xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/InlineCost.cpp (revision ee0fe82ee2892f5ece189db0eab38913aaab5f0f)
1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements inline cost analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/InlineCost.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/BlockFrequencyInfo.h"
21 #include "llvm/Analysis/CodeMetrics.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/ProfileSummaryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/InstVisitor.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/IR/PatternMatch.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "inline-cost"
45 
46 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
47 
48 static cl::opt<int> InlineThreshold(
49     "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
50     cl::desc("Control the amount of inlining to perform (default = 225)"));
51 
52 static cl::opt<int> HintThreshold(
53     "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore,
54     cl::desc("Threshold for inlining functions with inline hint"));
55 
56 static cl::opt<int>
57     ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden,
58                           cl::init(45), cl::ZeroOrMore,
59                           cl::desc("Threshold for inlining cold callsites"));
60 
61 // We introduce this threshold to help performance of instrumentation based
62 // PGO before we actually hook up inliner with analysis passes such as BPI and
63 // BFI.
64 static cl::opt<int> ColdThreshold(
65     "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore,
66     cl::desc("Threshold for inlining functions with cold attribute"));
67 
68 static cl::opt<int>
69     HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000),
70                          cl::ZeroOrMore,
71                          cl::desc("Threshold for hot callsites "));
72 
73 static cl::opt<int> LocallyHotCallSiteThreshold(
74     "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore,
75     cl::desc("Threshold for locally hot callsites "));
76 
77 static cl::opt<int> ColdCallSiteRelFreq(
78     "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
79     cl::desc("Maximum block frequency, expressed as a percentage of caller's "
80              "entry frequency, for a callsite to be cold in the absence of "
81              "profile information."));
82 
83 static cl::opt<int> HotCallSiteRelFreq(
84     "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore,
85     cl::desc("Minimum block frequency, expressed as a multiple of caller's "
86              "entry frequency, for a callsite to be hot in the absence of "
87              "profile information."));
88 
89 static cl::opt<bool> OptComputeFullInlineCost(
90     "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore,
91     cl::desc("Compute the full inline cost of a call site even when the cost "
92              "exceeds the threshold."));
93 
94 namespace {
95 
96 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
97   typedef InstVisitor<CallAnalyzer, bool> Base;
98   friend class InstVisitor<CallAnalyzer, bool>;
99 
100   /// The TargetTransformInfo available for this compilation.
101   const TargetTransformInfo &TTI;
102 
103   /// Getter for the cache of @llvm.assume intrinsics.
104   std::function<AssumptionCache &(Function &)> &GetAssumptionCache;
105 
106   /// Getter for BlockFrequencyInfo
107   Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI;
108 
109   /// Profile summary information.
110   ProfileSummaryInfo *PSI;
111 
112   /// The called function.
113   Function &F;
114 
115   // Cache the DataLayout since we use it a lot.
116   const DataLayout &DL;
117 
118   /// The OptimizationRemarkEmitter available for this compilation.
119   OptimizationRemarkEmitter *ORE;
120 
121   /// The candidate callsite being analyzed. Please do not use this to do
122   /// analysis in the caller function; we want the inline cost query to be
123   /// easily cacheable. Instead, use the cover function paramHasAttr.
124   CallBase &CandidateCall;
125 
126   /// Tunable parameters that control the analysis.
127   const InlineParams &Params;
128 
129   /// Upper bound for the inlining cost. Bonuses are being applied to account
130   /// for speculative "expected profit" of the inlining decision.
131   int Threshold;
132 
133   /// Inlining cost measured in abstract units, accounts for all the
134   /// instructions expected to be executed for a given function invocation.
135   /// Instructions that are statically proven to be dead based on call-site
136   /// arguments are not counted here.
137   int Cost = 0;
138 
139   bool ComputeFullInlineCost;
140 
141   bool IsCallerRecursive = false;
142   bool IsRecursiveCall = false;
143   bool ExposesReturnsTwice = false;
144   bool HasDynamicAlloca = false;
145   bool ContainsNoDuplicateCall = false;
146   bool HasReturn = false;
147   bool HasIndirectBr = false;
148   bool HasUninlineableIntrinsic = false;
149   bool InitsVargArgs = false;
150 
151   /// Number of bytes allocated statically by the callee.
152   uint64_t AllocatedSize = 0;
153   unsigned NumInstructions = 0;
154   unsigned NumVectorInstructions = 0;
155 
156   /// Bonus to be applied when percentage of vector instructions in callee is
157   /// high (see more details in updateThreshold).
158   int VectorBonus = 0;
159   /// Bonus to be applied when the callee has only one reachable basic block.
160   int SingleBBBonus = 0;
161 
162   /// While we walk the potentially-inlined instructions, we build up and
163   /// maintain a mapping of simplified values specific to this callsite. The
164   /// idea is to propagate any special information we have about arguments to
165   /// this call through the inlinable section of the function, and account for
166   /// likely simplifications post-inlining. The most important aspect we track
167   /// is CFG altering simplifications -- when we prove a basic block dead, that
168   /// can cause dramatic shifts in the cost of inlining a function.
169   DenseMap<Value *, Constant *> SimplifiedValues;
170 
171   /// Keep track of the values which map back (through function arguments) to
172   /// allocas on the caller stack which could be simplified through SROA.
173   DenseMap<Value *, Value *> SROAArgValues;
174 
175   /// The mapping of caller Alloca values to their accumulated cost savings. If
176   /// we have to disable SROA for one of the allocas, this tells us how much
177   /// cost must be added.
178   DenseMap<Value *, int> SROAArgCosts;
179 
180   /// Keep track of values which map to a pointer base and constant offset.
181   DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs;
182 
183   /// Keep track of dead blocks due to the constant arguments.
184   SetVector<BasicBlock *> DeadBlocks;
185 
186   /// The mapping of the blocks to their known unique successors due to the
187   /// constant arguments.
188   DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors;
189 
190   /// Model the elimination of repeated loads that is expected to happen
191   /// whenever we simplify away the stores that would otherwise cause them to be
192   /// loads.
193   bool EnableLoadElimination;
194   SmallPtrSet<Value *, 16> LoadAddrSet;
195   int LoadEliminationCost = 0;
196 
197   // Custom simplification helper routines.
198   bool isAllocaDerivedArg(Value *V);
199   bool lookupSROAArgAndCost(Value *V, Value *&Arg,
200                             DenseMap<Value *, int>::iterator &CostIt);
201   void disableSROA(DenseMap<Value *, int>::iterator CostIt);
202   void disableSROA(Value *V);
203   void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB);
204   void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
205                           int InstructionCost);
206   void disableLoadElimination();
207   bool isGEPFree(GetElementPtrInst &GEP);
208   bool canFoldInboundsGEP(GetElementPtrInst &I);
209   bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
210   bool simplifyCallSite(Function *F, CallBase &Call);
211   template <typename Callable>
212   bool simplifyInstruction(Instruction &I, Callable Evaluate);
213   ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
214 
215   /// Return true if the given argument to the function being considered for
216   /// inlining has the given attribute set either at the call site or the
217   /// function declaration.  Primarily used to inspect call site specific
218   /// attributes since these can be more precise than the ones on the callee
219   /// itself.
220   bool paramHasAttr(Argument *A, Attribute::AttrKind Attr);
221 
222   /// Return true if the given value is known non null within the callee if
223   /// inlined through this particular callsite.
224   bool isKnownNonNullInCallee(Value *V);
225 
226   /// Update Threshold based on callsite properties such as callee
227   /// attributes and callee hotness for PGO builds. The Callee is explicitly
228   /// passed to support analyzing indirect calls whose target is inferred by
229   /// analysis.
230   void updateThreshold(CallBase &Call, Function &Callee);
231 
232   /// Return true if size growth is allowed when inlining the callee at \p Call.
233   bool allowSizeGrowth(CallBase &Call);
234 
235   /// Return true if \p Call is a cold callsite.
236   bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI);
237 
238   /// Return a higher threshold if \p Call is a hot callsite.
239   Optional<int> getHotCallSiteThreshold(CallBase &Call,
240                                         BlockFrequencyInfo *CallerBFI);
241 
242   // Custom analysis routines.
243   InlineResult analyzeBlock(BasicBlock *BB,
244                             SmallPtrSetImpl<const Value *> &EphValues);
245 
246   /// Handle a capped 'int' increment for Cost.
247   void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) {
248     assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound");
249     Cost = (int)std::min(UpperBound, Cost + Inc);
250   }
251 
252   // Disable several entry points to the visitor so we don't accidentally use
253   // them by declaring but not defining them here.
254   void visit(Module *);
255   void visit(Module &);
256   void visit(Function *);
257   void visit(Function &);
258   void visit(BasicBlock *);
259   void visit(BasicBlock &);
260 
261   // Provide base case for our instruction visit.
262   bool visitInstruction(Instruction &I);
263 
264   // Our visit overrides.
265   bool visitAlloca(AllocaInst &I);
266   bool visitPHI(PHINode &I);
267   bool visitGetElementPtr(GetElementPtrInst &I);
268   bool visitBitCast(BitCastInst &I);
269   bool visitPtrToInt(PtrToIntInst &I);
270   bool visitIntToPtr(IntToPtrInst &I);
271   bool visitCastInst(CastInst &I);
272   bool visitUnaryInstruction(UnaryInstruction &I);
273   bool visitCmpInst(CmpInst &I);
274   bool visitSub(BinaryOperator &I);
275   bool visitBinaryOperator(BinaryOperator &I);
276   bool visitFNeg(UnaryOperator &I);
277   bool visitLoad(LoadInst &I);
278   bool visitStore(StoreInst &I);
279   bool visitExtractValue(ExtractValueInst &I);
280   bool visitInsertValue(InsertValueInst &I);
281   bool visitCallBase(CallBase &Call);
282   bool visitReturnInst(ReturnInst &RI);
283   bool visitBranchInst(BranchInst &BI);
284   bool visitSelectInst(SelectInst &SI);
285   bool visitSwitchInst(SwitchInst &SI);
286   bool visitIndirectBrInst(IndirectBrInst &IBI);
287   bool visitResumeInst(ResumeInst &RI);
288   bool visitCleanupReturnInst(CleanupReturnInst &RI);
289   bool visitCatchReturnInst(CatchReturnInst &RI);
290   bool visitUnreachableInst(UnreachableInst &I);
291 
292 public:
293   CallAnalyzer(const TargetTransformInfo &TTI,
294                std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
295                Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI,
296                ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE,
297                Function &Callee, CallBase &Call, const InlineParams &Params)
298       : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI),
299         PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE),
300         CandidateCall(Call), Params(Params), Threshold(Params.DefaultThreshold),
301         ComputeFullInlineCost(OptComputeFullInlineCost ||
302                               Params.ComputeFullInlineCost || ORE),
303         EnableLoadElimination(true) {}
304 
305   InlineResult analyzeCall(CallBase &Call);
306 
307   int getThreshold() { return Threshold; }
308   int getCost() { return Cost; }
309 
310   // Keep a bunch of stats about the cost savings found so we can print them
311   // out when debugging.
312   unsigned NumConstantArgs = 0;
313   unsigned NumConstantOffsetPtrArgs = 0;
314   unsigned NumAllocaArgs = 0;
315   unsigned NumConstantPtrCmps = 0;
316   unsigned NumConstantPtrDiffs = 0;
317   unsigned NumInstructionsSimplified = 0;
318   unsigned SROACostSavings = 0;
319   unsigned SROACostSavingsLost = 0;
320 
321   void dump();
322 };
323 
324 } // namespace
325 
326 /// Test whether the given value is an Alloca-derived function argument.
327 bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
328   return SROAArgValues.count(V);
329 }
330 
331 /// Lookup the SROA-candidate argument and cost iterator which V maps to.
332 /// Returns false if V does not map to a SROA-candidate.
333 bool CallAnalyzer::lookupSROAArgAndCost(
334     Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) {
335   if (SROAArgValues.empty() || SROAArgCosts.empty())
336     return false;
337 
338   DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V);
339   if (ArgIt == SROAArgValues.end())
340     return false;
341 
342   Arg = ArgIt->second;
343   CostIt = SROAArgCosts.find(Arg);
344   return CostIt != SROAArgCosts.end();
345 }
346 
347 /// Disable SROA for the candidate marked by this cost iterator.
348 ///
349 /// This marks the candidate as no longer viable for SROA, and adds the cost
350 /// savings associated with it back into the inline cost measurement.
351 void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) {
352   // If we're no longer able to perform SROA we need to undo its cost savings
353   // and prevent subsequent analysis.
354   addCost(CostIt->second);
355   SROACostSavings -= CostIt->second;
356   SROACostSavingsLost += CostIt->second;
357   SROAArgCosts.erase(CostIt);
358   disableLoadElimination();
359 }
360 
361 /// If 'V' maps to a SROA candidate, disable SROA for it.
362 void CallAnalyzer::disableSROA(Value *V) {
363   Value *SROAArg;
364   DenseMap<Value *, int>::iterator CostIt;
365   if (lookupSROAArgAndCost(V, SROAArg, CostIt))
366     disableSROA(CostIt);
367 }
368 
369 /// Accumulate the given cost for a particular SROA candidate.
370 void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
371                                       int InstructionCost) {
372   CostIt->second += InstructionCost;
373   SROACostSavings += InstructionCost;
374 }
375 
376 void CallAnalyzer::disableLoadElimination() {
377   if (EnableLoadElimination) {
378     addCost(LoadEliminationCost);
379     LoadEliminationCost = 0;
380     EnableLoadElimination = false;
381   }
382 }
383 
384 /// Accumulate a constant GEP offset into an APInt if possible.
385 ///
386 /// Returns false if unable to compute the offset for any reason. Respects any
387 /// simplified values known during the analysis of this callsite.
388 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
389   unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType());
390   assert(IntPtrWidth == Offset.getBitWidth());
391 
392   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
393        GTI != GTE; ++GTI) {
394     ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
395     if (!OpC)
396       if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
397         OpC = dyn_cast<ConstantInt>(SimpleOp);
398     if (!OpC)
399       return false;
400     if (OpC->isZero())
401       continue;
402 
403     // Handle a struct index, which adds its field offset to the pointer.
404     if (StructType *STy = GTI.getStructTypeOrNull()) {
405       unsigned ElementIdx = OpC->getZExtValue();
406       const StructLayout *SL = DL.getStructLayout(STy);
407       Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
408       continue;
409     }
410 
411     APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType()));
412     Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
413   }
414   return true;
415 }
416 
417 /// Use TTI to check whether a GEP is free.
418 ///
419 /// Respects any simplified values known during the analysis of this callsite.
420 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) {
421   SmallVector<Value *, 4> Operands;
422   Operands.push_back(GEP.getOperand(0));
423   for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
424     if (Constant *SimpleOp = SimplifiedValues.lookup(*I))
425        Operands.push_back(SimpleOp);
426      else
427        Operands.push_back(*I);
428   return TargetTransformInfo::TCC_Free == TTI.getUserCost(&GEP, Operands);
429 }
430 
431 bool CallAnalyzer::visitAlloca(AllocaInst &I) {
432   // Check whether inlining will turn a dynamic alloca into a static
433   // alloca and handle that case.
434   if (I.isArrayAllocation()) {
435     Constant *Size = SimplifiedValues.lookup(I.getArraySize());
436     if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) {
437       Type *Ty = I.getAllocatedType();
438       AllocatedSize = SaturatingMultiplyAdd(
439           AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty), AllocatedSize);
440       return Base::visitAlloca(I);
441     }
442   }
443 
444   // Accumulate the allocated size.
445   if (I.isStaticAlloca()) {
446     Type *Ty = I.getAllocatedType();
447     AllocatedSize = SaturatingAdd(DL.getTypeAllocSize(Ty), AllocatedSize);
448   }
449 
450   // We will happily inline static alloca instructions.
451   if (I.isStaticAlloca())
452     return Base::visitAlloca(I);
453 
454   // FIXME: This is overly conservative. Dynamic allocas are inefficient for
455   // a variety of reasons, and so we would like to not inline them into
456   // functions which don't currently have a dynamic alloca. This simply
457   // disables inlining altogether in the presence of a dynamic alloca.
458   HasDynamicAlloca = true;
459   return false;
460 }
461 
462 bool CallAnalyzer::visitPHI(PHINode &I) {
463   // FIXME: We need to propagate SROA *disabling* through phi nodes, even
464   // though we don't want to propagate it's bonuses. The idea is to disable
465   // SROA if it *might* be used in an inappropriate manner.
466 
467   // Phi nodes are always zero-cost.
468   // FIXME: Pointer sizes may differ between different address spaces, so do we
469   // need to use correct address space in the call to getPointerSizeInBits here?
470   // Or could we skip the getPointerSizeInBits call completely? As far as I can
471   // see the ZeroOffset is used as a dummy value, so we can probably use any
472   // bit width for the ZeroOffset?
473   APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0));
474   bool CheckSROA = I.getType()->isPointerTy();
475 
476   // Track the constant or pointer with constant offset we've seen so far.
477   Constant *FirstC = nullptr;
478   std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset};
479   Value *FirstV = nullptr;
480 
481   for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) {
482     BasicBlock *Pred = I.getIncomingBlock(i);
483     // If the incoming block is dead, skip the incoming block.
484     if (DeadBlocks.count(Pred))
485       continue;
486     // If the parent block of phi is not the known successor of the incoming
487     // block, skip the incoming block.
488     BasicBlock *KnownSuccessor = KnownSuccessors[Pred];
489     if (KnownSuccessor && KnownSuccessor != I.getParent())
490       continue;
491 
492     Value *V = I.getIncomingValue(i);
493     // If the incoming value is this phi itself, skip the incoming value.
494     if (&I == V)
495       continue;
496 
497     Constant *C = dyn_cast<Constant>(V);
498     if (!C)
499       C = SimplifiedValues.lookup(V);
500 
501     std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset};
502     if (!C && CheckSROA)
503       BaseAndOffset = ConstantOffsetPtrs.lookup(V);
504 
505     if (!C && !BaseAndOffset.first)
506       // The incoming value is neither a constant nor a pointer with constant
507       // offset, exit early.
508       return true;
509 
510     if (FirstC) {
511       if (FirstC == C)
512         // If we've seen a constant incoming value before and it is the same
513         // constant we see this time, continue checking the next incoming value.
514         continue;
515       // Otherwise early exit because we either see a different constant or saw
516       // a constant before but we have a pointer with constant offset this time.
517       return true;
518     }
519 
520     if (FirstV) {
521       // The same logic as above, but check pointer with constant offset here.
522       if (FirstBaseAndOffset == BaseAndOffset)
523         continue;
524       return true;
525     }
526 
527     if (C) {
528       // This is the 1st time we've seen a constant, record it.
529       FirstC = C;
530       continue;
531     }
532 
533     // The remaining case is that this is the 1st time we've seen a pointer with
534     // constant offset, record it.
535     FirstV = V;
536     FirstBaseAndOffset = BaseAndOffset;
537   }
538 
539   // Check if we can map phi to a constant.
540   if (FirstC) {
541     SimplifiedValues[&I] = FirstC;
542     return true;
543   }
544 
545   // Check if we can map phi to a pointer with constant offset.
546   if (FirstBaseAndOffset.first) {
547     ConstantOffsetPtrs[&I] = FirstBaseAndOffset;
548 
549     Value *SROAArg;
550     DenseMap<Value *, int>::iterator CostIt;
551     if (lookupSROAArgAndCost(FirstV, SROAArg, CostIt))
552       SROAArgValues[&I] = SROAArg;
553   }
554 
555   return true;
556 }
557 
558 /// Check we can fold GEPs of constant-offset call site argument pointers.
559 /// This requires target data and inbounds GEPs.
560 ///
561 /// \return true if the specified GEP can be folded.
562 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) {
563   // Check if we have a base + offset for the pointer.
564   std::pair<Value *, APInt> BaseAndOffset =
565       ConstantOffsetPtrs.lookup(I.getPointerOperand());
566   if (!BaseAndOffset.first)
567     return false;
568 
569   // Check if the offset of this GEP is constant, and if so accumulate it
570   // into Offset.
571   if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second))
572     return false;
573 
574   // Add the result as a new mapping to Base + Offset.
575   ConstantOffsetPtrs[&I] = BaseAndOffset;
576 
577   return true;
578 }
579 
580 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
581   Value *SROAArg;
582   DenseMap<Value *, int>::iterator CostIt;
583   bool SROACandidate =
584       lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt);
585 
586   // Lambda to check whether a GEP's indices are all constant.
587   auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) {
588     for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
589       if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I))
590         return false;
591     return true;
592   };
593 
594   if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) {
595     if (SROACandidate)
596       SROAArgValues[&I] = SROAArg;
597 
598     // Constant GEPs are modeled as free.
599     return true;
600   }
601 
602   // Variable GEPs will require math and will disable SROA.
603   if (SROACandidate)
604     disableSROA(CostIt);
605   return isGEPFree(I);
606 }
607 
608 /// Simplify \p I if its operands are constants and update SimplifiedValues.
609 /// \p Evaluate is a callable specific to instruction type that evaluates the
610 /// instruction when all the operands are constants.
611 template <typename Callable>
612 bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) {
613   SmallVector<Constant *, 2> COps;
614   for (Value *Op : I.operands()) {
615     Constant *COp = dyn_cast<Constant>(Op);
616     if (!COp)
617       COp = SimplifiedValues.lookup(Op);
618     if (!COp)
619       return false;
620     COps.push_back(COp);
621   }
622   auto *C = Evaluate(COps);
623   if (!C)
624     return false;
625   SimplifiedValues[&I] = C;
626   return true;
627 }
628 
629 bool CallAnalyzer::visitBitCast(BitCastInst &I) {
630   // Propagate constants through bitcasts.
631   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
632         return ConstantExpr::getBitCast(COps[0], I.getType());
633       }))
634     return true;
635 
636   // Track base/offsets through casts
637   std::pair<Value *, APInt> BaseAndOffset =
638       ConstantOffsetPtrs.lookup(I.getOperand(0));
639   // Casts don't change the offset, just wrap it up.
640   if (BaseAndOffset.first)
641     ConstantOffsetPtrs[&I] = BaseAndOffset;
642 
643   // Also look for SROA candidates here.
644   Value *SROAArg;
645   DenseMap<Value *, int>::iterator CostIt;
646   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
647     SROAArgValues[&I] = SROAArg;
648 
649   // Bitcasts are always zero cost.
650   return true;
651 }
652 
653 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
654   // Propagate constants through ptrtoint.
655   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
656         return ConstantExpr::getPtrToInt(COps[0], I.getType());
657       }))
658     return true;
659 
660   // Track base/offset pairs when converted to a plain integer provided the
661   // integer is large enough to represent the pointer.
662   unsigned IntegerSize = I.getType()->getScalarSizeInBits();
663   unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace();
664   if (IntegerSize >= DL.getPointerSizeInBits(AS)) {
665     std::pair<Value *, APInt> BaseAndOffset =
666         ConstantOffsetPtrs.lookup(I.getOperand(0));
667     if (BaseAndOffset.first)
668       ConstantOffsetPtrs[&I] = BaseAndOffset;
669   }
670 
671   // This is really weird. Technically, ptrtoint will disable SROA. However,
672   // unless that ptrtoint is *used* somewhere in the live basic blocks after
673   // inlining, it will be nuked, and SROA should proceed. All of the uses which
674   // would block SROA would also block SROA if applied directly to a pointer,
675   // and so we can just add the integer in here. The only places where SROA is
676   // preserved either cannot fire on an integer, or won't in-and-of themselves
677   // disable SROA (ext) w/o some later use that we would see and disable.
678   Value *SROAArg;
679   DenseMap<Value *, int>::iterator CostIt;
680   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
681     SROAArgValues[&I] = SROAArg;
682 
683   return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
684 }
685 
686 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
687   // Propagate constants through ptrtoint.
688   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
689         return ConstantExpr::getIntToPtr(COps[0], I.getType());
690       }))
691     return true;
692 
693   // Track base/offset pairs when round-tripped through a pointer without
694   // modifications provided the integer is not too large.
695   Value *Op = I.getOperand(0);
696   unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
697   if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) {
698     std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
699     if (BaseAndOffset.first)
700       ConstantOffsetPtrs[&I] = BaseAndOffset;
701   }
702 
703   // "Propagate" SROA here in the same manner as we do for ptrtoint above.
704   Value *SROAArg;
705   DenseMap<Value *, int>::iterator CostIt;
706   if (lookupSROAArgAndCost(Op, SROAArg, CostIt))
707     SROAArgValues[&I] = SROAArg;
708 
709   return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
710 }
711 
712 bool CallAnalyzer::visitCastInst(CastInst &I) {
713   // Propagate constants through casts.
714   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
715         return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType());
716       }))
717     return true;
718 
719   // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere.
720   disableSROA(I.getOperand(0));
721 
722   // If this is a floating-point cast, and the target says this operation
723   // is expensive, this may eventually become a library call. Treat the cost
724   // as such.
725   switch (I.getOpcode()) {
726   case Instruction::FPTrunc:
727   case Instruction::FPExt:
728   case Instruction::UIToFP:
729   case Instruction::SIToFP:
730   case Instruction::FPToUI:
731   case Instruction::FPToSI:
732     if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive)
733       addCost(InlineConstants::CallPenalty);
734     break;
735   default:
736     break;
737   }
738 
739   return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
740 }
741 
742 bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
743   Value *Operand = I.getOperand(0);
744   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
745         return ConstantFoldInstOperands(&I, COps[0], DL);
746       }))
747     return true;
748 
749   // Disable any SROA on the argument to arbitrary unary instructions.
750   disableSROA(Operand);
751 
752   return false;
753 }
754 
755 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) {
756   return CandidateCall.paramHasAttr(A->getArgNo(), Attr);
757 }
758 
759 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) {
760   // Does the *call site* have the NonNull attribute set on an argument?  We
761   // use the attribute on the call site to memoize any analysis done in the
762   // caller. This will also trip if the callee function has a non-null
763   // parameter attribute, but that's a less interesting case because hopefully
764   // the callee would already have been simplified based on that.
765   if (Argument *A = dyn_cast<Argument>(V))
766     if (paramHasAttr(A, Attribute::NonNull))
767       return true;
768 
769   // Is this an alloca in the caller?  This is distinct from the attribute case
770   // above because attributes aren't updated within the inliner itself and we
771   // always want to catch the alloca derived case.
772   if (isAllocaDerivedArg(V))
773     // We can actually predict the result of comparisons between an
774     // alloca-derived value and null. Note that this fires regardless of
775     // SROA firing.
776     return true;
777 
778   return false;
779 }
780 
781 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) {
782   // If the normal destination of the invoke or the parent block of the call
783   // site is unreachable-terminated, there is little point in inlining this
784   // unless there is literally zero cost.
785   // FIXME: Note that it is possible that an unreachable-terminated block has a
786   // hot entry. For example, in below scenario inlining hot_call_X() may be
787   // beneficial :
788   // main() {
789   //   hot_call_1();
790   //   ...
791   //   hot_call_N()
792   //   exit(0);
793   // }
794   // For now, we are not handling this corner case here as it is rare in real
795   // code. In future, we should elaborate this based on BPI and BFI in more
796   // general threshold adjusting heuristics in updateThreshold().
797   if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
798     if (isa<UnreachableInst>(II->getNormalDest()->getTerminator()))
799       return false;
800   } else if (isa<UnreachableInst>(Call.getParent()->getTerminator()))
801     return false;
802 
803   return true;
804 }
805 
806 bool CallAnalyzer::isColdCallSite(CallBase &Call,
807                                   BlockFrequencyInfo *CallerBFI) {
808   // If global profile summary is available, then callsite's coldness is
809   // determined based on that.
810   if (PSI && PSI->hasProfileSummary())
811     return PSI->isColdCallSite(CallSite(&Call), CallerBFI);
812 
813   // Otherwise we need BFI to be available.
814   if (!CallerBFI)
815     return false;
816 
817   // Determine if the callsite is cold relative to caller's entry. We could
818   // potentially cache the computation of scaled entry frequency, but the added
819   // complexity is not worth it unless this scaling shows up high in the
820   // profiles.
821   const BranchProbability ColdProb(ColdCallSiteRelFreq, 100);
822   auto CallSiteBB = Call.getParent();
823   auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB);
824   auto CallerEntryFreq =
825       CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock()));
826   return CallSiteFreq < CallerEntryFreq * ColdProb;
827 }
828 
829 Optional<int>
830 CallAnalyzer::getHotCallSiteThreshold(CallBase &Call,
831                                       BlockFrequencyInfo *CallerBFI) {
832 
833   // If global profile summary is available, then callsite's hotness is
834   // determined based on that.
835   if (PSI && PSI->hasProfileSummary() &&
836       PSI->isHotCallSite(CallSite(&Call), CallerBFI))
837     return Params.HotCallSiteThreshold;
838 
839   // Otherwise we need BFI to be available and to have a locally hot callsite
840   // threshold.
841   if (!CallerBFI || !Params.LocallyHotCallSiteThreshold)
842     return None;
843 
844   // Determine if the callsite is hot relative to caller's entry. We could
845   // potentially cache the computation of scaled entry frequency, but the added
846   // complexity is not worth it unless this scaling shows up high in the
847   // profiles.
848   auto CallSiteBB = Call.getParent();
849   auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency();
850   auto CallerEntryFreq = CallerBFI->getEntryFreq();
851   if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq)
852     return Params.LocallyHotCallSiteThreshold;
853 
854   // Otherwise treat it normally.
855   return None;
856 }
857 
858 void CallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) {
859   // If no size growth is allowed for this inlining, set Threshold to 0.
860   if (!allowSizeGrowth(Call)) {
861     Threshold = 0;
862     return;
863   }
864 
865   Function *Caller = Call.getCaller();
866 
867   // return min(A, B) if B is valid.
868   auto MinIfValid = [](int A, Optional<int> B) {
869     return B ? std::min(A, B.getValue()) : A;
870   };
871 
872   // return max(A, B) if B is valid.
873   auto MaxIfValid = [](int A, Optional<int> B) {
874     return B ? std::max(A, B.getValue()) : A;
875   };
876 
877   // Various bonus percentages. These are multiplied by Threshold to get the
878   // bonus values.
879   // SingleBBBonus: This bonus is applied if the callee has a single reachable
880   // basic block at the given callsite context. This is speculatively applied
881   // and withdrawn if more than one basic block is seen.
882   //
883   // LstCallToStaticBonus: This large bonus is applied to ensure the inlining
884   // of the last call to a static function as inlining such functions is
885   // guaranteed to reduce code size.
886   //
887   // These bonus percentages may be set to 0 based on properties of the caller
888   // and the callsite.
889   int SingleBBBonusPercent = 50;
890   int VectorBonusPercent = TTI.getInlinerVectorBonusPercent();
891   int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus;
892 
893   // Lambda to set all the above bonus and bonus percentages to 0.
894   auto DisallowAllBonuses = [&]() {
895     SingleBBBonusPercent = 0;
896     VectorBonusPercent = 0;
897     LastCallToStaticBonus = 0;
898   };
899 
900   // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available
901   // and reduce the threshold if the caller has the necessary attribute.
902   if (Caller->hasMinSize()) {
903     Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold);
904     // For minsize, we want to disable the single BB bonus and the vector
905     // bonuses, but not the last-call-to-static bonus. Inlining the last call to
906     // a static function will, at the minimum, eliminate the parameter setup and
907     // call/return instructions.
908     SingleBBBonusPercent = 0;
909     VectorBonusPercent = 0;
910   } else if (Caller->hasOptSize())
911     Threshold = MinIfValid(Threshold, Params.OptSizeThreshold);
912 
913   // Adjust the threshold based on inlinehint attribute and profile based
914   // hotness information if the caller does not have MinSize attribute.
915   if (!Caller->hasMinSize()) {
916     if (Callee.hasFnAttribute(Attribute::InlineHint))
917       Threshold = MaxIfValid(Threshold, Params.HintThreshold);
918 
919     // FIXME: After switching to the new passmanager, simplify the logic below
920     // by checking only the callsite hotness/coldness as we will reliably
921     // have local profile information.
922     //
923     // Callsite hotness and coldness can be determined if sample profile is
924     // used (which adds hotness metadata to calls) or if caller's
925     // BlockFrequencyInfo is available.
926     BlockFrequencyInfo *CallerBFI = GetBFI ? &((*GetBFI)(*Caller)) : nullptr;
927     auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI);
928     if (!Caller->hasOptSize() && HotCallSiteThreshold) {
929       LLVM_DEBUG(dbgs() << "Hot callsite.\n");
930       // FIXME: This should update the threshold only if it exceeds the
931       // current threshold, but AutoFDO + ThinLTO currently relies on this
932       // behavior to prevent inlining of hot callsites during ThinLTO
933       // compile phase.
934       Threshold = HotCallSiteThreshold.getValue();
935     } else if (isColdCallSite(Call, CallerBFI)) {
936       LLVM_DEBUG(dbgs() << "Cold callsite.\n");
937       // Do not apply bonuses for a cold callsite including the
938       // LastCallToStatic bonus. While this bonus might result in code size
939       // reduction, it can cause the size of a non-cold caller to increase
940       // preventing it from being inlined.
941       DisallowAllBonuses();
942       Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold);
943     } else if (PSI) {
944       // Use callee's global profile information only if we have no way of
945       // determining this via callsite information.
946       if (PSI->isFunctionEntryHot(&Callee)) {
947         LLVM_DEBUG(dbgs() << "Hot callee.\n");
948         // If callsite hotness can not be determined, we may still know
949         // that the callee is hot and treat it as a weaker hint for threshold
950         // increase.
951         Threshold = MaxIfValid(Threshold, Params.HintThreshold);
952       } else if (PSI->isFunctionEntryCold(&Callee)) {
953         LLVM_DEBUG(dbgs() << "Cold callee.\n");
954         // Do not apply bonuses for a cold callee including the
955         // LastCallToStatic bonus. While this bonus might result in code size
956         // reduction, it can cause the size of a non-cold caller to increase
957         // preventing it from being inlined.
958         DisallowAllBonuses();
959         Threshold = MinIfValid(Threshold, Params.ColdThreshold);
960       }
961     }
962   }
963 
964   // Finally, take the target-specific inlining threshold multiplier into
965   // account.
966   Threshold *= TTI.getInliningThresholdMultiplier();
967 
968   SingleBBBonus = Threshold * SingleBBBonusPercent / 100;
969   VectorBonus = Threshold * VectorBonusPercent / 100;
970 
971   bool OnlyOneCallAndLocalLinkage =
972       F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction();
973   // If there is only one call of the function, and it has internal linkage,
974   // the cost of inlining it drops dramatically. It may seem odd to update
975   // Cost in updateThreshold, but the bonus depends on the logic in this method.
976   if (OnlyOneCallAndLocalLinkage)
977     Cost -= LastCallToStaticBonus;
978 }
979 
980 bool CallAnalyzer::visitCmpInst(CmpInst &I) {
981   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
982   // First try to handle simplified comparisons.
983   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
984         return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]);
985       }))
986     return true;
987 
988   if (I.getOpcode() == Instruction::FCmp)
989     return false;
990 
991   // Otherwise look for a comparison between constant offset pointers with
992   // a common base.
993   Value *LHSBase, *RHSBase;
994   APInt LHSOffset, RHSOffset;
995   std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
996   if (LHSBase) {
997     std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
998     if (RHSBase && LHSBase == RHSBase) {
999       // We have common bases, fold the icmp to a constant based on the
1000       // offsets.
1001       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
1002       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
1003       if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
1004         SimplifiedValues[&I] = C;
1005         ++NumConstantPtrCmps;
1006         return true;
1007       }
1008     }
1009   }
1010 
1011   // If the comparison is an equality comparison with null, we can simplify it
1012   // if we know the value (argument) can't be null
1013   if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) &&
1014       isKnownNonNullInCallee(I.getOperand(0))) {
1015     bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
1016     SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
1017                                       : ConstantInt::getFalse(I.getType());
1018     return true;
1019   }
1020   // Finally check for SROA candidates in comparisons.
1021   Value *SROAArg;
1022   DenseMap<Value *, int>::iterator CostIt;
1023   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
1024     if (isa<ConstantPointerNull>(I.getOperand(1))) {
1025       accumulateSROACost(CostIt, InlineConstants::InstrCost);
1026       return true;
1027     }
1028 
1029     disableSROA(CostIt);
1030   }
1031 
1032   return false;
1033 }
1034 
1035 bool CallAnalyzer::visitSub(BinaryOperator &I) {
1036   // Try to handle a special case: we can fold computing the difference of two
1037   // constant-related pointers.
1038   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1039   Value *LHSBase, *RHSBase;
1040   APInt LHSOffset, RHSOffset;
1041   std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
1042   if (LHSBase) {
1043     std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
1044     if (RHSBase && LHSBase == RHSBase) {
1045       // We have common bases, fold the subtract to a constant based on the
1046       // offsets.
1047       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
1048       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
1049       if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
1050         SimplifiedValues[&I] = C;
1051         ++NumConstantPtrDiffs;
1052         return true;
1053       }
1054     }
1055   }
1056 
1057   // Otherwise, fall back to the generic logic for simplifying and handling
1058   // instructions.
1059   return Base::visitSub(I);
1060 }
1061 
1062 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
1063   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1064   Constant *CLHS = dyn_cast<Constant>(LHS);
1065   if (!CLHS)
1066     CLHS = SimplifiedValues.lookup(LHS);
1067   Constant *CRHS = dyn_cast<Constant>(RHS);
1068   if (!CRHS)
1069     CRHS = SimplifiedValues.lookup(RHS);
1070 
1071   Value *SimpleV = nullptr;
1072   if (auto FI = dyn_cast<FPMathOperator>(&I))
1073     SimpleV = SimplifyFPBinOp(I.getOpcode(), CLHS ? CLHS : LHS,
1074                               CRHS ? CRHS : RHS, FI->getFastMathFlags(), DL);
1075   else
1076     SimpleV =
1077         SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL);
1078 
1079   if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
1080     SimplifiedValues[&I] = C;
1081 
1082   if (SimpleV)
1083     return true;
1084 
1085   // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
1086   disableSROA(LHS);
1087   disableSROA(RHS);
1088 
1089   // If the instruction is floating point, and the target says this operation
1090   // is expensive, this may eventually become a library call. Treat the cost
1091   // as such. Unless it's fneg which can be implemented with an xor.
1092   using namespace llvm::PatternMatch;
1093   if (I.getType()->isFloatingPointTy() &&
1094       TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive &&
1095       !match(&I, m_FNeg(m_Value())))
1096     addCost(InlineConstants::CallPenalty);
1097 
1098   return false;
1099 }
1100 
1101 bool CallAnalyzer::visitFNeg(UnaryOperator &I) {
1102   Value *Op = I.getOperand(0);
1103   Constant *COp = dyn_cast<Constant>(Op);
1104   if (!COp)
1105     COp = SimplifiedValues.lookup(Op);
1106 
1107   Value *SimpleV = SimplifyFNegInst(COp ? COp : Op,
1108                                     cast<FPMathOperator>(I).getFastMathFlags(),
1109                                     DL);
1110 
1111   if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
1112     SimplifiedValues[&I] = C;
1113 
1114   if (SimpleV)
1115     return true;
1116 
1117   // Disable any SROA on arguments to arbitrary, unsimplified fneg.
1118   disableSROA(Op);
1119 
1120   return false;
1121 }
1122 
1123 bool CallAnalyzer::visitLoad(LoadInst &I) {
1124   Value *SROAArg;
1125   DenseMap<Value *, int>::iterator CostIt;
1126   if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) {
1127     if (I.isSimple()) {
1128       accumulateSROACost(CostIt, InlineConstants::InstrCost);
1129       return true;
1130     }
1131 
1132     disableSROA(CostIt);
1133   }
1134 
1135   // If the data is already loaded from this address and hasn't been clobbered
1136   // by any stores or calls, this load is likely to be redundant and can be
1137   // eliminated.
1138   if (EnableLoadElimination &&
1139       !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) {
1140     LoadEliminationCost += InlineConstants::InstrCost;
1141     return true;
1142   }
1143 
1144   return false;
1145 }
1146 
1147 bool CallAnalyzer::visitStore(StoreInst &I) {
1148   Value *SROAArg;
1149   DenseMap<Value *, int>::iterator CostIt;
1150   if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) {
1151     if (I.isSimple()) {
1152       accumulateSROACost(CostIt, InlineConstants::InstrCost);
1153       return true;
1154     }
1155 
1156     disableSROA(CostIt);
1157   }
1158 
1159   // The store can potentially clobber loads and prevent repeated loads from
1160   // being eliminated.
1161   // FIXME:
1162   // 1. We can probably keep an initial set of eliminatable loads substracted
1163   // from the cost even when we finally see a store. We just need to disable
1164   // *further* accumulation of elimination savings.
1165   // 2. We should probably at some point thread MemorySSA for the callee into
1166   // this and then use that to actually compute *really* precise savings.
1167   disableLoadElimination();
1168   return false;
1169 }
1170 
1171 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
1172   // Constant folding for extract value is trivial.
1173   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1174         return ConstantExpr::getExtractValue(COps[0], I.getIndices());
1175       }))
1176     return true;
1177 
1178   // SROA can look through these but give them a cost.
1179   return false;
1180 }
1181 
1182 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
1183   // Constant folding for insert value is trivial.
1184   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1185         return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0],
1186                                             /*InsertedValueOperand*/ COps[1],
1187                                             I.getIndices());
1188       }))
1189     return true;
1190 
1191   // SROA can look through these but give them a cost.
1192   return false;
1193 }
1194 
1195 /// Try to simplify a call site.
1196 ///
1197 /// Takes a concrete function and callsite and tries to actually simplify it by
1198 /// analyzing the arguments and call itself with instsimplify. Returns true if
1199 /// it has simplified the callsite to some other entity (a constant), making it
1200 /// free.
1201 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) {
1202   // FIXME: Using the instsimplify logic directly for this is inefficient
1203   // because we have to continually rebuild the argument list even when no
1204   // simplifications can be performed. Until that is fixed with remapping
1205   // inside of instsimplify, directly constant fold calls here.
1206   if (!canConstantFoldCallTo(&Call, F))
1207     return false;
1208 
1209   // Try to re-map the arguments to constants.
1210   SmallVector<Constant *, 4> ConstantArgs;
1211   ConstantArgs.reserve(Call.arg_size());
1212   for (Value *I : Call.args()) {
1213     Constant *C = dyn_cast<Constant>(I);
1214     if (!C)
1215       C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I));
1216     if (!C)
1217       return false; // This argument doesn't map to a constant.
1218 
1219     ConstantArgs.push_back(C);
1220   }
1221   if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) {
1222     SimplifiedValues[&Call] = C;
1223     return true;
1224   }
1225 
1226   return false;
1227 }
1228 
1229 bool CallAnalyzer::visitCallBase(CallBase &Call) {
1230   if (Call.hasFnAttr(Attribute::ReturnsTwice) &&
1231       !F.hasFnAttribute(Attribute::ReturnsTwice)) {
1232     // This aborts the entire analysis.
1233     ExposesReturnsTwice = true;
1234     return false;
1235   }
1236   if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate())
1237     ContainsNoDuplicateCall = true;
1238 
1239   if (Function *F = Call.getCalledFunction()) {
1240     // When we have a concrete function, first try to simplify it directly.
1241     if (simplifyCallSite(F, Call))
1242       return true;
1243 
1244     // Next check if it is an intrinsic we know about.
1245     // FIXME: Lift this into part of the InstVisitor.
1246     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) {
1247       switch (II->getIntrinsicID()) {
1248       default:
1249         if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II))
1250           disableLoadElimination();
1251         return Base::visitCallBase(Call);
1252 
1253       case Intrinsic::load_relative:
1254         // This is normally lowered to 4 LLVM instructions.
1255         addCost(3 * InlineConstants::InstrCost);
1256         return false;
1257 
1258       case Intrinsic::memset:
1259       case Intrinsic::memcpy:
1260       case Intrinsic::memmove:
1261         disableLoadElimination();
1262         // SROA can usually chew through these intrinsics, but they aren't free.
1263         return false;
1264       case Intrinsic::icall_branch_funnel:
1265       case Intrinsic::localescape:
1266         HasUninlineableIntrinsic = true;
1267         return false;
1268       case Intrinsic::vastart:
1269         InitsVargArgs = true;
1270         return false;
1271       }
1272     }
1273 
1274     if (F == Call.getFunction()) {
1275       // This flag will fully abort the analysis, so don't bother with anything
1276       // else.
1277       IsRecursiveCall = true;
1278       return false;
1279     }
1280 
1281     if (TTI.isLoweredToCall(F)) {
1282       // We account for the average 1 instruction per call argument setup
1283       // here.
1284       addCost(Call.arg_size() * InlineConstants::InstrCost);
1285 
1286       // Everything other than inline ASM will also have a significant cost
1287       // merely from making the call.
1288       if (!isa<InlineAsm>(Call.getCalledValue()))
1289         addCost(InlineConstants::CallPenalty);
1290     }
1291 
1292     if (!Call.onlyReadsMemory())
1293       disableLoadElimination();
1294     return Base::visitCallBase(Call);
1295   }
1296 
1297   // Otherwise we're in a very special case -- an indirect function call. See
1298   // if we can be particularly clever about this.
1299   Value *Callee = Call.getCalledValue();
1300 
1301   // First, pay the price of the argument setup. We account for the average
1302   // 1 instruction per call argument setup here.
1303   addCost(Call.arg_size() * InlineConstants::InstrCost);
1304 
1305   // Next, check if this happens to be an indirect function call to a known
1306   // function in this inline context. If not, we've done all we can.
1307   Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
1308   if (!F) {
1309     if (!Call.onlyReadsMemory())
1310       disableLoadElimination();
1311     return Base::visitCallBase(Call);
1312   }
1313 
1314   // If we have a constant that we are calling as a function, we can peer
1315   // through it and see the function target. This happens not infrequently
1316   // during devirtualization and so we want to give it a hefty bonus for
1317   // inlining, but cap that bonus in the event that inlining wouldn't pan
1318   // out. Pretend to inline the function, with a custom threshold.
1319   auto IndirectCallParams = Params;
1320   IndirectCallParams.DefaultThreshold = InlineConstants::IndirectCallThreshold;
1321   CallAnalyzer CA(TTI, GetAssumptionCache, GetBFI, PSI, ORE, *F, Call,
1322                   IndirectCallParams);
1323   if (CA.analyzeCall(Call)) {
1324     // We were able to inline the indirect call! Subtract the cost from the
1325     // threshold to get the bonus we want to apply, but don't go below zero.
1326     Cost -= std::max(0, CA.getThreshold() - CA.getCost());
1327   }
1328 
1329   if (!F->onlyReadsMemory())
1330     disableLoadElimination();
1331   return Base::visitCallBase(Call);
1332 }
1333 
1334 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) {
1335   // At least one return instruction will be free after inlining.
1336   bool Free = !HasReturn;
1337   HasReturn = true;
1338   return Free;
1339 }
1340 
1341 bool CallAnalyzer::visitBranchInst(BranchInst &BI) {
1342   // We model unconditional branches as essentially free -- they really
1343   // shouldn't exist at all, but handling them makes the behavior of the
1344   // inliner more regular and predictable. Interestingly, conditional branches
1345   // which will fold away are also free.
1346   return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) ||
1347          dyn_cast_or_null<ConstantInt>(
1348              SimplifiedValues.lookup(BI.getCondition()));
1349 }
1350 
1351 bool CallAnalyzer::visitSelectInst(SelectInst &SI) {
1352   bool CheckSROA = SI.getType()->isPointerTy();
1353   Value *TrueVal = SI.getTrueValue();
1354   Value *FalseVal = SI.getFalseValue();
1355 
1356   Constant *TrueC = dyn_cast<Constant>(TrueVal);
1357   if (!TrueC)
1358     TrueC = SimplifiedValues.lookup(TrueVal);
1359   Constant *FalseC = dyn_cast<Constant>(FalseVal);
1360   if (!FalseC)
1361     FalseC = SimplifiedValues.lookup(FalseVal);
1362   Constant *CondC =
1363       dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition()));
1364 
1365   if (!CondC) {
1366     // Select C, X, X => X
1367     if (TrueC == FalseC && TrueC) {
1368       SimplifiedValues[&SI] = TrueC;
1369       return true;
1370     }
1371 
1372     if (!CheckSROA)
1373       return Base::visitSelectInst(SI);
1374 
1375     std::pair<Value *, APInt> TrueBaseAndOffset =
1376         ConstantOffsetPtrs.lookup(TrueVal);
1377     std::pair<Value *, APInt> FalseBaseAndOffset =
1378         ConstantOffsetPtrs.lookup(FalseVal);
1379     if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) {
1380       ConstantOffsetPtrs[&SI] = TrueBaseAndOffset;
1381 
1382       Value *SROAArg;
1383       DenseMap<Value *, int>::iterator CostIt;
1384       if (lookupSROAArgAndCost(TrueVal, SROAArg, CostIt))
1385         SROAArgValues[&SI] = SROAArg;
1386       return true;
1387     }
1388 
1389     return Base::visitSelectInst(SI);
1390   }
1391 
1392   // Select condition is a constant.
1393   Value *SelectedV = CondC->isAllOnesValue()
1394                          ? TrueVal
1395                          : (CondC->isNullValue()) ? FalseVal : nullptr;
1396   if (!SelectedV) {
1397     // Condition is a vector constant that is not all 1s or all 0s.  If all
1398     // operands are constants, ConstantExpr::getSelect() can handle the cases
1399     // such as select vectors.
1400     if (TrueC && FalseC) {
1401       if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) {
1402         SimplifiedValues[&SI] = C;
1403         return true;
1404       }
1405     }
1406     return Base::visitSelectInst(SI);
1407   }
1408 
1409   // Condition is either all 1s or all 0s. SI can be simplified.
1410   if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) {
1411     SimplifiedValues[&SI] = SelectedC;
1412     return true;
1413   }
1414 
1415   if (!CheckSROA)
1416     return true;
1417 
1418   std::pair<Value *, APInt> BaseAndOffset =
1419       ConstantOffsetPtrs.lookup(SelectedV);
1420   if (BaseAndOffset.first) {
1421     ConstantOffsetPtrs[&SI] = BaseAndOffset;
1422 
1423     Value *SROAArg;
1424     DenseMap<Value *, int>::iterator CostIt;
1425     if (lookupSROAArgAndCost(SelectedV, SROAArg, CostIt))
1426       SROAArgValues[&SI] = SROAArg;
1427   }
1428 
1429   return true;
1430 }
1431 
1432 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) {
1433   // We model unconditional switches as free, see the comments on handling
1434   // branches.
1435   if (isa<ConstantInt>(SI.getCondition()))
1436     return true;
1437   if (Value *V = SimplifiedValues.lookup(SI.getCondition()))
1438     if (isa<ConstantInt>(V))
1439       return true;
1440 
1441   // Assume the most general case where the switch is lowered into
1442   // either a jump table, bit test, or a balanced binary tree consisting of
1443   // case clusters without merging adjacent clusters with the same
1444   // destination. We do not consider the switches that are lowered with a mix
1445   // of jump table/bit test/binary search tree. The cost of the switch is
1446   // proportional to the size of the tree or the size of jump table range.
1447   //
1448   // NB: We convert large switches which are just used to initialize large phi
1449   // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent
1450   // inlining those. It will prevent inlining in cases where the optimization
1451   // does not (yet) fire.
1452 
1453   // Maximum valid cost increased in this function.
1454   int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1;
1455 
1456   // Exit early for a large switch, assuming one case needs at least one
1457   // instruction.
1458   // FIXME: This is not true for a bit test, but ignore such case for now to
1459   // save compile-time.
1460   int64_t CostLowerBound =
1461       std::min((int64_t)CostUpperBound,
1462                (int64_t)SI.getNumCases() * InlineConstants::InstrCost + Cost);
1463 
1464   if (CostLowerBound > Threshold && !ComputeFullInlineCost) {
1465     addCost((int64_t)SI.getNumCases() * InlineConstants::InstrCost);
1466     return false;
1467   }
1468 
1469   unsigned JumpTableSize = 0;
1470   unsigned NumCaseCluster =
1471       TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize);
1472 
1473   // If suitable for a jump table, consider the cost for the table size and
1474   // branch to destination.
1475   if (JumpTableSize) {
1476     int64_t JTCost = (int64_t)JumpTableSize * InlineConstants::InstrCost +
1477                      4 * InlineConstants::InstrCost;
1478 
1479     addCost(JTCost, (int64_t)CostUpperBound);
1480     return false;
1481   }
1482 
1483   // Considering forming a binary search, we should find the number of nodes
1484   // which is same as the number of comparisons when lowered. For a given
1485   // number of clusters, n, we can define a recursive function, f(n), to find
1486   // the number of nodes in the tree. The recursion is :
1487   // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3,
1488   // and f(n) = n, when n <= 3.
1489   // This will lead a binary tree where the leaf should be either f(2) or f(3)
1490   // when n > 3.  So, the number of comparisons from leaves should be n, while
1491   // the number of non-leaf should be :
1492   //   2^(log2(n) - 1) - 1
1493   //   = 2^log2(n) * 2^-1 - 1
1494   //   = n / 2 - 1.
1495   // Considering comparisons from leaf and non-leaf nodes, we can estimate the
1496   // number of comparisons in a simple closed form :
1497   //   n + n / 2 - 1 = n * 3 / 2 - 1
1498   if (NumCaseCluster <= 3) {
1499     // Suppose a comparison includes one compare and one conditional branch.
1500     addCost(NumCaseCluster * 2 * InlineConstants::InstrCost);
1501     return false;
1502   }
1503 
1504   int64_t ExpectedNumberOfCompare = 3 * (int64_t)NumCaseCluster / 2 - 1;
1505   int64_t SwitchCost =
1506       ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost;
1507 
1508   addCost(SwitchCost, (int64_t)CostUpperBound);
1509   return false;
1510 }
1511 
1512 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) {
1513   // We never want to inline functions that contain an indirectbr.  This is
1514   // incorrect because all the blockaddress's (in static global initializers
1515   // for example) would be referring to the original function, and this
1516   // indirect jump would jump from the inlined copy of the function into the
1517   // original function which is extremely undefined behavior.
1518   // FIXME: This logic isn't really right; we can safely inline functions with
1519   // indirectbr's as long as no other function or global references the
1520   // blockaddress of a block within the current function.
1521   HasIndirectBr = true;
1522   return false;
1523 }
1524 
1525 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) {
1526   // FIXME: It's not clear that a single instruction is an accurate model for
1527   // the inline cost of a resume instruction.
1528   return false;
1529 }
1530 
1531 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) {
1532   // FIXME: It's not clear that a single instruction is an accurate model for
1533   // the inline cost of a cleanupret instruction.
1534   return false;
1535 }
1536 
1537 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) {
1538   // FIXME: It's not clear that a single instruction is an accurate model for
1539   // the inline cost of a catchret instruction.
1540   return false;
1541 }
1542 
1543 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) {
1544   // FIXME: It might be reasonably to discount the cost of instructions leading
1545   // to unreachable as they have the lowest possible impact on both runtime and
1546   // code size.
1547   return true; // No actual code is needed for unreachable.
1548 }
1549 
1550 bool CallAnalyzer::visitInstruction(Instruction &I) {
1551   // Some instructions are free. All of the free intrinsics can also be
1552   // handled by SROA, etc.
1553   if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I))
1554     return true;
1555 
1556   // We found something we don't understand or can't handle. Mark any SROA-able
1557   // values in the operand list as no longer viable.
1558   for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI)
1559     disableSROA(*OI);
1560 
1561   return false;
1562 }
1563 
1564 /// Analyze a basic block for its contribution to the inline cost.
1565 ///
1566 /// This method walks the analyzer over every instruction in the given basic
1567 /// block and accounts for their cost during inlining at this callsite. It
1568 /// aborts early if the threshold has been exceeded or an impossible to inline
1569 /// construct has been detected. It returns false if inlining is no longer
1570 /// viable, and true if inlining remains viable.
1571 InlineResult
1572 CallAnalyzer::analyzeBlock(BasicBlock *BB,
1573                            SmallPtrSetImpl<const Value *> &EphValues) {
1574   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1575     // FIXME: Currently, the number of instructions in a function regardless of
1576     // our ability to simplify them during inline to constants or dead code,
1577     // are actually used by the vector bonus heuristic. As long as that's true,
1578     // we have to special case debug intrinsics here to prevent differences in
1579     // inlining due to debug symbols. Eventually, the number of unsimplified
1580     // instructions shouldn't factor into the cost computation, but until then,
1581     // hack around it here.
1582     if (isa<DbgInfoIntrinsic>(I))
1583       continue;
1584 
1585     // Skip ephemeral values.
1586     if (EphValues.count(&*I))
1587       continue;
1588 
1589     ++NumInstructions;
1590     if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
1591       ++NumVectorInstructions;
1592 
1593     // If the instruction simplified to a constant, there is no cost to this
1594     // instruction. Visit the instructions using our InstVisitor to account for
1595     // all of the per-instruction logic. The visit tree returns true if we
1596     // consumed the instruction in any way, and false if the instruction's base
1597     // cost should count against inlining.
1598     if (Base::visit(&*I))
1599       ++NumInstructionsSimplified;
1600     else
1601       addCost(InlineConstants::InstrCost);
1602 
1603     using namespace ore;
1604     // If the visit this instruction detected an uninlinable pattern, abort.
1605     InlineResult IR;
1606     if (IsRecursiveCall)
1607       IR = "recursive";
1608     else if (ExposesReturnsTwice)
1609       IR = "exposes returns twice";
1610     else if (HasDynamicAlloca)
1611       IR = "dynamic alloca";
1612     else if (HasIndirectBr)
1613       IR = "indirect branch";
1614     else if (HasUninlineableIntrinsic)
1615       IR = "uninlinable intrinsic";
1616     else if (InitsVargArgs)
1617       IR = "varargs";
1618     if (!IR) {
1619       if (ORE)
1620         ORE->emit([&]() {
1621           return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
1622                                           &CandidateCall)
1623                  << NV("Callee", &F) << " has uninlinable pattern ("
1624                  << NV("InlineResult", IR.message)
1625                  << ") and cost is not fully computed";
1626         });
1627       return IR;
1628     }
1629 
1630     // If the caller is a recursive function then we don't want to inline
1631     // functions which allocate a lot of stack space because it would increase
1632     // the caller stack usage dramatically.
1633     if (IsCallerRecursive &&
1634         AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) {
1635       InlineResult IR = "recursive and allocates too much stack space";
1636       if (ORE)
1637         ORE->emit([&]() {
1638           return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
1639                                           &CandidateCall)
1640                  << NV("Callee", &F) << " is " << NV("InlineResult", IR.message)
1641                  << ". Cost is not fully computed";
1642         });
1643       return IR;
1644     }
1645 
1646     // Check if we've passed the maximum possible threshold so we don't spin in
1647     // huge basic blocks that will never inline.
1648     if (Cost >= Threshold && !ComputeFullInlineCost)
1649       return false;
1650   }
1651 
1652   return true;
1653 }
1654 
1655 /// Compute the base pointer and cumulative constant offsets for V.
1656 ///
1657 /// This strips all constant offsets off of V, leaving it the base pointer, and
1658 /// accumulates the total constant offset applied in the returned constant. It
1659 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
1660 /// no constant offsets applied.
1661 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
1662   if (!V->getType()->isPointerTy())
1663     return nullptr;
1664 
1665   unsigned AS = V->getType()->getPointerAddressSpace();
1666   unsigned IntPtrWidth = DL.getIndexSizeInBits(AS);
1667   APInt Offset = APInt::getNullValue(IntPtrWidth);
1668 
1669   // Even though we don't look through PHI nodes, we could be called on an
1670   // instruction in an unreachable block, which may be on a cycle.
1671   SmallPtrSet<Value *, 4> Visited;
1672   Visited.insert(V);
1673   do {
1674     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1675       if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
1676         return nullptr;
1677       V = GEP->getPointerOperand();
1678     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1679       V = cast<Operator>(V)->getOperand(0);
1680     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1681       if (GA->isInterposable())
1682         break;
1683       V = GA->getAliasee();
1684     } else {
1685       break;
1686     }
1687     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1688   } while (Visited.insert(V).second);
1689 
1690   Type *IntPtrTy = DL.getIntPtrType(V->getContext(), AS);
1691   return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
1692 }
1693 
1694 /// Find dead blocks due to deleted CFG edges during inlining.
1695 ///
1696 /// If we know the successor of the current block, \p CurrBB, has to be \p
1697 /// NextBB, the other successors of \p CurrBB are dead if these successors have
1698 /// no live incoming CFG edges.  If one block is found to be dead, we can
1699 /// continue growing the dead block list by checking the successors of the dead
1700 /// blocks to see if all their incoming edges are dead or not.
1701 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) {
1702   auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) {
1703     // A CFG edge is dead if the predecessor is dead or the predecessor has a
1704     // known successor which is not the one under exam.
1705     return (DeadBlocks.count(Pred) ||
1706             (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ));
1707   };
1708 
1709   auto IsNewlyDead = [&](BasicBlock *BB) {
1710     // If all the edges to a block are dead, the block is also dead.
1711     return (!DeadBlocks.count(BB) &&
1712             llvm::all_of(predecessors(BB),
1713                          [&](BasicBlock *P) { return IsEdgeDead(P, BB); }));
1714   };
1715 
1716   for (BasicBlock *Succ : successors(CurrBB)) {
1717     if (Succ == NextBB || !IsNewlyDead(Succ))
1718       continue;
1719     SmallVector<BasicBlock *, 4> NewDead;
1720     NewDead.push_back(Succ);
1721     while (!NewDead.empty()) {
1722       BasicBlock *Dead = NewDead.pop_back_val();
1723       if (DeadBlocks.insert(Dead))
1724         // Continue growing the dead block lists.
1725         for (BasicBlock *S : successors(Dead))
1726           if (IsNewlyDead(S))
1727             NewDead.push_back(S);
1728     }
1729   }
1730 }
1731 
1732 /// Analyze a call site for potential inlining.
1733 ///
1734 /// Returns true if inlining this call is viable, and false if it is not
1735 /// viable. It computes the cost and adjusts the threshold based on numerous
1736 /// factors and heuristics. If this method returns false but the computed cost
1737 /// is below the computed threshold, then inlining was forcibly disabled by
1738 /// some artifact of the routine.
1739 InlineResult CallAnalyzer::analyzeCall(CallBase &Call) {
1740   ++NumCallsAnalyzed;
1741 
1742   // Perform some tweaks to the cost and threshold based on the direct
1743   // callsite information.
1744 
1745   // We want to more aggressively inline vector-dense kernels, so up the
1746   // threshold, and we'll lower it if the % of vector instructions gets too
1747   // low. Note that these bonuses are some what arbitrary and evolved over time
1748   // by accident as much as because they are principled bonuses.
1749   //
1750   // FIXME: It would be nice to remove all such bonuses. At least it would be
1751   // nice to base the bonus values on something more scientific.
1752   assert(NumInstructions == 0);
1753   assert(NumVectorInstructions == 0);
1754 
1755   // Update the threshold based on callsite properties
1756   updateThreshold(Call, F);
1757 
1758   // While Threshold depends on commandline options that can take negative
1759   // values, we want to enforce the invariant that the computed threshold and
1760   // bonuses are non-negative.
1761   assert(Threshold >= 0);
1762   assert(SingleBBBonus >= 0);
1763   assert(VectorBonus >= 0);
1764 
1765   // Speculatively apply all possible bonuses to Threshold. If cost exceeds
1766   // this Threshold any time, and cost cannot decrease, we can stop processing
1767   // the rest of the function body.
1768   Threshold += (SingleBBBonus + VectorBonus);
1769 
1770   // Give out bonuses for the callsite, as the instructions setting them up
1771   // will be gone after inlining.
1772   addCost(-getCallsiteCost(Call, DL));
1773 
1774   // If this function uses the coldcc calling convention, prefer not to inline
1775   // it.
1776   if (F.getCallingConv() == CallingConv::Cold)
1777     Cost += InlineConstants::ColdccPenalty;
1778 
1779   // Check if we're done. This can happen due to bonuses and penalties.
1780   if (Cost >= Threshold && !ComputeFullInlineCost)
1781     return "high cost";
1782 
1783   if (F.empty())
1784     return true;
1785 
1786   Function *Caller = Call.getFunction();
1787   // Check if the caller function is recursive itself.
1788   for (User *U : Caller->users()) {
1789     CallBase *Call = dyn_cast<CallBase>(U);
1790     if (Call && Call->getFunction() == Caller) {
1791       IsCallerRecursive = true;
1792       break;
1793     }
1794   }
1795 
1796   // Populate our simplified values by mapping from function arguments to call
1797   // arguments with known important simplifications.
1798   auto CAI = Call.arg_begin();
1799   for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end();
1800        FAI != FAE; ++FAI, ++CAI) {
1801     assert(CAI != Call.arg_end());
1802     if (Constant *C = dyn_cast<Constant>(CAI))
1803       SimplifiedValues[&*FAI] = C;
1804 
1805     Value *PtrArg = *CAI;
1806     if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
1807       ConstantOffsetPtrs[&*FAI] = std::make_pair(PtrArg, C->getValue());
1808 
1809       // We can SROA any pointer arguments derived from alloca instructions.
1810       if (isa<AllocaInst>(PtrArg)) {
1811         SROAArgValues[&*FAI] = PtrArg;
1812         SROAArgCosts[PtrArg] = 0;
1813       }
1814     }
1815   }
1816   NumConstantArgs = SimplifiedValues.size();
1817   NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
1818   NumAllocaArgs = SROAArgValues.size();
1819 
1820   // FIXME: If a caller has multiple calls to a callee, we end up recomputing
1821   // the ephemeral values multiple times (and they're completely determined by
1822   // the callee, so this is purely duplicate work).
1823   SmallPtrSet<const Value *, 32> EphValues;
1824   CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues);
1825 
1826   // The worklist of live basic blocks in the callee *after* inlining. We avoid
1827   // adding basic blocks of the callee which can be proven to be dead for this
1828   // particular call site in order to get more accurate cost estimates. This
1829   // requires a somewhat heavyweight iteration pattern: we need to walk the
1830   // basic blocks in a breadth-first order as we insert live successors. To
1831   // accomplish this, prioritizing for small iterations because we exit after
1832   // crossing our threshold, we use a small-size optimized SetVector.
1833   typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
1834                     SmallPtrSet<BasicBlock *, 16>>
1835       BBSetVector;
1836   BBSetVector BBWorklist;
1837   BBWorklist.insert(&F.getEntryBlock());
1838   bool SingleBB = true;
1839   // Note that we *must not* cache the size, this loop grows the worklist.
1840   for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
1841     // Bail out the moment we cross the threshold. This means we'll under-count
1842     // the cost, but only when undercounting doesn't matter.
1843     if (Cost >= Threshold && !ComputeFullInlineCost)
1844       break;
1845 
1846     BasicBlock *BB = BBWorklist[Idx];
1847     if (BB->empty())
1848       continue;
1849 
1850     // Disallow inlining a blockaddress with uses other than strictly callbr.
1851     // A blockaddress only has defined behavior for an indirect branch in the
1852     // same function, and we do not currently support inlining indirect
1853     // branches.  But, the inliner may not see an indirect branch that ends up
1854     // being dead code at a particular call site. If the blockaddress escapes
1855     // the function, e.g., via a global variable, inlining may lead to an
1856     // invalid cross-function reference.
1857     // FIXME: pr/39560: continue relaxing this overt restriction.
1858     if (BB->hasAddressTaken())
1859       for (User *U : BlockAddress::get(&*BB)->users())
1860         if (!isa<CallBrInst>(*U))
1861           return "blockaddress used outside of callbr";
1862 
1863     // Analyze the cost of this block. If we blow through the threshold, this
1864     // returns false, and we can bail on out.
1865     InlineResult IR = analyzeBlock(BB, EphValues);
1866     if (!IR)
1867       return IR;
1868 
1869     Instruction *TI = BB->getTerminator();
1870 
1871     // Add in the live successors by first checking whether we have terminator
1872     // that may be simplified based on the values simplified by this call.
1873     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1874       if (BI->isConditional()) {
1875         Value *Cond = BI->getCondition();
1876         if (ConstantInt *SimpleCond =
1877                 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
1878           BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0);
1879           BBWorklist.insert(NextBB);
1880           KnownSuccessors[BB] = NextBB;
1881           findDeadBlocks(BB, NextBB);
1882           continue;
1883         }
1884       }
1885     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1886       Value *Cond = SI->getCondition();
1887       if (ConstantInt *SimpleCond =
1888               dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
1889         BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor();
1890         BBWorklist.insert(NextBB);
1891         KnownSuccessors[BB] = NextBB;
1892         findDeadBlocks(BB, NextBB);
1893         continue;
1894       }
1895     }
1896 
1897     // If we're unable to select a particular successor, just count all of
1898     // them.
1899     for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
1900          ++TIdx)
1901       BBWorklist.insert(TI->getSuccessor(TIdx));
1902 
1903     // If we had any successors at this point, than post-inlining is likely to
1904     // have them as well. Note that we assume any basic blocks which existed
1905     // due to branches or switches which folded above will also fold after
1906     // inlining.
1907     if (SingleBB && TI->getNumSuccessors() > 1) {
1908       // Take off the bonus we applied to the threshold.
1909       Threshold -= SingleBBBonus;
1910       SingleBB = false;
1911     }
1912   }
1913 
1914   bool OnlyOneCallAndLocalLinkage =
1915       F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction();
1916   // If this is a noduplicate call, we can still inline as long as
1917   // inlining this would cause the removal of the caller (so the instruction
1918   // is not actually duplicated, just moved).
1919   if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall)
1920     return "noduplicate";
1921 
1922   // Loops generally act a lot like calls in that they act like barriers to
1923   // movement, require a certain amount of setup, etc. So when optimising for
1924   // size, we penalise any call sites that perform loops. We do this after all
1925   // other costs here, so will likely only be dealing with relatively small
1926   // functions (and hence DT and LI will hopefully be cheap).
1927   if (Caller->hasMinSize()) {
1928     DominatorTree DT(F);
1929     LoopInfo LI(DT);
1930     int NumLoops = 0;
1931     for (Loop *L : LI) {
1932       // Ignore loops that will not be executed
1933       if (DeadBlocks.count(L->getHeader()))
1934         continue;
1935       NumLoops++;
1936     }
1937     addCost(NumLoops * InlineConstants::CallPenalty);
1938   }
1939 
1940   // We applied the maximum possible vector bonus at the beginning. Now,
1941   // subtract the excess bonus, if any, from the Threshold before
1942   // comparing against Cost.
1943   if (NumVectorInstructions <= NumInstructions / 10)
1944     Threshold -= VectorBonus;
1945   else if (NumVectorInstructions <= NumInstructions / 2)
1946     Threshold -= VectorBonus/2;
1947 
1948   return Cost < std::max(1, Threshold);
1949 }
1950 
1951 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1952 /// Dump stats about this call's analysis.
1953 LLVM_DUMP_METHOD void CallAnalyzer::dump() {
1954 #define DEBUG_PRINT_STAT(x) dbgs() << "      " #x ": " << x << "\n"
1955   DEBUG_PRINT_STAT(NumConstantArgs);
1956   DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
1957   DEBUG_PRINT_STAT(NumAllocaArgs);
1958   DEBUG_PRINT_STAT(NumConstantPtrCmps);
1959   DEBUG_PRINT_STAT(NumConstantPtrDiffs);
1960   DEBUG_PRINT_STAT(NumInstructionsSimplified);
1961   DEBUG_PRINT_STAT(NumInstructions);
1962   DEBUG_PRINT_STAT(SROACostSavings);
1963   DEBUG_PRINT_STAT(SROACostSavingsLost);
1964   DEBUG_PRINT_STAT(LoadEliminationCost);
1965   DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
1966   DEBUG_PRINT_STAT(Cost);
1967   DEBUG_PRINT_STAT(Threshold);
1968 #undef DEBUG_PRINT_STAT
1969 }
1970 #endif
1971 
1972 /// Test that there are no attribute conflicts between Caller and Callee
1973 ///        that prevent inlining.
1974 static bool functionsHaveCompatibleAttributes(Function *Caller,
1975                                               Function *Callee,
1976                                               TargetTransformInfo &TTI) {
1977   return TTI.areInlineCompatible(Caller, Callee) &&
1978          AttributeFuncs::areInlineCompatible(*Caller, *Callee);
1979 }
1980 
1981 int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) {
1982   int Cost = 0;
1983   for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) {
1984     if (Call.isByValArgument(I)) {
1985       // We approximate the number of loads and stores needed by dividing the
1986       // size of the byval type by the target's pointer size.
1987       PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
1988       unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType());
1989       unsigned AS = PTy->getAddressSpace();
1990       unsigned PointerSize = DL.getPointerSizeInBits(AS);
1991       // Ceiling division.
1992       unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
1993 
1994       // If it generates more than 8 stores it is likely to be expanded as an
1995       // inline memcpy so we take that as an upper bound. Otherwise we assume
1996       // one load and one store per word copied.
1997       // FIXME: The maxStoresPerMemcpy setting from the target should be used
1998       // here instead of a magic number of 8, but it's not available via
1999       // DataLayout.
2000       NumStores = std::min(NumStores, 8U);
2001 
2002       Cost += 2 * NumStores * InlineConstants::InstrCost;
2003     } else {
2004       // For non-byval arguments subtract off one instruction per call
2005       // argument.
2006       Cost += InlineConstants::InstrCost;
2007     }
2008   }
2009   // The call instruction also disappears after inlining.
2010   Cost += InlineConstants::InstrCost + InlineConstants::CallPenalty;
2011   return Cost;
2012 }
2013 
2014 InlineCost llvm::getInlineCost(
2015     CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI,
2016     std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
2017     Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI,
2018     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2019   return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI,
2020                        GetAssumptionCache, GetBFI, PSI, ORE);
2021 }
2022 
2023 InlineCost llvm::getInlineCost(
2024     CallBase &Call, Function *Callee, const InlineParams &Params,
2025     TargetTransformInfo &CalleeTTI,
2026     std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
2027     Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI,
2028     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2029 
2030   // Cannot inline indirect calls.
2031   if (!Callee)
2032     return llvm::InlineCost::getNever("indirect call");
2033 
2034   // Never inline calls with byval arguments that does not have the alloca
2035   // address space. Since byval arguments can be replaced with a copy to an
2036   // alloca, the inlined code would need to be adjusted to handle that the
2037   // argument is in the alloca address space (so it is a little bit complicated
2038   // to solve).
2039   unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace();
2040   for (unsigned I = 0, E = Call.arg_size(); I != E; ++I)
2041     if (Call.isByValArgument(I)) {
2042       PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
2043       if (PTy->getAddressSpace() != AllocaAS)
2044         return llvm::InlineCost::getNever("byval arguments without alloca"
2045                                           " address space");
2046     }
2047 
2048   // Calls to functions with always-inline attributes should be inlined
2049   // whenever possible.
2050   if (Call.hasFnAttr(Attribute::AlwaysInline)) {
2051     auto IsViable = isInlineViable(*Callee);
2052     if (IsViable)
2053       return llvm::InlineCost::getAlways("always inline attribute");
2054     return llvm::InlineCost::getNever(IsViable.message);
2055   }
2056 
2057   // Never inline functions with conflicting attributes (unless callee has
2058   // always-inline attribute).
2059   Function *Caller = Call.getCaller();
2060   if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI))
2061     return llvm::InlineCost::getNever("conflicting attributes");
2062 
2063   // Don't inline this call if the caller has the optnone attribute.
2064   if (Caller->hasOptNone())
2065     return llvm::InlineCost::getNever("optnone attribute");
2066 
2067   // Don't inline a function that treats null pointer as valid into a caller
2068   // that does not have this attribute.
2069   if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined())
2070     return llvm::InlineCost::getNever("nullptr definitions incompatible");
2071 
2072   // Don't inline functions which can be interposed at link-time.
2073   if (Callee->isInterposable())
2074     return llvm::InlineCost::getNever("interposable");
2075 
2076   // Don't inline functions marked noinline.
2077   if (Callee->hasFnAttribute(Attribute::NoInline))
2078     return llvm::InlineCost::getNever("noinline function attribute");
2079 
2080   // Don't inline call sites marked noinline.
2081   if (Call.isNoInline())
2082     return llvm::InlineCost::getNever("noinline call site attribute");
2083 
2084   LLVM_DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName()
2085                           << "... (caller:" << Caller->getName() << ")\n");
2086 
2087   CallAnalyzer CA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, ORE, *Callee,
2088                   Call, Params);
2089   InlineResult ShouldInline = CA.analyzeCall(Call);
2090 
2091   LLVM_DEBUG(CA.dump());
2092 
2093   // Check if there was a reason to force inlining or no inlining.
2094   if (!ShouldInline && CA.getCost() < CA.getThreshold())
2095     return InlineCost::getNever(ShouldInline.message);
2096   if (ShouldInline && CA.getCost() >= CA.getThreshold())
2097     return InlineCost::getAlways("empty function");
2098 
2099   return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
2100 }
2101 
2102 InlineResult llvm::isInlineViable(Function &F) {
2103   bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice);
2104   for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
2105     // Disallow inlining of functions which contain indirect branches.
2106     if (isa<IndirectBrInst>(BI->getTerminator()))
2107       return "contains indirect branches";
2108 
2109     // Disallow inlining of blockaddresses which are used by non-callbr
2110     // instructions.
2111     if (BI->hasAddressTaken())
2112       for (User *U : BlockAddress::get(&*BI)->users())
2113         if (!isa<CallBrInst>(*U))
2114           return "blockaddress used outside of callbr";
2115 
2116     for (auto &II : *BI) {
2117       CallBase *Call = dyn_cast<CallBase>(&II);
2118       if (!Call)
2119         continue;
2120 
2121       // Disallow recursive calls.
2122       if (&F == Call->getCalledFunction())
2123         return "recursive call";
2124 
2125       // Disallow calls which expose returns-twice to a function not previously
2126       // attributed as such.
2127       if (!ReturnsTwice && isa<CallInst>(Call) &&
2128           cast<CallInst>(Call)->canReturnTwice())
2129         return "exposes returns-twice attribute";
2130 
2131       if (Call->getCalledFunction())
2132         switch (Call->getCalledFunction()->getIntrinsicID()) {
2133         default:
2134           break;
2135         // Disallow inlining of @llvm.icall.branch.funnel because current
2136         // backend can't separate call targets from call arguments.
2137         case llvm::Intrinsic::icall_branch_funnel:
2138           return "disallowed inlining of @llvm.icall.branch.funnel";
2139         // Disallow inlining functions that call @llvm.localescape. Doing this
2140         // correctly would require major changes to the inliner.
2141         case llvm::Intrinsic::localescape:
2142           return "disallowed inlining of @llvm.localescape";
2143         // Disallow inlining of functions that initialize VarArgs with va_start.
2144         case llvm::Intrinsic::vastart:
2145           return "contains VarArgs initialized with va_start";
2146         }
2147     }
2148   }
2149 
2150   return true;
2151 }
2152 
2153 // APIs to create InlineParams based on command line flags and/or other
2154 // parameters.
2155 
2156 InlineParams llvm::getInlineParams(int Threshold) {
2157   InlineParams Params;
2158 
2159   // This field is the threshold to use for a callee by default. This is
2160   // derived from one or more of:
2161   //  * optimization or size-optimization levels,
2162   //  * a value passed to createFunctionInliningPass function, or
2163   //  * the -inline-threshold flag.
2164   //  If the -inline-threshold flag is explicitly specified, that is used
2165   //  irrespective of anything else.
2166   if (InlineThreshold.getNumOccurrences() > 0)
2167     Params.DefaultThreshold = InlineThreshold;
2168   else
2169     Params.DefaultThreshold = Threshold;
2170 
2171   // Set the HintThreshold knob from the -inlinehint-threshold.
2172   Params.HintThreshold = HintThreshold;
2173 
2174   // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold.
2175   Params.HotCallSiteThreshold = HotCallSiteThreshold;
2176 
2177   // If the -locally-hot-callsite-threshold is explicitly specified, use it to
2178   // populate LocallyHotCallSiteThreshold. Later, we populate
2179   // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if
2180   // we know that optimization level is O3 (in the getInlineParams variant that
2181   // takes the opt and size levels).
2182   // FIXME: Remove this check (and make the assignment unconditional) after
2183   // addressing size regression issues at O2.
2184   if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0)
2185     Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
2186 
2187   // Set the ColdCallSiteThreshold knob from the -inline-cold-callsite-threshold.
2188   Params.ColdCallSiteThreshold = ColdCallSiteThreshold;
2189 
2190   // Set the OptMinSizeThreshold and OptSizeThreshold params only if the
2191   // -inlinehint-threshold commandline option is not explicitly given. If that
2192   // option is present, then its value applies even for callees with size and
2193   // minsize attributes.
2194   // If the -inline-threshold is not specified, set the ColdThreshold from the
2195   // -inlinecold-threshold even if it is not explicitly passed. If
2196   // -inline-threshold is specified, then -inlinecold-threshold needs to be
2197   // explicitly specified to set the ColdThreshold knob
2198   if (InlineThreshold.getNumOccurrences() == 0) {
2199     Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold;
2200     Params.OptSizeThreshold = InlineConstants::OptSizeThreshold;
2201     Params.ColdThreshold = ColdThreshold;
2202   } else if (ColdThreshold.getNumOccurrences() > 0) {
2203     Params.ColdThreshold = ColdThreshold;
2204   }
2205   return Params;
2206 }
2207 
2208 InlineParams llvm::getInlineParams() {
2209   return getInlineParams(InlineThreshold);
2210 }
2211 
2212 // Compute the default threshold for inlining based on the opt level and the
2213 // size opt level.
2214 static int computeThresholdFromOptLevels(unsigned OptLevel,
2215                                          unsigned SizeOptLevel) {
2216   if (OptLevel > 2)
2217     return InlineConstants::OptAggressiveThreshold;
2218   if (SizeOptLevel == 1) // -Os
2219     return InlineConstants::OptSizeThreshold;
2220   if (SizeOptLevel == 2) // -Oz
2221     return InlineConstants::OptMinSizeThreshold;
2222   return InlineThreshold;
2223 }
2224 
2225 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) {
2226   auto Params =
2227       getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel));
2228   // At O3, use the value of -locally-hot-callsite-threshold option to populate
2229   // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only
2230   // when it is specified explicitly.
2231   if (OptLevel > 2)
2232     Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
2233   return Params;
2234 }
2235