1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inline cost analysis. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/InlineCost.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/CodeMetrics.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/AssemblyAnnotationWriter.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/InstVisitor.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/FormattedStream.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include <limits> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "inline-cost" 50 51 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); 52 53 static cl::opt<int> 54 DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225), 55 cl::desc("Default amount of inlining to perform")); 56 57 // We introduce this option since there is a minor compile-time win by avoiding 58 // addition of TTI attributes (target-features in particular) to inline 59 // candidates when they are guaranteed to be the same as top level methods in 60 // some use cases. If we avoid adding the attribute, we need an option to avoid 61 // checking these attributes. 62 static cl::opt<bool> IgnoreTTIInlineCompatible( 63 "ignore-tti-inline-compatible", cl::Hidden, cl::init(false), 64 cl::desc("Ignore TTI attributes compatibility check between callee/caller " 65 "during inline cost calculation")); 66 67 static cl::opt<bool> PrintInstructionComments( 68 "print-instruction-comments", cl::Hidden, cl::init(false), 69 cl::desc("Prints comments for instruction based on inline cost analysis")); 70 71 static cl::opt<int> InlineThreshold( 72 "inline-threshold", cl::Hidden, cl::init(225), 73 cl::desc("Control the amount of inlining to perform (default = 225)")); 74 75 static cl::opt<int> HintThreshold( 76 "inlinehint-threshold", cl::Hidden, cl::init(325), 77 cl::desc("Threshold for inlining functions with inline hint")); 78 79 static cl::opt<int> 80 ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden, 81 cl::init(45), 82 cl::desc("Threshold for inlining cold callsites")); 83 84 static cl::opt<bool> InlineEnableCostBenefitAnalysis( 85 "inline-enable-cost-benefit-analysis", cl::Hidden, cl::init(false), 86 cl::desc("Enable the cost-benefit analysis for the inliner")); 87 88 static cl::opt<int> InlineSavingsMultiplier( 89 "inline-savings-multiplier", cl::Hidden, cl::init(8), 90 cl::desc("Multiplier to multiply cycle savings by during inlining")); 91 92 static cl::opt<int> 93 InlineSizeAllowance("inline-size-allowance", cl::Hidden, cl::init(100), 94 cl::desc("The maximum size of a callee that get's " 95 "inlined without sufficient cycle savings")); 96 97 // We introduce this threshold to help performance of instrumentation based 98 // PGO before we actually hook up inliner with analysis passes such as BPI and 99 // BFI. 100 static cl::opt<int> ColdThreshold( 101 "inlinecold-threshold", cl::Hidden, cl::init(45), 102 cl::desc("Threshold for inlining functions with cold attribute")); 103 104 static cl::opt<int> 105 HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000), 106 cl::desc("Threshold for hot callsites ")); 107 108 static cl::opt<int> LocallyHotCallSiteThreshold( 109 "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), 110 cl::desc("Threshold for locally hot callsites ")); 111 112 static cl::opt<int> ColdCallSiteRelFreq( 113 "cold-callsite-rel-freq", cl::Hidden, cl::init(2), 114 cl::desc("Maximum block frequency, expressed as a percentage of caller's " 115 "entry frequency, for a callsite to be cold in the absence of " 116 "profile information.")); 117 118 static cl::opt<int> HotCallSiteRelFreq( 119 "hot-callsite-rel-freq", cl::Hidden, cl::init(60), 120 cl::desc("Minimum block frequency, expressed as a multiple of caller's " 121 "entry frequency, for a callsite to be hot in the absence of " 122 "profile information.")); 123 124 static cl::opt<int> CallPenalty( 125 "inline-call-penalty", cl::Hidden, cl::init(25), 126 cl::desc("Call penalty that is applied per callsite when inlining")); 127 128 static cl::opt<size_t> 129 StackSizeThreshold("inline-max-stacksize", cl::Hidden, 130 cl::init(std::numeric_limits<size_t>::max()), 131 cl::desc("Do not inline functions with a stack size " 132 "that exceeds the specified limit")); 133 134 static cl::opt<size_t> 135 RecurStackSizeThreshold("recursive-inline-max-stacksize", cl::Hidden, 136 cl::init(InlineConstants::TotalAllocaSizeRecursiveCaller), 137 cl::desc("Do not inline recursive functions with a stack " 138 "size that exceeds the specified limit")); 139 140 static cl::opt<bool> OptComputeFullInlineCost( 141 "inline-cost-full", cl::Hidden, 142 cl::desc("Compute the full inline cost of a call site even when the cost " 143 "exceeds the threshold.")); 144 145 static cl::opt<bool> InlineCallerSupersetNoBuiltin( 146 "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true), 147 cl::desc("Allow inlining when caller has a superset of callee's nobuiltin " 148 "attributes.")); 149 150 static cl::opt<bool> DisableGEPConstOperand( 151 "disable-gep-const-evaluation", cl::Hidden, cl::init(false), 152 cl::desc("Disables evaluation of GetElementPtr with constant operands")); 153 154 namespace llvm { 155 Optional<int> getStringFnAttrAsInt(CallBase &CB, StringRef AttrKind) { 156 Attribute Attr = CB.getFnAttr(AttrKind); 157 int AttrValue; 158 if (Attr.getValueAsString().getAsInteger(10, AttrValue)) 159 return None; 160 return AttrValue; 161 } 162 } // namespace llvm 163 164 namespace { 165 class InlineCostCallAnalyzer; 166 167 // This struct is used to store information about inline cost of a 168 // particular instruction 169 struct InstructionCostDetail { 170 int CostBefore = 0; 171 int CostAfter = 0; 172 int ThresholdBefore = 0; 173 int ThresholdAfter = 0; 174 175 int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; } 176 177 int getCostDelta() const { return CostAfter - CostBefore; } 178 179 bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; } 180 }; 181 182 class InlineCostAnnotationWriter : public AssemblyAnnotationWriter { 183 private: 184 InlineCostCallAnalyzer *const ICCA; 185 186 public: 187 InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {} 188 void emitInstructionAnnot(const Instruction *I, 189 formatted_raw_ostream &OS) override; 190 }; 191 192 /// Carry out call site analysis, in order to evaluate inlinability. 193 /// NOTE: the type is currently used as implementation detail of functions such 194 /// as llvm::getInlineCost. Note the function_ref constructor parameters - the 195 /// expectation is that they come from the outer scope, from the wrapper 196 /// functions. If we want to support constructing CallAnalyzer objects where 197 /// lambdas are provided inline at construction, or where the object needs to 198 /// otherwise survive past the scope of the provided functions, we need to 199 /// revisit the argument types. 200 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { 201 typedef InstVisitor<CallAnalyzer, bool> Base; 202 friend class InstVisitor<CallAnalyzer, bool>; 203 204 protected: 205 virtual ~CallAnalyzer() = default; 206 /// The TargetTransformInfo available for this compilation. 207 const TargetTransformInfo &TTI; 208 209 /// Getter for the cache of @llvm.assume intrinsics. 210 function_ref<AssumptionCache &(Function &)> GetAssumptionCache; 211 212 /// Getter for BlockFrequencyInfo 213 function_ref<BlockFrequencyInfo &(Function &)> GetBFI; 214 215 /// Profile summary information. 216 ProfileSummaryInfo *PSI; 217 218 /// The called function. 219 Function &F; 220 221 // Cache the DataLayout since we use it a lot. 222 const DataLayout &DL; 223 224 /// The OptimizationRemarkEmitter available for this compilation. 225 OptimizationRemarkEmitter *ORE; 226 227 /// The candidate callsite being analyzed. Please do not use this to do 228 /// analysis in the caller function; we want the inline cost query to be 229 /// easily cacheable. Instead, use the cover function paramHasAttr. 230 CallBase &CandidateCall; 231 232 /// Extension points for handling callsite features. 233 // Called before a basic block was analyzed. 234 virtual void onBlockStart(const BasicBlock *BB) {} 235 236 /// Called after a basic block was analyzed. 237 virtual void onBlockAnalyzed(const BasicBlock *BB) {} 238 239 /// Called before an instruction was analyzed 240 virtual void onInstructionAnalysisStart(const Instruction *I) {} 241 242 /// Called after an instruction was analyzed 243 virtual void onInstructionAnalysisFinish(const Instruction *I) {} 244 245 /// Called at the end of the analysis of the callsite. Return the outcome of 246 /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or 247 /// the reason it can't. 248 virtual InlineResult finalizeAnalysis() { return InlineResult::success(); } 249 /// Called when we're about to start processing a basic block, and every time 250 /// we are done processing an instruction. Return true if there is no point in 251 /// continuing the analysis (e.g. we've determined already the call site is 252 /// too expensive to inline) 253 virtual bool shouldStop() { return false; } 254 255 /// Called before the analysis of the callee body starts (with callsite 256 /// contexts propagated). It checks callsite-specific information. Return a 257 /// reason analysis can't continue if that's the case, or 'true' if it may 258 /// continue. 259 virtual InlineResult onAnalysisStart() { return InlineResult::success(); } 260 /// Called if the analysis engine decides SROA cannot be done for the given 261 /// alloca. 262 virtual void onDisableSROA(AllocaInst *Arg) {} 263 264 /// Called the analysis engine determines load elimination won't happen. 265 virtual void onDisableLoadElimination() {} 266 267 /// Called when we visit a CallBase, before the analysis starts. Return false 268 /// to stop further processing of the instruction. 269 virtual bool onCallBaseVisitStart(CallBase &Call) { return true; } 270 271 /// Called to account for a call. 272 virtual void onCallPenalty() {} 273 274 /// Called to account for the expectation the inlining would result in a load 275 /// elimination. 276 virtual void onLoadEliminationOpportunity() {} 277 278 /// Called to account for the cost of argument setup for the Call in the 279 /// callee's body (not the callsite currently under analysis). 280 virtual void onCallArgumentSetup(const CallBase &Call) {} 281 282 /// Called to account for a load relative intrinsic. 283 virtual void onLoadRelativeIntrinsic() {} 284 285 /// Called to account for a lowered call. 286 virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) { 287 } 288 289 /// Account for a jump table of given size. Return false to stop further 290 /// processing the switch instruction 291 virtual bool onJumpTable(unsigned JumpTableSize) { return true; } 292 293 /// Account for a case cluster of given size. Return false to stop further 294 /// processing of the instruction. 295 virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; } 296 297 /// Called at the end of processing a switch instruction, with the given 298 /// number of case clusters. 299 virtual void onFinalizeSwitch(unsigned JumpTableSize, 300 unsigned NumCaseCluster) {} 301 302 /// Called to account for any other instruction not specifically accounted 303 /// for. 304 virtual void onMissedSimplification() {} 305 306 /// Start accounting potential benefits due to SROA for the given alloca. 307 virtual void onInitializeSROAArg(AllocaInst *Arg) {} 308 309 /// Account SROA savings for the AllocaInst value. 310 virtual void onAggregateSROAUse(AllocaInst *V) {} 311 312 bool handleSROA(Value *V, bool DoNotDisable) { 313 // Check for SROA candidates in comparisons. 314 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 315 if (DoNotDisable) { 316 onAggregateSROAUse(SROAArg); 317 return true; 318 } 319 disableSROAForArg(SROAArg); 320 } 321 return false; 322 } 323 324 bool IsCallerRecursive = false; 325 bool IsRecursiveCall = false; 326 bool ExposesReturnsTwice = false; 327 bool HasDynamicAlloca = false; 328 bool ContainsNoDuplicateCall = false; 329 bool HasReturn = false; 330 bool HasIndirectBr = false; 331 bool HasUninlineableIntrinsic = false; 332 bool InitsVargArgs = false; 333 334 /// Number of bytes allocated statically by the callee. 335 uint64_t AllocatedSize = 0; 336 unsigned NumInstructions = 0; 337 unsigned NumVectorInstructions = 0; 338 339 /// While we walk the potentially-inlined instructions, we build up and 340 /// maintain a mapping of simplified values specific to this callsite. The 341 /// idea is to propagate any special information we have about arguments to 342 /// this call through the inlinable section of the function, and account for 343 /// likely simplifications post-inlining. The most important aspect we track 344 /// is CFG altering simplifications -- when we prove a basic block dead, that 345 /// can cause dramatic shifts in the cost of inlining a function. 346 DenseMap<Value *, Constant *> SimplifiedValues; 347 348 /// Keep track of the values which map back (through function arguments) to 349 /// allocas on the caller stack which could be simplified through SROA. 350 DenseMap<Value *, AllocaInst *> SROAArgValues; 351 352 /// Keep track of Allocas for which we believe we may get SROA optimization. 353 DenseSet<AllocaInst *> EnabledSROAAllocas; 354 355 /// Keep track of values which map to a pointer base and constant offset. 356 DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs; 357 358 /// Keep track of dead blocks due to the constant arguments. 359 SmallPtrSet<BasicBlock *, 16> DeadBlocks; 360 361 /// The mapping of the blocks to their known unique successors due to the 362 /// constant arguments. 363 DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors; 364 365 /// Model the elimination of repeated loads that is expected to happen 366 /// whenever we simplify away the stores that would otherwise cause them to be 367 /// loads. 368 bool EnableLoadElimination = true; 369 370 /// Whether we allow inlining for recursive call. 371 bool AllowRecursiveCall = false; 372 373 SmallPtrSet<Value *, 16> LoadAddrSet; 374 375 AllocaInst *getSROAArgForValueOrNull(Value *V) const { 376 auto It = SROAArgValues.find(V); 377 if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0) 378 return nullptr; 379 return It->second; 380 } 381 382 // Custom simplification helper routines. 383 bool isAllocaDerivedArg(Value *V); 384 void disableSROAForArg(AllocaInst *SROAArg); 385 void disableSROA(Value *V); 386 void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB); 387 void disableLoadElimination(); 388 bool isGEPFree(GetElementPtrInst &GEP); 389 bool canFoldInboundsGEP(GetElementPtrInst &I); 390 bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); 391 bool simplifyCallSite(Function *F, CallBase &Call); 392 bool simplifyInstruction(Instruction &I); 393 bool simplifyIntrinsicCallIsConstant(CallBase &CB); 394 ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); 395 396 /// Return true if the given argument to the function being considered for 397 /// inlining has the given attribute set either at the call site or the 398 /// function declaration. Primarily used to inspect call site specific 399 /// attributes since these can be more precise than the ones on the callee 400 /// itself. 401 bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); 402 403 /// Return true if the given value is known non null within the callee if 404 /// inlined through this particular callsite. 405 bool isKnownNonNullInCallee(Value *V); 406 407 /// Return true if size growth is allowed when inlining the callee at \p Call. 408 bool allowSizeGrowth(CallBase &Call); 409 410 // Custom analysis routines. 411 InlineResult analyzeBlock(BasicBlock *BB, 412 SmallPtrSetImpl<const Value *> &EphValues); 413 414 // Disable several entry points to the visitor so we don't accidentally use 415 // them by declaring but not defining them here. 416 void visit(Module *); 417 void visit(Module &); 418 void visit(Function *); 419 void visit(Function &); 420 void visit(BasicBlock *); 421 void visit(BasicBlock &); 422 423 // Provide base case for our instruction visit. 424 bool visitInstruction(Instruction &I); 425 426 // Our visit overrides. 427 bool visitAlloca(AllocaInst &I); 428 bool visitPHI(PHINode &I); 429 bool visitGetElementPtr(GetElementPtrInst &I); 430 bool visitBitCast(BitCastInst &I); 431 bool visitPtrToInt(PtrToIntInst &I); 432 bool visitIntToPtr(IntToPtrInst &I); 433 bool visitCastInst(CastInst &I); 434 bool visitCmpInst(CmpInst &I); 435 bool visitSub(BinaryOperator &I); 436 bool visitBinaryOperator(BinaryOperator &I); 437 bool visitFNeg(UnaryOperator &I); 438 bool visitLoad(LoadInst &I); 439 bool visitStore(StoreInst &I); 440 bool visitExtractValue(ExtractValueInst &I); 441 bool visitInsertValue(InsertValueInst &I); 442 bool visitCallBase(CallBase &Call); 443 bool visitReturnInst(ReturnInst &RI); 444 bool visitBranchInst(BranchInst &BI); 445 bool visitSelectInst(SelectInst &SI); 446 bool visitSwitchInst(SwitchInst &SI); 447 bool visitIndirectBrInst(IndirectBrInst &IBI); 448 bool visitResumeInst(ResumeInst &RI); 449 bool visitCleanupReturnInst(CleanupReturnInst &RI); 450 bool visitCatchReturnInst(CatchReturnInst &RI); 451 bool visitUnreachableInst(UnreachableInst &I); 452 453 public: 454 CallAnalyzer(Function &Callee, CallBase &Call, const TargetTransformInfo &TTI, 455 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 456 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 457 ProfileSummaryInfo *PSI = nullptr, 458 OptimizationRemarkEmitter *ORE = nullptr) 459 : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI), 460 PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE), 461 CandidateCall(Call) {} 462 463 InlineResult analyze(); 464 465 Optional<Constant *> getSimplifiedValue(Instruction *I) { 466 if (SimplifiedValues.find(I) != SimplifiedValues.end()) 467 return SimplifiedValues[I]; 468 return None; 469 } 470 471 // Keep a bunch of stats about the cost savings found so we can print them 472 // out when debugging. 473 unsigned NumConstantArgs = 0; 474 unsigned NumConstantOffsetPtrArgs = 0; 475 unsigned NumAllocaArgs = 0; 476 unsigned NumConstantPtrCmps = 0; 477 unsigned NumConstantPtrDiffs = 0; 478 unsigned NumInstructionsSimplified = 0; 479 480 void dump(); 481 }; 482 483 // Considering forming a binary search, we should find the number of nodes 484 // which is same as the number of comparisons when lowered. For a given 485 // number of clusters, n, we can define a recursive function, f(n), to find 486 // the number of nodes in the tree. The recursion is : 487 // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3, 488 // and f(n) = n, when n <= 3. 489 // This will lead a binary tree where the leaf should be either f(2) or f(3) 490 // when n > 3. So, the number of comparisons from leaves should be n, while 491 // the number of non-leaf should be : 492 // 2^(log2(n) - 1) - 1 493 // = 2^log2(n) * 2^-1 - 1 494 // = n / 2 - 1. 495 // Considering comparisons from leaf and non-leaf nodes, we can estimate the 496 // number of comparisons in a simple closed form : 497 // n + n / 2 - 1 = n * 3 / 2 - 1 498 int64_t getExpectedNumberOfCompare(int NumCaseCluster) { 499 return 3 * static_cast<int64_t>(NumCaseCluster) / 2 - 1; 500 } 501 502 /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note 503 /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer 504 class InlineCostCallAnalyzer final : public CallAnalyzer { 505 const int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1; 506 const bool ComputeFullInlineCost; 507 int LoadEliminationCost = 0; 508 /// Bonus to be applied when percentage of vector instructions in callee is 509 /// high (see more details in updateThreshold). 510 int VectorBonus = 0; 511 /// Bonus to be applied when the callee has only one reachable basic block. 512 int SingleBBBonus = 0; 513 514 /// Tunable parameters that control the analysis. 515 const InlineParams &Params; 516 517 // This DenseMap stores the delta change in cost and threshold after 518 // accounting for the given instruction. The map is filled only with the 519 // flag PrintInstructionComments on. 520 DenseMap<const Instruction *, InstructionCostDetail> InstructionCostDetailMap; 521 522 /// Upper bound for the inlining cost. Bonuses are being applied to account 523 /// for speculative "expected profit" of the inlining decision. 524 int Threshold = 0; 525 526 /// Attempt to evaluate indirect calls to boost its inline cost. 527 const bool BoostIndirectCalls; 528 529 /// Ignore the threshold when finalizing analysis. 530 const bool IgnoreThreshold; 531 532 // True if the cost-benefit-analysis-based inliner is enabled. 533 const bool CostBenefitAnalysisEnabled; 534 535 /// Inlining cost measured in abstract units, accounts for all the 536 /// instructions expected to be executed for a given function invocation. 537 /// Instructions that are statically proven to be dead based on call-site 538 /// arguments are not counted here. 539 int Cost = 0; 540 541 // The cumulative cost at the beginning of the basic block being analyzed. At 542 // the end of analyzing each basic block, "Cost - CostAtBBStart" represents 543 // the size of that basic block. 544 int CostAtBBStart = 0; 545 546 // The static size of live but cold basic blocks. This is "static" in the 547 // sense that it's not weighted by profile counts at all. 548 int ColdSize = 0; 549 550 // Whether inlining is decided by cost-threshold analysis. 551 bool DecidedByCostThreshold = false; 552 553 // Whether inlining is decided by cost-benefit analysis. 554 bool DecidedByCostBenefit = false; 555 556 // The cost-benefit pair computed by cost-benefit analysis. 557 Optional<CostBenefitPair> CostBenefit = None; 558 559 bool SingleBB = true; 560 561 unsigned SROACostSavings = 0; 562 unsigned SROACostSavingsLost = 0; 563 564 /// The mapping of caller Alloca values to their accumulated cost savings. If 565 /// we have to disable SROA for one of the allocas, this tells us how much 566 /// cost must be added. 567 DenseMap<AllocaInst *, int> SROAArgCosts; 568 569 /// Return true if \p Call is a cold callsite. 570 bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI); 571 572 /// Update Threshold based on callsite properties such as callee 573 /// attributes and callee hotness for PGO builds. The Callee is explicitly 574 /// passed to support analyzing indirect calls whose target is inferred by 575 /// analysis. 576 void updateThreshold(CallBase &Call, Function &Callee); 577 /// Return a higher threshold if \p Call is a hot callsite. 578 Optional<int> getHotCallSiteThreshold(CallBase &Call, 579 BlockFrequencyInfo *CallerBFI); 580 581 /// Handle a capped 'int' increment for Cost. 582 void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) { 583 assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound"); 584 Cost = std::min<int>(UpperBound, Cost + Inc); 585 } 586 587 void onDisableSROA(AllocaInst *Arg) override { 588 auto CostIt = SROAArgCosts.find(Arg); 589 if (CostIt == SROAArgCosts.end()) 590 return; 591 addCost(CostIt->second); 592 SROACostSavings -= CostIt->second; 593 SROACostSavingsLost += CostIt->second; 594 SROAArgCosts.erase(CostIt); 595 } 596 597 void onDisableLoadElimination() override { 598 addCost(LoadEliminationCost); 599 LoadEliminationCost = 0; 600 } 601 602 bool onCallBaseVisitStart(CallBase &Call) override { 603 if (Optional<int> AttrCallThresholdBonus = 604 getStringFnAttrAsInt(Call, "call-threshold-bonus")) 605 Threshold += *AttrCallThresholdBonus; 606 607 if (Optional<int> AttrCallCost = 608 getStringFnAttrAsInt(Call, "call-inline-cost")) { 609 addCost(*AttrCallCost); 610 // Prevent further processing of the call since we want to override its 611 // inline cost, not just add to it. 612 return false; 613 } 614 return true; 615 } 616 617 void onCallPenalty() override { addCost(CallPenalty); } 618 void onCallArgumentSetup(const CallBase &Call) override { 619 // Pay the price of the argument setup. We account for the average 1 620 // instruction per call argument setup here. 621 addCost(Call.arg_size() * InlineConstants::InstrCost); 622 } 623 void onLoadRelativeIntrinsic() override { 624 // This is normally lowered to 4 LLVM instructions. 625 addCost(3 * InlineConstants::InstrCost); 626 } 627 void onLoweredCall(Function *F, CallBase &Call, 628 bool IsIndirectCall) override { 629 // We account for the average 1 instruction per call argument setup here. 630 addCost(Call.arg_size() * InlineConstants::InstrCost); 631 632 // If we have a constant that we are calling as a function, we can peer 633 // through it and see the function target. This happens not infrequently 634 // during devirtualization and so we want to give it a hefty bonus for 635 // inlining, but cap that bonus in the event that inlining wouldn't pan out. 636 // Pretend to inline the function, with a custom threshold. 637 if (IsIndirectCall && BoostIndirectCalls) { 638 auto IndirectCallParams = Params; 639 IndirectCallParams.DefaultThreshold = 640 InlineConstants::IndirectCallThreshold; 641 /// FIXME: if InlineCostCallAnalyzer is derived from, this may need 642 /// to instantiate the derived class. 643 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 644 GetAssumptionCache, GetBFI, PSI, ORE, false); 645 if (CA.analyze().isSuccess()) { 646 // We were able to inline the indirect call! Subtract the cost from the 647 // threshold to get the bonus we want to apply, but don't go below zero. 648 Cost -= std::max(0, CA.getThreshold() - CA.getCost()); 649 } 650 } else 651 // Otherwise simply add the cost for merely making the call. 652 addCost(CallPenalty); 653 } 654 655 void onFinalizeSwitch(unsigned JumpTableSize, 656 unsigned NumCaseCluster) override { 657 // If suitable for a jump table, consider the cost for the table size and 658 // branch to destination. 659 // Maximum valid cost increased in this function. 660 if (JumpTableSize) { 661 int64_t JTCost = 662 static_cast<int64_t>(JumpTableSize) * InlineConstants::InstrCost + 663 4 * InlineConstants::InstrCost; 664 665 addCost(JTCost, static_cast<int64_t>(CostUpperBound)); 666 return; 667 } 668 669 if (NumCaseCluster <= 3) { 670 // Suppose a comparison includes one compare and one conditional branch. 671 addCost(NumCaseCluster * 2 * InlineConstants::InstrCost); 672 return; 673 } 674 675 int64_t ExpectedNumberOfCompare = 676 getExpectedNumberOfCompare(NumCaseCluster); 677 int64_t SwitchCost = 678 ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost; 679 680 addCost(SwitchCost, static_cast<int64_t>(CostUpperBound)); 681 } 682 void onMissedSimplification() override { 683 addCost(InlineConstants::InstrCost); 684 } 685 686 void onInitializeSROAArg(AllocaInst *Arg) override { 687 assert(Arg != nullptr && 688 "Should not initialize SROA costs for null value."); 689 SROAArgCosts[Arg] = 0; 690 } 691 692 void onAggregateSROAUse(AllocaInst *SROAArg) override { 693 auto CostIt = SROAArgCosts.find(SROAArg); 694 assert(CostIt != SROAArgCosts.end() && 695 "expected this argument to have a cost"); 696 CostIt->second += InlineConstants::InstrCost; 697 SROACostSavings += InlineConstants::InstrCost; 698 } 699 700 void onBlockStart(const BasicBlock *BB) override { CostAtBBStart = Cost; } 701 702 void onBlockAnalyzed(const BasicBlock *BB) override { 703 if (CostBenefitAnalysisEnabled) { 704 // Keep track of the static size of live but cold basic blocks. For now, 705 // we define a cold basic block to be one that's never executed. 706 assert(GetBFI && "GetBFI must be available"); 707 BlockFrequencyInfo *BFI = &(GetBFI(F)); 708 assert(BFI && "BFI must be available"); 709 auto ProfileCount = BFI->getBlockProfileCount(BB); 710 assert(ProfileCount); 711 if (ProfileCount.value() == 0) 712 ColdSize += Cost - CostAtBBStart; 713 } 714 715 auto *TI = BB->getTerminator(); 716 // If we had any successors at this point, than post-inlining is likely to 717 // have them as well. Note that we assume any basic blocks which existed 718 // due to branches or switches which folded above will also fold after 719 // inlining. 720 if (SingleBB && TI->getNumSuccessors() > 1) { 721 // Take off the bonus we applied to the threshold. 722 Threshold -= SingleBBBonus; 723 SingleBB = false; 724 } 725 } 726 727 void onInstructionAnalysisStart(const Instruction *I) override { 728 // This function is called to store the initial cost of inlining before 729 // the given instruction was assessed. 730 if (!PrintInstructionComments) 731 return; 732 InstructionCostDetailMap[I].CostBefore = Cost; 733 InstructionCostDetailMap[I].ThresholdBefore = Threshold; 734 } 735 736 void onInstructionAnalysisFinish(const Instruction *I) override { 737 // This function is called to find new values of cost and threshold after 738 // the instruction has been assessed. 739 if (!PrintInstructionComments) 740 return; 741 InstructionCostDetailMap[I].CostAfter = Cost; 742 InstructionCostDetailMap[I].ThresholdAfter = Threshold; 743 } 744 745 bool isCostBenefitAnalysisEnabled() { 746 if (!PSI || !PSI->hasProfileSummary()) 747 return false; 748 749 if (!GetBFI) 750 return false; 751 752 if (InlineEnableCostBenefitAnalysis.getNumOccurrences()) { 753 // Honor the explicit request from the user. 754 if (!InlineEnableCostBenefitAnalysis) 755 return false; 756 } else { 757 // Otherwise, require instrumentation profile. 758 if (!PSI->hasInstrumentationProfile()) 759 return false; 760 } 761 762 auto *Caller = CandidateCall.getParent()->getParent(); 763 if (!Caller->getEntryCount()) 764 return false; 765 766 BlockFrequencyInfo *CallerBFI = &(GetBFI(*Caller)); 767 if (!CallerBFI) 768 return false; 769 770 // For now, limit to hot call site. 771 if (!PSI->isHotCallSite(CandidateCall, CallerBFI)) 772 return false; 773 774 // Make sure we have a nonzero entry count. 775 auto EntryCount = F.getEntryCount(); 776 if (!EntryCount || !EntryCount->getCount()) 777 return false; 778 779 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 780 if (!CalleeBFI) 781 return false; 782 783 return true; 784 } 785 786 // Determine whether we should inline the given call site, taking into account 787 // both the size cost and the cycle savings. Return None if we don't have 788 // suficient profiling information to determine. 789 Optional<bool> costBenefitAnalysis() { 790 if (!CostBenefitAnalysisEnabled) 791 return None; 792 793 // buildInlinerPipeline in the pass builder sets HotCallSiteThreshold to 0 794 // for the prelink phase of the AutoFDO + ThinLTO build. Honor the logic by 795 // falling back to the cost-based metric. 796 // TODO: Improve this hacky condition. 797 if (Threshold == 0) 798 return None; 799 800 assert(GetBFI); 801 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 802 assert(CalleeBFI); 803 804 // The cycle savings expressed as the sum of InlineConstants::InstrCost 805 // multiplied by the estimated dynamic count of each instruction we can 806 // avoid. Savings come from the call site cost, such as argument setup and 807 // the call instruction, as well as the instructions that are folded. 808 // 809 // We use 128-bit APInt here to avoid potential overflow. This variable 810 // should stay well below 10^^24 (or 2^^80) in practice. This "worst" case 811 // assumes that we can avoid or fold a billion instructions, each with a 812 // profile count of 10^^15 -- roughly the number of cycles for a 24-hour 813 // period on a 4GHz machine. 814 APInt CycleSavings(128, 0); 815 816 for (auto &BB : F) { 817 APInt CurrentSavings(128, 0); 818 for (auto &I : BB) { 819 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) { 820 // Count a conditional branch as savings if it becomes unconditional. 821 if (BI->isConditional() && 822 isa_and_nonnull<ConstantInt>( 823 SimplifiedValues.lookup(BI->getCondition()))) { 824 CurrentSavings += InlineConstants::InstrCost; 825 } 826 } else if (Value *V = dyn_cast<Value>(&I)) { 827 // Count an instruction as savings if we can fold it. 828 if (SimplifiedValues.count(V)) { 829 CurrentSavings += InlineConstants::InstrCost; 830 } 831 } 832 } 833 834 auto ProfileCount = CalleeBFI->getBlockProfileCount(&BB); 835 assert(ProfileCount); 836 CurrentSavings *= ProfileCount.value(); 837 CycleSavings += CurrentSavings; 838 } 839 840 // Compute the cycle savings per call. 841 auto EntryProfileCount = F.getEntryCount(); 842 assert(EntryProfileCount && EntryProfileCount->getCount()); 843 auto EntryCount = EntryProfileCount->getCount(); 844 CycleSavings += EntryCount / 2; 845 CycleSavings = CycleSavings.udiv(EntryCount); 846 847 // Compute the total savings for the call site. 848 auto *CallerBB = CandidateCall.getParent(); 849 BlockFrequencyInfo *CallerBFI = &(GetBFI(*(CallerBB->getParent()))); 850 CycleSavings += getCallsiteCost(this->CandidateCall, DL); 851 CycleSavings *= *CallerBFI->getBlockProfileCount(CallerBB); 852 853 // Remove the cost of the cold basic blocks. 854 int Size = Cost - ColdSize; 855 856 // Allow tiny callees to be inlined regardless of whether they meet the 857 // savings threshold. 858 Size = Size > InlineSizeAllowance ? Size - InlineSizeAllowance : 1; 859 860 CostBenefit.emplace(APInt(128, Size), CycleSavings); 861 862 // Return true if the savings justify the cost of inlining. Specifically, 863 // we evaluate the following inequality: 864 // 865 // CycleSavings PSI->getOrCompHotCountThreshold() 866 // -------------- >= ----------------------------------- 867 // Size InlineSavingsMultiplier 868 // 869 // Note that the left hand side is specific to a call site. The right hand 870 // side is a constant for the entire executable. 871 APInt LHS = CycleSavings; 872 LHS *= InlineSavingsMultiplier; 873 APInt RHS(128, PSI->getOrCompHotCountThreshold()); 874 RHS *= Size; 875 return LHS.uge(RHS); 876 } 877 878 InlineResult finalizeAnalysis() override { 879 // Loops generally act a lot like calls in that they act like barriers to 880 // movement, require a certain amount of setup, etc. So when optimising for 881 // size, we penalise any call sites that perform loops. We do this after all 882 // other costs here, so will likely only be dealing with relatively small 883 // functions (and hence DT and LI will hopefully be cheap). 884 auto *Caller = CandidateCall.getFunction(); 885 if (Caller->hasMinSize()) { 886 DominatorTree DT(F); 887 LoopInfo LI(DT); 888 int NumLoops = 0; 889 for (Loop *L : LI) { 890 // Ignore loops that will not be executed 891 if (DeadBlocks.count(L->getHeader())) 892 continue; 893 NumLoops++; 894 } 895 addCost(NumLoops * InlineConstants::LoopPenalty); 896 } 897 898 // We applied the maximum possible vector bonus at the beginning. Now, 899 // subtract the excess bonus, if any, from the Threshold before 900 // comparing against Cost. 901 if (NumVectorInstructions <= NumInstructions / 10) 902 Threshold -= VectorBonus; 903 else if (NumVectorInstructions <= NumInstructions / 2) 904 Threshold -= VectorBonus / 2; 905 906 if (Optional<int> AttrCost = 907 getStringFnAttrAsInt(CandidateCall, "function-inline-cost")) 908 Cost = *AttrCost; 909 910 if (Optional<int> AttrCostMult = getStringFnAttrAsInt( 911 CandidateCall, 912 InlineConstants::FunctionInlineCostMultiplierAttributeName)) 913 Cost *= *AttrCostMult; 914 915 if (Optional<int> AttrThreshold = 916 getStringFnAttrAsInt(CandidateCall, "function-inline-threshold")) 917 Threshold = *AttrThreshold; 918 919 if (auto Result = costBenefitAnalysis()) { 920 DecidedByCostBenefit = true; 921 if (*Result) 922 return InlineResult::success(); 923 else 924 return InlineResult::failure("Cost over threshold."); 925 } 926 927 if (IgnoreThreshold) 928 return InlineResult::success(); 929 930 DecidedByCostThreshold = true; 931 return Cost < std::max(1, Threshold) 932 ? InlineResult::success() 933 : InlineResult::failure("Cost over threshold."); 934 } 935 936 bool shouldStop() override { 937 if (IgnoreThreshold || ComputeFullInlineCost) 938 return false; 939 // Bail out the moment we cross the threshold. This means we'll under-count 940 // the cost, but only when undercounting doesn't matter. 941 if (Cost < Threshold) 942 return false; 943 DecidedByCostThreshold = true; 944 return true; 945 } 946 947 void onLoadEliminationOpportunity() override { 948 LoadEliminationCost += InlineConstants::InstrCost; 949 } 950 951 InlineResult onAnalysisStart() override { 952 // Perform some tweaks to the cost and threshold based on the direct 953 // callsite information. 954 955 // We want to more aggressively inline vector-dense kernels, so up the 956 // threshold, and we'll lower it if the % of vector instructions gets too 957 // low. Note that these bonuses are some what arbitrary and evolved over 958 // time by accident as much as because they are principled bonuses. 959 // 960 // FIXME: It would be nice to remove all such bonuses. At least it would be 961 // nice to base the bonus values on something more scientific. 962 assert(NumInstructions == 0); 963 assert(NumVectorInstructions == 0); 964 965 // Update the threshold based on callsite properties 966 updateThreshold(CandidateCall, F); 967 968 // While Threshold depends on commandline options that can take negative 969 // values, we want to enforce the invariant that the computed threshold and 970 // bonuses are non-negative. 971 assert(Threshold >= 0); 972 assert(SingleBBBonus >= 0); 973 assert(VectorBonus >= 0); 974 975 // Speculatively apply all possible bonuses to Threshold. If cost exceeds 976 // this Threshold any time, and cost cannot decrease, we can stop processing 977 // the rest of the function body. 978 Threshold += (SingleBBBonus + VectorBonus); 979 980 // Give out bonuses for the callsite, as the instructions setting them up 981 // will be gone after inlining. 982 addCost(-getCallsiteCost(this->CandidateCall, DL)); 983 984 // If this function uses the coldcc calling convention, prefer not to inline 985 // it. 986 if (F.getCallingConv() == CallingConv::Cold) 987 Cost += InlineConstants::ColdccPenalty; 988 989 LLVM_DEBUG(dbgs() << " Initial cost: " << Cost << "\n"); 990 991 // Check if we're done. This can happen due to bonuses and penalties. 992 if (Cost >= Threshold && !ComputeFullInlineCost) 993 return InlineResult::failure("high cost"); 994 995 return InlineResult::success(); 996 } 997 998 public: 999 InlineCostCallAnalyzer( 1000 Function &Callee, CallBase &Call, const InlineParams &Params, 1001 const TargetTransformInfo &TTI, 1002 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 1003 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 1004 ProfileSummaryInfo *PSI = nullptr, 1005 OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true, 1006 bool IgnoreThreshold = false) 1007 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE), 1008 ComputeFullInlineCost(OptComputeFullInlineCost || 1009 Params.ComputeFullInlineCost || ORE || 1010 isCostBenefitAnalysisEnabled()), 1011 Params(Params), Threshold(Params.DefaultThreshold), 1012 BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold), 1013 CostBenefitAnalysisEnabled(isCostBenefitAnalysisEnabled()), 1014 Writer(this) { 1015 AllowRecursiveCall = *Params.AllowRecursiveCall; 1016 } 1017 1018 /// Annotation Writer for instruction details 1019 InlineCostAnnotationWriter Writer; 1020 1021 void dump(); 1022 1023 // Prints the same analysis as dump(), but its definition is not dependent 1024 // on the build. 1025 void print(raw_ostream &OS); 1026 1027 Optional<InstructionCostDetail> getCostDetails(const Instruction *I) { 1028 if (InstructionCostDetailMap.find(I) != InstructionCostDetailMap.end()) 1029 return InstructionCostDetailMap[I]; 1030 return None; 1031 } 1032 1033 virtual ~InlineCostCallAnalyzer() = default; 1034 int getThreshold() const { return Threshold; } 1035 int getCost() const { return Cost; } 1036 Optional<CostBenefitPair> getCostBenefitPair() { return CostBenefit; } 1037 bool wasDecidedByCostBenefit() const { return DecidedByCostBenefit; } 1038 bool wasDecidedByCostThreshold() const { return DecidedByCostThreshold; } 1039 }; 1040 1041 class InlineCostFeaturesAnalyzer final : public CallAnalyzer { 1042 private: 1043 InlineCostFeatures Cost = {}; 1044 1045 // FIXME: These constants are taken from the heuristic-based cost visitor. 1046 // These should be removed entirely in a later revision to avoid reliance on 1047 // heuristics in the ML inliner. 1048 static constexpr int JTCostMultiplier = 4; 1049 static constexpr int CaseClusterCostMultiplier = 2; 1050 static constexpr int SwitchCostMultiplier = 2; 1051 1052 // FIXME: These are taken from the heuristic-based cost visitor: we should 1053 // eventually abstract these to the CallAnalyzer to avoid duplication. 1054 unsigned SROACostSavingOpportunities = 0; 1055 int VectorBonus = 0; 1056 int SingleBBBonus = 0; 1057 int Threshold = 5; 1058 1059 DenseMap<AllocaInst *, unsigned> SROACosts; 1060 1061 void increment(InlineCostFeatureIndex Feature, int64_t Delta = 1) { 1062 Cost[static_cast<size_t>(Feature)] += Delta; 1063 } 1064 1065 void set(InlineCostFeatureIndex Feature, int64_t Value) { 1066 Cost[static_cast<size_t>(Feature)] = Value; 1067 } 1068 1069 void onDisableSROA(AllocaInst *Arg) override { 1070 auto CostIt = SROACosts.find(Arg); 1071 if (CostIt == SROACosts.end()) 1072 return; 1073 1074 increment(InlineCostFeatureIndex::SROALosses, CostIt->second); 1075 SROACostSavingOpportunities -= CostIt->second; 1076 SROACosts.erase(CostIt); 1077 } 1078 1079 void onDisableLoadElimination() override { 1080 set(InlineCostFeatureIndex::LoadElimination, 1); 1081 } 1082 1083 void onCallPenalty() override { 1084 increment(InlineCostFeatureIndex::CallPenalty, CallPenalty); 1085 } 1086 1087 void onCallArgumentSetup(const CallBase &Call) override { 1088 increment(InlineCostFeatureIndex::CallArgumentSetup, 1089 Call.arg_size() * InlineConstants::InstrCost); 1090 } 1091 1092 void onLoadRelativeIntrinsic() override { 1093 increment(InlineCostFeatureIndex::LoadRelativeIntrinsic, 1094 3 * InlineConstants::InstrCost); 1095 } 1096 1097 void onLoweredCall(Function *F, CallBase &Call, 1098 bool IsIndirectCall) override { 1099 increment(InlineCostFeatureIndex::LoweredCallArgSetup, 1100 Call.arg_size() * InlineConstants::InstrCost); 1101 1102 if (IsIndirectCall) { 1103 InlineParams IndirectCallParams = {/* DefaultThreshold*/ 0, 1104 /*HintThreshold*/ {}, 1105 /*ColdThreshold*/ {}, 1106 /*OptSizeThreshold*/ {}, 1107 /*OptMinSizeThreshold*/ {}, 1108 /*HotCallSiteThreshold*/ {}, 1109 /*LocallyHotCallSiteThreshold*/ {}, 1110 /*ColdCallSiteThreshold*/ {}, 1111 /*ComputeFullInlineCost*/ true, 1112 /*EnableDeferral*/ true}; 1113 IndirectCallParams.DefaultThreshold = 1114 InlineConstants::IndirectCallThreshold; 1115 1116 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 1117 GetAssumptionCache, GetBFI, PSI, ORE, false, 1118 true); 1119 if (CA.analyze().isSuccess()) { 1120 increment(InlineCostFeatureIndex::NestedInlineCostEstimate, 1121 CA.getCost()); 1122 increment(InlineCostFeatureIndex::NestedInlines, 1); 1123 } 1124 } else { 1125 onCallPenalty(); 1126 } 1127 } 1128 1129 void onFinalizeSwitch(unsigned JumpTableSize, 1130 unsigned NumCaseCluster) override { 1131 1132 if (JumpTableSize) { 1133 int64_t JTCost = 1134 static_cast<int64_t>(JumpTableSize) * InlineConstants::InstrCost + 1135 JTCostMultiplier * InlineConstants::InstrCost; 1136 increment(InlineCostFeatureIndex::JumpTablePenalty, JTCost); 1137 return; 1138 } 1139 1140 if (NumCaseCluster <= 3) { 1141 increment(InlineCostFeatureIndex::CaseClusterPenalty, 1142 NumCaseCluster * CaseClusterCostMultiplier * 1143 InlineConstants::InstrCost); 1144 return; 1145 } 1146 1147 int64_t ExpectedNumberOfCompare = 1148 getExpectedNumberOfCompare(NumCaseCluster); 1149 1150 int64_t SwitchCost = ExpectedNumberOfCompare * SwitchCostMultiplier * 1151 InlineConstants::InstrCost; 1152 increment(InlineCostFeatureIndex::SwitchPenalty, SwitchCost); 1153 } 1154 1155 void onMissedSimplification() override { 1156 increment(InlineCostFeatureIndex::UnsimplifiedCommonInstructions, 1157 InlineConstants::InstrCost); 1158 } 1159 1160 void onInitializeSROAArg(AllocaInst *Arg) override { SROACosts[Arg] = 0; } 1161 void onAggregateSROAUse(AllocaInst *Arg) override { 1162 SROACosts.find(Arg)->second += InlineConstants::InstrCost; 1163 SROACostSavingOpportunities += InlineConstants::InstrCost; 1164 } 1165 1166 void onBlockAnalyzed(const BasicBlock *BB) override { 1167 if (BB->getTerminator()->getNumSuccessors() > 1) 1168 set(InlineCostFeatureIndex::IsMultipleBlocks, 1); 1169 Threshold -= SingleBBBonus; 1170 } 1171 1172 InlineResult finalizeAnalysis() override { 1173 auto *Caller = CandidateCall.getFunction(); 1174 if (Caller->hasMinSize()) { 1175 DominatorTree DT(F); 1176 LoopInfo LI(DT); 1177 for (Loop *L : LI) { 1178 // Ignore loops that will not be executed 1179 if (DeadBlocks.count(L->getHeader())) 1180 continue; 1181 increment(InlineCostFeatureIndex::NumLoops, 1182 InlineConstants::LoopPenalty); 1183 } 1184 } 1185 set(InlineCostFeatureIndex::DeadBlocks, DeadBlocks.size()); 1186 set(InlineCostFeatureIndex::SimplifiedInstructions, 1187 NumInstructionsSimplified); 1188 set(InlineCostFeatureIndex::ConstantArgs, NumConstantArgs); 1189 set(InlineCostFeatureIndex::ConstantOffsetPtrArgs, 1190 NumConstantOffsetPtrArgs); 1191 set(InlineCostFeatureIndex::SROASavings, SROACostSavingOpportunities); 1192 1193 if (NumVectorInstructions <= NumInstructions / 10) 1194 Threshold -= VectorBonus; 1195 else if (NumVectorInstructions <= NumInstructions / 2) 1196 Threshold -= VectorBonus / 2; 1197 1198 set(InlineCostFeatureIndex::Threshold, Threshold); 1199 1200 return InlineResult::success(); 1201 } 1202 1203 bool shouldStop() override { return false; } 1204 1205 void onLoadEliminationOpportunity() override { 1206 increment(InlineCostFeatureIndex::LoadElimination, 1); 1207 } 1208 1209 InlineResult onAnalysisStart() override { 1210 increment(InlineCostFeatureIndex::CallSiteCost, 1211 -1 * getCallsiteCost(this->CandidateCall, DL)); 1212 1213 set(InlineCostFeatureIndex::ColdCcPenalty, 1214 (F.getCallingConv() == CallingConv::Cold)); 1215 1216 set(InlineCostFeatureIndex::LastCallToStaticBonus, 1217 (F.hasLocalLinkage() && F.hasOneLiveUse() && 1218 &F == CandidateCall.getCalledFunction())); 1219 1220 // FIXME: we shouldn't repeat this logic in both the Features and Cost 1221 // analyzer - instead, we should abstract it to a common method in the 1222 // CallAnalyzer 1223 int SingleBBBonusPercent = 50; 1224 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1225 Threshold += TTI.adjustInliningThreshold(&CandidateCall); 1226 Threshold *= TTI.getInliningThresholdMultiplier(); 1227 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1228 VectorBonus = Threshold * VectorBonusPercent / 100; 1229 Threshold += (SingleBBBonus + VectorBonus); 1230 1231 return InlineResult::success(); 1232 } 1233 1234 public: 1235 InlineCostFeaturesAnalyzer( 1236 const TargetTransformInfo &TTI, 1237 function_ref<AssumptionCache &(Function &)> &GetAssumptionCache, 1238 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1239 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, Function &Callee, 1240 CallBase &Call) 1241 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI) {} 1242 1243 const InlineCostFeatures &features() const { return Cost; } 1244 }; 1245 1246 } // namespace 1247 1248 /// Test whether the given value is an Alloca-derived function argument. 1249 bool CallAnalyzer::isAllocaDerivedArg(Value *V) { 1250 return SROAArgValues.count(V); 1251 } 1252 1253 void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) { 1254 onDisableSROA(SROAArg); 1255 EnabledSROAAllocas.erase(SROAArg); 1256 disableLoadElimination(); 1257 } 1258 1259 void InlineCostAnnotationWriter::emitInstructionAnnot( 1260 const Instruction *I, formatted_raw_ostream &OS) { 1261 // The cost of inlining of the given instruction is printed always. 1262 // The threshold delta is printed only when it is non-zero. It happens 1263 // when we decided to give a bonus at a particular instruction. 1264 Optional<InstructionCostDetail> Record = ICCA->getCostDetails(I); 1265 if (!Record) 1266 OS << "; No analysis for the instruction"; 1267 else { 1268 OS << "; cost before = " << Record->CostBefore 1269 << ", cost after = " << Record->CostAfter 1270 << ", threshold before = " << Record->ThresholdBefore 1271 << ", threshold after = " << Record->ThresholdAfter << ", "; 1272 OS << "cost delta = " << Record->getCostDelta(); 1273 if (Record->hasThresholdChanged()) 1274 OS << ", threshold delta = " << Record->getThresholdDelta(); 1275 } 1276 auto C = ICCA->getSimplifiedValue(const_cast<Instruction *>(I)); 1277 if (C) { 1278 OS << ", simplified to "; 1279 (*C)->print(OS, true); 1280 } 1281 OS << "\n"; 1282 } 1283 1284 /// If 'V' maps to a SROA candidate, disable SROA for it. 1285 void CallAnalyzer::disableSROA(Value *V) { 1286 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 1287 disableSROAForArg(SROAArg); 1288 } 1289 } 1290 1291 void CallAnalyzer::disableLoadElimination() { 1292 if (EnableLoadElimination) { 1293 onDisableLoadElimination(); 1294 EnableLoadElimination = false; 1295 } 1296 } 1297 1298 /// Accumulate a constant GEP offset into an APInt if possible. 1299 /// 1300 /// Returns false if unable to compute the offset for any reason. Respects any 1301 /// simplified values known during the analysis of this callsite. 1302 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { 1303 unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType()); 1304 assert(IntPtrWidth == Offset.getBitWidth()); 1305 1306 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1307 GTI != GTE; ++GTI) { 1308 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 1309 if (!OpC) 1310 if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) 1311 OpC = dyn_cast<ConstantInt>(SimpleOp); 1312 if (!OpC) 1313 return false; 1314 if (OpC->isZero()) 1315 continue; 1316 1317 // Handle a struct index, which adds its field offset to the pointer. 1318 if (StructType *STy = GTI.getStructTypeOrNull()) { 1319 unsigned ElementIdx = OpC->getZExtValue(); 1320 const StructLayout *SL = DL.getStructLayout(STy); 1321 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); 1322 continue; 1323 } 1324 1325 APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType())); 1326 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; 1327 } 1328 return true; 1329 } 1330 1331 /// Use TTI to check whether a GEP is free. 1332 /// 1333 /// Respects any simplified values known during the analysis of this callsite. 1334 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) { 1335 SmallVector<Value *, 4> Operands; 1336 Operands.push_back(GEP.getOperand(0)); 1337 for (const Use &Op : GEP.indices()) 1338 if (Constant *SimpleOp = SimplifiedValues.lookup(Op)) 1339 Operands.push_back(SimpleOp); 1340 else 1341 Operands.push_back(Op); 1342 return TTI.getUserCost(&GEP, Operands, 1343 TargetTransformInfo::TCK_SizeAndLatency) == 1344 TargetTransformInfo::TCC_Free; 1345 } 1346 1347 bool CallAnalyzer::visitAlloca(AllocaInst &I) { 1348 disableSROA(I.getOperand(0)); 1349 1350 // Check whether inlining will turn a dynamic alloca into a static 1351 // alloca and handle that case. 1352 if (I.isArrayAllocation()) { 1353 Constant *Size = SimplifiedValues.lookup(I.getArraySize()); 1354 if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) { 1355 // Sometimes a dynamic alloca could be converted into a static alloca 1356 // after this constant prop, and become a huge static alloca on an 1357 // unconditional CFG path. Avoid inlining if this is going to happen above 1358 // a threshold. 1359 // FIXME: If the threshold is removed or lowered too much, we could end up 1360 // being too pessimistic and prevent inlining non-problematic code. This 1361 // could result in unintended perf regressions. A better overall strategy 1362 // is needed to track stack usage during inlining. 1363 Type *Ty = I.getAllocatedType(); 1364 AllocatedSize = SaturatingMultiplyAdd( 1365 AllocSize->getLimitedValue(), 1366 DL.getTypeAllocSize(Ty).getKnownMinSize(), AllocatedSize); 1367 if (AllocatedSize > InlineConstants::MaxSimplifiedDynamicAllocaToInline) 1368 HasDynamicAlloca = true; 1369 return false; 1370 } 1371 } 1372 1373 // Accumulate the allocated size. 1374 if (I.isStaticAlloca()) { 1375 Type *Ty = I.getAllocatedType(); 1376 AllocatedSize = 1377 SaturatingAdd(DL.getTypeAllocSize(Ty).getKnownMinSize(), AllocatedSize); 1378 } 1379 1380 // FIXME: This is overly conservative. Dynamic allocas are inefficient for 1381 // a variety of reasons, and so we would like to not inline them into 1382 // functions which don't currently have a dynamic alloca. This simply 1383 // disables inlining altogether in the presence of a dynamic alloca. 1384 if (!I.isStaticAlloca()) 1385 HasDynamicAlloca = true; 1386 1387 return false; 1388 } 1389 1390 bool CallAnalyzer::visitPHI(PHINode &I) { 1391 // FIXME: We need to propagate SROA *disabling* through phi nodes, even 1392 // though we don't want to propagate it's bonuses. The idea is to disable 1393 // SROA if it *might* be used in an inappropriate manner. 1394 1395 // Phi nodes are always zero-cost. 1396 // FIXME: Pointer sizes may differ between different address spaces, so do we 1397 // need to use correct address space in the call to getPointerSizeInBits here? 1398 // Or could we skip the getPointerSizeInBits call completely? As far as I can 1399 // see the ZeroOffset is used as a dummy value, so we can probably use any 1400 // bit width for the ZeroOffset? 1401 APInt ZeroOffset = APInt::getZero(DL.getPointerSizeInBits(0)); 1402 bool CheckSROA = I.getType()->isPointerTy(); 1403 1404 // Track the constant or pointer with constant offset we've seen so far. 1405 Constant *FirstC = nullptr; 1406 std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset}; 1407 Value *FirstV = nullptr; 1408 1409 for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) { 1410 BasicBlock *Pred = I.getIncomingBlock(i); 1411 // If the incoming block is dead, skip the incoming block. 1412 if (DeadBlocks.count(Pred)) 1413 continue; 1414 // If the parent block of phi is not the known successor of the incoming 1415 // block, skip the incoming block. 1416 BasicBlock *KnownSuccessor = KnownSuccessors[Pred]; 1417 if (KnownSuccessor && KnownSuccessor != I.getParent()) 1418 continue; 1419 1420 Value *V = I.getIncomingValue(i); 1421 // If the incoming value is this phi itself, skip the incoming value. 1422 if (&I == V) 1423 continue; 1424 1425 Constant *C = dyn_cast<Constant>(V); 1426 if (!C) 1427 C = SimplifiedValues.lookup(V); 1428 1429 std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset}; 1430 if (!C && CheckSROA) 1431 BaseAndOffset = ConstantOffsetPtrs.lookup(V); 1432 1433 if (!C && !BaseAndOffset.first) 1434 // The incoming value is neither a constant nor a pointer with constant 1435 // offset, exit early. 1436 return true; 1437 1438 if (FirstC) { 1439 if (FirstC == C) 1440 // If we've seen a constant incoming value before and it is the same 1441 // constant we see this time, continue checking the next incoming value. 1442 continue; 1443 // Otherwise early exit because we either see a different constant or saw 1444 // a constant before but we have a pointer with constant offset this time. 1445 return true; 1446 } 1447 1448 if (FirstV) { 1449 // The same logic as above, but check pointer with constant offset here. 1450 if (FirstBaseAndOffset == BaseAndOffset) 1451 continue; 1452 return true; 1453 } 1454 1455 if (C) { 1456 // This is the 1st time we've seen a constant, record it. 1457 FirstC = C; 1458 continue; 1459 } 1460 1461 // The remaining case is that this is the 1st time we've seen a pointer with 1462 // constant offset, record it. 1463 FirstV = V; 1464 FirstBaseAndOffset = BaseAndOffset; 1465 } 1466 1467 // Check if we can map phi to a constant. 1468 if (FirstC) { 1469 SimplifiedValues[&I] = FirstC; 1470 return true; 1471 } 1472 1473 // Check if we can map phi to a pointer with constant offset. 1474 if (FirstBaseAndOffset.first) { 1475 ConstantOffsetPtrs[&I] = FirstBaseAndOffset; 1476 1477 if (auto *SROAArg = getSROAArgForValueOrNull(FirstV)) 1478 SROAArgValues[&I] = SROAArg; 1479 } 1480 1481 return true; 1482 } 1483 1484 /// Check we can fold GEPs of constant-offset call site argument pointers. 1485 /// This requires target data and inbounds GEPs. 1486 /// 1487 /// \return true if the specified GEP can be folded. 1488 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) { 1489 // Check if we have a base + offset for the pointer. 1490 std::pair<Value *, APInt> BaseAndOffset = 1491 ConstantOffsetPtrs.lookup(I.getPointerOperand()); 1492 if (!BaseAndOffset.first) 1493 return false; 1494 1495 // Check if the offset of this GEP is constant, and if so accumulate it 1496 // into Offset. 1497 if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) 1498 return false; 1499 1500 // Add the result as a new mapping to Base + Offset. 1501 ConstantOffsetPtrs[&I] = BaseAndOffset; 1502 1503 return true; 1504 } 1505 1506 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { 1507 auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand()); 1508 1509 // Lambda to check whether a GEP's indices are all constant. 1510 auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) { 1511 for (const Use &Op : GEP.indices()) 1512 if (!isa<Constant>(Op) && !SimplifiedValues.lookup(Op)) 1513 return false; 1514 return true; 1515 }; 1516 1517 if (!DisableGEPConstOperand) 1518 if (simplifyInstruction(I)) 1519 return true; 1520 1521 if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) { 1522 if (SROAArg) 1523 SROAArgValues[&I] = SROAArg; 1524 1525 // Constant GEPs are modeled as free. 1526 return true; 1527 } 1528 1529 // Variable GEPs will require math and will disable SROA. 1530 if (SROAArg) 1531 disableSROAForArg(SROAArg); 1532 return isGEPFree(I); 1533 } 1534 1535 /// Simplify \p I if its operands are constants and update SimplifiedValues. 1536 bool CallAnalyzer::simplifyInstruction(Instruction &I) { 1537 SmallVector<Constant *> COps; 1538 for (Value *Op : I.operands()) { 1539 Constant *COp = dyn_cast<Constant>(Op); 1540 if (!COp) 1541 COp = SimplifiedValues.lookup(Op); 1542 if (!COp) 1543 return false; 1544 COps.push_back(COp); 1545 } 1546 auto *C = ConstantFoldInstOperands(&I, COps, DL); 1547 if (!C) 1548 return false; 1549 SimplifiedValues[&I] = C; 1550 return true; 1551 } 1552 1553 /// Try to simplify a call to llvm.is.constant. 1554 /// 1555 /// Duplicate the argument checking from CallAnalyzer::simplifyCallSite since 1556 /// we expect calls of this specific intrinsic to be infrequent. 1557 /// 1558 /// FIXME: Given that we know CB's parent (F) caller 1559 /// (CandidateCall->getParent()->getParent()), we might be able to determine 1560 /// whether inlining F into F's caller would change how the call to 1561 /// llvm.is.constant would evaluate. 1562 bool CallAnalyzer::simplifyIntrinsicCallIsConstant(CallBase &CB) { 1563 Value *Arg = CB.getArgOperand(0); 1564 auto *C = dyn_cast<Constant>(Arg); 1565 1566 if (!C) 1567 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(Arg)); 1568 1569 Type *RT = CB.getFunctionType()->getReturnType(); 1570 SimplifiedValues[&CB] = ConstantInt::get(RT, C ? 1 : 0); 1571 return true; 1572 } 1573 1574 bool CallAnalyzer::visitBitCast(BitCastInst &I) { 1575 // Propagate constants through bitcasts. 1576 if (simplifyInstruction(I)) 1577 return true; 1578 1579 // Track base/offsets through casts 1580 std::pair<Value *, APInt> BaseAndOffset = 1581 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1582 // Casts don't change the offset, just wrap it up. 1583 if (BaseAndOffset.first) 1584 ConstantOffsetPtrs[&I] = BaseAndOffset; 1585 1586 // Also look for SROA candidates here. 1587 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1588 SROAArgValues[&I] = SROAArg; 1589 1590 // Bitcasts are always zero cost. 1591 return true; 1592 } 1593 1594 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { 1595 // Propagate constants through ptrtoint. 1596 if (simplifyInstruction(I)) 1597 return true; 1598 1599 // Track base/offset pairs when converted to a plain integer provided the 1600 // integer is large enough to represent the pointer. 1601 unsigned IntegerSize = I.getType()->getScalarSizeInBits(); 1602 unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace(); 1603 if (IntegerSize == DL.getPointerSizeInBits(AS)) { 1604 std::pair<Value *, APInt> BaseAndOffset = 1605 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1606 if (BaseAndOffset.first) 1607 ConstantOffsetPtrs[&I] = BaseAndOffset; 1608 } 1609 1610 // This is really weird. Technically, ptrtoint will disable SROA. However, 1611 // unless that ptrtoint is *used* somewhere in the live basic blocks after 1612 // inlining, it will be nuked, and SROA should proceed. All of the uses which 1613 // would block SROA would also block SROA if applied directly to a pointer, 1614 // and so we can just add the integer in here. The only places where SROA is 1615 // preserved either cannot fire on an integer, or won't in-and-of themselves 1616 // disable SROA (ext) w/o some later use that we would see and disable. 1617 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1618 SROAArgValues[&I] = SROAArg; 1619 1620 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1621 TargetTransformInfo::TCC_Free; 1622 } 1623 1624 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { 1625 // Propagate constants through ptrtoint. 1626 if (simplifyInstruction(I)) 1627 return true; 1628 1629 // Track base/offset pairs when round-tripped through a pointer without 1630 // modifications provided the integer is not too large. 1631 Value *Op = I.getOperand(0); 1632 unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); 1633 if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) { 1634 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); 1635 if (BaseAndOffset.first) 1636 ConstantOffsetPtrs[&I] = BaseAndOffset; 1637 } 1638 1639 // "Propagate" SROA here in the same manner as we do for ptrtoint above. 1640 if (auto *SROAArg = getSROAArgForValueOrNull(Op)) 1641 SROAArgValues[&I] = SROAArg; 1642 1643 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1644 TargetTransformInfo::TCC_Free; 1645 } 1646 1647 bool CallAnalyzer::visitCastInst(CastInst &I) { 1648 // Propagate constants through casts. 1649 if (simplifyInstruction(I)) 1650 return true; 1651 1652 // Disable SROA in the face of arbitrary casts we don't explicitly list 1653 // elsewhere. 1654 disableSROA(I.getOperand(0)); 1655 1656 // If this is a floating-point cast, and the target says this operation 1657 // is expensive, this may eventually become a library call. Treat the cost 1658 // as such. 1659 switch (I.getOpcode()) { 1660 case Instruction::FPTrunc: 1661 case Instruction::FPExt: 1662 case Instruction::UIToFP: 1663 case Instruction::SIToFP: 1664 case Instruction::FPToUI: 1665 case Instruction::FPToSI: 1666 if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) 1667 onCallPenalty(); 1668 break; 1669 default: 1670 break; 1671 } 1672 1673 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1674 TargetTransformInfo::TCC_Free; 1675 } 1676 1677 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { 1678 return CandidateCall.paramHasAttr(A->getArgNo(), Attr); 1679 } 1680 1681 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { 1682 // Does the *call site* have the NonNull attribute set on an argument? We 1683 // use the attribute on the call site to memoize any analysis done in the 1684 // caller. This will also trip if the callee function has a non-null 1685 // parameter attribute, but that's a less interesting case because hopefully 1686 // the callee would already have been simplified based on that. 1687 if (Argument *A = dyn_cast<Argument>(V)) 1688 if (paramHasAttr(A, Attribute::NonNull)) 1689 return true; 1690 1691 // Is this an alloca in the caller? This is distinct from the attribute case 1692 // above because attributes aren't updated within the inliner itself and we 1693 // always want to catch the alloca derived case. 1694 if (isAllocaDerivedArg(V)) 1695 // We can actually predict the result of comparisons between an 1696 // alloca-derived value and null. Note that this fires regardless of 1697 // SROA firing. 1698 return true; 1699 1700 return false; 1701 } 1702 1703 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) { 1704 // If the normal destination of the invoke or the parent block of the call 1705 // site is unreachable-terminated, there is little point in inlining this 1706 // unless there is literally zero cost. 1707 // FIXME: Note that it is possible that an unreachable-terminated block has a 1708 // hot entry. For example, in below scenario inlining hot_call_X() may be 1709 // beneficial : 1710 // main() { 1711 // hot_call_1(); 1712 // ... 1713 // hot_call_N() 1714 // exit(0); 1715 // } 1716 // For now, we are not handling this corner case here as it is rare in real 1717 // code. In future, we should elaborate this based on BPI and BFI in more 1718 // general threshold adjusting heuristics in updateThreshold(). 1719 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 1720 if (isa<UnreachableInst>(II->getNormalDest()->getTerminator())) 1721 return false; 1722 } else if (isa<UnreachableInst>(Call.getParent()->getTerminator())) 1723 return false; 1724 1725 return true; 1726 } 1727 1728 bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call, 1729 BlockFrequencyInfo *CallerBFI) { 1730 // If global profile summary is available, then callsite's coldness is 1731 // determined based on that. 1732 if (PSI && PSI->hasProfileSummary()) 1733 return PSI->isColdCallSite(Call, CallerBFI); 1734 1735 // Otherwise we need BFI to be available. 1736 if (!CallerBFI) 1737 return false; 1738 1739 // Determine if the callsite is cold relative to caller's entry. We could 1740 // potentially cache the computation of scaled entry frequency, but the added 1741 // complexity is not worth it unless this scaling shows up high in the 1742 // profiles. 1743 const BranchProbability ColdProb(ColdCallSiteRelFreq, 100); 1744 auto CallSiteBB = Call.getParent(); 1745 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB); 1746 auto CallerEntryFreq = 1747 CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock())); 1748 return CallSiteFreq < CallerEntryFreq * ColdProb; 1749 } 1750 1751 Optional<int> 1752 InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call, 1753 BlockFrequencyInfo *CallerBFI) { 1754 1755 // If global profile summary is available, then callsite's hotness is 1756 // determined based on that. 1757 if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI)) 1758 return Params.HotCallSiteThreshold; 1759 1760 // Otherwise we need BFI to be available and to have a locally hot callsite 1761 // threshold. 1762 if (!CallerBFI || !Params.LocallyHotCallSiteThreshold) 1763 return None; 1764 1765 // Determine if the callsite is hot relative to caller's entry. We could 1766 // potentially cache the computation of scaled entry frequency, but the added 1767 // complexity is not worth it unless this scaling shows up high in the 1768 // profiles. 1769 auto CallSiteBB = Call.getParent(); 1770 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency(); 1771 auto CallerEntryFreq = CallerBFI->getEntryFreq(); 1772 if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq) 1773 return Params.LocallyHotCallSiteThreshold; 1774 1775 // Otherwise treat it normally. 1776 return None; 1777 } 1778 1779 void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) { 1780 // If no size growth is allowed for this inlining, set Threshold to 0. 1781 if (!allowSizeGrowth(Call)) { 1782 Threshold = 0; 1783 return; 1784 } 1785 1786 Function *Caller = Call.getCaller(); 1787 1788 // return min(A, B) if B is valid. 1789 auto MinIfValid = [](int A, Optional<int> B) { 1790 return B ? std::min(A, B.value()) : A; 1791 }; 1792 1793 // return max(A, B) if B is valid. 1794 auto MaxIfValid = [](int A, Optional<int> B) { 1795 return B ? std::max(A, B.value()) : A; 1796 }; 1797 1798 // Various bonus percentages. These are multiplied by Threshold to get the 1799 // bonus values. 1800 // SingleBBBonus: This bonus is applied if the callee has a single reachable 1801 // basic block at the given callsite context. This is speculatively applied 1802 // and withdrawn if more than one basic block is seen. 1803 // 1804 // LstCallToStaticBonus: This large bonus is applied to ensure the inlining 1805 // of the last call to a static function as inlining such functions is 1806 // guaranteed to reduce code size. 1807 // 1808 // These bonus percentages may be set to 0 based on properties of the caller 1809 // and the callsite. 1810 int SingleBBBonusPercent = 50; 1811 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1812 int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus; 1813 1814 // Lambda to set all the above bonus and bonus percentages to 0. 1815 auto DisallowAllBonuses = [&]() { 1816 SingleBBBonusPercent = 0; 1817 VectorBonusPercent = 0; 1818 LastCallToStaticBonus = 0; 1819 }; 1820 1821 // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available 1822 // and reduce the threshold if the caller has the necessary attribute. 1823 if (Caller->hasMinSize()) { 1824 Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold); 1825 // For minsize, we want to disable the single BB bonus and the vector 1826 // bonuses, but not the last-call-to-static bonus. Inlining the last call to 1827 // a static function will, at the minimum, eliminate the parameter setup and 1828 // call/return instructions. 1829 SingleBBBonusPercent = 0; 1830 VectorBonusPercent = 0; 1831 } else if (Caller->hasOptSize()) 1832 Threshold = MinIfValid(Threshold, Params.OptSizeThreshold); 1833 1834 // Adjust the threshold based on inlinehint attribute and profile based 1835 // hotness information if the caller does not have MinSize attribute. 1836 if (!Caller->hasMinSize()) { 1837 if (Callee.hasFnAttribute(Attribute::InlineHint)) 1838 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1839 1840 // FIXME: After switching to the new passmanager, simplify the logic below 1841 // by checking only the callsite hotness/coldness as we will reliably 1842 // have local profile information. 1843 // 1844 // Callsite hotness and coldness can be determined if sample profile is 1845 // used (which adds hotness metadata to calls) or if caller's 1846 // BlockFrequencyInfo is available. 1847 BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr; 1848 auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI); 1849 if (!Caller->hasOptSize() && HotCallSiteThreshold) { 1850 LLVM_DEBUG(dbgs() << "Hot callsite.\n"); 1851 // FIXME: This should update the threshold only if it exceeds the 1852 // current threshold, but AutoFDO + ThinLTO currently relies on this 1853 // behavior to prevent inlining of hot callsites during ThinLTO 1854 // compile phase. 1855 Threshold = *HotCallSiteThreshold; 1856 } else if (isColdCallSite(Call, CallerBFI)) { 1857 LLVM_DEBUG(dbgs() << "Cold callsite.\n"); 1858 // Do not apply bonuses for a cold callsite including the 1859 // LastCallToStatic bonus. While this bonus might result in code size 1860 // reduction, it can cause the size of a non-cold caller to increase 1861 // preventing it from being inlined. 1862 DisallowAllBonuses(); 1863 Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold); 1864 } else if (PSI) { 1865 // Use callee's global profile information only if we have no way of 1866 // determining this via callsite information. 1867 if (PSI->isFunctionEntryHot(&Callee)) { 1868 LLVM_DEBUG(dbgs() << "Hot callee.\n"); 1869 // If callsite hotness can not be determined, we may still know 1870 // that the callee is hot and treat it as a weaker hint for threshold 1871 // increase. 1872 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1873 } else if (PSI->isFunctionEntryCold(&Callee)) { 1874 LLVM_DEBUG(dbgs() << "Cold callee.\n"); 1875 // Do not apply bonuses for a cold callee including the 1876 // LastCallToStatic bonus. While this bonus might result in code size 1877 // reduction, it can cause the size of a non-cold caller to increase 1878 // preventing it from being inlined. 1879 DisallowAllBonuses(); 1880 Threshold = MinIfValid(Threshold, Params.ColdThreshold); 1881 } 1882 } 1883 } 1884 1885 Threshold += TTI.adjustInliningThreshold(&Call); 1886 1887 // Finally, take the target-specific inlining threshold multiplier into 1888 // account. 1889 Threshold *= TTI.getInliningThresholdMultiplier(); 1890 1891 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1892 VectorBonus = Threshold * VectorBonusPercent / 100; 1893 1894 bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneLiveUse() && 1895 &F == Call.getCalledFunction(); 1896 // If there is only one call of the function, and it has internal linkage, 1897 // the cost of inlining it drops dramatically. It may seem odd to update 1898 // Cost in updateThreshold, but the bonus depends on the logic in this method. 1899 if (OnlyOneCallAndLocalLinkage) 1900 Cost -= LastCallToStaticBonus; 1901 } 1902 1903 bool CallAnalyzer::visitCmpInst(CmpInst &I) { 1904 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1905 // First try to handle simplified comparisons. 1906 if (simplifyInstruction(I)) 1907 return true; 1908 1909 if (I.getOpcode() == Instruction::FCmp) 1910 return false; 1911 1912 // Otherwise look for a comparison between constant offset pointers with 1913 // a common base. 1914 Value *LHSBase, *RHSBase; 1915 APInt LHSOffset, RHSOffset; 1916 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1917 if (LHSBase) { 1918 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1919 if (RHSBase && LHSBase == RHSBase) { 1920 // We have common bases, fold the icmp to a constant based on the 1921 // offsets. 1922 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1923 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1924 if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { 1925 SimplifiedValues[&I] = C; 1926 ++NumConstantPtrCmps; 1927 return true; 1928 } 1929 } 1930 } 1931 1932 // If the comparison is an equality comparison with null, we can simplify it 1933 // if we know the value (argument) can't be null 1934 if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) && 1935 isKnownNonNullInCallee(I.getOperand(0))) { 1936 bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; 1937 SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) 1938 : ConstantInt::getFalse(I.getType()); 1939 return true; 1940 } 1941 return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1))); 1942 } 1943 1944 bool CallAnalyzer::visitSub(BinaryOperator &I) { 1945 // Try to handle a special case: we can fold computing the difference of two 1946 // constant-related pointers. 1947 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1948 Value *LHSBase, *RHSBase; 1949 APInt LHSOffset, RHSOffset; 1950 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1951 if (LHSBase) { 1952 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1953 if (RHSBase && LHSBase == RHSBase) { 1954 // We have common bases, fold the subtract to a constant based on the 1955 // offsets. 1956 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1957 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1958 if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { 1959 SimplifiedValues[&I] = C; 1960 ++NumConstantPtrDiffs; 1961 return true; 1962 } 1963 } 1964 } 1965 1966 // Otherwise, fall back to the generic logic for simplifying and handling 1967 // instructions. 1968 return Base::visitSub(I); 1969 } 1970 1971 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { 1972 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1973 Constant *CLHS = dyn_cast<Constant>(LHS); 1974 if (!CLHS) 1975 CLHS = SimplifiedValues.lookup(LHS); 1976 Constant *CRHS = dyn_cast<Constant>(RHS); 1977 if (!CRHS) 1978 CRHS = SimplifiedValues.lookup(RHS); 1979 1980 Value *SimpleV = nullptr; 1981 if (auto FI = dyn_cast<FPMathOperator>(&I)) 1982 SimpleV = simplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, 1983 FI->getFastMathFlags(), DL); 1984 else 1985 SimpleV = 1986 simplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL); 1987 1988 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 1989 SimplifiedValues[&I] = C; 1990 1991 if (SimpleV) 1992 return true; 1993 1994 // Disable any SROA on arguments to arbitrary, unsimplified binary operators. 1995 disableSROA(LHS); 1996 disableSROA(RHS); 1997 1998 // If the instruction is floating point, and the target says this operation 1999 // is expensive, this may eventually become a library call. Treat the cost 2000 // as such. Unless it's fneg which can be implemented with an xor. 2001 using namespace llvm::PatternMatch; 2002 if (I.getType()->isFloatingPointTy() && 2003 TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive && 2004 !match(&I, m_FNeg(m_Value()))) 2005 onCallPenalty(); 2006 2007 return false; 2008 } 2009 2010 bool CallAnalyzer::visitFNeg(UnaryOperator &I) { 2011 Value *Op = I.getOperand(0); 2012 Constant *COp = dyn_cast<Constant>(Op); 2013 if (!COp) 2014 COp = SimplifiedValues.lookup(Op); 2015 2016 Value *SimpleV = simplifyFNegInst( 2017 COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL); 2018 2019 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 2020 SimplifiedValues[&I] = C; 2021 2022 if (SimpleV) 2023 return true; 2024 2025 // Disable any SROA on arguments to arbitrary, unsimplified fneg. 2026 disableSROA(Op); 2027 2028 return false; 2029 } 2030 2031 bool CallAnalyzer::visitLoad(LoadInst &I) { 2032 if (handleSROA(I.getPointerOperand(), I.isSimple())) 2033 return true; 2034 2035 // If the data is already loaded from this address and hasn't been clobbered 2036 // by any stores or calls, this load is likely to be redundant and can be 2037 // eliminated. 2038 if (EnableLoadElimination && 2039 !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) { 2040 onLoadEliminationOpportunity(); 2041 return true; 2042 } 2043 2044 return false; 2045 } 2046 2047 bool CallAnalyzer::visitStore(StoreInst &I) { 2048 if (handleSROA(I.getPointerOperand(), I.isSimple())) 2049 return true; 2050 2051 // The store can potentially clobber loads and prevent repeated loads from 2052 // being eliminated. 2053 // FIXME: 2054 // 1. We can probably keep an initial set of eliminatable loads substracted 2055 // from the cost even when we finally see a store. We just need to disable 2056 // *further* accumulation of elimination savings. 2057 // 2. We should probably at some point thread MemorySSA for the callee into 2058 // this and then use that to actually compute *really* precise savings. 2059 disableLoadElimination(); 2060 return false; 2061 } 2062 2063 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { 2064 // Constant folding for extract value is trivial. 2065 if (simplifyInstruction(I)) 2066 return true; 2067 2068 // SROA can't look through these, but they may be free. 2069 return Base::visitExtractValue(I); 2070 } 2071 2072 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { 2073 // Constant folding for insert value is trivial. 2074 if (simplifyInstruction(I)) 2075 return true; 2076 2077 // SROA can't look through these, but they may be free. 2078 return Base::visitInsertValue(I); 2079 } 2080 2081 /// Try to simplify a call site. 2082 /// 2083 /// Takes a concrete function and callsite and tries to actually simplify it by 2084 /// analyzing the arguments and call itself with instsimplify. Returns true if 2085 /// it has simplified the callsite to some other entity (a constant), making it 2086 /// free. 2087 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) { 2088 // FIXME: Using the instsimplify logic directly for this is inefficient 2089 // because we have to continually rebuild the argument list even when no 2090 // simplifications can be performed. Until that is fixed with remapping 2091 // inside of instsimplify, directly constant fold calls here. 2092 if (!canConstantFoldCallTo(&Call, F)) 2093 return false; 2094 2095 // Try to re-map the arguments to constants. 2096 SmallVector<Constant *, 4> ConstantArgs; 2097 ConstantArgs.reserve(Call.arg_size()); 2098 for (Value *I : Call.args()) { 2099 Constant *C = dyn_cast<Constant>(I); 2100 if (!C) 2101 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I)); 2102 if (!C) 2103 return false; // This argument doesn't map to a constant. 2104 2105 ConstantArgs.push_back(C); 2106 } 2107 if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) { 2108 SimplifiedValues[&Call] = C; 2109 return true; 2110 } 2111 2112 return false; 2113 } 2114 2115 bool CallAnalyzer::visitCallBase(CallBase &Call) { 2116 if (!onCallBaseVisitStart(Call)) 2117 return true; 2118 2119 if (Call.hasFnAttr(Attribute::ReturnsTwice) && 2120 !F.hasFnAttribute(Attribute::ReturnsTwice)) { 2121 // This aborts the entire analysis. 2122 ExposesReturnsTwice = true; 2123 return false; 2124 } 2125 if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate()) 2126 ContainsNoDuplicateCall = true; 2127 2128 Function *F = Call.getCalledFunction(); 2129 bool IsIndirectCall = !F; 2130 if (IsIndirectCall) { 2131 // Check if this happens to be an indirect function call to a known function 2132 // in this inline context. If not, we've done all we can. 2133 Value *Callee = Call.getCalledOperand(); 2134 F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); 2135 if (!F || F->getFunctionType() != Call.getFunctionType()) { 2136 onCallArgumentSetup(Call); 2137 2138 if (!Call.onlyReadsMemory()) 2139 disableLoadElimination(); 2140 return Base::visitCallBase(Call); 2141 } 2142 } 2143 2144 assert(F && "Expected a call to a known function"); 2145 2146 // When we have a concrete function, first try to simplify it directly. 2147 if (simplifyCallSite(F, Call)) 2148 return true; 2149 2150 // Next check if it is an intrinsic we know about. 2151 // FIXME: Lift this into part of the InstVisitor. 2152 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) { 2153 switch (II->getIntrinsicID()) { 2154 default: 2155 if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II)) 2156 disableLoadElimination(); 2157 return Base::visitCallBase(Call); 2158 2159 case Intrinsic::load_relative: 2160 onLoadRelativeIntrinsic(); 2161 return false; 2162 2163 case Intrinsic::memset: 2164 case Intrinsic::memcpy: 2165 case Intrinsic::memmove: 2166 disableLoadElimination(); 2167 // SROA can usually chew through these intrinsics, but they aren't free. 2168 return false; 2169 case Intrinsic::icall_branch_funnel: 2170 case Intrinsic::localescape: 2171 HasUninlineableIntrinsic = true; 2172 return false; 2173 case Intrinsic::vastart: 2174 InitsVargArgs = true; 2175 return false; 2176 case Intrinsic::launder_invariant_group: 2177 case Intrinsic::strip_invariant_group: 2178 if (auto *SROAArg = getSROAArgForValueOrNull(II->getOperand(0))) 2179 SROAArgValues[II] = SROAArg; 2180 return true; 2181 case Intrinsic::is_constant: 2182 return simplifyIntrinsicCallIsConstant(Call); 2183 } 2184 } 2185 2186 if (F == Call.getFunction()) { 2187 // This flag will fully abort the analysis, so don't bother with anything 2188 // else. 2189 IsRecursiveCall = true; 2190 if (!AllowRecursiveCall) 2191 return false; 2192 } 2193 2194 if (TTI.isLoweredToCall(F)) { 2195 onLoweredCall(F, Call, IsIndirectCall); 2196 } 2197 2198 if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory()))) 2199 disableLoadElimination(); 2200 return Base::visitCallBase(Call); 2201 } 2202 2203 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { 2204 // At least one return instruction will be free after inlining. 2205 bool Free = !HasReturn; 2206 HasReturn = true; 2207 return Free; 2208 } 2209 2210 bool CallAnalyzer::visitBranchInst(BranchInst &BI) { 2211 // We model unconditional branches as essentially free -- they really 2212 // shouldn't exist at all, but handling them makes the behavior of the 2213 // inliner more regular and predictable. Interestingly, conditional branches 2214 // which will fold away are also free. 2215 return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || 2216 isa_and_nonnull<ConstantInt>( 2217 SimplifiedValues.lookup(BI.getCondition())); 2218 } 2219 2220 bool CallAnalyzer::visitSelectInst(SelectInst &SI) { 2221 bool CheckSROA = SI.getType()->isPointerTy(); 2222 Value *TrueVal = SI.getTrueValue(); 2223 Value *FalseVal = SI.getFalseValue(); 2224 2225 Constant *TrueC = dyn_cast<Constant>(TrueVal); 2226 if (!TrueC) 2227 TrueC = SimplifiedValues.lookup(TrueVal); 2228 Constant *FalseC = dyn_cast<Constant>(FalseVal); 2229 if (!FalseC) 2230 FalseC = SimplifiedValues.lookup(FalseVal); 2231 Constant *CondC = 2232 dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition())); 2233 2234 if (!CondC) { 2235 // Select C, X, X => X 2236 if (TrueC == FalseC && TrueC) { 2237 SimplifiedValues[&SI] = TrueC; 2238 return true; 2239 } 2240 2241 if (!CheckSROA) 2242 return Base::visitSelectInst(SI); 2243 2244 std::pair<Value *, APInt> TrueBaseAndOffset = 2245 ConstantOffsetPtrs.lookup(TrueVal); 2246 std::pair<Value *, APInt> FalseBaseAndOffset = 2247 ConstantOffsetPtrs.lookup(FalseVal); 2248 if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) { 2249 ConstantOffsetPtrs[&SI] = TrueBaseAndOffset; 2250 2251 if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal)) 2252 SROAArgValues[&SI] = SROAArg; 2253 return true; 2254 } 2255 2256 return Base::visitSelectInst(SI); 2257 } 2258 2259 // Select condition is a constant. 2260 Value *SelectedV = CondC->isAllOnesValue() ? TrueVal 2261 : (CondC->isNullValue()) ? FalseVal 2262 : nullptr; 2263 if (!SelectedV) { 2264 // Condition is a vector constant that is not all 1s or all 0s. If all 2265 // operands are constants, ConstantExpr::getSelect() can handle the cases 2266 // such as select vectors. 2267 if (TrueC && FalseC) { 2268 if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) { 2269 SimplifiedValues[&SI] = C; 2270 return true; 2271 } 2272 } 2273 return Base::visitSelectInst(SI); 2274 } 2275 2276 // Condition is either all 1s or all 0s. SI can be simplified. 2277 if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) { 2278 SimplifiedValues[&SI] = SelectedC; 2279 return true; 2280 } 2281 2282 if (!CheckSROA) 2283 return true; 2284 2285 std::pair<Value *, APInt> BaseAndOffset = 2286 ConstantOffsetPtrs.lookup(SelectedV); 2287 if (BaseAndOffset.first) { 2288 ConstantOffsetPtrs[&SI] = BaseAndOffset; 2289 2290 if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV)) 2291 SROAArgValues[&SI] = SROAArg; 2292 } 2293 2294 return true; 2295 } 2296 2297 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { 2298 // We model unconditional switches as free, see the comments on handling 2299 // branches. 2300 if (isa<ConstantInt>(SI.getCondition())) 2301 return true; 2302 if (Value *V = SimplifiedValues.lookup(SI.getCondition())) 2303 if (isa<ConstantInt>(V)) 2304 return true; 2305 2306 // Assume the most general case where the switch is lowered into 2307 // either a jump table, bit test, or a balanced binary tree consisting of 2308 // case clusters without merging adjacent clusters with the same 2309 // destination. We do not consider the switches that are lowered with a mix 2310 // of jump table/bit test/binary search tree. The cost of the switch is 2311 // proportional to the size of the tree or the size of jump table range. 2312 // 2313 // NB: We convert large switches which are just used to initialize large phi 2314 // nodes to lookup tables instead in simplifycfg, so this shouldn't prevent 2315 // inlining those. It will prevent inlining in cases where the optimization 2316 // does not (yet) fire. 2317 2318 unsigned JumpTableSize = 0; 2319 BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr; 2320 unsigned NumCaseCluster = 2321 TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI); 2322 2323 onFinalizeSwitch(JumpTableSize, NumCaseCluster); 2324 return false; 2325 } 2326 2327 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { 2328 // We never want to inline functions that contain an indirectbr. This is 2329 // incorrect because all the blockaddress's (in static global initializers 2330 // for example) would be referring to the original function, and this 2331 // indirect jump would jump from the inlined copy of the function into the 2332 // original function which is extremely undefined behavior. 2333 // FIXME: This logic isn't really right; we can safely inline functions with 2334 // indirectbr's as long as no other function or global references the 2335 // blockaddress of a block within the current function. 2336 HasIndirectBr = true; 2337 return false; 2338 } 2339 2340 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { 2341 // FIXME: It's not clear that a single instruction is an accurate model for 2342 // the inline cost of a resume instruction. 2343 return false; 2344 } 2345 2346 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) { 2347 // FIXME: It's not clear that a single instruction is an accurate model for 2348 // the inline cost of a cleanupret instruction. 2349 return false; 2350 } 2351 2352 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) { 2353 // FIXME: It's not clear that a single instruction is an accurate model for 2354 // the inline cost of a catchret instruction. 2355 return false; 2356 } 2357 2358 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { 2359 // FIXME: It might be reasonably to discount the cost of instructions leading 2360 // to unreachable as they have the lowest possible impact on both runtime and 2361 // code size. 2362 return true; // No actual code is needed for unreachable. 2363 } 2364 2365 bool CallAnalyzer::visitInstruction(Instruction &I) { 2366 // Some instructions are free. All of the free intrinsics can also be 2367 // handled by SROA, etc. 2368 if (TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 2369 TargetTransformInfo::TCC_Free) 2370 return true; 2371 2372 // We found something we don't understand or can't handle. Mark any SROA-able 2373 // values in the operand list as no longer viable. 2374 for (const Use &Op : I.operands()) 2375 disableSROA(Op); 2376 2377 return false; 2378 } 2379 2380 /// Analyze a basic block for its contribution to the inline cost. 2381 /// 2382 /// This method walks the analyzer over every instruction in the given basic 2383 /// block and accounts for their cost during inlining at this callsite. It 2384 /// aborts early if the threshold has been exceeded or an impossible to inline 2385 /// construct has been detected. It returns false if inlining is no longer 2386 /// viable, and true if inlining remains viable. 2387 InlineResult 2388 CallAnalyzer::analyzeBlock(BasicBlock *BB, 2389 SmallPtrSetImpl<const Value *> &EphValues) { 2390 for (Instruction &I : *BB) { 2391 // FIXME: Currently, the number of instructions in a function regardless of 2392 // our ability to simplify them during inline to constants or dead code, 2393 // are actually used by the vector bonus heuristic. As long as that's true, 2394 // we have to special case debug intrinsics here to prevent differences in 2395 // inlining due to debug symbols. Eventually, the number of unsimplified 2396 // instructions shouldn't factor into the cost computation, but until then, 2397 // hack around it here. 2398 // Similarly, skip pseudo-probes. 2399 if (I.isDebugOrPseudoInst()) 2400 continue; 2401 2402 // Skip ephemeral values. 2403 if (EphValues.count(&I)) 2404 continue; 2405 2406 ++NumInstructions; 2407 if (isa<ExtractElementInst>(I) || I.getType()->isVectorTy()) 2408 ++NumVectorInstructions; 2409 2410 // If the instruction simplified to a constant, there is no cost to this 2411 // instruction. Visit the instructions using our InstVisitor to account for 2412 // all of the per-instruction logic. The visit tree returns true if we 2413 // consumed the instruction in any way, and false if the instruction's base 2414 // cost should count against inlining. 2415 onInstructionAnalysisStart(&I); 2416 2417 if (Base::visit(&I)) 2418 ++NumInstructionsSimplified; 2419 else 2420 onMissedSimplification(); 2421 2422 onInstructionAnalysisFinish(&I); 2423 using namespace ore; 2424 // If the visit this instruction detected an uninlinable pattern, abort. 2425 InlineResult IR = InlineResult::success(); 2426 if (IsRecursiveCall && !AllowRecursiveCall) 2427 IR = InlineResult::failure("recursive"); 2428 else if (ExposesReturnsTwice) 2429 IR = InlineResult::failure("exposes returns twice"); 2430 else if (HasDynamicAlloca) 2431 IR = InlineResult::failure("dynamic alloca"); 2432 else if (HasIndirectBr) 2433 IR = InlineResult::failure("indirect branch"); 2434 else if (HasUninlineableIntrinsic) 2435 IR = InlineResult::failure("uninlinable intrinsic"); 2436 else if (InitsVargArgs) 2437 IR = InlineResult::failure("varargs"); 2438 if (!IR.isSuccess()) { 2439 if (ORE) 2440 ORE->emit([&]() { 2441 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 2442 &CandidateCall) 2443 << NV("Callee", &F) << " has uninlinable pattern (" 2444 << NV("InlineResult", IR.getFailureReason()) 2445 << ") and cost is not fully computed"; 2446 }); 2447 return IR; 2448 } 2449 2450 // If the caller is a recursive function then we don't want to inline 2451 // functions which allocate a lot of stack space because it would increase 2452 // the caller stack usage dramatically. 2453 if (IsCallerRecursive && AllocatedSize > RecurStackSizeThreshold) { 2454 auto IR = 2455 InlineResult::failure("recursive and allocates too much stack space"); 2456 if (ORE) 2457 ORE->emit([&]() { 2458 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 2459 &CandidateCall) 2460 << NV("Callee", &F) << " is " 2461 << NV("InlineResult", IR.getFailureReason()) 2462 << ". Cost is not fully computed"; 2463 }); 2464 return IR; 2465 } 2466 2467 if (shouldStop()) 2468 return InlineResult::failure( 2469 "Call site analysis is not favorable to inlining."); 2470 } 2471 2472 return InlineResult::success(); 2473 } 2474 2475 /// Compute the base pointer and cumulative constant offsets for V. 2476 /// 2477 /// This strips all constant offsets off of V, leaving it the base pointer, and 2478 /// accumulates the total constant offset applied in the returned constant. It 2479 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 2480 /// no constant offsets applied. 2481 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { 2482 if (!V->getType()->isPointerTy()) 2483 return nullptr; 2484 2485 unsigned AS = V->getType()->getPointerAddressSpace(); 2486 unsigned IntPtrWidth = DL.getIndexSizeInBits(AS); 2487 APInt Offset = APInt::getZero(IntPtrWidth); 2488 2489 // Even though we don't look through PHI nodes, we could be called on an 2490 // instruction in an unreachable block, which may be on a cycle. 2491 SmallPtrSet<Value *, 4> Visited; 2492 Visited.insert(V); 2493 do { 2494 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2495 if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) 2496 return nullptr; 2497 V = GEP->getPointerOperand(); 2498 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 2499 V = cast<Operator>(V)->getOperand(0); 2500 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2501 if (GA->isInterposable()) 2502 break; 2503 V = GA->getAliasee(); 2504 } else { 2505 break; 2506 } 2507 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2508 } while (Visited.insert(V).second); 2509 2510 Type *IdxPtrTy = DL.getIndexType(V->getType()); 2511 return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset)); 2512 } 2513 2514 /// Find dead blocks due to deleted CFG edges during inlining. 2515 /// 2516 /// If we know the successor of the current block, \p CurrBB, has to be \p 2517 /// NextBB, the other successors of \p CurrBB are dead if these successors have 2518 /// no live incoming CFG edges. If one block is found to be dead, we can 2519 /// continue growing the dead block list by checking the successors of the dead 2520 /// blocks to see if all their incoming edges are dead or not. 2521 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) { 2522 auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) { 2523 // A CFG edge is dead if the predecessor is dead or the predecessor has a 2524 // known successor which is not the one under exam. 2525 return (DeadBlocks.count(Pred) || 2526 (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ)); 2527 }; 2528 2529 auto IsNewlyDead = [&](BasicBlock *BB) { 2530 // If all the edges to a block are dead, the block is also dead. 2531 return (!DeadBlocks.count(BB) && 2532 llvm::all_of(predecessors(BB), 2533 [&](BasicBlock *P) { return IsEdgeDead(P, BB); })); 2534 }; 2535 2536 for (BasicBlock *Succ : successors(CurrBB)) { 2537 if (Succ == NextBB || !IsNewlyDead(Succ)) 2538 continue; 2539 SmallVector<BasicBlock *, 4> NewDead; 2540 NewDead.push_back(Succ); 2541 while (!NewDead.empty()) { 2542 BasicBlock *Dead = NewDead.pop_back_val(); 2543 if (DeadBlocks.insert(Dead).second) 2544 // Continue growing the dead block lists. 2545 for (BasicBlock *S : successors(Dead)) 2546 if (IsNewlyDead(S)) 2547 NewDead.push_back(S); 2548 } 2549 } 2550 } 2551 2552 /// Analyze a call site for potential inlining. 2553 /// 2554 /// Returns true if inlining this call is viable, and false if it is not 2555 /// viable. It computes the cost and adjusts the threshold based on numerous 2556 /// factors and heuristics. If this method returns false but the computed cost 2557 /// is below the computed threshold, then inlining was forcibly disabled by 2558 /// some artifact of the routine. 2559 InlineResult CallAnalyzer::analyze() { 2560 ++NumCallsAnalyzed; 2561 2562 auto Result = onAnalysisStart(); 2563 if (!Result.isSuccess()) 2564 return Result; 2565 2566 if (F.empty()) 2567 return InlineResult::success(); 2568 2569 Function *Caller = CandidateCall.getFunction(); 2570 // Check if the caller function is recursive itself. 2571 for (User *U : Caller->users()) { 2572 CallBase *Call = dyn_cast<CallBase>(U); 2573 if (Call && Call->getFunction() == Caller) { 2574 IsCallerRecursive = true; 2575 break; 2576 } 2577 } 2578 2579 // Populate our simplified values by mapping from function arguments to call 2580 // arguments with known important simplifications. 2581 auto CAI = CandidateCall.arg_begin(); 2582 for (Argument &FAI : F.args()) { 2583 assert(CAI != CandidateCall.arg_end()); 2584 if (Constant *C = dyn_cast<Constant>(CAI)) 2585 SimplifiedValues[&FAI] = C; 2586 2587 Value *PtrArg = *CAI; 2588 if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { 2589 ConstantOffsetPtrs[&FAI] = std::make_pair(PtrArg, C->getValue()); 2590 2591 // We can SROA any pointer arguments derived from alloca instructions. 2592 if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) { 2593 SROAArgValues[&FAI] = SROAArg; 2594 onInitializeSROAArg(SROAArg); 2595 EnabledSROAAllocas.insert(SROAArg); 2596 } 2597 } 2598 ++CAI; 2599 } 2600 NumConstantArgs = SimplifiedValues.size(); 2601 NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); 2602 NumAllocaArgs = SROAArgValues.size(); 2603 2604 // FIXME: If a caller has multiple calls to a callee, we end up recomputing 2605 // the ephemeral values multiple times (and they're completely determined by 2606 // the callee, so this is purely duplicate work). 2607 SmallPtrSet<const Value *, 32> EphValues; 2608 CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues); 2609 2610 // The worklist of live basic blocks in the callee *after* inlining. We avoid 2611 // adding basic blocks of the callee which can be proven to be dead for this 2612 // particular call site in order to get more accurate cost estimates. This 2613 // requires a somewhat heavyweight iteration pattern: we need to walk the 2614 // basic blocks in a breadth-first order as we insert live successors. To 2615 // accomplish this, prioritizing for small iterations because we exit after 2616 // crossing our threshold, we use a small-size optimized SetVector. 2617 typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>, 2618 SmallPtrSet<BasicBlock *, 16>> 2619 BBSetVector; 2620 BBSetVector BBWorklist; 2621 BBWorklist.insert(&F.getEntryBlock()); 2622 2623 // Note that we *must not* cache the size, this loop grows the worklist. 2624 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 2625 if (shouldStop()) 2626 break; 2627 2628 BasicBlock *BB = BBWorklist[Idx]; 2629 if (BB->empty()) 2630 continue; 2631 2632 onBlockStart(BB); 2633 2634 // Disallow inlining a blockaddress with uses other than strictly callbr. 2635 // A blockaddress only has defined behavior for an indirect branch in the 2636 // same function, and we do not currently support inlining indirect 2637 // branches. But, the inliner may not see an indirect branch that ends up 2638 // being dead code at a particular call site. If the blockaddress escapes 2639 // the function, e.g., via a global variable, inlining may lead to an 2640 // invalid cross-function reference. 2641 // FIXME: pr/39560: continue relaxing this overt restriction. 2642 if (BB->hasAddressTaken()) 2643 for (User *U : BlockAddress::get(&*BB)->users()) 2644 if (!isa<CallBrInst>(*U)) 2645 return InlineResult::failure("blockaddress used outside of callbr"); 2646 2647 // Analyze the cost of this block. If we blow through the threshold, this 2648 // returns false, and we can bail on out. 2649 InlineResult IR = analyzeBlock(BB, EphValues); 2650 if (!IR.isSuccess()) 2651 return IR; 2652 2653 Instruction *TI = BB->getTerminator(); 2654 2655 // Add in the live successors by first checking whether we have terminator 2656 // that may be simplified based on the values simplified by this call. 2657 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2658 if (BI->isConditional()) { 2659 Value *Cond = BI->getCondition(); 2660 if (ConstantInt *SimpleCond = 2661 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2662 BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0); 2663 BBWorklist.insert(NextBB); 2664 KnownSuccessors[BB] = NextBB; 2665 findDeadBlocks(BB, NextBB); 2666 continue; 2667 } 2668 } 2669 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2670 Value *Cond = SI->getCondition(); 2671 if (ConstantInt *SimpleCond = 2672 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2673 BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor(); 2674 BBWorklist.insert(NextBB); 2675 KnownSuccessors[BB] = NextBB; 2676 findDeadBlocks(BB, NextBB); 2677 continue; 2678 } 2679 } 2680 2681 // If we're unable to select a particular successor, just count all of 2682 // them. 2683 for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; 2684 ++TIdx) 2685 BBWorklist.insert(TI->getSuccessor(TIdx)); 2686 2687 onBlockAnalyzed(BB); 2688 } 2689 2690 bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneLiveUse() && 2691 &F == CandidateCall.getCalledFunction(); 2692 // If this is a noduplicate call, we can still inline as long as 2693 // inlining this would cause the removal of the caller (so the instruction 2694 // is not actually duplicated, just moved). 2695 if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall) 2696 return InlineResult::failure("noduplicate"); 2697 2698 // If the callee's stack size exceeds the user-specified threshold, 2699 // do not let it be inlined. 2700 if (AllocatedSize > StackSizeThreshold) 2701 return InlineResult::failure("stacksize"); 2702 2703 return finalizeAnalysis(); 2704 } 2705 2706 void InlineCostCallAnalyzer::print(raw_ostream &OS) { 2707 #define DEBUG_PRINT_STAT(x) OS << " " #x ": " << x << "\n" 2708 if (PrintInstructionComments) 2709 F.print(OS, &Writer); 2710 DEBUG_PRINT_STAT(NumConstantArgs); 2711 DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); 2712 DEBUG_PRINT_STAT(NumAllocaArgs); 2713 DEBUG_PRINT_STAT(NumConstantPtrCmps); 2714 DEBUG_PRINT_STAT(NumConstantPtrDiffs); 2715 DEBUG_PRINT_STAT(NumInstructionsSimplified); 2716 DEBUG_PRINT_STAT(NumInstructions); 2717 DEBUG_PRINT_STAT(SROACostSavings); 2718 DEBUG_PRINT_STAT(SROACostSavingsLost); 2719 DEBUG_PRINT_STAT(LoadEliminationCost); 2720 DEBUG_PRINT_STAT(ContainsNoDuplicateCall); 2721 DEBUG_PRINT_STAT(Cost); 2722 DEBUG_PRINT_STAT(Threshold); 2723 #undef DEBUG_PRINT_STAT 2724 } 2725 2726 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2727 /// Dump stats about this call's analysis. 2728 LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { print(dbgs()); } 2729 #endif 2730 2731 /// Test that there are no attribute conflicts between Caller and Callee 2732 /// that prevent inlining. 2733 static bool functionsHaveCompatibleAttributes( 2734 Function *Caller, Function *Callee, TargetTransformInfo &TTI, 2735 function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) { 2736 // Note that CalleeTLI must be a copy not a reference. The legacy pass manager 2737 // caches the most recently created TLI in the TargetLibraryInfoWrapperPass 2738 // object, and always returns the same object (which is overwritten on each 2739 // GetTLI call). Therefore we copy the first result. 2740 auto CalleeTLI = GetTLI(*Callee); 2741 return (IgnoreTTIInlineCompatible || 2742 TTI.areInlineCompatible(Caller, Callee)) && 2743 GetTLI(*Caller).areInlineCompatible(CalleeTLI, 2744 InlineCallerSupersetNoBuiltin) && 2745 AttributeFuncs::areInlineCompatible(*Caller, *Callee); 2746 } 2747 2748 int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) { 2749 int Cost = 0; 2750 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) { 2751 if (Call.isByValArgument(I)) { 2752 // We approximate the number of loads and stores needed by dividing the 2753 // size of the byval type by the target's pointer size. 2754 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2755 unsigned TypeSize = DL.getTypeSizeInBits(Call.getParamByValType(I)); 2756 unsigned AS = PTy->getAddressSpace(); 2757 unsigned PointerSize = DL.getPointerSizeInBits(AS); 2758 // Ceiling division. 2759 unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; 2760 2761 // If it generates more than 8 stores it is likely to be expanded as an 2762 // inline memcpy so we take that as an upper bound. Otherwise we assume 2763 // one load and one store per word copied. 2764 // FIXME: The maxStoresPerMemcpy setting from the target should be used 2765 // here instead of a magic number of 8, but it's not available via 2766 // DataLayout. 2767 NumStores = std::min(NumStores, 8U); 2768 2769 Cost += 2 * NumStores * InlineConstants::InstrCost; 2770 } else { 2771 // For non-byval arguments subtract off one instruction per call 2772 // argument. 2773 Cost += InlineConstants::InstrCost; 2774 } 2775 } 2776 // The call instruction also disappears after inlining. 2777 Cost += InlineConstants::InstrCost + CallPenalty; 2778 return Cost; 2779 } 2780 2781 InlineCost llvm::getInlineCost( 2782 CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI, 2783 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2784 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2785 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2786 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2787 return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI, 2788 GetAssumptionCache, GetTLI, GetBFI, PSI, ORE); 2789 } 2790 2791 Optional<int> llvm::getInliningCostEstimate( 2792 CallBase &Call, TargetTransformInfo &CalleeTTI, 2793 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2794 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2795 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2796 const InlineParams Params = {/* DefaultThreshold*/ 0, 2797 /*HintThreshold*/ {}, 2798 /*ColdThreshold*/ {}, 2799 /*OptSizeThreshold*/ {}, 2800 /*OptMinSizeThreshold*/ {}, 2801 /*HotCallSiteThreshold*/ {}, 2802 /*LocallyHotCallSiteThreshold*/ {}, 2803 /*ColdCallSiteThreshold*/ {}, 2804 /*ComputeFullInlineCost*/ true, 2805 /*EnableDeferral*/ true}; 2806 2807 InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI, 2808 GetAssumptionCache, GetBFI, PSI, ORE, true, 2809 /*IgnoreThreshold*/ true); 2810 auto R = CA.analyze(); 2811 if (!R.isSuccess()) 2812 return None; 2813 return CA.getCost(); 2814 } 2815 2816 Optional<InlineCostFeatures> llvm::getInliningCostFeatures( 2817 CallBase &Call, TargetTransformInfo &CalleeTTI, 2818 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2819 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2820 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2821 InlineCostFeaturesAnalyzer CFA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, 2822 ORE, *Call.getCalledFunction(), Call); 2823 auto R = CFA.analyze(); 2824 if (!R.isSuccess()) 2825 return None; 2826 return CFA.features(); 2827 } 2828 2829 Optional<InlineResult> llvm::getAttributeBasedInliningDecision( 2830 CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI, 2831 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 2832 2833 // Cannot inline indirect calls. 2834 if (!Callee) 2835 return InlineResult::failure("indirect call"); 2836 2837 // When callee coroutine function is inlined into caller coroutine function 2838 // before coro-split pass, 2839 // coro-early pass can not handle this quiet well. 2840 // So we won't inline the coroutine function if it have not been unsplited 2841 if (Callee->isPresplitCoroutine()) 2842 return InlineResult::failure("unsplited coroutine call"); 2843 2844 // Never inline calls with byval arguments that does not have the alloca 2845 // address space. Since byval arguments can be replaced with a copy to an 2846 // alloca, the inlined code would need to be adjusted to handle that the 2847 // argument is in the alloca address space (so it is a little bit complicated 2848 // to solve). 2849 unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace(); 2850 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) 2851 if (Call.isByValArgument(I)) { 2852 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2853 if (PTy->getAddressSpace() != AllocaAS) 2854 return InlineResult::failure("byval arguments without alloca" 2855 " address space"); 2856 } 2857 2858 // Calls to functions with always-inline attributes should be inlined 2859 // whenever possible. 2860 if (Call.hasFnAttr(Attribute::AlwaysInline)) { 2861 if (Call.getAttributes().hasFnAttr(Attribute::NoInline)) 2862 return InlineResult::failure("noinline call site attribute"); 2863 2864 auto IsViable = isInlineViable(*Callee); 2865 if (IsViable.isSuccess()) 2866 return InlineResult::success(); 2867 return InlineResult::failure(IsViable.getFailureReason()); 2868 } 2869 2870 // Never inline functions with conflicting attributes (unless callee has 2871 // always-inline attribute). 2872 Function *Caller = Call.getCaller(); 2873 if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI)) 2874 return InlineResult::failure("conflicting attributes"); 2875 2876 // Don't inline this call if the caller has the optnone attribute. 2877 if (Caller->hasOptNone()) 2878 return InlineResult::failure("optnone attribute"); 2879 2880 // Don't inline a function that treats null pointer as valid into a caller 2881 // that does not have this attribute. 2882 if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined()) 2883 return InlineResult::failure("nullptr definitions incompatible"); 2884 2885 // Don't inline functions which can be interposed at link-time. 2886 if (Callee->isInterposable()) 2887 return InlineResult::failure("interposable"); 2888 2889 // Don't inline functions marked noinline. 2890 if (Callee->hasFnAttribute(Attribute::NoInline)) 2891 return InlineResult::failure("noinline function attribute"); 2892 2893 // Don't inline call sites marked noinline. 2894 if (Call.isNoInline()) 2895 return InlineResult::failure("noinline call site attribute"); 2896 2897 return None; 2898 } 2899 2900 InlineCost llvm::getInlineCost( 2901 CallBase &Call, Function *Callee, const InlineParams &Params, 2902 TargetTransformInfo &CalleeTTI, 2903 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2904 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2905 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2906 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2907 2908 auto UserDecision = 2909 llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI); 2910 2911 if (UserDecision) { 2912 if (UserDecision->isSuccess()) 2913 return llvm::InlineCost::getAlways("always inline attribute"); 2914 return llvm::InlineCost::getNever(UserDecision->getFailureReason()); 2915 } 2916 2917 LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() 2918 << "... (caller:" << Call.getCaller()->getName() 2919 << ")\n"); 2920 2921 InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI, 2922 GetAssumptionCache, GetBFI, PSI, ORE); 2923 InlineResult ShouldInline = CA.analyze(); 2924 2925 LLVM_DEBUG(CA.dump()); 2926 2927 // Always make cost benefit based decision explicit. 2928 // We use always/never here since threshold is not meaningful, 2929 // as it's not what drives cost-benefit analysis. 2930 if (CA.wasDecidedByCostBenefit()) { 2931 if (ShouldInline.isSuccess()) 2932 return InlineCost::getAlways("benefit over cost", 2933 CA.getCostBenefitPair()); 2934 else 2935 return InlineCost::getNever("cost over benefit", CA.getCostBenefitPair()); 2936 } 2937 2938 if (CA.wasDecidedByCostThreshold()) 2939 return InlineCost::get(CA.getCost(), CA.getThreshold()); 2940 2941 // No details on how the decision was made, simply return always or never. 2942 return ShouldInline.isSuccess() 2943 ? InlineCost::getAlways("empty function") 2944 : InlineCost::getNever(ShouldInline.getFailureReason()); 2945 } 2946 2947 InlineResult llvm::isInlineViable(Function &F) { 2948 bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); 2949 for (BasicBlock &BB : F) { 2950 // Disallow inlining of functions which contain indirect branches. 2951 if (isa<IndirectBrInst>(BB.getTerminator())) 2952 return InlineResult::failure("contains indirect branches"); 2953 2954 // Disallow inlining of blockaddresses which are used by non-callbr 2955 // instructions. 2956 if (BB.hasAddressTaken()) 2957 for (User *U : BlockAddress::get(&BB)->users()) 2958 if (!isa<CallBrInst>(*U)) 2959 return InlineResult::failure("blockaddress used outside of callbr"); 2960 2961 for (auto &II : BB) { 2962 CallBase *Call = dyn_cast<CallBase>(&II); 2963 if (!Call) 2964 continue; 2965 2966 // Disallow recursive calls. 2967 Function *Callee = Call->getCalledFunction(); 2968 if (&F == Callee) 2969 return InlineResult::failure("recursive call"); 2970 2971 // Disallow calls which expose returns-twice to a function not previously 2972 // attributed as such. 2973 if (!ReturnsTwice && isa<CallInst>(Call) && 2974 cast<CallInst>(Call)->canReturnTwice()) 2975 return InlineResult::failure("exposes returns-twice attribute"); 2976 2977 if (Callee) 2978 switch (Callee->getIntrinsicID()) { 2979 default: 2980 break; 2981 case llvm::Intrinsic::icall_branch_funnel: 2982 // Disallow inlining of @llvm.icall.branch.funnel because current 2983 // backend can't separate call targets from call arguments. 2984 return InlineResult::failure( 2985 "disallowed inlining of @llvm.icall.branch.funnel"); 2986 case llvm::Intrinsic::localescape: 2987 // Disallow inlining functions that call @llvm.localescape. Doing this 2988 // correctly would require major changes to the inliner. 2989 return InlineResult::failure( 2990 "disallowed inlining of @llvm.localescape"); 2991 case llvm::Intrinsic::vastart: 2992 // Disallow inlining of functions that initialize VarArgs with 2993 // va_start. 2994 return InlineResult::failure( 2995 "contains VarArgs initialized with va_start"); 2996 } 2997 } 2998 } 2999 3000 return InlineResult::success(); 3001 } 3002 3003 // APIs to create InlineParams based on command line flags and/or other 3004 // parameters. 3005 3006 InlineParams llvm::getInlineParams(int Threshold) { 3007 InlineParams Params; 3008 3009 // This field is the threshold to use for a callee by default. This is 3010 // derived from one or more of: 3011 // * optimization or size-optimization levels, 3012 // * a value passed to createFunctionInliningPass function, or 3013 // * the -inline-threshold flag. 3014 // If the -inline-threshold flag is explicitly specified, that is used 3015 // irrespective of anything else. 3016 if (InlineThreshold.getNumOccurrences() > 0) 3017 Params.DefaultThreshold = InlineThreshold; 3018 else 3019 Params.DefaultThreshold = Threshold; 3020 3021 // Set the HintThreshold knob from the -inlinehint-threshold. 3022 Params.HintThreshold = HintThreshold; 3023 3024 // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold. 3025 Params.HotCallSiteThreshold = HotCallSiteThreshold; 3026 3027 // If the -locally-hot-callsite-threshold is explicitly specified, use it to 3028 // populate LocallyHotCallSiteThreshold. Later, we populate 3029 // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if 3030 // we know that optimization level is O3 (in the getInlineParams variant that 3031 // takes the opt and size levels). 3032 // FIXME: Remove this check (and make the assignment unconditional) after 3033 // addressing size regression issues at O2. 3034 if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0) 3035 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 3036 3037 // Set the ColdCallSiteThreshold knob from the 3038 // -inline-cold-callsite-threshold. 3039 Params.ColdCallSiteThreshold = ColdCallSiteThreshold; 3040 3041 // Set the OptMinSizeThreshold and OptSizeThreshold params only if the 3042 // -inlinehint-threshold commandline option is not explicitly given. If that 3043 // option is present, then its value applies even for callees with size and 3044 // minsize attributes. 3045 // If the -inline-threshold is not specified, set the ColdThreshold from the 3046 // -inlinecold-threshold even if it is not explicitly passed. If 3047 // -inline-threshold is specified, then -inlinecold-threshold needs to be 3048 // explicitly specified to set the ColdThreshold knob 3049 if (InlineThreshold.getNumOccurrences() == 0) { 3050 Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold; 3051 Params.OptSizeThreshold = InlineConstants::OptSizeThreshold; 3052 Params.ColdThreshold = ColdThreshold; 3053 } else if (ColdThreshold.getNumOccurrences() > 0) { 3054 Params.ColdThreshold = ColdThreshold; 3055 } 3056 return Params; 3057 } 3058 3059 InlineParams llvm::getInlineParams() { 3060 return getInlineParams(DefaultThreshold); 3061 } 3062 3063 // Compute the default threshold for inlining based on the opt level and the 3064 // size opt level. 3065 static int computeThresholdFromOptLevels(unsigned OptLevel, 3066 unsigned SizeOptLevel) { 3067 if (OptLevel > 2) 3068 return InlineConstants::OptAggressiveThreshold; 3069 if (SizeOptLevel == 1) // -Os 3070 return InlineConstants::OptSizeThreshold; 3071 if (SizeOptLevel == 2) // -Oz 3072 return InlineConstants::OptMinSizeThreshold; 3073 return DefaultThreshold; 3074 } 3075 3076 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) { 3077 auto Params = 3078 getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel)); 3079 // At O3, use the value of -locally-hot-callsite-threshold option to populate 3080 // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only 3081 // when it is specified explicitly. 3082 if (OptLevel > 2) 3083 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 3084 return Params; 3085 } 3086 3087 PreservedAnalyses 3088 InlineCostAnnotationPrinterPass::run(Function &F, 3089 FunctionAnalysisManager &FAM) { 3090 PrintInstructionComments = true; 3091 std::function<AssumptionCache &(Function &)> GetAssumptionCache = 3092 [&](Function &F) -> AssumptionCache & { 3093 return FAM.getResult<AssumptionAnalysis>(F); 3094 }; 3095 Module *M = F.getParent(); 3096 ProfileSummaryInfo PSI(*M); 3097 DataLayout DL(M); 3098 TargetTransformInfo TTI(DL); 3099 // FIXME: Redesign the usage of InlineParams to expand the scope of this pass. 3100 // In the current implementation, the type of InlineParams doesn't matter as 3101 // the pass serves only for verification of inliner's decisions. 3102 // We can add a flag which determines InlineParams for this run. Right now, 3103 // the default InlineParams are used. 3104 const InlineParams Params = llvm::getInlineParams(); 3105 for (BasicBlock &BB : F) { 3106 for (Instruction &I : BB) { 3107 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 3108 Function *CalledFunction = CI->getCalledFunction(); 3109 if (!CalledFunction || CalledFunction->isDeclaration()) 3110 continue; 3111 OptimizationRemarkEmitter ORE(CalledFunction); 3112 InlineCostCallAnalyzer ICCA(*CalledFunction, *CI, Params, TTI, 3113 GetAssumptionCache, nullptr, &PSI, &ORE); 3114 ICCA.analyze(); 3115 OS << " Analyzing call of " << CalledFunction->getName() 3116 << "... (caller:" << CI->getCaller()->getName() << ")\n"; 3117 ICCA.print(OS); 3118 OS << "\n"; 3119 } 3120 } 3121 } 3122 return PreservedAnalyses::all(); 3123 } 3124