1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inline cost analysis. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/InlineCost.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/CodeMetrics.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/AssemblyAnnotationWriter.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/InstVisitor.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/FormattedStream.h" 44 #include "llvm/Support/raw_ostream.h" 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "inline-cost" 49 50 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); 51 52 static cl::opt<int> 53 DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225), 54 cl::ZeroOrMore, 55 cl::desc("Default amount of inlining to perform")); 56 57 static cl::opt<bool> PrintInstructionComments( 58 "print-instruction-comments", cl::Hidden, cl::init(false), 59 cl::desc("Prints comments for instruction based on inline cost analysis")); 60 61 static cl::opt<int> InlineThreshold( 62 "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, 63 cl::desc("Control the amount of inlining to perform (default = 225)")); 64 65 static cl::opt<int> HintThreshold( 66 "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore, 67 cl::desc("Threshold for inlining functions with inline hint")); 68 69 static cl::opt<int> 70 ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden, 71 cl::init(45), cl::ZeroOrMore, 72 cl::desc("Threshold for inlining cold callsites")); 73 74 static cl::opt<bool> InlineEnableCostBenefitAnalysis( 75 "inline-enable-cost-benefit-analysis", cl::Hidden, cl::init(false), 76 cl::desc("Enable the cost-benefit analysis for the inliner")); 77 78 static cl::opt<int> InlineSavingsMultiplier( 79 "inline-savings-multiplier", cl::Hidden, cl::init(8), cl::ZeroOrMore, 80 cl::desc("Multiplier to multiply cycle savings by during inlining")); 81 82 static cl::opt<int> 83 InlineSizeAllowance("inline-size-allowance", cl::Hidden, cl::init(100), 84 cl::ZeroOrMore, 85 cl::desc("The maximum size of a callee that get's " 86 "inlined without sufficient cycle savings")); 87 88 // We introduce this threshold to help performance of instrumentation based 89 // PGO before we actually hook up inliner with analysis passes such as BPI and 90 // BFI. 91 static cl::opt<int> ColdThreshold( 92 "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore, 93 cl::desc("Threshold for inlining functions with cold attribute")); 94 95 static cl::opt<int> 96 HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000), 97 cl::ZeroOrMore, 98 cl::desc("Threshold for hot callsites ")); 99 100 static cl::opt<int> LocallyHotCallSiteThreshold( 101 "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore, 102 cl::desc("Threshold for locally hot callsites ")); 103 104 static cl::opt<int> ColdCallSiteRelFreq( 105 "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 106 cl::desc("Maximum block frequency, expressed as a percentage of caller's " 107 "entry frequency, for a callsite to be cold in the absence of " 108 "profile information.")); 109 110 static cl::opt<int> HotCallSiteRelFreq( 111 "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore, 112 cl::desc("Minimum block frequency, expressed as a multiple of caller's " 113 "entry frequency, for a callsite to be hot in the absence of " 114 "profile information.")); 115 116 static cl::opt<int> CallPenalty( 117 "inline-call-penalty", cl::Hidden, cl::init(25), 118 cl::desc("Call penalty that is applied per callsite when inlining")); 119 120 static cl::opt<bool> OptComputeFullInlineCost( 121 "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore, 122 cl::desc("Compute the full inline cost of a call site even when the cost " 123 "exceeds the threshold.")); 124 125 static cl::opt<bool> InlineCallerSupersetNoBuiltin( 126 "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true), 127 cl::ZeroOrMore, 128 cl::desc("Allow inlining when caller has a superset of callee's nobuiltin " 129 "attributes.")); 130 131 static cl::opt<bool> DisableGEPConstOperand( 132 "disable-gep-const-evaluation", cl::Hidden, cl::init(false), 133 cl::desc("Disables evaluation of GetElementPtr with constant operands")); 134 135 namespace { 136 /// This function behaves more like CallBase::hasFnAttr: when it looks for the 137 /// requested attribute, it check both the call instruction and the called 138 /// function (if it's available and operand bundles don't prohibit that). 139 Attribute getFnAttr(CallBase &CB, StringRef AttrKind) { 140 Attribute CallAttr = CB.getFnAttr(AttrKind); 141 if (CallAttr.isValid()) 142 return CallAttr; 143 144 // Operand bundles override attributes on the called function, but don't 145 // override attributes directly present on the call instruction. 146 if (!CB.isFnAttrDisallowedByOpBundle(AttrKind)) 147 if (const Function *F = CB.getCalledFunction()) 148 return F->getFnAttribute(AttrKind); 149 150 return {}; 151 } 152 } // namespace 153 154 namespace llvm { 155 Optional<int> getStringFnAttrAsInt(CallBase &CB, StringRef AttrKind) { 156 Attribute Attr = getFnAttr(CB, AttrKind); 157 int AttrValue; 158 if (Attr.getValueAsString().getAsInteger(10, AttrValue)) 159 return None; 160 return AttrValue; 161 } 162 } // namespace llvm 163 164 namespace { 165 class InlineCostCallAnalyzer; 166 167 // This struct is used to store information about inline cost of a 168 // particular instruction 169 struct InstructionCostDetail { 170 int CostBefore = 0; 171 int CostAfter = 0; 172 int ThresholdBefore = 0; 173 int ThresholdAfter = 0; 174 175 int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; } 176 177 int getCostDelta() const { return CostAfter - CostBefore; } 178 179 bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; } 180 }; 181 182 class InlineCostAnnotationWriter : public AssemblyAnnotationWriter { 183 private: 184 InlineCostCallAnalyzer *const ICCA; 185 186 public: 187 InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {} 188 virtual void emitInstructionAnnot(const Instruction *I, 189 formatted_raw_ostream &OS) override; 190 }; 191 192 /// Carry out call site analysis, in order to evaluate inlinability. 193 /// NOTE: the type is currently used as implementation detail of functions such 194 /// as llvm::getInlineCost. Note the function_ref constructor parameters - the 195 /// expectation is that they come from the outer scope, from the wrapper 196 /// functions. If we want to support constructing CallAnalyzer objects where 197 /// lambdas are provided inline at construction, or where the object needs to 198 /// otherwise survive past the scope of the provided functions, we need to 199 /// revisit the argument types. 200 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { 201 typedef InstVisitor<CallAnalyzer, bool> Base; 202 friend class InstVisitor<CallAnalyzer, bool>; 203 204 protected: 205 virtual ~CallAnalyzer() {} 206 /// The TargetTransformInfo available for this compilation. 207 const TargetTransformInfo &TTI; 208 209 /// Getter for the cache of @llvm.assume intrinsics. 210 function_ref<AssumptionCache &(Function &)> GetAssumptionCache; 211 212 /// Getter for BlockFrequencyInfo 213 function_ref<BlockFrequencyInfo &(Function &)> GetBFI; 214 215 /// Profile summary information. 216 ProfileSummaryInfo *PSI; 217 218 /// The called function. 219 Function &F; 220 221 // Cache the DataLayout since we use it a lot. 222 const DataLayout &DL; 223 224 /// The OptimizationRemarkEmitter available for this compilation. 225 OptimizationRemarkEmitter *ORE; 226 227 /// The candidate callsite being analyzed. Please do not use this to do 228 /// analysis in the caller function; we want the inline cost query to be 229 /// easily cacheable. Instead, use the cover function paramHasAttr. 230 CallBase &CandidateCall; 231 232 /// Extension points for handling callsite features. 233 // Called before a basic block was analyzed. 234 virtual void onBlockStart(const BasicBlock *BB) {} 235 236 /// Called after a basic block was analyzed. 237 virtual void onBlockAnalyzed(const BasicBlock *BB) {} 238 239 /// Called before an instruction was analyzed 240 virtual void onInstructionAnalysisStart(const Instruction *I) {} 241 242 /// Called after an instruction was analyzed 243 virtual void onInstructionAnalysisFinish(const Instruction *I) {} 244 245 /// Called at the end of the analysis of the callsite. Return the outcome of 246 /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or 247 /// the reason it can't. 248 virtual InlineResult finalizeAnalysis() { return InlineResult::success(); } 249 /// Called when we're about to start processing a basic block, and every time 250 /// we are done processing an instruction. Return true if there is no point in 251 /// continuing the analysis (e.g. we've determined already the call site is 252 /// too expensive to inline) 253 virtual bool shouldStop() { return false; } 254 255 /// Called before the analysis of the callee body starts (with callsite 256 /// contexts propagated). It checks callsite-specific information. Return a 257 /// reason analysis can't continue if that's the case, or 'true' if it may 258 /// continue. 259 virtual InlineResult onAnalysisStart() { return InlineResult::success(); } 260 /// Called if the analysis engine decides SROA cannot be done for the given 261 /// alloca. 262 virtual void onDisableSROA(AllocaInst *Arg) {} 263 264 /// Called the analysis engine determines load elimination won't happen. 265 virtual void onDisableLoadElimination() {} 266 267 /// Called when we visit a CallBase, before the analysis starts. Return false 268 /// to stop further processing of the instruction. 269 virtual bool onCallBaseVisitStart(CallBase &Call) { return true; } 270 271 /// Called to account for a call. 272 virtual void onCallPenalty() {} 273 274 /// Called to account for the expectation the inlining would result in a load 275 /// elimination. 276 virtual void onLoadEliminationOpportunity() {} 277 278 /// Called to account for the cost of argument setup for the Call in the 279 /// callee's body (not the callsite currently under analysis). 280 virtual void onCallArgumentSetup(const CallBase &Call) {} 281 282 /// Called to account for a load relative intrinsic. 283 virtual void onLoadRelativeIntrinsic() {} 284 285 /// Called to account for a lowered call. 286 virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) { 287 } 288 289 /// Account for a jump table of given size. Return false to stop further 290 /// processing the switch instruction 291 virtual bool onJumpTable(unsigned JumpTableSize) { return true; } 292 293 /// Account for a case cluster of given size. Return false to stop further 294 /// processing of the instruction. 295 virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; } 296 297 /// Called at the end of processing a switch instruction, with the given 298 /// number of case clusters. 299 virtual void onFinalizeSwitch(unsigned JumpTableSize, 300 unsigned NumCaseCluster) {} 301 302 /// Called to account for any other instruction not specifically accounted 303 /// for. 304 virtual void onMissedSimplification() {} 305 306 /// Start accounting potential benefits due to SROA for the given alloca. 307 virtual void onInitializeSROAArg(AllocaInst *Arg) {} 308 309 /// Account SROA savings for the AllocaInst value. 310 virtual void onAggregateSROAUse(AllocaInst *V) {} 311 312 bool handleSROA(Value *V, bool DoNotDisable) { 313 // Check for SROA candidates in comparisons. 314 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 315 if (DoNotDisable) { 316 onAggregateSROAUse(SROAArg); 317 return true; 318 } 319 disableSROAForArg(SROAArg); 320 } 321 return false; 322 } 323 324 bool IsCallerRecursive = false; 325 bool IsRecursiveCall = false; 326 bool ExposesReturnsTwice = false; 327 bool HasDynamicAlloca = false; 328 bool ContainsNoDuplicateCall = false; 329 bool HasReturn = false; 330 bool HasIndirectBr = false; 331 bool HasUninlineableIntrinsic = false; 332 bool InitsVargArgs = false; 333 334 /// Number of bytes allocated statically by the callee. 335 uint64_t AllocatedSize = 0; 336 unsigned NumInstructions = 0; 337 unsigned NumVectorInstructions = 0; 338 339 /// While we walk the potentially-inlined instructions, we build up and 340 /// maintain a mapping of simplified values specific to this callsite. The 341 /// idea is to propagate any special information we have about arguments to 342 /// this call through the inlinable section of the function, and account for 343 /// likely simplifications post-inlining. The most important aspect we track 344 /// is CFG altering simplifications -- when we prove a basic block dead, that 345 /// can cause dramatic shifts in the cost of inlining a function. 346 DenseMap<Value *, Constant *> SimplifiedValues; 347 348 /// Keep track of the values which map back (through function arguments) to 349 /// allocas on the caller stack which could be simplified through SROA. 350 DenseMap<Value *, AllocaInst *> SROAArgValues; 351 352 /// Keep track of Allocas for which we believe we may get SROA optimization. 353 DenseSet<AllocaInst *> EnabledSROAAllocas; 354 355 /// Keep track of values which map to a pointer base and constant offset. 356 DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs; 357 358 /// Keep track of dead blocks due to the constant arguments. 359 SetVector<BasicBlock *> DeadBlocks; 360 361 /// The mapping of the blocks to their known unique successors due to the 362 /// constant arguments. 363 DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors; 364 365 /// Model the elimination of repeated loads that is expected to happen 366 /// whenever we simplify away the stores that would otherwise cause them to be 367 /// loads. 368 bool EnableLoadElimination = true; 369 370 /// Whether we allow inlining for recursive call. 371 bool AllowRecursiveCall = false; 372 373 SmallPtrSet<Value *, 16> LoadAddrSet; 374 375 AllocaInst *getSROAArgForValueOrNull(Value *V) const { 376 auto It = SROAArgValues.find(V); 377 if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0) 378 return nullptr; 379 return It->second; 380 } 381 382 // Custom simplification helper routines. 383 bool isAllocaDerivedArg(Value *V); 384 void disableSROAForArg(AllocaInst *SROAArg); 385 void disableSROA(Value *V); 386 void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB); 387 void disableLoadElimination(); 388 bool isGEPFree(GetElementPtrInst &GEP); 389 bool canFoldInboundsGEP(GetElementPtrInst &I); 390 bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); 391 bool simplifyCallSite(Function *F, CallBase &Call); 392 template <typename Callable> 393 bool simplifyInstruction(Instruction &I, Callable Evaluate); 394 bool simplifyIntrinsicCallIsConstant(CallBase &CB); 395 ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); 396 397 /// Return true if the given argument to the function being considered for 398 /// inlining has the given attribute set either at the call site or the 399 /// function declaration. Primarily used to inspect call site specific 400 /// attributes since these can be more precise than the ones on the callee 401 /// itself. 402 bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); 403 404 /// Return true if the given value is known non null within the callee if 405 /// inlined through this particular callsite. 406 bool isKnownNonNullInCallee(Value *V); 407 408 /// Return true if size growth is allowed when inlining the callee at \p Call. 409 bool allowSizeGrowth(CallBase &Call); 410 411 // Custom analysis routines. 412 InlineResult analyzeBlock(BasicBlock *BB, 413 SmallPtrSetImpl<const Value *> &EphValues); 414 415 // Disable several entry points to the visitor so we don't accidentally use 416 // them by declaring but not defining them here. 417 void visit(Module *); 418 void visit(Module &); 419 void visit(Function *); 420 void visit(Function &); 421 void visit(BasicBlock *); 422 void visit(BasicBlock &); 423 424 // Provide base case for our instruction visit. 425 bool visitInstruction(Instruction &I); 426 427 // Our visit overrides. 428 bool visitAlloca(AllocaInst &I); 429 bool visitPHI(PHINode &I); 430 bool visitGetElementPtr(GetElementPtrInst &I); 431 bool visitBitCast(BitCastInst &I); 432 bool visitPtrToInt(PtrToIntInst &I); 433 bool visitIntToPtr(IntToPtrInst &I); 434 bool visitCastInst(CastInst &I); 435 bool visitCmpInst(CmpInst &I); 436 bool visitSub(BinaryOperator &I); 437 bool visitBinaryOperator(BinaryOperator &I); 438 bool visitFNeg(UnaryOperator &I); 439 bool visitLoad(LoadInst &I); 440 bool visitStore(StoreInst &I); 441 bool visitExtractValue(ExtractValueInst &I); 442 bool visitInsertValue(InsertValueInst &I); 443 bool visitCallBase(CallBase &Call); 444 bool visitReturnInst(ReturnInst &RI); 445 bool visitBranchInst(BranchInst &BI); 446 bool visitSelectInst(SelectInst &SI); 447 bool visitSwitchInst(SwitchInst &SI); 448 bool visitIndirectBrInst(IndirectBrInst &IBI); 449 bool visitResumeInst(ResumeInst &RI); 450 bool visitCleanupReturnInst(CleanupReturnInst &RI); 451 bool visitCatchReturnInst(CatchReturnInst &RI); 452 bool visitUnreachableInst(UnreachableInst &I); 453 454 public: 455 CallAnalyzer(Function &Callee, CallBase &Call, const TargetTransformInfo &TTI, 456 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 457 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 458 ProfileSummaryInfo *PSI = nullptr, 459 OptimizationRemarkEmitter *ORE = nullptr) 460 : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI), 461 PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE), 462 CandidateCall(Call) {} 463 464 InlineResult analyze(); 465 466 Optional<Constant *> getSimplifiedValue(Instruction *I) { 467 if (SimplifiedValues.find(I) != SimplifiedValues.end()) 468 return SimplifiedValues[I]; 469 return None; 470 } 471 472 // Keep a bunch of stats about the cost savings found so we can print them 473 // out when debugging. 474 unsigned NumConstantArgs = 0; 475 unsigned NumConstantOffsetPtrArgs = 0; 476 unsigned NumAllocaArgs = 0; 477 unsigned NumConstantPtrCmps = 0; 478 unsigned NumConstantPtrDiffs = 0; 479 unsigned NumInstructionsSimplified = 0; 480 481 void dump(); 482 }; 483 484 // Considering forming a binary search, we should find the number of nodes 485 // which is same as the number of comparisons when lowered. For a given 486 // number of clusters, n, we can define a recursive function, f(n), to find 487 // the number of nodes in the tree. The recursion is : 488 // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3, 489 // and f(n) = n, when n <= 3. 490 // This will lead a binary tree where the leaf should be either f(2) or f(3) 491 // when n > 3. So, the number of comparisons from leaves should be n, while 492 // the number of non-leaf should be : 493 // 2^(log2(n) - 1) - 1 494 // = 2^log2(n) * 2^-1 - 1 495 // = n / 2 - 1. 496 // Considering comparisons from leaf and non-leaf nodes, we can estimate the 497 // number of comparisons in a simple closed form : 498 // n + n / 2 - 1 = n * 3 / 2 - 1 499 int64_t getExpectedNumberOfCompare(int NumCaseCluster) { 500 return 3 * static_cast<int64_t>(NumCaseCluster) / 2 - 1; 501 } 502 503 /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note 504 /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer 505 class InlineCostCallAnalyzer final : public CallAnalyzer { 506 const int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1; 507 const bool ComputeFullInlineCost; 508 int LoadEliminationCost = 0; 509 /// Bonus to be applied when percentage of vector instructions in callee is 510 /// high (see more details in updateThreshold). 511 int VectorBonus = 0; 512 /// Bonus to be applied when the callee has only one reachable basic block. 513 int SingleBBBonus = 0; 514 515 /// Tunable parameters that control the analysis. 516 const InlineParams &Params; 517 518 // This DenseMap stores the delta change in cost and threshold after 519 // accounting for the given instruction. The map is filled only with the 520 // flag PrintInstructionComments on. 521 DenseMap<const Instruction *, InstructionCostDetail> InstructionCostDetailMap; 522 523 /// Upper bound for the inlining cost. Bonuses are being applied to account 524 /// for speculative "expected profit" of the inlining decision. 525 int Threshold = 0; 526 527 /// Attempt to evaluate indirect calls to boost its inline cost. 528 const bool BoostIndirectCalls; 529 530 /// Ignore the threshold when finalizing analysis. 531 const bool IgnoreThreshold; 532 533 // True if the cost-benefit-analysis-based inliner is enabled. 534 const bool CostBenefitAnalysisEnabled; 535 536 /// Inlining cost measured in abstract units, accounts for all the 537 /// instructions expected to be executed for a given function invocation. 538 /// Instructions that are statically proven to be dead based on call-site 539 /// arguments are not counted here. 540 int Cost = 0; 541 542 // The cumulative cost at the beginning of the basic block being analyzed. At 543 // the end of analyzing each basic block, "Cost - CostAtBBStart" represents 544 // the size of that basic block. 545 int CostAtBBStart = 0; 546 547 // The static size of live but cold basic blocks. This is "static" in the 548 // sense that it's not weighted by profile counts at all. 549 int ColdSize = 0; 550 551 // Whether inlining is decided by cost-threshold analysis. 552 bool DecidedByCostThreshold = false; 553 554 // Whether inlining is decided by cost-benefit analysis. 555 bool DecidedByCostBenefit = false; 556 557 // The cost-benefit pair computed by cost-benefit analysis. 558 Optional<CostBenefitPair> CostBenefit = None; 559 560 bool SingleBB = true; 561 562 unsigned SROACostSavings = 0; 563 unsigned SROACostSavingsLost = 0; 564 565 /// The mapping of caller Alloca values to their accumulated cost savings. If 566 /// we have to disable SROA for one of the allocas, this tells us how much 567 /// cost must be added. 568 DenseMap<AllocaInst *, int> SROAArgCosts; 569 570 /// Return true if \p Call is a cold callsite. 571 bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI); 572 573 /// Update Threshold based on callsite properties such as callee 574 /// attributes and callee hotness for PGO builds. The Callee is explicitly 575 /// passed to support analyzing indirect calls whose target is inferred by 576 /// analysis. 577 void updateThreshold(CallBase &Call, Function &Callee); 578 /// Return a higher threshold if \p Call is a hot callsite. 579 Optional<int> getHotCallSiteThreshold(CallBase &Call, 580 BlockFrequencyInfo *CallerBFI); 581 582 /// Handle a capped 'int' increment for Cost. 583 void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) { 584 assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound"); 585 Cost = std::min<int>(UpperBound, Cost + Inc); 586 } 587 588 void onDisableSROA(AllocaInst *Arg) override { 589 auto CostIt = SROAArgCosts.find(Arg); 590 if (CostIt == SROAArgCosts.end()) 591 return; 592 addCost(CostIt->second); 593 SROACostSavings -= CostIt->second; 594 SROACostSavingsLost += CostIt->second; 595 SROAArgCosts.erase(CostIt); 596 } 597 598 void onDisableLoadElimination() override { 599 addCost(LoadEliminationCost); 600 LoadEliminationCost = 0; 601 } 602 603 bool onCallBaseVisitStart(CallBase &Call) override { 604 if (Optional<int> AttrCallThresholdBonus = 605 getStringFnAttrAsInt(Call, "call-threshold-bonus")) 606 Threshold += *AttrCallThresholdBonus; 607 608 if (Optional<int> AttrCallCost = 609 getStringFnAttrAsInt(Call, "call-inline-cost")) { 610 addCost(*AttrCallCost); 611 // Prevent further processing of the call since we want to override its 612 // inline cost, not just add to it. 613 return false; 614 } 615 return true; 616 } 617 618 void onCallPenalty() override { addCost(CallPenalty); } 619 void onCallArgumentSetup(const CallBase &Call) override { 620 // Pay the price of the argument setup. We account for the average 1 621 // instruction per call argument setup here. 622 addCost(Call.arg_size() * InlineConstants::InstrCost); 623 } 624 void onLoadRelativeIntrinsic() override { 625 // This is normally lowered to 4 LLVM instructions. 626 addCost(3 * InlineConstants::InstrCost); 627 } 628 void onLoweredCall(Function *F, CallBase &Call, 629 bool IsIndirectCall) override { 630 // We account for the average 1 instruction per call argument setup here. 631 addCost(Call.arg_size() * InlineConstants::InstrCost); 632 633 // If we have a constant that we are calling as a function, we can peer 634 // through it and see the function target. This happens not infrequently 635 // during devirtualization and so we want to give it a hefty bonus for 636 // inlining, but cap that bonus in the event that inlining wouldn't pan out. 637 // Pretend to inline the function, with a custom threshold. 638 if (IsIndirectCall && BoostIndirectCalls) { 639 auto IndirectCallParams = Params; 640 IndirectCallParams.DefaultThreshold = 641 InlineConstants::IndirectCallThreshold; 642 /// FIXME: if InlineCostCallAnalyzer is derived from, this may need 643 /// to instantiate the derived class. 644 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 645 GetAssumptionCache, GetBFI, PSI, ORE, false); 646 if (CA.analyze().isSuccess()) { 647 // We were able to inline the indirect call! Subtract the cost from the 648 // threshold to get the bonus we want to apply, but don't go below zero. 649 Cost -= std::max(0, CA.getThreshold() - CA.getCost()); 650 } 651 } else 652 // Otherwise simply add the cost for merely making the call. 653 addCost(CallPenalty); 654 } 655 656 void onFinalizeSwitch(unsigned JumpTableSize, 657 unsigned NumCaseCluster) override { 658 // If suitable for a jump table, consider the cost for the table size and 659 // branch to destination. 660 // Maximum valid cost increased in this function. 661 if (JumpTableSize) { 662 int64_t JTCost = 663 static_cast<int64_t>(JumpTableSize) * InlineConstants::InstrCost + 664 4 * InlineConstants::InstrCost; 665 666 addCost(JTCost, static_cast<int64_t>(CostUpperBound)); 667 return; 668 } 669 670 if (NumCaseCluster <= 3) { 671 // Suppose a comparison includes one compare and one conditional branch. 672 addCost(NumCaseCluster * 2 * InlineConstants::InstrCost); 673 return; 674 } 675 676 int64_t ExpectedNumberOfCompare = 677 getExpectedNumberOfCompare(NumCaseCluster); 678 int64_t SwitchCost = 679 ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost; 680 681 addCost(SwitchCost, static_cast<int64_t>(CostUpperBound)); 682 } 683 void onMissedSimplification() override { 684 addCost(InlineConstants::InstrCost); 685 } 686 687 void onInitializeSROAArg(AllocaInst *Arg) override { 688 assert(Arg != nullptr && 689 "Should not initialize SROA costs for null value."); 690 SROAArgCosts[Arg] = 0; 691 } 692 693 void onAggregateSROAUse(AllocaInst *SROAArg) override { 694 auto CostIt = SROAArgCosts.find(SROAArg); 695 assert(CostIt != SROAArgCosts.end() && 696 "expected this argument to have a cost"); 697 CostIt->second += InlineConstants::InstrCost; 698 SROACostSavings += InlineConstants::InstrCost; 699 } 700 701 void onBlockStart(const BasicBlock *BB) override { CostAtBBStart = Cost; } 702 703 void onBlockAnalyzed(const BasicBlock *BB) override { 704 if (CostBenefitAnalysisEnabled) { 705 // Keep track of the static size of live but cold basic blocks. For now, 706 // we define a cold basic block to be one that's never executed. 707 assert(GetBFI && "GetBFI must be available"); 708 BlockFrequencyInfo *BFI = &(GetBFI(F)); 709 assert(BFI && "BFI must be available"); 710 auto ProfileCount = BFI->getBlockProfileCount(BB); 711 assert(ProfileCount.hasValue()); 712 if (ProfileCount.getValue() == 0) 713 ColdSize += Cost - CostAtBBStart; 714 } 715 716 auto *TI = BB->getTerminator(); 717 // If we had any successors at this point, than post-inlining is likely to 718 // have them as well. Note that we assume any basic blocks which existed 719 // due to branches or switches which folded above will also fold after 720 // inlining. 721 if (SingleBB && TI->getNumSuccessors() > 1) { 722 // Take off the bonus we applied to the threshold. 723 Threshold -= SingleBBBonus; 724 SingleBB = false; 725 } 726 } 727 728 void onInstructionAnalysisStart(const Instruction *I) override { 729 // This function is called to store the initial cost of inlining before 730 // the given instruction was assessed. 731 if (!PrintInstructionComments) 732 return; 733 InstructionCostDetailMap[I].CostBefore = Cost; 734 InstructionCostDetailMap[I].ThresholdBefore = Threshold; 735 } 736 737 void onInstructionAnalysisFinish(const Instruction *I) override { 738 // This function is called to find new values of cost and threshold after 739 // the instruction has been assessed. 740 if (!PrintInstructionComments) 741 return; 742 InstructionCostDetailMap[I].CostAfter = Cost; 743 InstructionCostDetailMap[I].ThresholdAfter = Threshold; 744 } 745 746 bool isCostBenefitAnalysisEnabled() { 747 if (!PSI || !PSI->hasProfileSummary()) 748 return false; 749 750 if (!GetBFI) 751 return false; 752 753 if (InlineEnableCostBenefitAnalysis.getNumOccurrences()) { 754 // Honor the explicit request from the user. 755 if (!InlineEnableCostBenefitAnalysis) 756 return false; 757 } else { 758 // Otherwise, require instrumentation profile. 759 if (!PSI->hasInstrumentationProfile()) 760 return false; 761 } 762 763 auto *Caller = CandidateCall.getParent()->getParent(); 764 if (!Caller->getEntryCount()) 765 return false; 766 767 BlockFrequencyInfo *CallerBFI = &(GetBFI(*Caller)); 768 if (!CallerBFI) 769 return false; 770 771 // For now, limit to hot call site. 772 if (!PSI->isHotCallSite(CandidateCall, CallerBFI)) 773 return false; 774 775 // Make sure we have a nonzero entry count. 776 auto EntryCount = F.getEntryCount(); 777 if (!EntryCount || !EntryCount->getCount()) 778 return false; 779 780 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 781 if (!CalleeBFI) 782 return false; 783 784 return true; 785 } 786 787 // Determine whether we should inline the given call site, taking into account 788 // both the size cost and the cycle savings. Return None if we don't have 789 // suficient profiling information to determine. 790 Optional<bool> costBenefitAnalysis() { 791 if (!CostBenefitAnalysisEnabled) 792 return None; 793 794 // buildInlinerPipeline in the pass builder sets HotCallSiteThreshold to 0 795 // for the prelink phase of the AutoFDO + ThinLTO build. Honor the logic by 796 // falling back to the cost-based metric. 797 // TODO: Improve this hacky condition. 798 if (Threshold == 0) 799 return None; 800 801 assert(GetBFI); 802 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 803 assert(CalleeBFI); 804 805 // The cycle savings expressed as the sum of InlineConstants::InstrCost 806 // multiplied by the estimated dynamic count of each instruction we can 807 // avoid. Savings come from the call site cost, such as argument setup and 808 // the call instruction, as well as the instructions that are folded. 809 // 810 // We use 128-bit APInt here to avoid potential overflow. This variable 811 // should stay well below 10^^24 (or 2^^80) in practice. This "worst" case 812 // assumes that we can avoid or fold a billion instructions, each with a 813 // profile count of 10^^15 -- roughly the number of cycles for a 24-hour 814 // period on a 4GHz machine. 815 APInt CycleSavings(128, 0); 816 817 for (auto &BB : F) { 818 APInt CurrentSavings(128, 0); 819 for (auto &I : BB) { 820 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) { 821 // Count a conditional branch as savings if it becomes unconditional. 822 if (BI->isConditional() && 823 isa_and_nonnull<ConstantInt>( 824 SimplifiedValues.lookup(BI->getCondition()))) { 825 CurrentSavings += InlineConstants::InstrCost; 826 } 827 } else if (Value *V = dyn_cast<Value>(&I)) { 828 // Count an instruction as savings if we can fold it. 829 if (SimplifiedValues.count(V)) { 830 CurrentSavings += InlineConstants::InstrCost; 831 } 832 } 833 } 834 835 auto ProfileCount = CalleeBFI->getBlockProfileCount(&BB); 836 assert(ProfileCount.hasValue()); 837 CurrentSavings *= ProfileCount.getValue(); 838 CycleSavings += CurrentSavings; 839 } 840 841 // Compute the cycle savings per call. 842 auto EntryProfileCount = F.getEntryCount(); 843 assert(EntryProfileCount.hasValue() && EntryProfileCount->getCount()); 844 auto EntryCount = EntryProfileCount->getCount(); 845 CycleSavings += EntryCount / 2; 846 CycleSavings = CycleSavings.udiv(EntryCount); 847 848 // Compute the total savings for the call site. 849 auto *CallerBB = CandidateCall.getParent(); 850 BlockFrequencyInfo *CallerBFI = &(GetBFI(*(CallerBB->getParent()))); 851 CycleSavings += getCallsiteCost(this->CandidateCall, DL); 852 CycleSavings *= CallerBFI->getBlockProfileCount(CallerBB).getValue(); 853 854 // Remove the cost of the cold basic blocks. 855 int Size = Cost - ColdSize; 856 857 // Allow tiny callees to be inlined regardless of whether they meet the 858 // savings threshold. 859 Size = Size > InlineSizeAllowance ? Size - InlineSizeAllowance : 1; 860 861 CostBenefit.emplace(APInt(128, Size), CycleSavings); 862 863 // Return true if the savings justify the cost of inlining. Specifically, 864 // we evaluate the following inequality: 865 // 866 // CycleSavings PSI->getOrCompHotCountThreshold() 867 // -------------- >= ----------------------------------- 868 // Size InlineSavingsMultiplier 869 // 870 // Note that the left hand side is specific to a call site. The right hand 871 // side is a constant for the entire executable. 872 APInt LHS = CycleSavings; 873 LHS *= InlineSavingsMultiplier; 874 APInt RHS(128, PSI->getOrCompHotCountThreshold()); 875 RHS *= Size; 876 return LHS.uge(RHS); 877 } 878 879 InlineResult finalizeAnalysis() override { 880 // Loops generally act a lot like calls in that they act like barriers to 881 // movement, require a certain amount of setup, etc. So when optimising for 882 // size, we penalise any call sites that perform loops. We do this after all 883 // other costs here, so will likely only be dealing with relatively small 884 // functions (and hence DT and LI will hopefully be cheap). 885 auto *Caller = CandidateCall.getFunction(); 886 if (Caller->hasMinSize()) { 887 DominatorTree DT(F); 888 LoopInfo LI(DT); 889 int NumLoops = 0; 890 for (Loop *L : LI) { 891 // Ignore loops that will not be executed 892 if (DeadBlocks.count(L->getHeader())) 893 continue; 894 NumLoops++; 895 } 896 addCost(NumLoops * InlineConstants::LoopPenalty); 897 } 898 899 // We applied the maximum possible vector bonus at the beginning. Now, 900 // subtract the excess bonus, if any, from the Threshold before 901 // comparing against Cost. 902 if (NumVectorInstructions <= NumInstructions / 10) 903 Threshold -= VectorBonus; 904 else if (NumVectorInstructions <= NumInstructions / 2) 905 Threshold -= VectorBonus / 2; 906 907 if (Optional<int> AttrCost = 908 getStringFnAttrAsInt(CandidateCall, "function-inline-cost")) 909 Cost = *AttrCost; 910 911 if (Optional<int> AttrCostMult = getStringFnAttrAsInt( 912 CandidateCall, 913 InlineConstants::FunctionInlineCostMultiplierAttributeName)) 914 Cost *= *AttrCostMult; 915 916 if (Optional<int> AttrThreshold = 917 getStringFnAttrAsInt(CandidateCall, "function-inline-threshold")) 918 Threshold = *AttrThreshold; 919 920 if (auto Result = costBenefitAnalysis()) { 921 DecidedByCostBenefit = true; 922 if (Result.getValue()) 923 return InlineResult::success(); 924 else 925 return InlineResult::failure("Cost over threshold."); 926 } 927 928 if (IgnoreThreshold) 929 return InlineResult::success(); 930 931 DecidedByCostThreshold = true; 932 return Cost < std::max(1, Threshold) 933 ? InlineResult::success() 934 : InlineResult::failure("Cost over threshold."); 935 } 936 937 bool shouldStop() override { 938 if (IgnoreThreshold || ComputeFullInlineCost) 939 return false; 940 // Bail out the moment we cross the threshold. This means we'll under-count 941 // the cost, but only when undercounting doesn't matter. 942 if (Cost < Threshold) 943 return false; 944 DecidedByCostThreshold = true; 945 return true; 946 } 947 948 void onLoadEliminationOpportunity() override { 949 LoadEliminationCost += InlineConstants::InstrCost; 950 } 951 952 InlineResult onAnalysisStart() override { 953 // Perform some tweaks to the cost and threshold based on the direct 954 // callsite information. 955 956 // We want to more aggressively inline vector-dense kernels, so up the 957 // threshold, and we'll lower it if the % of vector instructions gets too 958 // low. Note that these bonuses are some what arbitrary and evolved over 959 // time by accident as much as because they are principled bonuses. 960 // 961 // FIXME: It would be nice to remove all such bonuses. At least it would be 962 // nice to base the bonus values on something more scientific. 963 assert(NumInstructions == 0); 964 assert(NumVectorInstructions == 0); 965 966 // Update the threshold based on callsite properties 967 updateThreshold(CandidateCall, F); 968 969 // While Threshold depends on commandline options that can take negative 970 // values, we want to enforce the invariant that the computed threshold and 971 // bonuses are non-negative. 972 assert(Threshold >= 0); 973 assert(SingleBBBonus >= 0); 974 assert(VectorBonus >= 0); 975 976 // Speculatively apply all possible bonuses to Threshold. If cost exceeds 977 // this Threshold any time, and cost cannot decrease, we can stop processing 978 // the rest of the function body. 979 Threshold += (SingleBBBonus + VectorBonus); 980 981 // Give out bonuses for the callsite, as the instructions setting them up 982 // will be gone after inlining. 983 addCost(-getCallsiteCost(this->CandidateCall, DL)); 984 985 // If this function uses the coldcc calling convention, prefer not to inline 986 // it. 987 if (F.getCallingConv() == CallingConv::Cold) 988 Cost += InlineConstants::ColdccPenalty; 989 990 // Check if we're done. This can happen due to bonuses and penalties. 991 if (Cost >= Threshold && !ComputeFullInlineCost) 992 return InlineResult::failure("high cost"); 993 994 return InlineResult::success(); 995 } 996 997 public: 998 InlineCostCallAnalyzer( 999 Function &Callee, CallBase &Call, const InlineParams &Params, 1000 const TargetTransformInfo &TTI, 1001 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 1002 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 1003 ProfileSummaryInfo *PSI = nullptr, 1004 OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true, 1005 bool IgnoreThreshold = false) 1006 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE), 1007 ComputeFullInlineCost(OptComputeFullInlineCost || 1008 Params.ComputeFullInlineCost || ORE || 1009 isCostBenefitAnalysisEnabled()), 1010 Params(Params), Threshold(Params.DefaultThreshold), 1011 BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold), 1012 CostBenefitAnalysisEnabled(isCostBenefitAnalysisEnabled()), 1013 Writer(this) { 1014 AllowRecursiveCall = Params.AllowRecursiveCall.getValue(); 1015 } 1016 1017 /// Annotation Writer for instruction details 1018 InlineCostAnnotationWriter Writer; 1019 1020 void dump(); 1021 1022 // Prints the same analysis as dump(), but its definition is not dependent 1023 // on the build. 1024 void print(raw_ostream &OS); 1025 1026 Optional<InstructionCostDetail> getCostDetails(const Instruction *I) { 1027 if (InstructionCostDetailMap.find(I) != InstructionCostDetailMap.end()) 1028 return InstructionCostDetailMap[I]; 1029 return None; 1030 } 1031 1032 virtual ~InlineCostCallAnalyzer() {} 1033 int getThreshold() const { return Threshold; } 1034 int getCost() const { return Cost; } 1035 Optional<CostBenefitPair> getCostBenefitPair() { return CostBenefit; } 1036 bool wasDecidedByCostBenefit() const { return DecidedByCostBenefit; } 1037 bool wasDecidedByCostThreshold() const { return DecidedByCostThreshold; } 1038 }; 1039 1040 class InlineCostFeaturesAnalyzer final : public CallAnalyzer { 1041 private: 1042 InlineCostFeatures Cost = {}; 1043 1044 // FIXME: These constants are taken from the heuristic-based cost visitor. 1045 // These should be removed entirely in a later revision to avoid reliance on 1046 // heuristics in the ML inliner. 1047 static constexpr int JTCostMultiplier = 4; 1048 static constexpr int CaseClusterCostMultiplier = 2; 1049 static constexpr int SwitchCostMultiplier = 2; 1050 1051 // FIXME: These are taken from the heuristic-based cost visitor: we should 1052 // eventually abstract these to the CallAnalyzer to avoid duplication. 1053 unsigned SROACostSavingOpportunities = 0; 1054 int VectorBonus = 0; 1055 int SingleBBBonus = 0; 1056 int Threshold = 5; 1057 1058 DenseMap<AllocaInst *, unsigned> SROACosts; 1059 1060 void increment(InlineCostFeatureIndex Feature, int64_t Delta = 1) { 1061 Cost[static_cast<size_t>(Feature)] += Delta; 1062 } 1063 1064 void set(InlineCostFeatureIndex Feature, int64_t Value) { 1065 Cost[static_cast<size_t>(Feature)] = Value; 1066 } 1067 1068 void onDisableSROA(AllocaInst *Arg) override { 1069 auto CostIt = SROACosts.find(Arg); 1070 if (CostIt == SROACosts.end()) 1071 return; 1072 1073 increment(InlineCostFeatureIndex::SROALosses, CostIt->second); 1074 SROACostSavingOpportunities -= CostIt->second; 1075 SROACosts.erase(CostIt); 1076 } 1077 1078 void onDisableLoadElimination() override { 1079 set(InlineCostFeatureIndex::LoadElimination, 1); 1080 } 1081 1082 void onCallPenalty() override { 1083 increment(InlineCostFeatureIndex::CallPenalty, CallPenalty); 1084 } 1085 1086 void onCallArgumentSetup(const CallBase &Call) override { 1087 increment(InlineCostFeatureIndex::CallArgumentSetup, 1088 Call.arg_size() * InlineConstants::InstrCost); 1089 } 1090 1091 void onLoadRelativeIntrinsic() override { 1092 increment(InlineCostFeatureIndex::LoadRelativeIntrinsic, 1093 3 * InlineConstants::InstrCost); 1094 } 1095 1096 void onLoweredCall(Function *F, CallBase &Call, 1097 bool IsIndirectCall) override { 1098 increment(InlineCostFeatureIndex::LoweredCallArgSetup, 1099 Call.arg_size() * InlineConstants::InstrCost); 1100 1101 if (IsIndirectCall) { 1102 InlineParams IndirectCallParams = {/* DefaultThreshold*/ 0, 1103 /*HintThreshold*/ {}, 1104 /*ColdThreshold*/ {}, 1105 /*OptSizeThreshold*/ {}, 1106 /*OptMinSizeThreshold*/ {}, 1107 /*HotCallSiteThreshold*/ {}, 1108 /*LocallyHotCallSiteThreshold*/ {}, 1109 /*ColdCallSiteThreshold*/ {}, 1110 /*ComputeFullInlineCost*/ true, 1111 /*EnableDeferral*/ true}; 1112 IndirectCallParams.DefaultThreshold = 1113 InlineConstants::IndirectCallThreshold; 1114 1115 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 1116 GetAssumptionCache, GetBFI, PSI, ORE, false, 1117 true); 1118 if (CA.analyze().isSuccess()) { 1119 increment(InlineCostFeatureIndex::NestedInlineCostEstimate, 1120 CA.getCost()); 1121 increment(InlineCostFeatureIndex::NestedInlines, 1); 1122 } 1123 } else { 1124 onCallPenalty(); 1125 } 1126 } 1127 1128 void onFinalizeSwitch(unsigned JumpTableSize, 1129 unsigned NumCaseCluster) override { 1130 1131 if (JumpTableSize) { 1132 int64_t JTCost = 1133 static_cast<int64_t>(JumpTableSize) * InlineConstants::InstrCost + 1134 JTCostMultiplier * InlineConstants::InstrCost; 1135 increment(InlineCostFeatureIndex::JumpTablePenalty, JTCost); 1136 return; 1137 } 1138 1139 if (NumCaseCluster <= 3) { 1140 increment(InlineCostFeatureIndex::CaseClusterPenalty, 1141 NumCaseCluster * CaseClusterCostMultiplier * 1142 InlineConstants::InstrCost); 1143 return; 1144 } 1145 1146 int64_t ExpectedNumberOfCompare = 1147 getExpectedNumberOfCompare(NumCaseCluster); 1148 1149 int64_t SwitchCost = ExpectedNumberOfCompare * SwitchCostMultiplier * 1150 InlineConstants::InstrCost; 1151 increment(InlineCostFeatureIndex::SwitchPenalty, SwitchCost); 1152 } 1153 1154 void onMissedSimplification() override { 1155 increment(InlineCostFeatureIndex::UnsimplifiedCommonInstructions, 1156 InlineConstants::InstrCost); 1157 } 1158 1159 void onInitializeSROAArg(AllocaInst *Arg) override { SROACosts[Arg] = 0; } 1160 void onAggregateSROAUse(AllocaInst *Arg) override { 1161 SROACosts.find(Arg)->second += InlineConstants::InstrCost; 1162 SROACostSavingOpportunities += InlineConstants::InstrCost; 1163 } 1164 1165 void onBlockAnalyzed(const BasicBlock *BB) override { 1166 if (BB->getTerminator()->getNumSuccessors() > 1) 1167 set(InlineCostFeatureIndex::IsMultipleBlocks, 1); 1168 Threshold -= SingleBBBonus; 1169 } 1170 1171 InlineResult finalizeAnalysis() override { 1172 auto *Caller = CandidateCall.getFunction(); 1173 if (Caller->hasMinSize()) { 1174 DominatorTree DT(F); 1175 LoopInfo LI(DT); 1176 for (Loop *L : LI) { 1177 // Ignore loops that will not be executed 1178 if (DeadBlocks.count(L->getHeader())) 1179 continue; 1180 increment(InlineCostFeatureIndex::NumLoops, 1181 InlineConstants::LoopPenalty); 1182 } 1183 } 1184 set(InlineCostFeatureIndex::DeadBlocks, DeadBlocks.size()); 1185 set(InlineCostFeatureIndex::SimplifiedInstructions, 1186 NumInstructionsSimplified); 1187 set(InlineCostFeatureIndex::ConstantArgs, NumConstantArgs); 1188 set(InlineCostFeatureIndex::ConstantOffsetPtrArgs, 1189 NumConstantOffsetPtrArgs); 1190 set(InlineCostFeatureIndex::SROASavings, SROACostSavingOpportunities); 1191 1192 if (NumVectorInstructions <= NumInstructions / 10) 1193 Threshold -= VectorBonus; 1194 else if (NumVectorInstructions <= NumInstructions / 2) 1195 Threshold -= VectorBonus / 2; 1196 1197 set(InlineCostFeatureIndex::Threshold, Threshold); 1198 1199 return InlineResult::success(); 1200 } 1201 1202 bool shouldStop() override { return false; } 1203 1204 void onLoadEliminationOpportunity() override { 1205 increment(InlineCostFeatureIndex::LoadElimination, 1); 1206 } 1207 1208 InlineResult onAnalysisStart() override { 1209 increment(InlineCostFeatureIndex::CallSiteCost, 1210 -1 * getCallsiteCost(this->CandidateCall, DL)); 1211 1212 set(InlineCostFeatureIndex::ColdCcPenalty, 1213 (F.getCallingConv() == CallingConv::Cold)); 1214 1215 // FIXME: we shouldn't repeat this logic in both the Features and Cost 1216 // analyzer - instead, we should abstract it to a common method in the 1217 // CallAnalyzer 1218 int SingleBBBonusPercent = 50; 1219 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1220 Threshold += TTI.adjustInliningThreshold(&CandidateCall); 1221 Threshold *= TTI.getInliningThresholdMultiplier(); 1222 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1223 VectorBonus = Threshold * VectorBonusPercent / 100; 1224 Threshold += (SingleBBBonus + VectorBonus); 1225 1226 return InlineResult::success(); 1227 } 1228 1229 public: 1230 InlineCostFeaturesAnalyzer( 1231 const TargetTransformInfo &TTI, 1232 function_ref<AssumptionCache &(Function &)> &GetAssumptionCache, 1233 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1234 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, Function &Callee, 1235 CallBase &Call) 1236 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI) {} 1237 1238 const InlineCostFeatures &features() const { return Cost; } 1239 }; 1240 1241 } // namespace 1242 1243 /// Test whether the given value is an Alloca-derived function argument. 1244 bool CallAnalyzer::isAllocaDerivedArg(Value *V) { 1245 return SROAArgValues.count(V); 1246 } 1247 1248 void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) { 1249 onDisableSROA(SROAArg); 1250 EnabledSROAAllocas.erase(SROAArg); 1251 disableLoadElimination(); 1252 } 1253 1254 void InlineCostAnnotationWriter::emitInstructionAnnot( 1255 const Instruction *I, formatted_raw_ostream &OS) { 1256 // The cost of inlining of the given instruction is printed always. 1257 // The threshold delta is printed only when it is non-zero. It happens 1258 // when we decided to give a bonus at a particular instruction. 1259 Optional<InstructionCostDetail> Record = ICCA->getCostDetails(I); 1260 if (!Record) 1261 OS << "; No analysis for the instruction"; 1262 else { 1263 OS << "; cost before = " << Record->CostBefore 1264 << ", cost after = " << Record->CostAfter 1265 << ", threshold before = " << Record->ThresholdBefore 1266 << ", threshold after = " << Record->ThresholdAfter << ", "; 1267 OS << "cost delta = " << Record->getCostDelta(); 1268 if (Record->hasThresholdChanged()) 1269 OS << ", threshold delta = " << Record->getThresholdDelta(); 1270 } 1271 auto C = ICCA->getSimplifiedValue(const_cast<Instruction *>(I)); 1272 if (C) { 1273 OS << ", simplified to "; 1274 C.getValue()->print(OS, true); 1275 } 1276 OS << "\n"; 1277 } 1278 1279 /// If 'V' maps to a SROA candidate, disable SROA for it. 1280 void CallAnalyzer::disableSROA(Value *V) { 1281 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 1282 disableSROAForArg(SROAArg); 1283 } 1284 } 1285 1286 void CallAnalyzer::disableLoadElimination() { 1287 if (EnableLoadElimination) { 1288 onDisableLoadElimination(); 1289 EnableLoadElimination = false; 1290 } 1291 } 1292 1293 /// Accumulate a constant GEP offset into an APInt if possible. 1294 /// 1295 /// Returns false if unable to compute the offset for any reason. Respects any 1296 /// simplified values known during the analysis of this callsite. 1297 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { 1298 unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType()); 1299 assert(IntPtrWidth == Offset.getBitWidth()); 1300 1301 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1302 GTI != GTE; ++GTI) { 1303 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 1304 if (!OpC) 1305 if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) 1306 OpC = dyn_cast<ConstantInt>(SimpleOp); 1307 if (!OpC) 1308 return false; 1309 if (OpC->isZero()) 1310 continue; 1311 1312 // Handle a struct index, which adds its field offset to the pointer. 1313 if (StructType *STy = GTI.getStructTypeOrNull()) { 1314 unsigned ElementIdx = OpC->getZExtValue(); 1315 const StructLayout *SL = DL.getStructLayout(STy); 1316 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); 1317 continue; 1318 } 1319 1320 APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType())); 1321 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; 1322 } 1323 return true; 1324 } 1325 1326 /// Use TTI to check whether a GEP is free. 1327 /// 1328 /// Respects any simplified values known during the analysis of this callsite. 1329 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) { 1330 SmallVector<Value *, 4> Operands; 1331 Operands.push_back(GEP.getOperand(0)); 1332 for (const Use &Op : GEP.indices()) 1333 if (Constant *SimpleOp = SimplifiedValues.lookup(Op)) 1334 Operands.push_back(SimpleOp); 1335 else 1336 Operands.push_back(Op); 1337 return TTI.getUserCost(&GEP, Operands, 1338 TargetTransformInfo::TCK_SizeAndLatency) == 1339 TargetTransformInfo::TCC_Free; 1340 } 1341 1342 bool CallAnalyzer::visitAlloca(AllocaInst &I) { 1343 disableSROA(I.getOperand(0)); 1344 1345 // Check whether inlining will turn a dynamic alloca into a static 1346 // alloca and handle that case. 1347 if (I.isArrayAllocation()) { 1348 Constant *Size = SimplifiedValues.lookup(I.getArraySize()); 1349 if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) { 1350 // Sometimes a dynamic alloca could be converted into a static alloca 1351 // after this constant prop, and become a huge static alloca on an 1352 // unconditional CFG path. Avoid inlining if this is going to happen above 1353 // a threshold. 1354 // FIXME: If the threshold is removed or lowered too much, we could end up 1355 // being too pessimistic and prevent inlining non-problematic code. This 1356 // could result in unintended perf regressions. A better overall strategy 1357 // is needed to track stack usage during inlining. 1358 Type *Ty = I.getAllocatedType(); 1359 AllocatedSize = SaturatingMultiplyAdd( 1360 AllocSize->getLimitedValue(), 1361 DL.getTypeAllocSize(Ty).getKnownMinSize(), AllocatedSize); 1362 if (AllocatedSize > InlineConstants::MaxSimplifiedDynamicAllocaToInline) 1363 HasDynamicAlloca = true; 1364 return false; 1365 } 1366 } 1367 1368 // Accumulate the allocated size. 1369 if (I.isStaticAlloca()) { 1370 Type *Ty = I.getAllocatedType(); 1371 AllocatedSize = 1372 SaturatingAdd(DL.getTypeAllocSize(Ty).getKnownMinSize(), AllocatedSize); 1373 } 1374 1375 // FIXME: This is overly conservative. Dynamic allocas are inefficient for 1376 // a variety of reasons, and so we would like to not inline them into 1377 // functions which don't currently have a dynamic alloca. This simply 1378 // disables inlining altogether in the presence of a dynamic alloca. 1379 if (!I.isStaticAlloca()) 1380 HasDynamicAlloca = true; 1381 1382 return false; 1383 } 1384 1385 bool CallAnalyzer::visitPHI(PHINode &I) { 1386 // FIXME: We need to propagate SROA *disabling* through phi nodes, even 1387 // though we don't want to propagate it's bonuses. The idea is to disable 1388 // SROA if it *might* be used in an inappropriate manner. 1389 1390 // Phi nodes are always zero-cost. 1391 // FIXME: Pointer sizes may differ between different address spaces, so do we 1392 // need to use correct address space in the call to getPointerSizeInBits here? 1393 // Or could we skip the getPointerSizeInBits call completely? As far as I can 1394 // see the ZeroOffset is used as a dummy value, so we can probably use any 1395 // bit width for the ZeroOffset? 1396 APInt ZeroOffset = APInt::getZero(DL.getPointerSizeInBits(0)); 1397 bool CheckSROA = I.getType()->isPointerTy(); 1398 1399 // Track the constant or pointer with constant offset we've seen so far. 1400 Constant *FirstC = nullptr; 1401 std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset}; 1402 Value *FirstV = nullptr; 1403 1404 for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) { 1405 BasicBlock *Pred = I.getIncomingBlock(i); 1406 // If the incoming block is dead, skip the incoming block. 1407 if (DeadBlocks.count(Pred)) 1408 continue; 1409 // If the parent block of phi is not the known successor of the incoming 1410 // block, skip the incoming block. 1411 BasicBlock *KnownSuccessor = KnownSuccessors[Pred]; 1412 if (KnownSuccessor && KnownSuccessor != I.getParent()) 1413 continue; 1414 1415 Value *V = I.getIncomingValue(i); 1416 // If the incoming value is this phi itself, skip the incoming value. 1417 if (&I == V) 1418 continue; 1419 1420 Constant *C = dyn_cast<Constant>(V); 1421 if (!C) 1422 C = SimplifiedValues.lookup(V); 1423 1424 std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset}; 1425 if (!C && CheckSROA) 1426 BaseAndOffset = ConstantOffsetPtrs.lookup(V); 1427 1428 if (!C && !BaseAndOffset.first) 1429 // The incoming value is neither a constant nor a pointer with constant 1430 // offset, exit early. 1431 return true; 1432 1433 if (FirstC) { 1434 if (FirstC == C) 1435 // If we've seen a constant incoming value before and it is the same 1436 // constant we see this time, continue checking the next incoming value. 1437 continue; 1438 // Otherwise early exit because we either see a different constant or saw 1439 // a constant before but we have a pointer with constant offset this time. 1440 return true; 1441 } 1442 1443 if (FirstV) { 1444 // The same logic as above, but check pointer with constant offset here. 1445 if (FirstBaseAndOffset == BaseAndOffset) 1446 continue; 1447 return true; 1448 } 1449 1450 if (C) { 1451 // This is the 1st time we've seen a constant, record it. 1452 FirstC = C; 1453 continue; 1454 } 1455 1456 // The remaining case is that this is the 1st time we've seen a pointer with 1457 // constant offset, record it. 1458 FirstV = V; 1459 FirstBaseAndOffset = BaseAndOffset; 1460 } 1461 1462 // Check if we can map phi to a constant. 1463 if (FirstC) { 1464 SimplifiedValues[&I] = FirstC; 1465 return true; 1466 } 1467 1468 // Check if we can map phi to a pointer with constant offset. 1469 if (FirstBaseAndOffset.first) { 1470 ConstantOffsetPtrs[&I] = FirstBaseAndOffset; 1471 1472 if (auto *SROAArg = getSROAArgForValueOrNull(FirstV)) 1473 SROAArgValues[&I] = SROAArg; 1474 } 1475 1476 return true; 1477 } 1478 1479 /// Check we can fold GEPs of constant-offset call site argument pointers. 1480 /// This requires target data and inbounds GEPs. 1481 /// 1482 /// \return true if the specified GEP can be folded. 1483 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) { 1484 // Check if we have a base + offset for the pointer. 1485 std::pair<Value *, APInt> BaseAndOffset = 1486 ConstantOffsetPtrs.lookup(I.getPointerOperand()); 1487 if (!BaseAndOffset.first) 1488 return false; 1489 1490 // Check if the offset of this GEP is constant, and if so accumulate it 1491 // into Offset. 1492 if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) 1493 return false; 1494 1495 // Add the result as a new mapping to Base + Offset. 1496 ConstantOffsetPtrs[&I] = BaseAndOffset; 1497 1498 return true; 1499 } 1500 1501 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { 1502 auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand()); 1503 1504 // Lambda to check whether a GEP's indices are all constant. 1505 auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) { 1506 for (const Use &Op : GEP.indices()) 1507 if (!isa<Constant>(Op) && !SimplifiedValues.lookup(Op)) 1508 return false; 1509 return true; 1510 }; 1511 1512 if (!DisableGEPConstOperand) 1513 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1514 SmallVector<Constant *, 2> Indices; 1515 for (unsigned int Index = 1; Index < COps.size(); ++Index) 1516 Indices.push_back(COps[Index]); 1517 return ConstantExpr::getGetElementPtr( 1518 I.getSourceElementType(), COps[0], Indices, I.isInBounds()); 1519 })) 1520 return true; 1521 1522 if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) { 1523 if (SROAArg) 1524 SROAArgValues[&I] = SROAArg; 1525 1526 // Constant GEPs are modeled as free. 1527 return true; 1528 } 1529 1530 // Variable GEPs will require math and will disable SROA. 1531 if (SROAArg) 1532 disableSROAForArg(SROAArg); 1533 return isGEPFree(I); 1534 } 1535 1536 /// Simplify \p I if its operands are constants and update SimplifiedValues. 1537 /// \p Evaluate is a callable specific to instruction type that evaluates the 1538 /// instruction when all the operands are constants. 1539 template <typename Callable> 1540 bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) { 1541 SmallVector<Constant *, 2> COps; 1542 for (Value *Op : I.operands()) { 1543 Constant *COp = dyn_cast<Constant>(Op); 1544 if (!COp) 1545 COp = SimplifiedValues.lookup(Op); 1546 if (!COp) 1547 return false; 1548 COps.push_back(COp); 1549 } 1550 auto *C = Evaluate(COps); 1551 if (!C) 1552 return false; 1553 SimplifiedValues[&I] = C; 1554 return true; 1555 } 1556 1557 /// Try to simplify a call to llvm.is.constant. 1558 /// 1559 /// Duplicate the argument checking from CallAnalyzer::simplifyCallSite since 1560 /// we expect calls of this specific intrinsic to be infrequent. 1561 /// 1562 /// FIXME: Given that we know CB's parent (F) caller 1563 /// (CandidateCall->getParent()->getParent()), we might be able to determine 1564 /// whether inlining F into F's caller would change how the call to 1565 /// llvm.is.constant would evaluate. 1566 bool CallAnalyzer::simplifyIntrinsicCallIsConstant(CallBase &CB) { 1567 Value *Arg = CB.getArgOperand(0); 1568 auto *C = dyn_cast<Constant>(Arg); 1569 1570 if (!C) 1571 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(Arg)); 1572 1573 Type *RT = CB.getFunctionType()->getReturnType(); 1574 SimplifiedValues[&CB] = ConstantInt::get(RT, C ? 1 : 0); 1575 return true; 1576 } 1577 1578 bool CallAnalyzer::visitBitCast(BitCastInst &I) { 1579 // Propagate constants through bitcasts. 1580 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1581 return ConstantExpr::getBitCast(COps[0], I.getType()); 1582 })) 1583 return true; 1584 1585 // Track base/offsets through casts 1586 std::pair<Value *, APInt> BaseAndOffset = 1587 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1588 // Casts don't change the offset, just wrap it up. 1589 if (BaseAndOffset.first) 1590 ConstantOffsetPtrs[&I] = BaseAndOffset; 1591 1592 // Also look for SROA candidates here. 1593 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1594 SROAArgValues[&I] = SROAArg; 1595 1596 // Bitcasts are always zero cost. 1597 return true; 1598 } 1599 1600 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { 1601 // Propagate constants through ptrtoint. 1602 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1603 return ConstantExpr::getPtrToInt(COps[0], I.getType()); 1604 })) 1605 return true; 1606 1607 // Track base/offset pairs when converted to a plain integer provided the 1608 // integer is large enough to represent the pointer. 1609 unsigned IntegerSize = I.getType()->getScalarSizeInBits(); 1610 unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace(); 1611 if (IntegerSize == DL.getPointerSizeInBits(AS)) { 1612 std::pair<Value *, APInt> BaseAndOffset = 1613 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1614 if (BaseAndOffset.first) 1615 ConstantOffsetPtrs[&I] = BaseAndOffset; 1616 } 1617 1618 // This is really weird. Technically, ptrtoint will disable SROA. However, 1619 // unless that ptrtoint is *used* somewhere in the live basic blocks after 1620 // inlining, it will be nuked, and SROA should proceed. All of the uses which 1621 // would block SROA would also block SROA if applied directly to a pointer, 1622 // and so we can just add the integer in here. The only places where SROA is 1623 // preserved either cannot fire on an integer, or won't in-and-of themselves 1624 // disable SROA (ext) w/o some later use that we would see and disable. 1625 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1626 SROAArgValues[&I] = SROAArg; 1627 1628 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1629 TargetTransformInfo::TCC_Free; 1630 } 1631 1632 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { 1633 // Propagate constants through ptrtoint. 1634 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1635 return ConstantExpr::getIntToPtr(COps[0], I.getType()); 1636 })) 1637 return true; 1638 1639 // Track base/offset pairs when round-tripped through a pointer without 1640 // modifications provided the integer is not too large. 1641 Value *Op = I.getOperand(0); 1642 unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); 1643 if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) { 1644 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); 1645 if (BaseAndOffset.first) 1646 ConstantOffsetPtrs[&I] = BaseAndOffset; 1647 } 1648 1649 // "Propagate" SROA here in the same manner as we do for ptrtoint above. 1650 if (auto *SROAArg = getSROAArgForValueOrNull(Op)) 1651 SROAArgValues[&I] = SROAArg; 1652 1653 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1654 TargetTransformInfo::TCC_Free; 1655 } 1656 1657 bool CallAnalyzer::visitCastInst(CastInst &I) { 1658 // Propagate constants through casts. 1659 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1660 return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType()); 1661 })) 1662 return true; 1663 1664 // Disable SROA in the face of arbitrary casts we don't explicitly list 1665 // elsewhere. 1666 disableSROA(I.getOperand(0)); 1667 1668 // If this is a floating-point cast, and the target says this operation 1669 // is expensive, this may eventually become a library call. Treat the cost 1670 // as such. 1671 switch (I.getOpcode()) { 1672 case Instruction::FPTrunc: 1673 case Instruction::FPExt: 1674 case Instruction::UIToFP: 1675 case Instruction::SIToFP: 1676 case Instruction::FPToUI: 1677 case Instruction::FPToSI: 1678 if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) 1679 onCallPenalty(); 1680 break; 1681 default: 1682 break; 1683 } 1684 1685 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1686 TargetTransformInfo::TCC_Free; 1687 } 1688 1689 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { 1690 return CandidateCall.paramHasAttr(A->getArgNo(), Attr); 1691 } 1692 1693 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { 1694 // Does the *call site* have the NonNull attribute set on an argument? We 1695 // use the attribute on the call site to memoize any analysis done in the 1696 // caller. This will also trip if the callee function has a non-null 1697 // parameter attribute, but that's a less interesting case because hopefully 1698 // the callee would already have been simplified based on that. 1699 if (Argument *A = dyn_cast<Argument>(V)) 1700 if (paramHasAttr(A, Attribute::NonNull)) 1701 return true; 1702 1703 // Is this an alloca in the caller? This is distinct from the attribute case 1704 // above because attributes aren't updated within the inliner itself and we 1705 // always want to catch the alloca derived case. 1706 if (isAllocaDerivedArg(V)) 1707 // We can actually predict the result of comparisons between an 1708 // alloca-derived value and null. Note that this fires regardless of 1709 // SROA firing. 1710 return true; 1711 1712 return false; 1713 } 1714 1715 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) { 1716 // If the normal destination of the invoke or the parent block of the call 1717 // site is unreachable-terminated, there is little point in inlining this 1718 // unless there is literally zero cost. 1719 // FIXME: Note that it is possible that an unreachable-terminated block has a 1720 // hot entry. For example, in below scenario inlining hot_call_X() may be 1721 // beneficial : 1722 // main() { 1723 // hot_call_1(); 1724 // ... 1725 // hot_call_N() 1726 // exit(0); 1727 // } 1728 // For now, we are not handling this corner case here as it is rare in real 1729 // code. In future, we should elaborate this based on BPI and BFI in more 1730 // general threshold adjusting heuristics in updateThreshold(). 1731 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 1732 if (isa<UnreachableInst>(II->getNormalDest()->getTerminator())) 1733 return false; 1734 } else if (isa<UnreachableInst>(Call.getParent()->getTerminator())) 1735 return false; 1736 1737 return true; 1738 } 1739 1740 bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call, 1741 BlockFrequencyInfo *CallerBFI) { 1742 // If global profile summary is available, then callsite's coldness is 1743 // determined based on that. 1744 if (PSI && PSI->hasProfileSummary()) 1745 return PSI->isColdCallSite(Call, CallerBFI); 1746 1747 // Otherwise we need BFI to be available. 1748 if (!CallerBFI) 1749 return false; 1750 1751 // Determine if the callsite is cold relative to caller's entry. We could 1752 // potentially cache the computation of scaled entry frequency, but the added 1753 // complexity is not worth it unless this scaling shows up high in the 1754 // profiles. 1755 const BranchProbability ColdProb(ColdCallSiteRelFreq, 100); 1756 auto CallSiteBB = Call.getParent(); 1757 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB); 1758 auto CallerEntryFreq = 1759 CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock())); 1760 return CallSiteFreq < CallerEntryFreq * ColdProb; 1761 } 1762 1763 Optional<int> 1764 InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call, 1765 BlockFrequencyInfo *CallerBFI) { 1766 1767 // If global profile summary is available, then callsite's hotness is 1768 // determined based on that. 1769 if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI)) 1770 return Params.HotCallSiteThreshold; 1771 1772 // Otherwise we need BFI to be available and to have a locally hot callsite 1773 // threshold. 1774 if (!CallerBFI || !Params.LocallyHotCallSiteThreshold) 1775 return None; 1776 1777 // Determine if the callsite is hot relative to caller's entry. We could 1778 // potentially cache the computation of scaled entry frequency, but the added 1779 // complexity is not worth it unless this scaling shows up high in the 1780 // profiles. 1781 auto CallSiteBB = Call.getParent(); 1782 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency(); 1783 auto CallerEntryFreq = CallerBFI->getEntryFreq(); 1784 if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq) 1785 return Params.LocallyHotCallSiteThreshold; 1786 1787 // Otherwise treat it normally. 1788 return None; 1789 } 1790 1791 void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) { 1792 // If no size growth is allowed for this inlining, set Threshold to 0. 1793 if (!allowSizeGrowth(Call)) { 1794 Threshold = 0; 1795 return; 1796 } 1797 1798 Function *Caller = Call.getCaller(); 1799 1800 // return min(A, B) if B is valid. 1801 auto MinIfValid = [](int A, Optional<int> B) { 1802 return B ? std::min(A, B.getValue()) : A; 1803 }; 1804 1805 // return max(A, B) if B is valid. 1806 auto MaxIfValid = [](int A, Optional<int> B) { 1807 return B ? std::max(A, B.getValue()) : A; 1808 }; 1809 1810 // Various bonus percentages. These are multiplied by Threshold to get the 1811 // bonus values. 1812 // SingleBBBonus: This bonus is applied if the callee has a single reachable 1813 // basic block at the given callsite context. This is speculatively applied 1814 // and withdrawn if more than one basic block is seen. 1815 // 1816 // LstCallToStaticBonus: This large bonus is applied to ensure the inlining 1817 // of the last call to a static function as inlining such functions is 1818 // guaranteed to reduce code size. 1819 // 1820 // These bonus percentages may be set to 0 based on properties of the caller 1821 // and the callsite. 1822 int SingleBBBonusPercent = 50; 1823 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1824 int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus; 1825 1826 // Lambda to set all the above bonus and bonus percentages to 0. 1827 auto DisallowAllBonuses = [&]() { 1828 SingleBBBonusPercent = 0; 1829 VectorBonusPercent = 0; 1830 LastCallToStaticBonus = 0; 1831 }; 1832 1833 // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available 1834 // and reduce the threshold if the caller has the necessary attribute. 1835 if (Caller->hasMinSize()) { 1836 Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold); 1837 // For minsize, we want to disable the single BB bonus and the vector 1838 // bonuses, but not the last-call-to-static bonus. Inlining the last call to 1839 // a static function will, at the minimum, eliminate the parameter setup and 1840 // call/return instructions. 1841 SingleBBBonusPercent = 0; 1842 VectorBonusPercent = 0; 1843 } else if (Caller->hasOptSize()) 1844 Threshold = MinIfValid(Threshold, Params.OptSizeThreshold); 1845 1846 // Adjust the threshold based on inlinehint attribute and profile based 1847 // hotness information if the caller does not have MinSize attribute. 1848 if (!Caller->hasMinSize()) { 1849 if (Callee.hasFnAttribute(Attribute::InlineHint)) 1850 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1851 1852 // FIXME: After switching to the new passmanager, simplify the logic below 1853 // by checking only the callsite hotness/coldness as we will reliably 1854 // have local profile information. 1855 // 1856 // Callsite hotness and coldness can be determined if sample profile is 1857 // used (which adds hotness metadata to calls) or if caller's 1858 // BlockFrequencyInfo is available. 1859 BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr; 1860 auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI); 1861 if (!Caller->hasOptSize() && HotCallSiteThreshold) { 1862 LLVM_DEBUG(dbgs() << "Hot callsite.\n"); 1863 // FIXME: This should update the threshold only if it exceeds the 1864 // current threshold, but AutoFDO + ThinLTO currently relies on this 1865 // behavior to prevent inlining of hot callsites during ThinLTO 1866 // compile phase. 1867 Threshold = HotCallSiteThreshold.getValue(); 1868 } else if (isColdCallSite(Call, CallerBFI)) { 1869 LLVM_DEBUG(dbgs() << "Cold callsite.\n"); 1870 // Do not apply bonuses for a cold callsite including the 1871 // LastCallToStatic bonus. While this bonus might result in code size 1872 // reduction, it can cause the size of a non-cold caller to increase 1873 // preventing it from being inlined. 1874 DisallowAllBonuses(); 1875 Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold); 1876 } else if (PSI) { 1877 // Use callee's global profile information only if we have no way of 1878 // determining this via callsite information. 1879 if (PSI->isFunctionEntryHot(&Callee)) { 1880 LLVM_DEBUG(dbgs() << "Hot callee.\n"); 1881 // If callsite hotness can not be determined, we may still know 1882 // that the callee is hot and treat it as a weaker hint for threshold 1883 // increase. 1884 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1885 } else if (PSI->isFunctionEntryCold(&Callee)) { 1886 LLVM_DEBUG(dbgs() << "Cold callee.\n"); 1887 // Do not apply bonuses for a cold callee including the 1888 // LastCallToStatic bonus. While this bonus might result in code size 1889 // reduction, it can cause the size of a non-cold caller to increase 1890 // preventing it from being inlined. 1891 DisallowAllBonuses(); 1892 Threshold = MinIfValid(Threshold, Params.ColdThreshold); 1893 } 1894 } 1895 } 1896 1897 Threshold += TTI.adjustInliningThreshold(&Call); 1898 1899 // Finally, take the target-specific inlining threshold multiplier into 1900 // account. 1901 Threshold *= TTI.getInliningThresholdMultiplier(); 1902 1903 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1904 VectorBonus = Threshold * VectorBonusPercent / 100; 1905 1906 bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneLiveUse() && 1907 &F == Call.getCalledFunction(); 1908 // If there is only one call of the function, and it has internal linkage, 1909 // the cost of inlining it drops dramatically. It may seem odd to update 1910 // Cost in updateThreshold, but the bonus depends on the logic in this method. 1911 if (OnlyOneCallAndLocalLinkage) 1912 Cost -= LastCallToStaticBonus; 1913 } 1914 1915 bool CallAnalyzer::visitCmpInst(CmpInst &I) { 1916 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1917 // First try to handle simplified comparisons. 1918 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1919 return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]); 1920 })) 1921 return true; 1922 1923 if (I.getOpcode() == Instruction::FCmp) 1924 return false; 1925 1926 // Otherwise look for a comparison between constant offset pointers with 1927 // a common base. 1928 Value *LHSBase, *RHSBase; 1929 APInt LHSOffset, RHSOffset; 1930 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1931 if (LHSBase) { 1932 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1933 if (RHSBase && LHSBase == RHSBase) { 1934 // We have common bases, fold the icmp to a constant based on the 1935 // offsets. 1936 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1937 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1938 if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { 1939 SimplifiedValues[&I] = C; 1940 ++NumConstantPtrCmps; 1941 return true; 1942 } 1943 } 1944 } 1945 1946 // If the comparison is an equality comparison with null, we can simplify it 1947 // if we know the value (argument) can't be null 1948 if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) && 1949 isKnownNonNullInCallee(I.getOperand(0))) { 1950 bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; 1951 SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) 1952 : ConstantInt::getFalse(I.getType()); 1953 return true; 1954 } 1955 return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1))); 1956 } 1957 1958 bool CallAnalyzer::visitSub(BinaryOperator &I) { 1959 // Try to handle a special case: we can fold computing the difference of two 1960 // constant-related pointers. 1961 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1962 Value *LHSBase, *RHSBase; 1963 APInt LHSOffset, RHSOffset; 1964 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1965 if (LHSBase) { 1966 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1967 if (RHSBase && LHSBase == RHSBase) { 1968 // We have common bases, fold the subtract to a constant based on the 1969 // offsets. 1970 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1971 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1972 if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { 1973 SimplifiedValues[&I] = C; 1974 ++NumConstantPtrDiffs; 1975 return true; 1976 } 1977 } 1978 } 1979 1980 // Otherwise, fall back to the generic logic for simplifying and handling 1981 // instructions. 1982 return Base::visitSub(I); 1983 } 1984 1985 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { 1986 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1987 Constant *CLHS = dyn_cast<Constant>(LHS); 1988 if (!CLHS) 1989 CLHS = SimplifiedValues.lookup(LHS); 1990 Constant *CRHS = dyn_cast<Constant>(RHS); 1991 if (!CRHS) 1992 CRHS = SimplifiedValues.lookup(RHS); 1993 1994 Value *SimpleV = nullptr; 1995 if (auto FI = dyn_cast<FPMathOperator>(&I)) 1996 SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, 1997 FI->getFastMathFlags(), DL); 1998 else 1999 SimpleV = 2000 SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL); 2001 2002 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 2003 SimplifiedValues[&I] = C; 2004 2005 if (SimpleV) 2006 return true; 2007 2008 // Disable any SROA on arguments to arbitrary, unsimplified binary operators. 2009 disableSROA(LHS); 2010 disableSROA(RHS); 2011 2012 // If the instruction is floating point, and the target says this operation 2013 // is expensive, this may eventually become a library call. Treat the cost 2014 // as such. Unless it's fneg which can be implemented with an xor. 2015 using namespace llvm::PatternMatch; 2016 if (I.getType()->isFloatingPointTy() && 2017 TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive && 2018 !match(&I, m_FNeg(m_Value()))) 2019 onCallPenalty(); 2020 2021 return false; 2022 } 2023 2024 bool CallAnalyzer::visitFNeg(UnaryOperator &I) { 2025 Value *Op = I.getOperand(0); 2026 Constant *COp = dyn_cast<Constant>(Op); 2027 if (!COp) 2028 COp = SimplifiedValues.lookup(Op); 2029 2030 Value *SimpleV = SimplifyFNegInst( 2031 COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL); 2032 2033 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 2034 SimplifiedValues[&I] = C; 2035 2036 if (SimpleV) 2037 return true; 2038 2039 // Disable any SROA on arguments to arbitrary, unsimplified fneg. 2040 disableSROA(Op); 2041 2042 return false; 2043 } 2044 2045 bool CallAnalyzer::visitLoad(LoadInst &I) { 2046 if (handleSROA(I.getPointerOperand(), I.isSimple())) 2047 return true; 2048 2049 // If the data is already loaded from this address and hasn't been clobbered 2050 // by any stores or calls, this load is likely to be redundant and can be 2051 // eliminated. 2052 if (EnableLoadElimination && 2053 !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) { 2054 onLoadEliminationOpportunity(); 2055 return true; 2056 } 2057 2058 return false; 2059 } 2060 2061 bool CallAnalyzer::visitStore(StoreInst &I) { 2062 if (handleSROA(I.getPointerOperand(), I.isSimple())) 2063 return true; 2064 2065 // The store can potentially clobber loads and prevent repeated loads from 2066 // being eliminated. 2067 // FIXME: 2068 // 1. We can probably keep an initial set of eliminatable loads substracted 2069 // from the cost even when we finally see a store. We just need to disable 2070 // *further* accumulation of elimination savings. 2071 // 2. We should probably at some point thread MemorySSA for the callee into 2072 // this and then use that to actually compute *really* precise savings. 2073 disableLoadElimination(); 2074 return false; 2075 } 2076 2077 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { 2078 // Constant folding for extract value is trivial. 2079 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 2080 return ConstantExpr::getExtractValue(COps[0], I.getIndices()); 2081 })) 2082 return true; 2083 2084 // SROA can't look through these, but they may be free. 2085 return Base::visitExtractValue(I); 2086 } 2087 2088 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { 2089 // Constant folding for insert value is trivial. 2090 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 2091 return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0], 2092 /*InsertedValueOperand*/ COps[1], 2093 I.getIndices()); 2094 })) 2095 return true; 2096 2097 // SROA can't look through these, but they may be free. 2098 return Base::visitInsertValue(I); 2099 } 2100 2101 /// Try to simplify a call site. 2102 /// 2103 /// Takes a concrete function and callsite and tries to actually simplify it by 2104 /// analyzing the arguments and call itself with instsimplify. Returns true if 2105 /// it has simplified the callsite to some other entity (a constant), making it 2106 /// free. 2107 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) { 2108 // FIXME: Using the instsimplify logic directly for this is inefficient 2109 // because we have to continually rebuild the argument list even when no 2110 // simplifications can be performed. Until that is fixed with remapping 2111 // inside of instsimplify, directly constant fold calls here. 2112 if (!canConstantFoldCallTo(&Call, F)) 2113 return false; 2114 2115 // Try to re-map the arguments to constants. 2116 SmallVector<Constant *, 4> ConstantArgs; 2117 ConstantArgs.reserve(Call.arg_size()); 2118 for (Value *I : Call.args()) { 2119 Constant *C = dyn_cast<Constant>(I); 2120 if (!C) 2121 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I)); 2122 if (!C) 2123 return false; // This argument doesn't map to a constant. 2124 2125 ConstantArgs.push_back(C); 2126 } 2127 if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) { 2128 SimplifiedValues[&Call] = C; 2129 return true; 2130 } 2131 2132 return false; 2133 } 2134 2135 bool CallAnalyzer::visitCallBase(CallBase &Call) { 2136 if (!onCallBaseVisitStart(Call)) 2137 return true; 2138 2139 if (Call.hasFnAttr(Attribute::ReturnsTwice) && 2140 !F.hasFnAttribute(Attribute::ReturnsTwice)) { 2141 // This aborts the entire analysis. 2142 ExposesReturnsTwice = true; 2143 return false; 2144 } 2145 if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate()) 2146 ContainsNoDuplicateCall = true; 2147 2148 Value *Callee = Call.getCalledOperand(); 2149 Function *F = dyn_cast_or_null<Function>(Callee); 2150 bool IsIndirectCall = !F; 2151 if (IsIndirectCall) { 2152 // Check if this happens to be an indirect function call to a known function 2153 // in this inline context. If not, we've done all we can. 2154 F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); 2155 if (!F) { 2156 onCallArgumentSetup(Call); 2157 2158 if (!Call.onlyReadsMemory()) 2159 disableLoadElimination(); 2160 return Base::visitCallBase(Call); 2161 } 2162 } 2163 2164 assert(F && "Expected a call to a known function"); 2165 2166 // When we have a concrete function, first try to simplify it directly. 2167 if (simplifyCallSite(F, Call)) 2168 return true; 2169 2170 // Next check if it is an intrinsic we know about. 2171 // FIXME: Lift this into part of the InstVisitor. 2172 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) { 2173 switch (II->getIntrinsicID()) { 2174 default: 2175 if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II)) 2176 disableLoadElimination(); 2177 return Base::visitCallBase(Call); 2178 2179 case Intrinsic::load_relative: 2180 onLoadRelativeIntrinsic(); 2181 return false; 2182 2183 case Intrinsic::memset: 2184 case Intrinsic::memcpy: 2185 case Intrinsic::memmove: 2186 disableLoadElimination(); 2187 // SROA can usually chew through these intrinsics, but they aren't free. 2188 return false; 2189 case Intrinsic::icall_branch_funnel: 2190 case Intrinsic::localescape: 2191 HasUninlineableIntrinsic = true; 2192 return false; 2193 case Intrinsic::vastart: 2194 InitsVargArgs = true; 2195 return false; 2196 case Intrinsic::launder_invariant_group: 2197 case Intrinsic::strip_invariant_group: 2198 if (auto *SROAArg = getSROAArgForValueOrNull(II->getOperand(0))) 2199 SROAArgValues[II] = SROAArg; 2200 return true; 2201 case Intrinsic::is_constant: 2202 return simplifyIntrinsicCallIsConstant(Call); 2203 } 2204 } 2205 2206 if (F == Call.getFunction()) { 2207 // This flag will fully abort the analysis, so don't bother with anything 2208 // else. 2209 IsRecursiveCall = true; 2210 if (!AllowRecursiveCall) 2211 return false; 2212 } 2213 2214 if (TTI.isLoweredToCall(F)) { 2215 onLoweredCall(F, Call, IsIndirectCall); 2216 } 2217 2218 if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory()))) 2219 disableLoadElimination(); 2220 return Base::visitCallBase(Call); 2221 } 2222 2223 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { 2224 // At least one return instruction will be free after inlining. 2225 bool Free = !HasReturn; 2226 HasReturn = true; 2227 return Free; 2228 } 2229 2230 bool CallAnalyzer::visitBranchInst(BranchInst &BI) { 2231 // We model unconditional branches as essentially free -- they really 2232 // shouldn't exist at all, but handling them makes the behavior of the 2233 // inliner more regular and predictable. Interestingly, conditional branches 2234 // which will fold away are also free. 2235 return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || 2236 isa_and_nonnull<ConstantInt>( 2237 SimplifiedValues.lookup(BI.getCondition())); 2238 } 2239 2240 bool CallAnalyzer::visitSelectInst(SelectInst &SI) { 2241 bool CheckSROA = SI.getType()->isPointerTy(); 2242 Value *TrueVal = SI.getTrueValue(); 2243 Value *FalseVal = SI.getFalseValue(); 2244 2245 Constant *TrueC = dyn_cast<Constant>(TrueVal); 2246 if (!TrueC) 2247 TrueC = SimplifiedValues.lookup(TrueVal); 2248 Constant *FalseC = dyn_cast<Constant>(FalseVal); 2249 if (!FalseC) 2250 FalseC = SimplifiedValues.lookup(FalseVal); 2251 Constant *CondC = 2252 dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition())); 2253 2254 if (!CondC) { 2255 // Select C, X, X => X 2256 if (TrueC == FalseC && TrueC) { 2257 SimplifiedValues[&SI] = TrueC; 2258 return true; 2259 } 2260 2261 if (!CheckSROA) 2262 return Base::visitSelectInst(SI); 2263 2264 std::pair<Value *, APInt> TrueBaseAndOffset = 2265 ConstantOffsetPtrs.lookup(TrueVal); 2266 std::pair<Value *, APInt> FalseBaseAndOffset = 2267 ConstantOffsetPtrs.lookup(FalseVal); 2268 if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) { 2269 ConstantOffsetPtrs[&SI] = TrueBaseAndOffset; 2270 2271 if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal)) 2272 SROAArgValues[&SI] = SROAArg; 2273 return true; 2274 } 2275 2276 return Base::visitSelectInst(SI); 2277 } 2278 2279 // Select condition is a constant. 2280 Value *SelectedV = CondC->isAllOnesValue() ? TrueVal 2281 : (CondC->isNullValue()) ? FalseVal 2282 : nullptr; 2283 if (!SelectedV) { 2284 // Condition is a vector constant that is not all 1s or all 0s. If all 2285 // operands are constants, ConstantExpr::getSelect() can handle the cases 2286 // such as select vectors. 2287 if (TrueC && FalseC) { 2288 if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) { 2289 SimplifiedValues[&SI] = C; 2290 return true; 2291 } 2292 } 2293 return Base::visitSelectInst(SI); 2294 } 2295 2296 // Condition is either all 1s or all 0s. SI can be simplified. 2297 if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) { 2298 SimplifiedValues[&SI] = SelectedC; 2299 return true; 2300 } 2301 2302 if (!CheckSROA) 2303 return true; 2304 2305 std::pair<Value *, APInt> BaseAndOffset = 2306 ConstantOffsetPtrs.lookup(SelectedV); 2307 if (BaseAndOffset.first) { 2308 ConstantOffsetPtrs[&SI] = BaseAndOffset; 2309 2310 if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV)) 2311 SROAArgValues[&SI] = SROAArg; 2312 } 2313 2314 return true; 2315 } 2316 2317 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { 2318 // We model unconditional switches as free, see the comments on handling 2319 // branches. 2320 if (isa<ConstantInt>(SI.getCondition())) 2321 return true; 2322 if (Value *V = SimplifiedValues.lookup(SI.getCondition())) 2323 if (isa<ConstantInt>(V)) 2324 return true; 2325 2326 // Assume the most general case where the switch is lowered into 2327 // either a jump table, bit test, or a balanced binary tree consisting of 2328 // case clusters without merging adjacent clusters with the same 2329 // destination. We do not consider the switches that are lowered with a mix 2330 // of jump table/bit test/binary search tree. The cost of the switch is 2331 // proportional to the size of the tree or the size of jump table range. 2332 // 2333 // NB: We convert large switches which are just used to initialize large phi 2334 // nodes to lookup tables instead in simplifycfg, so this shouldn't prevent 2335 // inlining those. It will prevent inlining in cases where the optimization 2336 // does not (yet) fire. 2337 2338 unsigned JumpTableSize = 0; 2339 BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr; 2340 unsigned NumCaseCluster = 2341 TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI); 2342 2343 onFinalizeSwitch(JumpTableSize, NumCaseCluster); 2344 return false; 2345 } 2346 2347 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { 2348 // We never want to inline functions that contain an indirectbr. This is 2349 // incorrect because all the blockaddress's (in static global initializers 2350 // for example) would be referring to the original function, and this 2351 // indirect jump would jump from the inlined copy of the function into the 2352 // original function which is extremely undefined behavior. 2353 // FIXME: This logic isn't really right; we can safely inline functions with 2354 // indirectbr's as long as no other function or global references the 2355 // blockaddress of a block within the current function. 2356 HasIndirectBr = true; 2357 return false; 2358 } 2359 2360 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { 2361 // FIXME: It's not clear that a single instruction is an accurate model for 2362 // the inline cost of a resume instruction. 2363 return false; 2364 } 2365 2366 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) { 2367 // FIXME: It's not clear that a single instruction is an accurate model for 2368 // the inline cost of a cleanupret instruction. 2369 return false; 2370 } 2371 2372 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) { 2373 // FIXME: It's not clear that a single instruction is an accurate model for 2374 // the inline cost of a catchret instruction. 2375 return false; 2376 } 2377 2378 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { 2379 // FIXME: It might be reasonably to discount the cost of instructions leading 2380 // to unreachable as they have the lowest possible impact on both runtime and 2381 // code size. 2382 return true; // No actual code is needed for unreachable. 2383 } 2384 2385 bool CallAnalyzer::visitInstruction(Instruction &I) { 2386 // Some instructions are free. All of the free intrinsics can also be 2387 // handled by SROA, etc. 2388 if (TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 2389 TargetTransformInfo::TCC_Free) 2390 return true; 2391 2392 // We found something we don't understand or can't handle. Mark any SROA-able 2393 // values in the operand list as no longer viable. 2394 for (const Use &Op : I.operands()) 2395 disableSROA(Op); 2396 2397 return false; 2398 } 2399 2400 /// Analyze a basic block for its contribution to the inline cost. 2401 /// 2402 /// This method walks the analyzer over every instruction in the given basic 2403 /// block and accounts for their cost during inlining at this callsite. It 2404 /// aborts early if the threshold has been exceeded or an impossible to inline 2405 /// construct has been detected. It returns false if inlining is no longer 2406 /// viable, and true if inlining remains viable. 2407 InlineResult 2408 CallAnalyzer::analyzeBlock(BasicBlock *BB, 2409 SmallPtrSetImpl<const Value *> &EphValues) { 2410 for (Instruction &I : *BB) { 2411 // FIXME: Currently, the number of instructions in a function regardless of 2412 // our ability to simplify them during inline to constants or dead code, 2413 // are actually used by the vector bonus heuristic. As long as that's true, 2414 // we have to special case debug intrinsics here to prevent differences in 2415 // inlining due to debug symbols. Eventually, the number of unsimplified 2416 // instructions shouldn't factor into the cost computation, but until then, 2417 // hack around it here. 2418 // Similarly, skip pseudo-probes. 2419 if (I.isDebugOrPseudoInst()) 2420 continue; 2421 2422 // Skip ephemeral values. 2423 if (EphValues.count(&I)) 2424 continue; 2425 2426 ++NumInstructions; 2427 if (isa<ExtractElementInst>(I) || I.getType()->isVectorTy()) 2428 ++NumVectorInstructions; 2429 2430 // If the instruction simplified to a constant, there is no cost to this 2431 // instruction. Visit the instructions using our InstVisitor to account for 2432 // all of the per-instruction logic. The visit tree returns true if we 2433 // consumed the instruction in any way, and false if the instruction's base 2434 // cost should count against inlining. 2435 onInstructionAnalysisStart(&I); 2436 2437 if (Base::visit(&I)) 2438 ++NumInstructionsSimplified; 2439 else 2440 onMissedSimplification(); 2441 2442 onInstructionAnalysisFinish(&I); 2443 using namespace ore; 2444 // If the visit this instruction detected an uninlinable pattern, abort. 2445 InlineResult IR = InlineResult::success(); 2446 if (IsRecursiveCall && !AllowRecursiveCall) 2447 IR = InlineResult::failure("recursive"); 2448 else if (ExposesReturnsTwice) 2449 IR = InlineResult::failure("exposes returns twice"); 2450 else if (HasDynamicAlloca) 2451 IR = InlineResult::failure("dynamic alloca"); 2452 else if (HasIndirectBr) 2453 IR = InlineResult::failure("indirect branch"); 2454 else if (HasUninlineableIntrinsic) 2455 IR = InlineResult::failure("uninlinable intrinsic"); 2456 else if (InitsVargArgs) 2457 IR = InlineResult::failure("varargs"); 2458 if (!IR.isSuccess()) { 2459 if (ORE) 2460 ORE->emit([&]() { 2461 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 2462 &CandidateCall) 2463 << NV("Callee", &F) << " has uninlinable pattern (" 2464 << NV("InlineResult", IR.getFailureReason()) 2465 << ") and cost is not fully computed"; 2466 }); 2467 return IR; 2468 } 2469 2470 // If the caller is a recursive function then we don't want to inline 2471 // functions which allocate a lot of stack space because it would increase 2472 // the caller stack usage dramatically. 2473 if (IsCallerRecursive && 2474 AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) { 2475 auto IR = 2476 InlineResult::failure("recursive and allocates too much stack space"); 2477 if (ORE) 2478 ORE->emit([&]() { 2479 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 2480 &CandidateCall) 2481 << NV("Callee", &F) << " is " 2482 << NV("InlineResult", IR.getFailureReason()) 2483 << ". Cost is not fully computed"; 2484 }); 2485 return IR; 2486 } 2487 2488 if (shouldStop()) 2489 return InlineResult::failure( 2490 "Call site analysis is not favorable to inlining."); 2491 } 2492 2493 return InlineResult::success(); 2494 } 2495 2496 /// Compute the base pointer and cumulative constant offsets for V. 2497 /// 2498 /// This strips all constant offsets off of V, leaving it the base pointer, and 2499 /// accumulates the total constant offset applied in the returned constant. It 2500 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 2501 /// no constant offsets applied. 2502 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { 2503 if (!V->getType()->isPointerTy()) 2504 return nullptr; 2505 2506 unsigned AS = V->getType()->getPointerAddressSpace(); 2507 unsigned IntPtrWidth = DL.getIndexSizeInBits(AS); 2508 APInt Offset = APInt::getZero(IntPtrWidth); 2509 2510 // Even though we don't look through PHI nodes, we could be called on an 2511 // instruction in an unreachable block, which may be on a cycle. 2512 SmallPtrSet<Value *, 4> Visited; 2513 Visited.insert(V); 2514 do { 2515 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2516 if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) 2517 return nullptr; 2518 V = GEP->getPointerOperand(); 2519 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 2520 V = cast<Operator>(V)->getOperand(0); 2521 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2522 if (GA->isInterposable()) 2523 break; 2524 V = GA->getAliasee(); 2525 } else { 2526 break; 2527 } 2528 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2529 } while (Visited.insert(V).second); 2530 2531 Type *IdxPtrTy = DL.getIndexType(V->getType()); 2532 return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset)); 2533 } 2534 2535 /// Find dead blocks due to deleted CFG edges during inlining. 2536 /// 2537 /// If we know the successor of the current block, \p CurrBB, has to be \p 2538 /// NextBB, the other successors of \p CurrBB are dead if these successors have 2539 /// no live incoming CFG edges. If one block is found to be dead, we can 2540 /// continue growing the dead block list by checking the successors of the dead 2541 /// blocks to see if all their incoming edges are dead or not. 2542 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) { 2543 auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) { 2544 // A CFG edge is dead if the predecessor is dead or the predecessor has a 2545 // known successor which is not the one under exam. 2546 return (DeadBlocks.count(Pred) || 2547 (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ)); 2548 }; 2549 2550 auto IsNewlyDead = [&](BasicBlock *BB) { 2551 // If all the edges to a block are dead, the block is also dead. 2552 return (!DeadBlocks.count(BB) && 2553 llvm::all_of(predecessors(BB), 2554 [&](BasicBlock *P) { return IsEdgeDead(P, BB); })); 2555 }; 2556 2557 for (BasicBlock *Succ : successors(CurrBB)) { 2558 if (Succ == NextBB || !IsNewlyDead(Succ)) 2559 continue; 2560 SmallVector<BasicBlock *, 4> NewDead; 2561 NewDead.push_back(Succ); 2562 while (!NewDead.empty()) { 2563 BasicBlock *Dead = NewDead.pop_back_val(); 2564 if (DeadBlocks.insert(Dead)) 2565 // Continue growing the dead block lists. 2566 for (BasicBlock *S : successors(Dead)) 2567 if (IsNewlyDead(S)) 2568 NewDead.push_back(S); 2569 } 2570 } 2571 } 2572 2573 /// Analyze a call site for potential inlining. 2574 /// 2575 /// Returns true if inlining this call is viable, and false if it is not 2576 /// viable. It computes the cost and adjusts the threshold based on numerous 2577 /// factors and heuristics. If this method returns false but the computed cost 2578 /// is below the computed threshold, then inlining was forcibly disabled by 2579 /// some artifact of the routine. 2580 InlineResult CallAnalyzer::analyze() { 2581 ++NumCallsAnalyzed; 2582 2583 auto Result = onAnalysisStart(); 2584 if (!Result.isSuccess()) 2585 return Result; 2586 2587 if (F.empty()) 2588 return InlineResult::success(); 2589 2590 Function *Caller = CandidateCall.getFunction(); 2591 // Check if the caller function is recursive itself. 2592 for (User *U : Caller->users()) { 2593 CallBase *Call = dyn_cast<CallBase>(U); 2594 if (Call && Call->getFunction() == Caller) { 2595 IsCallerRecursive = true; 2596 break; 2597 } 2598 } 2599 2600 // Populate our simplified values by mapping from function arguments to call 2601 // arguments with known important simplifications. 2602 auto CAI = CandidateCall.arg_begin(); 2603 for (Argument &FAI : F.args()) { 2604 assert(CAI != CandidateCall.arg_end()); 2605 if (Constant *C = dyn_cast<Constant>(CAI)) 2606 SimplifiedValues[&FAI] = C; 2607 2608 Value *PtrArg = *CAI; 2609 if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { 2610 ConstantOffsetPtrs[&FAI] = std::make_pair(PtrArg, C->getValue()); 2611 2612 // We can SROA any pointer arguments derived from alloca instructions. 2613 if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) { 2614 SROAArgValues[&FAI] = SROAArg; 2615 onInitializeSROAArg(SROAArg); 2616 EnabledSROAAllocas.insert(SROAArg); 2617 } 2618 } 2619 ++CAI; 2620 } 2621 NumConstantArgs = SimplifiedValues.size(); 2622 NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); 2623 NumAllocaArgs = SROAArgValues.size(); 2624 2625 // FIXME: If a caller has multiple calls to a callee, we end up recomputing 2626 // the ephemeral values multiple times (and they're completely determined by 2627 // the callee, so this is purely duplicate work). 2628 SmallPtrSet<const Value *, 32> EphValues; 2629 CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues); 2630 2631 // The worklist of live basic blocks in the callee *after* inlining. We avoid 2632 // adding basic blocks of the callee which can be proven to be dead for this 2633 // particular call site in order to get more accurate cost estimates. This 2634 // requires a somewhat heavyweight iteration pattern: we need to walk the 2635 // basic blocks in a breadth-first order as we insert live successors. To 2636 // accomplish this, prioritizing for small iterations because we exit after 2637 // crossing our threshold, we use a small-size optimized SetVector. 2638 typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>, 2639 SmallPtrSet<BasicBlock *, 16>> 2640 BBSetVector; 2641 BBSetVector BBWorklist; 2642 BBWorklist.insert(&F.getEntryBlock()); 2643 2644 // Note that we *must not* cache the size, this loop grows the worklist. 2645 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 2646 if (shouldStop()) 2647 break; 2648 2649 BasicBlock *BB = BBWorklist[Idx]; 2650 if (BB->empty()) 2651 continue; 2652 2653 onBlockStart(BB); 2654 2655 // Disallow inlining a blockaddress with uses other than strictly callbr. 2656 // A blockaddress only has defined behavior for an indirect branch in the 2657 // same function, and we do not currently support inlining indirect 2658 // branches. But, the inliner may not see an indirect branch that ends up 2659 // being dead code at a particular call site. If the blockaddress escapes 2660 // the function, e.g., via a global variable, inlining may lead to an 2661 // invalid cross-function reference. 2662 // FIXME: pr/39560: continue relaxing this overt restriction. 2663 if (BB->hasAddressTaken()) 2664 for (User *U : BlockAddress::get(&*BB)->users()) 2665 if (!isa<CallBrInst>(*U)) 2666 return InlineResult::failure("blockaddress used outside of callbr"); 2667 2668 // Analyze the cost of this block. If we blow through the threshold, this 2669 // returns false, and we can bail on out. 2670 InlineResult IR = analyzeBlock(BB, EphValues); 2671 if (!IR.isSuccess()) 2672 return IR; 2673 2674 Instruction *TI = BB->getTerminator(); 2675 2676 // Add in the live successors by first checking whether we have terminator 2677 // that may be simplified based on the values simplified by this call. 2678 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2679 if (BI->isConditional()) { 2680 Value *Cond = BI->getCondition(); 2681 if (ConstantInt *SimpleCond = 2682 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2683 BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0); 2684 BBWorklist.insert(NextBB); 2685 KnownSuccessors[BB] = NextBB; 2686 findDeadBlocks(BB, NextBB); 2687 continue; 2688 } 2689 } 2690 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2691 Value *Cond = SI->getCondition(); 2692 if (ConstantInt *SimpleCond = 2693 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2694 BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor(); 2695 BBWorklist.insert(NextBB); 2696 KnownSuccessors[BB] = NextBB; 2697 findDeadBlocks(BB, NextBB); 2698 continue; 2699 } 2700 } 2701 2702 // If we're unable to select a particular successor, just count all of 2703 // them. 2704 for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; 2705 ++TIdx) 2706 BBWorklist.insert(TI->getSuccessor(TIdx)); 2707 2708 onBlockAnalyzed(BB); 2709 } 2710 2711 bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneLiveUse() && 2712 &F == CandidateCall.getCalledFunction(); 2713 // If this is a noduplicate call, we can still inline as long as 2714 // inlining this would cause the removal of the caller (so the instruction 2715 // is not actually duplicated, just moved). 2716 if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall) 2717 return InlineResult::failure("noduplicate"); 2718 2719 return finalizeAnalysis(); 2720 } 2721 2722 void InlineCostCallAnalyzer::print(raw_ostream &OS) { 2723 #define DEBUG_PRINT_STAT(x) OS << " " #x ": " << x << "\n" 2724 if (PrintInstructionComments) 2725 F.print(OS, &Writer); 2726 DEBUG_PRINT_STAT(NumConstantArgs); 2727 DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); 2728 DEBUG_PRINT_STAT(NumAllocaArgs); 2729 DEBUG_PRINT_STAT(NumConstantPtrCmps); 2730 DEBUG_PRINT_STAT(NumConstantPtrDiffs); 2731 DEBUG_PRINT_STAT(NumInstructionsSimplified); 2732 DEBUG_PRINT_STAT(NumInstructions); 2733 DEBUG_PRINT_STAT(SROACostSavings); 2734 DEBUG_PRINT_STAT(SROACostSavingsLost); 2735 DEBUG_PRINT_STAT(LoadEliminationCost); 2736 DEBUG_PRINT_STAT(ContainsNoDuplicateCall); 2737 DEBUG_PRINT_STAT(Cost); 2738 DEBUG_PRINT_STAT(Threshold); 2739 #undef DEBUG_PRINT_STAT 2740 } 2741 2742 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2743 /// Dump stats about this call's analysis. 2744 LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { print(dbgs()); } 2745 #endif 2746 2747 /// Test that there are no attribute conflicts between Caller and Callee 2748 /// that prevent inlining. 2749 static bool functionsHaveCompatibleAttributes( 2750 Function *Caller, Function *Callee, TargetTransformInfo &TTI, 2751 function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) { 2752 // Note that CalleeTLI must be a copy not a reference. The legacy pass manager 2753 // caches the most recently created TLI in the TargetLibraryInfoWrapperPass 2754 // object, and always returns the same object (which is overwritten on each 2755 // GetTLI call). Therefore we copy the first result. 2756 auto CalleeTLI = GetTLI(*Callee); 2757 return TTI.areInlineCompatible(Caller, Callee) && 2758 GetTLI(*Caller).areInlineCompatible(CalleeTLI, 2759 InlineCallerSupersetNoBuiltin) && 2760 AttributeFuncs::areInlineCompatible(*Caller, *Callee); 2761 } 2762 2763 int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) { 2764 int Cost = 0; 2765 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) { 2766 if (Call.isByValArgument(I)) { 2767 // We approximate the number of loads and stores needed by dividing the 2768 // size of the byval type by the target's pointer size. 2769 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2770 unsigned TypeSize = DL.getTypeSizeInBits(Call.getParamByValType(I)); 2771 unsigned AS = PTy->getAddressSpace(); 2772 unsigned PointerSize = DL.getPointerSizeInBits(AS); 2773 // Ceiling division. 2774 unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; 2775 2776 // If it generates more than 8 stores it is likely to be expanded as an 2777 // inline memcpy so we take that as an upper bound. Otherwise we assume 2778 // one load and one store per word copied. 2779 // FIXME: The maxStoresPerMemcpy setting from the target should be used 2780 // here instead of a magic number of 8, but it's not available via 2781 // DataLayout. 2782 NumStores = std::min(NumStores, 8U); 2783 2784 Cost += 2 * NumStores * InlineConstants::InstrCost; 2785 } else { 2786 // For non-byval arguments subtract off one instruction per call 2787 // argument. 2788 Cost += InlineConstants::InstrCost; 2789 } 2790 } 2791 // The call instruction also disappears after inlining. 2792 Cost += InlineConstants::InstrCost + CallPenalty; 2793 return Cost; 2794 } 2795 2796 InlineCost llvm::getInlineCost( 2797 CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI, 2798 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2799 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2800 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2801 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2802 return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI, 2803 GetAssumptionCache, GetTLI, GetBFI, PSI, ORE); 2804 } 2805 2806 Optional<int> llvm::getInliningCostEstimate( 2807 CallBase &Call, TargetTransformInfo &CalleeTTI, 2808 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2809 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2810 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2811 const InlineParams Params = {/* DefaultThreshold*/ 0, 2812 /*HintThreshold*/ {}, 2813 /*ColdThreshold*/ {}, 2814 /*OptSizeThreshold*/ {}, 2815 /*OptMinSizeThreshold*/ {}, 2816 /*HotCallSiteThreshold*/ {}, 2817 /*LocallyHotCallSiteThreshold*/ {}, 2818 /*ColdCallSiteThreshold*/ {}, 2819 /*ComputeFullInlineCost*/ true, 2820 /*EnableDeferral*/ true}; 2821 2822 InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI, 2823 GetAssumptionCache, GetBFI, PSI, ORE, true, 2824 /*IgnoreThreshold*/ true); 2825 auto R = CA.analyze(); 2826 if (!R.isSuccess()) 2827 return None; 2828 return CA.getCost(); 2829 } 2830 2831 Optional<InlineCostFeatures> llvm::getInliningCostFeatures( 2832 CallBase &Call, TargetTransformInfo &CalleeTTI, 2833 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2834 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2835 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2836 InlineCostFeaturesAnalyzer CFA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, 2837 ORE, *Call.getCalledFunction(), Call); 2838 auto R = CFA.analyze(); 2839 if (!R.isSuccess()) 2840 return None; 2841 return CFA.features(); 2842 } 2843 2844 Optional<InlineResult> llvm::getAttributeBasedInliningDecision( 2845 CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI, 2846 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 2847 2848 // Cannot inline indirect calls. 2849 if (!Callee) 2850 return InlineResult::failure("indirect call"); 2851 2852 // When callee coroutine function is inlined into caller coroutine function 2853 // before coro-split pass, 2854 // coro-early pass can not handle this quiet well. 2855 // So we won't inline the coroutine function if it have not been unsplited 2856 if (Callee->isPresplitCoroutine()) 2857 return InlineResult::failure("unsplited coroutine call"); 2858 2859 // Never inline calls with byval arguments that does not have the alloca 2860 // address space. Since byval arguments can be replaced with a copy to an 2861 // alloca, the inlined code would need to be adjusted to handle that the 2862 // argument is in the alloca address space (so it is a little bit complicated 2863 // to solve). 2864 unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace(); 2865 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) 2866 if (Call.isByValArgument(I)) { 2867 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2868 if (PTy->getAddressSpace() != AllocaAS) 2869 return InlineResult::failure("byval arguments without alloca" 2870 " address space"); 2871 } 2872 2873 // Calls to functions with always-inline attributes should be inlined 2874 // whenever possible. 2875 if (Call.hasFnAttr(Attribute::AlwaysInline)) { 2876 auto IsViable = isInlineViable(*Callee); 2877 if (IsViable.isSuccess()) 2878 return InlineResult::success(); 2879 return InlineResult::failure(IsViable.getFailureReason()); 2880 } 2881 2882 // Never inline functions with conflicting attributes (unless callee has 2883 // always-inline attribute). 2884 Function *Caller = Call.getCaller(); 2885 if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI)) 2886 return InlineResult::failure("conflicting attributes"); 2887 2888 // Don't inline this call if the caller has the optnone attribute. 2889 if (Caller->hasOptNone()) 2890 return InlineResult::failure("optnone attribute"); 2891 2892 // Don't inline a function that treats null pointer as valid into a caller 2893 // that does not have this attribute. 2894 if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined()) 2895 return InlineResult::failure("nullptr definitions incompatible"); 2896 2897 // Don't inline functions which can be interposed at link-time. 2898 if (Callee->isInterposable()) 2899 return InlineResult::failure("interposable"); 2900 2901 // Don't inline functions marked noinline. 2902 if (Callee->hasFnAttribute(Attribute::NoInline)) 2903 return InlineResult::failure("noinline function attribute"); 2904 2905 // Don't inline call sites marked noinline. 2906 if (Call.isNoInline()) 2907 return InlineResult::failure("noinline call site attribute"); 2908 2909 return None; 2910 } 2911 2912 InlineCost llvm::getInlineCost( 2913 CallBase &Call, Function *Callee, const InlineParams &Params, 2914 TargetTransformInfo &CalleeTTI, 2915 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2916 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2917 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2918 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2919 2920 auto UserDecision = 2921 llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI); 2922 2923 if (UserDecision.hasValue()) { 2924 if (UserDecision->isSuccess()) 2925 return llvm::InlineCost::getAlways("always inline attribute"); 2926 return llvm::InlineCost::getNever(UserDecision->getFailureReason()); 2927 } 2928 2929 LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() 2930 << "... (caller:" << Call.getCaller()->getName() 2931 << ")\n"); 2932 2933 InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI, 2934 GetAssumptionCache, GetBFI, PSI, ORE); 2935 InlineResult ShouldInline = CA.analyze(); 2936 2937 LLVM_DEBUG(CA.dump()); 2938 2939 // Always make cost benefit based decision explicit. 2940 // We use always/never here since threshold is not meaningful, 2941 // as it's not what drives cost-benefit analysis. 2942 if (CA.wasDecidedByCostBenefit()) { 2943 if (ShouldInline.isSuccess()) 2944 return InlineCost::getAlways("benefit over cost", 2945 CA.getCostBenefitPair()); 2946 else 2947 return InlineCost::getNever("cost over benefit", CA.getCostBenefitPair()); 2948 } 2949 2950 if (CA.wasDecidedByCostThreshold()) 2951 return InlineCost::get(CA.getCost(), CA.getThreshold()); 2952 2953 // No details on how the decision was made, simply return always or never. 2954 return ShouldInline.isSuccess() 2955 ? InlineCost::getAlways("empty function") 2956 : InlineCost::getNever(ShouldInline.getFailureReason()); 2957 } 2958 2959 InlineResult llvm::isInlineViable(Function &F) { 2960 bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); 2961 for (BasicBlock &BB : F) { 2962 // Disallow inlining of functions which contain indirect branches. 2963 if (isa<IndirectBrInst>(BB.getTerminator())) 2964 return InlineResult::failure("contains indirect branches"); 2965 2966 // Disallow inlining of blockaddresses which are used by non-callbr 2967 // instructions. 2968 if (BB.hasAddressTaken()) 2969 for (User *U : BlockAddress::get(&BB)->users()) 2970 if (!isa<CallBrInst>(*U)) 2971 return InlineResult::failure("blockaddress used outside of callbr"); 2972 2973 for (auto &II : BB) { 2974 CallBase *Call = dyn_cast<CallBase>(&II); 2975 if (!Call) 2976 continue; 2977 2978 // Disallow recursive calls. 2979 Function *Callee = Call->getCalledFunction(); 2980 if (&F == Callee) 2981 return InlineResult::failure("recursive call"); 2982 2983 // Disallow calls which expose returns-twice to a function not previously 2984 // attributed as such. 2985 if (!ReturnsTwice && isa<CallInst>(Call) && 2986 cast<CallInst>(Call)->canReturnTwice()) 2987 return InlineResult::failure("exposes returns-twice attribute"); 2988 2989 if (Callee) 2990 switch (Callee->getIntrinsicID()) { 2991 default: 2992 break; 2993 case llvm::Intrinsic::icall_branch_funnel: 2994 // Disallow inlining of @llvm.icall.branch.funnel because current 2995 // backend can't separate call targets from call arguments. 2996 return InlineResult::failure( 2997 "disallowed inlining of @llvm.icall.branch.funnel"); 2998 case llvm::Intrinsic::localescape: 2999 // Disallow inlining functions that call @llvm.localescape. Doing this 3000 // correctly would require major changes to the inliner. 3001 return InlineResult::failure( 3002 "disallowed inlining of @llvm.localescape"); 3003 case llvm::Intrinsic::vastart: 3004 // Disallow inlining of functions that initialize VarArgs with 3005 // va_start. 3006 return InlineResult::failure( 3007 "contains VarArgs initialized with va_start"); 3008 } 3009 } 3010 } 3011 3012 return InlineResult::success(); 3013 } 3014 3015 // APIs to create InlineParams based on command line flags and/or other 3016 // parameters. 3017 3018 InlineParams llvm::getInlineParams(int Threshold) { 3019 InlineParams Params; 3020 3021 // This field is the threshold to use for a callee by default. This is 3022 // derived from one or more of: 3023 // * optimization or size-optimization levels, 3024 // * a value passed to createFunctionInliningPass function, or 3025 // * the -inline-threshold flag. 3026 // If the -inline-threshold flag is explicitly specified, that is used 3027 // irrespective of anything else. 3028 if (InlineThreshold.getNumOccurrences() > 0) 3029 Params.DefaultThreshold = InlineThreshold; 3030 else 3031 Params.DefaultThreshold = Threshold; 3032 3033 // Set the HintThreshold knob from the -inlinehint-threshold. 3034 Params.HintThreshold = HintThreshold; 3035 3036 // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold. 3037 Params.HotCallSiteThreshold = HotCallSiteThreshold; 3038 3039 // If the -locally-hot-callsite-threshold is explicitly specified, use it to 3040 // populate LocallyHotCallSiteThreshold. Later, we populate 3041 // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if 3042 // we know that optimization level is O3 (in the getInlineParams variant that 3043 // takes the opt and size levels). 3044 // FIXME: Remove this check (and make the assignment unconditional) after 3045 // addressing size regression issues at O2. 3046 if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0) 3047 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 3048 3049 // Set the ColdCallSiteThreshold knob from the 3050 // -inline-cold-callsite-threshold. 3051 Params.ColdCallSiteThreshold = ColdCallSiteThreshold; 3052 3053 // Set the OptMinSizeThreshold and OptSizeThreshold params only if the 3054 // -inlinehint-threshold commandline option is not explicitly given. If that 3055 // option is present, then its value applies even for callees with size and 3056 // minsize attributes. 3057 // If the -inline-threshold is not specified, set the ColdThreshold from the 3058 // -inlinecold-threshold even if it is not explicitly passed. If 3059 // -inline-threshold is specified, then -inlinecold-threshold needs to be 3060 // explicitly specified to set the ColdThreshold knob 3061 if (InlineThreshold.getNumOccurrences() == 0) { 3062 Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold; 3063 Params.OptSizeThreshold = InlineConstants::OptSizeThreshold; 3064 Params.ColdThreshold = ColdThreshold; 3065 } else if (ColdThreshold.getNumOccurrences() > 0) { 3066 Params.ColdThreshold = ColdThreshold; 3067 } 3068 return Params; 3069 } 3070 3071 InlineParams llvm::getInlineParams() { 3072 return getInlineParams(DefaultThreshold); 3073 } 3074 3075 // Compute the default threshold for inlining based on the opt level and the 3076 // size opt level. 3077 static int computeThresholdFromOptLevels(unsigned OptLevel, 3078 unsigned SizeOptLevel) { 3079 if (OptLevel > 2) 3080 return InlineConstants::OptAggressiveThreshold; 3081 if (SizeOptLevel == 1) // -Os 3082 return InlineConstants::OptSizeThreshold; 3083 if (SizeOptLevel == 2) // -Oz 3084 return InlineConstants::OptMinSizeThreshold; 3085 return DefaultThreshold; 3086 } 3087 3088 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) { 3089 auto Params = 3090 getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel)); 3091 // At O3, use the value of -locally-hot-callsite-threshold option to populate 3092 // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only 3093 // when it is specified explicitly. 3094 if (OptLevel > 2) 3095 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 3096 return Params; 3097 } 3098 3099 PreservedAnalyses 3100 InlineCostAnnotationPrinterPass::run(Function &F, 3101 FunctionAnalysisManager &FAM) { 3102 PrintInstructionComments = true; 3103 std::function<AssumptionCache &(Function &)> GetAssumptionCache = 3104 [&](Function &F) -> AssumptionCache & { 3105 return FAM.getResult<AssumptionAnalysis>(F); 3106 }; 3107 Module *M = F.getParent(); 3108 ProfileSummaryInfo PSI(*M); 3109 DataLayout DL(M); 3110 TargetTransformInfo TTI(DL); 3111 // FIXME: Redesign the usage of InlineParams to expand the scope of this pass. 3112 // In the current implementation, the type of InlineParams doesn't matter as 3113 // the pass serves only for verification of inliner's decisions. 3114 // We can add a flag which determines InlineParams for this run. Right now, 3115 // the default InlineParams are used. 3116 const InlineParams Params = llvm::getInlineParams(); 3117 for (BasicBlock &BB : F) { 3118 for (Instruction &I : BB) { 3119 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 3120 Function *CalledFunction = CI->getCalledFunction(); 3121 if (!CalledFunction || CalledFunction->isDeclaration()) 3122 continue; 3123 OptimizationRemarkEmitter ORE(CalledFunction); 3124 InlineCostCallAnalyzer ICCA(*CalledFunction, *CI, Params, TTI, 3125 GetAssumptionCache, nullptr, &PSI, &ORE); 3126 ICCA.analyze(); 3127 OS << " Analyzing call of " << CalledFunction->getName() 3128 << "... (caller:" << CI->getCaller()->getName() << ")\n"; 3129 ICCA.print(OS); 3130 OS << "\n"; 3131 } 3132 } 3133 } 3134 return PreservedAnalyses::all(); 3135 } 3136