 if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false)) 2968 return getTrue(ITy); 2969 break; 2970 case ICmpInst::ICMP_SLE: 2971 /// SLE follows the same logic as SGE with the LHS and RHS swapped. 2972 if (isImpliedCondition(RHS, LHS, Q.DL).value_or(false)) 2973 return getTrue(ITy); 2974 break; 2975 } 2976 2977 return nullptr; 2978 } 2979 2980 /// Try hard to fold icmp with zero RHS because this is a common case. 2981 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2982 Value *RHS, const SimplifyQuery &Q) { 2983 if (!match(RHS, m_Zero())) 2984 return nullptr; 2985 2986 Type *ITy = getCompareTy(LHS); // The return type. 2987 switch (Pred) { 2988 default: 2989 llvm_unreachable("Unknown ICmp predicate!"); 2990 case ICmpInst::ICMP_ULT: 2991 return getFalse(ITy); 2992 case ICmpInst::ICMP_UGE: 2993 return getTrue(ITy); 2994 case ICmpInst::ICMP_EQ: 2995 case ICmpInst::ICMP_ULE: 2996 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2997 return getFalse(ITy); 2998 break; 2999 case ICmpInst::ICMP_NE: 3000 case ICmpInst::ICMP_UGT: 3001 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 3002 return getTrue(ITy); 3003 break; 3004 case ICmpInst::ICMP_SLT: { 3005 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3006 if (LHSKnown.isNegative()) 3007 return getTrue(ITy); 3008 if (LHSKnown.isNonNegative()) 3009 return getFalse(ITy); 3010 break; 3011 } 3012 case ICmpInst::ICMP_SLE: { 3013 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3014 if (LHSKnown.isNegative()) 3015 return getTrue(ITy); 3016 if (LHSKnown.isNonNegative() && 3017 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 3018 return getFalse(ITy); 3019 break; 3020 } 3021 case ICmpInst::ICMP_SGE: { 3022 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3023 if (LHSKnown.isNegative()) 3024 return getFalse(ITy); 3025 if (LHSKnown.isNonNegative()) 3026 return getTrue(ITy); 3027 break; 3028 } 3029 case ICmpInst::ICMP_SGT: { 3030 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3031 if (LHSKnown.isNegative()) 3032 return getFalse(ITy); 3033 if (LHSKnown.isNonNegative() && 3034 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 3035 return getTrue(ITy); 3036 break; 3037 } 3038 } 3039 3040 return nullptr; 3041 } 3042 3043 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 3044 Value *RHS, const InstrInfoQuery &IIQ) { 3045 Type *ITy = getCompareTy(RHS); // The return type. 3046 3047 Value *X; 3048 // Sign-bit checks can be optimized to true/false after unsigned 3049 // floating-point casts: 3050 // icmp slt (bitcast (uitofp X)), 0 --> false 3051 // icmp sgt (bitcast (uitofp X)), -1 --> true 3052 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 3053 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 3054 return ConstantInt::getFalse(ITy); 3055 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 3056 return ConstantInt::getTrue(ITy); 3057 } 3058 3059 const APInt *C; 3060 if (!match(RHS, m_APIntAllowUndef(C))) 3061 return nullptr; 3062 3063 // Rule out tautological comparisons (eg., ult 0 or uge 0). 3064 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 3065 if (RHS_CR.isEmptySet()) 3066 return ConstantInt::getFalse(ITy); 3067 if (RHS_CR.isFullSet()) 3068 return ConstantInt::getTrue(ITy); 3069 3070 ConstantRange LHS_CR = 3071 computeConstantRange(LHS, CmpInst::isSigned(Pred), IIQ.UseInstrInfo); 3072 if (!LHS_CR.isFullSet()) { 3073 if (RHS_CR.contains(LHS_CR)) 3074 return ConstantInt::getTrue(ITy); 3075 if (RHS_CR.inverse().contains(LHS_CR)) 3076 return ConstantInt::getFalse(ITy); 3077 } 3078 3079 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 3080 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 3081 const APInt *MulC; 3082 if (ICmpInst::isEquality(Pred) && 3083 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && 3084 *MulC != 0 && C->urem(*MulC) != 0) || 3085 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && 3086 *MulC != 0 && C->srem(*MulC) != 0))) 3087 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 3088 3089 return nullptr; 3090 } 3091 3092 static Value *simplifyICmpWithBinOpOnLHS(CmpInst::Predicate Pred, 3093 BinaryOperator *LBO, Value *RHS, 3094 const SimplifyQuery &Q, 3095 unsigned MaxRecurse) { 3096 Type *ITy = getCompareTy(RHS); // The return type. 3097 3098 Value *Y = nullptr; 3099 // icmp pred (or X, Y), X 3100 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 3101 if (Pred == ICmpInst::ICMP_ULT) 3102 return getFalse(ITy); 3103 if (Pred == ICmpInst::ICMP_UGE) 3104 return getTrue(ITy); 3105 3106 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 3107 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3108 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3109 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 3110 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 3111 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 3112 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 3113 } 3114 } 3115 3116 // icmp pred (and X, Y), X 3117 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 3118 if (Pred == ICmpInst::ICMP_UGT) 3119 return getFalse(ITy); 3120 if (Pred == ICmpInst::ICMP_ULE) 3121 return getTrue(ITy); 3122 } 3123 3124 // icmp pred (urem X, Y), Y 3125 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 3126 switch (Pred) { 3127 default: 3128 break; 3129 case ICmpInst::ICMP_SGT: 3130 case ICmpInst::ICMP_SGE: { 3131 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3132 if (!Known.isNonNegative()) 3133 break; 3134 [[fallthrough]]; 3135 } 3136 case ICmpInst::ICMP_EQ: 3137 case ICmpInst::ICMP_UGT: 3138 case ICmpInst::ICMP_UGE: 3139 return getFalse(ITy); 3140 case ICmpInst::ICMP_SLT: 3141 case ICmpInst::ICMP_SLE: { 3142 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 3143 if (!Known.isNonNegative()) 3144 break; 3145 [[fallthrough]]; 3146 } 3147 case ICmpInst::ICMP_NE: 3148 case ICmpInst::ICMP_ULT: 3149 case ICmpInst::ICMP_ULE: 3150 return getTrue(ITy); 3151 } 3152 } 3153 3154 // icmp pred (urem X, Y), X 3155 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 3156 if (Pred == ICmpInst::ICMP_ULE) 3157 return getTrue(ITy); 3158 if (Pred == ICmpInst::ICMP_UGT) 3159 return getFalse(ITy); 3160 } 3161 3162 // x >>u y <=u x --> true. 3163 // x >>u y >u x --> false. 3164 // x udiv y <=u x --> true. 3165 // x udiv y >u x --> false. 3166 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 3167 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 3168 // icmp pred (X op Y), X 3169 if (Pred == ICmpInst::ICMP_UGT) 3170 return getFalse(ITy); 3171 if (Pred == ICmpInst::ICMP_ULE) 3172 return getTrue(ITy); 3173 } 3174 3175 // If x is nonzero: 3176 // x >>u C <u x --> true for C != 0. 3177 // x >>u C != x --> true for C != 0. 3178 // x >>u C >=u x --> false for C != 0. 3179 // x >>u C == x --> false for C != 0. 3180 // x udiv C <u x --> true for C != 1. 3181 // x udiv C != x --> true for C != 1. 3182 // x udiv C >=u x --> false for C != 1. 3183 // x udiv C == x --> false for C != 1. 3184 // TODO: allow non-constant shift amount/divisor 3185 const APInt *C; 3186 if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) || 3187 (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) { 3188 if (isKnownNonZero(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) { 3189 switch (Pred) { 3190 default: 3191 break; 3192 case ICmpInst::ICMP_EQ: 3193 case ICmpInst::ICMP_UGE: 3194 return getFalse(ITy); 3195 case ICmpInst::ICMP_NE: 3196 case ICmpInst::ICMP_ULT: 3197 return getTrue(ITy); 3198 case ICmpInst::ICMP_UGT: 3199 case ICmpInst::ICMP_ULE: 3200 // UGT/ULE are handled by the more general case just above 3201 llvm_unreachable("Unexpected UGT/ULE, should have been handled"); 3202 } 3203 } 3204 } 3205 3206 // (x*C1)/C2 <= x for C1 <= C2. 3207 // This holds even if the multiplication overflows: Assume that x != 0 and 3208 // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and 3209 // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. 3210 // 3211 // Additionally, either the multiplication and division might be represented 3212 // as shifts: 3213 // (x*C1)>>C2 <= x for C1 < 2**C2. 3214 // (x<<C1)/C2 <= x for 2**C1 < C2. 3215 const APInt *C1, *C2; 3216 if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3217 C1->ule(*C2)) || 3218 (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3219 C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) || 3220 (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3221 (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) { 3222 if (Pred == ICmpInst::ICMP_UGT) 3223 return getFalse(ITy); 3224 if (Pred == ICmpInst::ICMP_ULE) 3225 return getTrue(ITy); 3226 } 3227 3228 // (sub C, X) == X, C is odd --> false 3229 // (sub C, X) != X, C is odd --> true 3230 if (match(LBO, m_Sub(m_APIntAllowUndef(C), m_Specific(RHS))) && 3231 (*C & 1) == 1 && ICmpInst::isEquality(Pred)) 3232 return (Pred == ICmpInst::ICMP_EQ) ? getFalse(ITy) : getTrue(ITy); 3233 3234 return nullptr; 3235 } 3236 3237 // If only one of the icmp's operands has NSW flags, try to prove that: 3238 // 3239 // icmp slt (x + C1), (x +nsw C2) 3240 // 3241 // is equivalent to: 3242 // 3243 // icmp slt C1, C2 3244 // 3245 // which is true if x + C2 has the NSW flags set and: 3246 // *) C1 < C2 && C1 >= 0, or 3247 // *) C2 < C1 && C1 <= 0. 3248 // 3249 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, 3250 Value *RHS) { 3251 // TODO: only support icmp slt for now. 3252 if (Pred != CmpInst::ICMP_SLT) 3253 return false; 3254 3255 // Canonicalize nsw add as RHS. 3256 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3257 std::swap(LHS, RHS); 3258 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3259 return false; 3260 3261 Value *X; 3262 const APInt *C1, *C2; 3263 if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) || 3264 !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2)))) 3265 return false; 3266 3267 return (C1->slt(*C2) && C1->isNonNegative()) || 3268 (C2->slt(*C1) && C1->isNonPositive()); 3269 } 3270 3271 /// TODO: A large part of this logic is duplicated in InstCombine's 3272 /// foldICmpBinOp(). We should be able to share that and avoid the code 3273 /// duplication. 3274 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 3275 Value *RHS, const SimplifyQuery &Q, 3276 unsigned MaxRecurse) { 3277 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 3278 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 3279 if (MaxRecurse && (LBO || RBO)) { 3280 // Analyze the case when either LHS or RHS is an add instruction. 3281 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3282 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 3283 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 3284 if (LBO && LBO->getOpcode() == Instruction::Add) { 3285 A = LBO->getOperand(0); 3286 B = LBO->getOperand(1); 3287 NoLHSWrapProblem = 3288 ICmpInst::isEquality(Pred) || 3289 (CmpInst::isUnsigned(Pred) && 3290 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 3291 (CmpInst::isSigned(Pred) && 3292 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 3293 } 3294 if (RBO && RBO->getOpcode() == Instruction::Add) { 3295 C = RBO->getOperand(0); 3296 D = RBO->getOperand(1); 3297 NoRHSWrapProblem = 3298 ICmpInst::isEquality(Pred) || 3299 (CmpInst::isUnsigned(Pred) && 3300 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 3301 (CmpInst::isSigned(Pred) && 3302 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 3303 } 3304 3305 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3306 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 3307 if (Value *V = simplifyICmpInst(Pred, A == RHS ? B : A, 3308 Constant::getNullValue(RHS->getType()), Q, 3309 MaxRecurse - 1)) 3310 return V; 3311 3312 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3313 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 3314 if (Value *V = 3315 simplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 3316 C == LHS ? D : C, Q, MaxRecurse - 1)) 3317 return V; 3318 3319 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 3320 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || 3321 trySimplifyICmpWithAdds(Pred, LHS, RHS); 3322 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { 3323 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3324 Value *Y, *Z; 3325 if (A == C) { 3326 // C + B == C + D -> B == D 3327 Y = B; 3328 Z = D; 3329 } else if (A == D) { 3330 // D + B == C + D -> B == C 3331 Y = B; 3332 Z = C; 3333 } else if (B == C) { 3334 // A + C == C + D -> A == D 3335 Y = A; 3336 Z = D; 3337 } else { 3338 assert(B == D); 3339 // A + D == C + D -> A == C 3340 Y = A; 3341 Z = C; 3342 } 3343 if (Value *V = simplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 3344 return V; 3345 } 3346 } 3347 3348 if (LBO) 3349 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 3350 return V; 3351 3352 if (RBO) 3353 if (Value *V = simplifyICmpWithBinOpOnLHS( 3354 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 3355 return V; 3356 3357 // 0 - (zext X) pred C 3358 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 3359 const APInt *C; 3360 if (match(RHS, m_APInt(C))) { 3361 if (C->isStrictlyPositive()) { 3362 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) 3363 return ConstantInt::getTrue(getCompareTy(RHS)); 3364 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) 3365 return ConstantInt::getFalse(getCompareTy(RHS)); 3366 } 3367 if (C->isNonNegative()) { 3368 if (Pred == ICmpInst::ICMP_SLE) 3369 return ConstantInt::getTrue(getCompareTy(RHS)); 3370 if (Pred == ICmpInst::ICMP_SGT) 3371 return ConstantInt::getFalse(getCompareTy(RHS)); 3372 } 3373 } 3374 } 3375 3376 // If C2 is a power-of-2 and C is not: 3377 // (C2 << X) == C --> false 3378 // (C2 << X) != C --> true 3379 const APInt *C; 3380 if (match(LHS, m_Shl(m_Power2(), m_Value())) && 3381 match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) { 3382 // C2 << X can equal zero in some circumstances. 3383 // This simplification might be unsafe if C is zero. 3384 // 3385 // We know it is safe if: 3386 // - The shift is nsw. We can't shift out the one bit. 3387 // - The shift is nuw. We can't shift out the one bit. 3388 // - C2 is one. 3389 // - C isn't zero. 3390 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3391 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3392 match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) { 3393 if (Pred == ICmpInst::ICMP_EQ) 3394 return ConstantInt::getFalse(getCompareTy(RHS)); 3395 if (Pred == ICmpInst::ICMP_NE) 3396 return ConstantInt::getTrue(getCompareTy(RHS)); 3397 } 3398 } 3399 3400 // TODO: This is overly constrained. LHS can be any power-of-2. 3401 // (1 << X) >u 0x8000 --> false 3402 // (1 << X) <=u 0x8000 --> true 3403 if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) { 3404 if (Pred == ICmpInst::ICMP_UGT) 3405 return ConstantInt::getFalse(getCompareTy(RHS)); 3406 if (Pred == ICmpInst::ICMP_ULE) 3407 return ConstantInt::getTrue(getCompareTy(RHS)); 3408 } 3409 3410 if (!MaxRecurse || !LBO || !RBO || LBO->getOpcode() != RBO->getOpcode()) 3411 return nullptr; 3412 3413 if (LBO->getOperand(0) == RBO->getOperand(0)) { 3414 switch (LBO->getOpcode()) { 3415 default: 3416 break; 3417 case Instruction::Shl: 3418 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3419 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3420 if (!NUW || (ICmpInst::isSigned(Pred) && !NSW) || 3421 !isKnownNonZero(LBO->getOperand(0), Q.DL)) 3422 break; 3423 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(1), 3424 RBO->getOperand(1), Q, MaxRecurse - 1)) 3425 return V; 3426 } 3427 } 3428 3429 if (LBO->getOperand(1) == RBO->getOperand(1)) { 3430 switch (LBO->getOpcode()) { 3431 default: 3432 break; 3433 case Instruction::UDiv: 3434 case Instruction::LShr: 3435 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3436 !Q.IIQ.isExact(RBO)) 3437 break; 3438 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3439 RBO->getOperand(0), Q, MaxRecurse - 1)) 3440 return V; 3441 break; 3442 case Instruction::SDiv: 3443 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3444 !Q.IIQ.isExact(RBO)) 3445 break; 3446 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3447 RBO->getOperand(0), Q, MaxRecurse - 1)) 3448 return V; 3449 break; 3450 case Instruction::AShr: 3451 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3452 break; 3453 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3454 RBO->getOperand(0), Q, MaxRecurse - 1)) 3455 return V; 3456 break; 3457 case Instruction::Shl: { 3458 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3459 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3460 if (!NUW && !NSW) 3461 break; 3462 if (!NSW && ICmpInst::isSigned(Pred)) 3463 break; 3464 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3465 RBO->getOperand(0), Q, MaxRecurse - 1)) 3466 return V; 3467 break; 3468 } 3469 } 3470 } 3471 return nullptr; 3472 } 3473 3474 /// simplify integer comparisons where at least one operand of the compare 3475 /// matches an integer min/max idiom. 3476 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3477 Value *RHS, const SimplifyQuery &Q, 3478 unsigned MaxRecurse) { 3479 Type *ITy = getCompareTy(LHS); // The return type. 3480 Value *A, *B; 3481 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3482 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3483 3484 // Signed variants on "max(a,b)>=a -> true". 3485 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3486 if (A != RHS) 3487 std::swap(A, B); // smax(A, B) pred A. 3488 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3489 // We analyze this as smax(A, B) pred A. 3490 P = Pred; 3491 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3492 (A == LHS || B == LHS)) { 3493 if (A != LHS) 3494 std::swap(A, B); // A pred smax(A, B). 3495 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3496 // We analyze this as smax(A, B) swapped-pred A. 3497 P = CmpInst::getSwappedPredicate(Pred); 3498 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3499 (A == RHS || B == RHS)) { 3500 if (A != RHS) 3501 std::swap(A, B); // smin(A, B) pred A. 3502 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3503 // We analyze this as smax(-A, -B) swapped-pred -A. 3504 // Note that we do not need to actually form -A or -B thanks to EqP. 3505 P = CmpInst::getSwappedPredicate(Pred); 3506 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3507 (A == LHS || B == LHS)) { 3508 if (A != LHS) 3509 std::swap(A, B); // A pred smin(A, B). 3510 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3511 // We analyze this as smax(-A, -B) pred -A. 3512 // Note that we do not need to actually form -A or -B thanks to EqP. 3513 P = Pred; 3514 } 3515 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3516 // Cases correspond to "max(A, B) p A". 3517 switch (P) { 3518 default: 3519 break; 3520 case CmpInst::ICMP_EQ: 3521 case CmpInst::ICMP_SLE: 3522 // Equivalent to "A EqP B". This may be the same as the condition tested 3523 // in the max/min; if so, we can just return that. 3524 if (Value *V = extractEquivalentCondition(LHS, EqP, A, B)) 3525 return V; 3526 if (Value *V = extractEquivalentCondition(RHS, EqP, A, B)) 3527 return V; 3528 // Otherwise, see if "A EqP B" simplifies. 3529 if (MaxRecurse) 3530 if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3531 return V; 3532 break; 3533 case CmpInst::ICMP_NE: 3534 case CmpInst::ICMP_SGT: { 3535 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3536 // Equivalent to "A InvEqP B". This may be the same as the condition 3537 // tested in the max/min; if so, we can just return that. 3538 if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B)) 3539 return V; 3540 if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B)) 3541 return V; 3542 // Otherwise, see if "A InvEqP B" simplifies. 3543 if (MaxRecurse) 3544 if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3545 return V; 3546 break; 3547 } 3548 case CmpInst::ICMP_SGE: 3549 // Always true. 3550 return getTrue(ITy); 3551 case CmpInst::ICMP_SLT: 3552 // Always false. 3553 return getFalse(ITy); 3554 } 3555 } 3556 3557 // Unsigned variants on "max(a,b)>=a -> true". 3558 P = CmpInst::BAD_ICMP_PREDICATE; 3559 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3560 if (A != RHS) 3561 std::swap(A, B); // umax(A, B) pred A. 3562 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3563 // We analyze this as umax(A, B) pred A. 3564 P = Pred; 3565 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3566 (A == LHS || B == LHS)) { 3567 if (A != LHS) 3568 std::swap(A, B); // A pred umax(A, B). 3569 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3570 // We analyze this as umax(A, B) swapped-pred A. 3571 P = CmpInst::getSwappedPredicate(Pred); 3572 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3573 (A == RHS || B == RHS)) { 3574 if (A != RHS) 3575 std::swap(A, B); // umin(A, B) pred A. 3576 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3577 // We analyze this as umax(-A, -B) swapped-pred -A. 3578 // Note that we do not need to actually form -A or -B thanks to EqP. 3579 P = CmpInst::getSwappedPredicate(Pred); 3580 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3581 (A == LHS || B == LHS)) { 3582 if (A != LHS) 3583 std::swap(A, B); // A pred umin(A, B). 3584 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3585 // We analyze this as umax(-A, -B) pred -A. 3586 // Note that we do not need to actually form -A or -B thanks to EqP. 3587 P = Pred; 3588 } 3589 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3590 // Cases correspond to "max(A, B) p A". 3591 switch (P) { 3592 default: 3593 break; 3594 case CmpInst::ICMP_EQ: 3595 case CmpInst::ICMP_ULE: 3596 // Equivalent to "A EqP B". This may be the same as the condition tested 3597 // in the max/min; if so, we can just return that. 3598 if (Value *V = extractEquivalentCondition(LHS, EqP, A, B)) 3599 return V; 3600 if (Value *V = extractEquivalentCondition(RHS, EqP, A, B)) 3601 return V; 3602 // Otherwise, see if "A EqP B" simplifies. 3603 if (MaxRecurse) 3604 if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3605 return V; 3606 break; 3607 case CmpInst::ICMP_NE: 3608 case CmpInst::ICMP_UGT: { 3609 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3610 // Equivalent to "A InvEqP B". This may be the same as the condition 3611 // tested in the max/min; if so, we can just return that. 3612 if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B)) 3613 return V; 3614 if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B)) 3615 return V; 3616 // Otherwise, see if "A InvEqP B" simplifies. 3617 if (MaxRecurse) 3618 if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3619 return V; 3620 break; 3621 } 3622 case CmpInst::ICMP_UGE: 3623 return getTrue(ITy); 3624 case CmpInst::ICMP_ULT: 3625 return getFalse(ITy); 3626 } 3627 } 3628 3629 // Comparing 1 each of min/max with a common operand? 3630 // Canonicalize min operand to RHS. 3631 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3632 match(LHS, m_SMin(m_Value(), m_Value()))) { 3633 std::swap(LHS, RHS); 3634 Pred = ICmpInst::getSwappedPredicate(Pred); 3635 } 3636 3637 Value *C, *D; 3638 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3639 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3640 (A == C || A == D || B == C || B == D)) { 3641 // smax(A, B) >=s smin(A, D) --> true 3642 if (Pred == CmpInst::ICMP_SGE) 3643 return getTrue(ITy); 3644 // smax(A, B) <s smin(A, D) --> false 3645 if (Pred == CmpInst::ICMP_SLT) 3646 return getFalse(ITy); 3647 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3648 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3649 (A == C || A == D || B == C || B == D)) { 3650 // umax(A, B) >=u umin(A, D) --> true 3651 if (Pred == CmpInst::ICMP_UGE) 3652 return getTrue(ITy); 3653 // umax(A, B) <u umin(A, D) --> false 3654 if (Pred == CmpInst::ICMP_ULT) 3655 return getFalse(ITy); 3656 } 3657 3658 return nullptr; 3659 } 3660 3661 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3662 Value *LHS, Value *RHS, 3663 const SimplifyQuery &Q) { 3664 // Gracefully handle instructions that have not been inserted yet. 3665 if (!Q.AC || !Q.CxtI) 3666 return nullptr; 3667 3668 for (Value *AssumeBaseOp : {LHS, RHS}) { 3669 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3670 if (!AssumeVH) 3671 continue; 3672 3673 CallInst *Assume = cast<CallInst>(AssumeVH); 3674 if (std::optional<bool> Imp = isImpliedCondition( 3675 Assume->getArgOperand(0), Predicate, LHS, RHS, Q.DL)) 3676 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3677 return ConstantInt::get(getCompareTy(LHS), *Imp); 3678 } 3679 } 3680 3681 return nullptr; 3682 } 3683 3684 static Value *simplifyICmpWithIntrinsicOnLHS(CmpInst::Predicate Pred, 3685 Value *LHS, Value *RHS) { 3686 auto *II = dyn_cast<IntrinsicInst>(LHS); 3687 if (!II) 3688 return nullptr; 3689 3690 switch (II->getIntrinsicID()) { 3691 case Intrinsic::uadd_sat: 3692 // uadd.sat(X, Y) uge X, uadd.sat(X, Y) uge Y 3693 if (II->getArgOperand(0) == RHS || II->getArgOperand(1) == RHS) { 3694 if (Pred == ICmpInst::ICMP_UGE) 3695 return ConstantInt::getTrue(getCompareTy(II)); 3696 if (Pred == ICmpInst::ICMP_ULT) 3697 return ConstantInt::getFalse(getCompareTy(II)); 3698 } 3699 return nullptr; 3700 case Intrinsic::usub_sat: 3701 // usub.sat(X, Y) ule X 3702 if (II->getArgOperand(0) == RHS) { 3703 if (Pred == ICmpInst::ICMP_ULE) 3704 return ConstantInt::getTrue(getCompareTy(II)); 3705 if (Pred == ICmpInst::ICMP_UGT) 3706 return ConstantInt::getFalse(getCompareTy(II)); 3707 } 3708 return nullptr; 3709 default: 3710 return nullptr; 3711 } 3712 } 3713 3714 /// Given operands for an ICmpInst, see if we can fold the result. 3715 /// If not, this returns null. 3716 static Value *simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3717 const SimplifyQuery &Q, unsigned MaxRecurse) { 3718 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3719 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3720 3721 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3722 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3723 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3724 3725 // If we have a constant, make sure it is on the RHS. 3726 std::swap(LHS, RHS); 3727 Pred = CmpInst::getSwappedPredicate(Pred); 3728 } 3729 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3730 3731 Type *ITy = getCompareTy(LHS); // The return type. 3732 3733 // icmp poison, X -> poison 3734 if (isa<PoisonValue>(RHS)) 3735 return PoisonValue::get(ITy); 3736 3737 // For EQ and NE, we can always pick a value for the undef to make the 3738 // predicate pass or fail, so we can return undef. 3739 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3740 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3741 return UndefValue::get(ITy); 3742 3743 // icmp X, X -> true/false 3744 // icmp X, undef -> true/false because undef could be X. 3745 if (LHS == RHS || Q.isUndefValue(RHS)) 3746 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3747 3748 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3749 return V; 3750 3751 // TODO: Sink/common this with other potentially expensive calls that use 3752 // ValueTracking? See comment below for isKnownNonEqual(). 3753 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3754 return V; 3755 3756 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3757 return V; 3758 3759 // If both operands have range metadata, use the metadata 3760 // to simplify the comparison. 3761 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3762 auto RHS_Instr = cast<Instruction>(RHS); 3763 auto LHS_Instr = cast<Instruction>(LHS); 3764 3765 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3766 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3767 auto RHS_CR = getConstantRangeFromMetadata( 3768 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3769 auto LHS_CR = getConstantRangeFromMetadata( 3770 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3771 3772 if (LHS_CR.icmp(Pred, RHS_CR)) 3773 return ConstantInt::getTrue(RHS->getContext()); 3774 3775 if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR)) 3776 return ConstantInt::getFalse(RHS->getContext()); 3777 } 3778 } 3779 3780 // Compare of cast, for example (zext X) != 0 -> X != 0 3781 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3782 Instruction *LI = cast<CastInst>(LHS); 3783 Value *SrcOp = LI->getOperand(0); 3784 Type *SrcTy = SrcOp->getType(); 3785 Type *DstTy = LI->getType(); 3786 3787 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3788 // if the integer type is the same size as the pointer type. 3789 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3790 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3791 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3792 // Transfer the cast to the constant. 3793 if (Value *V = simplifyICmpInst(Pred, SrcOp, 3794 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3795 Q, MaxRecurse - 1)) 3796 return V; 3797 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3798 if (RI->getOperand(0)->getType() == SrcTy) 3799 // Compare without the cast. 3800 if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q, 3801 MaxRecurse - 1)) 3802 return V; 3803 } 3804 } 3805 3806 if (isa<ZExtInst>(LHS)) { 3807 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3808 // same type. 3809 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3810 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3811 // Compare X and Y. Note that signed predicates become unsigned. 3812 if (Value *V = 3813 simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), SrcOp, 3814 RI->getOperand(0), Q, MaxRecurse - 1)) 3815 return V; 3816 } 3817 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3818 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3819 if (SrcOp == RI->getOperand(0)) { 3820 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3821 return ConstantInt::getTrue(ITy); 3822 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3823 return ConstantInt::getFalse(ITy); 3824 } 3825 } 3826 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3827 // too. If not, then try to deduce the result of the comparison. 3828 else if (match(RHS, m_ImmConstant())) { 3829 Constant *C = dyn_cast<Constant>(RHS); 3830 assert(C != nullptr); 3831 3832 // Compute the constant that would happen if we truncated to SrcTy then 3833 // reextended to DstTy. 3834 Constant *Trunc = ConstantExpr::getTrunc(C, SrcTy); 3835 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3836 Constant *AnyEq = ConstantExpr::getICmp(ICmpInst::ICMP_EQ, RExt, C); 3837 3838 // If the re-extended constant didn't change any of the elements then 3839 // this is effectively also a case of comparing two zero-extended 3840 // values. 3841 if (AnyEq->isAllOnesValue() && MaxRecurse) 3842 if (Value *V = simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3843 SrcOp, Trunc, Q, MaxRecurse - 1)) 3844 return V; 3845 3846 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3847 // there. Use this to work out the result of the comparison. 3848 if (AnyEq->isNullValue()) { 3849 switch (Pred) { 3850 default: 3851 llvm_unreachable("Unknown ICmp predicate!"); 3852 // LHS <u RHS. 3853 case ICmpInst::ICMP_EQ: 3854 case ICmpInst::ICMP_UGT: 3855 case ICmpInst::ICMP_UGE: 3856 return Constant::getNullValue(ITy); 3857 3858 case ICmpInst::ICMP_NE: 3859 case ICmpInst::ICMP_ULT: 3860 case ICmpInst::ICMP_ULE: 3861 return Constant::getAllOnesValue(ITy); 3862 3863 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3864 // is non-negative then LHS <s RHS. 3865 case ICmpInst::ICMP_SGT: 3866 case ICmpInst::ICMP_SGE: 3867 return ConstantExpr::getICmp(ICmpInst::ICMP_SLT, C, 3868 Constant::getNullValue(C->getType())); 3869 case ICmpInst::ICMP_SLT: 3870 case ICmpInst::ICMP_SLE: 3871 return ConstantExpr::getICmp(ICmpInst::ICMP_SGE, C, 3872 Constant::getNullValue(C->getType())); 3873 } 3874 } 3875 } 3876 } 3877 3878 if (isa<SExtInst>(LHS)) { 3879 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3880 // same type. 3881 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3882 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3883 // Compare X and Y. Note that the predicate does not change. 3884 if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q, 3885 MaxRecurse - 1)) 3886 return V; 3887 } 3888 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3889 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3890 if (SrcOp == RI->getOperand(0)) { 3891 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3892 return ConstantInt::getTrue(ITy); 3893 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3894 return ConstantInt::getFalse(ITy); 3895 } 3896 } 3897 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3898 // too. If not, then try to deduce the result of the comparison. 3899 else if (match(RHS, m_ImmConstant())) { 3900 Constant *C = dyn_cast<Constant>(RHS); 3901 assert(C != nullptr); 3902 3903 // Compute the constant that would happen if we truncated to SrcTy then 3904 // reextended to DstTy. 3905 Constant *Trunc = ConstantExpr::getTrunc(C, SrcTy); 3906 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3907 Constant *AnyEq = ConstantExpr::getICmp(ICmpInst::ICMP_EQ, RExt, C); 3908 3909 // If the re-extended constant didn't change then this is effectively 3910 // also a case of comparing two sign-extended values. 3911 if (AnyEq->isAllOnesValue() && MaxRecurse) 3912 if (Value *V = 3913 simplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse - 1)) 3914 return V; 3915 3916 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3917 // bits there. Use this to work out the result of the comparison. 3918 if (AnyEq->isNullValue()) { 3919 switch (Pred) { 3920 default: 3921 llvm_unreachable("Unknown ICmp predicate!"); 3922 case ICmpInst::ICMP_EQ: 3923 return Constant::getNullValue(ITy); 3924 case ICmpInst::ICMP_NE: 3925 return Constant::getAllOnesValue(ITy); 3926 3927 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3928 // LHS >s RHS. 3929 case ICmpInst::ICMP_SGT: 3930 case ICmpInst::ICMP_SGE: 3931 return ConstantExpr::getICmp(ICmpInst::ICMP_SLT, C, 3932 Constant::getNullValue(C->getType())); 3933 case ICmpInst::ICMP_SLT: 3934 case ICmpInst::ICMP_SLE: 3935 return ConstantExpr::getICmp(ICmpInst::ICMP_SGE, C, 3936 Constant::getNullValue(C->getType())); 3937 3938 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3939 // LHS >u RHS. 3940 case ICmpInst::ICMP_UGT: 3941 case ICmpInst::ICMP_UGE: 3942 // Comparison is true iff the LHS <s 0. 3943 if (MaxRecurse) 3944 if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3945 Constant::getNullValue(SrcTy), Q, 3946 MaxRecurse - 1)) 3947 return V; 3948 break; 3949 case ICmpInst::ICMP_ULT: 3950 case ICmpInst::ICMP_ULE: 3951 // Comparison is true iff the LHS >=s 0. 3952 if (MaxRecurse) 3953 if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3954 Constant::getNullValue(SrcTy), Q, 3955 MaxRecurse - 1)) 3956 return V; 3957 break; 3958 } 3959 } 3960 } 3961 } 3962 } 3963 3964 // icmp eq|ne X, Y -> false|true if X != Y 3965 // This is potentially expensive, and we have already computedKnownBits for 3966 // compares with 0 above here, so only try this for a non-zero compare. 3967 if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) && 3968 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3969 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3970 } 3971 3972 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3973 return V; 3974 3975 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3976 return V; 3977 3978 if (Value *V = simplifyICmpWithIntrinsicOnLHS(Pred, LHS, RHS)) 3979 return V; 3980 if (Value *V = simplifyICmpWithIntrinsicOnLHS( 3981 ICmpInst::getSwappedPredicate(Pred), RHS, LHS)) 3982 return V; 3983 3984 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3985 return V; 3986 3987 if (std::optional<bool> Res = 3988 isImpliedByDomCondition(Pred, LHS, RHS, Q.CxtI, Q.DL)) 3989 return ConstantInt::getBool(ITy, *Res); 3990 3991 // Simplify comparisons of related pointers using a powerful, recursive 3992 // GEP-walk when we have target data available.. 3993 if (LHS->getType()->isPointerTy()) 3994 if (auto *C = computePointerICmp(Pred, LHS, RHS, Q)) 3995 return C; 3996 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3997 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3998 if (CLHS->getPointerOperandType() == CRHS->getPointerOperandType() && 3999 Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 4000 Q.DL.getTypeSizeInBits(CLHS->getType())) 4001 if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(), 4002 CRHS->getPointerOperand(), Q)) 4003 return C; 4004 4005 // If the comparison is with the result of a select instruction, check whether 4006 // comparing with either branch of the select always yields the same value. 4007 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 4008 if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 4009 return V; 4010 4011 // If the comparison is with the result of a phi instruction, check whether 4012 // doing the compare with each incoming phi value yields a common result. 4013 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 4014 if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 4015 return V; 4016 4017 return nullptr; 4018 } 4019 4020 Value *llvm::simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4021 const SimplifyQuery &Q) { 4022 return ::simplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 4023 } 4024 4025 /// Given operands for an FCmpInst, see if we can fold the result. 4026 /// If not, this returns null. 4027 static Value *simplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4028 FastMathFlags FMF, const SimplifyQuery &Q, 4029 unsigned MaxRecurse) { 4030 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 4031 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 4032 4033 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 4034 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 4035 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI, 4036 Q.CxtI); 4037 4038 // If we have a constant, make sure it is on the RHS. 4039 std::swap(LHS, RHS); 4040 Pred = CmpInst::getSwappedPredicate(Pred); 4041 } 4042 4043 // Fold trivial predicates. 4044 Type *RetTy = getCompareTy(LHS); 4045 if (Pred == FCmpInst::FCMP_FALSE) 4046 return getFalse(RetTy); 4047 if (Pred == FCmpInst::FCMP_TRUE) 4048 return getTrue(RetTy); 4049 4050 // Fold (un)ordered comparison if we can determine there are no NaNs. 4051 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 4052 if (FMF.noNaNs() || 4053 (isKnownNeverNaN(LHS, Q.DL, Q.TLI, 0, Q.AC, Q.CxtI, Q.DT) && 4054 isKnownNeverNaN(RHS, Q.DL, Q.TLI, 0, Q.AC, Q.CxtI, Q.DT))) 4055 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 4056 4057 // NaN is unordered; NaN is not ordered. 4058 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 4059 "Comparison must be either ordered or unordered"); 4060 if (match(RHS, m_NaN())) 4061 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 4062 4063 // fcmp pred x, poison and fcmp pred poison, x 4064 // fold to poison 4065 if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS)) 4066 return PoisonValue::get(RetTy); 4067 4068 // fcmp pred x, undef and fcmp pred undef, x 4069 // fold to true if unordered, false if ordered 4070 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 4071 // Choosing NaN for the undef will always make unordered comparison succeed 4072 // and ordered comparison fail. 4073 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 4074 } 4075 4076 // fcmp x,x -> true/false. Not all compares are foldable. 4077 if (LHS == RHS) { 4078 if (CmpInst::isTrueWhenEqual(Pred)) 4079 return getTrue(RetTy); 4080 if (CmpInst::isFalseWhenEqual(Pred)) 4081 return getFalse(RetTy); 4082 } 4083 4084 // Handle fcmp with constant RHS. 4085 // TODO: Use match with a specific FP value, so these work with vectors with 4086 // undef lanes. 4087 const APFloat *C; 4088 if (match(RHS, m_APFloat(C))) { 4089 // Check whether the constant is an infinity. 4090 if (C->isInfinity()) { 4091 if (C->isNegative()) { 4092 switch (Pred) { 4093 case FCmpInst::FCMP_OLT: 4094 // No value is ordered and less than negative infinity. 4095 return getFalse(RetTy); 4096 case FCmpInst::FCMP_UGE: 4097 // All values are unordered with or at least negative infinity. 4098 return getTrue(RetTy); 4099 default: 4100 break; 4101 } 4102 } else { 4103 switch (Pred) { 4104 case FCmpInst::FCMP_OGT: 4105 // No value is ordered and greater than infinity. 4106 return getFalse(RetTy); 4107 case FCmpInst::FCMP_ULE: 4108 // All values are unordered with and at most infinity. 4109 return getTrue(RetTy); 4110 default: 4111 break; 4112 } 4113 } 4114 4115 // LHS == Inf 4116 if (Pred == FCmpInst::FCMP_OEQ && 4117 isKnownNeverInfinity(LHS, Q.DL, Q.TLI, 0, Q.AC, Q.CxtI, Q.DT)) 4118 return getFalse(RetTy); 4119 // LHS != Inf 4120 if (Pred == FCmpInst::FCMP_UNE && 4121 isKnownNeverInfinity(LHS, Q.DL, Q.TLI, 0, Q.AC, Q.CxtI, Q.DT)) 4122 return getTrue(RetTy); 4123 // LHS == Inf || LHS == NaN 4124 if (Pred == FCmpInst::FCMP_UEQ && 4125 isKnownNeverInfOrNaN(LHS, Q.DL, Q.TLI, 0, Q.AC, Q.CxtI, Q.DT)) 4126 return getFalse(RetTy); 4127 // LHS != Inf && LHS != NaN 4128 if (Pred == FCmpInst::FCMP_ONE && 4129 isKnownNeverInfOrNaN(LHS, Q.DL, Q.TLI, 0, Q.AC, Q.CxtI, Q.DT)) 4130 return getTrue(RetTy); 4131 } 4132 if (C->isNegative() && !C->isNegZero()) { 4133 assert(!C->isNaN() && "Unexpected NaN constant!"); 4134 // TODO: We can catch more cases by using a range check rather than 4135 // relying on CannotBeOrderedLessThanZero. 4136 switch (Pred) { 4137 case FCmpInst::FCMP_UGE: 4138 case FCmpInst::FCMP_UGT: 4139 case FCmpInst::FCMP_UNE: 4140 // (X >= 0) implies (X > C) when (C < 0) 4141 if (cannotBeOrderedLessThanZero(LHS, Q.DL, Q.TLI, 0, 4142 Q.AC, Q.CxtI, Q.DT)) 4143 return getTrue(RetTy); 4144 break; 4145 case FCmpInst::FCMP_OEQ: 4146 case FCmpInst::FCMP_OLE: 4147 case FCmpInst::FCMP_OLT: 4148 // (X >= 0) implies !(X < C) when (C < 0) 4149 if (cannotBeOrderedLessThanZero(LHS, Q.DL, Q.TLI, 0, Q.AC, Q.CxtI, 4150 Q.DT)) 4151 return getFalse(RetTy); 4152 break; 4153 default: 4154 break; 4155 } 4156 } 4157 4158 // Check comparison of [minnum/maxnum with constant] with other constant. 4159 const APFloat *C2; 4160 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 4161 *C2 < *C) || 4162 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 4163 *C2 > *C)) { 4164 bool IsMaxNum = 4165 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 4166 // The ordered relationship and minnum/maxnum guarantee that we do not 4167 // have NaN constants, so ordered/unordered preds are handled the same. 4168 switch (Pred) { 4169 case FCmpInst::FCMP_OEQ: 4170 case FCmpInst::FCMP_UEQ: 4171 // minnum(X, LesserC) == C --> false 4172 // maxnum(X, GreaterC) == C --> false 4173 return getFalse(RetTy); 4174 case FCmpInst::FCMP_ONE: 4175 case FCmpInst::FCMP_UNE: 4176 // minnum(X, LesserC) != C --> true 4177 // maxnum(X, GreaterC) != C --> true 4178 return getTrue(RetTy); 4179 case FCmpInst::FCMP_OGE: 4180 case FCmpInst::FCMP_UGE: 4181 case FCmpInst::FCMP_OGT: 4182 case FCmpInst::FCMP_UGT: 4183 // minnum(X, LesserC) >= C --> false 4184 // minnum(X, LesserC) > C --> false 4185 // maxnum(X, GreaterC) >= C --> true 4186 // maxnum(X, GreaterC) > C --> true 4187 return ConstantInt::get(RetTy, IsMaxNum); 4188 case FCmpInst::FCMP_OLE: 4189 case FCmpInst::FCMP_ULE: 4190 case FCmpInst::FCMP_OLT: 4191 case FCmpInst::FCMP_ULT: 4192 // minnum(X, LesserC) <= C --> true 4193 // minnum(X, LesserC) < C --> true 4194 // maxnum(X, GreaterC) <= C --> false 4195 // maxnum(X, GreaterC) < C --> false 4196 return ConstantInt::get(RetTy, !IsMaxNum); 4197 default: 4198 // TRUE/FALSE/ORD/UNO should be handled before this. 4199 llvm_unreachable("Unexpected fcmp predicate"); 4200 } 4201 } 4202 } 4203 4204 if (match(RHS, m_AnyZeroFP())) { 4205 switch (Pred) { 4206 case FCmpInst::FCMP_OGE: 4207 case FCmpInst::FCMP_ULT: { 4208 FPClassTest Interested = FMF.noNaNs() ? fcNegative : fcNegative | fcNan; 4209 KnownFPClass Known = computeKnownFPClass(LHS, Q.DL, Interested, 0, 4210 Q.TLI, Q.AC, Q.CxtI, Q.DT); 4211 4212 // Positive or zero X >= 0.0 --> true 4213 // Positive or zero X < 0.0 --> false 4214 if ((FMF.noNaNs() || Known.isKnownNeverNaN()) && 4215 Known.cannotBeOrderedLessThanZero()) 4216 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 4217 break; 4218 } 4219 case FCmpInst::FCMP_UGE: 4220 case FCmpInst::FCMP_OLT: 4221 // Positive or zero or nan X >= 0.0 --> true 4222 // Positive or zero or nan X < 0.0 --> false 4223 if (cannotBeOrderedLessThanZero(LHS, Q.DL, Q.TLI, 0, Q.AC, Q.CxtI, Q.DT)) 4224 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 4225 break; 4226 default: 4227 break; 4228 } 4229 } 4230 4231 // If the comparison is with the result of a select instruction, check whether 4232 // comparing with either branch of the select always yields the same value. 4233 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 4234 if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 4235 return V; 4236 4237 // If the comparison is with the result of a phi instruction, check whether 4238 // doing the compare with each incoming phi value yields a common result. 4239 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 4240 if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 4241 return V; 4242 4243 return nullptr; 4244 } 4245 4246 Value *llvm::simplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4247 FastMathFlags FMF, const SimplifyQuery &Q) { 4248 return ::simplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 4249 } 4250 4251 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4252 const SimplifyQuery &Q, 4253 bool AllowRefinement, 4254 unsigned MaxRecurse) { 4255 // Trivial replacement. 4256 if (V == Op) 4257 return RepOp; 4258 4259 if (!MaxRecurse--) 4260 return nullptr; 4261 4262 // We cannot replace a constant, and shouldn't even try. 4263 if (isa<Constant>(Op)) 4264 return nullptr; 4265 4266 auto *I = dyn_cast<Instruction>(V); 4267 if (!I) 4268 return nullptr; 4269 4270 // The arguments of a phi node might refer to a value from a previous 4271 // cycle iteration. 4272 if (isa<PHINode>(I)) 4273 return nullptr; 4274 4275 if (Op->getType()->isVectorTy()) { 4276 // For vector types, the simplification must hold per-lane, so forbid 4277 // potentially cross-lane operations like shufflevector. 4278 if (!I->getType()->isVectorTy() || isa<ShuffleVectorInst>(I) || 4279 isa<CallBase>(I)) 4280 return nullptr; 4281 } 4282 4283 // Replace Op with RepOp in instruction operands. 4284 SmallVector<Value *, 8> NewOps; 4285 bool AnyReplaced = false; 4286 for (Value *InstOp : I->operands()) { 4287 if (Value *NewInstOp = simplifyWithOpReplaced( 4288 InstOp, Op, RepOp, Q, AllowRefinement, MaxRecurse)) { 4289 NewOps.push_back(NewInstOp); 4290 AnyReplaced = InstOp != NewInstOp; 4291 } else { 4292 NewOps.push_back(InstOp); 4293 } 4294 } 4295 4296 if (!AnyReplaced) 4297 return nullptr; 4298 4299 if (!AllowRefinement) { 4300 // General InstSimplify functions may refine the result, e.g. by returning 4301 // a constant for a potentially poison value. To avoid this, implement only 4302 // a few non-refining but profitable transforms here. 4303 4304 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 4305 unsigned Opcode = BO->getOpcode(); 4306 // id op x -> x, x op id -> x 4307 if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType())) 4308 return NewOps[1]; 4309 if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(), 4310 /* RHS */ true)) 4311 return NewOps[0]; 4312 4313 // x & x -> x, x | x -> x 4314 if ((Opcode == Instruction::And || Opcode == Instruction::Or) && 4315 NewOps[0] == NewOps[1]) 4316 return NewOps[0]; 4317 4318 // x - x -> 0, x ^ x -> 0. This is non-refining, because x is non-poison 4319 // by assumption and this case never wraps, so nowrap flags can be 4320 // ignored. 4321 if ((Opcode == Instruction::Sub || Opcode == Instruction::Xor) && 4322 NewOps[0] == RepOp && NewOps[1] == RepOp) 4323 return Constant::getNullValue(I->getType()); 4324 4325 // If we are substituting an absorber constant into a binop and extra 4326 // poison can't leak if we remove the select -- because both operands of 4327 // the binop are based on the same value -- then it may be safe to replace 4328 // the value with the absorber constant. Examples: 4329 // (Op == 0) ? 0 : (Op & -Op) --> Op & -Op 4330 // (Op == 0) ? 0 : (Op * (binop Op, C)) --> Op * (binop Op, C) 4331 // (Op == -1) ? -1 : (Op | (binop C, Op) --> Op | (binop C, Op) 4332 Constant *Absorber = 4333 ConstantExpr::getBinOpAbsorber(Opcode, I->getType()); 4334 if ((NewOps[0] == Absorber || NewOps[1] == Absorber) && 4335 impliesPoison(BO, Op)) 4336 return Absorber; 4337 } 4338 4339 if (isa<GetElementPtrInst>(I)) { 4340 // getelementptr x, 0 -> x. 4341 // This never returns poison, even if inbounds is set. 4342 if (NewOps.size() == 2 && match(NewOps[1], m_Zero())) 4343 return NewOps[0]; 4344 } 4345 } else { 4346 // The simplification queries below may return the original value. Consider: 4347 // %div = udiv i32 %arg, %arg2 4348 // %mul = mul nsw i32 %div, %arg2 4349 // %cmp = icmp eq i32 %mul, %arg 4350 // %sel = select i1 %cmp, i32 %div, i32 undef 4351 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which 4352 // simplifies back to %arg. This can only happen because %mul does not 4353 // dominate %div. To ensure a consistent return value contract, we make sure 4354 // that this case returns nullptr as well. 4355 auto PreventSelfSimplify = [V](Value *Simplified) { 4356 return Simplified != V ? Simplified : nullptr; 4357 }; 4358 4359 return PreventSelfSimplify( 4360 ::simplifyInstructionWithOperands(I, NewOps, Q, MaxRecurse)); 4361 } 4362 4363 // If all operands are constant after substituting Op for RepOp then we can 4364 // constant fold the instruction. 4365 SmallVector<Constant *, 8> ConstOps; 4366 for (Value *NewOp : NewOps) { 4367 if (Constant *ConstOp = dyn_cast<Constant>(NewOp)) 4368 ConstOps.push_back(ConstOp); 4369 else 4370 return nullptr; 4371 } 4372 4373 // Consider: 4374 // %cmp = icmp eq i32 %x, 2147483647 4375 // %add = add nsw i32 %x, 1 4376 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 4377 // 4378 // We can't replace %sel with %add unless we strip away the flags (which 4379 // will be done in InstCombine). 4380 // TODO: This may be unsound, because it only catches some forms of 4381 // refinement. 4382 if (!AllowRefinement && canCreatePoison(cast<Operator>(I))) 4383 return nullptr; 4384 4385 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 4386 } 4387 4388 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4389 const SimplifyQuery &Q, 4390 bool AllowRefinement) { 4391 return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, 4392 RecursionLimit); 4393 } 4394 4395 /// Try to simplify a select instruction when its condition operand is an 4396 /// integer comparison where one operand of the compare is a constant. 4397 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 4398 const APInt *Y, bool TrueWhenUnset) { 4399 const APInt *C; 4400 4401 // (X & Y) == 0 ? X & ~Y : X --> X 4402 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 4403 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 4404 *Y == ~*C) 4405 return TrueWhenUnset ? FalseVal : TrueVal; 4406 4407 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 4408 // (X & Y) != 0 ? X : X & ~Y --> X 4409 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 4410 *Y == ~*C) 4411 return TrueWhenUnset ? FalseVal : TrueVal; 4412 4413 if (Y->isPowerOf2()) { 4414 // (X & Y) == 0 ? X | Y : X --> X | Y 4415 // (X & Y) != 0 ? X | Y : X --> X 4416 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 4417 *Y == *C) 4418 return TrueWhenUnset ? TrueVal : FalseVal; 4419 4420 // (X & Y) == 0 ? X : X | Y --> X 4421 // (X & Y) != 0 ? X : X | Y --> X | Y 4422 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 4423 *Y == *C) 4424 return TrueWhenUnset ? TrueVal : FalseVal; 4425 } 4426 4427 return nullptr; 4428 } 4429 4430 static Value *simplifyCmpSelOfMaxMin(Value *CmpLHS, Value *CmpRHS, 4431 ICmpInst::Predicate Pred, Value *TVal, 4432 Value *FVal) { 4433 // Canonicalize common cmp+sel operand as CmpLHS. 4434 if (CmpRHS == TVal || CmpRHS == FVal) { 4435 std::swap(CmpLHS, CmpRHS); 4436 Pred = ICmpInst::getSwappedPredicate(Pred); 4437 } 4438 4439 // Canonicalize common cmp+sel operand as TVal. 4440 if (CmpLHS == FVal) { 4441 std::swap(TVal, FVal); 4442 Pred = ICmpInst::getInversePredicate(Pred); 4443 } 4444 4445 // A vector select may be shuffling together elements that are equivalent 4446 // based on the max/min/select relationship. 4447 Value *X = CmpLHS, *Y = CmpRHS; 4448 bool PeekedThroughSelectShuffle = false; 4449 auto *Shuf = dyn_cast<ShuffleVectorInst>(FVal); 4450 if (Shuf && Shuf->isSelect()) { 4451 if (Shuf->getOperand(0) == Y) 4452 FVal = Shuf->getOperand(1); 4453 else if (Shuf->getOperand(1) == Y) 4454 FVal = Shuf->getOperand(0); 4455 else 4456 return nullptr; 4457 PeekedThroughSelectShuffle = true; 4458 } 4459 4460 // (X pred Y) ? X : max/min(X, Y) 4461 auto *MMI = dyn_cast<MinMaxIntrinsic>(FVal); 4462 if (!MMI || TVal != X || 4463 !match(FVal, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) 4464 return nullptr; 4465 4466 // (X > Y) ? X : max(X, Y) --> max(X, Y) 4467 // (X >= Y) ? X : max(X, Y) --> max(X, Y) 4468 // (X < Y) ? X : min(X, Y) --> min(X, Y) 4469 // (X <= Y) ? X : min(X, Y) --> min(X, Y) 4470 // 4471 // The equivalence allows a vector select (shuffle) of max/min and Y. Ex: 4472 // (X > Y) ? X : (Z ? max(X, Y) : Y) 4473 // If Z is true, this reduces as above, and if Z is false: 4474 // (X > Y) ? X : Y --> max(X, Y) 4475 ICmpInst::Predicate MMPred = MMI->getPredicate(); 4476 if (MMPred == CmpInst::getStrictPredicate(Pred)) 4477 return MMI; 4478 4479 // Other transforms are not valid with a shuffle. 4480 if (PeekedThroughSelectShuffle) 4481 return nullptr; 4482 4483 // (X == Y) ? X : max/min(X, Y) --> max/min(X, Y) 4484 if (Pred == CmpInst::ICMP_EQ) 4485 return MMI; 4486 4487 // (X != Y) ? X : max/min(X, Y) --> X 4488 if (Pred == CmpInst::ICMP_NE) 4489 return X; 4490 4491 // (X < Y) ? X : max(X, Y) --> X 4492 // (X <= Y) ? X : max(X, Y) --> X 4493 // (X > Y) ? X : min(X, Y) --> X 4494 // (X >= Y) ? X : min(X, Y) --> X 4495 ICmpInst::Predicate InvPred = CmpInst::getInversePredicate(Pred); 4496 if (MMPred == CmpInst::getStrictPredicate(InvPred)) 4497 return X; 4498 4499 return nullptr; 4500 } 4501 4502 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 4503 /// eq/ne. 4504 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 4505 ICmpInst::Predicate Pred, 4506 Value *TrueVal, Value *FalseVal) { 4507 Value *X; 4508 APInt Mask; 4509 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 4510 return nullptr; 4511 4512 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 4513 Pred == ICmpInst::ICMP_EQ); 4514 } 4515 4516 /// Try to simplify a select instruction when its condition operand is an 4517 /// integer equality comparison. 4518 static Value *simplifySelectWithICmpEq(Value *CmpLHS, Value *CmpRHS, 4519 Value *TrueVal, Value *FalseVal, 4520 const SimplifyQuery &Q, 4521 unsigned MaxRecurse) { 4522 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, 4523 /* AllowRefinement */ false, 4524 MaxRecurse) == TrueVal) 4525 return FalseVal; 4526 if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4527 /* AllowRefinement */ true, 4528 MaxRecurse) == FalseVal) 4529 return FalseVal; 4530 4531 return nullptr; 4532 } 4533 4534 /// Try to simplify a select instruction when its condition operand is an 4535 /// integer comparison. 4536 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 4537 Value *FalseVal, 4538 const SimplifyQuery &Q, 4539 unsigned MaxRecurse) { 4540 ICmpInst::Predicate Pred; 4541 Value *CmpLHS, *CmpRHS; 4542 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 4543 return nullptr; 4544 4545 if (Value *V = simplifyCmpSelOfMaxMin(CmpLHS, CmpRHS, Pred, TrueVal, FalseVal)) 4546 return V; 4547 4548 // Canonicalize ne to eq predicate. 4549 if (Pred == ICmpInst::ICMP_NE) { 4550 Pred = ICmpInst::ICMP_EQ; 4551 std::swap(TrueVal, FalseVal); 4552 } 4553 4554 // Check for integer min/max with a limit constant: 4555 // X > MIN_INT ? X : MIN_INT --> X 4556 // X < MAX_INT ? X : MAX_INT --> X 4557 if (TrueVal->getType()->isIntOrIntVectorTy()) { 4558 Value *X, *Y; 4559 SelectPatternFlavor SPF = 4560 matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal, 4561 X, Y) 4562 .Flavor; 4563 if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) { 4564 APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF), 4565 X->getType()->getScalarSizeInBits()); 4566 if (match(Y, m_SpecificInt(LimitC))) 4567 return X; 4568 } 4569 } 4570 4571 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 4572 Value *X; 4573 const APInt *Y; 4574 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 4575 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 4576 /*TrueWhenUnset=*/true)) 4577 return V; 4578 4579 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 4580 Value *ShAmt; 4581 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), 4582 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); 4583 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 4584 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 4585 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 4586 return X; 4587 4588 // Test for a zero-shift-guard-op around rotates. These are used to 4589 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4590 // intrinsics do not have that problem. 4591 // We do not allow this transform for the general funnel shift case because 4592 // that would not preserve the poison safety of the original code. 4593 auto isRotate = 4594 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), 4595 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); 4596 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4597 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4598 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4599 Pred == ICmpInst::ICMP_EQ) 4600 return FalseVal; 4601 4602 // X == 0 ? abs(X) : -abs(X) --> -abs(X) 4603 // X == 0 ? -abs(X) : abs(X) --> abs(X) 4604 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) && 4605 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))) 4606 return FalseVal; 4607 if (match(TrueVal, 4608 m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) && 4609 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) 4610 return FalseVal; 4611 } 4612 4613 // Check for other compares that behave like bit test. 4614 if (Value *V = 4615 simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, TrueVal, FalseVal)) 4616 return V; 4617 4618 // If we have a scalar equality comparison, then we know the value in one of 4619 // the arms of the select. See if substituting this value into the arm and 4620 // simplifying the result yields the same value as the other arm. 4621 if (Pred == ICmpInst::ICMP_EQ) { 4622 if (Value *V = simplifySelectWithICmpEq(CmpLHS, CmpRHS, TrueVal, FalseVal, 4623 Q, MaxRecurse)) 4624 return V; 4625 if (Value *V = simplifySelectWithICmpEq(CmpRHS, CmpLHS, TrueVal, FalseVal, 4626 Q, MaxRecurse)) 4627 return V; 4628 4629 Value *X; 4630 Value *Y; 4631 // select((X | Y) == 0 ? X : 0) --> 0 (commuted 2 ways) 4632 if (match(CmpLHS, m_Or(m_Value(X), m_Value(Y))) && 4633 match(CmpRHS, m_Zero())) { 4634 // (X | Y) == 0 implies X == 0 and Y == 0. 4635 if (Value *V = simplifySelectWithICmpEq(X, CmpRHS, TrueVal, FalseVal, Q, 4636 MaxRecurse)) 4637 return V; 4638 if (Value *V = simplifySelectWithICmpEq(Y, CmpRHS, TrueVal, FalseVal, Q, 4639 MaxRecurse)) 4640 return V; 4641 } 4642 4643 // select((X & Y) == -1 ? X : -1) --> -1 (commuted 2 ways) 4644 if (match(CmpLHS, m_And(m_Value(X), m_Value(Y))) && 4645 match(CmpRHS, m_AllOnes())) { 4646 // (X & Y) == -1 implies X == -1 and Y == -1. 4647 if (Value *V = simplifySelectWithICmpEq(X, CmpRHS, TrueVal, FalseVal, Q, 4648 MaxRecurse)) 4649 return V; 4650 if (Value *V = simplifySelectWithICmpEq(Y, CmpRHS, TrueVal, FalseVal, Q, 4651 MaxRecurse)) 4652 return V; 4653 } 4654 } 4655 4656 return nullptr; 4657 } 4658 4659 /// Try to simplify a select instruction when its condition operand is a 4660 /// floating-point comparison. 4661 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4662 const SimplifyQuery &Q) { 4663 FCmpInst::Predicate Pred; 4664 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4665 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4666 return nullptr; 4667 4668 // This transform is safe if we do not have (do not care about) -0.0 or if 4669 // at least one operand is known to not be -0.0. Otherwise, the select can 4670 // change the sign of a zero operand. 4671 bool HasNoSignedZeros = 4672 Q.CxtI && isa<FPMathOperator>(Q.CxtI) && Q.CxtI->hasNoSignedZeros(); 4673 const APFloat *C; 4674 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4675 (match(F, m_APFloat(C)) && C->isNonZero())) { 4676 // (T == F) ? T : F --> F 4677 // (F == T) ? T : F --> F 4678 if (Pred == FCmpInst::FCMP_OEQ) 4679 return F; 4680 4681 // (T != F) ? T : F --> T 4682 // (F != T) ? T : F --> T 4683 if (Pred == FCmpInst::FCMP_UNE) 4684 return T; 4685 } 4686 4687 return nullptr; 4688 } 4689 4690 /// Given operands for a SelectInst, see if we can fold the result. 4691 /// If not, this returns null. 4692 static Value *simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4693 const SimplifyQuery &Q, unsigned MaxRecurse) { 4694 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4695 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4696 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4697 if (Constant *C = ConstantFoldSelectInstruction(CondC, TrueC, FalseC)) 4698 return C; 4699 4700 // select poison, X, Y -> poison 4701 if (isa<PoisonValue>(CondC)) 4702 return PoisonValue::get(TrueVal->getType()); 4703 4704 // select undef, X, Y -> X or Y 4705 if (Q.isUndefValue(CondC)) 4706 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4707 4708 // select true, X, Y --> X 4709 // select false, X, Y --> Y 4710 // For vectors, allow undef/poison elements in the condition to match the 4711 // defined elements, so we can eliminate the select. 4712 if (match(CondC, m_One())) 4713 return TrueVal; 4714 if (match(CondC, m_Zero())) 4715 return FalseVal; 4716 } 4717 4718 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4719 "Select must have bool or bool vector condition"); 4720 assert(TrueVal->getType() == FalseVal->getType() && 4721 "Select must have same types for true/false ops"); 4722 4723 if (Cond->getType() == TrueVal->getType()) { 4724 // select i1 Cond, i1 true, i1 false --> i1 Cond 4725 if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4726 return Cond; 4727 4728 // (X && Y) ? X : Y --> Y (commuted 2 ways) 4729 if (match(Cond, m_c_LogicalAnd(m_Specific(TrueVal), m_Specific(FalseVal)))) 4730 return FalseVal; 4731 4732 // (X || Y) ? X : Y --> X (commuted 2 ways) 4733 if (match(Cond, m_c_LogicalOr(m_Specific(TrueVal), m_Specific(FalseVal)))) 4734 return TrueVal; 4735 4736 // (X || Y) ? false : X --> false (commuted 2 ways) 4737 if (match(Cond, m_c_LogicalOr(m_Specific(FalseVal), m_Value())) && 4738 match(TrueVal, m_ZeroInt())) 4739 return ConstantInt::getFalse(Cond->getType()); 4740 4741 // Match patterns that end in logical-and. 4742 if (match(FalseVal, m_ZeroInt())) { 4743 // !(X || Y) && X --> false (commuted 2 ways) 4744 if (match(Cond, m_Not(m_c_LogicalOr(m_Specific(TrueVal), m_Value())))) 4745 return ConstantInt::getFalse(Cond->getType()); 4746 // X && !(X || Y) --> false (commuted 2 ways) 4747 if (match(TrueVal, m_Not(m_c_LogicalOr(m_Specific(Cond), m_Value())))) 4748 return ConstantInt::getFalse(Cond->getType()); 4749 4750 // (X || Y) && Y --> Y (commuted 2 ways) 4751 if (match(Cond, m_c_LogicalOr(m_Specific(TrueVal), m_Value()))) 4752 return TrueVal; 4753 // Y && (X || Y) --> Y (commuted 2 ways) 4754 if (match(TrueVal, m_c_LogicalOr(m_Specific(Cond), m_Value()))) 4755 return Cond; 4756 4757 // (X || Y) && (X || !Y) --> X (commuted 8 ways) 4758 Value *X, *Y; 4759 if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4760 match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4761 return X; 4762 if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4763 match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4764 return X; 4765 } 4766 4767 // Match patterns that end in logical-or. 4768 if (match(TrueVal, m_One())) { 4769 // !(X && Y) || X --> true (commuted 2 ways) 4770 if (match(Cond, m_Not(m_c_LogicalAnd(m_Specific(FalseVal), m_Value())))) 4771 return ConstantInt::getTrue(Cond->getType()); 4772 // X || !(X && Y) --> true (commuted 2 ways) 4773 if (match(FalseVal, m_Not(m_c_LogicalAnd(m_Specific(Cond), m_Value())))) 4774 return ConstantInt::getTrue(Cond->getType()); 4775 4776 // (X && Y) || Y --> Y (commuted 2 ways) 4777 if (match(Cond, m_c_LogicalAnd(m_Specific(FalseVal), m_Value()))) 4778 return FalseVal; 4779 // Y || (X && Y) --> Y (commuted 2 ways) 4780 if (match(FalseVal, m_c_LogicalAnd(m_Specific(Cond), m_Value()))) 4781 return Cond; 4782 } 4783 } 4784 4785 // select ?, X, X -> X 4786 if (TrueVal == FalseVal) 4787 return TrueVal; 4788 4789 if (Cond == TrueVal) { 4790 // select i1 X, i1 X, i1 false --> X (logical-and) 4791 if (match(FalseVal, m_ZeroInt())) 4792 return Cond; 4793 // select i1 X, i1 X, i1 true --> true 4794 if (match(FalseVal, m_One())) 4795 return ConstantInt::getTrue(Cond->getType()); 4796 } 4797 if (Cond == FalseVal) { 4798 // select i1 X, i1 true, i1 X --> X (logical-or) 4799 if (match(TrueVal, m_One())) 4800 return Cond; 4801 // select i1 X, i1 false, i1 X --> false 4802 if (match(TrueVal, m_ZeroInt())) 4803 return ConstantInt::getFalse(Cond->getType()); 4804 } 4805 4806 // If the true or false value is poison, we can fold to the other value. 4807 // If the true or false value is undef, we can fold to the other value as 4808 // long as the other value isn't poison. 4809 // select ?, poison, X -> X 4810 // select ?, undef, X -> X 4811 if (isa<PoisonValue>(TrueVal) || 4812 (Q.isUndefValue(TrueVal) && 4813 isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT))) 4814 return FalseVal; 4815 // select ?, X, poison -> X 4816 // select ?, X, undef -> X 4817 if (isa<PoisonValue>(FalseVal) || 4818 (Q.isUndefValue(FalseVal) && 4819 isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT))) 4820 return TrueVal; 4821 4822 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4823 Constant *TrueC, *FalseC; 4824 if (isa<FixedVectorType>(TrueVal->getType()) && 4825 match(TrueVal, m_Constant(TrueC)) && 4826 match(FalseVal, m_Constant(FalseC))) { 4827 unsigned NumElts = 4828 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4829 SmallVector<Constant *, 16> NewC; 4830 for (unsigned i = 0; i != NumElts; ++i) { 4831 // Bail out on incomplete vector constants. 4832 Constant *TEltC = TrueC->getAggregateElement(i); 4833 Constant *FEltC = FalseC->getAggregateElement(i); 4834 if (!TEltC || !FEltC) 4835 break; 4836 4837 // If the elements match (undef or not), that value is the result. If only 4838 // one element is undef, choose the defined element as the safe result. 4839 if (TEltC == FEltC) 4840 NewC.push_back(TEltC); 4841 else if (isa<PoisonValue>(TEltC) || 4842 (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC))) 4843 NewC.push_back(FEltC); 4844 else if (isa<PoisonValue>(FEltC) || 4845 (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC))) 4846 NewC.push_back(TEltC); 4847 else 4848 break; 4849 } 4850 if (NewC.size() == NumElts) 4851 return ConstantVector::get(NewC); 4852 } 4853 4854 if (Value *V = 4855 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4856 return V; 4857 4858 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4859 return V; 4860 4861 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4862 return V; 4863 4864 std::optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4865 if (Imp) 4866 return *Imp ? TrueVal : FalseVal; 4867 4868 return nullptr; 4869 } 4870 4871 Value *llvm::simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4872 const SimplifyQuery &Q) { 4873 return ::simplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4874 } 4875 4876 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4877 /// If not, this returns null. 4878 static Value *simplifyGEPInst(Type *SrcTy, Value *Ptr, 4879 ArrayRef<Value *> Indices, bool InBounds, 4880 const SimplifyQuery &Q, unsigned) { 4881 // The type of the GEP pointer operand. 4882 unsigned AS = 4883 cast<PointerType>(Ptr->getType()->getScalarType())->getAddressSpace(); 4884 4885 // getelementptr P -> P. 4886 if (Indices.empty()) 4887 return Ptr; 4888 4889 // Compute the (pointer) type returned by the GEP instruction. 4890 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Indices); 4891 Type *GEPTy = PointerType::get(LastType, AS); 4892 if (VectorType *VT = dyn_cast<VectorType>(Ptr->getType())) 4893 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4894 else { 4895 for (Value *Op : Indices) { 4896 // If one of the operands is a vector, the result type is a vector of 4897 // pointers. All vector operands must have the same number of elements. 4898 if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) { 4899 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4900 break; 4901 } 4902 } 4903 } 4904 4905 // All-zero GEP is a no-op, unless it performs a vector splat. 4906 if (Ptr->getType() == GEPTy && 4907 all_of(Indices, [](const auto *V) { return match(V, m_Zero()); })) 4908 return Ptr; 4909 4910 // getelementptr poison, idx -> poison 4911 // getelementptr baseptr, poison -> poison 4912 if (isa<PoisonValue>(Ptr) || 4913 any_of(Indices, [](const auto *V) { return isa<PoisonValue>(V); })) 4914 return PoisonValue::get(GEPTy); 4915 4916 // getelementptr undef, idx -> undef 4917 if (Q.isUndefValue(Ptr)) 4918 return UndefValue::get(GEPTy); 4919 4920 bool IsScalableVec = 4921 isa<ScalableVectorType>(SrcTy) || any_of(Indices, [](const Value *V) { 4922 return isa<ScalableVectorType>(V->getType()); 4923 }); 4924 4925 if (Indices.size() == 1) { 4926 // getelementptr P, 0 -> P. 4927 if (match(Indices[0], m_Zero()) && Ptr->getType() == GEPTy) 4928 return Ptr; 4929 4930 Type *Ty = SrcTy; 4931 if (!IsScalableVec && Ty->isSized()) { 4932 Value *P; 4933 uint64_t C; 4934 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4935 // getelementptr P, N -> P if P points to a type of zero size. 4936 if (TyAllocSize == 0 && Ptr->getType() == GEPTy) 4937 return Ptr; 4938 4939 // The following transforms are only safe if the ptrtoint cast 4940 // doesn't truncate the pointers. 4941 if (Indices[0]->getType()->getScalarSizeInBits() == 4942 Q.DL.getPointerSizeInBits(AS)) { 4943 auto CanSimplify = [GEPTy, &P, Ptr]() -> bool { 4944 return P->getType() == GEPTy && 4945 getUnderlyingObject(P) == getUnderlyingObject(Ptr); 4946 }; 4947 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4948 if (TyAllocSize == 1 && 4949 match(Indices[0], 4950 m_Sub(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Specific(Ptr)))) && 4951 CanSimplify()) 4952 return P; 4953 4954 // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of 4955 // size 1 << C. 4956 if (match(Indices[0], m_AShr(m_Sub(m_PtrToInt(m_Value(P)), 4957 m_PtrToInt(m_Specific(Ptr))), 4958 m_ConstantInt(C))) && 4959 TyAllocSize == 1ULL << C && CanSimplify()) 4960 return P; 4961 4962 // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of 4963 // size C. 4964 if (match(Indices[0], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)), 4965 m_PtrToInt(m_Specific(Ptr))), 4966 m_SpecificInt(TyAllocSize))) && 4967 CanSimplify()) 4968 return P; 4969 } 4970 } 4971 } 4972 4973 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 4974 all_of(Indices.drop_back(1), 4975 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4976 unsigned IdxWidth = 4977 Q.DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()); 4978 if (Q.DL.getTypeSizeInBits(Indices.back()->getType()) == IdxWidth) { 4979 APInt BasePtrOffset(IdxWidth, 0); 4980 Value *StrippedBasePtr = 4981 Ptr->stripAndAccumulateInBoundsConstantOffsets(Q.DL, BasePtrOffset); 4982 4983 // Avoid creating inttoptr of zero here: While LLVMs treatment of 4984 // inttoptr is generally conservative, this particular case is folded to 4985 // a null pointer, which will have incorrect provenance. 4986 4987 // gep (gep V, C), (sub 0, V) -> C 4988 if (match(Indices.back(), 4989 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) && 4990 !BasePtrOffset.isZero()) { 4991 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4992 return ConstantExpr::getIntToPtr(CI, GEPTy); 4993 } 4994 // gep (gep V, C), (xor V, -1) -> C-1 4995 if (match(Indices.back(), 4996 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) && 4997 !BasePtrOffset.isOne()) { 4998 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4999 return ConstantExpr::getIntToPtr(CI, GEPTy); 5000 } 5001 } 5002 } 5003 5004 // Check to see if this is constant foldable. 5005 if (!isa<Constant>(Ptr) || 5006 !all_of(Indices, [](Value *V) { return isa<Constant>(V); })) 5007 return nullptr; 5008 5009 if (!ConstantExpr::isSupportedGetElementPtr(SrcTy)) 5010 return ConstantFoldGetElementPtr(SrcTy, cast<Constant>(Ptr), InBounds, 5011 std::nullopt, Indices); 5012 5013 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ptr), Indices, 5014 InBounds); 5015 return ConstantFoldConstant(CE, Q.DL); 5016 } 5017 5018 Value *llvm::simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef<Value *> Indices, 5019 bool InBounds, const SimplifyQuery &Q) { 5020 return ::simplifyGEPInst(SrcTy, Ptr, Indices, InBounds, Q, RecursionLimit); 5021 } 5022 5023 /// Given operands for an InsertValueInst, see if we can fold the result. 5024 /// If not, this returns null. 5025 static Value *simplifyInsertValueInst(Value *Agg, Value *Val, 5026 ArrayRef<unsigned> Idxs, 5027 const SimplifyQuery &Q, unsigned) { 5028 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 5029 if (Constant *CVal = dyn_cast<Constant>(Val)) 5030 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 5031 5032 // insertvalue x, poison, n -> x 5033 // insertvalue x, undef, n -> x if x cannot be poison 5034 if (isa<PoisonValue>(Val) || 5035 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Agg))) 5036 return Agg; 5037 5038 // insertvalue x, (extractvalue y, n), n 5039 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 5040 if (EV->getAggregateOperand()->getType() == Agg->getType() && 5041 EV->getIndices() == Idxs) { 5042 // insertvalue poison, (extractvalue y, n), n -> y 5043 // insertvalue undef, (extractvalue y, n), n -> y if y cannot be poison 5044 if (isa<PoisonValue>(Agg) || 5045 (Q.isUndefValue(Agg) && 5046 isGuaranteedNotToBePoison(EV->getAggregateOperand()))) 5047 return EV->getAggregateOperand(); 5048 5049 // insertvalue y, (extractvalue y, n), n -> y 5050 if (Agg == EV->getAggregateOperand()) 5051 return Agg; 5052 } 5053 5054 return nullptr; 5055 } 5056 5057 Value *llvm::simplifyInsertValueInst(Value *Agg, Value *Val, 5058 ArrayRef<unsigned> Idxs, 5059 const SimplifyQuery &Q) { 5060 return ::simplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 5061 } 5062 5063 Value *llvm::simplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 5064 const SimplifyQuery &Q) { 5065 // Try to constant fold. 5066 auto *VecC = dyn_cast<Constant>(Vec); 5067 auto *ValC = dyn_cast<Constant>(Val); 5068 auto *IdxC = dyn_cast<Constant>(Idx); 5069 if (VecC && ValC && IdxC) 5070 return ConstantExpr::getInsertElement(VecC, ValC, IdxC); 5071 5072 // For fixed-length vector, fold into poison if index is out of bounds. 5073 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 5074 if (isa<FixedVectorType>(Vec->getType()) && 5075 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 5076 return PoisonValue::get(Vec->getType()); 5077 } 5078 5079 // If index is undef, it might be out of bounds (see above case) 5080 if (Q.isUndefValue(Idx)) 5081 return PoisonValue::get(Vec->getType()); 5082 5083 // If the scalar is poison, or it is undef and there is no risk of 5084 // propagating poison from the vector value, simplify to the vector value. 5085 if (isa<PoisonValue>(Val) || 5086 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec))) 5087 return Vec; 5088 5089 // If we are extracting a value from a vector, then inserting it into the same 5090 // place, that's the input vector: 5091 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 5092 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 5093 return Vec; 5094 5095 return nullptr; 5096 } 5097 5098 /// Given operands for an ExtractValueInst, see if we can fold the result. 5099 /// If not, this returns null. 5100 static Value *simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 5101 const SimplifyQuery &, unsigned) { 5102 if (auto *CAgg = dyn_cast<Constant>(Agg)) 5103 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 5104 5105 // extractvalue x, (insertvalue y, elt, n), n -> elt 5106 unsigned NumIdxs = Idxs.size(); 5107 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 5108 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 5109 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 5110 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 5111 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 5112 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 5113 Idxs.slice(0, NumCommonIdxs)) { 5114 if (NumIdxs == NumInsertValueIdxs) 5115 return IVI->getInsertedValueOperand(); 5116 break; 5117 } 5118 } 5119 5120 return nullptr; 5121 } 5122 5123 Value *llvm::simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 5124 const SimplifyQuery &Q) { 5125 return ::simplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 5126 } 5127 5128 /// Given operands for an ExtractElementInst, see if we can fold the result. 5129 /// If not, this returns null. 5130 static Value *simplifyExtractElementInst(Value *Vec, Value *Idx, 5131 const SimplifyQuery &Q, unsigned) { 5132 auto *VecVTy = cast<VectorType>(Vec->getType()); 5133 if (auto *CVec = dyn_cast<Constant>(Vec)) { 5134 if (auto *CIdx = dyn_cast<Constant>(Idx)) 5135 return ConstantExpr::getExtractElement(CVec, CIdx); 5136 5137 if (Q.isUndefValue(Vec)) 5138 return UndefValue::get(VecVTy->getElementType()); 5139 } 5140 5141 // An undef extract index can be arbitrarily chosen to be an out-of-range 5142 // index value, which would result in the instruction being poison. 5143 if (Q.isUndefValue(Idx)) 5144 return PoisonValue::get(VecVTy->getElementType()); 5145 5146 // If extracting a specified index from the vector, see if we can recursively 5147 // find a previously computed scalar that was inserted into the vector. 5148 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 5149 // For fixed-length vector, fold into undef if index is out of bounds. 5150 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue(); 5151 if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts)) 5152 return PoisonValue::get(VecVTy->getElementType()); 5153 // Handle case where an element is extracted from a splat. 5154 if (IdxC->getValue().ult(MinNumElts)) 5155 if (auto *Splat = getSplatValue(Vec)) 5156 return Splat; 5157 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 5158 return Elt; 5159 } else { 5160 // extractelt x, (insertelt y, elt, n), n -> elt 5161 // If the possibly-variable indices are trivially known to be equal 5162 // (because they are the same operand) then use the value that was 5163 // inserted directly. 5164 auto *IE = dyn_cast<InsertElementInst>(Vec); 5165 if (IE && IE->getOperand(2) == Idx) 5166 return IE->getOperand(1); 5167 5168 // The index is not relevant if our vector is a splat. 5169 if (Value *Splat = getSplatValue(Vec)) 5170 return Splat; 5171 } 5172 return nullptr; 5173 } 5174 5175 Value *llvm::simplifyExtractElementInst(Value *Vec, Value *Idx, 5176 const SimplifyQuery &Q) { 5177 return ::simplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 5178 } 5179 5180 /// See if we can fold the given phi. If not, returns null. 5181 static Value *simplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues, 5182 const SimplifyQuery &Q) { 5183 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE 5184 // here, because the PHI we may succeed simplifying to was not 5185 // def-reachable from the original PHI! 5186 5187 // If all of the PHI's incoming values are the same then replace the PHI node 5188 // with the common value. 5189 Value *CommonValue = nullptr; 5190 bool HasUndefInput = false; 5191 for (Value *Incoming : IncomingValues) { 5192 // If the incoming value is the phi node itself, it can safely be skipped. 5193 if (Incoming == PN) 5194 continue; 5195 if (Q.isUndefValue(Incoming)) { 5196 // Remember that we saw an undef value, but otherwise ignore them. 5197 HasUndefInput = true; 5198 continue; 5199 } 5200 if (CommonValue && Incoming != CommonValue) 5201 return nullptr; // Not the same, bail out. 5202 CommonValue = Incoming; 5203 } 5204 5205 // If CommonValue is null then all of the incoming values were either undef or 5206 // equal to the phi node itself. 5207 if (!CommonValue) 5208 return UndefValue::get(PN->getType()); 5209 5210 if (HasUndefInput) { 5211 // If we have a PHI node like phi(X, undef, X), where X is defined by some 5212 // instruction, we cannot return X as the result of the PHI node unless it 5213 // dominates the PHI block. 5214 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 5215 } 5216 5217 return CommonValue; 5218 } 5219 5220 static Value *simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 5221 const SimplifyQuery &Q, unsigned MaxRecurse) { 5222 if (auto *C = dyn_cast<Constant>(Op)) 5223 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 5224 5225 if (auto *CI = dyn_cast<CastInst>(Op)) { 5226 auto *Src = CI->getOperand(0); 5227 Type *SrcTy = Src->getType(); 5228 Type *MidTy = CI->getType(); 5229 Type *DstTy = Ty; 5230 if (Src->getType() == Ty) { 5231 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 5232 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 5233 Type *SrcIntPtrTy = 5234 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 5235 Type *MidIntPtrTy = 5236 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 5237 Type *DstIntPtrTy = 5238 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 5239 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 5240 SrcIntPtrTy, MidIntPtrTy, 5241 DstIntPtrTy) == Instruction::BitCast) 5242 return Src; 5243 } 5244 } 5245 5246 // bitcast x -> x 5247 if (CastOpc == Instruction::BitCast) 5248 if (Op->getType() == Ty) 5249 return Op; 5250 5251 return nullptr; 5252 } 5253 5254 Value *llvm::simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 5255 const SimplifyQuery &Q) { 5256 return ::simplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 5257 } 5258 5259 /// For the given destination element of a shuffle, peek through shuffles to 5260 /// match a root vector source operand that contains that element in the same 5261 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 5262 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 5263 int MaskVal, Value *RootVec, 5264 unsigned MaxRecurse) { 5265 if (!MaxRecurse--) 5266 return nullptr; 5267 5268 // Bail out if any mask value is undefined. That kind of shuffle may be 5269 // simplified further based on demanded bits or other folds. 5270 if (MaskVal == -1) 5271 return nullptr; 5272 5273 // The mask value chooses which source operand we need to look at next. 5274 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 5275 int RootElt = MaskVal; 5276 Value *SourceOp = Op0; 5277 if (MaskVal >= InVecNumElts) { 5278 RootElt = MaskVal - InVecNumElts; 5279 SourceOp = Op1; 5280 } 5281 5282 // If the source operand is a shuffle itself, look through it to find the 5283 // matching root vector. 5284 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 5285 return foldIdentityShuffles( 5286 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 5287 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 5288 } 5289 5290 // TODO: Look through bitcasts? What if the bitcast changes the vector element 5291 // size? 5292 5293 // The source operand is not a shuffle. Initialize the root vector value for 5294 // this shuffle if that has not been done yet. 5295 if (!RootVec) 5296 RootVec = SourceOp; 5297 5298 // Give up as soon as a source operand does not match the existing root value. 5299 if (RootVec != SourceOp) 5300 return nullptr; 5301 5302 // The element must be coming from the same lane in the source vector 5303 // (although it may have crossed lanes in intermediate shuffles). 5304 if (RootElt != DestElt) 5305 return nullptr; 5306 5307 return RootVec; 5308 } 5309 5310 static Value *simplifyShuffleVectorInst(Value *Op0, Value *Op1, 5311 ArrayRef<int> Mask, Type *RetTy, 5312 const SimplifyQuery &Q, 5313 unsigned MaxRecurse) { 5314 if (all_of(Mask, [](int Elem) { return Elem == PoisonMaskElem; })) 5315 return PoisonValue::get(RetTy); 5316 5317 auto *InVecTy = cast<VectorType>(Op0->getType()); 5318 unsigned MaskNumElts = Mask.size(); 5319 ElementCount InVecEltCount = InVecTy->getElementCount(); 5320 5321 bool Scalable = InVecEltCount.isScalable(); 5322 5323 SmallVector<int, 32> Indices; 5324 Indices.assign(Mask.begin(), Mask.end()); 5325 5326 // Canonicalization: If mask does not select elements from an input vector, 5327 // replace that input vector with poison. 5328 if (!Scalable) { 5329 bool MaskSelects0 = false, MaskSelects1 = false; 5330 unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); 5331 for (unsigned i = 0; i != MaskNumElts; ++i) { 5332 if (Indices[i] == -1) 5333 continue; 5334 if ((unsigned)Indices[i] < InVecNumElts) 5335 MaskSelects0 = true; 5336 else 5337 MaskSelects1 = true; 5338 } 5339 if (!MaskSelects0) 5340 Op0 = PoisonValue::get(InVecTy); 5341 if (!MaskSelects1) 5342 Op1 = PoisonValue::get(InVecTy); 5343 } 5344 5345 auto *Op0Const = dyn_cast<Constant>(Op0); 5346 auto *Op1Const = dyn_cast<Constant>(Op1); 5347 5348 // If all operands are constant, constant fold the shuffle. This 5349 // transformation depends on the value of the mask which is not known at 5350 // compile time for scalable vectors 5351 if (Op0Const && Op1Const) 5352 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); 5353 5354 // Canonicalization: if only one input vector is constant, it shall be the 5355 // second one. This transformation depends on the value of the mask which 5356 // is not known at compile time for scalable vectors 5357 if (!Scalable && Op0Const && !Op1Const) { 5358 std::swap(Op0, Op1); 5359 ShuffleVectorInst::commuteShuffleMask(Indices, 5360 InVecEltCount.getKnownMinValue()); 5361 } 5362 5363 // A splat of an inserted scalar constant becomes a vector constant: 5364 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 5365 // NOTE: We may have commuted above, so analyze the updated Indices, not the 5366 // original mask constant. 5367 // NOTE: This transformation depends on the value of the mask which is not 5368 // known at compile time for scalable vectors 5369 Constant *C; 5370 ConstantInt *IndexC; 5371 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 5372 m_ConstantInt(IndexC)))) { 5373 // Match a splat shuffle mask of the insert index allowing undef elements. 5374 int InsertIndex = IndexC->getZExtValue(); 5375 if (all_of(Indices, [InsertIndex](int MaskElt) { 5376 return MaskElt == InsertIndex || MaskElt == -1; 5377 })) { 5378 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 5379 5380 // Shuffle mask poisons become poison constant result elements. 5381 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 5382 for (unsigned i = 0; i != MaskNumElts; ++i) 5383 if (Indices[i] == -1) 5384 VecC[i] = PoisonValue::get(C->getType()); 5385 return ConstantVector::get(VecC); 5386 } 5387 } 5388 5389 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 5390 // value type is same as the input vectors' type. 5391 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 5392 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 5393 all_equal(OpShuf->getShuffleMask())) 5394 return Op0; 5395 5396 // All remaining transformation depend on the value of the mask, which is 5397 // not known at compile time for scalable vectors. 5398 if (Scalable) 5399 return nullptr; 5400 5401 // Don't fold a shuffle with undef mask elements. This may get folded in a 5402 // better way using demanded bits or other analysis. 5403 // TODO: Should we allow this? 5404 if (is_contained(Indices, -1)) 5405 return nullptr; 5406 5407 // Check if every element of this shuffle can be mapped back to the 5408 // corresponding element of a single root vector. If so, we don't need this 5409 // shuffle. This handles simple identity shuffles as well as chains of 5410 // shuffles that may widen/narrow and/or move elements across lanes and back. 5411 Value *RootVec = nullptr; 5412 for (unsigned i = 0; i != MaskNumElts; ++i) { 5413 // Note that recursion is limited for each vector element, so if any element 5414 // exceeds the limit, this will fail to simplify. 5415 RootVec = 5416 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 5417 5418 // We can't replace a widening/narrowing shuffle with one of its operands. 5419 if (!RootVec || RootVec->getType() != RetTy) 5420 return nullptr; 5421 } 5422 return RootVec; 5423 } 5424 5425 /// Given operands for a ShuffleVectorInst, fold the result or return null. 5426 Value *llvm::simplifyShuffleVectorInst(Value *Op0, Value *Op1, 5427 ArrayRef<int> Mask, Type *RetTy, 5428 const SimplifyQuery &Q) { 5429 return ::simplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 5430 } 5431 5432 static Constant *foldConstant(Instruction::UnaryOps Opcode, Value *&Op, 5433 const SimplifyQuery &Q) { 5434 if (auto *C = dyn_cast<Constant>(Op)) 5435 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 5436 return nullptr; 5437 } 5438 5439 /// Given the operand for an FNeg, see if we can fold the result. If not, this 5440 /// returns null. 5441 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 5442 const SimplifyQuery &Q, unsigned MaxRecurse) { 5443 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 5444 return C; 5445 5446 Value *X; 5447 // fneg (fneg X) ==> X 5448 if (match(Op, m_FNeg(m_Value(X)))) 5449 return X; 5450 5451 return nullptr; 5452 } 5453 5454 Value *llvm::simplifyFNegInst(Value *Op, FastMathFlags FMF, 5455 const SimplifyQuery &Q) { 5456 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 5457 } 5458 5459 /// Try to propagate existing NaN values when possible. If not, replace the 5460 /// constant or elements in the constant with a canonical NaN. 5461 static Constant *propagateNaN(Constant *In) { 5462 Type *Ty = In->getType(); 5463 if (auto *VecTy = dyn_cast<FixedVectorType>(Ty)) { 5464 unsigned NumElts = VecTy->getNumElements(); 5465 SmallVector<Constant *, 32> NewC(NumElts); 5466 for (unsigned i = 0; i != NumElts; ++i) { 5467 Constant *EltC = In->getAggregateElement(i); 5468 // Poison elements propagate. NaN propagates except signaling is quieted. 5469 // Replace unknown or undef elements with canonical NaN. 5470 if (EltC && isa<PoisonValue>(EltC)) 5471 NewC[i] = EltC; 5472 else if (EltC && EltC->isNaN()) 5473 NewC[i] = ConstantFP::get( 5474 EltC->getType(), cast<ConstantFP>(EltC)->getValue().makeQuiet()); 5475 else 5476 NewC[i] = ConstantFP::getNaN(VecTy->getElementType()); 5477 } 5478 return ConstantVector::get(NewC); 5479 } 5480 5481 // If it is not a fixed vector, but not a simple NaN either, return a 5482 // canonical NaN. 5483 if (!In->isNaN()) 5484 return ConstantFP::getNaN(Ty); 5485 5486 // If we known this is a NaN, and it's scalable vector, we must have a splat 5487 // on our hands. Grab that before splatting a QNaN constant. 5488 if (isa<ScalableVectorType>(Ty)) { 5489 auto *Splat = In->getSplatValue(); 5490 assert(Splat && Splat->isNaN() && 5491 "Found a scalable-vector NaN but not a splat"); 5492 In = Splat; 5493 } 5494 5495 // Propagate an existing QNaN constant. If it is an SNaN, make it quiet, but 5496 // preserve the sign/payload. 5497 return ConstantFP::get(Ty, cast<ConstantFP>(In)->getValue().makeQuiet()); 5498 } 5499 5500 /// Perform folds that are common to any floating-point operation. This implies 5501 /// transforms based on poison/undef/NaN because the operation itself makes no 5502 /// difference to the result. 5503 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF, 5504 const SimplifyQuery &Q, 5505 fp::ExceptionBehavior ExBehavior, 5506 RoundingMode Rounding) { 5507 // Poison is independent of anything else. It always propagates from an 5508 // operand to a math result. 5509 if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); })) 5510 return PoisonValue::get(Ops[0]->getType()); 5511 5512 for (Value *V : Ops) { 5513 bool IsNan = match(V, m_NaN()); 5514 bool IsInf = match(V, m_Inf()); 5515 bool IsUndef = Q.isUndefValue(V); 5516 5517 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 5518 // (an undef operand can be chosen to be Nan/Inf), then the result of 5519 // this operation is poison. 5520 if (FMF.noNaNs() && (IsNan || IsUndef)) 5521 return PoisonValue::get(V->getType()); 5522 if (FMF.noInfs() && (IsInf || IsUndef)) 5523 return PoisonValue::get(V->getType()); 5524 5525 if (isDefaultFPEnvironment(ExBehavior, Rounding)) { 5526 // Undef does not propagate because undef means that all bits can take on 5527 // any value. If this is undef * NaN for example, then the result values 5528 // (at least the exponent bits) are limited. Assume the undef is a 5529 // canonical NaN and propagate that. 5530 if (IsUndef) 5531 return ConstantFP::getNaN(V->getType()); 5532 if (IsNan) 5533 return propagateNaN(cast<Constant>(V)); 5534 } else if (ExBehavior != fp::ebStrict) { 5535 if (IsNan) 5536 return propagateNaN(cast<Constant>(V)); 5537 } 5538 } 5539 return nullptr; 5540 } 5541 5542 /// Given operands for an FAdd, see if we can fold the result. If not, this 5543 /// returns null. 5544 static Value * 5545 simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5546 const SimplifyQuery &Q, unsigned MaxRecurse, 5547 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5548 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5549 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5550 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 5551 return C; 5552 5553 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5554 return C; 5555 5556 // fadd X, -0 ==> X 5557 // With strict/constrained FP, we have these possible edge cases that do 5558 // not simplify to Op0: 5559 // fadd SNaN, -0.0 --> QNaN 5560 // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative) 5561 if (canIgnoreSNaN(ExBehavior, FMF) && 5562 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 5563 FMF.noSignedZeros())) 5564 if (match(Op1, m_NegZeroFP())) 5565 return Op0; 5566 5567 // fadd X, 0 ==> X, when we know X is not -0 5568 if (canIgnoreSNaN(ExBehavior, FMF)) 5569 if (match(Op1, m_PosZeroFP()) && 5570 (FMF.noSignedZeros() || cannotBeNegativeZero(Op0, Q.DL, Q.TLI))) 5571 return Op0; 5572 5573 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5574 return nullptr; 5575 5576 if (FMF.noNaNs()) { 5577 // With nnan: X + {+/-}Inf --> {+/-}Inf 5578 if (match(Op1, m_Inf())) 5579 return Op1; 5580 5581 // With nnan: -X + X --> 0.0 (and commuted variant) 5582 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 5583 // Negative zeros are allowed because we always end up with positive zero: 5584 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5585 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5586 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 5587 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 5588 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 5589 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 5590 return ConstantFP::getZero(Op0->getType()); 5591 5592 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5593 match(Op1, m_FNeg(m_Specific(Op0)))) 5594 return ConstantFP::getZero(Op0->getType()); 5595 } 5596 5597 // (X - Y) + Y --> X 5598 // Y + (X - Y) --> X 5599 Value *X; 5600 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5601 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 5602 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 5603 return X; 5604 5605 return nullptr; 5606 } 5607 5608 /// Given operands for an FSub, see if we can fold the result. If not, this 5609 /// returns null. 5610 static Value * 5611 simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5612 const SimplifyQuery &Q, unsigned MaxRecurse, 5613 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5614 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5615 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5616 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 5617 return C; 5618 5619 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5620 return C; 5621 5622 // fsub X, +0 ==> X 5623 if (canIgnoreSNaN(ExBehavior, FMF) && 5624 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 5625 FMF.noSignedZeros())) 5626 if (match(Op1, m_PosZeroFP())) 5627 return Op0; 5628 5629 // fsub X, -0 ==> X, when we know X is not -0 5630 if (canIgnoreSNaN(ExBehavior, FMF)) 5631 if (match(Op1, m_NegZeroFP()) && 5632 (FMF.noSignedZeros() || cannotBeNegativeZero(Op0, Q.DL, Q.TLI))) 5633 return Op0; 5634 5635 // fsub -0.0, (fsub -0.0, X) ==> X 5636 // fsub -0.0, (fneg X) ==> X 5637 Value *X; 5638 if (canIgnoreSNaN(ExBehavior, FMF)) 5639 if (match(Op0, m_NegZeroFP()) && match(Op1, m_FNeg(m_Value(X)))) 5640 return X; 5641 5642 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 5643 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 5644 if (canIgnoreSNaN(ExBehavior, FMF)) 5645 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 5646 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 5647 match(Op1, m_FNeg(m_Value(X))))) 5648 return X; 5649 5650 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5651 return nullptr; 5652 5653 if (FMF.noNaNs()) { 5654 // fsub nnan x, x ==> 0.0 5655 if (Op0 == Op1) 5656 return Constant::getNullValue(Op0->getType()); 5657 5658 // With nnan: {+/-}Inf - X --> {+/-}Inf 5659 if (match(Op0, m_Inf())) 5660 return Op0; 5661 5662 // With nnan: X - {+/-}Inf --> {-/+}Inf 5663 if (match(Op1, m_Inf())) 5664 return foldConstant(Instruction::FNeg, Op1, Q); 5665 } 5666 5667 // Y - (Y - X) --> X 5668 // (X + Y) - Y --> X 5669 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5670 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 5671 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 5672 return X; 5673 5674 return nullptr; 5675 } 5676 5677 static Value *simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5678 const SimplifyQuery &Q, unsigned MaxRecurse, 5679 fp::ExceptionBehavior ExBehavior, 5680 RoundingMode Rounding) { 5681 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5682 return C; 5683 5684 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5685 return nullptr; 5686 5687 // Canonicalize special constants as operand 1. 5688 if (match(Op0, m_FPOne()) || match(Op0, m_AnyZeroFP())) 5689 std::swap(Op0, Op1); 5690 5691 // X * 1.0 --> X 5692 if (match(Op1, m_FPOne())) 5693 return Op0; 5694 5695 if (match(Op1, m_AnyZeroFP())) { 5696 // X * 0.0 --> 0.0 (with nnan and nsz) 5697 if (FMF.noNaNs() && FMF.noSignedZeros()) 5698 return ConstantFP::getZero(Op0->getType()); 5699 5700 // +normal number * (-)0.0 --> (-)0.0 5701 if (isKnownNeverInfOrNaN(Op0, Q.DL, Q.TLI, 0, Q.AC, Q.CxtI, Q.DT) && 5702 // TODO: Check SignBit from computeKnownFPClass when it's more complete. 5703 SignBitMustBeZero(Op0, Q.DL, Q.TLI)) 5704 return Op1; 5705 } 5706 5707 // sqrt(X) * sqrt(X) --> X, if we can: 5708 // 1. Remove the intermediate rounding (reassociate). 5709 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 5710 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 5711 Value *X; 5712 if (Op0 == Op1 && match(Op0, m_Sqrt(m_Value(X))) && FMF.allowReassoc() && 5713 FMF.noNaNs() && FMF.noSignedZeros()) 5714 return X; 5715 5716 return nullptr; 5717 } 5718 5719 /// Given the operands for an FMul, see if we can fold the result 5720 static Value * 5721 simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5722 const SimplifyQuery &Q, unsigned MaxRecurse, 5723 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5724 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5725 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5726 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 5727 return C; 5728 5729 // Now apply simplifications that do not require rounding. 5730 return simplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding); 5731 } 5732 5733 Value *llvm::simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5734 const SimplifyQuery &Q, 5735 fp::ExceptionBehavior ExBehavior, 5736 RoundingMode Rounding) { 5737 return ::simplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5738 Rounding); 5739 } 5740 5741 Value *llvm::simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5742 const SimplifyQuery &Q, 5743 fp::ExceptionBehavior ExBehavior, 5744 RoundingMode Rounding) { 5745 return ::simplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5746 Rounding); 5747 } 5748 5749 Value *llvm::simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5750 const SimplifyQuery &Q, 5751 fp::ExceptionBehavior ExBehavior, 5752 RoundingMode Rounding) { 5753 return ::simplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5754 Rounding); 5755 } 5756 5757 Value *llvm::simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5758 const SimplifyQuery &Q, 5759 fp::ExceptionBehavior ExBehavior, 5760 RoundingMode Rounding) { 5761 return ::simplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5762 Rounding); 5763 } 5764 5765 static Value * 5766 simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5767 const SimplifyQuery &Q, unsigned, 5768 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5769 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5770 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5771 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 5772 return C; 5773 5774 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5775 return C; 5776 5777 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5778 return nullptr; 5779 5780 // X / 1.0 -> X 5781 if (match(Op1, m_FPOne())) 5782 return Op0; 5783 5784 // 0 / X -> 0 5785 // Requires that NaNs are off (X could be zero) and signed zeroes are 5786 // ignored (X could be positive or negative, so the output sign is unknown). 5787 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5788 return ConstantFP::getZero(Op0->getType()); 5789 5790 if (FMF.noNaNs()) { 5791 // X / X -> 1.0 is legal when NaNs are ignored. 5792 // We can ignore infinities because INF/INF is NaN. 5793 if (Op0 == Op1) 5794 return ConstantFP::get(Op0->getType(), 1.0); 5795 5796 // (X * Y) / Y --> X if we can reassociate to the above form. 5797 Value *X; 5798 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 5799 return X; 5800 5801 // -X / X -> -1.0 and 5802 // X / -X -> -1.0 are legal when NaNs are ignored. 5803 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 5804 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 5805 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 5806 return ConstantFP::get(Op0->getType(), -1.0); 5807 5808 // nnan ninf X / [-]0.0 -> poison 5809 if (FMF.noInfs() && match(Op1, m_AnyZeroFP())) 5810 return PoisonValue::get(Op1->getType()); 5811 } 5812 5813 return nullptr; 5814 } 5815 5816 Value *llvm::simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5817 const SimplifyQuery &Q, 5818 fp::ExceptionBehavior ExBehavior, 5819 RoundingMode Rounding) { 5820 return ::simplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5821 Rounding); 5822 } 5823 5824 static Value * 5825 simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5826 const SimplifyQuery &Q, unsigned, 5827 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5828 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5829 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5830 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 5831 return C; 5832 5833 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5834 return C; 5835 5836 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5837 return nullptr; 5838 5839 // Unlike fdiv, the result of frem always matches the sign of the dividend. 5840 // The constant match may include undef elements in a vector, so return a full 5841 // zero constant as the result. 5842 if (FMF.noNaNs()) { 5843 // +0 % X -> 0 5844 if (match(Op0, m_PosZeroFP())) 5845 return ConstantFP::getZero(Op0->getType()); 5846 // -0 % X -> -0 5847 if (match(Op0, m_NegZeroFP())) 5848 return ConstantFP::getNegativeZero(Op0->getType()); 5849 } 5850 5851 return nullptr; 5852 } 5853 5854 Value *llvm::simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5855 const SimplifyQuery &Q, 5856 fp::ExceptionBehavior ExBehavior, 5857 RoundingMode Rounding) { 5858 return ::simplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5859 Rounding); 5860 } 5861 5862 //=== Helper functions for higher up the class hierarchy. 5863 5864 /// Given the operand for a UnaryOperator, see if we can fold the result. 5865 /// If not, this returns null. 5866 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 5867 unsigned MaxRecurse) { 5868 switch (Opcode) { 5869 case Instruction::FNeg: 5870 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 5871 default: 5872 llvm_unreachable("Unexpected opcode"); 5873 } 5874 } 5875 5876 /// Given the operand for a UnaryOperator, see if we can fold the result. 5877 /// If not, this returns null. 5878 /// Try to use FastMathFlags when folding the result. 5879 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 5880 const FastMathFlags &FMF, const SimplifyQuery &Q, 5881 unsigned MaxRecurse) { 5882 switch (Opcode) { 5883 case Instruction::FNeg: 5884 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 5885 default: 5886 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 5887 } 5888 } 5889 5890 Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 5891 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 5892 } 5893 5894 Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 5895 const SimplifyQuery &Q) { 5896 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 5897 } 5898 5899 /// Given operands for a BinaryOperator, see if we can fold the result. 5900 /// If not, this returns null. 5901 static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5902 const SimplifyQuery &Q, unsigned MaxRecurse) { 5903 switch (Opcode) { 5904 case Instruction::Add: 5905 return simplifyAddInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, 5906 MaxRecurse); 5907 case Instruction::Sub: 5908 return simplifySubInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, 5909 MaxRecurse); 5910 case Instruction::Mul: 5911 return simplifyMulInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, 5912 MaxRecurse); 5913 case Instruction::SDiv: 5914 return simplifySDivInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); 5915 case Instruction::UDiv: 5916 return simplifyUDivInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); 5917 case Instruction::SRem: 5918 return simplifySRemInst(LHS, RHS, Q, MaxRecurse); 5919 case Instruction::URem: 5920 return simplifyURemInst(LHS, RHS, Q, MaxRecurse); 5921 case Instruction::Shl: 5922 return simplifyShlInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, 5923 MaxRecurse); 5924 case Instruction::LShr: 5925 return simplifyLShrInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); 5926 case Instruction::AShr: 5927 return simplifyAShrInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); 5928 case Instruction::And: 5929 return simplifyAndInst(LHS, RHS, Q, MaxRecurse); 5930 case Instruction::Or: 5931 return simplifyOrInst(LHS, RHS, Q, MaxRecurse); 5932 case Instruction::Xor: 5933 return simplifyXorInst(LHS, RHS, Q, MaxRecurse); 5934 case Instruction::FAdd: 5935 return simplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5936 case Instruction::FSub: 5937 return simplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5938 case Instruction::FMul: 5939 return simplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5940 case Instruction::FDiv: 5941 return simplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5942 case Instruction::FRem: 5943 return simplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5944 default: 5945 llvm_unreachable("Unexpected opcode"); 5946 } 5947 } 5948 5949 /// Given operands for a BinaryOperator, see if we can fold the result. 5950 /// If not, this returns null. 5951 /// Try to use FastMathFlags when folding the result. 5952 static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5953 const FastMathFlags &FMF, const SimplifyQuery &Q, 5954 unsigned MaxRecurse) { 5955 switch (Opcode) { 5956 case Instruction::FAdd: 5957 return simplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 5958 case Instruction::FSub: 5959 return simplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 5960 case Instruction::FMul: 5961 return simplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 5962 case Instruction::FDiv: 5963 return simplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 5964 default: 5965 return simplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 5966 } 5967 } 5968 5969 Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5970 const SimplifyQuery &Q) { 5971 return ::simplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 5972 } 5973 5974 Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5975 FastMathFlags FMF, const SimplifyQuery &Q) { 5976 return ::simplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 5977 } 5978 5979 /// Given operands for a CmpInst, see if we can fold the result. 5980 static Value *simplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5981 const SimplifyQuery &Q, unsigned MaxRecurse) { 5982 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 5983 return simplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 5984 return simplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5985 } 5986 5987 Value *llvm::simplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5988 const SimplifyQuery &Q) { 5989 return ::simplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 5990 } 5991 5992 static bool isIdempotent(Intrinsic::ID ID) { 5993 switch (ID) { 5994 default: 5995 return false; 5996 5997 // Unary idempotent: f(f(x)) = f(x) 5998 case Intrinsic::fabs: 5999 case Intrinsic::floor: 6000 case Intrinsic::ceil: 6001 case Intrinsic::trunc: 6002 case Intrinsic::rint: 6003 case Intrinsic::nearbyint: 6004 case Intrinsic::round: 6005 case Intrinsic::roundeven: 6006 case Intrinsic::canonicalize: 6007 case Intrinsic::arithmetic_fence: 6008 return true; 6009 } 6010 } 6011 6012 /// Return true if the intrinsic rounds a floating-point value to an integral 6013 /// floating-point value (not an integer type). 6014 static bool removesFPFraction(Intrinsic::ID ID) { 6015 switch (ID) { 6016 default: 6017 return false; 6018 6019 case Intrinsic::floor: 6020 case Intrinsic::ceil: 6021 case Intrinsic::trunc: 6022 case Intrinsic::rint: 6023 case Intrinsic::nearbyint: 6024 case Intrinsic::round: 6025 case Intrinsic::roundeven: 6026 return true; 6027 } 6028 } 6029 6030 static Value *simplifyRelativeLoad(Constant *Ptr, Constant *Offset, 6031 const DataLayout &DL) { 6032 GlobalValue *PtrSym; 6033 APInt PtrOffset; 6034 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 6035 return nullptr; 6036 6037 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 6038 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 6039 Type *Int32PtrTy = Int32Ty->getPointerTo(); 6040 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 6041 6042 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 6043 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 6044 return nullptr; 6045 6046 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 6047 if (OffsetInt % 4 != 0) 6048 return nullptr; 6049 6050 Constant *C = ConstantExpr::getGetElementPtr( 6051 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 6052 ConstantInt::get(Int64Ty, OffsetInt / 4)); 6053 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 6054 if (!Loaded) 6055 return nullptr; 6056 6057 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 6058 if (!LoadedCE) 6059 return nullptr; 6060 6061 if (LoadedCE->getOpcode() == Instruction::Trunc) { 6062 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 6063 if (!LoadedCE) 6064 return nullptr; 6065 } 6066 6067 if (LoadedCE->getOpcode() != Instruction::Sub) 6068 return nullptr; 6069 6070 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 6071 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 6072 return nullptr; 6073 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 6074 6075 Constant *LoadedRHS = LoadedCE->getOperand(1); 6076 GlobalValue *LoadedRHSSym; 6077 APInt LoadedRHSOffset; 6078 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 6079 DL) || 6080 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 6081 return nullptr; 6082 6083 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 6084 } 6085 6086 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 6087 const SimplifyQuery &Q) { 6088 // Idempotent functions return the same result when called repeatedly. 6089 Intrinsic::ID IID = F->getIntrinsicID(); 6090 if (isIdempotent(IID)) 6091 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 6092 if (II->getIntrinsicID() == IID) 6093 return II; 6094 6095 if (removesFPFraction(IID)) { 6096 // Converting from int or calling a rounding function always results in a 6097 // finite integral number or infinity. For those inputs, rounding functions 6098 // always return the same value, so the (2nd) rounding is eliminated. Ex: 6099 // floor (sitofp x) -> sitofp x 6100 // round (ceil x) -> ceil x 6101 auto *II = dyn_cast<IntrinsicInst>(Op0); 6102 if ((II && removesFPFraction(II->getIntrinsicID())) || 6103 match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 6104 return Op0; 6105 } 6106 6107 Value *X; 6108 switch (IID) { 6109 case Intrinsic::fabs: 6110 if (SignBitMustBeZero(Op0, Q.DL, Q.TLI)) 6111 return Op0; 6112 break; 6113 case Intrinsic::bswap: 6114 // bswap(bswap(x)) -> x 6115 if (match(Op0, m_BSwap(m_Value(X)))) 6116 return X; 6117 break; 6118 case Intrinsic::bitreverse: 6119 // bitreverse(bitreverse(x)) -> x 6120 if (match(Op0, m_BitReverse(m_Value(X)))) 6121 return X; 6122 break; 6123 case Intrinsic::ctpop: { 6124 // ctpop(X) -> 1 iff X is non-zero power of 2. 6125 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ false, 0, Q.AC, Q.CxtI, 6126 Q.DT)) 6127 return ConstantInt::get(Op0->getType(), 1); 6128 // If everything but the lowest bit is zero, that bit is the pop-count. Ex: 6129 // ctpop(and X, 1) --> and X, 1 6130 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 6131 if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), 6132 Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 6133 return Op0; 6134 break; 6135 } 6136 case Intrinsic::exp: 6137 // exp(log(x)) -> x 6138 if (Q.CxtI->hasAllowReassoc() && 6139 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) 6140 return X; 6141 break; 6142 case Intrinsic::exp2: 6143 // exp2(log2(x)) -> x 6144 if (Q.CxtI->hasAllowReassoc() && 6145 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) 6146 return X; 6147 break; 6148 case Intrinsic::log: 6149 // log(exp(x)) -> x 6150 if (Q.CxtI->hasAllowReassoc() && 6151 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) 6152 return X; 6153 break; 6154 case Intrinsic::log2: 6155 // log2(exp2(x)) -> x 6156 if (Q.CxtI->hasAllowReassoc() && 6157 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 6158 match(Op0, 6159 m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), m_Value(X))))) 6160 return X; 6161 break; 6162 case Intrinsic::log10: 6163 // log10(pow(10.0, x)) -> x 6164 if (Q.CxtI->hasAllowReassoc() && 6165 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), m_Value(X)))) 6166 return X; 6167 break; 6168 case Intrinsic::experimental_vector_reverse: 6169 // experimental.vector.reverse(experimental.vector.reverse(x)) -> x 6170 if (match(Op0, m_VecReverse(m_Value(X)))) 6171 return X; 6172 // experimental.vector.reverse(splat(X)) -> splat(X) 6173 if (isSplatValue(Op0)) 6174 return Op0; 6175 break; 6176 case Intrinsic::frexp: { 6177 // Frexp is idempotent with the added complication of the struct return. 6178 if (match(Op0, m_ExtractValue<0>(m_Value(X)))) { 6179 if (match(X, m_Intrinsic<Intrinsic::frexp>(m_Value()))) 6180 return X; 6181 } 6182 6183 break; 6184 } 6185 default: 6186 break; 6187 } 6188 6189 return nullptr; 6190 } 6191 6192 /// Given a min/max intrinsic, see if it can be removed based on having an 6193 /// operand that is another min/max intrinsic with shared operand(s). The caller 6194 /// is expected to swap the operand arguments to handle commutation. 6195 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 6196 Value *X, *Y; 6197 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 6198 return nullptr; 6199 6200 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 6201 if (!MM0) 6202 return nullptr; 6203 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 6204 6205 if (Op1 == X || Op1 == Y || 6206 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 6207 // max (max X, Y), X --> max X, Y 6208 if (IID0 == IID) 6209 return MM0; 6210 // max (min X, Y), X --> X 6211 if (IID0 == getInverseMinMaxIntrinsic(IID)) 6212 return Op1; 6213 } 6214 return nullptr; 6215 } 6216 6217 /// Given a min/max intrinsic, see if it can be removed based on having an 6218 /// operand that is another min/max intrinsic with shared operand(s). The caller 6219 /// is expected to swap the operand arguments to handle commutation. 6220 static Value *foldMinimumMaximumSharedOp(Intrinsic::ID IID, Value *Op0, 6221 Value *Op1) { 6222 assert((IID == Intrinsic::maxnum || IID == Intrinsic::minnum || 6223 IID == Intrinsic::maximum || IID == Intrinsic::minimum) && 6224 "Unsupported intrinsic"); 6225 6226 auto *M0 = dyn_cast<IntrinsicInst>(Op0); 6227 // If Op0 is not the same intrinsic as IID, do not process. 6228 // This is a difference with integer min/max handling. We do not process the 6229 // case like max(min(X,Y),min(X,Y)) => min(X,Y). But it can be handled by GVN. 6230 if (!M0 || M0->getIntrinsicID() != IID) 6231 return nullptr; 6232 Value *X0 = M0->getOperand(0); 6233 Value *Y0 = M0->getOperand(1); 6234 // Simple case, m(m(X,Y), X) => m(X, Y) 6235 // m(m(X,Y), Y) => m(X, Y) 6236 // For minimum/maximum, X is NaN => m(NaN, Y) == NaN and m(NaN, NaN) == NaN. 6237 // For minimum/maximum, Y is NaN => m(X, NaN) == NaN and m(NaN, NaN) == NaN. 6238 // For minnum/maxnum, X is NaN => m(NaN, Y) == Y and m(Y, Y) == Y. 6239 // For minnum/maxnum, Y is NaN => m(X, NaN) == X and m(X, NaN) == X. 6240 if (X0 == Op1 || Y0 == Op1) 6241 return M0; 6242 6243 auto *M1 = dyn_cast<IntrinsicInst>(Op1); 6244 if (!M1) 6245 return nullptr; 6246 Value *X1 = M1->getOperand(0); 6247 Value *Y1 = M1->getOperand(1); 6248 Intrinsic::ID IID1 = M1->getIntrinsicID(); 6249 // we have a case m(m(X,Y),m'(X,Y)) taking into account m' is commutative. 6250 // if m' is m or inversion of m => m(m(X,Y),m'(X,Y)) == m(X,Y). 6251 // For minimum/maximum, X is NaN => m(NaN,Y) == m'(NaN, Y) == NaN. 6252 // For minimum/maximum, Y is NaN => m(X,NaN) == m'(X, NaN) == NaN. 6253 // For minnum/maxnum, X is NaN => m(NaN,Y) == m'(NaN, Y) == Y. 6254 // For minnum/maxnum, Y is NaN => m(X,NaN) == m'(X, NaN) == X. 6255 if ((X0 == X1 && Y0 == Y1) || (X0 == Y1 && Y0 == X1)) 6256 if (IID1 == IID || getInverseMinMaxIntrinsic(IID1) == IID) 6257 return M0; 6258 6259 return nullptr; 6260 } 6261 6262 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 6263 const SimplifyQuery &Q) { 6264 Intrinsic::ID IID = F->getIntrinsicID(); 6265 Type *ReturnType = F->getReturnType(); 6266 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 6267 switch (IID) { 6268 case Intrinsic::abs: 6269 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 6270 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 6271 // on the outer abs. 6272 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 6273 return Op0; 6274 break; 6275 6276 case Intrinsic::cttz: { 6277 Value *X; 6278 if (match(Op0, m_Shl(m_One(), m_Value(X)))) 6279 return X; 6280 break; 6281 } 6282 case Intrinsic::ctlz: { 6283 Value *X; 6284 if (match(Op0, m_LShr(m_Negative(), m_Value(X)))) 6285 return X; 6286 if (match(Op0, m_AShr(m_Negative(), m_Value()))) 6287 return Constant::getNullValue(ReturnType); 6288 break; 6289 } 6290 case Intrinsic::smax: 6291 case Intrinsic::smin: 6292 case Intrinsic::umax: 6293 case Intrinsic::umin: { 6294 // If the arguments are the same, this is a no-op. 6295 if (Op0 == Op1) 6296 return Op0; 6297 6298 // Canonicalize immediate constant operand as Op1. 6299 if (match(Op0, m_ImmConstant())) 6300 std::swap(Op0, Op1); 6301 6302 // Assume undef is the limit value. 6303 if (Q.isUndefValue(Op1)) 6304 return ConstantInt::get( 6305 ReturnType, MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)); 6306 6307 const APInt *C; 6308 if (match(Op1, m_APIntAllowUndef(C))) { 6309 // Clamp to limit value. For example: 6310 // umax(i8 %x, i8 255) --> 255 6311 if (*C == MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)) 6312 return ConstantInt::get(ReturnType, *C); 6313 6314 // If the constant op is the opposite of the limit value, the other must 6315 // be larger/smaller or equal. For example: 6316 // umin(i8 %x, i8 255) --> %x 6317 if (*C == MinMaxIntrinsic::getSaturationPoint( 6318 getInverseMinMaxIntrinsic(IID), BitWidth)) 6319 return Op0; 6320 6321 // Remove nested call if constant operands allow it. Example: 6322 // max (max X, 7), 5 -> max X, 7 6323 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 6324 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 6325 // TODO: loosen undef/splat restrictions for vector constants. 6326 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 6327 const APInt *InnerC; 6328 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 6329 ICmpInst::compare(*InnerC, *C, 6330 ICmpInst::getNonStrictPredicate( 6331 MinMaxIntrinsic::getPredicate(IID)))) 6332 return Op0; 6333 } 6334 } 6335 6336 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 6337 return V; 6338 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 6339 return V; 6340 6341 ICmpInst::Predicate Pred = 6342 ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID)); 6343 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) 6344 return Op0; 6345 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) 6346 return Op1; 6347 6348 break; 6349 } 6350 case Intrinsic::usub_with_overflow: 6351 case Intrinsic::ssub_with_overflow: 6352 // X - X -> { 0, false } 6353 // X - undef -> { 0, false } 6354 // undef - X -> { 0, false } 6355 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 6356 return Constant::getNullValue(ReturnType); 6357 break; 6358 case Intrinsic::uadd_with_overflow: 6359 case Intrinsic::sadd_with_overflow: 6360 // X + undef -> { -1, false } 6361 // undef + x -> { -1, false } 6362 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 6363 return ConstantStruct::get( 6364 cast<StructType>(ReturnType), 6365 {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), 6366 Constant::getNullValue(ReturnType->getStructElementType(1))}); 6367 } 6368 break; 6369 case Intrinsic::umul_with_overflow: 6370 case Intrinsic::smul_with_overflow: 6371 // 0 * X -> { 0, false } 6372 // X * 0 -> { 0, false } 6373 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 6374 return Constant::getNullValue(ReturnType); 6375 // undef * X -> { 0, false } 6376 // X * undef -> { 0, false } 6377 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 6378 return Constant::getNullValue(ReturnType); 6379 break; 6380 case Intrinsic::uadd_sat: 6381 // sat(MAX + X) -> MAX 6382 // sat(X + MAX) -> MAX 6383 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 6384 return Constant::getAllOnesValue(ReturnType); 6385 [[fallthrough]]; 6386 case Intrinsic::sadd_sat: 6387 // sat(X + undef) -> -1 6388 // sat(undef + X) -> -1 6389 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 6390 // For signed: Assume undef is ~X, in which case X + ~X = -1. 6391 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 6392 return Constant::getAllOnesValue(ReturnType); 6393 6394 // X + 0 -> X 6395 if (match(Op1, m_Zero())) 6396 return Op0; 6397 // 0 + X -> X 6398 if (match(Op0, m_Zero())) 6399 return Op1; 6400 break; 6401 case Intrinsic::usub_sat: 6402 // sat(0 - X) -> 0, sat(X - MAX) -> 0 6403 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 6404 return Constant::getNullValue(ReturnType); 6405 [[fallthrough]]; 6406 case Intrinsic::ssub_sat: 6407 // X - X -> 0, X - undef -> 0, undef - X -> 0 6408 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 6409 return Constant::getNullValue(ReturnType); 6410 // X - 0 -> X 6411 if (match(Op1, m_Zero())) 6412 return Op0; 6413 break; 6414 case Intrinsic::load_relative: 6415 if (auto *C0 = dyn_cast<Constant>(Op0)) 6416 if (auto *C1 = dyn_cast<Constant>(Op1)) 6417 return simplifyRelativeLoad(C0, C1, Q.DL); 6418 break; 6419 case Intrinsic::powi: 6420 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 6421 // powi(x, 0) -> 1.0 6422 if (Power->isZero()) 6423 return ConstantFP::get(Op0->getType(), 1.0); 6424 // powi(x, 1) -> x 6425 if (Power->isOne()) 6426 return Op0; 6427 } 6428 break; 6429 case Intrinsic::copysign: 6430 // copysign X, X --> X 6431 if (Op0 == Op1) 6432 return Op0; 6433 // copysign -X, X --> X 6434 // copysign X, -X --> -X 6435 if (match(Op0, m_FNeg(m_Specific(Op1))) || 6436 match(Op1, m_FNeg(m_Specific(Op0)))) 6437 return Op1; 6438 break; 6439 case Intrinsic::is_fpclass: { 6440 if (isa<PoisonValue>(Op0)) 6441 return PoisonValue::get(ReturnType); 6442 6443 uint64_t Mask = cast<ConstantInt>(Op1)->getZExtValue(); 6444 // If all tests are made, it doesn't matter what the value is. 6445 if ((Mask & fcAllFlags) == fcAllFlags) 6446 return ConstantInt::get(ReturnType, true); 6447 if ((Mask & fcAllFlags) == 0) 6448 return ConstantInt::get(ReturnType, false); 6449 if (Q.isUndefValue(Op0)) 6450 return UndefValue::get(ReturnType); 6451 break; 6452 } 6453 case Intrinsic::maxnum: 6454 case Intrinsic::minnum: 6455 case Intrinsic::maximum: 6456 case Intrinsic::minimum: { 6457 // If the arguments are the same, this is a no-op. 6458 if (Op0 == Op1) 6459 return Op0; 6460 6461 // Canonicalize constant operand as Op1. 6462 if (isa<Constant>(Op0)) 6463 std::swap(Op0, Op1); 6464 6465 // If an argument is undef, return the other argument. 6466 if (Q.isUndefValue(Op1)) 6467 return Op0; 6468 6469 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 6470 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; 6471 6472 // minnum(X, nan) -> X 6473 // maxnum(X, nan) -> X 6474 // minimum(X, nan) -> nan 6475 // maximum(X, nan) -> nan 6476 if (match(Op1, m_NaN())) 6477 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; 6478 6479 // In the following folds, inf can be replaced with the largest finite 6480 // float, if the ninf flag is set. 6481 const APFloat *C; 6482 if (match(Op1, m_APFloat(C)) && 6483 (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) { 6484 // minnum(X, -inf) -> -inf 6485 // maxnum(X, +inf) -> +inf 6486 // minimum(X, -inf) -> -inf if nnan 6487 // maximum(X, +inf) -> +inf if nnan 6488 if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs())) 6489 return ConstantFP::get(ReturnType, *C); 6490 6491 // minnum(X, +inf) -> X if nnan 6492 // maxnum(X, -inf) -> X if nnan 6493 // minimum(X, +inf) -> X 6494 // maximum(X, -inf) -> X 6495 if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs())) 6496 return Op0; 6497 } 6498 6499 // Min/max of the same operation with common operand: 6500 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 6501 if (Value *V = foldMinimumMaximumSharedOp(IID, Op0, Op1)) 6502 return V; 6503 if (Value *V = foldMinimumMaximumSharedOp(IID, Op1, Op0)) 6504 return V; 6505 6506 break; 6507 } 6508 case Intrinsic::vector_extract: { 6509 Type *ReturnType = F->getReturnType(); 6510 6511 // (extract_vector (insert_vector _, X, 0), 0) -> X 6512 unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue(); 6513 Value *X = nullptr; 6514 if (match(Op0, m_Intrinsic<Intrinsic::vector_insert>(m_Value(), m_Value(X), 6515 m_Zero())) && 6516 IdxN == 0 && X->getType() == ReturnType) 6517 return X; 6518 6519 break; 6520 } 6521 default: 6522 break; 6523 } 6524 6525 return nullptr; 6526 } 6527 6528 static Value *simplifyIntrinsic(CallBase *Call, Value *Callee, 6529 ArrayRef<Value *> Args, 6530 const SimplifyQuery &Q) { 6531 // Operand bundles should not be in Args. 6532 assert(Call->arg_size() == Args.size()); 6533 unsigned NumOperands = Args.size(); 6534 Function *F = cast<Function>(Callee); 6535 Intrinsic::ID IID = F->getIntrinsicID(); 6536 6537 // Most of the intrinsics with no operands have some kind of side effect. 6538 // Don't simplify. 6539 if (!NumOperands) { 6540 switch (IID) { 6541 case Intrinsic::vscale: { 6542 auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange); 6543 if (!Attr.isValid()) 6544 return nullptr; 6545 unsigned VScaleMin = Attr.getVScaleRangeMin(); 6546 std::optional<unsigned> VScaleMax = Attr.getVScaleRangeMax(); 6547 if (VScaleMax && VScaleMin == VScaleMax) 6548 return ConstantInt::get(F->getReturnType(), VScaleMin); 6549 return nullptr; 6550 } 6551 default: 6552 return nullptr; 6553 } 6554 } 6555 6556 if (NumOperands == 1) 6557 return simplifyUnaryIntrinsic(F, Args[0], Q); 6558 6559 if (NumOperands == 2) 6560 return simplifyBinaryIntrinsic(F, Args[0], Args[1], Q); 6561 6562 // Handle intrinsics with 3 or more arguments. 6563 switch (IID) { 6564 case Intrinsic::masked_load: 6565 case Intrinsic::masked_gather: { 6566 Value *MaskArg = Args[2]; 6567 Value *PassthruArg = Args[3]; 6568 // If the mask is all zeros or undef, the "passthru" argument is the result. 6569 if (maskIsAllZeroOrUndef(MaskArg)) 6570 return PassthruArg; 6571 return nullptr; 6572 } 6573 case Intrinsic::fshl: 6574 case Intrinsic::fshr: { 6575 Value *Op0 = Args[0], *Op1 = Args[1], *ShAmtArg = Args[2]; 6576 6577 // If both operands are undef, the result is undef. 6578 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 6579 return UndefValue::get(F->getReturnType()); 6580 6581 // If shift amount is undef, assume it is zero. 6582 if (Q.isUndefValue(ShAmtArg)) 6583 return Args[IID == Intrinsic::fshl ? 0 : 1]; 6584 6585 const APInt *ShAmtC; 6586 if (match(ShAmtArg, m_APInt(ShAmtC))) { 6587 // If there's effectively no shift, return the 1st arg or 2nd arg. 6588 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 6589 if (ShAmtC->urem(BitWidth).isZero()) 6590 return Args[IID == Intrinsic::fshl ? 0 : 1]; 6591 } 6592 6593 // Rotating zero by anything is zero. 6594 if (match(Op0, m_Zero()) && match(Op1, m_Zero())) 6595 return ConstantInt::getNullValue(F->getReturnType()); 6596 6597 // Rotating -1 by anything is -1. 6598 if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes())) 6599 return ConstantInt::getAllOnesValue(F->getReturnType()); 6600 6601 return nullptr; 6602 } 6603 case Intrinsic::experimental_constrained_fma: { 6604 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6605 if (Value *V = simplifyFPOp(Args, {}, Q, *FPI->getExceptionBehavior(), 6606 *FPI->getRoundingMode())) 6607 return V; 6608 return nullptr; 6609 } 6610 case Intrinsic::fma: 6611 case Intrinsic::fmuladd: { 6612 if (Value *V = simplifyFPOp(Args, {}, Q, fp::ebIgnore, 6613 RoundingMode::NearestTiesToEven)) 6614 return V; 6615 return nullptr; 6616 } 6617 case Intrinsic::smul_fix: 6618 case Intrinsic::smul_fix_sat: { 6619 Value *Op0 = Args[0]; 6620 Value *Op1 = Args[1]; 6621 Value *Op2 = Args[2]; 6622 Type *ReturnType = F->getReturnType(); 6623 6624 // Canonicalize constant operand as Op1 (ConstantFolding handles the case 6625 // when both Op0 and Op1 are constant so we do not care about that special 6626 // case here). 6627 if (isa<Constant>(Op0)) 6628 std::swap(Op0, Op1); 6629 6630 // X * 0 -> 0 6631 if (match(Op1, m_Zero())) 6632 return Constant::getNullValue(ReturnType); 6633 6634 // X * undef -> 0 6635 if (Q.isUndefValue(Op1)) 6636 return Constant::getNullValue(ReturnType); 6637 6638 // X * (1 << Scale) -> X 6639 APInt ScaledOne = 6640 APInt::getOneBitSet(ReturnType->getScalarSizeInBits(), 6641 cast<ConstantInt>(Op2)->getZExtValue()); 6642 if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne))) 6643 return Op0; 6644 6645 return nullptr; 6646 } 6647 case Intrinsic::vector_insert: { 6648 Value *Vec = Args[0]; 6649 Value *SubVec = Args[1]; 6650 Value *Idx = Args[2]; 6651 Type *ReturnType = F->getReturnType(); 6652 6653 // (insert_vector Y, (extract_vector X, 0), 0) -> X 6654 // where: Y is X, or Y is undef 6655 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 6656 Value *X = nullptr; 6657 if (match(SubVec, 6658 m_Intrinsic<Intrinsic::vector_extract>(m_Value(X), m_Zero())) && 6659 (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 && 6660 X->getType() == ReturnType) 6661 return X; 6662 6663 return nullptr; 6664 } 6665 case Intrinsic::experimental_constrained_fadd: { 6666 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6667 return simplifyFAddInst(Args[0], Args[1], FPI->getFastMathFlags(), Q, 6668 *FPI->getExceptionBehavior(), 6669 *FPI->getRoundingMode()); 6670 } 6671 case Intrinsic::experimental_constrained_fsub: { 6672 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6673 return simplifyFSubInst(Args[0], Args[1], FPI->getFastMathFlags(), Q, 6674 *FPI->getExceptionBehavior(), 6675 *FPI->getRoundingMode()); 6676 } 6677 case Intrinsic::experimental_constrained_fmul: { 6678 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6679 return simplifyFMulInst(Args[0], Args[1], FPI->getFastMathFlags(), Q, 6680 *FPI->getExceptionBehavior(), 6681 *FPI->getRoundingMode()); 6682 } 6683 case Intrinsic::experimental_constrained_fdiv: { 6684 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6685 return simplifyFDivInst(Args[0], Args[1], FPI->getFastMathFlags(), Q, 6686 *FPI->getExceptionBehavior(), 6687 *FPI->getRoundingMode()); 6688 } 6689 case Intrinsic::experimental_constrained_frem: { 6690 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6691 return simplifyFRemInst(Args[0], Args[1], FPI->getFastMathFlags(), Q, 6692 *FPI->getExceptionBehavior(), 6693 *FPI->getRoundingMode()); 6694 } 6695 default: 6696 return nullptr; 6697 } 6698 } 6699 6700 static Value *tryConstantFoldCall(CallBase *Call, Value *Callee, 6701 ArrayRef<Value *> Args, 6702 const SimplifyQuery &Q) { 6703 auto *F = dyn_cast<Function>(Callee); 6704 if (!F || !canConstantFoldCallTo(Call, F)) 6705 return nullptr; 6706 6707 SmallVector<Constant *, 4> ConstantArgs; 6708 ConstantArgs.reserve(Args.size()); 6709 for (Value *Arg : Args) { 6710 Constant *C = dyn_cast<Constant>(Arg); 6711 if (!C) { 6712 if (isa<MetadataAsValue>(Arg)) 6713 continue; 6714 return nullptr; 6715 } 6716 ConstantArgs.push_back(C); 6717 } 6718 6719 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 6720 } 6721 6722 Value *llvm::simplifyCall(CallBase *Call, Value *Callee, ArrayRef<Value *> Args, 6723 const SimplifyQuery &Q) { 6724 // Args should not contain operand bundle operands. 6725 assert(Call->arg_size() == Args.size()); 6726 6727 // musttail calls can only be simplified if they are also DCEd. 6728 // As we can't guarantee this here, don't simplify them. 6729 if (Call->isMustTailCall()) 6730 return nullptr; 6731 6732 // call undef -> poison 6733 // call null -> poison 6734 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 6735 return PoisonValue::get(Call->getType()); 6736 6737 if (Value *V = tryConstantFoldCall(Call, Callee, Args, Q)) 6738 return V; 6739 6740 auto *F = dyn_cast<Function>(Callee); 6741 if (F && F->isIntrinsic()) 6742 if (Value *Ret = simplifyIntrinsic(Call, Callee, Args, Q)) 6743 return Ret; 6744 6745 return nullptr; 6746 } 6747 6748 Value *llvm::simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q) { 6749 assert(isa<ConstrainedFPIntrinsic>(Call)); 6750 SmallVector<Value *, 4> Args(Call->args()); 6751 if (Value *V = tryConstantFoldCall(Call, Call->getCalledOperand(), Args, Q)) 6752 return V; 6753 if (Value *Ret = simplifyIntrinsic(Call, Call->getCalledOperand(), Args, Q)) 6754 return Ret; 6755 return nullptr; 6756 } 6757 6758 /// Given operands for a Freeze, see if we can fold the result. 6759 static Value *simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6760 // Use a utility function defined in ValueTracking. 6761 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) 6762 return Op0; 6763 // We have room for improvement. 6764 return nullptr; 6765 } 6766 6767 Value *llvm::simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6768 return ::simplifyFreezeInst(Op0, Q); 6769 } 6770 6771 Value *llvm::simplifyLoadInst(LoadInst *LI, Value *PtrOp, 6772 const SimplifyQuery &Q) { 6773 if (LI->isVolatile()) 6774 return nullptr; 6775 6776 if (auto *PtrOpC = dyn_cast<Constant>(PtrOp)) 6777 return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Q.DL); 6778 6779 // We can only fold the load if it is from a constant global with definitive 6780 // initializer. Skip expensive logic if this is not the case. 6781 auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(PtrOp)); 6782 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 6783 return nullptr; 6784 6785 // If GlobalVariable's initializer is uniform, then return the constant 6786 // regardless of its offset. 6787 if (Constant *C = 6788 ConstantFoldLoadFromUniformValue(GV->getInitializer(), LI->getType())) 6789 return C; 6790 6791 // Try to convert operand into a constant by stripping offsets while looking 6792 // through invariant.group intrinsics. 6793 APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0); 6794 PtrOp = PtrOp->stripAndAccumulateConstantOffsets( 6795 Q.DL, Offset, /* AllowNonInbounts */ true, 6796 /* AllowInvariantGroup */ true); 6797 if (PtrOp == GV) { 6798 // Index size may have changed due to address space casts. 6799 Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType())); 6800 return ConstantFoldLoadFromConstPtr(GV, LI->getType(), Offset, Q.DL); 6801 } 6802 6803 return nullptr; 6804 } 6805 6806 /// See if we can compute a simplified version of this instruction. 6807 /// If not, this returns null. 6808 6809 static Value *simplifyInstructionWithOperands(Instruction *I, 6810 ArrayRef<Value *> NewOps, 6811 const SimplifyQuery &SQ, 6812 unsigned MaxRecurse) { 6813 assert(I->getFunction() && "instruction should be inserted in a function"); 6814 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 6815 6816 switch (I->getOpcode()) { 6817 default: 6818 if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) { 6819 SmallVector<Constant *, 8> NewConstOps(NewOps.size()); 6820 transform(NewOps, NewConstOps.begin(), 6821 [](Value *V) { return cast<Constant>(V); }); 6822 return ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI); 6823 } 6824 return nullptr; 6825 case Instruction::FNeg: 6826 return simplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q, MaxRecurse); 6827 case Instruction::FAdd: 6828 return simplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q, 6829 MaxRecurse); 6830 case Instruction::Add: 6831 return simplifyAddInst( 6832 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6833 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse); 6834 case Instruction::FSub: 6835 return simplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q, 6836 MaxRecurse); 6837 case Instruction::Sub: 6838 return simplifySubInst( 6839 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6840 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse); 6841 case Instruction::FMul: 6842 return simplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q, 6843 MaxRecurse); 6844 case Instruction::Mul: 6845 return simplifyMulInst( 6846 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6847 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse); 6848 case Instruction::SDiv: 6849 return simplifySDivInst(NewOps[0], NewOps[1], 6850 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q, 6851 MaxRecurse); 6852 case Instruction::UDiv: 6853 return simplifyUDivInst(NewOps[0], NewOps[1], 6854 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q, 6855 MaxRecurse); 6856 case Instruction::FDiv: 6857 return simplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q, 6858 MaxRecurse); 6859 case Instruction::SRem: 6860 return simplifySRemInst(NewOps[0], NewOps[1], Q, MaxRecurse); 6861 case Instruction::URem: 6862 return simplifyURemInst(NewOps[0], NewOps[1], Q, MaxRecurse); 6863 case Instruction::FRem: 6864 return simplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q, 6865 MaxRecurse); 6866 case Instruction::Shl: 6867 return simplifyShlInst( 6868 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6869 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse); 6870 case Instruction::LShr: 6871 return simplifyLShrInst(NewOps[0], NewOps[1], 6872 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q, 6873 MaxRecurse); 6874 case Instruction::AShr: 6875 return simplifyAShrInst(NewOps[0], NewOps[1], 6876 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q, 6877 MaxRecurse); 6878 case Instruction::And: 6879 return simplifyAndInst(NewOps[0], NewOps[1], Q, MaxRecurse); 6880 case Instruction::Or: 6881 return simplifyOrInst(NewOps[0], NewOps[1], Q, MaxRecurse); 6882 case Instruction::Xor: 6883 return simplifyXorInst(NewOps[0], NewOps[1], Q, MaxRecurse); 6884 case Instruction::ICmp: 6885 return simplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0], 6886 NewOps[1], Q, MaxRecurse); 6887 case Instruction::FCmp: 6888 return simplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0], 6889 NewOps[1], I->getFastMathFlags(), Q, MaxRecurse); 6890 case Instruction::Select: 6891 return simplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q, MaxRecurse); 6892 break; 6893 case Instruction::GetElementPtr: { 6894 auto *GEPI = cast<GetElementPtrInst>(I); 6895 return simplifyGEPInst(GEPI->getSourceElementType(), NewOps[0], 6896 ArrayRef(NewOps).slice(1), GEPI->isInBounds(), Q, 6897 MaxRecurse); 6898 } 6899 case Instruction::InsertValue: { 6900 InsertValueInst *IV = cast<InsertValueInst>(I); 6901 return simplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q, 6902 MaxRecurse); 6903 } 6904 case Instruction::InsertElement: 6905 return simplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q); 6906 case Instruction::ExtractValue: { 6907 auto *EVI = cast<ExtractValueInst>(I); 6908 return simplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q, 6909 MaxRecurse); 6910 } 6911 case Instruction::ExtractElement: 6912 return simplifyExtractElementInst(NewOps[0], NewOps[1], Q, MaxRecurse); 6913 case Instruction::ShuffleVector: { 6914 auto *SVI = cast<ShuffleVectorInst>(I); 6915 return simplifyShuffleVectorInst(NewOps[0], NewOps[1], 6916 SVI->getShuffleMask(), SVI->getType(), Q, 6917 MaxRecurse); 6918 } 6919 case Instruction::PHI: 6920 return simplifyPHINode(cast<PHINode>(I), NewOps, Q); 6921 case Instruction::Call: 6922 return simplifyCall( 6923 cast<CallInst>(I), NewOps.back(), 6924 NewOps.drop_back(1 + cast<CallInst>(I)->getNumTotalBundleOperands()), Q); 6925 case Instruction::Freeze: 6926 return llvm::simplifyFreezeInst(NewOps[0], Q); 6927 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 6928 #include "llvm/IR/Instruction.def" 6929 #undef HANDLE_CAST_INST 6930 return simplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q, 6931 MaxRecurse); 6932 case Instruction::Alloca: 6933 // No simplifications for Alloca and it can't be constant folded. 6934 return nullptr; 6935 case Instruction::Load: 6936 return simplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q); 6937 } 6938 } 6939 6940 Value *llvm::simplifyInstructionWithOperands(Instruction *I, 6941 ArrayRef<Value *> NewOps, 6942 const SimplifyQuery &SQ) { 6943 assert(NewOps.size() == I->getNumOperands() && 6944 "Number of operands should match the instruction!"); 6945 return ::simplifyInstructionWithOperands(I, NewOps, SQ, RecursionLimit); 6946 } 6947 6948 Value *llvm::simplifyInstruction(Instruction *I, const SimplifyQuery &SQ) { 6949 SmallVector<Value *, 8> Ops(I->operands()); 6950 Value *Result = ::simplifyInstructionWithOperands(I, Ops, SQ, RecursionLimit); 6951 6952 /// If called on unreachable code, the instruction may simplify to itself. 6953 /// Make life easier for users by detecting that case here, and returning a 6954 /// safe value instead. 6955 return Result == I ? UndefValue::get(I->getType()) : Result; 6956 } 6957 6958 /// Implementation of recursive simplification through an instruction's 6959 /// uses. 6960 /// 6961 /// This is the common implementation of the recursive simplification routines. 6962 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 6963 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 6964 /// instructions to process and attempt to simplify it using 6965 /// InstructionSimplify. Recursively visited users which could not be 6966 /// simplified themselves are to the optional UnsimplifiedUsers set for 6967 /// further processing by the caller. 6968 /// 6969 /// This routine returns 'true' only when *it* simplifies something. The passed 6970 /// in simplified value does not count toward this. 6971 static bool replaceAndRecursivelySimplifyImpl( 6972 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6973 const DominatorTree *DT, AssumptionCache *AC, 6974 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 6975 bool Simplified = false; 6976 SmallSetVector<Instruction *, 8> Worklist; 6977 const DataLayout &DL = I->getModule()->getDataLayout(); 6978 6979 // If we have an explicit value to collapse to, do that round of the 6980 // simplification loop by hand initially. 6981 if (SimpleV) { 6982 for (User *U : I->users()) 6983 if (U != I) 6984 Worklist.insert(cast<Instruction>(U)); 6985 6986 // Replace the instruction with its simplified value. 6987 I->replaceAllUsesWith(SimpleV); 6988 6989 if (!I->isEHPad() && !I->isTerminator() && !I->mayHaveSideEffects()) 6990 I->eraseFromParent(); 6991 } else { 6992 Worklist.insert(I); 6993 } 6994 6995 // Note that we must test the size on each iteration, the worklist can grow. 6996 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 6997 I = Worklist[Idx]; 6998 6999 // See if this instruction simplifies. 7000 SimpleV = simplifyInstruction(I, {DL, TLI, DT, AC}); 7001 if (!SimpleV) { 7002 if (UnsimplifiedUsers) 7003 UnsimplifiedUsers->insert(I); 7004 continue; 7005 } 7006 7007 Simplified = true; 7008 7009 // Stash away all the uses of the old instruction so we can check them for 7010 // recursive simplifications after a RAUW. This is cheaper than checking all 7011 // uses of To on the recursive step in most cases. 7012 for (User *U : I->users()) 7013 Worklist.insert(cast<Instruction>(U)); 7014 7015 // Replace the instruction with its simplified value. 7016 I->replaceAllUsesWith(SimpleV); 7017 7018 if (!I->isEHPad() && !I->isTerminator() && !I->mayHaveSideEffects()) 7019 I->eraseFromParent(); 7020 } 7021 return Simplified; 7022 } 7023 7024 bool llvm::replaceAndRecursivelySimplify( 7025 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 7026 const DominatorTree *DT, AssumptionCache *AC, 7027 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 7028 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 7029 assert(SimpleV && "Must provide a simplified value."); 7030 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 7031 UnsimplifiedUsers); 7032 } 7033 7034 namespace llvm { 7035 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 7036 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 7037 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 7038 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 7039 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 7040 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 7041 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 7042 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 7043 } 7044 7045 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 7046 const DataLayout &DL) { 7047 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 7048 } 7049 7050 template <class T, class... TArgs> 7051 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 7052 Function &F) { 7053 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 7054 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 7055 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 7056 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 7057 } 7058 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 7059 Function &); 7060 } // namespace llvm 7061 7062 void InstSimplifyFolder::anchor() {} 7063